xref: /openbmc/linux/security/selinux/hooks.c (revision 84d517f3)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h>		/* for Unix socket types */
71 #include <net/af_unix.h>	/* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87 
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!kstrtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!kstrtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
141  * policy capability is enabled, SECMARK is always considered enabled.
142  *
143  */
144 static int selinux_secmark_enabled(void)
145 {
146 	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148 
149 /**
150  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151  *
152  * Description:
153  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
154  * (1) if any are enabled or false (0) if neither are enabled.  If the
155  * always_check_network policy capability is enabled, peer labeling
156  * is always considered enabled.
157  *
158  */
159 static int selinux_peerlbl_enabled(void)
160 {
161 	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163 
164 /*
165  * initialise the security for the init task
166  */
167 static void cred_init_security(void)
168 {
169 	struct cred *cred = (struct cred *) current->real_cred;
170 	struct task_security_struct *tsec;
171 
172 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
173 	if (!tsec)
174 		panic("SELinux:  Failed to initialize initial task.\n");
175 
176 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 	cred->security = tsec;
178 }
179 
180 /*
181  * get the security ID of a set of credentials
182  */
183 static inline u32 cred_sid(const struct cred *cred)
184 {
185 	const struct task_security_struct *tsec;
186 
187 	tsec = cred->security;
188 	return tsec->sid;
189 }
190 
191 /*
192  * get the objective security ID of a task
193  */
194 static inline u32 task_sid(const struct task_struct *task)
195 {
196 	u32 sid;
197 
198 	rcu_read_lock();
199 	sid = cred_sid(__task_cred(task));
200 	rcu_read_unlock();
201 	return sid;
202 }
203 
204 /*
205  * get the subjective security ID of the current task
206  */
207 static inline u32 current_sid(void)
208 {
209 	const struct task_security_struct *tsec = current_security();
210 
211 	return tsec->sid;
212 }
213 
214 /* Allocate and free functions for each kind of security blob. */
215 
216 static int inode_alloc_security(struct inode *inode)
217 {
218 	struct inode_security_struct *isec;
219 	u32 sid = current_sid();
220 
221 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
222 	if (!isec)
223 		return -ENOMEM;
224 
225 	mutex_init(&isec->lock);
226 	INIT_LIST_HEAD(&isec->list);
227 	isec->inode = inode;
228 	isec->sid = SECINITSID_UNLABELED;
229 	isec->sclass = SECCLASS_FILE;
230 	isec->task_sid = sid;
231 	inode->i_security = isec;
232 
233 	return 0;
234 }
235 
236 static void inode_free_rcu(struct rcu_head *head)
237 {
238 	struct inode_security_struct *isec;
239 
240 	isec = container_of(head, struct inode_security_struct, rcu);
241 	kmem_cache_free(sel_inode_cache, isec);
242 }
243 
244 static void inode_free_security(struct inode *inode)
245 {
246 	struct inode_security_struct *isec = inode->i_security;
247 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
248 
249 	spin_lock(&sbsec->isec_lock);
250 	if (!list_empty(&isec->list))
251 		list_del_init(&isec->list);
252 	spin_unlock(&sbsec->isec_lock);
253 
254 	/*
255 	 * The inode may still be referenced in a path walk and
256 	 * a call to selinux_inode_permission() can be made
257 	 * after inode_free_security() is called. Ideally, the VFS
258 	 * wouldn't do this, but fixing that is a much harder
259 	 * job. For now, simply free the i_security via RCU, and
260 	 * leave the current inode->i_security pointer intact.
261 	 * The inode will be freed after the RCU grace period too.
262 	 */
263 	call_rcu(&isec->rcu, inode_free_rcu);
264 }
265 
266 static int file_alloc_security(struct file *file)
267 {
268 	struct file_security_struct *fsec;
269 	u32 sid = current_sid();
270 
271 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
272 	if (!fsec)
273 		return -ENOMEM;
274 
275 	fsec->sid = sid;
276 	fsec->fown_sid = sid;
277 	file->f_security = fsec;
278 
279 	return 0;
280 }
281 
282 static void file_free_security(struct file *file)
283 {
284 	struct file_security_struct *fsec = file->f_security;
285 	file->f_security = NULL;
286 	kfree(fsec);
287 }
288 
289 static int superblock_alloc_security(struct super_block *sb)
290 {
291 	struct superblock_security_struct *sbsec;
292 
293 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
294 	if (!sbsec)
295 		return -ENOMEM;
296 
297 	mutex_init(&sbsec->lock);
298 	INIT_LIST_HEAD(&sbsec->isec_head);
299 	spin_lock_init(&sbsec->isec_lock);
300 	sbsec->sb = sb;
301 	sbsec->sid = SECINITSID_UNLABELED;
302 	sbsec->def_sid = SECINITSID_FILE;
303 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 	sb->s_security = sbsec;
305 
306 	return 0;
307 }
308 
309 static void superblock_free_security(struct super_block *sb)
310 {
311 	struct superblock_security_struct *sbsec = sb->s_security;
312 	sb->s_security = NULL;
313 	kfree(sbsec);
314 }
315 
316 /* The file system's label must be initialized prior to use. */
317 
318 static const char *labeling_behaviors[7] = {
319 	"uses xattr",
320 	"uses transition SIDs",
321 	"uses task SIDs",
322 	"uses genfs_contexts",
323 	"not configured for labeling",
324 	"uses mountpoint labeling",
325 	"uses native labeling",
326 };
327 
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
329 
330 static inline int inode_doinit(struct inode *inode)
331 {
332 	return inode_doinit_with_dentry(inode, NULL);
333 }
334 
335 enum {
336 	Opt_error = -1,
337 	Opt_context = 1,
338 	Opt_fscontext = 2,
339 	Opt_defcontext = 3,
340 	Opt_rootcontext = 4,
341 	Opt_labelsupport = 5,
342 	Opt_nextmntopt = 6,
343 };
344 
345 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
346 
347 static const match_table_t tokens = {
348 	{Opt_context, CONTEXT_STR "%s"},
349 	{Opt_fscontext, FSCONTEXT_STR "%s"},
350 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
351 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 	{Opt_labelsupport, LABELSUPP_STR},
353 	{Opt_error, NULL},
354 };
355 
356 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
357 
358 static int may_context_mount_sb_relabel(u32 sid,
359 			struct superblock_security_struct *sbsec,
360 			const struct cred *cred)
361 {
362 	const struct task_security_struct *tsec = cred->security;
363 	int rc;
364 
365 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 			  FILESYSTEM__RELABELFROM, NULL);
367 	if (rc)
368 		return rc;
369 
370 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 			  FILESYSTEM__RELABELTO, NULL);
372 	return rc;
373 }
374 
375 static int may_context_mount_inode_relabel(u32 sid,
376 			struct superblock_security_struct *sbsec,
377 			const struct cred *cred)
378 {
379 	const struct task_security_struct *tsec = cred->security;
380 	int rc;
381 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 			  FILESYSTEM__RELABELFROM, NULL);
383 	if (rc)
384 		return rc;
385 
386 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 			  FILESYSTEM__ASSOCIATE, NULL);
388 	return rc;
389 }
390 
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
392 {
393 	struct superblock_security_struct *sbsec = sb->s_security;
394 
395 	if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 	    sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 	    sbsec->behavior == SECURITY_FS_USE_TASK)
398 		return 1;
399 
400 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
402 		return 1;
403 
404 	/*
405 	 * Special handling for rootfs. Is genfs but supports
406 	 * setting SELinux context on in-core inodes.
407 	 */
408 	if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
409 		return 1;
410 
411 	return 0;
412 }
413 
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416 	struct superblock_security_struct *sbsec = sb->s_security;
417 	struct dentry *root = sb->s_root;
418 	struct inode *root_inode = root->d_inode;
419 	int rc = 0;
420 
421 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 		/* Make sure that the xattr handler exists and that no
423 		   error other than -ENODATA is returned by getxattr on
424 		   the root directory.  -ENODATA is ok, as this may be
425 		   the first boot of the SELinux kernel before we have
426 		   assigned xattr values to the filesystem. */
427 		if (!root_inode->i_op->getxattr) {
428 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 			       "xattr support\n", sb->s_id, sb->s_type->name);
430 			rc = -EOPNOTSUPP;
431 			goto out;
432 		}
433 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 		if (rc < 0 && rc != -ENODATA) {
435 			if (rc == -EOPNOTSUPP)
436 				printk(KERN_WARNING "SELinux: (dev %s, type "
437 				       "%s) has no security xattr handler\n",
438 				       sb->s_id, sb->s_type->name);
439 			else
440 				printk(KERN_WARNING "SELinux: (dev %s, type "
441 				       "%s) getxattr errno %d\n", sb->s_id,
442 				       sb->s_type->name, -rc);
443 			goto out;
444 		}
445 	}
446 
447 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 		       sb->s_id, sb->s_type->name);
450 	else
451 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 		       sb->s_id, sb->s_type->name,
453 		       labeling_behaviors[sbsec->behavior-1]);
454 
455 	sbsec->flags |= SE_SBINITIALIZED;
456 	if (selinux_is_sblabel_mnt(sb))
457 		sbsec->flags |= SBLABEL_MNT;
458 
459 	/* Initialize the root inode. */
460 	rc = inode_doinit_with_dentry(root_inode, root);
461 
462 	/* Initialize any other inodes associated with the superblock, e.g.
463 	   inodes created prior to initial policy load or inodes created
464 	   during get_sb by a pseudo filesystem that directly
465 	   populates itself. */
466 	spin_lock(&sbsec->isec_lock);
467 next_inode:
468 	if (!list_empty(&sbsec->isec_head)) {
469 		struct inode_security_struct *isec =
470 				list_entry(sbsec->isec_head.next,
471 					   struct inode_security_struct, list);
472 		struct inode *inode = isec->inode;
473 		spin_unlock(&sbsec->isec_lock);
474 		inode = igrab(inode);
475 		if (inode) {
476 			if (!IS_PRIVATE(inode))
477 				inode_doinit(inode);
478 			iput(inode);
479 		}
480 		spin_lock(&sbsec->isec_lock);
481 		list_del_init(&isec->list);
482 		goto next_inode;
483 	}
484 	spin_unlock(&sbsec->isec_lock);
485 out:
486 	return rc;
487 }
488 
489 /*
490  * This function should allow an FS to ask what it's mount security
491  * options were so it can use those later for submounts, displaying
492  * mount options, or whatever.
493  */
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495 				struct security_mnt_opts *opts)
496 {
497 	int rc = 0, i;
498 	struct superblock_security_struct *sbsec = sb->s_security;
499 	char *context = NULL;
500 	u32 len;
501 	char tmp;
502 
503 	security_init_mnt_opts(opts);
504 
505 	if (!(sbsec->flags & SE_SBINITIALIZED))
506 		return -EINVAL;
507 
508 	if (!ss_initialized)
509 		return -EINVAL;
510 
511 	/* make sure we always check enough bits to cover the mask */
512 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
513 
514 	tmp = sbsec->flags & SE_MNTMASK;
515 	/* count the number of mount options for this sb */
516 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
517 		if (tmp & 0x01)
518 			opts->num_mnt_opts++;
519 		tmp >>= 1;
520 	}
521 	/* Check if the Label support flag is set */
522 	if (sbsec->flags & SBLABEL_MNT)
523 		opts->num_mnt_opts++;
524 
525 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 	if (!opts->mnt_opts) {
527 		rc = -ENOMEM;
528 		goto out_free;
529 	}
530 
531 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 	if (!opts->mnt_opts_flags) {
533 		rc = -ENOMEM;
534 		goto out_free;
535 	}
536 
537 	i = 0;
538 	if (sbsec->flags & FSCONTEXT_MNT) {
539 		rc = security_sid_to_context(sbsec->sid, &context, &len);
540 		if (rc)
541 			goto out_free;
542 		opts->mnt_opts[i] = context;
543 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
544 	}
545 	if (sbsec->flags & CONTEXT_MNT) {
546 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
547 		if (rc)
548 			goto out_free;
549 		opts->mnt_opts[i] = context;
550 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
551 	}
552 	if (sbsec->flags & DEFCONTEXT_MNT) {
553 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
554 		if (rc)
555 			goto out_free;
556 		opts->mnt_opts[i] = context;
557 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
558 	}
559 	if (sbsec->flags & ROOTCONTEXT_MNT) {
560 		struct inode *root = sbsec->sb->s_root->d_inode;
561 		struct inode_security_struct *isec = root->i_security;
562 
563 		rc = security_sid_to_context(isec->sid, &context, &len);
564 		if (rc)
565 			goto out_free;
566 		opts->mnt_opts[i] = context;
567 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
568 	}
569 	if (sbsec->flags & SBLABEL_MNT) {
570 		opts->mnt_opts[i] = NULL;
571 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
572 	}
573 
574 	BUG_ON(i != opts->num_mnt_opts);
575 
576 	return 0;
577 
578 out_free:
579 	security_free_mnt_opts(opts);
580 	return rc;
581 }
582 
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 		      u32 old_sid, u32 new_sid)
585 {
586 	char mnt_flags = sbsec->flags & SE_MNTMASK;
587 
588 	/* check if the old mount command had the same options */
589 	if (sbsec->flags & SE_SBINITIALIZED)
590 		if (!(sbsec->flags & flag) ||
591 		    (old_sid != new_sid))
592 			return 1;
593 
594 	/* check if we were passed the same options twice,
595 	 * aka someone passed context=a,context=b
596 	 */
597 	if (!(sbsec->flags & SE_SBINITIALIZED))
598 		if (mnt_flags & flag)
599 			return 1;
600 	return 0;
601 }
602 
603 /*
604  * Allow filesystems with binary mount data to explicitly set mount point
605  * labeling information.
606  */
607 static int selinux_set_mnt_opts(struct super_block *sb,
608 				struct security_mnt_opts *opts,
609 				unsigned long kern_flags,
610 				unsigned long *set_kern_flags)
611 {
612 	const struct cred *cred = current_cred();
613 	int rc = 0, i;
614 	struct superblock_security_struct *sbsec = sb->s_security;
615 	const char *name = sb->s_type->name;
616 	struct inode *inode = sbsec->sb->s_root->d_inode;
617 	struct inode_security_struct *root_isec = inode->i_security;
618 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 	u32 defcontext_sid = 0;
620 	char **mount_options = opts->mnt_opts;
621 	int *flags = opts->mnt_opts_flags;
622 	int num_opts = opts->num_mnt_opts;
623 
624 	mutex_lock(&sbsec->lock);
625 
626 	if (!ss_initialized) {
627 		if (!num_opts) {
628 			/* Defer initialization until selinux_complete_init,
629 			   after the initial policy is loaded and the security
630 			   server is ready to handle calls. */
631 			goto out;
632 		}
633 		rc = -EINVAL;
634 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 			"before the security server is initialized\n");
636 		goto out;
637 	}
638 	if (kern_flags && !set_kern_flags) {
639 		/* Specifying internal flags without providing a place to
640 		 * place the results is not allowed */
641 		rc = -EINVAL;
642 		goto out;
643 	}
644 
645 	/*
646 	 * Binary mount data FS will come through this function twice.  Once
647 	 * from an explicit call and once from the generic calls from the vfs.
648 	 * Since the generic VFS calls will not contain any security mount data
649 	 * we need to skip the double mount verification.
650 	 *
651 	 * This does open a hole in which we will not notice if the first
652 	 * mount using this sb set explict options and a second mount using
653 	 * this sb does not set any security options.  (The first options
654 	 * will be used for both mounts)
655 	 */
656 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
657 	    && (num_opts == 0))
658 		goto out;
659 
660 	/*
661 	 * parse the mount options, check if they are valid sids.
662 	 * also check if someone is trying to mount the same sb more
663 	 * than once with different security options.
664 	 */
665 	for (i = 0; i < num_opts; i++) {
666 		u32 sid;
667 
668 		if (flags[i] == SBLABEL_MNT)
669 			continue;
670 		rc = security_context_to_sid(mount_options[i],
671 					     strlen(mount_options[i]), &sid, GFP_KERNEL);
672 		if (rc) {
673 			printk(KERN_WARNING "SELinux: security_context_to_sid"
674 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
675 			       mount_options[i], sb->s_id, name, rc);
676 			goto out;
677 		}
678 		switch (flags[i]) {
679 		case FSCONTEXT_MNT:
680 			fscontext_sid = sid;
681 
682 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
683 					fscontext_sid))
684 				goto out_double_mount;
685 
686 			sbsec->flags |= FSCONTEXT_MNT;
687 			break;
688 		case CONTEXT_MNT:
689 			context_sid = sid;
690 
691 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
692 					context_sid))
693 				goto out_double_mount;
694 
695 			sbsec->flags |= CONTEXT_MNT;
696 			break;
697 		case ROOTCONTEXT_MNT:
698 			rootcontext_sid = sid;
699 
700 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
701 					rootcontext_sid))
702 				goto out_double_mount;
703 
704 			sbsec->flags |= ROOTCONTEXT_MNT;
705 
706 			break;
707 		case DEFCONTEXT_MNT:
708 			defcontext_sid = sid;
709 
710 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
711 					defcontext_sid))
712 				goto out_double_mount;
713 
714 			sbsec->flags |= DEFCONTEXT_MNT;
715 
716 			break;
717 		default:
718 			rc = -EINVAL;
719 			goto out;
720 		}
721 	}
722 
723 	if (sbsec->flags & SE_SBINITIALIZED) {
724 		/* previously mounted with options, but not on this attempt? */
725 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 			goto out_double_mount;
727 		rc = 0;
728 		goto out;
729 	}
730 
731 	if (strcmp(sb->s_type->name, "proc") == 0)
732 		sbsec->flags |= SE_SBPROC;
733 
734 	if (!sbsec->behavior) {
735 		/*
736 		 * Determine the labeling behavior to use for this
737 		 * filesystem type.
738 		 */
739 		rc = security_fs_use(sb);
740 		if (rc) {
741 			printk(KERN_WARNING
742 				"%s: security_fs_use(%s) returned %d\n",
743 					__func__, sb->s_type->name, rc);
744 			goto out;
745 		}
746 	}
747 	/* sets the context of the superblock for the fs being mounted. */
748 	if (fscontext_sid) {
749 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
750 		if (rc)
751 			goto out;
752 
753 		sbsec->sid = fscontext_sid;
754 	}
755 
756 	/*
757 	 * Switch to using mount point labeling behavior.
758 	 * sets the label used on all file below the mountpoint, and will set
759 	 * the superblock context if not already set.
