1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 80 #include "avc.h" 81 #include "objsec.h" 82 #include "netif.h" 83 #include "netnode.h" 84 #include "netport.h" 85 #include "xfrm.h" 86 #include "netlabel.h" 87 #include "audit.h" 88 89 #define XATTR_SELINUX_SUFFIX "selinux" 90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 91 92 #define NUM_SEL_MNT_OPTS 5 93 94 extern unsigned int policydb_loaded_version; 95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* 159 * initialise the security for the init task 160 */ 161 static void cred_init_security(void) 162 { 163 struct cred *cred = (struct cred *) current->real_cred; 164 struct task_security_struct *tsec; 165 166 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 167 if (!tsec) 168 panic("SELinux: Failed to initialize initial task.\n"); 169 170 tsec->osid = tsec->sid = SECINITSID_KERNEL; 171 cred->security = tsec; 172 } 173 174 /* 175 * get the security ID of a set of credentials 176 */ 177 static inline u32 cred_sid(const struct cred *cred) 178 { 179 const struct task_security_struct *tsec; 180 181 tsec = cred->security; 182 return tsec->sid; 183 } 184 185 /* 186 * get the objective security ID of a task 187 */ 188 static inline u32 task_sid(const struct task_struct *task) 189 { 190 u32 sid; 191 192 rcu_read_lock(); 193 sid = cred_sid(__task_cred(task)); 194 rcu_read_unlock(); 195 return sid; 196 } 197 198 /* 199 * get the subjective security ID of the current task 200 */ 201 static inline u32 current_sid(void) 202 { 203 const struct task_security_struct *tsec = current_cred()->security; 204 205 return tsec->sid; 206 } 207 208 /* Allocate and free functions for each kind of security blob. */ 209 210 static int inode_alloc_security(struct inode *inode) 211 { 212 struct inode_security_struct *isec; 213 u32 sid = current_sid(); 214 215 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 216 if (!isec) 217 return -ENOMEM; 218 219 mutex_init(&isec->lock); 220 INIT_LIST_HEAD(&isec->list); 221 isec->inode = inode; 222 isec->sid = SECINITSID_UNLABELED; 223 isec->sclass = SECCLASS_FILE; 224 isec->task_sid = sid; 225 inode->i_security = isec; 226 227 return 0; 228 } 229 230 static void inode_free_security(struct inode *inode) 231 { 232 struct inode_security_struct *isec = inode->i_security; 233 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 234 235 spin_lock(&sbsec->isec_lock); 236 if (!list_empty(&isec->list)) 237 list_del_init(&isec->list); 238 spin_unlock(&sbsec->isec_lock); 239 240 inode->i_security = NULL; 241 kmem_cache_free(sel_inode_cache, isec); 242 } 243 244 static int file_alloc_security(struct file *file) 245 { 246 struct file_security_struct *fsec; 247 u32 sid = current_sid(); 248 249 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 250 if (!fsec) 251 return -ENOMEM; 252 253 fsec->sid = sid; 254 fsec->fown_sid = sid; 255 file->f_security = fsec; 256 257 return 0; 258 } 259 260 static void file_free_security(struct file *file) 261 { 262 struct file_security_struct *fsec = file->f_security; 263 file->f_security = NULL; 264 kfree(fsec); 265 } 266 267 static int superblock_alloc_security(struct super_block *sb) 268 { 269 struct superblock_security_struct *sbsec; 270 271 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 272 if (!sbsec) 273 return -ENOMEM; 274 275 mutex_init(&sbsec->lock); 276 INIT_LIST_HEAD(&sbsec->list); 277 INIT_LIST_HEAD(&sbsec->isec_head); 278 spin_lock_init(&sbsec->isec_lock); 279 sbsec->sb = sb; 280 sbsec->sid = SECINITSID_UNLABELED; 281 sbsec->def_sid = SECINITSID_FILE; 282 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 283 sb->s_security = sbsec; 284 285 return 0; 286 } 287 288 static void superblock_free_security(struct super_block *sb) 289 { 290 struct superblock_security_struct *sbsec = sb->s_security; 291 292 spin_lock(&sb_security_lock); 293 if (!list_empty(&sbsec->list)) 294 list_del_init(&sbsec->list); 295 spin_unlock(&sb_security_lock); 296 297 sb->s_security = NULL; 298 kfree(sbsec); 299 } 300 301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 302 { 303 struct sk_security_struct *ssec; 304 305 ssec = kzalloc(sizeof(*ssec), priority); 306 if (!ssec) 307 return -ENOMEM; 308 309 ssec->peer_sid = SECINITSID_UNLABELED; 310 ssec->sid = SECINITSID_UNLABELED; 311 sk->sk_security = ssec; 312 313 selinux_netlbl_sk_security_reset(ssec); 314 315 return 0; 316 } 317 318 static void sk_free_security(struct sock *sk) 319 { 320 struct sk_security_struct *ssec = sk->sk_security; 321 322 sk->sk_security = NULL; 323 selinux_netlbl_sk_security_free(ssec); 324 kfree(ssec); 325 } 326 327 /* The security server must be initialized before 328 any labeling or access decisions can be provided. */ 329 extern int ss_initialized; 330 331 /* The file system's label must be initialized prior to use. */ 332 333 static char *labeling_behaviors[6] = { 334 "uses xattr", 335 "uses transition SIDs", 336 "uses task SIDs", 337 "uses genfs_contexts", 338 "not configured for labeling", 339 "uses mountpoint labeling", 340 }; 341 342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 343 344 static inline int inode_doinit(struct inode *inode) 345 { 346 return inode_doinit_with_dentry(inode, NULL); 347 } 348 349 enum { 350 Opt_error = -1, 351 Opt_context = 1, 352 Opt_fscontext = 2, 353 Opt_defcontext = 3, 354 Opt_rootcontext = 4, 355 Opt_labelsupport = 5, 356 }; 357 358 static const match_table_t tokens = { 359 {Opt_context, CONTEXT_STR "%s"}, 360 {Opt_fscontext, FSCONTEXT_STR "%s"}, 361 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 363 {Opt_labelsupport, LABELSUPP_STR}, 364 {Opt_error, NULL}, 365 }; 366 367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 368 369 static int may_context_mount_sb_relabel(u32 sid, 370 struct superblock_security_struct *sbsec, 371 const struct cred *cred) 372 { 373 const struct task_security_struct *tsec = cred->security; 374 int rc; 375 376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 377 FILESYSTEM__RELABELFROM, NULL); 378 if (rc) 379 return rc; 380 381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 382 FILESYSTEM__RELABELTO, NULL); 383 return rc; 384 } 385 386 static int may_context_mount_inode_relabel(u32 sid, 387 struct superblock_security_struct *sbsec, 388 const struct cred *cred) 389 { 390 const struct task_security_struct *tsec = cred->security; 391 int rc; 392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 393 FILESYSTEM__RELABELFROM, NULL); 394 if (rc) 395 return rc; 396 397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 398 FILESYSTEM__ASSOCIATE, NULL); 399 return rc; 400 } 401 402 static int sb_finish_set_opts(struct super_block *sb) 403 { 404 struct superblock_security_struct *sbsec = sb->s_security; 405 struct dentry *root = sb->s_root; 406 struct inode *root_inode = root->d_inode; 407 int rc = 0; 408 409 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 410 /* Make sure that the xattr handler exists and that no 411 error other than -ENODATA is returned by getxattr on 412 the root directory. -ENODATA is ok, as this may be 413 the first boot of the SELinux kernel before we have 414 assigned xattr values to the filesystem. */ 415 if (!root_inode->i_op->getxattr) { 416 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 417 "xattr support\n", sb->s_id, sb->s_type->name); 418 rc = -EOPNOTSUPP; 419 goto out; 420 } 421 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 422 if (rc < 0 && rc != -ENODATA) { 423 if (rc == -EOPNOTSUPP) 424 printk(KERN_WARNING "SELinux: (dev %s, type " 425 "%s) has no security xattr handler\n", 426 sb->s_id, sb->s_type->name); 427 else 428 printk(KERN_WARNING "SELinux: (dev %s, type " 429 "%s) getxattr errno %d\n", sb->s_id, 430 sb->s_type->name, -rc); 431 goto out; 432 } 433 } 434 435 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 436 437 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 438 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 439 sb->s_id, sb->s_type->name); 440 else 441 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 442 sb->s_id, sb->s_type->name, 443 labeling_behaviors[sbsec->behavior-1]); 444 445 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 446 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 447 sbsec->behavior == SECURITY_FS_USE_NONE || 448 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 449 sbsec->flags &= ~SE_SBLABELSUPP; 450 451 /* Initialize the root inode. */ 452 rc = inode_doinit_with_dentry(root_inode, root); 453 454 /* Initialize any other inodes associated with the superblock, e.g. 455 inodes created prior to initial policy load or inodes created 456 during get_sb by a pseudo filesystem that directly 457 populates itself. */ 458 spin_lock(&sbsec->isec_lock); 459 next_inode: 460 if (!list_empty(&sbsec->isec_head)) { 461 struct inode_security_struct *isec = 462 list_entry(sbsec->isec_head.next, 463 struct inode_security_struct, list); 464 struct inode *inode = isec->inode; 465 spin_unlock(&sbsec->isec_lock); 466 inode = igrab(inode); 467 if (inode) { 468 if (!IS_PRIVATE(inode)) 469 inode_doinit(inode); 470 iput(inode); 471 } 472 spin_lock(&sbsec->isec_lock); 473 list_del_init(&isec->list); 474 goto next_inode; 475 } 476 spin_unlock(&sbsec->isec_lock); 477 out: 478 return rc; 479 } 480 481 /* 482 * This function should allow an FS to ask what it's mount security 483 * options were so it can use those later for submounts, displaying 484 * mount options, or whatever. 485 */ 486 static int selinux_get_mnt_opts(const struct super_block *sb, 487 struct security_mnt_opts *opts) 488 { 489 int rc = 0, i; 490 struct superblock_security_struct *sbsec = sb->s_security; 491 char *context = NULL; 492 u32 len; 493 char tmp; 494 495 security_init_mnt_opts(opts); 496 497 if (!(sbsec->flags & SE_SBINITIALIZED)) 498 return -EINVAL; 499 500 if (!ss_initialized) 501 return -EINVAL; 502 503 tmp = sbsec->flags & SE_MNTMASK; 504 /* count the number of mount options for this sb */ 505 for (i = 0; i < 8; i++) { 506 if (tmp & 0x01) 507 opts->num_mnt_opts++; 508 tmp >>= 1; 509 } 510 /* Check if the Label support flag is set */ 511 if (sbsec->flags & SE_SBLABELSUPP) 512 opts->num_mnt_opts++; 513 514 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 515 if (!opts->mnt_opts) { 516 rc = -ENOMEM; 517 goto out_free; 518 } 519 520 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 521 if (!opts->mnt_opts_flags) { 522 rc = -ENOMEM; 523 goto out_free; 524 } 525 526 i = 0; 527 if (sbsec->flags & FSCONTEXT_MNT) { 528 rc = security_sid_to_context(sbsec->sid, &context, &len); 529 if (rc) 530 goto out_free; 531 opts->mnt_opts[i] = context; 532 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 533 } 534 if (sbsec->flags & CONTEXT_MNT) { 535 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 536 if (rc) 537 goto out_free; 538 opts->mnt_opts[i] = context; 539 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 540 } 541 if (sbsec->flags & DEFCONTEXT_MNT) { 542 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 543 if (rc) 544 goto out_free; 545 opts->mnt_opts[i] = context; 546 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 547 } 548 if (sbsec->flags & ROOTCONTEXT_MNT) { 549 struct inode *root = sbsec->sb->s_root->d_inode; 550 struct inode_security_struct *isec = root->i_security; 551 552 rc = security_sid_to_context(isec->sid, &context, &len); 553 if (rc) 554 goto out_free; 555 opts->mnt_opts[i] = context; 556 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 557 } 558 if (sbsec->flags & SE_SBLABELSUPP) { 559 opts->mnt_opts[i] = NULL; 560 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 561 } 562 563 BUG_ON(i != opts->num_mnt_opts); 564 565 return 0; 566 567 out_free: 568 security_free_mnt_opts(opts); 569 return rc; 570 } 571 572 static int bad_option(struct superblock_security_struct *sbsec, char flag, 573 u32 old_sid, u32 new_sid) 574 { 575 char mnt_flags = sbsec->flags & SE_MNTMASK; 576 577 /* check if the old mount command had the same options */ 578 if (sbsec->flags & SE_SBINITIALIZED) 579 if (!(sbsec->flags & flag) || 580 (old_sid != new_sid)) 581 return 1; 582 583 /* check if we were passed the same options twice, 584 * aka someone passed context=a,context=b 585 */ 586 if (!(sbsec->flags & SE_SBINITIALIZED)) 587 if (mnt_flags & flag) 588 return 1; 589 return 0; 590 } 591 592 /* 593 * Allow filesystems with binary mount data to explicitly set mount point 594 * labeling information. 595 */ 596 static int selinux_set_mnt_opts(struct super_block *sb, 597 struct security_mnt_opts *opts) 598 { 599 const struct cred *cred = current_cred(); 600 int rc = 0, i; 601 struct superblock_security_struct *sbsec = sb->s_security; 602 const char *name = sb->s_type->name; 603 struct inode *inode = sbsec->sb->s_root->d_inode; 604 struct inode_security_struct *root_isec = inode->i_security; 605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 606 u32 defcontext_sid = 0; 607 char **mount_options = opts->mnt_opts; 608 int *flags = opts->mnt_opts_flags; 609 int num_opts = opts->num_mnt_opts; 610 611 mutex_lock(&sbsec->lock); 612 613 if (!ss_initialized) { 614 if (!num_opts) { 615 /* Defer initialization until selinux_complete_init, 616 after the initial policy is loaded and the security 617 server is ready to handle calls. */ 618 spin_lock(&sb_security_lock); 619 if (list_empty(&sbsec->list)) 620 list_add(&sbsec->list, &superblock_security_head); 621 spin_unlock(&sb_security_lock); 622 goto out; 623 } 624 rc = -EINVAL; 625 printk(KERN_WARNING "SELinux: Unable to set superblock options " 626 "before the security server is initialized\n"); 627 goto out; 628 } 629 630 /* 631 * Binary mount data FS will come through this function twice. Once 632 * from an explicit call and once from the generic calls from the vfs. 633 * Since the generic VFS calls will not contain any security mount data 634 * we need to skip the double mount verification. 635 * 636 * This does open a hole in which we will not notice if the first 637 * mount using this sb set explict options and a second mount using 638 * this sb does not set any security options. (The first options 639 * will be used for both mounts) 640 */ 641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 642 && (num_opts == 0)) 643 goto out; 644 645 /* 646 * parse the mount options, check if they are valid sids. 647 * also check if someone is trying to mount the same sb more 648 * than once with different security options. 