760 	 */
761 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
764 	}
765 
766 	if (context_sid) {
767 		if (!fscontext_sid) {
768 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
769 							  cred);
770 			if (rc)
771 				goto out;
772 			sbsec->sid = context_sid;
773 		} else {
774 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
775 							     cred);
776 			if (rc)
777 				goto out;
778 		}
779 		if (!rootcontext_sid)
780 			rootcontext_sid = context_sid;
781 
782 		sbsec->mntpoint_sid = context_sid;
783 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
784 	}
785 
786 	if (rootcontext_sid) {
787 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
788 						     cred);
789 		if (rc)
790 			goto out;
791 
792 		root_isec->sid = rootcontext_sid;
793 		root_isec->initialized = 1;
794 	}
795 
796 	if (defcontext_sid) {
797 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
799 			rc = -EINVAL;
800 			printk(KERN_WARNING "SELinux: defcontext option is "
801 			       "invalid for this filesystem type\n");
802 			goto out;
803 		}
804 
805 		if (defcontext_sid != sbsec->def_sid) {
806 			rc = may_context_mount_inode_relabel(defcontext_sid,
807 							     sbsec, cred);
808 			if (rc)
809 				goto out;
810 		}
811 
812 		sbsec->def_sid = defcontext_sid;
813 	}
814 
815 	rc = sb_finish_set_opts(sb);
816 out:
817 	mutex_unlock(&sbsec->lock);
818 	return rc;
819 out_double_mount:
820 	rc = -EINVAL;
821 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
822 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
823 	goto out;
824 }
825 
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 				    const struct super_block *newsb)
828 {
829 	struct superblock_security_struct *old = oldsb->s_security;
830 	struct superblock_security_struct *new = newsb->s_security;
831 	char oldflags = old->flags & SE_MNTMASK;
832 	char newflags = new->flags & SE_MNTMASK;
833 
834 	if (oldflags != newflags)
835 		goto mismatch;
836 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
837 		goto mismatch;
838 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
839 		goto mismatch;
840 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
841 		goto mismatch;
842 	if (oldflags & ROOTCONTEXT_MNT) {
843 		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 		if (oldroot->sid != newroot->sid)
846 			goto mismatch;
847 	}
848 	return 0;
849 mismatch:
850 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
851 			    "different security settings for (dev %s, "
852 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
853 	return -EBUSY;
854 }
855 
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 					struct super_block *newsb)
858 {
859 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 	struct superblock_security_struct *newsbsec = newsb->s_security;
861 
862 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
863 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
864 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
865 
866 	/*
867 	 * if the parent was able to be mounted it clearly had no special lsm
868 	 * mount options.  thus we can safely deal with this superblock later
869 	 */
870 	if (!ss_initialized)
871 		return 0;
872 
873 	/* how can we clone if the old one wasn't set up?? */
874 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
875 
876 	/* if fs is reusing a sb, make sure that the contexts match */
877 	if (newsbsec->flags & SE_SBINITIALIZED)
878 		return selinux_cmp_sb_context(oldsb, newsb);
879 
880 	mutex_lock(&newsbsec->lock);
881 
882 	newsbsec->flags = oldsbsec->flags;
883 
884 	newsbsec->sid = oldsbsec->sid;
885 	newsbsec->def_sid = oldsbsec->def_sid;
886 	newsbsec->behavior = oldsbsec->behavior;
887 
888 	if (set_context) {
889 		u32 sid = oldsbsec->mntpoint_sid;
890 
891 		if (!set_fscontext)
892 			newsbsec->sid = sid;
893 		if (!set_rootcontext) {
894 			struct inode *newinode = newsb->s_root->d_inode;
895 			struct inode_security_struct *newisec = newinode->i_security;
896 			newisec->sid = sid;
897 		}
898 		newsbsec->mntpoint_sid = sid;
899 	}
900 	if (set_rootcontext) {
901 		const struct inode *oldinode = oldsb->s_root->d_inode;
902 		const struct inode_security_struct *oldisec = oldinode->i_security;
903 		struct inode *newinode = newsb->s_root->d_inode;
904 		struct inode_security_struct *newisec = newinode->i_security;
905 
906 		newisec->sid = oldisec->sid;
907 	}
908 
909 	sb_finish_set_opts(newsb);
910 	mutex_unlock(&newsbsec->lock);
911 	return 0;
912 }
913 
914 static int selinux_parse_opts_str(char *options,
915 				  struct security_mnt_opts *opts)
916 {
917 	char *p;
918 	char *context = NULL, *defcontext = NULL;
919 	char *fscontext = NULL, *rootcontext = NULL;
920 	int rc, num_mnt_opts = 0;
921 
922 	opts->num_mnt_opts = 0;
923 
924 	/* Standard string-based options. */
925 	while ((p = strsep(&options, "|")) != NULL) {
926 		int token;
927 		substring_t args[MAX_OPT_ARGS];
928 
929 		if (!*p)
930 			continue;
931 
932 		token = match_token(p, tokens, args);
933 
934 		switch (token) {
935 		case Opt_context:
936 			if (context || defcontext) {
937 				rc = -EINVAL;
938 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
939 				goto out_err;
940 			}
941 			context = match_strdup(&args[0]);
942 			if (!context) {
943 				rc = -ENOMEM;
944 				goto out_err;
945 			}
946 			break;
947 
948 		case Opt_fscontext:
949 			if (fscontext) {
950 				rc = -EINVAL;
951 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
952 				goto out_err;
953 			}
954 			fscontext = match_strdup(&args[0]);
955 			if (!fscontext) {
956 				rc = -ENOMEM;
957 				goto out_err;
958 			}
959 			break;
960 
961 		case Opt_rootcontext:
962 			if (rootcontext) {
963 				rc = -EINVAL;
964 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
965 				goto out_err;
966 			}
967 			rootcontext = match_strdup(&args[0]);
968 			if (!rootcontext) {
969 				rc = -ENOMEM;
970 				goto out_err;
971 			}
972 			break;
973 
974 		case Opt_defcontext:
975 			if (context || defcontext) {
976 				rc = -EINVAL;
977 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
978 				goto out_err;
979 			}
980 			defcontext = match_strdup(&args[0]);
981 			if (!defcontext) {
982 				rc = -ENOMEM;
983 				goto out_err;
984 			}
985 			break;
986 		case Opt_labelsupport:
987 			break;
988 		default:
989 			rc = -EINVAL;
990 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
991 			goto out_err;
992 
993 		}
994 	}
995 
996 	rc = -ENOMEM;
997 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
998 	if (!opts->mnt_opts)
999 		goto out_err;
1000 
1001 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 	if (!opts->mnt_opts_flags) {
1003 		kfree(opts->mnt_opts);
1004 		goto out_err;
1005 	}
1006 
1007 	if (fscontext) {
1008 		opts->mnt_opts[num_mnt_opts] = fscontext;
1009 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010 	}
1011 	if (context) {
1012 		opts->mnt_opts[num_mnt_opts] = context;
1013 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014 	}
1015 	if (rootcontext) {
1016 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018 	}
1019 	if (defcontext) {
1020 		opts->mnt_opts[num_mnt_opts] = defcontext;
1021 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022 	}
1023 
1024 	opts->num_mnt_opts = num_mnt_opts;
1025 	return 0;
1026 
1027 out_err:
1028 	kfree(context);
1029 	kfree(defcontext);
1030 	kfree(fscontext);
1031 	kfree(rootcontext);
1032 	return rc;
1033 }
1034 /*
1035  * string mount options parsing and call set the sbsec
1036  */
1037 static int superblock_doinit(struct super_block *sb, void *data)
1038 {
1039 	int rc = 0;
1040 	char *options = data;
1041 	struct security_mnt_opts opts;
1042 
1043 	security_init_mnt_opts(&opts);
1044 
1045 	if (!data)
1046 		goto out;
1047 
1048 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049 
1050 	rc = selinux_parse_opts_str(options, &opts);
1051 	if (rc)
1052 		goto out_err;
1053 
1054 out:
1055 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056 
1057 out_err:
1058 	security_free_mnt_opts(&opts);
1059 	return rc;
1060 }
1061 
1062 static void selinux_write_opts(struct seq_file *m,
1063 			       struct security_mnt_opts *opts)
1064 {
1065 	int i;
1066 	char *prefix;
1067 
1068 	for (i = 0; i < opts->num_mnt_opts; i++) {
1069 		char *has_comma;
1070 
1071 		if (opts->mnt_opts[i])
1072 			has_comma = strchr(opts->mnt_opts[i], ',');
1073 		else
1074 			has_comma = NULL;
1075 
1076 		switch (opts->mnt_opts_flags[i]) {
1077 		case CONTEXT_MNT:
1078 			prefix = CONTEXT_STR;
1079 			break;
1080 		case FSCONTEXT_MNT:
1081 			prefix = FSCONTEXT_STR;
1082 			break;
1083 		case ROOTCONTEXT_MNT:
1084 			prefix = ROOTCONTEXT_STR;
1085 			break;
1086 		case DEFCONTEXT_MNT:
1087 			prefix = DEFCONTEXT_STR;
1088 			break;
1089 		case SBLABEL_MNT:
1090 			seq_putc(m, ',');
1091 			seq_puts(m, LABELSUPP_STR);
1092 			continue;
1093 		default:
1094 			BUG();
1095 			return;
1096 		};
1097 		/* we need a comma before each option */
1098 		seq_putc(m, ',');
1099 		seq_puts(m, prefix);
1100 		if (has_comma)
1101 			seq_putc(m, '\"');
1102 		seq_puts(m, opts->mnt_opts[i]);
1103 		if (has_comma)
1104 			seq_putc(m, '\"');
1105 	}
1106 }
1107 
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109 {
1110 	struct security_mnt_opts opts;
1111 	int rc;
1112 
1113 	rc = selinux_get_mnt_opts(sb, &opts);
1114 	if (rc) {
1115 		/* before policy load we may get EINVAL, don't show anything */
1116 		if (rc == -EINVAL)
1117 			rc = 0;
1118 		return rc;
1119 	}
1120 
1121 	selinux_write_opts(m, &opts);
1122 
1123 	security_free_mnt_opts(&opts);
1124 
1125 	return rc;
1126 }
1127 
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1129 {
1130 	switch (mode & S_IFMT) {
1131 	case S_IFSOCK:
1132 		return SECCLASS_SOCK_FILE;
1133 	case S_IFLNK:
1134 		return SECCLASS_LNK_FILE;
1135 	case S_IFREG:
1136 		return SECCLASS_FILE;
1137 	case S_IFBLK:
1138 		return SECCLASS_BLK_FILE;
1139 	case S_IFDIR:
1140 		return SECCLASS_DIR;
1141 	case S_IFCHR:
1142 		return SECCLASS_CHR_FILE;
1143 	case S_IFIFO:
1144 		return SECCLASS_FIFO_FILE;
1145 
1146 	}
1147 
1148 	return SECCLASS_FILE;
1149 }
1150 
1151 static inline int default_protocol_stream(int protocol)
1152 {
1153 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154 }
1155 
1156 static inline int default_protocol_dgram(int protocol)
1157 {
1158 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159 }
1160 
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162 {
1163 	switch (family) {
1164 	case PF_UNIX:
1165 		switch (type) {
1166 		case SOCK_STREAM:
1167 		case SOCK_SEQPACKET:
1168 			return SECCLASS_UNIX_STREAM_SOCKET;
1169 		case SOCK_DGRAM:
1170 			return SECCLASS_UNIX_DGRAM_SOCKET;
1171 		}
1172 		break;
1173 	case PF_INET:
1174 	case PF_INET6:
1175 		switch (type) {
1176 		case SOCK_STREAM:
1177 			if (default_protocol_stream(protocol))
1178 				return SECCLASS_TCP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else
1185 				return SECCLASS_RAWIP_SOCKET;
1186 		case SOCK_DCCP:
1187 			return SECCLASS_DCCP_SOCKET;
1188 		default:
1189 			return SECCLASS_RAWIP_SOCKET;
1190 		}
1191 		break;
1192 	case PF_NETLINK:
1193 		switch (protocol) {
1194 		case NETLINK_ROUTE:
1195 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 		case NETLINK_FIREWALL:
1197 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 		case NETLINK_SOCK_DIAG:
1199 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200 		case NETLINK_NFLOG:
1201 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1202 		case NETLINK_XFRM:
1203 			return SECCLASS_NETLINK_XFRM_SOCKET;
1204 		case NETLINK_SELINUX:
1205 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1206 		case NETLINK_AUDIT:
1207 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 		case NETLINK_IP6_FW:
1209 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 		case NETLINK_DNRTMSG:
1211 			return SECCLASS_NETLINK_DNRT_SOCKET;
1212 		case NETLINK_KOBJECT_UEVENT:
1213 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1214 		default:
1215 			return SECCLASS_NETLINK_SOCKET;
1216 		}
1217 	case PF_PACKET:
1218 		return SECCLASS_PACKET_SOCKET;
1219 	case PF_KEY:
1220 		return SECCLASS_KEY_SOCKET;
1221 	case PF_APPLETALK:
1222 		return SECCLASS_APPLETALK_SOCKET;
1223 	}
1224 
1225 	return SECCLASS_SOCKET;
1226 }
1227 
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1230 				u16 tclass,
1231 				u32 *sid)
1232 {
1233 	int rc;
1234 	char *buffer, *path;
1235 
1236 	buffer = (char *)__get_free_page(GFP_KERNEL);
1237 	if (!buffer)
1238 		return -ENOMEM;
1239 
1240 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241 	if (IS_ERR(path))
1242 		rc = PTR_ERR(path);
1243 	else {
1244 		/* each process gets a /proc/PID/ entry. Strip off the
1245 		 * PID part to get a valid selinux labeling.
1246 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 		while (path[1] >= '0' && path[1] <= '9') {
1248 			path[1] = '/';
1249 			path++;
1250 		}
1251 		rc = security_genfs_sid("proc", path, tclass, sid);
1252 	}
1253 	free_page((unsigned long)buffer);
1254 	return rc;
1255 }
1256 #else
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1258 				u16 tclass,
1259 				u32 *sid)
1260 {
1261 	return -EINVAL;
1262 }
1263 #endif
1264 
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267 {
1268 	struct superblock_security_struct *sbsec = NULL;
1269 	struct inode_security_struct *isec = inode->i_security;
1270 	u32 sid;
1271 	struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273 	char *context = NULL;
1274 	unsigned len = 0;
1275 	int rc = 0;
1276 
1277 	if (isec->initialized)
1278 		goto out;
1279 
1280 	mutex_lock(&isec->lock);
1281 	if (isec->initialized)
1282 		goto out_unlock;
1283 
1284 	sbsec = inode->i_sb->s_security;
1285 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 		/* Defer initialization until selinux_complete_init,
1287 		   after the initial policy is loaded and the security
1288 		   server is ready to handle calls. */
1289 		spin_lock(&sbsec->isec_lock);
1290 		if (list_empty(&isec->list))
1291 			list_add(&isec->list, &sbsec->isec_head);
1292 		spin_unlock(&sbsec->isec_lock);
1293 		goto out_unlock;
1294 	}
1295 
1296 	switch (sbsec->behavior) {
1297 	case SECURITY_FS_USE_NATIVE:
1298 		break;
1299 	case SECURITY_FS_USE_XATTR:
1300 		if (!inode->i_op->getxattr) {
1301 			isec->sid = sbsec->def_sid;
1302 			break;
1303 		}
1304 
1305 		/* Need a dentry, since the xattr API requires one.
1306 		   Life would be simpler if we could just pass the inode. */
1307 		if (opt_dentry) {
1308 			/* Called from d_instantiate or d_splice_alias. */
1309 			dentry = dget(opt_dentry);
1310 		} else {
1311 			/* Called from selinux_complete_init, try to find a dentry. */
1312 			dentry = d_find_alias(inode);
1313 		}
1314 		if (!dentry) {
1315 			/*
1316 			 * this is can be hit on boot when a file is accessed
1317 			 * before the policy is loaded.  When we load policy we
1318 			 * may find inodes that have no dentry on the
1319 			 * sbsec->isec_head list.  No reason to complain as these
1320 			 * will get fixed up the next time we go through
1321 			 * inode_doinit with a dentry, before these inodes could
1322 			 * be used again by userspace.
1323 			 */
1324 			goto out_unlock;
1325 		}
1326 
1327 		len = INITCONTEXTLEN;
1328 		context = kmalloc(len+1, GFP_NOFS);
1329 		if (!context) {
1330 			rc = -ENOMEM;
1331 			dput(dentry);
1332 			goto out_unlock;
1333 		}
1334 		context[len] = '\0';
1335 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336 					   context, len);
1337 		if (rc == -ERANGE) {
1338 			kfree(context);
1339 
1340 			/* Need a larger buffer.  Query for the right size. */
1341 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342 						   NULL, 0);
1343 			if (rc < 0) {
1344 				dput(dentry);
1345 				goto out_unlock;
1346 			}
1347 			len = rc;
1348 			context = kmalloc(len+1, GFP_NOFS);
1349 			if (!context) {
1350 				rc = -ENOMEM;
1351 				dput(dentry);
1352 				goto out_unlock;
1353 			}
1354 			context[len] = '\0';
1355 			rc = inode->i_op->getxattr(dentry,
1356 						   XATTR_NAME_SELINUX,
1357 						   context, len);
1358 		}
1359 		dput(dentry);
1360 		if (rc < 0) {
1361 			if (rc != -ENODATA) {
1362 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1363 				       "%d for dev=%s ino=%ld\n", __func__,
1364 				       -rc, inode->i_sb->s_id, inode->i_ino);
1365 				kfree(context);
1366 				goto out_unlock;
1367 			}
1368 			/* Map ENODATA to the default file SID */
1369 			sid = sbsec->def_sid;
1370 			rc = 0;
1371 		} else {
1372 			rc = security_context_to_sid_default(context, rc, &sid,
1373 							     sbsec->def_sid,
1374 							     GFP_NOFS);
1375 			if (rc) {
1376 				char *dev = inode->i_sb->s_id;
1377 				unsigned long ino = inode->i_ino;
1378 
1379 				if (rc == -EINVAL) {
1380 					if (printk_ratelimit())
1381 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 							"context=%s.  This indicates you may need to relabel the inode or the "
1383 							"filesystem in question.\n", ino, dev, context);
1384 				} else {
1385 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1386 					       "returned %d for dev=%s ino=%ld\n",
1387 					       __func__, context, -rc, dev, ino);
1388 				}
1389 				kfree(context);
1390 				/* Leave with the unlabeled SID */
1391 				rc = 0;
1392 				break;
1393 			}
1394 		}
1395 		kfree(context);
1396 		isec->sid = sid;
1397 		break;
1398 	case SECURITY_FS_USE_TASK:
1399 		isec->sid = isec->task_sid;
1400 		break;
1401 	case SECURITY_FS_USE_TRANS:
1402 		/* Default to the fs SID. */
1403 		isec->sid = sbsec->sid;
1404 
1405 		/* Try to obtain a transition SID. */
1406 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 					     isec->sclass, NULL, &sid);
1409 		if (rc)
1410 			goto out_unlock;
1411 		isec->sid = sid;
1412 		break;
1413 	case SECURITY_FS_USE_MNTPOINT:
1414 		isec->sid = sbsec->mntpoint_sid;
1415 		break;
1416 	default:
1417 		/* Default to the fs superblock SID. */
1418 		isec->sid = sbsec->sid;
1419 
1420 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421 			/* We must have a dentry to determine the label on
1422 			 * procfs inodes */
1423 			if (opt_dentry)
1424 				/* Called from d_instantiate or
1425 				 * d_splice_alias. */
1426 				dentry = dget(opt_dentry);
1427 			else
1428 				/* Called from selinux_complete_init, try to
1429 				 * find a dentry. */
1430 				dentry = d_find_alias(inode);
1431 			/*
1432 			 * This can be hit on boot when a file is accessed
1433 			 * before the policy is loaded.  When we load policy we
1434 			 * may find inodes that have no dentry on the
1435 			 * sbsec->isec_head list.  No reason to complain as
1436 			 * these will get fixed up the next time we go through
1437 			 * inode_doinit() with a dentry, before these inodes
1438 			 * could be used again by userspace.
1439 			 */
1440 			if (!dentry)
1441 				goto out_unlock;
1442 			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443 			rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1444 			dput(dentry);
1445 			if (rc)
1446 				goto out_unlock;
1447 			isec->sid = sid;
1448 		}
1449 		break;
1450 	}
1451 
1452 	isec->initialized = 1;
1453 
1454 out_unlock:
1455 	mutex_unlock(&isec->lock);
1456 out:
1457 	if (isec->sclass == SECCLASS_FILE)
1458 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459 	return rc;
1460 }
1461 
1462 /* Convert a Linux signal to an access vector. */
1463 static inline u32 signal_to_av(int sig)
1464 {
1465 	u32 perm = 0;
1466 
1467 	switch (sig) {
1468 	case SIGCHLD:
1469 		/* Commonly granted from child to parent. */
1470 		perm = PROCESS__SIGCHLD;
1471 		break;
1472 	case SIGKILL:
1473 		/* Cannot be caught or ignored */
1474 		perm = PROCESS__SIGKILL;
1475 		break;
1476 	case SIGSTOP:
1477 		/* Cannot be caught or ignored */
1478 		perm = PROCESS__SIGSTOP;
1479 		break;
1480 	default:
1481 		/* All other signals. */
1482 		perm = PROCESS__SIGNAL;
1483 		break;
1484 	}
1485 
1486 	return perm;
1487 }
1488 
1489 /*
1490  * Check permission between a pair of credentials
1491  * fork check, ptrace check, etc.
1492  */
1493 static int cred_has_perm(const struct cred *actor,
1494 			 const struct cred *target,
1495 			 u32 perms)
1496 {
1497 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498 
1499 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500 }
1501 
1502 /*
1503  * Check permission between a pair of tasks, e.g. signal checks,
1504  * fork check, ptrace check, etc.
1505  * tsk1 is the actor and tsk2 is the target
1506  * - this uses the default subjective creds of tsk1
1507  */
1508 static int task_has_perm(const struct task_struct *tsk1,
1509 			 const struct task_struct *tsk2,
1510 			 u32 perms)
1511 {
1512 	const struct task_security_struct *__tsec1, *__tsec2;
1513 	u32 sid1, sid2;
1514 
1515 	rcu_read_lock();
1516 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1517 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1518 	rcu_read_unlock();
1519 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520 }
1521 
1522 /*
1523  * Check permission between current and another task, e.g. signal checks,
1524  * fork check, ptrace check, etc.
1525  * current is the actor and tsk2 is the target
1526  * - this uses current's subjective creds
1527  */
1528 static int current_has_perm(const struct task_struct *tsk,
1529 			    u32 perms)
1530 {
1531 	u32 sid, tsid;
1532 
1533 	sid = current_sid();
1534 	tsid = task_sid(tsk);
1535 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536 }
1537 
1538 #if CAP_LAST_CAP > 63
1539 #error Fix SELinux to handle capabilities > 63.
1540 #endif
1541 
1542 /* Check whether a task is allowed to use a capability. */
1543 static int cred_has_capability(const struct cred *cred,
1544 			       int cap, int audit)
1545 {
1546 	struct common_audit_data ad;
1547 	struct av_decision avd;
1548 	u16 sclass;
1549 	u32 sid = cred_sid(cred);
1550 	u32 av = CAP_TO_MASK(cap);
1551 	int rc;
1552 
1553 	ad.type = LSM_AUDIT_DATA_CAP;
1554 	ad.u.cap = cap;
1555 
1556 	switch (CAP_TO_INDEX(cap)) {
1557 	case 0:
1558 		sclass = SECCLASS_CAPABILITY;
1559 		break;
1560 	case 1:
1561 		sclass = SECCLASS_CAPABILITY2;
1562 		break;
1563 	default:
1564 		printk(KERN_ERR
1565 		       "SELinux:  out of range capability %d\n", cap);
1566 		BUG();
1567 		return -EINVAL;
1568 	}
1569 
1570 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571 	if (audit == SECURITY_CAP_AUDIT) {
1572 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1573 		if (rc2)
1574 			return rc2;
1575 	}
1576 	return rc;
1577 }
1578 
1579 /* Check whether a task is allowed to use a system operation. */
1580 static int task_has_system(struct task_struct *tsk,
1581 			   u32 perms)
1582 {
1583 	u32 sid = task_sid(tsk);
1584 
1585 	return avc_has_perm(sid, SECINITSID_KERNEL,
1586 			    SECCLASS_SYSTEM, perms, NULL);
1587 }
1588 
1589 /* Check whether a task has a particular permission to an inode.
1590    The 'adp' parameter is optional and allows other audit
1591    data to be passed (e.g. the dentry). */
1592 static int inode_has_perm(const struct cred *cred,
1593 			  struct inode *inode,
1594 			  u32 perms,
1595 			  struct common_audit_data *adp)
1596 {
1597 	struct inode_security_struct *isec;
1598 	u32 sid;
1599 
1600 	validate_creds(cred);
1601 
1602 	if (unlikely(IS_PRIVATE(inode)))
1603 		return 0;
1604 
1605 	sid = cred_sid(cred);
1606 	isec = inode->i_security;
1607 
1608 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1609 }
1610 
1611 /* Same as inode_has_perm, but pass explicit audit data containing
1612    the dentry to help the auditing code to more easily generate the
1613    pathname if needed. */
1614 static inline int dentry_has_perm(const struct cred *cred,
1615 				  struct dentry *dentry,
1616 				  u32 av)
1617 {
1618 	struct inode *inode = dentry->d_inode;
1619 	struct common_audit_data ad;
1620 
1621 	ad.type = LSM_AUDIT_DATA_DENTRY;
1622 	ad.u.dentry = dentry;
1623 	return inode_has_perm(cred, inode, av, &ad);
1624 }
1625 
1626 /* Same as inode_has_perm, but pass explicit audit data containing
1627    the path to help the auditing code to more easily generate the
1628    pathname if needed. */
1629 static inline int path_has_perm(const struct cred *cred,
1630 				struct path *path,
1631 				u32 av)
1632 {
1633 	struct inode *inode = path->dentry->d_inode;
1634 	struct common_audit_data ad;
1635 
1636 	ad.type = LSM_AUDIT_DATA_PATH;
1637 	ad.u.path = *path;
1638 	return inode_has_perm(cred, inode, av, &ad);
1639 }
1640 
1641 /* Same as path_has_perm, but uses the inode from the file struct. */
1642 static inline int file_path_has_perm(const struct cred *cred,
1643 				     struct file *file,
1644 				     u32 av)
1645 {
1646 	struct common_audit_data ad;
1647 
1648 	ad.type = LSM_AUDIT_DATA_PATH;
1649 	ad.u.path = file->f_path;
1650 	return inode_has_perm(cred, file_inode(file), av, &ad);
1651 }
1652 
1653 /* Check whether a task can use an open file descriptor to
1654    access an inode in a given way.  Check access to the
1655    descriptor itself, and then use dentry_has_perm to
1656    check a particular permission to the file.
1657    Access to the descriptor is implicitly granted if it
1658    has the same SID as the process.  If av is zero, then
1659    access to the file is not checked, e.g. for cases
1660    where only the descriptor is affected like seek. */
1661 static int file_has_perm(const struct cred *cred,
1662 			 struct file *file,
1663 			 u32 av)
1664 {
1665 	struct file_security_struct *fsec = file->f_security;
1666 	struct inode *inode = file_inode(file);
1667 	struct common_audit_data ad;
1668 	u32 sid = cred_sid(cred);
1669 	int rc;
1670 
1671 	ad.type = LSM_AUDIT_DATA_PATH;
1672 	ad.u.path = file->f_path;
1673 
1674 	if (sid != fsec->sid) {
1675 		rc = avc_has_perm(sid, fsec->sid,
1676 				  SECCLASS_FD,
1677 				  FD__USE,
1678 				  &ad);
1679 		if (rc)
1680 			goto out;
1681 	}
1682 
1683 	/* av is zero if only checking access to the descriptor. */
1684 	rc = 0;
1685 	if (av)
1686 		rc = inode_has_perm(cred, inode, av, &ad);
1687 
1688 out:
1689 	return rc;
1690 }
1691 
1692 /* Check whether a task can create a file. */
1693 static int may_create(struct inode *dir,
1694 		      struct dentry *dentry,
1695 		      u16 tclass)
1696 {
1697 	const struct task_security_struct *tsec = current_security();
1698 	struct inode_security_struct *dsec;
1699 	struct superblock_security_struct *sbsec;
1700 	u32 sid, newsid;
1701 	struct common_audit_data ad;
1702 	int rc;
1703 
1704 	dsec = dir->i_security;
1705 	sbsec = dir->i_sb->s_security;
1706 
1707 	sid = tsec->sid;
1708 	newsid = tsec->create_sid;
1709 
1710 	ad.type = LSM_AUDIT_DATA_DENTRY;
1711 	ad.u.dentry = dentry;
1712 
1713 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714 			  DIR__ADD_NAME | DIR__SEARCH,
1715 			  &ad);
1716 	if (rc)
1717 		return rc;
1718 
1719 	if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720 		rc = security_transition_sid(sid, dsec->sid, tclass,
1721 					     &dentry->d_name, &newsid);
1722 		if (rc)
1723 			return rc;
1724 	}
1725 
1726 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1727 	if (rc)
1728 		return rc;
1729 
1730 	return avc_has_perm(newsid, sbsec->sid,
1731 			    SECCLASS_FILESYSTEM,
1732 			    FILESYSTEM__ASSOCIATE, &ad);
1733 }
1734 
1735 /* Check whether a task can create a key. */
1736 static int may_create_key(u32 ksid,
1737 			  struct task_struct *ctx)
1738 {
1739 	u32 sid = task_sid(ctx);
1740 
1741 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742 }
1743 
1744 #define MAY_LINK	0
1745 #define MAY_UNLINK	1
1746 #define MAY_RMDIR	2
1747 
1748 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1749 static int may_link(struct inode *dir,
1750 		    struct dentry *dentry,
1751 		    int kind)
1752 
1753 {
1754 	struct inode_security_struct *dsec, *isec;
1755 	struct common_audit_data ad;
1756 	u32 sid = current_sid();
1757 	u32 av;
1758 	int rc;
1759 
1760 	dsec = dir->i_security;
1761 	isec = dentry->d_inode->i_security;
1762 
1763 	ad.type = LSM_AUDIT_DATA_DENTRY;
1764 	ad.u.dentry = dentry;
1765 
1766 	av = DIR__SEARCH;
1767 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1769 	if (rc)
1770 		return rc;
1771 
1772 	switch (kind) {
1773 	case MAY_LINK:
1774 		av = FILE__LINK;
1775 		break;
1776 	case MAY_UNLINK:
1777 		av = FILE__UNLINK;
1778 		break;
1779 	case MAY_RMDIR:
1780 		av = DIR__RMDIR;
1781 		break;
1782 	default:
1783 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1784 			__func__, kind);
1785 		return 0;
1786 	}
1787 
1788 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1789 	return rc;
1790 }
1791 
1792 static inline int may_rename(struct inode *old_dir,
1793 			     struct dentry *old_dentry,
1794 			     struct inode *new_dir,
1795 			     struct dentry *new_dentry)
1796 {
1797 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798 	struct common_audit_data ad;
1799 	u32 sid = current_sid();
1800 	u32 av;
1801 	int old_is_dir, new_is_dir;
1802 	int rc;
1803 
1804 	old_dsec = old_dir->i_security;
1805 	old_isec = old_dentry->d_inode->i_security;
1806 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807 	new_dsec = new_dir->i_security;
1808 
1809 	ad.type = LSM_AUDIT_DATA_DENTRY;
1810 
1811 	ad.u.dentry = old_dentry;
1812 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814 	if (rc)
1815 		return rc;
1816 	rc = avc_has_perm(sid, old_isec->sid,
1817 			  old_isec->sclass, FILE__RENAME, &ad);
1818 	if (rc)
1819 		return rc;
1820 	if (old_is_dir && new_dir != old_dir) {
1821 		rc = avc_has_perm(sid, old_isec->sid,
1822 				  old_isec->sclass, DIR__REPARENT, &ad);
1823 		if (rc)
1824 			return rc;
1825 	}
1826 
1827 	ad.u.dentry = new_dentry;
1828 	av = DIR__ADD_NAME | DIR__SEARCH;
1829 	if (new_dentry->d_inode)
1830 		av |= DIR__REMOVE_NAME;
1831 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1832 	if (rc)
1833 		return rc;
1834 	if (new_dentry->d_inode) {
1835 		new_isec = new_dentry->d_inode->i_security;
1836 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837 		rc = avc_has_perm(sid, new_isec->sid,
1838 				  new_isec->sclass,
1839 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840 		if (rc)
1841 			return rc;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 /* Check whether a task can perform a filesystem operation. */
1848 static int superblock_has_perm(const struct cred *cred,
1849 			       struct super_block *sb,
1850 			       u32 perms,
1851 			       struct common_audit_data *ad)
1852 {
1853 	struct superblock_security_struct *sbsec;
1854 	u32 sid = cred_sid(cred);
1855 
1856 	sbsec = sb->s_security;
1857 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1858 }
1859 
1860 /* Convert a Linux mode and permission mask to an access vector. */
1861 static inline u32 file_mask_to_av(int mode, int mask)
1862 {
1863 	u32 av = 0;
1864 
1865 	if (!S_ISDIR(mode)) {
1866 		if (mask & MAY_EXEC)
1867 			av |= FILE__EXECUTE;
1868 		if (mask & MAY_READ)
1869 			av |= FILE__READ;
1870 
1871 		if (mask & MAY_APPEND)
1872 			av |= FILE__APPEND;
1873 		else if (mask & MAY_WRITE)
1874 			av |= FILE__WRITE;
1875 
1876 	} else {
1877 		if (mask & MAY_EXEC)
1878 			av |= DIR__SEARCH;
1879 		if (mask & MAY_WRITE)
1880 			av |= DIR__WRITE;
1881 		if (mask & MAY_READ)
1882 			av |= DIR__READ;
1883 	}
1884 
1885 	return av;
1886 }
1887 
1888 /* Convert a Linux file to an access vector. */
1889 static inline u32 file_to_av(struct file *file)
1890 {
1891 	u32 av = 0;
1892 
1893 	if (file->f_mode & FMODE_READ)
1894 		av |= FILE__READ;
1895 	if (file->f_mode & FMODE_WRITE) {
1896 		if (file->f_flags & O_APPEND)
1897 			av |= FILE__APPEND;
1898 		else
1899 			av |= FILE__WRITE;
1900 	}
1901 	if (!av) {
1902 		/*
1903 		 * Special file opened with flags 3 for ioctl-only use.
1904 		 */
1905 		av = FILE__IOCTL;
1906 	}
1907 
1908 	return av;
1909 }
1910 
1911 /*
1912  * Convert a file to an access vector and include the correct open
1913  * open permission.
1914  */
1915 static inline u32 open_file_to_av(struct file *file)
1916 {
1917 	u32 av = file_to_av(file);
1918 
1919 	if (selinux_policycap_openperm)
1920 		av |= FILE__OPEN;
1921 
1922 	return av;
1923 }
1924 
1925 /* Hook functions begin here. */
1926 
1927 static int selinux_ptrace_access_check(struct task_struct *child,
1928 				     unsigned int mode)
1929 {
1930 	int rc;
1931 
1932 	rc = cap_ptrace_access_check(child, mode);
1933 	if (rc)
1934 		return rc;
1935 
1936 	if (mode & PTRACE_MODE_READ) {
1937 		u32 sid = current_sid();
1938 		u32 csid = task_sid(child);
1939 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940 	}
1941 
1942 	return current_has_perm(child, PROCESS__PTRACE);
1943 }
1944 
1945 static int selinux_ptrace_traceme(struct task_struct *parent)
1946 {
1947 	int rc;
1948 
1949 	rc = cap_ptrace_traceme(parent);
1950 	if (rc)
1951 		return rc;
1952 
1953 	return task_has_perm(parent, current, PROCESS__PTRACE);
1954 }
1955 
1956 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958 {
1959 	int error;
1960 
1961 	error = current_has_perm(target, PROCESS__GETCAP);
1962 	if (error)
1963 		return error;
1964 
1965 	return cap_capget(target, effective, inheritable, permitted);
1966 }
1967 
1968 static int selinux_capset(struct cred *new, const struct cred *old,
1969 			  const kernel_cap_t *effective,
1970 			  const kernel_cap_t *inheritable,
1971 			  const kernel_cap_t *permitted)
1972 {
1973 	int error;
1974 
1975 	error = cap_capset(new, old,
1976 				      effective, inheritable, permitted);
1977 	if (error)
1978 		return error;
1979 
1980 	return cred_has_perm(old, new, PROCESS__SETCAP);
1981 }
1982 
1983 /*
1984  * (This comment used to live with the selinux_task_setuid hook,
1985  * which was removed).
1986  *
1987  * Since setuid only affects the current process, and since the SELinux
1988  * controls are not based on the Linux identity attributes, SELinux does not
1989  * need to control this operation.  However, SELinux does control the use of
1990  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991  */
1992 
1993 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994 			   int cap, int audit)
1995 {
1996 	int rc;
1997 
1998 	rc = cap_capable(cred, ns, cap, audit);
1999 	if (rc)
2000 		return rc;
2001 
2002 	return cred_has_capability(cred, cap, audit);
2003 }
2004 
2005 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006 {
2007 	const struct cred *cred = current_cred();
2008 	int rc = 0;
2009 
2010 	if (!sb)
2011 		return 0;
2012 
2013 	switch (cmds) {
2014 	case Q_SYNC:
2015 	case Q_QUOTAON:
2016 	case Q_QUOTAOFF:
2017 	case Q_SETINFO:
2018 	case Q_SETQUOTA:
2019 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020 		break;
2021 	case Q_GETFMT:
2022 	case Q_GETINFO:
2023 	case Q_GETQUOTA:
2024 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025 		break;
2026 	default:
2027 		rc = 0;  /* let the kernel handle invalid cmds */
2028 		break;
2029 	}
2030 	return rc;
2031 }
2032 
2033 static int selinux_quota_on(struct dentry *dentry)
2034 {
2035 	const struct cred *cred = current_cred();
2036 
2037 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038 }
2039 
2040 static int selinux_syslog(int type)
2041 {
2042 	int rc;
2043 
2044 	switch (type) {
2045 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2046 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2047 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048 		break;
2049 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2050 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2051 	/* Set level of messages printed to console */
2052 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2053 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054 		break;
2055 	case SYSLOG_ACTION_CLOSE:	/* Close log */
2056 	case SYSLOG_ACTION_OPEN:	/* Open log */
2057 	case SYSLOG_ACTION_READ:	/* Read from log */
2058 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2059 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2060 	default:
2061 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062 		break;
2063 	}
2064 	return rc;
2065 }
2066 
2067 /*
2068  * Check that a process has enough memory to allocate a new virtual
2069  * mapping. 0 means there is enough memory for the allocation to
2070  * succeed and -ENOMEM implies there is not.
2071  *
2072  * Do not audit the selinux permission check, as this is applied to all
2073  * processes that allocate mappings.
2074  */
2075 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076 {
2077 	int rc, cap_sys_admin = 0;
2078 
2079 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080 			     SECURITY_CAP_NOAUDIT);
2081 	if (rc == 0)
2082 		cap_sys_admin = 1;
2083 
2084 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2085 }
2086 
2087 /* binprm security operations */
2088 
2089 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090 {
2091 	const struct task_security_struct *old_tsec;
2092 	struct task_security_struct *new_tsec;
2093 	struct inode_security_struct *isec;
2094 	struct common_audit_data ad;
2095 	struct inode *inode = file_inode(bprm->file);
2096 	int rc;
2097 
2098 	rc = cap_bprm_set_creds(bprm);
2099 	if (rc)
2100 		return rc;
2101 
2102 	/* SELinux context only depends on initial program or script and not
2103 	 * the script interpreter */
2104 	if (bprm->cred_prepared)
2105 		return 0;
2106 
2107 	old_tsec = current_security();
2108 	new_tsec = bprm->cred->security;
2109 	isec = inode->i_security;
2110 
2111 	/* Default to the current task SID. */
2112 	new_tsec->sid = old_tsec->sid;
2113 	new_tsec->osid = old_tsec->sid;
2114 
2115 	/* Reset fs, key, and sock SIDs on execve. */
2116 	new_tsec->create_sid = 0;
2117 	new_tsec->keycreate_sid = 0;
2118 	new_tsec->sockcreate_sid = 0;
2119 
2120 	if (old_tsec->exec_sid) {
2121 		new_tsec->sid = old_tsec->exec_sid;
2122 		/* Reset exec SID on execve. */
2123 		new_tsec->exec_sid = 0;
2124 
2125 		/*
2126 		 * Minimize confusion: if no_new_privs and a transition is
2127 		 * explicitly requested, then fail the exec.
2128 		 */
2129 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130 			return -EPERM;
2131 	} else {
2132 		/* Check for a default transition on this program. */
2133 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2134 					     SECCLASS_PROCESS, NULL,
2135 					     &new_tsec->sid);
2136 		if (rc)
2137 			return rc;
2138 	}
2139 
2140 	ad.type = LSM_AUDIT_DATA_PATH;
2141 	ad.u.path = bprm->file->f_path;
2142 
2143 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145 		new_tsec->sid = old_tsec->sid;
2146 
2147 	if (new_tsec->sid == old_tsec->sid) {
2148 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150 		if (rc)
2151 			return rc;
2152 	} else {
2153 		/* Check permissions for the transition. */
2154 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156 		if (rc)
2157 			return rc;
2158 
2159 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161 		if (rc)
2162 			return rc;
2163 
2164 		/* Check for shared state */
2165 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 					  SECCLASS_PROCESS, PROCESS__SHARE,
2168 					  NULL);
2169 			if (rc)
2170 				return -EPERM;
2171 		}
2172 
2173 		/* Make sure that anyone attempting to ptrace over a task that
2174 		 * changes its SID has the appropriate permit */
2175 		if (bprm->unsafe &
2176 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 			struct task_struct *tracer;
2178 			struct task_security_struct *sec;
2179 			u32 ptsid = 0;
2180 
2181 			rcu_read_lock();
2182 			tracer = ptrace_parent(current);
2183 			if (likely(tracer != NULL)) {
2184 				sec = __task_cred(tracer)->security;
2185 				ptsid = sec->sid;
2186 			}
2187 			rcu_read_unlock();
2188 
2189 			if (ptsid != 0) {
2190 				rc = avc_has_perm(ptsid, new_tsec->sid,
2191 						  SECCLASS_PROCESS,
2192 						  PROCESS__PTRACE, NULL);
2193 				if (rc)
2194 					return -EPERM;
2195 			}
2196 		}
2197 
2198 		/* Clear any possibly unsafe personality bits on exec: */
2199 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206 {
2207 	const struct task_security_struct *tsec = current_security();
2208 	u32 sid, osid;
2209 	int atsecure = 0;
2210 
2211 	sid = tsec->sid;
2212 	osid = tsec->osid;
2213 
2214 	if (osid != sid) {
2215 		/* Enable secure mode for SIDs transitions unless
2216 		   the noatsecure permission is granted between
2217 		   the two SIDs, i.e. ahp returns 0. */
2218 		atsecure = avc_has_perm(osid, sid,
2219 					SECCLASS_PROCESS,
2220 					PROCESS__NOATSECURE, NULL);
2221 	}
2222 
2223 	return (atsecure || cap_bprm_secureexec(bprm));
2224 }
2225 
2226 static int match_file(const void *p, struct file *file, unsigned fd)
2227 {
2228 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229 }
2230 
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 					    struct files_struct *files)
2234 {
2235 	struct file *file, *devnull = NULL;
2236 	struct tty_struct *tty;
2237 	int drop_tty = 0;
2238 	unsigned n;
2239 
2240 	tty = get_current_tty();
2241 	if (tty) {
2242 		spin_lock(&tty_files_lock);
2243 		if (!list_empty(&tty->tty_files)) {
2244 			struct tty_file_private *file_priv;
2245 
2246 			/* Revalidate access to controlling tty.
2247 			   Use file_path_has_perm on the tty path directly
2248 			   rather than using file_has_perm, as this particular
2249 			   open file may belong to another process and we are
2250 			   only interested in the inode-based check here. */
2251 			file_priv = list_first_entry(&tty->tty_files,
2252 						struct tty_file_private, list);
2253 			file = file_priv->file;
2254 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255 				drop_tty = 1;
2256 		}
2257 		spin_unlock(&tty_files_lock);
2258 		tty_kref_put(tty);
2259 	}
2260 	/* Reset controlling tty. */
2261 	if (drop_tty)
2262 		no_tty();
2263 
2264 	/* Revalidate access to inherited open files. */
2265 	n = iterate_fd(files, 0, match_file, cred);
2266 	if (!n) /* none found? */
2267 		return;
2268 
2269 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270 	if (IS_ERR(devnull))
2271 		devnull = NULL;
2272 	/* replace all the matching ones with this */
2273 	do {
2274 		replace_fd(n - 1, devnull, 0);
2275 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276 	if (devnull)
2277 		fput(devnull);
2278 }
2279 
2280 /*
2281  * Prepare a process for imminent new credential changes due to exec
2282  */
2283 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284 {
2285 	struct task_security_struct *new_tsec;
2286 	struct rlimit *rlim, *initrlim;
2287 	int rc, i;
2288 
2289 	new_tsec = bprm->cred->security;
2290 	if (new_tsec->sid == new_tsec->osid)
2291 		return;
2292 
2293 	/* Close files for which the new task SID is not authorized. */
2294 	flush_unauthorized_files(bprm->cred, current->files);
2295 
2296 	/* Always clear parent death signal on SID transitions. */
2297 	current->pdeath_signal = 0;
2298 
2299 	/* Check whether the new SID can inherit resource limits from the old
2300 	 * SID.  If not, reset all soft limits to the lower of the current
2301 	 * task's hard limit and the init task's soft limit.
2302 	 *
2303 	 * Note that the setting of hard limits (even to lower them) can be
2304 	 * controlled by the setrlimit check.  The inclusion of the init task's
2305 	 * soft limit into the computation is to avoid resetting soft limits
2306 	 * higher than the default soft limit for cases where the default is
2307 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308 	 */
2309 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2310 			  PROCESS__RLIMITINH, NULL);
2311 	if (rc) {
2312 		/* protect against do_prlimit() */
2313 		task_lock(current);
2314 		for (i = 0; i < RLIM_NLIMITS; i++) {
2315 			rlim = current->signal->rlim + i;
2316 			initrlim = init_task.signal->rlim + i;
2317 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318 		}
2319 		task_unlock(current);
2320 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2321 	}
2322 }
2323 
2324 /*
2325  * Clean up the process immediately after the installation of new credentials
2326  * due to exec
2327  */
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329 {
2330 	const struct task_security_struct *tsec = current_security();
2331 	struct itimerval itimer;
2332 	u32 osid, sid;
2333 	int rc, i;
2334 
2335 	osid = tsec->osid;
2336 	sid = tsec->sid;
2337 
2338 	if (sid == osid)
2339 		return;
2340 
2341 	/* Check whether the new SID can inherit signal state from the old SID.
2342 	 * If not, clear itimers to avoid subsequent signal generation and
2343 	 * flush and unblock signals.
2344 	 *
2345 	 * This must occur _after_ the task SID has been updated so that any
2346 	 * kill done after the flush will be checked against the new SID.