649 */ 650 for (i = 0; i < num_opts; i++) { 651 u32 sid; 652 653 if (flags[i] == SE_SBLABELSUPP) 654 continue; 655 rc = security_context_to_sid(mount_options[i], 656 strlen(mount_options[i]), &sid); 657 if (rc) { 658 printk(KERN_WARNING "SELinux: security_context_to_sid" 659 "(%s) failed for (dev %s, type %s) errno=%d\n", 660 mount_options[i], sb->s_id, name, rc); 661 goto out; 662 } 663 switch (flags[i]) { 664 case FSCONTEXT_MNT: 665 fscontext_sid = sid; 666 667 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 668 fscontext_sid)) 669 goto out_double_mount; 670 671 sbsec->flags |= FSCONTEXT_MNT; 672 break; 673 case CONTEXT_MNT: 674 context_sid = sid; 675 676 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 677 context_sid)) 678 goto out_double_mount; 679 680 sbsec->flags |= CONTEXT_MNT; 681 break; 682 case ROOTCONTEXT_MNT: 683 rootcontext_sid = sid; 684 685 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 686 rootcontext_sid)) 687 goto out_double_mount; 688 689 sbsec->flags |= ROOTCONTEXT_MNT; 690 691 break; 692 case DEFCONTEXT_MNT: 693 defcontext_sid = sid; 694 695 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 696 defcontext_sid)) 697 goto out_double_mount; 698 699 sbsec->flags |= DEFCONTEXT_MNT; 700 701 break; 702 default: 703 rc = -EINVAL; 704 goto out; 705 } 706 } 707 708 if (sbsec->flags & SE_SBINITIALIZED) { 709 /* previously mounted with options, but not on this attempt? */ 710 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 711 goto out_double_mount; 712 rc = 0; 713 goto out; 714 } 715 716 if (strcmp(sb->s_type->name, "proc") == 0) 717 sbsec->flags |= SE_SBPROC; 718 719 /* Determine the labeling behavior to use for this filesystem type. */ 720 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 721 if (rc) { 722 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 723 __func__, sb->s_type->name, rc); 724 goto out; 725 } 726 727 /* sets the context of the superblock for the fs being mounted. */ 728 if (fscontext_sid) { 729 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 730 if (rc) 731 goto out; 732 733 sbsec->sid = fscontext_sid; 734 } 735 736 /* 737 * Switch to using mount point labeling behavior. 738 * sets the label used on all file below the mountpoint, and will set 739 * the superblock context if not already set. 740 */ 741 if (context_sid) { 742 if (!fscontext_sid) { 743 rc = may_context_mount_sb_relabel(context_sid, sbsec, 744 cred); 745 if (rc) 746 goto out; 747 sbsec->sid = context_sid; 748 } else { 749 rc = may_context_mount_inode_relabel(context_sid, sbsec, 750 cred); 751 if (rc) 752 goto out; 753 } 754 if (!rootcontext_sid) 755 rootcontext_sid = context_sid; 756 757 sbsec->mntpoint_sid = context_sid; 758 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 759 } 760 761 if (rootcontext_sid) { 762 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 763 cred); 764 if (rc) 765 goto out; 766 767 root_isec->sid = rootcontext_sid; 768 root_isec->initialized = 1; 769 } 770 771 if (defcontext_sid) { 772 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 773 rc = -EINVAL; 774 printk(KERN_WARNING "SELinux: defcontext option is " 775 "invalid for this filesystem type\n"); 776 goto out; 777 } 778 779 if (defcontext_sid != sbsec->def_sid) { 780 rc = may_context_mount_inode_relabel(defcontext_sid, 781 sbsec, cred); 782 if (rc) 783 goto out; 784 } 785 786 sbsec->def_sid = defcontext_sid; 787 } 788 789 rc = sb_finish_set_opts(sb); 790 out: 791 mutex_unlock(&sbsec->lock); 792 return rc; 793 out_double_mount: 794 rc = -EINVAL; 795 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 796 "security settings for (dev %s, type %s)\n", sb->s_id, name); 797 goto out; 798 } 799 800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 801 struct super_block *newsb) 802 { 803 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 804 struct superblock_security_struct *newsbsec = newsb->s_security; 805 806 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 807 int set_context = (oldsbsec->flags & CONTEXT_MNT); 808 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 809 810 /* 811 * if the parent was able to be mounted it clearly had no special lsm 812 * mount options. thus we can safely put this sb on the list and deal 813 * with it later 814 */ 815 if (!ss_initialized) { 816 spin_lock(&sb_security_lock); 817 if (list_empty(&newsbsec->list)) 818 list_add(&newsbsec->list, &superblock_security_head); 819 spin_unlock(&sb_security_lock); 820 return; 821 } 822 823 /* how can we clone if the old one wasn't set up?? */ 824 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 825 826 /* if fs is reusing a sb, just let its options stand... */ 827 if (newsbsec->flags & SE_SBINITIALIZED) 828 return; 829 830 mutex_lock(&newsbsec->lock); 831 832 newsbsec->flags = oldsbsec->flags; 833 834 newsbsec->sid = oldsbsec->sid; 835 newsbsec->def_sid = oldsbsec->def_sid; 836 newsbsec->behavior = oldsbsec->behavior; 837 838 if (set_context) { 839 u32 sid = oldsbsec->mntpoint_sid; 840 841 if (!set_fscontext) 842 newsbsec->sid = sid; 843 if (!set_rootcontext) { 844 struct inode *newinode = newsb->s_root->d_inode; 845 struct inode_security_struct *newisec = newinode->i_security; 846 newisec->sid = sid; 847 } 848 newsbsec->mntpoint_sid = sid; 849 } 850 if (set_rootcontext) { 851 const struct inode *oldinode = oldsb->s_root->d_inode; 852 const struct inode_security_struct *oldisec = oldinode->i_security; 853 struct inode *newinode = newsb->s_root->d_inode; 854 struct inode_security_struct *newisec = newinode->i_security; 855 856 newisec->sid = oldisec->sid; 857 } 858 859 sb_finish_set_opts(newsb); 860 mutex_unlock(&newsbsec->lock); 861 } 862 863 static int selinux_parse_opts_str(char *options, 864 struct security_mnt_opts *opts) 865 { 866 char *p; 867 char *context = NULL, *defcontext = NULL; 868 char *fscontext = NULL, *rootcontext = NULL; 869 int rc, num_mnt_opts = 0; 870 871 opts->num_mnt_opts = 0; 872 873 /* Standard string-based options. */ 874 while ((p = strsep(&options, "|")) != NULL) { 875 int token; 876 substring_t args[MAX_OPT_ARGS]; 877 878 if (!*p) 879 continue; 880 881 token = match_token(p, tokens, args); 882 883 switch (token) { 884 case Opt_context: 885 if (context || defcontext) { 886 rc = -EINVAL; 887 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 888 goto out_err; 889 } 890 context = match_strdup(&args[0]); 891 if (!context) { 892 rc = -ENOMEM; 893 goto out_err; 894 } 895 break; 896 897 case Opt_fscontext: 898 if (fscontext) { 899 rc = -EINVAL; 900 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 901 goto out_err; 902 } 903 fscontext = match_strdup(&args[0]); 904 if (!fscontext) { 905 rc = -ENOMEM; 906 goto out_err; 907 } 908 break; 909 910 case Opt_rootcontext: 911 if (rootcontext) { 912 rc = -EINVAL; 913 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 914 goto out_err; 915 } 916 rootcontext = match_strdup(&args[0]); 917 if (!rootcontext) { 918 rc = -ENOMEM; 919 goto out_err; 920 } 921 break; 922 923 case Opt_defcontext: 924 if (context || defcontext) { 925 rc = -EINVAL; 926 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 927 goto out_err; 928 } 929 defcontext = match_strdup(&args[0]); 930 if (!defcontext) { 931 rc = -ENOMEM; 932 goto out_err; 933 } 934 break; 935 case Opt_labelsupport: 936 break; 937 default: 938 rc = -EINVAL; 939 printk(KERN_WARNING "SELinux: unknown mount option\n"); 940 goto out_err; 941 942 } 943 } 944 945 rc = -ENOMEM; 946 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 947 if (!opts->mnt_opts) 948 goto out_err; 949 950 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 951 if (!opts->mnt_opts_flags) { 952 kfree(opts->mnt_opts); 953 goto out_err; 954 } 955 956 if (fscontext) { 957 opts->mnt_opts[num_mnt_opts] = fscontext; 958 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 959 } 960 if (context) { 961 opts->mnt_opts[num_mnt_opts] = context; 962 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 963 } 964 if (rootcontext) { 965 opts->mnt_opts[num_mnt_opts] = rootcontext; 966 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 967 } 968 if (defcontext) { 969 opts->mnt_opts[num_mnt_opts] = defcontext; 970 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 971 } 972 973 opts->num_mnt_opts = num_mnt_opts; 974 return 0; 975 976 out_err: 977 kfree(context); 978 kfree(defcontext); 979 kfree(fscontext); 980 kfree(rootcontext); 981 return rc; 982 } 983 /* 984 * string mount options parsing and call set the sbsec 985 */ 986 static int superblock_doinit(struct super_block *sb, void *data) 987 { 988 int rc = 0; 989 char *options = data; 990 struct security_mnt_opts opts; 991 992 security_init_mnt_opts(&opts); 993 994 if (!data) 995 goto out; 996 997 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 998 999 rc = selinux_parse_opts_str(options, &opts); 1000 if (rc) 1001 goto out_err; 1002 1003 out: 1004 rc = selinux_set_mnt_opts(sb, &opts); 1005 1006 out_err: 1007 security_free_mnt_opts(&opts); 1008 return rc; 1009 } 1010 1011 static void selinux_write_opts(struct seq_file *m, 1012 struct security_mnt_opts *opts) 1013 { 1014 int i; 1015 char *prefix; 1016 1017 for (i = 0; i < opts->num_mnt_opts; i++) { 1018 char *has_comma; 1019 1020 if (opts->mnt_opts[i]) 1021 has_comma = strchr(opts->mnt_opts[i], ','); 1022 else 1023 has_comma = NULL; 1024 1025 switch (opts->mnt_opts_flags[i]) { 1026 case CONTEXT_MNT: 1027 prefix = CONTEXT_STR; 1028 break; 1029 case FSCONTEXT_MNT: 1030 prefix = FSCONTEXT_STR; 1031 break; 1032 case ROOTCONTEXT_MNT: 1033 prefix = ROOTCONTEXT_STR; 1034 break; 1035 case DEFCONTEXT_MNT: 1036 prefix = DEFCONTEXT_STR; 1037 break; 1038 case SE_SBLABELSUPP: 1039 seq_putc(m, ','); 1040 seq_puts(m, LABELSUPP_STR); 1041 continue; 1042 default: 1043 BUG(); 1044 }; 1045 /* we need a comma before each option */ 1046 seq_putc(m, ','); 1047 seq_puts(m, prefix); 1048 if (has_comma) 1049 seq_putc(m, '\"'); 1050 seq_puts(m, opts->mnt_opts[i]); 1051 if (has_comma) 1052 seq_putc(m, '\"'); 1053 } 1054 } 1055 1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1057 { 1058 struct security_mnt_opts opts; 1059 int rc; 1060 1061 rc = selinux_get_mnt_opts(sb, &opts); 1062 if (rc) { 1063 /* before policy load we may get EINVAL, don't show anything */ 1064 if (rc == -EINVAL) 1065 rc = 0; 1066 return rc; 1067 } 1068 1069 selinux_write_opts(m, &opts); 1070 1071 security_free_mnt_opts(&opts); 1072 1073 return rc; 1074 } 1075 1076 static inline u16 inode_mode_to_security_class(umode_t mode) 1077 { 1078 switch (mode & S_IFMT) { 1079 case S_IFSOCK: 1080 return SECCLASS_SOCK_FILE; 1081 case S_IFLNK: 1082 return SECCLASS_LNK_FILE; 1083 case S_IFREG: 1084 return SECCLASS_FILE; 1085 case S_IFBLK: 1086 return SECCLASS_BLK_FILE; 1087 case S_IFDIR: 1088 return SECCLASS_DIR; 1089 case S_IFCHR: 1090 return SECCLASS_CHR_FILE; 1091 case S_IFIFO: 1092 return SECCLASS_FIFO_FILE; 1093 1094 } 1095 1096 return SECCLASS_FILE; 1097 } 1098 1099 static inline int default_protocol_stream(int protocol) 1100 { 1101 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1102 } 1103 1104 static inline int default_protocol_dgram(int protocol) 1105 { 1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1107 } 1108 1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1110 { 1111 switch (family) { 1112 case PF_UNIX: 1113 switch (type) { 1114 case SOCK_STREAM: 1115 case SOCK_SEQPACKET: 1116 return SECCLASS_UNIX_STREAM_SOCKET; 1117 case SOCK_DGRAM: 1118 return SECCLASS_UNIX_DGRAM_SOCKET; 1119 } 1120 break; 1121 case PF_INET: 1122 case PF_INET6: 1123 switch (type) { 1124 case SOCK_STREAM: 1125 if (default_protocol_stream(protocol)) 1126 return SECCLASS_TCP_SOCKET; 1127 else 1128 return SECCLASS_RAWIP_SOCKET; 1129 case SOCK_DGRAM: 1130 if (default_protocol_dgram(protocol)) 1131 return SECCLASS_UDP_SOCKET; 1132 else 1133 return SECCLASS_RAWIP_SOCKET; 1134 case SOCK_DCCP: 1135 return SECCLASS_DCCP_SOCKET; 1136 default: 1137 return SECCLASS_RAWIP_SOCKET; 1138 } 1139 break; 1140 case PF_NETLINK: 1141 switch (protocol) { 1142 case NETLINK_ROUTE: 1143 return SECCLASS_NETLINK_ROUTE_SOCKET; 1144 case NETLINK_FIREWALL: 1145 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1146 case NETLINK_INET_DIAG: 1147 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1148 case NETLINK_NFLOG: 1149 return SECCLASS_NETLINK_NFLOG_SOCKET; 1150 case NETLINK_XFRM: 1151 return SECCLASS_NETLINK_XFRM_SOCKET; 1152 case NETLINK_SELINUX: 1153 return SECCLASS_NETLINK_SELINUX_SOCKET; 1154 case NETLINK_AUDIT: 1155 return SECCLASS_NETLINK_AUDIT_SOCKET; 1156 case NETLINK_IP6_FW: 1157 return SECCLASS_NETLINK_IP6FW_SOCKET; 1158 case NETLINK_DNRTMSG: 1159 return SECCLASS_NETLINK_DNRT_SOCKET; 1160 case NETLINK_KOBJECT_UEVENT: 1161 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1162 default: 1163 return SECCLASS_NETLINK_SOCKET; 1164 } 1165 case PF_PACKET: 1166 return SECCLASS_PACKET_SOCKET; 1167 case PF_KEY: 1168 return SECCLASS_KEY_SOCKET; 1169 case PF_APPLETALK: 1170 return SECCLASS_APPLETALK_SOCKET; 1171 } 1172 1173 return SECCLASS_SOCKET; 1174 } 1175 1176 #ifdef CONFIG_PROC_FS 1177 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1178 u16 tclass, 1179 u32 *sid) 1180 { 1181 int buflen, rc; 1182 char *buffer, *path, *end; 1183 1184 buffer = (char *)__get_free_page(GFP_KERNEL); 1185 if (!buffer) 1186 return -ENOMEM; 1187 1188 buflen = PAGE_SIZE; 1189 end = buffer+buflen; 1190 *--end = '\0'; 1191 buflen--; 1192 path = end-1; 1193 *path = '/'; 1194 while (de && de != de->parent) { 1195 buflen -= de->namelen + 1; 1196 if (buflen < 0) 1197 break; 1198 end -= de->namelen; 1199 memcpy(end, de->name, de->namelen); 1200 *--end = '/'; 1201 path = end; 1202 de = de->parent; 1203 } 1204 rc = security_genfs_sid("proc", path, tclass, sid); 1205 free_page((unsigned long)buffer); 1206 return rc; 1207 } 1208 #else 1209 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1210 u16 tclass, 1211 u32 *sid) 1212 { 1213 return -EINVAL; 1214 } 1215 #endif 1216 1217 /* The inode's security attributes must be initialized before first use. */ 1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1219 { 1220 struct superblock_security_struct *sbsec = NULL; 1221 struct inode_security_struct *isec = inode->i_security; 1222 u32 sid; 1223 struct dentry *dentry; 1224 #define INITCONTEXTLEN 255 1225 char *context = NULL; 1226 unsigned len = 0; 1227 int rc = 0; 1228 1229 if (isec->initialized) 1230 goto out; 1231 1232 mutex_lock(&isec->lock); 1233 if (isec->initialized) 1234 goto out_unlock; 1235 1236 sbsec = inode->i_sb->s_security; 1237 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1238 /* Defer initialization until selinux_complete_init, 1239 after the initial policy is loaded and the security 1240 server is ready to handle calls. */ 1241 spin_lock(&sbsec->isec_lock); 1242 if (list_empty(&isec->list)) 1243 list_add(&isec->list, &sbsec->isec_head); 1244 spin_unlock(&sbsec->isec_lock); 1245 goto out_unlock; 1246 } 1247 1248 switch (sbsec->behavior) { 1249 case SECURITY_FS_USE_XATTR: 1250 if (!inode->i_op->getxattr) { 1251 isec->sid = sbsec->def_sid; 1252 break; 1253 } 1254 1255 /* Need a dentry, since the xattr API requires one. 1256 Life would be simpler if we could just pass the inode. */ 1257 if (opt_dentry) { 1258 /* Called from d_instantiate or d_splice_alias. */ 1259 dentry = dget(opt_dentry); 1260 } else { 1261 /* Called from selinux_complete_init, try to find a dentry. */ 1262 dentry = d_find_alias(inode); 1263 } 1264 if (!dentry) { 1265 /* 1266 * this is can be hit on boot when a file is accessed 1267 * before the policy is loaded. When we load policy we 1268 * may find inodes that have no dentry on the 1269 * sbsec->isec_head list. No reason to complain as these 1270 * will get fixed up the next time we go through 1271 * inode_doinit with a dentry, before these inodes could 1272 * be used again by userspace. 