2347 	 */
2348 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2349 	if (rc) {
2350 		memset(&itimer, 0, sizeof itimer);
2351 		for (i = 0; i < 3; i++)
2352 			do_setitimer(i, &itimer, NULL);
2353 		spin_lock_irq(&current->sighand->siglock);
2354 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355 			__flush_signals(current);
2356 			flush_signal_handlers(current, 1);
2357 			sigemptyset(&current->blocked);
2358 		}
2359 		spin_unlock_irq(&current->sighand->siglock);
2360 	}
2361 
2362 	/* Wake up the parent if it is waiting so that it can recheck
2363 	 * wait permission to the new task SID. */
2364 	read_lock(&tasklist_lock);
2365 	__wake_up_parent(current, current->real_parent);
2366 	read_unlock(&tasklist_lock);
2367 }
2368 
2369 /* superblock security operations */
2370 
2371 static int selinux_sb_alloc_security(struct super_block *sb)
2372 {
2373 	return superblock_alloc_security(sb);
2374 }
2375 
2376 static void selinux_sb_free_security(struct super_block *sb)
2377 {
2378 	superblock_free_security(sb);
2379 }
2380 
2381 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382 {
2383 	if (plen > olen)
2384 		return 0;
2385 
2386 	return !memcmp(prefix, option, plen);
2387 }
2388 
2389 static inline int selinux_option(char *option, int len)
2390 {
2391 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396 }
2397 
2398 static inline void take_option(char **to, char *from, int *first, int len)
2399 {
2400 	if (!*first) {
2401 		**to = ',';
2402 		*to += 1;
2403 	} else
2404 		*first = 0;
2405 	memcpy(*to, from, len);
2406 	*to += len;
2407 }
2408 
2409 static inline void take_selinux_option(char **to, char *from, int *first,
2410 				       int len)
2411 {
2412 	int current_size = 0;
2413 
2414 	if (!*first) {
2415 		**to = '|';
2416 		*to += 1;
2417 	} else
2418 		*first = 0;
2419 
2420 	while (current_size < len) {
2421 		if (*from != '"') {
2422 			**to = *from;
2423 			*to += 1;
2424 		}
2425 		from += 1;
2426 		current_size += 1;
2427 	}
2428 }
2429 
2430 static int selinux_sb_copy_data(char *orig, char *copy)
2431 {
2432 	int fnosec, fsec, rc = 0;
2433 	char *in_save, *in_curr, *in_end;
2434 	char *sec_curr, *nosec_save, *nosec;
2435 	int open_quote = 0;
2436 
2437 	in_curr = orig;
2438 	sec_curr = copy;
2439 
2440 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441 	if (!nosec) {
2442 		rc = -ENOMEM;
2443 		goto out;
2444 	}
2445 
2446 	nosec_save = nosec;
2447 	fnosec = fsec = 1;
2448 	in_save = in_end = orig;
2449 
2450 	do {
2451 		if (*in_end == '"')
2452 			open_quote = !open_quote;
2453 		if ((*in_end == ',' && open_quote == 0) ||
2454 				*in_end == '\0') {
2455 			int len = in_end - in_curr;
2456 
2457 			if (selinux_option(in_curr, len))
2458 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459 			else
2460 				take_option(&nosec, in_curr, &fnosec, len);
2461 
2462 			in_curr = in_end + 1;
2463 		}
2464 	} while (*in_end++);
2465 
2466 	strcpy(in_save, nosec_save);
2467 	free_page((unsigned long)nosec_save);
2468 out:
2469 	return rc;
2470 }
2471 
2472 static int selinux_sb_remount(struct super_block *sb, void *data)
2473 {
2474 	int rc, i, *flags;
2475 	struct security_mnt_opts opts;
2476 	char *secdata, **mount_options;
2477 	struct superblock_security_struct *sbsec = sb->s_security;
2478 
2479 	if (!(sbsec->flags & SE_SBINITIALIZED))
2480 		return 0;
2481 
2482 	if (!data)
2483 		return 0;
2484 
2485 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486 		return 0;
2487 
2488 	security_init_mnt_opts(&opts);
2489 	secdata = alloc_secdata();
2490 	if (!secdata)
2491 		return -ENOMEM;
2492 	rc = selinux_sb_copy_data(data, secdata);
2493 	if (rc)
2494 		goto out_free_secdata;
2495 
2496 	rc = selinux_parse_opts_str(secdata, &opts);
2497 	if (rc)
2498 		goto out_free_secdata;
2499 
2500 	mount_options = opts.mnt_opts;
2501 	flags = opts.mnt_opts_flags;
2502 
2503 	for (i = 0; i < opts.num_mnt_opts; i++) {
2504 		u32 sid;
2505 		size_t len;
2506 
2507 		if (flags[i] == SBLABEL_MNT)
2508 			continue;
2509 		len = strlen(mount_options[i]);
2510 		rc = security_context_to_sid(mount_options[i], len, &sid,
2511 					     GFP_KERNEL);
2512 		if (rc) {
2513 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2514 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2515 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2516 			goto out_free_opts;
2517 		}
2518 		rc = -EINVAL;
2519 		switch (flags[i]) {
2520 		case FSCONTEXT_MNT:
2521 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522 				goto out_bad_option;
2523 			break;
2524 		case CONTEXT_MNT:
2525 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526 				goto out_bad_option;
2527 			break;
2528 		case ROOTCONTEXT_MNT: {
2529 			struct inode_security_struct *root_isec;
2530 			root_isec = sb->s_root->d_inode->i_security;
2531 
2532 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533 				goto out_bad_option;
2534 			break;
2535 		}
2536 		case DEFCONTEXT_MNT:
2537 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538 				goto out_bad_option;
2539 			break;
2540 		default:
2541 			goto out_free_opts;
2542 		}
2543 	}
2544 
2545 	rc = 0;
2546 out_free_opts:
2547 	security_free_mnt_opts(&opts);
2548 out_free_secdata:
2549 	free_secdata(secdata);
2550 	return rc;
2551 out_bad_option:
2552 	printk(KERN_WARNING "SELinux: unable to change security options "
2553 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2554 	       sb->s_type->name);
2555 	goto out_free_opts;
2556 }
2557 
2558 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559 {
2560 	const struct cred *cred = current_cred();
2561 	struct common_audit_data ad;
2562 	int rc;
2563 
2564 	rc = superblock_doinit(sb, data);
2565 	if (rc)
2566 		return rc;
2567 
2568 	/* Allow all mounts performed by the kernel */
2569 	if (flags & MS_KERNMOUNT)
2570 		return 0;
2571 
2572 	ad.type = LSM_AUDIT_DATA_DENTRY;
2573 	ad.u.dentry = sb->s_root;
2574 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575 }
2576 
2577 static int selinux_sb_statfs(struct dentry *dentry)
2578 {
2579 	const struct cred *cred = current_cred();
2580 	struct common_audit_data ad;
2581 
2582 	ad.type = LSM_AUDIT_DATA_DENTRY;
2583 	ad.u.dentry = dentry->d_sb->s_root;
2584 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585 }
2586 
2587 static int selinux_mount(const char *dev_name,
2588 			 struct path *path,
2589 			 const char *type,
2590 			 unsigned long flags,
2591 			 void *data)
2592 {
2593 	const struct cred *cred = current_cred();
2594 
2595 	if (flags & MS_REMOUNT)
2596 		return superblock_has_perm(cred, path->dentry->d_sb,
2597 					   FILESYSTEM__REMOUNT, NULL);
2598 	else
2599 		return path_has_perm(cred, path, FILE__MOUNTON);
2600 }
2601 
2602 static int selinux_umount(struct vfsmount *mnt, int flags)
2603 {
2604 	const struct cred *cred = current_cred();
2605 
2606 	return superblock_has_perm(cred, mnt->mnt_sb,
2607 				   FILESYSTEM__UNMOUNT, NULL);
2608 }
2609 
2610 /* inode security operations */
2611 
2612 static int selinux_inode_alloc_security(struct inode *inode)
2613 {
2614 	return inode_alloc_security(inode);
2615 }
2616 
2617 static void selinux_inode_free_security(struct inode *inode)
2618 {
2619 	inode_free_security(inode);
2620 }
2621 
2622 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623 					struct qstr *name, void **ctx,
2624 					u32 *ctxlen)
2625 {
2626 	const struct cred *cred = current_cred();
2627 	struct task_security_struct *tsec;
2628 	struct inode_security_struct *dsec;
2629 	struct superblock_security_struct *sbsec;
2630 	struct inode *dir = dentry->d_parent->d_inode;
2631 	u32 newsid;
2632 	int rc;
2633 
2634 	tsec = cred->security;
2635 	dsec = dir->i_security;
2636 	sbsec = dir->i_sb->s_security;
2637 
2638 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639 		newsid = tsec->create_sid;
2640 	} else {
2641 		rc = security_transition_sid(tsec->sid, dsec->sid,
2642 					     inode_mode_to_security_class(mode),
2643 					     name,
2644 					     &newsid);
2645 		if (rc) {
2646 			printk(KERN_WARNING
2647 				"%s: security_transition_sid failed, rc=%d\n",
2648 			       __func__, -rc);
2649 			return rc;
2650 		}
2651 	}
2652 
2653 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2654 }
2655 
2656 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657 				       const struct qstr *qstr,
2658 				       const char **name,
2659 				       void **value, size_t *len)
2660 {
2661 	const struct task_security_struct *tsec = current_security();
2662 	struct inode_security_struct *dsec;
2663 	struct superblock_security_struct *sbsec;
2664 	u32 sid, newsid, clen;
2665 	int rc;
2666 	char *context;
2667 
2668 	dsec = dir->i_security;
2669 	sbsec = dir->i_sb->s_security;
2670 
2671 	sid = tsec->sid;
2672 	newsid = tsec->create_sid;
2673 
2674 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2675 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676 		newsid = sbsec->mntpoint_sid;
2677 	else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678 		rc = security_transition_sid(sid, dsec->sid,
2679 					     inode_mode_to_security_class(inode->i_mode),
2680 					     qstr, &newsid);
2681 		if (rc) {
2682 			printk(KERN_WARNING "%s:  "
2683 			       "security_transition_sid failed, rc=%d (dev=%s "
2684 			       "ino=%ld)\n",
2685 			       __func__,
2686 			       -rc, inode->i_sb->s_id, inode->i_ino);
2687 			return rc;
2688 		}
2689 	}
2690 
2691 	/* Possibly defer initialization to selinux_complete_init. */
2692 	if (sbsec->flags & SE_SBINITIALIZED) {
2693 		struct inode_security_struct *isec = inode->i_security;
2694 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695 		isec->sid = newsid;
2696 		isec->initialized = 1;
2697 	}
2698 
2699 	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2700 		return -EOPNOTSUPP;
2701 
2702 	if (name)
2703 		*name = XATTR_SELINUX_SUFFIX;
2704 
2705 	if (value && len) {
2706 		rc = security_sid_to_context_force(newsid, &context, &clen);
2707 		if (rc)
2708 			return rc;
2709 		*value = context;
2710 		*len = clen;
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717 {
2718 	return may_create(dir, dentry, SECCLASS_FILE);
2719 }
2720 
2721 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722 {
2723 	return may_link(dir, old_dentry, MAY_LINK);
2724 }
2725 
2726 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727 {
2728 	return may_link(dir, dentry, MAY_UNLINK);
2729 }
2730 
2731 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732 {
2733 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734 }
2735 
2736 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737 {
2738 	return may_create(dir, dentry, SECCLASS_DIR);
2739 }
2740 
2741 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742 {
2743 	return may_link(dir, dentry, MAY_RMDIR);
2744 }
2745 
2746 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747 {
2748 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749 }
2750 
2751 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752 				struct inode *new_inode, struct dentry *new_dentry)
2753 {
2754 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755 }
2756 
2757 static int selinux_inode_readlink(struct dentry *dentry)
2758 {
2759 	const struct cred *cred = current_cred();
2760 
2761 	return dentry_has_perm(cred, dentry, FILE__READ);
2762 }
2763 
2764 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2765 {
2766 	const struct cred *cred = current_cred();
2767 
2768 	return dentry_has_perm(cred, dentry, FILE__READ);
2769 }
2770 
2771 static noinline int audit_inode_permission(struct inode *inode,
2772 					   u32 perms, u32 audited, u32 denied,
2773 					   unsigned flags)
2774 {
2775 	struct common_audit_data ad;
2776 	struct inode_security_struct *isec = inode->i_security;
2777 	int rc;
2778 
2779 	ad.type = LSM_AUDIT_DATA_INODE;
2780 	ad.u.inode = inode;
2781 
2782 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783 			    audited, denied, &ad, flags);
2784 	if (rc)
2785 		return rc;
2786 	return 0;
2787 }
2788 
2789 static int selinux_inode_permission(struct inode *inode, int mask)
2790 {
2791 	const struct cred *cred = current_cred();
2792 	u32 perms;
2793 	bool from_access;
2794 	unsigned flags = mask & MAY_NOT_BLOCK;
2795 	struct inode_security_struct *isec;
2796 	u32 sid;
2797 	struct av_decision avd;
2798 	int rc, rc2;
2799 	u32 audited, denied;
2800 
2801 	from_access = mask & MAY_ACCESS;
2802 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2803 
2804 	/* No permission to check.  Existence test. */
2805 	if (!mask)
2806 		return 0;
2807 
2808 	validate_creds(cred);
2809 
2810 	if (unlikely(IS_PRIVATE(inode)))
2811 		return 0;
2812 
2813 	perms = file_mask_to_av(inode->i_mode, mask);
2814 
2815 	sid = cred_sid(cred);
2816 	isec = inode->i_security;
2817 
2818 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2819 	audited = avc_audit_required(perms, &avd, rc,
2820 				     from_access ? FILE__AUDIT_ACCESS : 0,
2821 				     &denied);
2822 	if (likely(!audited))
2823 		return rc;
2824 
2825 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2826 	if (rc2)
2827 		return rc2;
2828 	return rc;
2829 }
2830 
2831 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2832 {
2833 	const struct cred *cred = current_cred();
2834 	unsigned int ia_valid = iattr->ia_valid;
2835 	__u32 av = FILE__WRITE;
2836 
2837 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838 	if (ia_valid & ATTR_FORCE) {
2839 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2840 			      ATTR_FORCE);
2841 		if (!ia_valid)
2842 			return 0;
2843 	}
2844 
2845 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2848 
2849 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2850 		av |= FILE__OPEN;
2851 
2852 	return dentry_has_perm(cred, dentry, av);
2853 }
2854 
2855 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2856 {
2857 	const struct cred *cred = current_cred();
2858 	struct path path;
2859 
2860 	path.dentry = dentry;
2861 	path.mnt = mnt;
2862 
2863 	return path_has_perm(cred, &path, FILE__GETATTR);
2864 }
2865 
2866 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2867 {
2868 	const struct cred *cred = current_cred();
2869 
2870 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2872 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2873 			if (!capable(CAP_SETFCAP))
2874 				return -EPERM;
2875 		} else if (!capable(CAP_SYS_ADMIN)) {
2876 			/* A different attribute in the security namespace.
2877 			   Restrict to administrator. */
2878 			return -EPERM;
2879 		}
2880 	}
2881 
2882 	/* Not an attribute we recognize, so just check the
2883 	   ordinary setattr permission. */
2884 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2885 }
2886 
2887 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888 				  const void *value, size_t size, int flags)
2889 {
2890 	struct inode *inode = dentry->d_inode;
2891 	struct inode_security_struct *isec = inode->i_security;
2892 	struct superblock_security_struct *sbsec;
2893 	struct common_audit_data ad;
2894 	u32 newsid, sid = current_sid();
2895 	int rc = 0;
2896 
2897 	if (strcmp(name, XATTR_NAME_SELINUX))
2898 		return selinux_inode_setotherxattr(dentry, name);
2899 
2900 	sbsec = inode->i_sb->s_security;
2901 	if (!(sbsec->flags & SBLABEL_MNT))
2902 		return -EOPNOTSUPP;
2903 
2904 	if (!inode_owner_or_capable(inode))
2905 		return -EPERM;
2906 
2907 	ad.type = LSM_AUDIT_DATA_DENTRY;
2908 	ad.u.dentry = dentry;
2909 
2910 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2911 			  FILE__RELABELFROM, &ad);
2912 	if (rc)
2913 		return rc;
2914 
2915 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2916 	if (rc == -EINVAL) {
2917 		if (!capable(CAP_MAC_ADMIN)) {
2918 			struct audit_buffer *ab;
2919 			size_t audit_size;
2920 			const char *str;
2921 
2922 			/* We strip a nul only if it is at the end, otherwise the
2923 			 * context contains a nul and we should audit that */
2924 			if (value) {
2925 				str = value;
2926 				if (str[size - 1] == '\0')
2927 					audit_size = size - 1;
2928 				else
2929 					audit_size = size;
2930 			} else {
2931 				str = "";
2932 				audit_size = 0;
2933 			}
2934 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2935 			audit_log_format(ab, "op=setxattr invalid_context=");
2936 			audit_log_n_untrustedstring(ab, value, audit_size);
2937 			audit_log_end(ab);
2938 
2939 			return rc;
2940 		}
2941 		rc = security_context_to_sid_force(value, size, &newsid);
2942 	}
2943 	if (rc)
2944 		return rc;
2945 
2946 	rc = avc_has_perm(sid, newsid, isec->sclass,
2947 			  FILE__RELABELTO, &ad);
2948 	if (rc)
2949 		return rc;
2950 
2951 	rc = security_validate_transition(isec->sid, newsid, sid,
2952 					  isec->sclass);
2953 	if (rc)
2954 		return rc;
2955 
2956 	return avc_has_perm(newsid,
2957 			    sbsec->sid,
2958 			    SECCLASS_FILESYSTEM,
2959 			    FILESYSTEM__ASSOCIATE,
2960 			    &ad);
2961 }
2962 
2963 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964 					const void *value, size_t size,
2965 					int flags)
2966 {
2967 	struct inode *inode = dentry->d_inode;
2968 	struct inode_security_struct *isec = inode->i_security;
2969 	u32 newsid;
2970 	int rc;
2971 
2972 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2973 		/* Not an attribute we recognize, so nothing to do. */
2974 		return;
2975 	}
2976 
2977 	rc = security_context_to_sid_force(value, size, &newsid);
2978 	if (rc) {
2979 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2980 		       "for (%s, %lu), rc=%d\n",
2981 		       inode->i_sb->s_id, inode->i_ino, -rc);
2982 		return;
2983 	}
2984 
2985 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
2986 	isec->sid = newsid;
2987 	isec->initialized = 1;
2988 
2989 	return;
2990 }
2991 
2992 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2993 {
2994 	const struct cred *cred = current_cred();
2995 
2996 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2997 }
2998 
2999 static int selinux_inode_listxattr(struct dentry *dentry)
3000 {
3001 	const struct cred *cred = current_cred();
3002 
3003 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3004 }
3005 
3006 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3007 {
3008 	if (strcmp(name, XATTR_NAME_SELINUX))
3009 		return selinux_inode_setotherxattr(dentry, name);
3010 
3011 	/* No one is allowed to remove a SELinux security label.
3012 	   You can change the label, but all data must be labeled. */
3013 	return -EACCES;
3014 }
3015 
3016 /*
3017  * Copy the inode security context value to the user.
3018  *
3019  * Permission check is handled by selinux_inode_getxattr hook.
3020  */
3021 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3022 {
3023 	u32 size;
3024 	int error;
3025 	char *context = NULL;
3026 	struct inode_security_struct *isec = inode->i_security;
3027 
3028 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3029 		return -EOPNOTSUPP;
3030 
3031 	/*
3032 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033 	 * value even if it is not defined by current policy; otherwise,
3034 	 * use the in-core value under current policy.
3035 	 * Use the non-auditing forms of the permission checks since
3036 	 * getxattr may be called by unprivileged processes commonly
3037 	 * and lack of permission just means that we fall back to the
3038 	 * in-core context value, not a denial.
3039 	 */
3040 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041 				SECURITY_CAP_NOAUDIT);
3042 	if (!error)
3043 		error = security_sid_to_context_force(isec->sid, &context,
3044 						      &size);
3045 	else
3046 		error = security_sid_to_context(isec->sid, &context, &size);
3047 	if (error)
3048 		return error;
3049 	error = size;
3050 	if (alloc) {
3051 		*buffer = context;
3052 		goto out_nofree;
3053 	}
3054 	kfree(context);
3055 out_nofree:
3056 	return error;
3057 }
3058 
3059 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060 				     const void *value, size_t size, int flags)
3061 {
3062 	struct inode_security_struct *isec = inode->i_security;
3063 	u32 newsid;
3064 	int rc;
3065 
3066 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3067 		return -EOPNOTSUPP;
3068 
3069 	if (!value || !size)
3070 		return -EACCES;
3071 
3072 	rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3073 	if (rc)
3074 		return rc;
3075 
3076 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3077 	isec->sid = newsid;
3078 	isec->initialized = 1;
3079 	return 0;
3080 }
3081 
3082 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3083 {
3084 	const int len = sizeof(XATTR_NAME_SELINUX);
3085 	if (buffer && len <= buffer_size)
3086 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3087 	return len;
3088 }
3089 
3090 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3091 {
3092 	struct inode_security_struct *isec = inode->i_security;
3093 	*secid = isec->sid;
3094 }
3095 
3096 /* file security operations */
3097 
3098 static int selinux_revalidate_file_permission(struct file *file, int mask)
3099 {
3100 	const struct cred *cred = current_cred();
3101 	struct inode *inode = file_inode(file);
3102 
3103 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3105 		mask |= MAY_APPEND;
3106 
3107 	return file_has_perm(cred, file,
3108 			     file_mask_to_av(inode->i_mode, mask));
3109 }
3110 
3111 static int selinux_file_permission(struct file *file, int mask)
3112 {
3113 	struct inode *inode = file_inode(file);
3114 	struct file_security_struct *fsec = file->f_security;
3115 	struct inode_security_struct *isec = inode->i_security;
3116 	u32 sid = current_sid();
3117 
3118 	if (!mask)
3119 		/* No permission to check.  Existence test. */
3120 		return 0;
3121 
3122 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3123 	    fsec->pseqno == avc_policy_seqno())
3124 		/* No change since file_open check. */
3125 		return 0;
3126 
3127 	return selinux_revalidate_file_permission(file, mask);
3128 }
3129 
3130 static int selinux_file_alloc_security(struct file *file)
3131 {
3132 	return file_alloc_security(file);
3133 }
3134 
3135 static void selinux_file_free_security(struct file *file)
3136 {
3137 	file_free_security(file);
3138 }
3139 
3140 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3141 			      unsigned long arg)
3142 {
3143 	const struct cred *cred = current_cred();
3144 	int error = 0;
3145 
3146 	switch (cmd) {
3147 	case FIONREAD:
3148 	/* fall through */
3149 	case FIBMAP:
3150 	/* fall through */
3151 	case FIGETBSZ:
3152 	/* fall through */
3153 	case FS_IOC_GETFLAGS:
3154 	/* fall through */
3155 	case FS_IOC_GETVERSION:
3156 		error = file_has_perm(cred, file, FILE__GETATTR);
3157 		break;
3158 
3159 	case FS_IOC_SETFLAGS:
3160 	/* fall through */
3161 	case FS_IOC_SETVERSION:
3162 		error = file_has_perm(cred, file, FILE__SETATTR);
3163 		break;
3164 
3165 	/* sys_ioctl() checks */
3166 	case FIONBIO:
3167 	/* fall through */
3168 	case FIOASYNC:
3169 		error = file_has_perm(cred, file, 0);
3170 		break;
3171 
3172 	case KDSKBENT:
3173 	case KDSKBSENT:
3174 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175 					    SECURITY_CAP_AUDIT);
3176 		break;
3177 
3178 	/* default case assumes that the command will go
3179 	 * to the file's ioctl() function.
3180 	 */
3181 	default:
3182 		error = file_has_perm(cred, file, FILE__IOCTL);
3183 	}
3184 	return error;
3185 }
3186 
3187 static int default_noexec;
3188 
3189 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3190 {
3191 	const struct cred *cred = current_cred();
3192 	int rc = 0;
3193 
3194 	if (default_noexec &&
3195 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3196 		/*
3197 		 * We are making executable an anonymous mapping or a
3198 		 * private file mapping that will also be writable.
3199 		 * This has an additional check.
3200 		 */
3201 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3202 		if (rc)
3203 			goto error;
3204 	}
3205 
3206 	if (file) {
3207 		/* read access is always possible with a mapping */
3208 		u32 av = FILE__READ;
3209 
3210 		/* write access only matters if the mapping is shared */
3211 		if (shared && (prot & PROT_WRITE))
3212 			av |= FILE__WRITE;
3213 
3214 		if (prot & PROT_EXEC)
3215 			av |= FILE__EXECUTE;
3216 
3217 		return file_has_perm(cred, file, av);
3218 	}
3219 
3220 error:
3221 	return rc;
3222 }
3223 
3224 static int selinux_mmap_addr(unsigned long addr)
3225 {
3226 	int rc;
3227 
3228 	/* do DAC check on address space usage */
3229 	rc = cap_mmap_addr(addr);
3230 	if (rc)
3231 		return rc;
3232 
3233 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234 		u32 sid = current_sid();
3235 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3236 				  MEMPROTECT__MMAP_ZERO, NULL);
3237 	}
3238 
3239 	return rc;
3240 }
3241 
3242 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243 			     unsigned long prot, unsigned long flags)
3244 {
3245 	if (selinux_checkreqprot)
3246 		prot = reqprot;
3247 
3248 	return file_map_prot_check(file, prot,
3249 				   (flags & MAP_TYPE) == MAP_SHARED);
3250 }
3251 
3252 static int selinux_file_mprotect(struct vm_area_struct *vma,
3253 				 unsigned long reqprot,
3254 				 unsigned long prot)
3255 {
3256 	const struct cred *cred = current_cred();
3257 
3258 	if (selinux_checkreqprot)
3259 		prot = reqprot;
3260 
3261 	if (default_noexec &&
3262 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3263 		int rc = 0;
3264 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3265 		    vma->vm_end <= vma->vm_mm->brk) {
3266 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3267 		} else if (!vma->vm_file &&
3268 			   vma->vm_start <= vma->vm_mm->start_stack &&
3269 			   vma->vm_end >= vma->vm_mm->start_stack) {
3270 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3271 		} else if (vma->vm_file && vma->anon_vma) {
3272 			/*
3273 			 * We are making executable a file mapping that has
3274 			 * had some COW done. Since pages might have been
3275 			 * written, check ability to execute the possibly
3276 			 * modified content.  This typically should only
3277 			 * occur for text relocations.
3278 			 */
3279 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3280 		}
3281 		if (rc)
3282 			return rc;
3283 	}
3284 
3285 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3286 }
3287 
3288 static int selinux_file_lock(struct file *file, unsigned int cmd)
3289 {
3290 	const struct cred *cred = current_cred();
3291 
3292 	return file_has_perm(cred, file, FILE__LOCK);
3293 }
3294 
3295 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3296 			      unsigned long arg)
3297 {
3298 	const struct cred *cred = current_cred();
3299 	int err = 0;
3300 
3301 	switch (cmd) {
3302 	case F_SETFL:
3303 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304 			err = file_has_perm(cred, file, FILE__WRITE);
3305 			break;
3306 		}
3307 		/* fall through */
3308 	case F_SETOWN:
3309 	case F_SETSIG:
3310 	case F_GETFL:
3311 	case F_GETOWN:
3312 	case F_GETSIG:
3313 	case F_GETOWNER_UIDS:
3314 		/* Just check FD__USE permission */
3315 		err = file_has_perm(cred, file, 0);
3316 		break;
3317 	case F_GETLK:
3318 	case F_SETLK:
3319 	case F_SETLKW:
3320 	case F_OFD_GETLK:
3321 	case F_OFD_SETLK:
3322 	case F_OFD_SETLKW:
3323 #if BITS_PER_LONG == 32
3324 	case F_GETLK64:
3325 	case F_SETLK64:
3326 	case F_SETLKW64:
3327 #endif
3328 		err = file_has_perm(cred, file, FILE__LOCK);
3329 		break;
3330 	}
3331 
3332 	return err;
3333 }
3334 
3335 static int selinux_file_set_fowner(struct file *file)
3336 {
3337 	struct file_security_struct *fsec;
3338 
3339 	fsec = file->f_security;
3340 	fsec->fown_sid = current_sid();
3341 
3342 	return 0;
3343 }
3344 
3345 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346 				       struct fown_struct *fown, int signum)
3347 {
3348 	struct file *file;
3349 	u32 sid = task_sid(tsk);
3350 	u32 perm;
3351 	struct file_security_struct *fsec;
3352 
3353 	/* struct fown_struct is never outside the context of a struct file */
3354 	file = container_of(fown, struct file, f_owner);
3355 
3356 	fsec = file->f_security;
3357 
3358 	if (!signum)
3359 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3360 	else
3361 		perm = signal_to_av(signum);
3362 
3363 	return avc_has_perm(fsec->fown_sid, sid,
3364 			    SECCLASS_PROCESS, perm, NULL);
3365 }
3366 
3367 static int selinux_file_receive(struct file *file)
3368 {
3369 	const struct cred *cred = current_cred();
3370 
3371 	return file_has_perm(cred, file, file_to_av(file));
3372 }
3373 
3374 static int selinux_file_open(struct file *file, const struct cred *cred)
3375 {
3376 	struct file_security_struct *fsec;
3377 	struct inode_security_struct *isec;
3378 
3379 	fsec = file->f_security;
3380 	isec = file_inode(file)->i_security;
3381 	/*
3382 	 * Save inode label and policy sequence number
3383 	 * at open-time so that selinux_file_permission
3384 	 * can determine whether revalidation is necessary.
3385 	 * Task label is already saved in the file security
3386 	 * struct as its SID.
3387 	 */
3388 	fsec->isid = isec->sid;
3389 	fsec->pseqno = avc_policy_seqno();
3390 	/*
3391 	 * Since the inode label or policy seqno may have changed
3392 	 * between the selinux_inode_permission check and the saving
3393 	 * of state above, recheck that access is still permitted.
3394 	 * Otherwise, access might never be revalidated against the
3395 	 * new inode label or new policy.
3396 	 * This check is not redundant - do not remove.
3397 	 */
3398 	return file_path_has_perm(cred, file, open_file_to_av(file));
3399 }
3400 
3401 /* task security operations */
3402 
3403 static int selinux_task_create(unsigned long clone_flags)
3404 {
3405 	return current_has_perm(current, PROCESS__FORK);
3406 }
3407 
3408 /*
3409  * allocate the SELinux part of blank credentials
3410  */
3411 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3412 {
3413 	struct task_security_struct *tsec;
3414 
3415 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416 	if (!tsec)
3417 		return -ENOMEM;
3418 
3419 	cred->security = tsec;
3420 	return 0;
3421 }
3422 
3423 /*
3424  * detach and free the LSM part of a set of credentials
3425  */
3426 static void selinux_cred_free(struct cred *cred)
3427 {
3428 	struct task_security_struct *tsec = cred->security;
3429 
3430 	/*
3431 	 * cred->security == NULL if security_cred_alloc_blank() or
3432 	 * security_prepare_creds() returned an error.
3433 	 */
3434 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435 	cred->security = (void *) 0x7UL;
3436 	kfree(tsec);
3437 }
3438 
3439 /*
3440  * prepare a new set of credentials for modification
3441  */
3442 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3443 				gfp_t gfp)
3444 {
3445 	const struct task_security_struct *old_tsec;
3446 	struct task_security_struct *tsec;
3447 
3448 	old_tsec = old->security;
3449 
3450 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451 	if (!tsec)
3452 		return -ENOMEM;
3453 
3454 	new->security = tsec;
3455 	return 0;
3456 }
3457 
3458 /*
3459  * transfer the SELinux data to a blank set of creds
3460  */
3461 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3462 {
3463 	const struct task_security_struct *old_tsec = old->security;
3464 	struct task_security_struct *tsec = new->security;
3465 
3466 	*tsec = *old_tsec;
3467 }
3468 
3469 /*
3470  * set the security data for a kernel service
3471  * - all the creation contexts are set to unlabelled
3472  */
3473 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3474 {
3475 	struct task_security_struct *tsec = new->security;
3476 	u32 sid = current_sid();
3477 	int ret;
3478 
3479 	ret = avc_has_perm(sid, secid,
3480 			   SECCLASS_KERNEL_SERVICE,
3481 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3482 			   NULL);
3483 	if (ret == 0) {
3484 		tsec->sid = secid;
3485 		tsec->create_sid = 0;
3486 		tsec->keycreate_sid = 0;
3487 		tsec->sockcreate_sid = 0;
3488 	}
3489 	return ret;
3490 }
3491 
3492 /*
3493  * set the file creation context in a security record to the same as the
3494  * objective context of the specified inode
3495  */
3496 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3497 {
3498 	struct inode_security_struct *isec = inode->i_security;
3499 	struct task_security_struct *tsec = new->security;
3500 	u32 sid = current_sid();
3501 	int ret;
3502 
3503 	ret = avc_has_perm(sid, isec->sid,
3504 			   SECCLASS_KERNEL_SERVICE,
3505 			   KERNEL_SERVICE__CREATE_FILES_AS,
3506 			   NULL);
3507 
3508 	if (ret == 0)
3509 		tsec->create_sid = isec->sid;
3510 	return ret;
3511 }
3512 
3513 static int selinux_kernel_module_request(char *kmod_name)
3514 {
3515 	u32 sid;
3516 	struct common_audit_data ad;
3517 
3518 	sid = task_sid(current);
3519 
3520 	ad.type = LSM_AUDIT_DATA_KMOD;
3521 	ad.u.kmod_name = kmod_name;
3522 
3523 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3524 			    SYSTEM__MODULE_REQUEST, &ad);
3525 }
3526 
3527 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3528 {
3529 	return current_has_perm(p, PROCESS__SETPGID);
3530 }
3531 
3532 static int selinux_task_getpgid(struct task_struct *p)
3533 {
3534 	return current_has_perm(p, PROCESS__GETPGID);
3535 }
3536 
3537 static int selinux_task_getsid(struct task_struct *p)
3538 {
3539 	return current_has_perm(p, PROCESS__GETSESSION);
3540 }
3541 
3542 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3543 {
3544 	*secid = task_sid(p);
3545 }
3546 
3547 static int selinux_task_setnice(struct task_struct *p, int nice)
3548 {
3549 	int rc;
3550 
3551 	rc = cap_task_setnice(p, nice);
3552 	if (rc)
3553 		return rc;
3554 
3555 	return current_has_perm(p, PROCESS__SETSCHED);
3556 }
3557 
3558 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559 {
3560 	int rc;
3561 
3562 	rc = cap_task_setioprio(p, ioprio);
3563 	if (rc)
3564 		return rc;
3565 
3566 	return current_has_perm(p, PROCESS__SETSCHED);
3567 }
3568 
3569 static int selinux_task_getioprio(struct task_struct *p)
3570 {
3571 	return current_has_perm(p, PROCESS__GETSCHED);
3572 }
3573 
3574 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575 		struct rlimit *new_rlim)
3576 {
3577 	struct rlimit *old_rlim = p->signal->rlim + resource;
3578 
3579 	/* Control the ability to change the hard limit (whether
3580 	   lowering or raising it), so that the hard limit can
3581 	   later be used as a safe reset point for the soft limit
3582 	   upon context transitions.  See selinux_bprm_committing_creds. */
3583 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3584 		return current_has_perm(p, PROCESS__SETRLIMIT);
3585 
3586 	return 0;
3587 }
3588 
3589 static int selinux_task_setscheduler(struct task_struct *p)
3590 {
3591 	int rc;
3592 
3593 	rc = cap_task_setscheduler(p);
3594 	if (rc)
3595 		return rc;
3596 
3597 	return current_has_perm(p, PROCESS__SETSCHED);
3598 }
3599 
3600 static int selinux_task_getscheduler(struct task_struct *p)
3601 {
3602 	return current_has_perm(p, PROCESS__GETSCHED);
3603 }
3604 
3605 static int selinux_task_movememory(struct task_struct *p)
3606 {
3607 	return current_has_perm(p, PROCESS__SETSCHED);
3608 }
3609 
3610 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3611 				int sig, u32 secid)
3612 {
3613 	u32 perm;
3614 	int rc;
3615 
3616 	if (!sig)
3617 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3618 	else
3619 		perm = signal_to_av(sig);
3620 	if (secid)
3621 		rc = avc_has_perm(secid, task_sid(p),
3622 				  SECCLASS_PROCESS, perm, NULL);
3623 	else
3624 		rc = current_has_perm(p, perm);
3625 	return rc;
3626 }
3627 
3628 static int selinux_task_wait(struct task_struct *p)
3629 {
3630 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3631 }
3632 
3633 static void selinux_task_to_inode(struct task_struct *p,
3634 				  struct inode *inode)
3635 {
3636 	struct inode_security_struct *isec = inode->i_security;
3637 	u32 sid = task_sid(p);
3638 
3639 	isec->sid = sid;
3640 	isec->initialized = 1;
3641 }
3642 
3643 /* Returns error only if unable to parse addresses */
3644 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645 			struct common_audit_data *ad, u8 *proto)
3646 {
3647 	int offset, ihlen, ret = -EINVAL;
3648 	struct iphdr _iph, *ih;
3649 
3650 	offset = skb_network_offset(skb);
3651 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652 	if (ih == NULL)
3653 		goto out;
3654 
3655 	ihlen = ih->ihl * 4;
3656 	if (ihlen < sizeof(_iph))
3657 		goto out;
3658 
3659 	ad->u.net->v4info.saddr = ih->saddr;
3660 	ad->u.net->v4info.daddr = ih->daddr;
3661 	ret = 0;
3662 
3663 	if (proto)
3664 		*proto = ih->protocol;
3665 
3666 	switch (ih->protocol) {
3667 	case IPPROTO_TCP: {
3668 		struct tcphdr _tcph, *th;
3669 
3670 		if (ntohs(ih->frag_off) & IP_OFFSET)
3671 			break;
3672 
3673 		offset += ihlen;
3674 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675 		if (th == NULL)
3676 			break;
3677 
3678 		ad->u.net->sport = th->source;
3679 		ad->u.net->dport = th->dest;
3680 		break;
3681 	}
3682 
3683 	case IPPROTO_UDP: {
3684 		struct udphdr _udph, *uh;
3685 
3686 		if (ntohs(ih->frag_off) & IP_OFFSET)
3687 			break;
3688 
3689 		offset += ihlen;
3690 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691 		if (uh == NULL)
3692 			break;
3693 
3694 		ad->u.net->sport = uh->source;
3695 		ad->u.net->dport = uh->dest;
3696 		break;
3697 	}
3698 
3699 	case IPPROTO_DCCP: {
3700 		struct dccp_hdr _dccph, *dh;
3701 
3702 		if (ntohs(ih->frag_off) & IP_OFFSET)
3703 			break;
3704 
3705 		offset += ihlen;
3706 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707 		if (dh == NULL)
3708 			break;
3709 
3710 		ad->u.net->sport = dh->dccph_sport;
3711 		ad->u.net->dport = dh->dccph_dport;
3712 		break;
3713 	}
3714 
3715 	default:
3716 		break;
3717 	}
3718 out:
3719 	return ret;
3720 }
3721 
3722 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3723 
3724 /* Returns error only if unable to parse addresses */
3725 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726 			struct common_audit_data *ad, u8 *proto)
3727 {
3728 	u8 nexthdr;
3729 	int ret = -EINVAL, offset;
3730 	struct ipv6hdr _ipv6h, *ip6;
3731 	__be16 frag_off;
3732 
3733 	offset = skb_network_offset(skb);
3734 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735 	if (ip6 == NULL)
3736 		goto out;
3737 
3738 	ad->u.net->v6info.saddr = ip6->saddr;
3739 	ad->u.net->v6info.daddr = ip6->daddr;
3740 	ret = 0;
3741 
3742 	nexthdr = ip6->nexthdr;
3743 	offset += sizeof(_ipv6h);
3744 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3745 	if (offset < 0)
3746 		goto out;
3747 
3748 	if (proto)
3749 		*proto = nexthdr;
3750 
3751 	switch (nexthdr) {
3752 	case IPPROTO_TCP: {
3753 		struct tcphdr _tcph, *th;
3754 
3755 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756 		if (th == NULL)
3757 			break;
3758 
3759 		ad->u.net->sport = th->source;
3760 		ad->u.net->dport = th->dest;
3761 		break;
3762 	}
3763 
3764 	case IPPROTO_UDP: {
3765 		struct udphdr _udph, *uh;
3766 
3767 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768 		if (uh == NULL)
3769 			break;
3770 
3771 		ad->u.net->sport = uh->source;
3772 		ad->u.net->dport = uh->dest;
3773 		break;
3774 	}
3775 
3776 	case IPPROTO_DCCP: {
3777 		struct dccp_hdr _dccph, *dh;
3778 
3779 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780 		if (dh == NULL)
3781 			break;
3782 
3783 		ad->u.net->sport = dh->dccph_sport;
3784 		ad->u.net->dport = dh->dccph_dport;
3785 		break;
3786 	}
3787 
3788 	/* includes fragments */
3789 	default:
3790 		break;
3791 	}
3792 out:
3793 	return ret;
3794 }
3795 
3796 #endif /* IPV6 */
3797 
3798 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799 			     char **_addrp, int src, u8 *proto)
3800 {
3801 	char *addrp;
3802 	int ret;
3803 
3804 	switch (ad->u.net->family) {
3805 	case PF_INET:
3806 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3807 		if (ret)
3808 			goto parse_error;
3809 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810 				       &ad->u.net->v4info.daddr);
3811 		goto okay;
3812 
3813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814 	case PF_INET6:
3815 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3816 		if (ret)
3817 			goto parse_error;
3818 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819 				       &ad->u.net->v6info.daddr);
3820 		goto okay;
3821 #endif	/* IPV6 */
3822 	default:
3823 		addrp = NULL;
3824 		goto okay;
3825 	}
3826 
3827 parse_error:
3828 	printk(KERN_WARNING
3829 	       "SELinux: failure in selinux_parse_skb(),"
3830 	       " unable to parse packet\n");
3831 	return ret;
3832 
3833 okay:
3834 	if (_addrp)
3835 		*_addrp = addrp;
3836 	return 0;
3837 }
3838 
3839 /**
3840  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3841  * @skb: the packet
3842  * @family: protocol family
3843  * @sid: the packet's peer label SID
3844  *
3845  * Description:
3846  * Check the various different forms of network peer labeling and determine
3847  * the peer label/SID for the packet; most of the magic actually occurs in
3848  * the security server function security_net_peersid_cmp().  The function
3849  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850  * or -EACCES if @sid is invalid due to inconsistencies with the different
3851  * peer labels.
3852  *
3853  */
3854 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3855 {
3856 	int err;
3857 	u32 xfrm_sid;
3858 	u32 nlbl_sid;
3859 	u32 nlbl_type;
3860 
3861 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3862 	if (unlikely(err))
3863 		return -EACCES;
3864 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865 	if (unlikely(err))
3866 		return -EACCES;
3867 
3868 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3869 	if (unlikely(err)) {
3870 		printk(KERN_WARNING
3871 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872 		       " unable to determine packet's peer label\n");
3873 		return -EACCES;
3874 	}
3875 
3876 	return 0;
3877 }
3878 
3879 /**
3880  * selinux_conn_sid - Determine the child socket label for a connection
3881  * @sk_sid: the parent socket's SID
3882  * @skb_sid: the packet's SID
3883  * @conn_sid: the resulting connection SID
3884  *
3885  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886  * combined with the MLS information from @skb_sid in order to create
3887  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3888  * of @sk_sid.  Returns zero on success, negative values on failure.
3889  *
3890  */
3891 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892 {
3893 	int err = 0;
3894 
3895 	if (skb_sid != SECSID_NULL)
3896 		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3897 	else
3898 		*conn_sid = sk_sid;
3899 
3900 	return err;
3901 }
3902 
3903 /* socket security operations */
3904 
3905 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906 				 u16 secclass, u32 *socksid)
3907 {
3908 	if (tsec->sockcreate_sid > SECSID_NULL) {
3909 		*socksid = tsec->sockcreate_sid;
3910 		return 0;
3911 	}
3912 
3913 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914 				       socksid);
3915 }
3916 
3917 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3918 {
3919 	struct sk_security_struct *sksec = sk->sk_security;
3920 	struct common_audit_data ad;
3921 	struct lsm_network_audit net = {0,};
3922 	u32 tsid = task_sid(task);
3923 
3924 	if (sksec->sid == SECINITSID_KERNEL)
3925 		return 0;
3926 
3927 	ad.type = LSM_AUDIT_DATA_NET;
3928 	ad.u.net = &net;
3929 	ad.u.net->sk = sk;
3930 
3931 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3932 }
3933 
3934 static int selinux_socket_create(int family, int type,
3935 				 int protocol, int kern)
3936 {
3937 	const struct task_security_struct *tsec = current_security();
3938 	u32 newsid;
3939 	u16 secclass;
3940 	int rc;
3941 
3942 	if (kern)
3943 		return 0;
3944 
3945 	secclass = socket_type_to_security_class(family, type, protocol);
3946 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947 	if (rc)
3948 		return rc;
3949 
3950 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3951 }
3952 
3953 static int selinux_socket_post_create(struct socket *sock, int family,
3954 				      int type, int protocol, int kern)
3955 {
3956 	const struct task_security_struct *tsec = current_security();
3957 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958 	struct sk_security_struct *sksec;
3959 	int err = 0;
3960 
3961 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3962 
3963 	if (kern)
3964 		isec->sid = SECINITSID_KERNEL;
3965 	else {
3966 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3967 		if (err)
3968 			return err;
3969 	}
3970 
3971 	isec->initialized = 1;
3972 
3973 	if (sock->sk) {
3974 		sksec = sock->sk->sk_security;
3975 		sksec->sid = isec->sid;
3976 		sksec->sclass = isec->sclass;
3977 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3978 	}
3979 
3980 	return err;
3981 }
3982 
3983 /* Range of port numbers used to automatically bind.