1273 */ 1274 goto out_unlock; 1275 } 1276 1277 len = INITCONTEXTLEN; 1278 context = kmalloc(len+1, GFP_NOFS); 1279 if (!context) { 1280 rc = -ENOMEM; 1281 dput(dentry); 1282 goto out_unlock; 1283 } 1284 context[len] = '\0'; 1285 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1286 context, len); 1287 if (rc == -ERANGE) { 1288 /* Need a larger buffer. Query for the right size. */ 1289 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1290 NULL, 0); 1291 if (rc < 0) { 1292 dput(dentry); 1293 goto out_unlock; 1294 } 1295 kfree(context); 1296 len = rc; 1297 context = kmalloc(len+1, GFP_NOFS); 1298 if (!context) { 1299 rc = -ENOMEM; 1300 dput(dentry); 1301 goto out_unlock; 1302 } 1303 context[len] = '\0'; 1304 rc = inode->i_op->getxattr(dentry, 1305 XATTR_NAME_SELINUX, 1306 context, len); 1307 } 1308 dput(dentry); 1309 if (rc < 0) { 1310 if (rc != -ENODATA) { 1311 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1312 "%d for dev=%s ino=%ld\n", __func__, 1313 -rc, inode->i_sb->s_id, inode->i_ino); 1314 kfree(context); 1315 goto out_unlock; 1316 } 1317 /* Map ENODATA to the default file SID */ 1318 sid = sbsec->def_sid; 1319 rc = 0; 1320 } else { 1321 rc = security_context_to_sid_default(context, rc, &sid, 1322 sbsec->def_sid, 1323 GFP_NOFS); 1324 if (rc) { 1325 char *dev = inode->i_sb->s_id; 1326 unsigned long ino = inode->i_ino; 1327 1328 if (rc == -EINVAL) { 1329 if (printk_ratelimit()) 1330 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1331 "context=%s. This indicates you may need to relabel the inode or the " 1332 "filesystem in question.\n", ino, dev, context); 1333 } else { 1334 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1335 "returned %d for dev=%s ino=%ld\n", 1336 __func__, context, -rc, dev, ino); 1337 } 1338 kfree(context); 1339 /* Leave with the unlabeled SID */ 1340 rc = 0; 1341 break; 1342 } 1343 } 1344 kfree(context); 1345 isec->sid = sid; 1346 break; 1347 case SECURITY_FS_USE_TASK: 1348 isec->sid = isec->task_sid; 1349 break; 1350 case SECURITY_FS_USE_TRANS: 1351 /* Default to the fs SID. */ 1352 isec->sid = sbsec->sid; 1353 1354 /* Try to obtain a transition SID. */ 1355 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1356 rc = security_transition_sid(isec->task_sid, 1357 sbsec->sid, 1358 isec->sclass, 1359 &sid); 1360 if (rc) 1361 goto out_unlock; 1362 isec->sid = sid; 1363 break; 1364 case SECURITY_FS_USE_MNTPOINT: 1365 isec->sid = sbsec->mntpoint_sid; 1366 break; 1367 default: 1368 /* Default to the fs superblock SID. */ 1369 isec->sid = sbsec->sid; 1370 1371 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1372 struct proc_inode *proci = PROC_I(inode); 1373 if (proci->pde) { 1374 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1375 rc = selinux_proc_get_sid(proci->pde, 1376 isec->sclass, 1377 &sid); 1378 if (rc) 1379 goto out_unlock; 1380 isec->sid = sid; 1381 } 1382 } 1383 break; 1384 } 1385 1386 isec->initialized = 1; 1387 1388 out_unlock: 1389 mutex_unlock(&isec->lock); 1390 out: 1391 if (isec->sclass == SECCLASS_FILE) 1392 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1393 return rc; 1394 } 1395 1396 /* Convert a Linux signal to an access vector. */ 1397 static inline u32 signal_to_av(int sig) 1398 { 1399 u32 perm = 0; 1400 1401 switch (sig) { 1402 case SIGCHLD: 1403 /* Commonly granted from child to parent. */ 1404 perm = PROCESS__SIGCHLD; 1405 break; 1406 case SIGKILL: 1407 /* Cannot be caught or ignored */ 1408 perm = PROCESS__SIGKILL; 1409 break; 1410 case SIGSTOP: 1411 /* Cannot be caught or ignored */ 1412 perm = PROCESS__SIGSTOP; 1413 break; 1414 default: 1415 /* All other signals. */ 1416 perm = PROCESS__SIGNAL; 1417 break; 1418 } 1419 1420 return perm; 1421 } 1422 1423 /* 1424 * Check permission between a pair of credentials 1425 * fork check, ptrace check, etc. 1426 */ 1427 static int cred_has_perm(const struct cred *actor, 1428 const struct cred *target, 1429 u32 perms) 1430 { 1431 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1432 1433 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1434 } 1435 1436 /* 1437 * Check permission between a pair of tasks, e.g. signal checks, 1438 * fork check, ptrace check, etc. 1439 * tsk1 is the actor and tsk2 is the target 1440 * - this uses the default subjective creds of tsk1 1441 */ 1442 static int task_has_perm(const struct task_struct *tsk1, 1443 const struct task_struct *tsk2, 1444 u32 perms) 1445 { 1446 const struct task_security_struct *__tsec1, *__tsec2; 1447 u32 sid1, sid2; 1448 1449 rcu_read_lock(); 1450 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1451 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1452 rcu_read_unlock(); 1453 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1454 } 1455 1456 /* 1457 * Check permission between current and another task, e.g. signal checks, 1458 * fork check, ptrace check, etc. 1459 * current is the actor and tsk2 is the target 1460 * - this uses current's subjective creds 1461 */ 1462 static int current_has_perm(const struct task_struct *tsk, 1463 u32 perms) 1464 { 1465 u32 sid, tsid; 1466 1467 sid = current_sid(); 1468 tsid = task_sid(tsk); 1469 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1470 } 1471 1472 #if CAP_LAST_CAP > 63 1473 #error Fix SELinux to handle capabilities > 63. 1474 #endif 1475 1476 /* Check whether a task is allowed to use a capability. */ 1477 static int task_has_capability(struct task_struct *tsk, 1478 const struct cred *cred, 1479 int cap, int audit) 1480 { 1481 struct avc_audit_data ad; 1482 struct av_decision avd; 1483 u16 sclass; 1484 u32 sid = cred_sid(cred); 1485 u32 av = CAP_TO_MASK(cap); 1486 int rc; 1487 1488 AVC_AUDIT_DATA_INIT(&ad, CAP); 1489 ad.tsk = tsk; 1490 ad.u.cap = cap; 1491 1492 switch (CAP_TO_INDEX(cap)) { 1493 case 0: 1494 sclass = SECCLASS_CAPABILITY; 1495 break; 1496 case 1: 1497 sclass = SECCLASS_CAPABILITY2; 1498 break; 1499 default: 1500 printk(KERN_ERR 1501 "SELinux: out of range capability %d\n", cap); 1502 BUG(); 1503 } 1504 1505 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1506 if (audit == SECURITY_CAP_AUDIT) 1507 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1508 return rc; 1509 } 1510 1511 /* Check whether a task is allowed to use a system operation. */ 1512 static int task_has_system(struct task_struct *tsk, 1513 u32 perms) 1514 { 1515 u32 sid = task_sid(tsk); 1516 1517 return avc_has_perm(sid, SECINITSID_KERNEL, 1518 SECCLASS_SYSTEM, perms, NULL); 1519 } 1520 1521 /* Check whether a task has a particular permission to an inode. 1522 The 'adp' parameter is optional and allows other audit 1523 data to be passed (e.g. the dentry). */ 1524 static int inode_has_perm(const struct cred *cred, 1525 struct inode *inode, 1526 u32 perms, 1527 struct avc_audit_data *adp) 1528 { 1529 struct inode_security_struct *isec; 1530 struct avc_audit_data ad; 1531 u32 sid; 1532 1533 if (unlikely(IS_PRIVATE(inode))) 1534 return 0; 1535 1536 sid = cred_sid(cred); 1537 isec = inode->i_security; 1538 1539 if (!adp) { 1540 adp = &ad; 1541 AVC_AUDIT_DATA_INIT(&ad, FS); 1542 ad.u.fs.inode = inode; 1543 } 1544 1545 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1546 } 1547 1548 /* Same as inode_has_perm, but pass explicit audit data containing 1549 the dentry to help the auditing code to more easily generate the 1550 pathname if needed. */ 1551 static inline int dentry_has_perm(const struct cred *cred, 1552 struct vfsmount *mnt, 1553 struct dentry *dentry, 1554 u32 av) 1555 { 1556 struct inode *inode = dentry->d_inode; 1557 struct avc_audit_data ad; 1558 1559 AVC_AUDIT_DATA_INIT(&ad, FS); 1560 ad.u.fs.path.mnt = mnt; 1561 ad.u.fs.path.dentry = dentry; 1562 return inode_has_perm(cred, inode, av, &ad); 1563 } 1564 1565 /* Check whether a task can use an open file descriptor to 1566 access an inode in a given way. Check access to the 1567 descriptor itself, and then use dentry_has_perm to 1568 check a particular permission to the file. 1569 Access to the descriptor is implicitly granted if it 1570 has the same SID as the process. If av is zero, then 1571 access to the file is not checked, e.g. for cases 1572 where only the descriptor is affected like seek. */ 1573 static int file_has_perm(const struct cred *cred, 1574 struct file *file, 1575 u32 av) 1576 { 1577 struct file_security_struct *fsec = file->f_security; 1578 struct inode *inode = file->f_path.dentry->d_inode; 1579 struct avc_audit_data ad; 1580 u32 sid = cred_sid(cred); 1581 int rc; 1582 1583 AVC_AUDIT_DATA_INIT(&ad, FS); 1584 ad.u.fs.path = file->f_path; 1585 1586 if (sid != fsec->sid) { 1587 rc = avc_has_perm(sid, fsec->sid, 1588 SECCLASS_FD, 1589 FD__USE, 1590 &ad); 1591 if (rc) 1592 goto out; 1593 } 1594 1595 /* av is zero if only checking access to the descriptor. */ 1596 rc = 0; 1597 if (av) 1598 rc = inode_has_perm(cred, inode, av, &ad); 1599 1600 out: 1601 return rc; 1602 } 1603 1604 /* Check whether a task can create a file. */ 1605 static int may_create(struct inode *dir, 1606 struct dentry *dentry, 1607 u16 tclass) 1608 { 1609 const struct cred *cred = current_cred(); 1610 const struct task_security_struct *tsec = cred->security; 1611 struct inode_security_struct *dsec; 1612 struct superblock_security_struct *sbsec; 1613 u32 sid, newsid; 1614 struct avc_audit_data ad; 1615 int rc; 1616 1617 dsec = dir->i_security; 1618 sbsec = dir->i_sb->s_security; 1619 1620 sid = tsec->sid; 1621 newsid = tsec->create_sid; 1622 1623 AVC_AUDIT_DATA_INIT(&ad, FS); 1624 ad.u.fs.path.dentry = dentry; 1625 1626 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1627 DIR__ADD_NAME | DIR__SEARCH, 1628 &ad); 1629 if (rc) 1630 return rc; 1631 1632 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1633 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1634 if (rc) 1635 return rc; 1636 } 1637 1638 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1639 if (rc) 1640 return rc; 1641 1642 return avc_has_perm(newsid, sbsec->sid, 1643 SECCLASS_FILESYSTEM, 1644 FILESYSTEM__ASSOCIATE, &ad); 1645 } 1646 1647 /* Check whether a task can create a key. */ 1648 static int may_create_key(u32 ksid, 1649 struct task_struct *ctx) 1650 { 1651 u32 sid = task_sid(ctx); 1652 1653 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1654 } 1655 1656 #define MAY_LINK 0 1657 #define MAY_UNLINK 1 1658 #define MAY_RMDIR 2 1659 1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1661 static int may_link(struct inode *dir, 1662 struct dentry *dentry, 1663 int kind) 1664 1665 { 1666 struct inode_security_struct *dsec, *isec; 1667 struct avc_audit_data ad; 1668 u32 sid = current_sid(); 1669 u32 av; 1670 int rc; 1671 1672 dsec = dir->i_security; 1673 isec = dentry->d_inode->i_security; 1674 1675 AVC_AUDIT_DATA_INIT(&ad, FS); 1676 ad.u.fs.path.dentry = dentry; 1677 1678 av = DIR__SEARCH; 1679 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1680 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1681 if (rc) 1682 return rc; 1683 1684 switch (kind) { 1685 case MAY_LINK: 1686 av = FILE__LINK; 1687 break; 1688 case MAY_UNLINK: 1689 av = FILE__UNLINK; 1690 break; 1691 case MAY_RMDIR: 1692 av = DIR__RMDIR; 1693 break; 1694 default: 1695 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1696 __func__, kind); 1697 return 0; 1698 } 1699 1700 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1701 return rc; 1702 } 1703 1704 static inline int may_rename(struct inode *old_dir, 1705 struct dentry *old_dentry, 1706 struct inode *new_dir, 1707 struct dentry *new_dentry) 1708 { 1709 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1710 struct avc_audit_data ad; 1711 u32 sid = current_sid(); 1712 u32 av; 1713 int old_is_dir, new_is_dir; 1714 int rc; 1715 1716 old_dsec = old_dir->i_security; 1717 old_isec = old_dentry->d_inode->i_security; 1718 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1719 new_dsec = new_dir->i_security; 1720 1721 AVC_AUDIT_DATA_INIT(&ad, FS); 1722 1723 ad.u.fs.path.dentry = old_dentry; 1724 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1725 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1726 if (rc) 1727 return rc; 1728 rc = avc_has_perm(sid, old_isec->sid, 1729 old_isec->sclass, FILE__RENAME, &ad); 1730 if (rc) 1731 return rc; 1732 if (old_is_dir && new_dir != old_dir) { 1733 rc = avc_has_perm(sid, old_isec->sid, 1734 old_isec->sclass, DIR__REPARENT, &ad); 1735 if (rc) 1736 return rc; 1737 } 1738 1739 ad.u.fs.path.dentry = new_dentry; 1740 av = DIR__ADD_NAME | DIR__SEARCH; 1741 if (new_dentry->d_inode) 1742 av |= DIR__REMOVE_NAME; 1743 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1744 if (rc) 1745 return rc; 1746 if (new_dentry->d_inode) { 1747 new_isec = new_dentry->d_inode->i_security; 1748 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1749 rc = avc_has_perm(sid, new_isec->sid, 1750 new_isec->sclass, 1751 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1752 if (rc) 1753 return rc; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /* Check whether a task can perform a filesystem operation. */ 1760 static int superblock_has_perm(const struct cred *cred, 1761 struct super_block *sb, 1762 u32 perms, 1763 struct avc_audit_data *ad) 1764 { 1765 struct superblock_security_struct *sbsec; 1766 u32 sid = cred_sid(cred); 1767 1768 sbsec = sb->s_security; 1769 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1770 } 1771 1772 /* Convert a Linux mode and permission mask to an access vector. */ 1773 static inline u32 file_mask_to_av(int mode, int mask) 1774 { 1775 u32 av = 0; 1776 1777 if ((mode & S_IFMT) != S_IFDIR) { 1778 if (mask & MAY_EXEC) 1779 av |= FILE__EXECUTE; 1780 if (mask & MAY_READ) 1781 av |= FILE__READ; 1782 1783 if (mask & MAY_APPEND) 1784 av |= FILE__APPEND; 1785 else if (mask & MAY_WRITE) 1786 av |= FILE__WRITE; 1787 1788 } else { 1789 if (mask & MAY_EXEC) 1790 av |= DIR__SEARCH; 1791 if (mask & MAY_WRITE) 1792 av |= DIR__WRITE; 1793 if (mask & MAY_READ) 1794 av |= DIR__READ; 1795 } 1796 1797 return av; 1798 } 1799 1800 /* Convert a Linux file to an access vector. */ 1801 static inline u32 file_to_av(struct file *file) 1802 { 1803 u32 av = 0; 1804 1805 if (file->f_mode & FMODE_READ) 1806 av |= FILE__READ; 1807 if (file->f_mode & FMODE_WRITE) { 1808 if (file->f_flags & O_APPEND) 1809 av |= FILE__APPEND; 1810 else 1811 av |= FILE__WRITE; 1812 } 1813 if (!av) { 1814 /* 1815 * Special file opened with flags 3 for ioctl-only use. 1816 */ 1817 av = FILE__IOCTL; 1818 } 1819 1820 return av; 1821 } 1822 1823 /* 1824 * Convert a file to an access vector and include the correct open 1825 * open permission. 1826 */ 1827 static inline u32 open_file_to_av(struct file *file) 1828 { 1829 u32 av = file_to_av(file); 1830 1831 if (selinux_policycap_openperm) { 1832 mode_t mode = file->f_path.dentry->d_inode->i_mode; 1833 /* 1834 * lnk files and socks do not really have an 'open' 1835 */ 1836 if (S_ISREG(mode)) 1837 av |= FILE__OPEN; 1838 else if (S_ISCHR(mode)) 1839 av |= CHR_FILE__OPEN; 1840 else if (S_ISBLK(mode)) 1841 av |= BLK_FILE__OPEN; 1842 else if (S_ISFIFO(mode)) 1843 av |= FIFO_FILE__OPEN; 1844 else if (S_ISDIR(mode)) 1845 av |= DIR__OPEN; 1846 else if (S_ISSOCK(mode)) 1847 av |= SOCK_FILE__OPEN; 1848 else 1849 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1850 "unknown mode:%o\n", __func__, mode); 1851 } 1852 return av; 1853 } 1854 1855 /* Hook functions begin here. */ 1856 1857 static int selinux_ptrace_may_access(struct task_struct *child, 1858 unsigned int mode) 1859 { 1860 int rc; 1861 1862 rc = cap_ptrace_may_access(child, mode); 1863 if (rc) 1864 return rc; 1865 1866 if (mode == PTRACE_MODE_READ) { 1867 u32 sid = current_sid(); 1868 u32 csid = task_sid(child); 1869 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1870 } 1871 1872 return current_has_perm(child, PROCESS__PTRACE); 1873 } 1874 1875 static int selinux_ptrace_traceme(struct task_struct *parent) 1876 { 1877 int rc; 1878 1879 rc = cap_ptrace_traceme(parent); 1880 if (rc) 1881 return rc; 1882 1883 return task_has_perm(parent, current, PROCESS__PTRACE); 1884 } 1885 1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1887 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1888 { 1889 int error; 1890 1891 error = current_has_perm(target, PROCESS__GETCAP); 1892 if (error) 1893 return error; 1894 1895 return cap_capget(target, effective, inheritable, permitted); 1896 } 1897 1898 static int selinux_capset(struct cred *new, const struct cred *old, 1899 const kernel_cap_t *effective, 1900 const kernel_cap_t *inheritable, 1901 const kernel_cap_t *permitted) 1902 { 1903 int error; 1904 1905 error = cap_capset(new, old, 1906 effective, inheritable, permitted); 1907 if (error) 1908 return error; 1909 1910 return cred_has_perm(old, new, PROCESS__SETCAP); 1911 } 1912 1913 /* 1914 * (This comment used to live with the selinux_task_setuid hook, 1915 * which was removed). 1916 * 1917 * Since setuid only affects the current process, and since the SELinux 1918 * controls are not based on the Linux identity attributes, SELinux does not 1919 * need to control this operation. However, SELinux does control the use of 1920 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1921 */ 1922 1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1924 int cap, int audit) 1925 { 1926 int rc; 1927 1928 rc = cap_capable(tsk, cred, cap, audit); 1929 if (rc) 1930 return rc; 1931 1932 return task_has_capability(tsk, cred, cap, audit); 1933 } 1934 1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1936 { 1937 int buflen, rc; 1938 char *buffer, *path, *end; 1939 1940 rc = -ENOMEM; 1941 buffer = (char *)__get_free_page(GFP_KERNEL); 1942 if (!buffer) 1943 goto out; 1944 1945 buflen = PAGE_SIZE; 1946 end = buffer+buflen; 1947 *--end = '\0'; 1948 buflen--; 1949 path = end-1; 1950 *path = '/'; 1951 while (table) { 1952 const char *name = table->procname; 1953 size_t namelen = strlen(name); 1954 buflen -= namelen + 1; 1955 if (buflen < 0) 1956 goto out_free; 1957 end -= namelen; 1958 memcpy(end, name, namelen); 1959 *--end = '/'; 1960 path = end; 1961 table = table->parent; 1962 } 1963 buflen -= 4; 1964 if (buflen < 0) 1965 goto out_free; 1966 end -= 4; 1967 memcpy(end, "/sys", 4); 1968 path = end; 1969 rc = security_genfs_sid("proc", path, tclass, sid); 1970 out_free: 1971 free_page((unsigned long)buffer); 1972 out: 1973 return rc; 1974 } 1975 1976 static int selinux_sysctl(ctl_table *table, int op) 1977 { 1978 int error = 0; 1979 u32 av; 1980 u32 tsid, sid; 1981 int rc; 1982 1983 sid = current_sid(); 1984 1985 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1986 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1987 if (rc) { 1988 /* Default to the well-defined sysctl SID. */ 1989 tsid = SECINITSID_SYSCTL; 1990 } 1991 1992 /* The op values are "defined" in sysctl.c, thereby creating 1993 * a bad coupling between this module and sysctl.c */ 1994 if (op == 001) { 1995 error = avc_has_perm(sid, tsid, 1996 SECCLASS_DIR, DIR__SEARCH, NULL); 1997 } else { 1998 av = 0; 1999 if (op & 004) 2000 av |= FILE__READ; 2001 if (op & 002) 2002 av |= FILE__WRITE; 2003 if (av) 2004 error = avc_has_perm(sid, tsid, 2005 SECCLASS_FILE, av, NULL); 2006 } 2007 2008 return error; 2009 } 2010 2011 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2012 { 2013 const struct cred *cred = current_cred(); 2014 int rc = 0; 2015 2016 if (!sb) 2017 return 0; 2018 2019 switch (cmds) { 2020 case Q_SYNC: 2021 case Q_QUOTAON: 2022 case Q_QUOTAOFF: 2023 case Q_SETINFO: 2024 case Q_SETQUOTA: 2025 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2026 break; 2027 case Q_GETFMT: 2028 case Q_GETINFO: 2029 case Q_GETQUOTA: 2030 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2031 break; 2032 default: 2033 rc = 0; /* let the kernel handle invalid cmds */ 2034 break; 2035 } 2036 return rc; 2037 } 2038 2039 static int selinux_quota_on(struct dentry *dentry) 2040 { 2041 const struct cred *cred = current_cred(); 2042 2043 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 2044 } 2045 2046 static int selinux_syslog(int type) 2047 { 2048 int rc; 2049 2050 rc = cap_syslog(type); 2051 if (rc) 2052 return rc; 2053 2054 switch (type) { 2055 case 3: /* Read last kernel messages */ 2056 case 10: /* Return size of the log buffer */ 2057 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2058 break; 2059 case 6: /* Disable logging to console */ 2060 case 7: /* Enable logging to console */ 2061 case 8: /* Set level of messages printed to console */ 2062 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2063 break; 2064 case 0: /* Close log */ 2065 case 1: /* Open log */ 2066 case 2: /* Read from log */ 2067 case 4: /* Read/clear last kernel messages */ 2068 case 5: /* Clear ring buffer */ 2069 default: 2070 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2071 break; 2072 } 2073 return rc; 2074 } 2075 2076 /* 2077 * Check that a process has enough memory to allocate a new virtual 2078 * mapping. 0 means there is enough memory for the allocation to 2079 * succeed and -ENOMEM implies there is not. 2080 * 2081 * Do not audit the selinux permission check, as this is applied to all 2082 * processes that allocate mappings. 2083 */ 2084 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2085 { 2086 int rc, cap_sys_admin = 0; 2087 2088 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2089 SECURITY_CAP_NOAUDIT); 2090 if (rc == 0) 2091 cap_sys_admin = 1; 2092 2093 return __vm_enough_memory(mm, pages, cap_sys_admin); 2094 } 2095 2096 /* binprm security operations */ 2097 2098 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2099 { 2100 const struct task_security_struct *old_tsec; 2101 struct task_security_struct *new_tsec; 2102 struct inode_security_struct *isec; 2103 struct avc_audit_data ad; 2104 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2105 int rc; 2106 2107 rc = cap_bprm_set_creds(bprm); 2108 if (rc) 2109 return rc; 2110 2111 /* SELinux context only depends on initial program or script and not 2112 * the script interpreter */ 2113 if (bprm->cred_prepared) 2114 return 0; 2115 2116 old_tsec = current_security(); 2117 new_tsec = bprm->cred->security; 2118 isec = inode->i_security; 2119 2120 /* Default to the current task SID. */ 2121 new_tsec->sid = old_tsec->sid; 2122 new_tsec->osid = old_tsec->sid; 2123 2124 /* Reset fs, key, and sock SIDs on execve. */ 2125 new_tsec->create_sid = 0; 2126 new_tsec->keycreate_sid = 0; 2127 new_tsec->sockcreate_sid = 0; 2128 2129 if (old_tsec->exec_sid) { 2130 new_tsec->sid = old_tsec->exec_sid; 2131 /* Reset exec SID on execve. */ 2132 new_tsec->exec_sid = 0; 2133 } else { 2134 /* Check for a default transition on this program. */ 2135 rc = security_transition_sid(old_tsec->sid, isec->sid, 2136 SECCLASS_PROCESS, &new_tsec->sid); 2137 if (rc) 2138 return rc; 2139 } 2140 2141 AVC_AUDIT_DATA_INIT(&ad, FS); 2142 ad.u.fs.path = bprm->file->f_path; 2143 2144 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2145 new_tsec->sid = old_tsec->sid; 2146 2147 if (new_tsec->sid == old_tsec->sid) { 2148 rc = avc_has_perm(old_tsec->sid, isec->sid, 2149 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2150 if (rc) 2151 return rc; 2152 } else { 2153 /* Check permissions for the transition. */ 2154 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2155 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2156 if (rc) 2157 return rc; 2158 2159 rc = avc_has_perm(new_tsec->sid, isec->sid, 2160 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2161 if (rc) 2162 return rc; 2163 2164 /* Check for shared state */ 2165 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2166 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2167 SECCLASS_PROCESS, PROCESS__SHARE, 2168 NULL); 2169 if (rc) 2170 return -EPERM; 2171 } 2172 2173 /* Make sure that anyone attempting to ptrace over a task that 2174 * changes its SID has the appropriate permit */ 2175 if (bprm->unsafe & 2176 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2177 struct task_struct *tracer; 2178 struct task_security_struct *sec; 2179 u32 ptsid = 0; 2180 2181 rcu_read_lock(); 2182 tracer = tracehook_tracer_task(current); 2183 if (likely(tracer != NULL)) { 2184 sec = __task_cred(tracer)->security; 2185 ptsid = sec->sid; 2186 } 2187 rcu_read_unlock(); 2188 2189 if (ptsid != 0) { 2190 rc = avc_has_perm(ptsid, new_tsec->sid, 2191 SECCLASS_PROCESS, 2192 PROCESS__PTRACE, NULL); 2193 if (rc) 2194 return -EPERM; 2195 } 2196 } 2197 2198 /* Clear any possibly unsafe personality bits on exec: */ 2199 bprm->per_clear |= PER_CLEAR_ON_SETID; 2200 } 2201 2202 return 0; 2203 } 2204 2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2206 { 2207 const struct cred *cred = current_cred(); 2208 const struct task_security_struct *tsec = cred->security; 2209 u32 sid, osid; 2210 int atsecure = 0; 2211 2212 sid = tsec->sid; 2213 osid = tsec->osid; 2214 2215 if (osid != sid) { 2216 /* Enable secure mode for SIDs transitions unless 2217 the noatsecure permission is granted between 2218 the two SIDs, i.e. ahp returns 0. */ 2219 atsecure = avc_has_perm(osid, sid, 2220 SECCLASS_PROCESS, 2221 PROCESS__NOATSECURE, NULL); 2222 } 2223 2224 return (atsecure || cap_bprm_secureexec(bprm)); 2225 } 2226 2227 extern struct vfsmount *selinuxfs_mount; 2228 extern struct dentry *selinux_null; 2229 2230 /* Derived from fs/exec.c:flush_old_files. */ 2231 static inline void flush_unauthorized_files(const struct cred *cred, 2232 struct files_struct *files) 2233 { 2234 struct avc_audit_data ad; 2235 struct file *file, *devnull = NULL; 2236 struct tty_struct *tty; 2237 struct fdtable *fdt; 2238 long j = -1; 2239 int drop_tty = 0; 2240 2241 tty = get_current_tty(); 2242 if (tty) { 2243 file_list_lock(); 2244 if (!list_empty(&tty->tty_files)) { 2245 struct inode *inode; 2246 2247 /* Revalidate access to controlling tty. 2248 Use inode_has_perm on the tty inode directly rather 2249 than using file_has_perm, as this particular open 2250 file may belong to another process and we are only 2251 interested in the inode-based check here. */ 2252 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list); 2253 inode = file->f_path.dentry->d_inode; 2254 if (inode_has_perm(cred, inode, 2255 FILE__READ | FILE__WRITE, NULL)) { 2256 drop_tty = 1; 2257 } 2258 } 2259 file_list_unlock(); 2260 tty_kref_put(tty); 2261 } 2262 /* Reset controlling tty. */ 2263 if (drop_tty) 2264 no_tty(); 2265 2266 /* Revalidate access to inherited open files. */ 2267 2268 AVC_AUDIT_DATA_INIT(&ad, FS); 2269 2270 spin_lock(&files->file_lock); 2271 for (;;) { 2272 unsigned long set, i; 2273 int fd; 2274 2275 j++; 2276 i = j * __NFDBITS; 2277 fdt = files_fdtable(files); 2278 if (i >= fdt->max_fds) 2279 break; 2280 set = fdt->open_fds->fds_bits[j]; 2281 if (!set) 2282 continue; 2283 spin_unlock(&files->file_lock); 2284 for ( ; set ; i++, set >>= 1) { 2285 if (set & 1) { 2286 file = fget(i); 2287 if (!file) 2288 continue; 2289 if (file_has_perm(cred, 2290 file, 2291 file_to_av(file))) { 2292 sys_close(i); 2293 fd = get_unused_fd(); 2294 if (fd != i) { 2295 if (fd >= 0) 2296 put_unused_fd(fd); 2297 fput(file); 2298 continue; 2299 } 2300 if (devnull) { 2301 get_file(devnull); 2302 } else { 2303 devnull = dentry_open( 2304 dget(selinux_null), 2305 mntget(selinuxfs_mount), 2306 O_RDWR, cred); 2307 if (IS_ERR(devnull)) { 2308 devnull = NULL; 2309 put_unused_fd(fd); 2310 fput(file); 2311 continue; 2312 } 2313 } 2314 fd_install(fd, devnull); 2315 } 2316 fput(file); 2317 } 2318 } 2319 spin_lock(&files->file_lock); 2320 2321 } 2322 spin_unlock(&files->file_lock); 2323 } 2324 2325 /* 2326 * Prepare a process for imminent new credential changes due to exec 2327 */ 2328 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2329 { 2330 struct task_security_struct *new_tsec; 2331 struct rlimit *rlim, *initrlim; 2332 int rc, i; 2333 2334 new_tsec = bprm->cred->security; 2335 if (new_tsec->sid == new_tsec->osid) 2336 return; 2337 2338 /* Close files for which the new task SID is not authorized. */ 2339 flush_unauthorized_files(bprm->cred, current->files); 2340 2341 /* Always clear parent death signal on SID transitions. */ 2342 current->pdeath_signal = 0; 2343 2344 /* Check whether the new SID can inherit resource limits from the old 2345 * SID. If not, reset all soft limits to the lower of the current 2346 * task's hard limit and the init task's soft limit. 2347 * 2348 * Note that the setting of hard limits (even to lower them) can be 2349 * controlled by the setrlimit check. The inclusion of the init task's 2350 * soft limit into the computation is to avoid resetting soft limits 2351 * higher than the default soft limit for cases where the default is 2352 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2353 */ 2354 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2355 PROCESS__RLIMITINH, NULL); 2356 if (rc) { 2357 for (i = 0; i < RLIM_NLIMITS; i++) { 2358 rlim = current->signal->rlim + i; 2359 initrlim = init_task.signal->rlim + i; 2360 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2361 } 2362 update_rlimit_cpu(rlim->rlim_cur); 2363 } 2364 } 2365 2366 /* 2367 * Clean up the process immediately after the installation of new credentials 2368 * due to exec 2369 */ 2370 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2371 { 2372 const struct task_security_struct *tsec = current_security(); 2373 struct itimerval itimer; 2374 u32 osid, sid; 2375 int rc, i; 2376 2377 osid = tsec->osid; 2378 sid = tsec->sid; 2379 2380 if (sid == osid) 2381 return; 2382 2383 /* Check whether the new SID can inherit signal state from the old SID. 2384 * If not, clear itimers to avoid subsequent signal generation and 2385 * flush and unblock signals. 