3984    Need to determine whether we should perform a name_bind
3985    permission check between the socket and the port number. */
3986 
3987 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3988 {
3989 	struct sock *sk = sock->sk;
3990 	u16 family;
3991 	int err;
3992 
3993 	err = sock_has_perm(current, sk, SOCKET__BIND);
3994 	if (err)
3995 		goto out;
3996 
3997 	/*
3998 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999 	 * Multiple address binding for SCTP is not supported yet: we just
4000 	 * check the first address now.
4001 	 */
4002 	family = sk->sk_family;
4003 	if (family == PF_INET || family == PF_INET6) {
4004 		char *addrp;
4005 		struct sk_security_struct *sksec = sk->sk_security;
4006 		struct common_audit_data ad;
4007 		struct lsm_network_audit net = {0,};
4008 		struct sockaddr_in *addr4 = NULL;
4009 		struct sockaddr_in6 *addr6 = NULL;
4010 		unsigned short snum;
4011 		u32 sid, node_perm;
4012 
4013 		if (family == PF_INET) {
4014 			addr4 = (struct sockaddr_in *)address;
4015 			snum = ntohs(addr4->sin_port);
4016 			addrp = (char *)&addr4->sin_addr.s_addr;
4017 		} else {
4018 			addr6 = (struct sockaddr_in6 *)address;
4019 			snum = ntohs(addr6->sin6_port);
4020 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4021 		}
4022 
4023 		if (snum) {
4024 			int low, high;
4025 
4026 			inet_get_local_port_range(sock_net(sk), &low, &high);
4027 
4028 			if (snum < max(PROT_SOCK, low) || snum > high) {
4029 				err = sel_netport_sid(sk->sk_protocol,
4030 						      snum, &sid);
4031 				if (err)
4032 					goto out;
4033 				ad.type = LSM_AUDIT_DATA_NET;
4034 				ad.u.net = &net;
4035 				ad.u.net->sport = htons(snum);
4036 				ad.u.net->family = family;
4037 				err = avc_has_perm(sksec->sid, sid,
4038 						   sksec->sclass,
4039 						   SOCKET__NAME_BIND, &ad);
4040 				if (err)
4041 					goto out;
4042 			}
4043 		}
4044 
4045 		switch (sksec->sclass) {
4046 		case SECCLASS_TCP_SOCKET:
4047 			node_perm = TCP_SOCKET__NODE_BIND;
4048 			break;
4049 
4050 		case SECCLASS_UDP_SOCKET:
4051 			node_perm = UDP_SOCKET__NODE_BIND;
4052 			break;
4053 
4054 		case SECCLASS_DCCP_SOCKET:
4055 			node_perm = DCCP_SOCKET__NODE_BIND;
4056 			break;
4057 
4058 		default:
4059 			node_perm = RAWIP_SOCKET__NODE_BIND;
4060 			break;
4061 		}
4062 
4063 		err = sel_netnode_sid(addrp, family, &sid);
4064 		if (err)
4065 			goto out;
4066 
4067 		ad.type = LSM_AUDIT_DATA_NET;
4068 		ad.u.net = &net;
4069 		ad.u.net->sport = htons(snum);
4070 		ad.u.net->family = family;
4071 
4072 		if (family == PF_INET)
4073 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4074 		else
4075 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4076 
4077 		err = avc_has_perm(sksec->sid, sid,
4078 				   sksec->sclass, node_perm, &ad);
4079 		if (err)
4080 			goto out;
4081 	}
4082 out:
4083 	return err;
4084 }
4085 
4086 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4087 {
4088 	struct sock *sk = sock->sk;
4089 	struct sk_security_struct *sksec = sk->sk_security;
4090 	int err;
4091 
4092 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4093 	if (err)
4094 		return err;
4095 
4096 	/*
4097 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4098 	 */
4099 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4101 		struct common_audit_data ad;
4102 		struct lsm_network_audit net = {0,};
4103 		struct sockaddr_in *addr4 = NULL;
4104 		struct sockaddr_in6 *addr6 = NULL;
4105 		unsigned short snum;
4106 		u32 sid, perm;
4107 
4108 		if (sk->sk_family == PF_INET) {
4109 			addr4 = (struct sockaddr_in *)address;
4110 			if (addrlen < sizeof(struct sockaddr_in))
4111 				return -EINVAL;
4112 			snum = ntohs(addr4->sin_port);
4113 		} else {
4114 			addr6 = (struct sockaddr_in6 *)address;
4115 			if (addrlen < SIN6_LEN_RFC2133)
4116 				return -EINVAL;
4117 			snum = ntohs(addr6->sin6_port);
4118 		}
4119 
4120 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121 		if (err)
4122 			goto out;
4123 
4124 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4126 
4127 		ad.type = LSM_AUDIT_DATA_NET;
4128 		ad.u.net = &net;
4129 		ad.u.net->dport = htons(snum);
4130 		ad.u.net->family = sk->sk_family;
4131 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4132 		if (err)
4133 			goto out;
4134 	}
4135 
4136 	err = selinux_netlbl_socket_connect(sk, address);
4137 
4138 out:
4139 	return err;
4140 }
4141 
4142 static int selinux_socket_listen(struct socket *sock, int backlog)
4143 {
4144 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4145 }
4146 
4147 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4148 {
4149 	int err;
4150 	struct inode_security_struct *isec;
4151 	struct inode_security_struct *newisec;
4152 
4153 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154 	if (err)
4155 		return err;
4156 
4157 	newisec = SOCK_INODE(newsock)->i_security;
4158 
4159 	isec = SOCK_INODE(sock)->i_security;
4160 	newisec->sclass = isec->sclass;
4161 	newisec->sid = isec->sid;
4162 	newisec->initialized = 1;
4163 
4164 	return 0;
4165 }
4166 
4167 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4168 				  int size)
4169 {
4170 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4171 }
4172 
4173 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174 				  int size, int flags)
4175 {
4176 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4177 }
4178 
4179 static int selinux_socket_getsockname(struct socket *sock)
4180 {
4181 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4182 }
4183 
4184 static int selinux_socket_getpeername(struct socket *sock)
4185 {
4186 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4187 }
4188 
4189 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190 {
4191 	int err;
4192 
4193 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194 	if (err)
4195 		return err;
4196 
4197 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4198 }
4199 
4200 static int selinux_socket_getsockopt(struct socket *sock, int level,
4201 				     int optname)
4202 {
4203 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4204 }
4205 
4206 static int selinux_socket_shutdown(struct socket *sock, int how)
4207 {
4208 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4209 }
4210 
4211 static int selinux_socket_unix_stream_connect(struct sock *sock,
4212 					      struct sock *other,
4213 					      struct sock *newsk)
4214 {
4215 	struct sk_security_struct *sksec_sock = sock->sk_security;
4216 	struct sk_security_struct *sksec_other = other->sk_security;
4217 	struct sk_security_struct *sksec_new = newsk->sk_security;
4218 	struct common_audit_data ad;
4219 	struct lsm_network_audit net = {0,};
4220 	int err;
4221 
4222 	ad.type = LSM_AUDIT_DATA_NET;
4223 	ad.u.net = &net;
4224 	ad.u.net->sk = other;
4225 
4226 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4227 			   sksec_other->sclass,
4228 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229 	if (err)
4230 		return err;
4231 
4232 	/* server child socket */
4233 	sksec_new->peer_sid = sksec_sock->sid;
4234 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4235 				    &sksec_new->sid);
4236 	if (err)
4237 		return err;
4238 
4239 	/* connecting socket */
4240 	sksec_sock->peer_sid = sksec_new->sid;
4241 
4242 	return 0;
4243 }
4244 
4245 static int selinux_socket_unix_may_send(struct socket *sock,
4246 					struct socket *other)
4247 {
4248 	struct sk_security_struct *ssec = sock->sk->sk_security;
4249 	struct sk_security_struct *osec = other->sk->sk_security;
4250 	struct common_audit_data ad;
4251 	struct lsm_network_audit net = {0,};
4252 
4253 	ad.type = LSM_AUDIT_DATA_NET;
4254 	ad.u.net = &net;
4255 	ad.u.net->sk = other->sk;
4256 
4257 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4258 			    &ad);
4259 }
4260 
4261 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4262 				    u32 peer_sid,
4263 				    struct common_audit_data *ad)
4264 {
4265 	int err;
4266 	u32 if_sid;
4267 	u32 node_sid;
4268 
4269 	err = sel_netif_sid(ifindex, &if_sid);
4270 	if (err)
4271 		return err;
4272 	err = avc_has_perm(peer_sid, if_sid,
4273 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4274 	if (err)
4275 		return err;
4276 
4277 	err = sel_netnode_sid(addrp, family, &node_sid);
4278 	if (err)
4279 		return err;
4280 	return avc_has_perm(peer_sid, node_sid,
4281 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4282 }
4283 
4284 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285 				       u16 family)
4286 {
4287 	int err = 0;
4288 	struct sk_security_struct *sksec = sk->sk_security;
4289 	u32 sk_sid = sksec->sid;
4290 	struct common_audit_data ad;
4291 	struct lsm_network_audit net = {0,};
4292 	char *addrp;
4293 
4294 	ad.type = LSM_AUDIT_DATA_NET;
4295 	ad.u.net = &net;
4296 	ad.u.net->netif = skb->skb_iif;
4297 	ad.u.net->family = family;
4298 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299 	if (err)
4300 		return err;
4301 
4302 	if (selinux_secmark_enabled()) {
4303 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4304 				   PACKET__RECV, &ad);
4305 		if (err)
4306 			return err;
4307 	}
4308 
4309 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4310 	if (err)
4311 		return err;
4312 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4313 
4314 	return err;
4315 }
4316 
4317 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4318 {
4319 	int err;
4320 	struct sk_security_struct *sksec = sk->sk_security;
4321 	u16 family = sk->sk_family;
4322 	u32 sk_sid = sksec->sid;
4323 	struct common_audit_data ad;
4324 	struct lsm_network_audit net = {0,};
4325 	char *addrp;
4326 	u8 secmark_active;
4327 	u8 peerlbl_active;
4328 
4329 	if (family != PF_INET && family != PF_INET6)
4330 		return 0;
4331 
4332 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4334 		family = PF_INET;
4335 
4336 	/* If any sort of compatibility mode is enabled then handoff processing
4337 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338 	 * special handling.  We do this in an attempt to keep this function
4339 	 * as fast and as clean as possible. */
4340 	if (!selinux_policycap_netpeer)
4341 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4342 
4343 	secmark_active = selinux_secmark_enabled();
4344 	peerlbl_active = selinux_peerlbl_enabled();
4345 	if (!secmark_active && !peerlbl_active)
4346 		return 0;
4347 
4348 	ad.type = LSM_AUDIT_DATA_NET;
4349 	ad.u.net = &net;
4350 	ad.u.net->netif = skb->skb_iif;
4351 	ad.u.net->family = family;
4352 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353 	if (err)
4354 		return err;
4355 
4356 	if (peerlbl_active) {
4357 		u32 peer_sid;
4358 
4359 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4360 		if (err)
4361 			return err;
4362 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4363 					       peer_sid, &ad);
4364 		if (err) {
4365 			selinux_netlbl_err(skb, err, 0);
4366 			return err;
4367 		}
4368 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4369 				   PEER__RECV, &ad);
4370 		if (err) {
4371 			selinux_netlbl_err(skb, err, 0);
4372 			return err;
4373 		}
4374 	}
4375 
4376 	if (secmark_active) {
4377 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4378 				   PACKET__RECV, &ad);
4379 		if (err)
4380 			return err;
4381 	}
4382 
4383 	return err;
4384 }
4385 
4386 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387 					    int __user *optlen, unsigned len)
4388 {
4389 	int err = 0;
4390 	char *scontext;
4391 	u32 scontext_len;
4392 	struct sk_security_struct *sksec = sock->sk->sk_security;
4393 	u32 peer_sid = SECSID_NULL;
4394 
4395 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4397 		peer_sid = sksec->peer_sid;
4398 	if (peer_sid == SECSID_NULL)
4399 		return -ENOPROTOOPT;
4400 
4401 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4402 	if (err)
4403 		return err;
4404 
4405 	if (scontext_len > len) {
4406 		err = -ERANGE;
4407 		goto out_len;
4408 	}
4409 
4410 	if (copy_to_user(optval, scontext, scontext_len))
4411 		err = -EFAULT;
4412 
4413 out_len:
4414 	if (put_user(scontext_len, optlen))
4415 		err = -EFAULT;
4416 	kfree(scontext);
4417 	return err;
4418 }
4419 
4420 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4421 {
4422 	u32 peer_secid = SECSID_NULL;
4423 	u16 family;
4424 
4425 	if (skb && skb->protocol == htons(ETH_P_IP))
4426 		family = PF_INET;
4427 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4428 		family = PF_INET6;
4429 	else if (sock)
4430 		family = sock->sk->sk_family;
4431 	else
4432 		goto out;
4433 
4434 	if (sock && family == PF_UNIX)
4435 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4436 	else if (skb)
4437 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4438 
4439 out:
4440 	*secid = peer_secid;
4441 	if (peer_secid == SECSID_NULL)
4442 		return -EINVAL;
4443 	return 0;
4444 }
4445 
4446 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4447 {
4448 	struct sk_security_struct *sksec;
4449 
4450 	sksec = kzalloc(sizeof(*sksec), priority);
4451 	if (!sksec)
4452 		return -ENOMEM;
4453 
4454 	sksec->peer_sid = SECINITSID_UNLABELED;
4455 	sksec->sid = SECINITSID_UNLABELED;
4456 	selinux_netlbl_sk_security_reset(sksec);
4457 	sk->sk_security = sksec;
4458 
4459 	return 0;
4460 }
4461 
4462 static void selinux_sk_free_security(struct sock *sk)
4463 {
4464 	struct sk_security_struct *sksec = sk->sk_security;
4465 
4466 	sk->sk_security = NULL;
4467 	selinux_netlbl_sk_security_free(sksec);
4468 	kfree(sksec);
4469 }
4470 
4471 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4472 {
4473 	struct sk_security_struct *sksec = sk->sk_security;
4474 	struct sk_security_struct *newsksec = newsk->sk_security;
4475 
4476 	newsksec->sid = sksec->sid;
4477 	newsksec->peer_sid = sksec->peer_sid;
4478 	newsksec->sclass = sksec->sclass;
4479 
4480 	selinux_netlbl_sk_security_reset(newsksec);
4481 }
4482 
4483 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4484 {
4485 	if (!sk)
4486 		*secid = SECINITSID_ANY_SOCKET;
4487 	else {
4488 		struct sk_security_struct *sksec = sk->sk_security;
4489 
4490 		*secid = sksec->sid;
4491 	}
4492 }
4493 
4494 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4495 {
4496 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4497 	struct sk_security_struct *sksec = sk->sk_security;
4498 
4499 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500 	    sk->sk_family == PF_UNIX)
4501 		isec->sid = sksec->sid;
4502 	sksec->sclass = isec->sclass;
4503 }
4504 
4505 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506 				     struct request_sock *req)
4507 {
4508 	struct sk_security_struct *sksec = sk->sk_security;
4509 	int err;
4510 	u16 family = req->rsk_ops->family;
4511 	u32 connsid;
4512 	u32 peersid;
4513 
4514 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4515 	if (err)
4516 		return err;
4517 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4518 	if (err)
4519 		return err;
4520 	req->secid = connsid;
4521 	req->peer_secid = peersid;
4522 
4523 	return selinux_netlbl_inet_conn_request(req, family);
4524 }
4525 
4526 static void selinux_inet_csk_clone(struct sock *newsk,
4527 				   const struct request_sock *req)
4528 {
4529 	struct sk_security_struct *newsksec = newsk->sk_security;
4530 
4531 	newsksec->sid = req->secid;
4532 	newsksec->peer_sid = req->peer_secid;
4533 	/* NOTE: Ideally, we should also get the isec->sid for the
4534 	   new socket in sync, but we don't have the isec available yet.
4535 	   So we will wait until sock_graft to do it, by which
4536 	   time it will have been created and available. */
4537 
4538 	/* We don't need to take any sort of lock here as we are the only
4539 	 * thread with access to newsksec */
4540 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4541 }
4542 
4543 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4544 {
4545 	u16 family = sk->sk_family;
4546 	struct sk_security_struct *sksec = sk->sk_security;
4547 
4548 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4549 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4550 		family = PF_INET;
4551 
4552 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4553 }
4554 
4555 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4556 {
4557 	skb_set_owner_w(skb, sk);
4558 }
4559 
4560 static int selinux_secmark_relabel_packet(u32 sid)
4561 {
4562 	const struct task_security_struct *__tsec;
4563 	u32 tsid;
4564 
4565 	__tsec = current_security();
4566 	tsid = __tsec->sid;
4567 
4568 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4569 }
4570 
4571 static void selinux_secmark_refcount_inc(void)
4572 {
4573 	atomic_inc(&selinux_secmark_refcount);
4574 }
4575 
4576 static void selinux_secmark_refcount_dec(void)
4577 {
4578 	atomic_dec(&selinux_secmark_refcount);
4579 }
4580 
4581 static void selinux_req_classify_flow(const struct request_sock *req,
4582 				      struct flowi *fl)
4583 {
4584 	fl->flowi_secid = req->secid;
4585 }
4586 
4587 static int selinux_tun_dev_alloc_security(void **security)
4588 {
4589 	struct tun_security_struct *tunsec;
4590 
4591 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4592 	if (!tunsec)
4593 		return -ENOMEM;
4594 	tunsec->sid = current_sid();
4595 
4596 	*security = tunsec;
4597 	return 0;
4598 }
4599 
4600 static void selinux_tun_dev_free_security(void *security)
4601 {
4602 	kfree(security);
4603 }
4604 
4605 static int selinux_tun_dev_create(void)
4606 {
4607 	u32 sid = current_sid();
4608 
4609 	/* we aren't taking into account the "sockcreate" SID since the socket
4610 	 * that is being created here is not a socket in the traditional sense,
4611 	 * instead it is a private sock, accessible only to the kernel, and
4612 	 * representing a wide range of network traffic spanning multiple
4613 	 * connections unlike traditional sockets - check the TUN driver to
4614 	 * get a better understanding of why this socket is special */
4615 
4616 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4617 			    NULL);
4618 }
4619 
4620 static int selinux_tun_dev_attach_queue(void *security)
4621 {
4622 	struct tun_security_struct *tunsec = security;
4623 
4624 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4625 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4626 }
4627 
4628 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4629 {
4630 	struct tun_security_struct *tunsec = security;
4631 	struct sk_security_struct *sksec = sk->sk_security;
4632 
4633 	/* we don't currently perform any NetLabel based labeling here and it
4634 	 * isn't clear that we would want to do so anyway; while we could apply
4635 	 * labeling without the support of the TUN user the resulting labeled
4636 	 * traffic from the other end of the connection would almost certainly
4637 	 * cause confusion to the TUN user that had no idea network labeling
4638 	 * protocols were being used */
4639 
4640 	sksec->sid = tunsec->sid;
4641 	sksec->sclass = SECCLASS_TUN_SOCKET;
4642 
4643 	return 0;
4644 }
4645 
4646 static int selinux_tun_dev_open(void *security)
4647 {
4648 	struct tun_security_struct *tunsec = security;
4649 	u32 sid = current_sid();
4650 	int err;
4651 
4652 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4653 			   TUN_SOCKET__RELABELFROM, NULL);
4654 	if (err)
4655 		return err;
4656 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4657 			   TUN_SOCKET__RELABELTO, NULL);
4658 	if (err)
4659 		return err;
4660 	tunsec->sid = sid;
4661 
4662 	return 0;
4663 }
4664 
4665 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666 {
4667 	int err = 0;
4668 	u32 perm;
4669 	struct nlmsghdr *nlh;
4670 	struct sk_security_struct *sksec = sk->sk_security;
4671 
4672 	if (skb->len < NLMSG_HDRLEN) {
4673 		err = -EINVAL;
4674 		goto out;
4675 	}
4676 	nlh = nlmsg_hdr(skb);
4677 
4678 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4679 	if (err) {
4680 		if (err == -EINVAL) {
4681 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682 				  "SELinux:  unrecognized netlink message"
4683 				  " type=%hu for sclass=%hu\n",
4684 				  nlh->nlmsg_type, sksec->sclass);
4685 			if (!selinux_enforcing || security_get_allow_unknown())
4686 				err = 0;
4687 		}
4688 
4689 		/* Ignore */
4690 		if (err == -ENOENT)
4691 			err = 0;
4692 		goto out;
4693 	}
4694 
4695 	err = sock_has_perm(current, sk, perm);
4696 out:
4697 	return err;
4698 }
4699 
4700 #ifdef CONFIG_NETFILTER
4701 
4702 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4703 				       u16 family)
4704 {
4705 	int err;
4706 	char *addrp;
4707 	u32 peer_sid;
4708 	struct common_audit_data ad;
4709 	struct lsm_network_audit net = {0,};
4710 	u8 secmark_active;
4711 	u8 netlbl_active;
4712 	u8 peerlbl_active;
4713 
4714 	if (!selinux_policycap_netpeer)
4715 		return NF_ACCEPT;
4716 
4717 	secmark_active = selinux_secmark_enabled();
4718 	netlbl_active = netlbl_enabled();
4719 	peerlbl_active = selinux_peerlbl_enabled();
4720 	if (!secmark_active && !peerlbl_active)
4721 		return NF_ACCEPT;
4722 
4723 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4724 		return NF_DROP;
4725 
4726 	ad.type = LSM_AUDIT_DATA_NET;
4727 	ad.u.net = &net;
4728 	ad.u.net->netif = ifindex;
4729 	ad.u.net->family = family;
4730 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4731 		return NF_DROP;
4732 
4733 	if (peerlbl_active) {
4734 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4735 					       peer_sid, &ad);
4736 		if (err) {
4737 			selinux_netlbl_err(skb, err, 1);
4738 			return NF_DROP;
4739 		}
4740 	}
4741 
4742 	if (secmark_active)
4743 		if (avc_has_perm(peer_sid, skb->secmark,
4744 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745 			return NF_DROP;
4746 
4747 	if (netlbl_active)
4748 		/* we do this in the FORWARD path and not the POST_ROUTING
4749 		 * path because we want to make sure we apply the necessary
4750 		 * labeling before IPsec is applied so we can leverage AH
4751 		 * protection */
4752 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4753 			return NF_DROP;
4754 
4755 	return NF_ACCEPT;
4756 }
4757 
4758 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759 					 struct sk_buff *skb,
4760 					 const struct net_device *in,
4761 					 const struct net_device *out,
4762 					 int (*okfn)(struct sk_buff *))
4763 {
4764 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4765 }
4766 
4767 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769 					 struct sk_buff *skb,
4770 					 const struct net_device *in,
4771 					 const struct net_device *out,
4772 					 int (*okfn)(struct sk_buff *))
4773 {
4774 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775 }
4776 #endif	/* IPV6 */
4777 
4778 static unsigned int selinux_ip_output(struct sk_buff *skb,
4779 				      u16 family)
4780 {
4781 	struct sock *sk;
4782 	u32 sid;
4783 
4784 	if (!netlbl_enabled())
4785 		return NF_ACCEPT;
4786 
4787 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788 	 * because we want to make sure we apply the necessary labeling
4789 	 * before IPsec is applied so we can leverage AH protection */
4790 	sk = skb->sk;
4791 	if (sk) {
4792 		struct sk_security_struct *sksec;
4793 
4794 		if (sk->sk_state == TCP_LISTEN)
4795 			/* if the socket is the listening state then this
4796 			 * packet is a SYN-ACK packet which means it needs to
4797 			 * be labeled based on the connection/request_sock and
4798 			 * not the parent socket.  unfortunately, we can't
4799 			 * lookup the request_sock yet as it isn't queued on
4800 			 * the parent socket until after the SYN-ACK is sent.