2386 * 2387 * This must occur _after_ the task SID has been updated so that any 2388 * kill done after the flush will be checked against the new SID. 2389 */ 2390 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2391 if (rc) { 2392 memset(&itimer, 0, sizeof itimer); 2393 for (i = 0; i < 3; i++) 2394 do_setitimer(i, &itimer, NULL); 2395 spin_lock_irq(¤t->sighand->siglock); 2396 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2397 __flush_signals(current); 2398 flush_signal_handlers(current, 1); 2399 sigemptyset(¤t->blocked); 2400 } 2401 spin_unlock_irq(¤t->sighand->siglock); 2402 } 2403 2404 /* Wake up the parent if it is waiting so that it can recheck 2405 * wait permission to the new task SID. */ 2406 read_lock(&tasklist_lock); 2407 wake_up_interruptible(¤t->real_parent->signal->wait_chldexit); 2408 read_unlock(&tasklist_lock); 2409 } 2410 2411 /* superblock security operations */ 2412 2413 static int selinux_sb_alloc_security(struct super_block *sb) 2414 { 2415 return superblock_alloc_security(sb); 2416 } 2417 2418 static void selinux_sb_free_security(struct super_block *sb) 2419 { 2420 superblock_free_security(sb); 2421 } 2422 2423 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2424 { 2425 if (plen > olen) 2426 return 0; 2427 2428 return !memcmp(prefix, option, plen); 2429 } 2430 2431 static inline int selinux_option(char *option, int len) 2432 { 2433 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2434 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2435 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2436 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2437 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2438 } 2439 2440 static inline void take_option(char **to, char *from, int *first, int len) 2441 { 2442 if (!*first) { 2443 **to = ','; 2444 *to += 1; 2445 } else 2446 *first = 0; 2447 memcpy(*to, from, len); 2448 *to += len; 2449 } 2450 2451 static inline void take_selinux_option(char **to, char *from, int *first, 2452 int len) 2453 { 2454 int current_size = 0; 2455 2456 if (!*first) { 2457 **to = '|'; 2458 *to += 1; 2459 } else 2460 *first = 0; 2461 2462 while (current_size < len) { 2463 if (*from != '"') { 2464 **to = *from; 2465 *to += 1; 2466 } 2467 from += 1; 2468 current_size += 1; 2469 } 2470 } 2471 2472 static int selinux_sb_copy_data(char *orig, char *copy) 2473 { 2474 int fnosec, fsec, rc = 0; 2475 char *in_save, *in_curr, *in_end; 2476 char *sec_curr, *nosec_save, *nosec; 2477 int open_quote = 0; 2478 2479 in_curr = orig; 2480 sec_curr = copy; 2481 2482 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2483 if (!nosec) { 2484 rc = -ENOMEM; 2485 goto out; 2486 } 2487 2488 nosec_save = nosec; 2489 fnosec = fsec = 1; 2490 in_save = in_end = orig; 2491 2492 do { 2493 if (*in_end == '"') 2494 open_quote = !open_quote; 2495 if ((*in_end == ',' && open_quote == 0) || 2496 *in_end == '\0') { 2497 int len = in_end - in_curr; 2498 2499 if (selinux_option(in_curr, len)) 2500 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2501 else 2502 take_option(&nosec, in_curr, &fnosec, len); 2503 2504 in_curr = in_end + 1; 2505 } 2506 } while (*in_end++); 2507 2508 strcpy(in_save, nosec_save); 2509 free_page((unsigned long)nosec_save); 2510 out: 2511 return rc; 2512 } 2513 2514 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2515 { 2516 const struct cred *cred = current_cred(); 2517 struct avc_audit_data ad; 2518 int rc; 2519 2520 rc = superblock_doinit(sb, data); 2521 if (rc) 2522 return rc; 2523 2524 /* Allow all mounts performed by the kernel */ 2525 if (flags & MS_KERNMOUNT) 2526 return 0; 2527 2528 AVC_AUDIT_DATA_INIT(&ad, FS); 2529 ad.u.fs.path.dentry = sb->s_root; 2530 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2531 } 2532 2533 static int selinux_sb_statfs(struct dentry *dentry) 2534 { 2535 const struct cred *cred = current_cred(); 2536 struct avc_audit_data ad; 2537 2538 AVC_AUDIT_DATA_INIT(&ad, FS); 2539 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2540 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2541 } 2542 2543 static int selinux_mount(char *dev_name, 2544 struct path *path, 2545 char *type, 2546 unsigned long flags, 2547 void *data) 2548 { 2549 const struct cred *cred = current_cred(); 2550 2551 if (flags & MS_REMOUNT) 2552 return superblock_has_perm(cred, path->mnt->mnt_sb, 2553 FILESYSTEM__REMOUNT, NULL); 2554 else 2555 return dentry_has_perm(cred, path->mnt, path->dentry, 2556 FILE__MOUNTON); 2557 } 2558 2559 static int selinux_umount(struct vfsmount *mnt, int flags) 2560 { 2561 const struct cred *cred = current_cred(); 2562 2563 return superblock_has_perm(cred, mnt->mnt_sb, 2564 FILESYSTEM__UNMOUNT, NULL); 2565 } 2566 2567 /* inode security operations */ 2568 2569 static int selinux_inode_alloc_security(struct inode *inode) 2570 { 2571 return inode_alloc_security(inode); 2572 } 2573 2574 static void selinux_inode_free_security(struct inode *inode) 2575 { 2576 inode_free_security(inode); 2577 } 2578 2579 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2580 char **name, void **value, 2581 size_t *len) 2582 { 2583 const struct cred *cred = current_cred(); 2584 const struct task_security_struct *tsec = cred->security; 2585 struct inode_security_struct *dsec; 2586 struct superblock_security_struct *sbsec; 2587 u32 sid, newsid, clen; 2588 int rc; 2589 char *namep = NULL, *context; 2590 2591 dsec = dir->i_security; 2592 sbsec = dir->i_sb->s_security; 2593 2594 sid = tsec->sid; 2595 newsid = tsec->create_sid; 2596 2597 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2598 rc = security_transition_sid(sid, dsec->sid, 2599 inode_mode_to_security_class(inode->i_mode), 2600 &newsid); 2601 if (rc) { 2602 printk(KERN_WARNING "%s: " 2603 "security_transition_sid failed, rc=%d (dev=%s " 2604 "ino=%ld)\n", 2605 __func__, 2606 -rc, inode->i_sb->s_id, inode->i_ino); 2607 return rc; 2608 } 2609 } 2610 2611 /* Possibly defer initialization to selinux_complete_init. */ 2612 if (sbsec->flags & SE_SBINITIALIZED) { 2613 struct inode_security_struct *isec = inode->i_security; 2614 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2615 isec->sid = newsid; 2616 isec->initialized = 1; 2617 } 2618 2619 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2620 return -EOPNOTSUPP; 2621 2622 if (name) { 2623 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2624 if (!namep) 2625 return -ENOMEM; 2626 *name = namep; 2627 } 2628 2629 if (value && len) { 2630 rc = security_sid_to_context_force(newsid, &context, &clen); 2631 if (rc) { 2632 kfree(namep); 2633 return rc; 2634 } 2635 *value = context; 2636 *len = clen; 2637 } 2638 2639 return 0; 2640 } 2641 2642 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2643 { 2644 return may_create(dir, dentry, SECCLASS_FILE); 2645 } 2646 2647 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2648 { 2649 return may_link(dir, old_dentry, MAY_LINK); 2650 } 2651 2652 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2653 { 2654 return may_link(dir, dentry, MAY_UNLINK); 2655 } 2656 2657 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2658 { 2659 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2660 } 2661 2662 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2663 { 2664 return may_create(dir, dentry, SECCLASS_DIR); 2665 } 2666 2667 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2668 { 2669 return may_link(dir, dentry, MAY_RMDIR); 2670 } 2671 2672 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2673 { 2674 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2675 } 2676 2677 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2678 struct inode *new_inode, struct dentry *new_dentry) 2679 { 2680 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2681 } 2682 2683 static int selinux_inode_readlink(struct dentry *dentry) 2684 { 2685 const struct cred *cred = current_cred(); 2686 2687 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2688 } 2689 2690 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2691 { 2692 const struct cred *cred = current_cred(); 2693 2694 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2695 } 2696 2697 static int selinux_inode_permission(struct inode *inode, int mask) 2698 { 2699 const struct cred *cred = current_cred(); 2700 2701 if (!mask) { 2702 /* No permission to check. Existence test. */ 2703 return 0; 2704 } 2705 2706 return inode_has_perm(cred, inode, 2707 file_mask_to_av(inode->i_mode, mask), NULL); 2708 } 2709 2710 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2711 { 2712 const struct cred *cred = current_cred(); 2713 2714 if (iattr->ia_valid & ATTR_FORCE) 2715 return 0; 2716 2717 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2718 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2719 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2720 2721 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2722 } 2723 2724 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2725 { 2726 const struct cred *cred = current_cred(); 2727 2728 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2729 } 2730 2731 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2732 { 2733 const struct cred *cred = current_cred(); 2734 2735 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2736 sizeof XATTR_SECURITY_PREFIX - 1)) { 2737 if (!strcmp(name, XATTR_NAME_CAPS)) { 2738 if (!capable(CAP_SETFCAP)) 2739 return -EPERM; 2740 } else if (!capable(CAP_SYS_ADMIN)) { 2741 /* A different attribute in the security namespace. 2742 Restrict to administrator. */ 2743 return -EPERM; 2744 } 2745 } 2746 2747 /* Not an attribute we recognize, so just check the 2748 ordinary setattr permission. */ 2749 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2750 } 2751 2752 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2753 const void *value, size_t size, int flags) 2754 { 2755 struct inode *inode = dentry->d_inode; 2756 struct inode_security_struct *isec = inode->i_security; 2757 struct superblock_security_struct *sbsec; 2758 struct avc_audit_data ad; 2759 u32 newsid, sid = current_sid(); 2760 int rc = 0; 2761 2762 if (strcmp(name, XATTR_NAME_SELINUX)) 2763 return selinux_inode_setotherxattr(dentry, name); 2764 2765 sbsec = inode->i_sb->s_security; 2766 if (!(sbsec->flags & SE_SBLABELSUPP)) 2767 return -EOPNOTSUPP; 2768 2769 if (!is_owner_or_cap(inode)) 2770 return -EPERM; 2771 2772 AVC_AUDIT_DATA_INIT(&ad, FS); 2773 ad.u.fs.path.dentry = dentry; 2774 2775 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2776 FILE__RELABELFROM, &ad); 2777 if (rc) 2778 return rc; 2779 2780 rc = security_context_to_sid(value, size, &newsid); 2781 if (rc == -EINVAL) { 2782 if (!capable(CAP_MAC_ADMIN)) 2783 return rc; 2784 rc = security_context_to_sid_force(value, size, &newsid); 2785 } 2786 if (rc) 2787 return rc; 2788 2789 rc = avc_has_perm(sid, newsid, isec->sclass, 2790 FILE__RELABELTO, &ad); 2791 if (rc) 2792 return rc; 2793 2794 rc = security_validate_transition(isec->sid, newsid, sid, 2795 isec->sclass); 2796 if (rc) 2797 return rc; 2798 2799 return avc_has_perm(newsid, 2800 sbsec->sid, 2801 SECCLASS_FILESYSTEM, 2802 FILESYSTEM__ASSOCIATE, 2803 &ad); 2804 } 2805 2806 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2807 const void *value, size_t size, 2808 int flags) 2809 { 2810 struct inode *inode = dentry->d_inode; 2811 struct inode_security_struct *isec = inode->i_security; 2812 u32 newsid; 2813 int rc; 2814 2815 if (strcmp(name, XATTR_NAME_SELINUX)) { 2816 /* Not an attribute we recognize, so nothing to do. */ 2817 return; 2818 } 2819 2820 rc = security_context_to_sid_force(value, size, &newsid); 2821 if (rc) { 2822 printk(KERN_ERR "SELinux: unable to map context to SID" 2823 "for (%s, %lu), rc=%d\n", 2824 inode->i_sb->s_id, inode->i_ino, -rc); 2825 return; 2826 } 2827 2828 isec->sid = newsid; 2829 return; 2830 } 2831 2832 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2833 { 2834 const struct cred *cred = current_cred(); 2835 2836 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2837 } 2838 2839 static int selinux_inode_listxattr(struct dentry *dentry) 2840 { 2841 const struct cred *cred = current_cred(); 2842 2843 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2844 } 2845 2846 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2847 { 2848 if (strcmp(name, XATTR_NAME_SELINUX)) 2849 return selinux_inode_setotherxattr(dentry, name); 2850 2851 /* No one is allowed to remove a SELinux security label. 2852 You can change the label, but all data must be labeled. */ 2853 return -EACCES; 2854 } 2855 2856 /* 2857 * Copy the inode security context value to the user. 2858 * 2859 * Permission check is handled by selinux_inode_getxattr hook. 2860 */ 2861 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2862 { 2863 u32 size; 2864 int error; 2865 char *context = NULL; 2866 struct inode_security_struct *isec = inode->i_security; 2867 2868 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2869 return -EOPNOTSUPP; 2870 2871 /* 2872 * If the caller has CAP_MAC_ADMIN, then get the raw context 2873 * value even if it is not defined by current policy; otherwise, 2874 * use the in-core value under current policy. 2875 * Use the non-auditing forms of the permission checks since 2876 * getxattr may be called by unprivileged processes commonly 2877 * and lack of permission just means that we fall back to the 2878 * in-core context value, not a denial. 2879 */ 2880 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2881 SECURITY_CAP_NOAUDIT); 2882 if (!error) 2883 error = security_sid_to_context_force(isec->sid, &context, 2884 &size); 2885 else 2886 error = security_sid_to_context(isec->sid, &context, &size); 2887 if (error) 2888 return error; 2889 error = size; 2890 if (alloc) { 2891 *buffer = context; 2892 goto out_nofree; 2893 } 2894 kfree(context); 2895 out_nofree: 2896 return error; 2897 } 2898 2899 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2900 const void *value, size_t size, int flags) 2901 { 2902 struct inode_security_struct *isec = inode->i_security; 2903 u32 newsid; 2904 int rc; 2905 2906 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2907 return -EOPNOTSUPP; 2908 2909 if (!value || !size) 2910 return -EACCES; 2911 2912 rc = security_context_to_sid((void *)value, size, &newsid); 2913 if (rc) 2914 return rc; 2915 2916 isec->sid = newsid; 2917 return 0; 2918 } 2919 2920 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2921 { 2922 const int len = sizeof(XATTR_NAME_SELINUX); 2923 if (buffer && len <= buffer_size) 2924 memcpy(buffer, XATTR_NAME_SELINUX, len); 2925 return len; 2926 } 2927 2928 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2929 { 2930 struct inode_security_struct *isec = inode->i_security; 2931 *secid = isec->sid; 2932 } 2933 2934 /* file security operations */ 2935 2936 static int selinux_revalidate_file_permission(struct file *file, int mask) 2937 { 2938 const struct cred *cred = current_cred(); 2939 struct inode *inode = file->f_path.dentry->d_inode; 2940 2941 if (!mask) { 2942 /* No permission to check. Existence test. */ 2943 return 0; 2944 } 2945 2946 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2947 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2948 mask |= MAY_APPEND; 2949 2950 return file_has_perm(cred, file, 2951 file_mask_to_av(inode->i_mode, mask)); 2952 } 2953 2954 static int selinux_file_permission(struct file *file, int mask) 2955 { 2956 if (!mask) 2957 /* No permission to check. Existence test. */ 2958 return 0; 2959 2960 return selinux_revalidate_file_permission(file, mask); 2961 } 2962 2963 static int selinux_file_alloc_security(struct file *file) 2964 { 2965 return file_alloc_security(file); 2966 } 2967 2968 static void selinux_file_free_security(struct file *file) 2969 { 2970 file_free_security(file); 2971 } 2972 2973 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2974 unsigned long arg) 2975 { 2976 const struct cred *cred = current_cred(); 2977 u32 av = 0; 2978 2979 if (_IOC_DIR(cmd) & _IOC_WRITE) 2980 av |= FILE__WRITE; 2981 if (_IOC_DIR(cmd) & _IOC_READ) 2982 av |= FILE__READ; 2983 if (!av) 2984 av = FILE__IOCTL; 2985 2986 return file_has_perm(cred, file, av); 2987 } 2988 2989 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2990 { 2991 const struct cred *cred = current_cred(); 2992 int rc = 0; 2993 2994 #ifndef CONFIG_PPC32 2995 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2996 /* 2997 * We are making executable an anonymous mapping or a 2998 * private file mapping that will also be writable. 2999 * This has an additional check. 3000 */ 3001 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3002 if (rc) 3003 goto error; 3004 } 3005 #endif 3006 3007 if (file) { 3008 /* read access is always possible with a mapping */ 3009 u32 av = FILE__READ; 3010 3011 /* write access only matters if the mapping is shared */ 3012 if (shared && (prot & PROT_WRITE)) 3013 av |= FILE__WRITE; 3014 3015 if (prot & PROT_EXEC) 3016 av |= FILE__EXECUTE; 3017 3018 return file_has_perm(cred, file, av); 3019 } 3020 3021 error: 3022 return rc; 3023 } 3024 3025 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 3026 unsigned long prot, unsigned long flags, 3027 unsigned long addr, unsigned long addr_only) 3028 { 3029 int rc = 0; 3030 u32 sid = current_sid(); 3031 3032 if (addr < mmap_min_addr) 3033 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3034 MEMPROTECT__MMAP_ZERO, NULL); 3035 if (rc || addr_only) 3036 return rc; 3037 3038 if (selinux_checkreqprot) 3039 prot = reqprot; 3040 3041 return file_map_prot_check(file, prot, 3042 (flags & MAP_TYPE) == MAP_SHARED); 3043 } 3044 3045 static int selinux_file_mprotect(struct vm_area_struct *vma, 3046 unsigned long reqprot, 3047 unsigned long prot) 3048 { 3049 const struct cred *cred = current_cred(); 3050 3051 if (selinux_checkreqprot) 3052 prot = reqprot; 3053 3054 #ifndef CONFIG_PPC32 3055 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3056 int rc = 0; 3057 if (vma->vm_start >= vma->vm_mm->start_brk && 3058 vma->vm_end <= vma->vm_mm->brk) { 3059 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3060 } else if (!vma->vm_file && 3061 vma->vm_start <= vma->vm_mm->start_stack && 3062 vma->vm_end >= vma->vm_mm->start_stack) { 3063 rc = current_has_perm(current, PROCESS__EXECSTACK); 3064 } else if (vma->vm_file && vma->anon_vma) { 3065 /* 3066 * We are making executable a file mapping that has 3067 * had some COW done. Since pages might have been 3068 * written, check ability to execute the possibly 3069 * modified content. This typically should only 3070 * occur for text relocations. 3071 */ 3072 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3073 } 3074 if (rc) 3075 return rc; 3076 } 3077 #endif 3078 3079 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3080 } 3081 3082 static int selinux_file_lock(struct file *file, unsigned int cmd) 3083 { 3084 const struct cred *cred = current_cred(); 3085 3086 return file_has_perm(cred, file, FILE__LOCK); 3087 } 3088 3089 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3090 unsigned long arg) 3091 { 3092 const struct cred *cred = current_cred(); 3093 int err = 0; 3094 3095 switch (cmd) { 3096 case F_SETFL: 3097 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3098 err = -EINVAL; 3099 break; 3100 } 3101 3102 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3103 err = file_has_perm(cred, file, FILE__WRITE); 3104 break; 3105 } 3106 /* fall through */ 3107 case F_SETOWN: 3108 case F_SETSIG: 3109 case F_GETFL: 3110 case F_GETOWN: 3111 case F_GETSIG: 3112 /* Just check FD__USE permission */ 3113 err = file_has_perm(cred, file, 0); 3114 break; 3115 case F_GETLK: 3116 case F_SETLK: 3117 case F_SETLKW: 3118 #if BITS_PER_LONG == 32 3119 case F_GETLK64: 3120 case F_SETLK64: 3121 case F_SETLKW64: 3122 #endif 3123 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3124 err = -EINVAL; 3125 break; 3126 } 3127 err = file_has_perm(cred, file, FILE__LOCK); 3128 break; 3129 } 3130 3131 return err; 3132 } 3133 3134 static int selinux_file_set_fowner(struct file *file) 3135 { 3136 struct file_security_struct *fsec; 3137 3138 fsec = file->f_security; 3139 fsec->fown_sid = current_sid(); 3140 3141 return 0; 3142 } 3143 3144 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3145 struct fown_struct *fown, int signum) 3146 { 3147 struct file *file; 3148 u32 sid = task_sid(tsk); 3149 u32 perm; 3150 struct file_security_struct *fsec; 3151 3152 /* struct fown_struct is never outside the context of a struct file */ 3153 file = container_of(fown, struct file, f_owner); 3154 3155 fsec = file->f_security; 3156 3157 if (!signum) 3158 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3159 else 3160 perm = signal_to_av(signum); 3161 3162 return avc_has_perm(fsec->fown_sid, sid, 3163 SECCLASS_PROCESS, perm, NULL); 3164 } 3165 3166 static int selinux_file_receive(struct file *file) 3167 { 3168 const struct cred *cred = current_cred(); 3169 3170 return file_has_perm(cred, file, file_to_av(file)); 3171 } 3172 3173 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3174 { 3175 struct file_security_struct *fsec; 3176 struct inode *inode; 3177 struct inode_security_struct *isec; 3178 3179 inode = file->f_path.dentry->d_inode; 3180 fsec = file->f_security; 3181 isec = inode->i_security; 3182 /* 3183 * Save inode label and policy sequence number 3184 * at open-time so that selinux_file_permission 3185 * can determine whether revalidation is necessary. 3186 * Task label is already saved in the file security 3187 * struct as its SID. 3188 */ 3189 fsec->isid = isec->sid; 3190 fsec->pseqno = avc_policy_seqno(); 3191 /* 3192 * Since the inode label or policy seqno may have changed 3193 * between the selinux_inode_permission check and the saving 3194 * of state above, recheck that access is still permitted. 3195 * Otherwise, access might never be revalidated against the 3196 * new inode label or new policy. 3197 * This check is not redundant - do not remove. 3198 */ 3199 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3200 } 3201 3202 /* task security operations */ 3203 3204 static int selinux_task_create(unsigned long clone_flags) 3205 { 3206 return current_has_perm(current, PROCESS__FORK); 3207 } 3208 3209 /* 3210 * detach and free the LSM part of a set of credentials 3211 */ 3212 static void selinux_cred_free(struct cred *cred) 3213 { 3214 struct task_security_struct *tsec = cred->security; 3215 cred->security = NULL; 3216 kfree(tsec); 3217 } 3218 3219 /* 3220 * prepare a new set of credentials for modification 3221 */ 3222 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3223 gfp_t gfp) 3224 { 3225 const struct task_security_struct *old_tsec; 3226 struct task_security_struct *tsec; 3227 3228 old_tsec = old->security; 3229 3230 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3231 if (!tsec) 3232 return -ENOMEM; 3233 3234 new->security = tsec; 3235 return 0; 3236 } 3237 3238 /* 3239 * set the security data for a kernel service 3240 * - all the creation contexts are set to unlabelled 3241 */ 3242 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3243 { 3244 struct task_security_struct *tsec = new->security; 3245 u32 sid = current_sid(); 3246 int ret; 3247 3248 ret = avc_has_perm(sid, secid, 3249 SECCLASS_KERNEL_SERVICE, 3250 KERNEL_SERVICE__USE_AS_OVERRIDE, 3251 NULL); 3252 if (ret == 0) { 3253 tsec->sid = secid; 3254 tsec->create_sid = 0; 3255 tsec->keycreate_sid = 0; 3256 tsec->sockcreate_sid = 0; 3257 } 3258 return ret; 3259 } 3260 3261 /* 3262 * set the file creation context in a security record to the same as the 3263 * objective context of the specified inode 3264 */ 3265 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3266 { 3267 struct inode_security_struct *isec = inode->i_security; 3268 struct task_security_struct *tsec = new->security; 3269 u32 sid = current_sid(); 3270 int ret; 3271 3272 ret = avc_has_perm(sid, isec->sid, 3273 SECCLASS_KERNEL_SERVICE, 3274 KERNEL_SERVICE__CREATE_FILES_AS, 3275 NULL); 3276 3277 if (ret == 0) 3278 tsec->create_sid = isec->sid; 3279 return 0; 3280 } 3281 3282 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3283 { 3284 return current_has_perm(p, PROCESS__SETPGID); 3285 } 3286 3287 static int selinux_task_getpgid(struct task_struct *p) 3288 { 3289 return current_has_perm(p, PROCESS__GETPGID); 3290 } 3291 3292 static int selinux_task_getsid(struct task_struct *p) 3293 { 3294 return current_has_perm(p, PROCESS__GETSESSION); 3295 } 3296 3297 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3298 { 3299 *secid = task_sid(p); 3300 } 3301 3302 static int selinux_task_setnice(struct task_struct *p, int nice) 3303 { 3304 int rc; 3305 3306 rc = cap_task_setnice(p, nice); 3307 if (rc) 3308 return rc; 3309 3310 return current_has_perm(p, PROCESS__SETSCHED); 3311 } 3312 3313 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3314 { 3315 int rc; 3316 3317 rc = cap_task_setioprio(p, ioprio); 3318 if (rc) 3319 return rc; 3320 3321 return current_has_perm(p, PROCESS__SETSCHED); 3322 } 3323 3324 static int selinux_task_getioprio(struct task_struct *p) 3325 { 3326 return current_has_perm(p, PROCESS__GETSCHED); 3327 } 3328 3329 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3330 { 3331 struct rlimit *old_rlim = current->signal->rlim + resource; 3332 3333 /* Control the ability to change the hard limit (whether 3334 lowering or raising it), so that the hard limit can 3335 later be used as a safe reset point for the soft limit 3336 upon context transitions. See selinux_bprm_committing_creds. */ 3337 if (old_rlim->rlim_max != new_rlim->rlim_max) 3338 return current_has_perm(current, PROCESS__SETRLIMIT); 3339 3340 return 0; 3341 } 3342 3343 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3344 { 3345 int rc; 3346 3347 rc = cap_task_setscheduler(p, policy, lp); 3348 if (rc) 3349 return rc; 3350 3351 return current_has_perm(p, PROCESS__SETSCHED); 3352 } 3353 3354 static int selinux_task_getscheduler(struct task_struct *p) 3355 { 3356 return current_has_perm(p, PROCESS__GETSCHED); 3357 } 3358 3359 static int selinux_task_movememory(struct task_struct *p) 3360 { 3361 return current_has_perm(p, PROCESS__SETSCHED); 3362 } 3363 3364 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3365 int sig, u32 secid) 3366 { 3367 u32 perm; 3368 int rc; 3369 3370 if (!sig) 3371 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3372 else 3373 perm = signal_to_av(sig); 3374 if (secid) 3375 rc = avc_has_perm(secid, task_sid(p), 3376 SECCLASS_PROCESS, perm, NULL); 3377 else 3378 rc = current_has_perm(p, perm); 3379 return rc; 3380 } 3381 3382 static int selinux_task_wait(struct task_struct *p) 3383 { 3384 return task_has_perm(p, current, PROCESS__SIGCHLD); 3385 } 3386 3387 static void selinux_task_to_inode(struct task_struct *p, 3388 struct inode *inode) 3389 { 3390 struct inode_security_struct *isec = inode->i_security; 3391 u32 sid = task_sid(p); 3392 3393 isec->sid = sid; 3394 isec->initialized = 1; 3395 } 3396 3397 /* Returns error only if unable to parse addresses */ 3398 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3399 struct avc_audit_data *ad, u8 *proto) 3400 { 3401 int offset, ihlen, ret = -EINVAL; 3402 struct iphdr _iph, *ih; 3403 3404 offset = skb_network_offset(skb); 3405 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3406 if (ih == NULL) 3407 goto out; 3408 3409 ihlen = ih->ihl * 4; 3410 if (ihlen < sizeof(_iph)) 3411 goto out; 3412 3413 ad->u.net.v4info.saddr = ih->saddr; 3414 ad->u.net.v4info.daddr = ih->daddr; 3415 ret = 0; 3416 3417 if (proto) 3418 *proto = ih->protocol; 3419 3420 switch (ih->protocol) { 3421 case IPPROTO_TCP: { 3422 struct tcphdr _tcph, *th; 3423 3424 if (ntohs(ih->frag_off) & IP_OFFSET) 3425 break; 3426 3427 offset += ihlen; 3428 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3429 if (th == NULL) 3430 break; 3431 3432 ad->u.net.sport = th->source; 3433 ad->u.net.dport = th->dest; 3434 break; 3435 } 3436 3437 case IPPROTO_UDP: { 3438 struct udphdr _udph, *uh; 3439 3440 if (ntohs(ih->frag_off) & IP_OFFSET) 3441 break; 3442 3443 offset += ihlen; 3444 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3445 if (uh == NULL) 3446 break; 3447 3448 ad->u.net.sport = uh->source; 3449 ad->u.net.dport = uh->dest; 3450 break; 3451 } 3452 3453 case IPPROTO_DCCP: { 3454 struct dccp_hdr _dccph, *dh; 3455 3456 if (ntohs(ih->frag_off) & IP_OFFSET) 3457 break; 3458 3459 offset += ihlen; 3460 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3461 if (dh == NULL) 3462 break; 3463 3464 ad->u.net.sport = dh->dccph_sport; 3465 ad->u.net.dport = dh->dccph_dport; 3466 break; 3467 } 3468 3469 default: 3470 break; 3471 } 3472 out: 3473 return ret; 3474 } 3475 3476 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3477 3478 /* Returns error only if unable to parse addresses */ 3479 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3480 struct avc_audit_data *ad, u8 *proto) 3481 { 3482 u8 nexthdr; 3483 int ret = -EINVAL, offset; 3484 struct ipv6hdr _ipv6h, *ip6; 3485 3486 offset = skb_network_offset(skb); 3487 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3488 if (ip6 == NULL) 3489 goto out; 3490 3491 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3492 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3493 ret = 0; 3494 3495 nexthdr = ip6->nexthdr; 3496 offset += sizeof(_ipv6h); 3497 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3498 if (offset < 0) 3499 goto out; 3500 3501 if (proto) 3502 *proto = nexthdr; 3503 3504 switch (nexthdr) { 3505 case IPPROTO_TCP: { 3506 struct tcphdr _tcph, *th; 3507 3508 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3509 if (th == NULL) 3510 break; 3511 3512 ad->u.net.sport = th->source; 3513 ad->u.net.dport = th->dest; 3514 break; 3515 } 3516 3517 case IPPROTO_UDP: { 3518 struct udphdr _udph, *uh; 3519 3520 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3521 if (uh == NULL) 3522 break; 3523 3524 ad->u.net.sport = uh->source; 3525 ad->u.net.dport = uh->dest; 3526 break; 3527 } 3528 3529 case IPPROTO_DCCP: { 3530 struct dccp_hdr _dccph, *dh; 3531 3532 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3533 if (dh == NULL) 3534 break; 3535 3536 ad->u.net.sport = dh->dccph_sport; 3537 ad->u.net.dport = dh->dccph_dport; 3538 break; 3539 } 3540 3541 /* includes fragments */ 3542 default: 3543 break; 3544 } 3545 out: 3546 return ret; 3547 } 3548 3549 #endif /* IPV6 */ 3550 3551 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3552 char **_addrp, int src, u8 *proto) 3553 { 3554 char *addrp; 3555 int ret; 3556 3557 switch (ad->u.net.family) { 3558 case PF_INET: 3559 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3560 if (ret) 3561 goto parse_error; 3562 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3563 &ad->u.net.v4info.daddr); 3564 goto okay; 3565 3566 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3567 case PF_INET6: 3568 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3569 if (ret) 3570 goto parse_error; 3571 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3572 &ad->u.net.v6info.daddr); 3573 goto okay; 3574 #endif /* IPV6 */ 3575 default: 3576 addrp = NULL; 3577 goto okay; 3578 } 3579 3580 parse_error: 3581 printk(KERN_WARNING 3582 "SELinux: failure in selinux_parse_skb()," 3583 " unable to parse packet\n"); 3584 return ret; 3585 3586 okay: 3587 if (_addrp) 3588 *_addrp = addrp; 3589 return 0; 3590 } 3591 3592 /** 3593 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3594 * @skb: the packet 3595 * @family: protocol family 3596 * @sid: the packet's peer label SID 3597 * 3598 * Description: 3599 * Check the various different forms of network peer labeling and determine 3600 * the peer label/SID for the packet; most of the magic actually occurs in 3601 * the security server function security_net_peersid_cmp(). The function 3602 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3603 * or -EACCES if @sid is invalid due to inconsistencies with the different 3604 * peer labels. 