4801 			 * the "solution" is to simply pass the packet as-is
4802 			 * as any IP option based labeling should be copied
4803 			 * from the initial connection request (in the IP
4804 			 * layer).  it is far from ideal, but until we get a
4805 			 * security label in the packet itself this is the
4806 			 * best we can do. */
4807 			return NF_ACCEPT;
4808 
4809 		/* standard practice, label using the parent socket */
4810 		sksec = sk->sk_security;
4811 		sid = sksec->sid;
4812 	} else
4813 		sid = SECINITSID_KERNEL;
4814 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4815 		return NF_DROP;
4816 
4817 	return NF_ACCEPT;
4818 }
4819 
4820 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821 					struct sk_buff *skb,
4822 					const struct net_device *in,
4823 					const struct net_device *out,
4824 					int (*okfn)(struct sk_buff *))
4825 {
4826 	return selinux_ip_output(skb, PF_INET);
4827 }
4828 
4829 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830 						int ifindex,
4831 						u16 family)
4832 {
4833 	struct sock *sk = skb->sk;
4834 	struct sk_security_struct *sksec;
4835 	struct common_audit_data ad;
4836 	struct lsm_network_audit net = {0,};
4837 	char *addrp;
4838 	u8 proto;
4839 
4840 	if (sk == NULL)
4841 		return NF_ACCEPT;
4842 	sksec = sk->sk_security;
4843 
4844 	ad.type = LSM_AUDIT_DATA_NET;
4845 	ad.u.net = &net;
4846 	ad.u.net->netif = ifindex;
4847 	ad.u.net->family = family;
4848 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4849 		return NF_DROP;
4850 
4851 	if (selinux_secmark_enabled())
4852 		if (avc_has_perm(sksec->sid, skb->secmark,
4853 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4854 			return NF_DROP_ERR(-ECONNREFUSED);
4855 
4856 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857 		return NF_DROP_ERR(-ECONNREFUSED);
4858 
4859 	return NF_ACCEPT;
4860 }
4861 
4862 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4863 					 u16 family)
4864 {
4865 	u32 secmark_perm;
4866 	u32 peer_sid;
4867 	struct sock *sk;
4868 	struct common_audit_data ad;
4869 	struct lsm_network_audit net = {0,};
4870 	char *addrp;
4871 	u8 secmark_active;
4872 	u8 peerlbl_active;
4873 
4874 	/* If any sort of compatibility mode is enabled then handoff processing
4875 	 * to the selinux_ip_postroute_compat() function to deal with the
4876 	 * special handling.  We do this in an attempt to keep this function
4877 	 * as fast and as clean as possible. */
4878 	if (!selinux_policycap_netpeer)
4879 		return selinux_ip_postroute_compat(skb, ifindex, family);
4880 
4881 	secmark_active = selinux_secmark_enabled();
4882 	peerlbl_active = selinux_peerlbl_enabled();
4883 	if (!secmark_active && !peerlbl_active)
4884 		return NF_ACCEPT;
4885 
4886 	sk = skb->sk;
4887 
4888 #ifdef CONFIG_XFRM
4889 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890 	 * packet transformation so allow the packet to pass without any checks
4891 	 * since we'll have another chance to perform access control checks
4892 	 * when the packet is on it's final way out.
4893 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894 	 *       is NULL, in this case go ahead and apply access control.
4895 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896 	 *       TCP listening state we cannot wait until the XFRM processing
4897 	 *       is done as we will miss out on the SA label if we do;
4898 	 *       unfortunately, this means more work, but it is only once per
4899 	 *       connection. */
4900 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901 	    !(sk != NULL && sk->sk_state == TCP_LISTEN))
4902 		return NF_ACCEPT;
4903 #endif
4904 
4905 	if (sk == NULL) {
4906 		/* Without an associated socket the packet is either coming
4907 		 * from the kernel or it is being forwarded; check the packet
4908 		 * to determine which and if the packet is being forwarded
4909 		 * query the packet directly to determine the security label. */
4910 		if (skb->skb_iif) {
4911 			secmark_perm = PACKET__FORWARD_OUT;
4912 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4913 				return NF_DROP;
4914 		} else {
4915 			secmark_perm = PACKET__SEND;
4916 			peer_sid = SECINITSID_KERNEL;
4917 		}
4918 	} else if (sk->sk_state == TCP_LISTEN) {
4919 		/* Locally generated packet but the associated socket is in the
4920 		 * listening state which means this is a SYN-ACK packet.  In
4921 		 * this particular case the correct security label is assigned
4922 		 * to the connection/request_sock but unfortunately we can't
4923 		 * query the request_sock as it isn't queued on the parent
4924 		 * socket until after the SYN-ACK packet is sent; the only
4925 		 * viable choice is to regenerate the label like we do in
4926 		 * selinux_inet_conn_request().  See also selinux_ip_output()
4927 		 * for similar problems. */
4928 		u32 skb_sid;
4929 		struct sk_security_struct *sksec = sk->sk_security;
4930 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4931 			return NF_DROP;
4932 		/* At this point, if the returned skb peerlbl is SECSID_NULL
4933 		 * and the packet has been through at least one XFRM
4934 		 * transformation then we must be dealing with the "final"
4935 		 * form of labeled IPsec packet; since we've already applied
4936 		 * all of our access controls on this packet we can safely
4937 		 * pass the packet. */
4938 		if (skb_sid == SECSID_NULL) {
4939 			switch (family) {
4940 			case PF_INET:
4941 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942 					return NF_ACCEPT;
4943 				break;
4944 			case PF_INET6:
4945 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4946 					return NF_ACCEPT;
4947 			default:
4948 				return NF_DROP_ERR(-ECONNREFUSED);
4949 			}
4950 		}
4951 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4952 			return NF_DROP;
4953 		secmark_perm = PACKET__SEND;
4954 	} else {
4955 		/* Locally generated packet, fetch the security label from the
4956 		 * associated socket. */
4957 		struct sk_security_struct *sksec = sk->sk_security;
4958 		peer_sid = sksec->sid;
4959 		secmark_perm = PACKET__SEND;
4960 	}
4961 
4962 	ad.type = LSM_AUDIT_DATA_NET;
4963 	ad.u.net = &net;
4964 	ad.u.net->netif = ifindex;
4965 	ad.u.net->family = family;
4966 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967 		return NF_DROP;
4968 
4969 	if (secmark_active)
4970 		if (avc_has_perm(peer_sid, skb->secmark,
4971 				 SECCLASS_PACKET, secmark_perm, &ad))
4972 			return NF_DROP_ERR(-ECONNREFUSED);
4973 
4974 	if (peerlbl_active) {
4975 		u32 if_sid;
4976 		u32 node_sid;
4977 
4978 		if (sel_netif_sid(ifindex, &if_sid))
4979 			return NF_DROP;
4980 		if (avc_has_perm(peer_sid, if_sid,
4981 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982 			return NF_DROP_ERR(-ECONNREFUSED);
4983 
4984 		if (sel_netnode_sid(addrp, family, &node_sid))
4985 			return NF_DROP;
4986 		if (avc_has_perm(peer_sid, node_sid,
4987 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4988 			return NF_DROP_ERR(-ECONNREFUSED);
4989 	}
4990 
4991 	return NF_ACCEPT;
4992 }
4993 
4994 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995 					   struct sk_buff *skb,
4996 					   const struct net_device *in,
4997 					   const struct net_device *out,
4998 					   int (*okfn)(struct sk_buff *))
4999 {
5000 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5001 }
5002 
5003 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005 					   struct sk_buff *skb,
5006 					   const struct net_device *in,
5007 					   const struct net_device *out,
5008 					   int (*okfn)(struct sk_buff *))
5009 {
5010 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011 }
5012 #endif	/* IPV6 */
5013 
5014 #endif	/* CONFIG_NETFILTER */
5015 
5016 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017 {
5018 	int err;
5019 
5020 	err = cap_netlink_send(sk, skb);
5021 	if (err)
5022 		return err;
5023 
5024 	return selinux_nlmsg_perm(sk, skb);
5025 }
5026 
5027 static int ipc_alloc_security(struct task_struct *task,
5028 			      struct kern_ipc_perm *perm,
5029 			      u16 sclass)
5030 {
5031 	struct ipc_security_struct *isec;
5032 	u32 sid;
5033 
5034 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035 	if (!isec)
5036 		return -ENOMEM;
5037 
5038 	sid = task_sid(task);
5039 	isec->sclass = sclass;
5040 	isec->sid = sid;
5041 	perm->security = isec;
5042 
5043 	return 0;
5044 }
5045 
5046 static void ipc_free_security(struct kern_ipc_perm *perm)
5047 {
5048 	struct ipc_security_struct *isec = perm->security;
5049 	perm->security = NULL;
5050 	kfree(isec);
5051 }
5052 
5053 static int msg_msg_alloc_security(struct msg_msg *msg)
5054 {
5055 	struct msg_security_struct *msec;
5056 
5057 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058 	if (!msec)
5059 		return -ENOMEM;
5060 
5061 	msec->sid = SECINITSID_UNLABELED;
5062 	msg->security = msec;
5063 
5064 	return 0;
5065 }
5066 
5067 static void msg_msg_free_security(struct msg_msg *msg)
5068 {
5069 	struct msg_security_struct *msec = msg->security;
5070 
5071 	msg->security = NULL;
5072 	kfree(msec);
5073 }
5074 
5075 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5076 			u32 perms)
5077 {
5078 	struct ipc_security_struct *isec;
5079 	struct common_audit_data ad;
5080 	u32 sid = current_sid();
5081 
5082 	isec = ipc_perms->security;
5083 
5084 	ad.type = LSM_AUDIT_DATA_IPC;
5085 	ad.u.ipc_id = ipc_perms->key;
5086 
5087 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5088 }
5089 
5090 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5091 {
5092 	return msg_msg_alloc_security(msg);
5093 }
5094 
5095 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5096 {
5097 	msg_msg_free_security(msg);
5098 }
5099 
5100 /* message queue security operations */
5101 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5102 {
5103 	struct ipc_security_struct *isec;
5104 	struct common_audit_data ad;
5105 	u32 sid = current_sid();
5106 	int rc;
5107 
5108 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109 	if (rc)
5110 		return rc;
5111 
5112 	isec = msq->q_perm.security;
5113 
5114 	ad.type = LSM_AUDIT_DATA_IPC;
5115 	ad.u.ipc_id = msq->q_perm.key;
5116 
5117 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5118 			  MSGQ__CREATE, &ad);
5119 	if (rc) {
5120 		ipc_free_security(&msq->q_perm);
5121 		return rc;
5122 	}
5123 	return 0;
5124 }
5125 
5126 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5127 {
5128 	ipc_free_security(&msq->q_perm);
5129 }
5130 
5131 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5132 {
5133 	struct ipc_security_struct *isec;
5134 	struct common_audit_data ad;
5135 	u32 sid = current_sid();
5136 
5137 	isec = msq->q_perm.security;
5138 
5139 	ad.type = LSM_AUDIT_DATA_IPC;
5140 	ad.u.ipc_id = msq->q_perm.key;
5141 
5142 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5143 			    MSGQ__ASSOCIATE, &ad);
5144 }
5145 
5146 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5147 {
5148 	int err;
5149 	int perms;
5150 
5151 	switch (cmd) {
5152 	case IPC_INFO:
5153 	case MSG_INFO:
5154 		/* No specific object, just general system-wide information. */
5155 		return task_has_system(current, SYSTEM__IPC_INFO);
5156 	case IPC_STAT:
5157 	case MSG_STAT:
5158 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5159 		break;
5160 	case IPC_SET:
5161 		perms = MSGQ__SETATTR;
5162 		break;
5163 	case IPC_RMID:
5164 		perms = MSGQ__DESTROY;
5165 		break;
5166 	default:
5167 		return 0;
5168 	}
5169 
5170 	err = ipc_has_perm(&msq->q_perm, perms);
5171 	return err;
5172 }
5173 
5174 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5175 {
5176 	struct ipc_security_struct *isec;
5177 	struct msg_security_struct *msec;
5178 	struct common_audit_data ad;
5179 	u32 sid = current_sid();
5180 	int rc;
5181 
5182 	isec = msq->q_perm.security;
5183 	msec = msg->security;
5184 
5185 	/*
5186 	 * First time through, need to assign label to the message
5187 	 */
5188 	if (msec->sid == SECINITSID_UNLABELED) {
5189 		/*
5190 		 * Compute new sid based on current process and
5191 		 * message queue this message will be stored in
5192 		 */
5193 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5194 					     NULL, &msec->sid);
5195 		if (rc)
5196 			return rc;
5197 	}
5198 
5199 	ad.type = LSM_AUDIT_DATA_IPC;
5200 	ad.u.ipc_id = msq->q_perm.key;
5201 
5202 	/* Can this process write to the queue? */
5203 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5204 			  MSGQ__WRITE, &ad);
5205 	if (!rc)
5206 		/* Can this process send the message */
5207 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5208 				  MSG__SEND, &ad);
5209 	if (!rc)
5210 		/* Can the message be put in the queue? */
5211 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5212 				  MSGQ__ENQUEUE, &ad);
5213 
5214 	return rc;
5215 }
5216 
5217 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218 				    struct task_struct *target,
5219 				    long type, int mode)
5220 {
5221 	struct ipc_security_struct *isec;
5222 	struct msg_security_struct *msec;
5223 	struct common_audit_data ad;
5224 	u32 sid = task_sid(target);
5225 	int rc;
5226 
5227 	isec = msq->q_perm.security;
5228 	msec = msg->security;
5229 
5230 	ad.type = LSM_AUDIT_DATA_IPC;
5231 	ad.u.ipc_id = msq->q_perm.key;
5232 
5233 	rc = avc_has_perm(sid, isec->sid,
5234 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5235 	if (!rc)
5236 		rc = avc_has_perm(sid, msec->sid,
5237 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5238 	return rc;
5239 }
5240 
5241 /* Shared Memory security operations */
5242 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5243 {
5244 	struct ipc_security_struct *isec;
5245 	struct common_audit_data ad;
5246 	u32 sid = current_sid();
5247 	int rc;
5248 
5249 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250 	if (rc)
5251 		return rc;
5252 
5253 	isec = shp->shm_perm.security;
5254 
5255 	ad.type = LSM_AUDIT_DATA_IPC;
5256 	ad.u.ipc_id = shp->shm_perm.key;
5257 
5258 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5259 			  SHM__CREATE, &ad);
5260 	if (rc) {
5261 		ipc_free_security(&shp->shm_perm);
5262 		return rc;
5263 	}
5264 	return 0;
5265 }
5266 
5267 static void selinux_shm_free_security(struct shmid_kernel *shp)
5268 {
5269 	ipc_free_security(&shp->shm_perm);
5270 }
5271 
5272 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5273 {
5274 	struct ipc_security_struct *isec;
5275 	struct common_audit_data ad;
5276 	u32 sid = current_sid();
5277 
5278 	isec = shp->shm_perm.security;
5279 
5280 	ad.type = LSM_AUDIT_DATA_IPC;
5281 	ad.u.ipc_id = shp->shm_perm.key;
5282 
5283 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5284 			    SHM__ASSOCIATE, &ad);
5285 }
5286 
5287 /* Note, at this point, shp is locked down */
5288 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5289 {
5290 	int perms;
5291 	int err;
5292 
5293 	switch (cmd) {
5294 	case IPC_INFO:
5295 	case SHM_INFO:
5296 		/* No specific object, just general system-wide information. */
5297 		return task_has_system(current, SYSTEM__IPC_INFO);
5298 	case IPC_STAT:
5299 	case SHM_STAT:
5300 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5301 		break;
5302 	case IPC_SET:
5303 		perms = SHM__SETATTR;
5304 		break;
5305 	case SHM_LOCK:
5306 	case SHM_UNLOCK:
5307 		perms = SHM__LOCK;
5308 		break;
5309 	case IPC_RMID:
5310 		perms = SHM__DESTROY;
5311 		break;
5312 	default:
5313 		return 0;
5314 	}
5315 
5316 	err = ipc_has_perm(&shp->shm_perm, perms);
5317 	return err;
5318 }
5319 
5320 static int selinux_shm_shmat(struct shmid_kernel *shp,
5321 			     char __user *shmaddr, int shmflg)
5322 {
5323 	u32 perms;
5324 
5325 	if (shmflg & SHM_RDONLY)
5326 		perms = SHM__READ;
5327 	else
5328 		perms = SHM__READ | SHM__WRITE;
5329 
5330 	return ipc_has_perm(&shp->shm_perm, perms);
5331 }
5332 
5333 /* Semaphore security operations */
5334 static int selinux_sem_alloc_security(struct sem_array *sma)
5335 {
5336 	struct ipc_security_struct *isec;
5337 	struct common_audit_data ad;
5338 	u32 sid = current_sid();
5339 	int rc;
5340 
5341 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342 	if (rc)
5343 		return rc;
5344 
5345 	isec = sma->sem_perm.security;
5346 
5347 	ad.type = LSM_AUDIT_DATA_IPC;
5348 	ad.u.ipc_id = sma->sem_perm.key;
5349 
5350 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5351 			  SEM__CREATE, &ad);
5352 	if (rc) {
5353 		ipc_free_security(&sma->sem_perm);
5354 		return rc;
5355 	}
5356 	return 0;
5357 }
5358 
5359 static void selinux_sem_free_security(struct sem_array *sma)
5360 {
5361 	ipc_free_security(&sma->sem_perm);
5362 }
5363 
5364 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5365 {
5366 	struct ipc_security_struct *isec;
5367 	struct common_audit_data ad;
5368 	u32 sid = current_sid();
5369 
5370 	isec = sma->sem_perm.security;
5371 
5372 	ad.type = LSM_AUDIT_DATA_IPC;
5373 	ad.u.ipc_id = sma->sem_perm.key;
5374 
5375 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5376 			    SEM__ASSOCIATE, &ad);
5377 }
5378 
5379 /* Note, at this point, sma is locked down */
5380 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5381 {
5382 	int err;
5383 	u32 perms;
5384 
5385 	switch (cmd) {
5386 	case IPC_INFO:
5387 	case SEM_INFO:
5388 		/* No specific object, just general system-wide information. */
5389 		return task_has_system(current, SYSTEM__IPC_INFO);
5390 	case GETPID:
5391 	case GETNCNT:
5392 	case GETZCNT:
5393 		perms = SEM__GETATTR;
5394 		break;
5395 	case GETVAL:
5396 	case GETALL:
5397 		perms = SEM__READ;
5398 		break;
5399 	case SETVAL:
5400 	case SETALL:
5401 		perms = SEM__WRITE;
5402 		break;
5403 	case IPC_RMID:
5404 		perms = SEM__DESTROY;
5405 		break;
5406 	case IPC_SET:
5407 		perms = SEM__SETATTR;
5408 		break;
5409 	case IPC_STAT:
5410 	case SEM_STAT:
5411 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5412 		break;
5413 	default:
5414 		return 0;
5415 	}
5416 
5417 	err = ipc_has_perm(&sma->sem_perm, perms);
5418 	return err;
5419 }
5420 
5421 static int selinux_sem_semop(struct sem_array *sma,
5422 			     struct sembuf *sops, unsigned nsops, int alter)
5423 {
5424 	u32 perms;
5425 
5426 	if (alter)
5427 		perms = SEM__READ | SEM__WRITE;
5428 	else
5429 		perms = SEM__READ;
5430 
5431 	return ipc_has_perm(&sma->sem_perm, perms);
5432 }
5433 
5434 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5435 {
5436 	u32 av = 0;
5437 
5438 	av = 0;
5439 	if (flag & S_IRUGO)
5440 		av |= IPC__UNIX_READ;
5441 	if (flag & S_IWUGO)
5442 		av |= IPC__UNIX_WRITE;
5443 
5444 	if (av == 0)
5445 		return 0;
5446 
5447 	return ipc_has_perm(ipcp, av);
5448 }
5449 
5450 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5451 {
5452 	struct ipc_security_struct *isec = ipcp->security;
5453 	*secid = isec->sid;
5454 }
5455 
5456 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5457 {
5458 	if (inode)
5459 		inode_doinit_with_dentry(inode, dentry);
5460 }
5461 
5462 static int selinux_getprocattr(struct task_struct *p,
5463 			       char *name, char **value)
5464 {
5465 	const struct task_security_struct *__tsec;
5466 	u32 sid;
5467 	int error;
5468 	unsigned len;
5469 
5470 	if (current != p) {
5471 		error = current_has_perm(p, PROCESS__GETATTR);
5472 		if (error)
5473 			return error;
5474 	}
5475 
5476 	rcu_read_lock();
5477 	__tsec = __task_cred(p)->security;
5478 
5479 	if (!strcmp(name, "current"))
5480 		sid = __tsec->sid;
5481 	else if (!strcmp(name, "prev"))
5482 		sid = __tsec->osid;
5483 	else if (!strcmp(name, "exec"))
5484 		sid = __tsec->exec_sid;
5485 	else if (!strcmp(name, "fscreate"))
5486 		sid = __tsec->create_sid;
5487 	else if (!strcmp(name, "keycreate"))
5488 		sid = __tsec->keycreate_sid;
5489 	else if (!strcmp(name, "sockcreate"))
5490 		sid = __tsec->sockcreate_sid;
5491 	else
5492 		goto invalid;
5493 	rcu_read_unlock();
5494 
5495 	if (!sid)
5496 		return 0;
5497 
5498 	error = security_sid_to_context(sid, value, &len);
5499 	if (error)
5500 		return error;
5501 	return len;
5502 
5503 invalid:
5504 	rcu_read_unlock();
5505 	return -EINVAL;
5506 }
5507 
5508 static int selinux_setprocattr(struct task_struct *p,
5509 			       char *name, void *value, size_t size)
5510 {
5511 	struct task_security_struct *tsec;
5512 	struct task_struct *tracer;
5513 	struct cred *new;
5514 	u32 sid = 0, ptsid;
5515 	int error;
5516 	char *str = value;
5517 
5518 	if (current != p) {
5519 		/* SELinux only allows a process to change its own
5520 		   security attributes. */
5521 		return -EACCES;
5522 	}
5523 
5524 	/*
5525 	 * Basic control over ability to set these attributes at all.