3605 * 3606 */ 3607 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3608 { 3609 int err; 3610 u32 xfrm_sid; 3611 u32 nlbl_sid; 3612 u32 nlbl_type; 3613 3614 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3615 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3616 3617 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3618 if (unlikely(err)) { 3619 printk(KERN_WARNING 3620 "SELinux: failure in selinux_skb_peerlbl_sid()," 3621 " unable to determine packet's peer label\n"); 3622 return -EACCES; 3623 } 3624 3625 return 0; 3626 } 3627 3628 /* socket security operations */ 3629 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3630 u32 perms) 3631 { 3632 struct inode_security_struct *isec; 3633 struct avc_audit_data ad; 3634 u32 sid; 3635 int err = 0; 3636 3637 isec = SOCK_INODE(sock)->i_security; 3638 3639 if (isec->sid == SECINITSID_KERNEL) 3640 goto out; 3641 sid = task_sid(task); 3642 3643 AVC_AUDIT_DATA_INIT(&ad, NET); 3644 ad.u.net.sk = sock->sk; 3645 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 3646 3647 out: 3648 return err; 3649 } 3650 3651 static int selinux_socket_create(int family, int type, 3652 int protocol, int kern) 3653 { 3654 const struct cred *cred = current_cred(); 3655 const struct task_security_struct *tsec = cred->security; 3656 u32 sid, newsid; 3657 u16 secclass; 3658 int err = 0; 3659 3660 if (kern) 3661 goto out; 3662 3663 sid = tsec->sid; 3664 newsid = tsec->sockcreate_sid ?: sid; 3665 3666 secclass = socket_type_to_security_class(family, type, protocol); 3667 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL); 3668 3669 out: 3670 return err; 3671 } 3672 3673 static int selinux_socket_post_create(struct socket *sock, int family, 3674 int type, int protocol, int kern) 3675 { 3676 const struct cred *cred = current_cred(); 3677 const struct task_security_struct *tsec = cred->security; 3678 struct inode_security_struct *isec; 3679 struct sk_security_struct *sksec; 3680 u32 sid, newsid; 3681 int err = 0; 3682 3683 sid = tsec->sid; 3684 newsid = tsec->sockcreate_sid; 3685 3686 isec = SOCK_INODE(sock)->i_security; 3687 3688 if (kern) 3689 isec->sid = SECINITSID_KERNEL; 3690 else if (newsid) 3691 isec->sid = newsid; 3692 else 3693 isec->sid = sid; 3694 3695 isec->sclass = socket_type_to_security_class(family, type, protocol); 3696 isec->initialized = 1; 3697 3698 if (sock->sk) { 3699 sksec = sock->sk->sk_security; 3700 sksec->sid = isec->sid; 3701 sksec->sclass = isec->sclass; 3702 err = selinux_netlbl_socket_post_create(sock->sk, family); 3703 } 3704 3705 return err; 3706 } 3707 3708 /* Range of port numbers used to automatically bind. 3709 Need to determine whether we should perform a name_bind 3710 permission check between the socket and the port number. */ 3711 3712 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3713 { 3714 u16 family; 3715 int err; 3716 3717 err = socket_has_perm(current, sock, SOCKET__BIND); 3718 if (err) 3719 goto out; 3720 3721 /* 3722 * If PF_INET or PF_INET6, check name_bind permission for the port. 3723 * Multiple address binding for SCTP is not supported yet: we just 3724 * check the first address now. 3725 */ 3726 family = sock->sk->sk_family; 3727 if (family == PF_INET || family == PF_INET6) { 3728 char *addrp; 3729 struct inode_security_struct *isec; 3730 struct avc_audit_data ad; 3731 struct sockaddr_in *addr4 = NULL; 3732 struct sockaddr_in6 *addr6 = NULL; 3733 unsigned short snum; 3734 struct sock *sk = sock->sk; 3735 u32 sid, node_perm; 3736 3737 isec = SOCK_INODE(sock)->i_security; 3738 3739 if (family == PF_INET) { 3740 addr4 = (struct sockaddr_in *)address; 3741 snum = ntohs(addr4->sin_port); 3742 addrp = (char *)&addr4->sin_addr.s_addr; 3743 } else { 3744 addr6 = (struct sockaddr_in6 *)address; 3745 snum = ntohs(addr6->sin6_port); 3746 addrp = (char *)&addr6->sin6_addr.s6_addr; 3747 } 3748 3749 if (snum) { 3750 int low, high; 3751 3752 inet_get_local_port_range(&low, &high); 3753 3754 if (snum < max(PROT_SOCK, low) || snum > high) { 3755 err = sel_netport_sid(sk->sk_protocol, 3756 snum, &sid); 3757 if (err) 3758 goto out; 3759 AVC_AUDIT_DATA_INIT(&ad, NET); 3760 ad.u.net.sport = htons(snum); 3761 ad.u.net.family = family; 3762 err = avc_has_perm(isec->sid, sid, 3763 isec->sclass, 3764 SOCKET__NAME_BIND, &ad); 3765 if (err) 3766 goto out; 3767 } 3768 } 3769 3770 switch (isec->sclass) { 3771 case SECCLASS_TCP_SOCKET: 3772 node_perm = TCP_SOCKET__NODE_BIND; 3773 break; 3774 3775 case SECCLASS_UDP_SOCKET: 3776 node_perm = UDP_SOCKET__NODE_BIND; 3777 break; 3778 3779 case SECCLASS_DCCP_SOCKET: 3780 node_perm = DCCP_SOCKET__NODE_BIND; 3781 break; 3782 3783 default: 3784 node_perm = RAWIP_SOCKET__NODE_BIND; 3785 break; 3786 } 3787 3788 err = sel_netnode_sid(addrp, family, &sid); 3789 if (err) 3790 goto out; 3791 3792 AVC_AUDIT_DATA_INIT(&ad, NET); 3793 ad.u.net.sport = htons(snum); 3794 ad.u.net.family = family; 3795 3796 if (family == PF_INET) 3797 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3798 else 3799 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3800 3801 err = avc_has_perm(isec->sid, sid, 3802 isec->sclass, node_perm, &ad); 3803 if (err) 3804 goto out; 3805 } 3806 out: 3807 return err; 3808 } 3809 3810 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3811 { 3812 struct sock *sk = sock->sk; 3813 struct inode_security_struct *isec; 3814 int err; 3815 3816 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3817 if (err) 3818 return err; 3819 3820 /* 3821 * If a TCP or DCCP socket, check name_connect permission for the port. 3822 */ 3823 isec = SOCK_INODE(sock)->i_security; 3824 if (isec->sclass == SECCLASS_TCP_SOCKET || 3825 isec->sclass == SECCLASS_DCCP_SOCKET) { 3826 struct avc_audit_data ad; 3827 struct sockaddr_in *addr4 = NULL; 3828 struct sockaddr_in6 *addr6 = NULL; 3829 unsigned short snum; 3830 u32 sid, perm; 3831 3832 if (sk->sk_family == PF_INET) { 3833 addr4 = (struct sockaddr_in *)address; 3834 if (addrlen < sizeof(struct sockaddr_in)) 3835 return -EINVAL; 3836 snum = ntohs(addr4->sin_port); 3837 } else { 3838 addr6 = (struct sockaddr_in6 *)address; 3839 if (addrlen < SIN6_LEN_RFC2133) 3840 return -EINVAL; 3841 snum = ntohs(addr6->sin6_port); 3842 } 3843 3844 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3845 if (err) 3846 goto out; 3847 3848 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3849 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3850 3851 AVC_AUDIT_DATA_INIT(&ad, NET); 3852 ad.u.net.dport = htons(snum); 3853 ad.u.net.family = sk->sk_family; 3854 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3855 if (err) 3856 goto out; 3857 } 3858 3859 err = selinux_netlbl_socket_connect(sk, address); 3860 3861 out: 3862 return err; 3863 } 3864 3865 static int selinux_socket_listen(struct socket *sock, int backlog) 3866 { 3867 return socket_has_perm(current, sock, SOCKET__LISTEN); 3868 } 3869 3870 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3871 { 3872 int err; 3873 struct inode_security_struct *isec; 3874 struct inode_security_struct *newisec; 3875 3876 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3877 if (err) 3878 return err; 3879 3880 newisec = SOCK_INODE(newsock)->i_security; 3881 3882 isec = SOCK_INODE(sock)->i_security; 3883 newisec->sclass = isec->sclass; 3884 newisec->sid = isec->sid; 3885 newisec->initialized = 1; 3886 3887 return 0; 3888 } 3889 3890 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3891 int size) 3892 { 3893 return socket_has_perm(current, sock, SOCKET__WRITE); 3894 } 3895 3896 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3897 int size, int flags) 3898 { 3899 return socket_has_perm(current, sock, SOCKET__READ); 3900 } 3901 3902 static int selinux_socket_getsockname(struct socket *sock) 3903 { 3904 return socket_has_perm(current, sock, SOCKET__GETATTR); 3905 } 3906 3907 static int selinux_socket_getpeername(struct socket *sock) 3908 { 3909 return socket_has_perm(current, sock, SOCKET__GETATTR); 3910 } 3911 3912 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3913 { 3914 int err; 3915 3916 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3917 if (err) 3918 return err; 3919 3920 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3921 } 3922 3923 static int selinux_socket_getsockopt(struct socket *sock, int level, 3924 int optname) 3925 { 3926 return socket_has_perm(current, sock, SOCKET__GETOPT); 3927 } 3928 3929 static int selinux_socket_shutdown(struct socket *sock, int how) 3930 { 3931 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3932 } 3933 3934 static int selinux_socket_unix_stream_connect(struct socket *sock, 3935 struct socket *other, 3936 struct sock *newsk) 3937 { 3938 struct sk_security_struct *ssec; 3939 struct inode_security_struct *isec; 3940 struct inode_security_struct *other_isec; 3941 struct avc_audit_data ad; 3942 int err; 3943 3944 isec = SOCK_INODE(sock)->i_security; 3945 other_isec = SOCK_INODE(other)->i_security; 3946 3947 AVC_AUDIT_DATA_INIT(&ad, NET); 3948 ad.u.net.sk = other->sk; 3949 3950 err = avc_has_perm(isec->sid, other_isec->sid, 3951 isec->sclass, 3952 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3953 if (err) 3954 return err; 3955 3956 /* connecting socket */ 3957 ssec = sock->sk->sk_security; 3958 ssec->peer_sid = other_isec->sid; 3959 3960 /* server child socket */ 3961 ssec = newsk->sk_security; 3962 ssec->peer_sid = isec->sid; 3963 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3964 3965 return err; 3966 } 3967 3968 static int selinux_socket_unix_may_send(struct socket *sock, 3969 struct socket *other) 3970 { 3971 struct inode_security_struct *isec; 3972 struct inode_security_struct *other_isec; 3973 struct avc_audit_data ad; 3974 int err; 3975 3976 isec = SOCK_INODE(sock)->i_security; 3977 other_isec = SOCK_INODE(other)->i_security; 3978 3979 AVC_AUDIT_DATA_INIT(&ad, NET); 3980 ad.u.net.sk = other->sk; 3981 3982 err = avc_has_perm(isec->sid, other_isec->sid, 3983 isec->sclass, SOCKET__SENDTO, &ad); 3984 if (err) 3985 return err; 3986 3987 return 0; 3988 } 3989 3990 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3991 u32 peer_sid, 3992 struct avc_audit_data *ad) 3993 { 3994 int err; 3995 u32 if_sid; 3996 u32 node_sid; 3997 3998 err = sel_netif_sid(ifindex, &if_sid); 3999 if (err) 4000 return err; 4001 err = avc_has_perm(peer_sid, if_sid, 4002 SECCLASS_NETIF, NETIF__INGRESS, ad); 4003 if (err) 4004 return err; 4005 4006 err = sel_netnode_sid(addrp, family, &node_sid); 4007 if (err) 4008 return err; 4009 return avc_has_perm(peer_sid, node_sid, 4010 SECCLASS_NODE, NODE__RECVFROM, ad); 4011 } 4012 4013 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4014 u16 family) 4015 { 4016 int err = 0; 4017 struct sk_security_struct *sksec = sk->sk_security; 4018 u32 peer_sid; 4019 u32 sk_sid = sksec->sid; 4020 struct avc_audit_data ad; 4021 char *addrp; 4022 4023 AVC_AUDIT_DATA_INIT(&ad, NET); 4024 ad.u.net.netif = skb->iif; 4025 ad.u.net.family = family; 4026 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4027 if (err) 4028 return err; 4029 4030 if (selinux_secmark_enabled()) { 4031 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4032 PACKET__RECV, &ad); 4033 if (err) 4034 return err; 4035 } 4036 4037 if (selinux_policycap_netpeer) { 4038 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4039 if (err) 4040 return err; 4041 err = avc_has_perm(sk_sid, peer_sid, 4042 SECCLASS_PEER, PEER__RECV, &ad); 4043 if (err) 4044 selinux_netlbl_err(skb, err, 0); 4045 } else { 4046 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4047 if (err) 4048 return err; 4049 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4050 } 4051 4052 return err; 4053 } 4054 4055 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4056 { 4057 int err; 4058 struct sk_security_struct *sksec = sk->sk_security; 4059 u16 family = sk->sk_family; 4060 u32 sk_sid = sksec->sid; 4061 struct avc_audit_data ad; 4062 char *addrp; 4063 u8 secmark_active; 4064 u8 peerlbl_active; 4065 4066 if (family != PF_INET && family != PF_INET6) 4067 return 0; 4068 4069 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4070 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4071 family = PF_INET; 4072 4073 /* If any sort of compatibility mode is enabled then handoff processing 4074 * to the selinux_sock_rcv_skb_compat() function to deal with the 4075 * special handling. We do this in an attempt to keep this function 4076 * as fast and as clean as possible. */ 4077 if (!selinux_policycap_netpeer) 4078 return selinux_sock_rcv_skb_compat(sk, skb, family); 4079 4080 secmark_active = selinux_secmark_enabled(); 4081 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4082 if (!secmark_active && !peerlbl_active) 4083 return 0; 4084 4085 AVC_AUDIT_DATA_INIT(&ad, NET); 4086 ad.u.net.netif = skb->iif; 4087 ad.u.net.family = family; 4088 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4089 if (err) 4090 return err; 4091 4092 if (peerlbl_active) { 4093 u32 peer_sid; 4094 4095 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4096 if (err) 4097 return err; 4098 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4099 peer_sid, &ad); 4100 if (err) { 4101 selinux_netlbl_err(skb, err, 0); 4102 return err; 4103 } 4104 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4105 PEER__RECV, &ad); 4106 if (err) 4107 selinux_netlbl_err(skb, err, 0); 4108 } 4109 4110 if (secmark_active) { 4111 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4112 PACKET__RECV, &ad); 4113 if (err) 4114 return err; 4115 } 4116 4117 return err; 4118 } 4119 4120 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4121 int __user *optlen, unsigned len) 4122 { 4123 int err = 0; 4124 char *scontext; 4125 u32 scontext_len; 4126 struct sk_security_struct *ssec; 4127 struct inode_security_struct *isec; 4128 u32 peer_sid = SECSID_NULL; 4129 4130 isec = SOCK_INODE(sock)->i_security; 4131 4132 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4133 isec->sclass == SECCLASS_TCP_SOCKET) { 4134 ssec = sock->sk->sk_security; 4135 peer_sid = ssec->peer_sid; 4136 } 