5526 	 * current == p, but we'll pass them separately in case the
5527 	 * above restriction is ever removed.
5528 	 */
5529 	if (!strcmp(name, "exec"))
5530 		error = current_has_perm(p, PROCESS__SETEXEC);
5531 	else if (!strcmp(name, "fscreate"))
5532 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5533 	else if (!strcmp(name, "keycreate"))
5534 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5535 	else if (!strcmp(name, "sockcreate"))
5536 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5537 	else if (!strcmp(name, "current"))
5538 		error = current_has_perm(p, PROCESS__SETCURRENT);
5539 	else
5540 		error = -EINVAL;
5541 	if (error)
5542 		return error;
5543 
5544 	/* Obtain a SID for the context, if one was specified. */
5545 	if (size && str[1] && str[1] != '\n') {
5546 		if (str[size-1] == '\n') {
5547 			str[size-1] = 0;
5548 			size--;
5549 		}
5550 		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5551 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552 			if (!capable(CAP_MAC_ADMIN)) {
5553 				struct audit_buffer *ab;
5554 				size_t audit_size;
5555 
5556 				/* We strip a nul only if it is at the end, otherwise the
5557 				 * context contains a nul and we should audit that */
5558 				if (str[size - 1] == '\0')
5559 					audit_size = size - 1;
5560 				else
5561 					audit_size = size;
5562 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5563 				audit_log_format(ab, "op=fscreate invalid_context=");
5564 				audit_log_n_untrustedstring(ab, value, audit_size);
5565 				audit_log_end(ab);
5566 
5567 				return error;
5568 			}
5569 			error = security_context_to_sid_force(value, size,
5570 							      &sid);
5571 		}
5572 		if (error)
5573 			return error;
5574 	}
5575 
5576 	new = prepare_creds();
5577 	if (!new)
5578 		return -ENOMEM;
5579 
5580 	/* Permission checking based on the specified context is
5581 	   performed during the actual operation (execve,
5582 	   open/mkdir/...), when we know the full context of the
5583 	   operation.  See selinux_bprm_set_creds for the execve
5584 	   checks and may_create for the file creation checks. The
5585 	   operation will then fail if the context is not permitted. */
5586 	tsec = new->security;
5587 	if (!strcmp(name, "exec")) {
5588 		tsec->exec_sid = sid;
5589 	} else if (!strcmp(name, "fscreate")) {
5590 		tsec->create_sid = sid;
5591 	} else if (!strcmp(name, "keycreate")) {
5592 		error = may_create_key(sid, p);
5593 		if (error)
5594 			goto abort_change;
5595 		tsec->keycreate_sid = sid;
5596 	} else if (!strcmp(name, "sockcreate")) {
5597 		tsec->sockcreate_sid = sid;
5598 	} else if (!strcmp(name, "current")) {
5599 		error = -EINVAL;
5600 		if (sid == 0)
5601 			goto abort_change;
5602 
5603 		/* Only allow single threaded processes to change context */
5604 		error = -EPERM;
5605 		if (!current_is_single_threaded()) {
5606 			error = security_bounded_transition(tsec->sid, sid);
5607 			if (error)
5608 				goto abort_change;
5609 		}
5610 
5611 		/* Check permissions for the transition. */
5612 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5613 				     PROCESS__DYNTRANSITION, NULL);
5614 		if (error)
5615 			goto abort_change;
5616 
5617 		/* Check for ptracing, and update the task SID if ok.
5618 		   Otherwise, leave SID unchanged and fail. */
5619 		ptsid = 0;
5620 		rcu_read_lock();
5621 		tracer = ptrace_parent(p);
5622 		if (tracer)
5623 			ptsid = task_sid(tracer);
5624 		rcu_read_unlock();
5625 
5626 		if (tracer) {
5627 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628 					     PROCESS__PTRACE, NULL);
5629 			if (error)
5630 				goto abort_change;
5631 		}
5632 
5633 		tsec->sid = sid;
5634 	} else {
5635 		error = -EINVAL;
5636 		goto abort_change;
5637 	}
5638 
5639 	commit_creds(new);
5640 	return size;
5641 
5642 abort_change:
5643 	abort_creds(new);
5644 	return error;
5645 }
5646 
5647 static int selinux_ismaclabel(const char *name)
5648 {
5649 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5650 }
5651 
5652 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5653 {
5654 	return security_sid_to_context(secid, secdata, seclen);
5655 }
5656 
5657 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5658 {
5659 	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5660 }
5661 
5662 static void selinux_release_secctx(char *secdata, u32 seclen)
5663 {
5664 	kfree(secdata);
5665 }
5666 
5667 /*
5668  *	called with inode->i_mutex locked
5669  */
5670 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5671 {
5672 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5673 }
5674 
5675 /*
5676  *	called with inode->i_mutex locked
5677  */
5678 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5679 {
5680 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5681 }
5682 
5683 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5684 {
5685 	int len = 0;
5686 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5687 						ctx, true);
5688 	if (len < 0)
5689 		return len;
5690 	*ctxlen = len;
5691 	return 0;
5692 }
5693 #ifdef CONFIG_KEYS
5694 
5695 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696 			     unsigned long flags)
5697 {
5698 	const struct task_security_struct *tsec;
5699 	struct key_security_struct *ksec;
5700 
5701 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702 	if (!ksec)
5703 		return -ENOMEM;
5704 
5705 	tsec = cred->security;
5706 	if (tsec->keycreate_sid)
5707 		ksec->sid = tsec->keycreate_sid;
5708 	else
5709 		ksec->sid = tsec->sid;
5710 
5711 	k->security = ksec;
5712 	return 0;
5713 }
5714 
5715 static void selinux_key_free(struct key *k)
5716 {
5717 	struct key_security_struct *ksec = k->security;
5718 
5719 	k->security = NULL;
5720 	kfree(ksec);
5721 }
5722 
5723 static int selinux_key_permission(key_ref_t key_ref,
5724 				  const struct cred *cred,
5725 				  key_perm_t perm)
5726 {
5727 	struct key *key;
5728 	struct key_security_struct *ksec;
5729 	u32 sid;
5730 
5731 	/* if no specific permissions are requested, we skip the
5732 	   permission check. No serious, additional covert channels
5733 	   appear to be created. */
5734 	if (perm == 0)
5735 		return 0;
5736 
5737 	sid = cred_sid(cred);
5738 
5739 	key = key_ref_to_ptr(key_ref);
5740 	ksec = key->security;
5741 
5742 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5743 }
5744 
5745 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5746 {
5747 	struct key_security_struct *ksec = key->security;
5748 	char *context = NULL;
5749 	unsigned len;
5750 	int rc;
5751 
5752 	rc = security_sid_to_context(ksec->sid, &context, &len);
5753 	if (!rc)
5754 		rc = len;
5755 	*_buffer = context;
5756 	return rc;
5757 }
5758 
5759 #endif
5760 
5761 static struct security_operations selinux_ops = {
5762 	.name =				"selinux",
5763 
5764 	.ptrace_access_check =		selinux_ptrace_access_check,
5765 	.ptrace_traceme =		selinux_ptrace_traceme,
5766 	.capget =			selinux_capget,
5767 	.capset =			selinux_capset,
5768 	.capable =			selinux_capable,
5769 	.quotactl =			selinux_quotactl,
5770 	.quota_on =			selinux_quota_on,
5771 	.syslog =			selinux_syslog,
5772 	.vm_enough_memory =		selinux_vm_enough_memory,
5773 
5774 	.netlink_send =			selinux_netlink_send,
5775 
5776 	.bprm_set_creds =		selinux_bprm_set_creds,
5777 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5778 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5779 	.bprm_secureexec =		selinux_bprm_secureexec,
5780 
5781 	.sb_alloc_security =		selinux_sb_alloc_security,
5782 	.sb_free_security =		selinux_sb_free_security,
5783 	.sb_copy_data =			selinux_sb_copy_data,
5784 	.sb_remount =			selinux_sb_remount,
5785 	.sb_kern_mount =		selinux_sb_kern_mount,
5786 	.sb_show_options =		selinux_sb_show_options,
5787 	.sb_statfs =			selinux_sb_statfs,
5788 	.sb_mount =			selinux_mount,
5789 	.sb_umount =			selinux_umount,
5790 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5791 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5792 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5793 
5794 	.dentry_init_security =		selinux_dentry_init_security,
5795 
5796 	.inode_alloc_security =		selinux_inode_alloc_security,
5797 	.inode_free_security =		selinux_inode_free_security,
5798 	.inode_init_security =		selinux_inode_init_security,
5799 	.inode_create =			selinux_inode_create,
5800 	.inode_link =			selinux_inode_link,
5801 	.inode_unlink =			selinux_inode_unlink,
5802 	.inode_symlink =		selinux_inode_symlink,
5803 	.inode_mkdir =			selinux_inode_mkdir,
5804 	.inode_rmdir =			selinux_inode_rmdir,
5805 	.inode_mknod =			selinux_inode_mknod,
5806 	.inode_rename =			selinux_inode_rename,
5807 	.inode_readlink =		selinux_inode_readlink,
5808 	.inode_follow_link =		selinux_inode_follow_link,
5809 	.inode_permission =		selinux_inode_permission,
5810 	.inode_setattr =		selinux_inode_setattr,
5811 	.inode_getattr =		selinux_inode_getattr,
5812 	.inode_setxattr =		selinux_inode_setxattr,
5813 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5814 	.inode_getxattr =		selinux_inode_getxattr,
5815 	.inode_listxattr =		selinux_inode_listxattr,
5816 	.inode_removexattr =		selinux_inode_removexattr,
5817 	.inode_getsecurity =		selinux_inode_getsecurity,
5818 	.inode_setsecurity =		selinux_inode_setsecurity,
5819 	.inode_listsecurity =		selinux_inode_listsecurity,
5820 	.inode_getsecid =		selinux_inode_getsecid,
5821 
5822 	.file_permission =		selinux_file_permission,
5823 	.file_alloc_security =		selinux_file_alloc_security,
5824 	.file_free_security =		selinux_file_free_security,
5825 	.file_ioctl =			selinux_file_ioctl,
5826 	.mmap_file =			selinux_mmap_file,
5827 	.mmap_addr =			selinux_mmap_addr,
5828 	.file_mprotect =		selinux_file_mprotect,
5829 	.file_lock =			selinux_file_lock,
5830 	.file_fcntl =			selinux_file_fcntl,
5831 	.file_set_fowner =		selinux_file_set_fowner,
5832 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5833 	.file_receive =			selinux_file_receive,
5834 
5835 	.file_open =			selinux_file_open,
5836 
5837 	.task_create =			selinux_task_create,
5838 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5839 	.cred_free =			selinux_cred_free,
5840 	.cred_prepare =			selinux_cred_prepare,
5841 	.cred_transfer =		selinux_cred_transfer,
5842 	.kernel_act_as =		selinux_kernel_act_as,
5843 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5844 	.kernel_module_request =	selinux_kernel_module_request,
5845 	.task_setpgid =			selinux_task_setpgid,
5846 	.task_getpgid =			selinux_task_getpgid,
5847 	.task_getsid =			selinux_task_getsid,
5848 	.task_getsecid =		selinux_task_getsecid,
5849 	.task_setnice =			selinux_task_setnice,
5850 	.task_setioprio =		selinux_task_setioprio,
5851 	.task_getioprio =		selinux_task_getioprio,
5852 	.task_setrlimit =		selinux_task_setrlimit,
5853 	.task_setscheduler =		selinux_task_setscheduler,
5854 	.task_getscheduler =		selinux_task_getscheduler,
5855 	.task_movememory =		selinux_task_movememory,
5856 	.task_kill =			selinux_task_kill,
5857 	.task_wait =			selinux_task_wait,
5858 	.task_to_inode =		selinux_task_to_inode,
5859 
5860 	.ipc_permission =		selinux_ipc_permission,
5861 	.ipc_getsecid =			selinux_ipc_getsecid,
5862 
5863 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5864 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5865 
5866 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5867 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5868 	.msg_queue_associate =		selinux_msg_queue_associate,
5869 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5870 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5871 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5872 
5873 	.shm_alloc_security =		selinux_shm_alloc_security,
5874 	.shm_free_security =		selinux_shm_free_security,
5875 	.shm_associate =		selinux_shm_associate,
5876 	.shm_shmctl =			selinux_shm_shmctl,
5877 	.shm_shmat =			selinux_shm_shmat,
5878 
5879 	.sem_alloc_security =		selinux_sem_alloc_security,
5880 	.sem_free_security =		selinux_sem_free_security,
5881 	.sem_associate =		selinux_sem_associate,
5882 	.sem_semctl =			selinux_sem_semctl,
5883 	.sem_semop =			selinux_sem_semop,
5884 
5885 	.d_instantiate =		selinux_d_instantiate,
5886 
5887 	.getprocattr =			selinux_getprocattr,
5888 	.setprocattr =			selinux_setprocattr,
5889 
5890 	.ismaclabel =			selinux_ismaclabel,
5891 	.secid_to_secctx =		selinux_secid_to_secctx,
5892 	.secctx_to_secid =		selinux_secctx_to_secid,
5893 	.release_secctx =		selinux_release_secctx,
5894 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5895 	.inode_setsecctx =		selinux_inode_setsecctx,
5896 	.inode_getsecctx =		selinux_inode_getsecctx,
5897 
5898 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5899 	.unix_may_send =		selinux_socket_unix_may_send,
5900 
5901 	.socket_create =		selinux_socket_create,
5902 	.socket_post_create =		selinux_socket_post_create,
5903 	.socket_bind =			selinux_socket_bind,
5904 	.socket_connect =		selinux_socket_connect,
5905 	.socket_listen =		selinux_socket_listen,
5906 	.socket_accept =		selinux_socket_accept,
5907 	.socket_sendmsg =		selinux_socket_sendmsg,
5908 	.socket_recvmsg =		selinux_socket_recvmsg,
5909 	.socket_getsockname =		selinux_socket_getsockname,
5910 	.socket_getpeername =		selinux_socket_getpeername,
5911 	.socket_getsockopt =		selinux_socket_getsockopt,
5912 	.socket_setsockopt =		selinux_socket_setsockopt,
5913 	.socket_shutdown =		selinux_socket_shutdown,
5914 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5915 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5916 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5917 	.sk_alloc_security =		selinux_sk_alloc_security,
5918 	.sk_free_security =		selinux_sk_free_security,
5919 	.sk_clone_security =		selinux_sk_clone_security,
5920 	.sk_getsecid =			selinux_sk_getsecid,
5921 	.sock_graft =			selinux_sock_graft,
5922 	.inet_conn_request =		selinux_inet_conn_request,
5923 	.inet_csk_clone =		selinux_inet_csk_clone,
5924 	.inet_conn_established =	selinux_inet_conn_established,
5925 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5926 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5927 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5928 	.req_classify_flow =		selinux_req_classify_flow,
5929 	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5930 	.tun_dev_free_security =	selinux_tun_dev_free_security,
5931 	.tun_dev_create =		selinux_tun_dev_create,
5932 	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5933 	.tun_dev_attach =		selinux_tun_dev_attach,
5934 	.tun_dev_open =			selinux_tun_dev_open,
5935 	.skb_owned_by =			selinux_skb_owned_by,
5936 
5937 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5938 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5939 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5940 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5941 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5942 	.xfrm_state_alloc =		selinux_xfrm_state_alloc,
5943 	.xfrm_state_alloc_acquire =	selinux_xfrm_state_alloc_acquire,
5944 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5945 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5946 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5947 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5948 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5949 #endif
5950 
5951 #ifdef CONFIG_KEYS
5952 	.key_alloc =			selinux_key_alloc,
5953 	.key_free =			selinux_key_free,
5954 	.key_permission =		selinux_key_permission,
5955 	.key_getsecurity =		selinux_key_getsecurity,
5956 #endif
5957 
5958 #ifdef CONFIG_AUDIT
5959 	.audit_rule_init =		selinux_audit_rule_init,
5960 	.audit_rule_known =		selinux_audit_rule_known,
5961 	.audit_rule_match =		selinux_audit_rule_match,
5962 	.audit_rule_free =		selinux_audit_rule_free,
5963 #endif
5964 };
5965 
5966 static __init int selinux_init(void)
5967 {
5968 	if (!security_module_enable(&selinux_ops)) {
5969 		selinux_enabled = 0;
5970 		return 0;
5971 	}
5972 
5973 	if (!selinux_enabled) {
5974 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5975 		return 0;
5976 	}
5977 
5978 	printk(KERN_INFO "SELinux:  Initializing.\n");
5979 
5980 	/* Set the security state for the initial task. */
5981 	cred_init_security();
5982 
5983 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5984 
5985 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986 					    sizeof(struct inode_security_struct),
5987 					    0, SLAB_PANIC, NULL);
5988 	avc_init();
5989 
5990 	if (register_security(&selinux_ops))
5991 		panic("SELinux: Unable to register with kernel.\n");
5992 
5993 	if (selinux_enforcing)
5994 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5995 	else
5996 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5997 
5998 	return 0;
5999 }
6000 
6001 static void delayed_superblock_init(struct super_block *sb, void *unused)
6002 {
6003 	superblock_doinit(sb, NULL);
6004 }
6005 
6006 void selinux_complete_init(void)
6007 {
6008 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6009 
6010 	/* Set up any superblocks initialized prior to the policy load. */
6011 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6012 	iterate_supers(delayed_superblock_init, NULL);
6013 }
6014 
6015 /* SELinux requires early initialization in order to label
6016    all processes and objects when they are created. */
6017 security_initcall(selinux_init);
6018 
6019 #if defined(CONFIG_NETFILTER)
6020 
6021 static struct nf_hook_ops selinux_ipv4_ops[] = {
6022 	{
6023 		.hook =		selinux_ipv4_postroute,
6024 		.owner =	THIS_MODULE,
6025 		.pf =		NFPROTO_IPV4,
6026 		.hooknum =	NF_INET_POST_ROUTING,
6027 		.priority =	NF_IP_PRI_SELINUX_LAST,
6028 	},
6029 	{
6030 		.hook =		selinux_ipv4_forward,
6031 		.owner =	THIS_MODULE,
6032 		.pf =		NFPROTO_IPV4,
6033 		.hooknum =	NF_INET_FORWARD,
6034 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6035 	},
6036 	{
6037 		.hook =		selinux_ipv4_output,
6038 		.owner =	THIS_MODULE,
6039 		.pf =		NFPROTO_IPV4,
6040 		.hooknum =	NF_INET_LOCAL_OUT,
6041 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6042 	}
6043 };
6044 
6045 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6046 
6047 static struct nf_hook_ops selinux_ipv6_ops[] = {
6048 	{
6049 		.hook =		selinux_ipv6_postroute,
6050 		.owner =	THIS_MODULE,
6051 		.pf =		NFPROTO_IPV6,
6052 		.hooknum =	NF_INET_POST_ROUTING,
6053 		.priority =	NF_IP6_PRI_SELINUX_LAST,
6054 	},
6055 	{
6056 		.hook =		selinux_ipv6_forward,
6057 		.owner =	THIS_MODULE,
6058 		.pf =		NFPROTO_IPV6,
6059 		.hooknum =	NF_INET_FORWARD,
6060 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6061 	}
6062 };
6063 
6064 #endif	/* IPV6 */
6065 
6066 static int __init selinux_nf_ip_init(void)
6067 {
6068 	int err = 0;
6069 
6070 	if (!selinux_enabled)
6071 		goto out;
6072 
6073 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6074 
6075 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6076 	if (err)
6077 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6078 
6079 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6081 	if (err)
6082 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6083 #endif	/* IPV6 */
6084 
6085 out:
6086 	return err;
6087 }
6088 
6089 __initcall(selinux_nf_ip_init);
6090 
6091 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092 static void selinux_nf_ip_exit(void)
6093 {
6094 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6095 
6096 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6099 #endif	/* IPV6 */
6100 }
6101 #endif
6102 
6103 #else /* CONFIG_NETFILTER */
6104 
6105 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106 #define selinux_nf_ip_exit()
6107 #endif
6108 
6109 #endif /* CONFIG_NETFILTER */
6110 
6111 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112 static int selinux_disabled;
6113 
6114 int selinux_disable(void)
6115 {
6116 	if (ss_initialized) {
6117 		/* Not permitted after initial policy load. */
6118 		return -EINVAL;
6119 	}
6120 
6121 	if (selinux_disabled) {
6122 		/* Only do this once. */
6123 		return -EINVAL;
6124 	}
6125 
6126 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6127 
6128 	selinux_disabled = 1;
6129 	selinux_enabled = 0;
6130 
6131 	reset_security_ops();
6132 
6133 	/* Try to destroy the avc node cache */
6134 	avc_disable();
6135 
6136 	/* Unregister netfilter hooks. */
6137 	selinux_nf_ip_exit();
6138 
6139 	/* Unregister selinuxfs. */
6140 	exit_sel_fs();
6141 
6142 	return 0;
6143 }
6144 #endif
6145