4137 if (peer_sid == SECSID_NULL) { 4138 err = -ENOPROTOOPT; 4139 goto out; 4140 } 4141 4142 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4143 4144 if (err) 4145 goto out; 4146 4147 if (scontext_len > len) { 4148 err = -ERANGE; 4149 goto out_len; 4150 } 4151 4152 if (copy_to_user(optval, scontext, scontext_len)) 4153 err = -EFAULT; 4154 4155 out_len: 4156 if (put_user(scontext_len, optlen)) 4157 err = -EFAULT; 4158 4159 kfree(scontext); 4160 out: 4161 return err; 4162 } 4163 4164 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4165 { 4166 u32 peer_secid = SECSID_NULL; 4167 u16 family; 4168 4169 if (skb && skb->protocol == htons(ETH_P_IP)) 4170 family = PF_INET; 4171 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4172 family = PF_INET6; 4173 else if (sock) 4174 family = sock->sk->sk_family; 4175 else 4176 goto out; 4177 4178 if (sock && family == PF_UNIX) 4179 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4180 else if (skb) 4181 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4182 4183 out: 4184 *secid = peer_secid; 4185 if (peer_secid == SECSID_NULL) 4186 return -EINVAL; 4187 return 0; 4188 } 4189 4190 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4191 { 4192 return sk_alloc_security(sk, family, priority); 4193 } 4194 4195 static void selinux_sk_free_security(struct sock *sk) 4196 { 4197 sk_free_security(sk); 4198 } 4199 4200 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4201 { 4202 struct sk_security_struct *ssec = sk->sk_security; 4203 struct sk_security_struct *newssec = newsk->sk_security; 4204 4205 newssec->sid = ssec->sid; 4206 newssec->peer_sid = ssec->peer_sid; 4207 newssec->sclass = ssec->sclass; 4208 4209 selinux_netlbl_sk_security_reset(newssec); 4210 } 4211 4212 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4213 { 4214 if (!sk) 4215 *secid = SECINITSID_ANY_SOCKET; 4216 else { 4217 struct sk_security_struct *sksec = sk->sk_security; 4218 4219 *secid = sksec->sid; 4220 } 4221 } 4222 4223 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4224 { 4225 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4226 struct sk_security_struct *sksec = sk->sk_security; 4227 4228 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4229 sk->sk_family == PF_UNIX) 4230 isec->sid = sksec->sid; 4231 sksec->sclass = isec->sclass; 4232 } 4233 4234 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4235 struct request_sock *req) 4236 { 4237 struct sk_security_struct *sksec = sk->sk_security; 4238 int err; 4239 u16 family = sk->sk_family; 4240 u32 newsid; 4241 u32 peersid; 4242 4243 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4244 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4245 family = PF_INET; 4246 4247 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4248 if (err) 4249 return err; 4250 if (peersid == SECSID_NULL) { 4251 req->secid = sksec->sid; 4252 req->peer_secid = SECSID_NULL; 4253 } else { 4254 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4255 if (err) 4256 return err; 4257 req->secid = newsid; 4258 req->peer_secid = peersid; 4259 } 4260 4261 return selinux_netlbl_inet_conn_request(req, family); 4262 } 4263 4264 static void selinux_inet_csk_clone(struct sock *newsk, 4265 const struct request_sock *req) 4266 { 4267 struct sk_security_struct *newsksec = newsk->sk_security; 4268 4269 newsksec->sid = req->secid; 4270 newsksec->peer_sid = req->peer_secid; 4271 /* NOTE: Ideally, we should also get the isec->sid for the 4272 new socket in sync, but we don't have the isec available yet. 4273 So we will wait until sock_graft to do it, by which 4274 time it will have been created and available. */ 4275 4276 /* We don't need to take any sort of lock here as we are the only 4277 * thread with access to newsksec */ 4278 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4279 } 4280 4281 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4282 { 4283 u16 family = sk->sk_family; 4284 struct sk_security_struct *sksec = sk->sk_security; 4285 4286 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4287 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4288 family = PF_INET; 4289 4290 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4291 } 4292 4293 static void selinux_req_classify_flow(const struct request_sock *req, 4294 struct flowi *fl) 4295 { 4296 fl->secid = req->secid; 4297 } 4298 4299 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4300 { 4301 int err = 0; 4302 u32 perm; 4303 struct nlmsghdr *nlh; 4304 struct socket *sock = sk->sk_socket; 4305 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4306 4307 if (skb->len < NLMSG_SPACE(0)) { 4308 err = -EINVAL; 4309 goto out; 4310 } 4311 nlh = nlmsg_hdr(skb); 4312 4313 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4314 if (err) { 4315 if (err == -EINVAL) { 4316 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4317 "SELinux: unrecognized netlink message" 4318 " type=%hu for sclass=%hu\n", 4319 nlh->nlmsg_type, isec->sclass); 4320 if (!selinux_enforcing || security_get_allow_unknown()) 4321 err = 0; 4322 } 4323 4324 /* Ignore */ 4325 if (err == -ENOENT) 4326 err = 0; 4327 goto out; 4328 } 4329 4330 err = socket_has_perm(current, sock, perm); 4331 out: 4332 return err; 4333 } 4334 4335 #ifdef CONFIG_NETFILTER 4336 4337 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4338 u16 family) 4339 { 4340 int err; 4341 char *addrp; 4342 u32 peer_sid; 4343 struct avc_audit_data ad; 4344 u8 secmark_active; 4345 u8 netlbl_active; 4346 u8 peerlbl_active; 4347 4348 if (!selinux_policycap_netpeer) 4349 return NF_ACCEPT; 4350 4351 secmark_active = selinux_secmark_enabled(); 4352 netlbl_active = netlbl_enabled(); 4353 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4354 if (!secmark_active && !peerlbl_active) 4355 return NF_ACCEPT; 4356 4357 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4358 return NF_DROP; 4359 4360 AVC_AUDIT_DATA_INIT(&ad, NET); 4361 ad.u.net.netif = ifindex; 4362 ad.u.net.family = family; 4363 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4364 return NF_DROP; 4365 4366 if (peerlbl_active) { 4367 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4368 peer_sid, &ad); 4369 if (err) { 4370 selinux_netlbl_err(skb, err, 1); 4371 return NF_DROP; 4372 } 4373 } 4374 4375 if (secmark_active) 4376 if (avc_has_perm(peer_sid, skb->secmark, 4377 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4378 return NF_DROP; 4379 4380 if (netlbl_active) 4381 /* we do this in the FORWARD path and not the POST_ROUTING 4382 * path because we want to make sure we apply the necessary 4383 * labeling before IPsec is applied so we can leverage AH 4384 * protection */ 4385 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4386 return NF_DROP; 4387 4388 return NF_ACCEPT; 4389 } 4390 4391 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4392 struct sk_buff *skb, 4393 const struct net_device *in, 4394 const struct net_device *out, 4395 int (*okfn)(struct sk_buff *)) 4396 { 4397 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4398 } 4399 4400 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4401 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4402 struct sk_buff *skb, 4403 const struct net_device *in, 4404 const struct net_device *out, 4405 int (*okfn)(struct sk_buff *)) 4406 { 4407 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4408 } 4409 #endif /* IPV6 */ 4410 4411 static unsigned int selinux_ip_output(struct sk_buff *skb, 4412 u16 family) 4413 { 4414 u32 sid; 4415 4416 if (!netlbl_enabled()) 4417 return NF_ACCEPT; 4418 4419 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4420 * because we want to make sure we apply the necessary labeling 4421 * before IPsec is applied so we can leverage AH protection */ 4422 if (skb->sk) { 4423 struct sk_security_struct *sksec = skb->sk->sk_security; 4424 sid = sksec->sid; 4425 } else 4426 sid = SECINITSID_KERNEL; 4427 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4428 return NF_DROP; 4429 4430 return NF_ACCEPT; 4431 } 4432 4433 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4434 struct sk_buff *skb, 4435 const struct net_device *in, 4436 const struct net_device *out, 4437 int (*okfn)(struct sk_buff *)) 4438 { 4439 return selinux_ip_output(skb, PF_INET); 4440 } 4441 4442 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4443 int ifindex, 4444 u16 family) 4445 { 4446 struct sock *sk = skb->sk; 4447 struct sk_security_struct *sksec; 4448 struct avc_audit_data ad; 4449 char *addrp; 4450 u8 proto; 4451 4452 if (sk == NULL) 4453 return NF_ACCEPT; 4454 sksec = sk->sk_security; 4455 4456 AVC_AUDIT_DATA_INIT(&ad, NET); 4457 ad.u.net.netif = ifindex; 4458 ad.u.net.family = family; 4459 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4460 return NF_DROP; 4461 4462 if (selinux_secmark_enabled()) 4463 if (avc_has_perm(sksec->sid, skb->secmark, 4464 SECCLASS_PACKET, PACKET__SEND, &ad)) 4465 return NF_DROP; 4466 4467 if (selinux_policycap_netpeer) 4468 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4469 return NF_DROP; 4470 4471 return NF_ACCEPT; 4472 } 4473 4474 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4475 u16 family) 4476 { 4477 u32 secmark_perm; 4478 u32 peer_sid; 4479 struct sock *sk; 4480 struct avc_audit_data ad; 4481 char *addrp; 4482 u8 secmark_active; 4483 u8 peerlbl_active; 4484 4485 /* If any sort of compatibility mode is enabled then handoff processing 4486 * to the selinux_ip_postroute_compat() function to deal with the 4487 * special handling. We do this in an attempt to keep this function 4488 * as fast and as clean as possible. */ 4489 if (!selinux_policycap_netpeer) 4490 return selinux_ip_postroute_compat(skb, ifindex, family); 4491 #ifdef CONFIG_XFRM 4492 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4493 * packet transformation so allow the packet to pass without any checks 4494 * since we'll have another chance to perform access control checks 4495 * when the packet is on it's final way out. 4496 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4497 * is NULL, in this case go ahead and apply access control. */ 4498 if (skb->dst != NULL && skb->dst->xfrm != NULL) 4499 return NF_ACCEPT; 4500 #endif 4501 secmark_active = selinux_secmark_enabled(); 4502 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4503 if (!secmark_active && !peerlbl_active) 4504 return NF_ACCEPT; 4505 4506 /* if the packet is being forwarded then get the peer label from the 4507 * packet itself; otherwise check to see if it is from a local 4508 * application or the kernel, if from an application get the peer label 4509 * from the sending socket, otherwise use the kernel's sid */ 4510 sk = skb->sk; 4511 if (sk == NULL) { 4512 switch (family) { 4513 case PF_INET: 4514 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4515 secmark_perm = PACKET__FORWARD_OUT; 4516 else 4517 secmark_perm = PACKET__SEND; 4518 break; 4519 case PF_INET6: 4520 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4521 secmark_perm = PACKET__FORWARD_OUT; 4522 else 4523 secmark_perm = PACKET__SEND; 4524 break; 4525 default: 4526 return NF_DROP; 4527 } 4528 if (secmark_perm == PACKET__FORWARD_OUT) { 4529 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4530 return NF_DROP; 4531 } else 4532 peer_sid = SECINITSID_KERNEL; 4533 } else { 4534 struct sk_security_struct *sksec = sk->sk_security; 4535 peer_sid = sksec->sid; 4536 secmark_perm = PACKET__SEND; 4537 } 4538 4539 AVC_AUDIT_DATA_INIT(&ad, NET); 4540 ad.u.net.netif = ifindex; 4541 ad.u.net.family = family; 4542 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4543 return NF_DROP; 4544 4545 if (secmark_active) 4546 if (avc_has_perm(peer_sid, skb->secmark, 4547 SECCLASS_PACKET, secmark_perm, &ad)) 4548 return NF_DROP; 4549 4550 if (peerlbl_active) { 4551 u32 if_sid; 4552 u32 node_sid; 4553 4554 if (sel_netif_sid(ifindex, &if_sid)) 4555 return NF_DROP; 4556 if (avc_has_perm(peer_sid, if_sid, 4557 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4558 return NF_DROP; 4559 4560 if (sel_netnode_sid(addrp, family, &node_sid)) 4561 return NF_DROP; 4562 if (avc_has_perm(peer_sid, node_sid, 4563 SECCLASS_NODE, NODE__SENDTO, &ad)) 4564 return NF_DROP; 4565 } 4566 4567 return NF_ACCEPT; 4568 } 4569 4570 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4571 struct sk_buff *skb, 4572 const struct net_device *in, 4573 const struct net_device *out, 4574 int (*okfn)(struct sk_buff *)) 4575 { 4576 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4577 } 4578 4579 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4580 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4581 struct sk_buff *skb, 4582 const struct net_device *in, 4583 const struct net_device *out, 4584 int (*okfn)(struct sk_buff *)) 4585 { 4586 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4587 } 4588 #endif /* IPV6 */ 4589 4590 #endif /* CONFIG_NETFILTER */ 4591 4592 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4593 { 4594 int err; 4595 4596 err = cap_netlink_send(sk, skb); 4597 if (err) 4598 return err; 4599 4600 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4601 err = selinux_nlmsg_perm(sk, skb); 4602 4603 return err; 4604 } 4605 4606 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4607 { 4608 int err; 4609 struct avc_audit_data ad; 4610 4611 err = cap_netlink_recv(skb, capability); 4612 if (err) 4613 return err; 4614 4615 AVC_AUDIT_DATA_INIT(&ad, CAP); 4616 ad.u.cap = capability; 4617 4618 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4619 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4620 } 4621 4622 static int ipc_alloc_security(struct task_struct *task, 4623 struct kern_ipc_perm *perm, 4624 u16 sclass) 4625 { 4626 struct ipc_security_struct *isec; 4627 u32 sid; 4628 4629 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4630 if (!isec) 4631 return -ENOMEM; 4632 4633 sid = task_sid(task); 4634 isec->sclass = sclass; 4635 isec->sid = sid; 4636 perm->security = isec; 4637 4638 return 0; 4639 } 4640 4641 static void ipc_free_security(struct kern_ipc_perm *perm) 4642 { 4643 struct ipc_security_struct *isec = perm->security; 4644 perm->security = NULL; 4645 kfree(isec); 4646 } 4647 4648 static int msg_msg_alloc_security(struct msg_msg *msg) 4649 { 4650 struct msg_security_struct *msec; 4651 4652 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4653 if (!msec) 4654 return -ENOMEM; 4655 4656 msec->sid = SECINITSID_UNLABELED; 4657 msg->security = msec; 4658 4659 return 0; 4660 } 4661 4662 static void msg_msg_free_security(struct msg_msg *msg) 4663 { 4664 struct msg_security_struct *msec = msg->security; 4665 4666 msg->security = NULL; 4667 kfree(msec); 4668 } 4669 4670 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4671 u32 perms) 4672 { 4673 struct ipc_security_struct *isec; 4674 struct avc_audit_data ad; 4675 u32 sid = current_sid(); 4676 4677 isec = ipc_perms->security; 4678 4679 AVC_AUDIT_DATA_INIT(&ad, IPC); 4680 ad.u.ipc_id = ipc_perms->key; 4681 4682 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4683 } 4684 4685 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4686 { 4687 return msg_msg_alloc_security(msg); 4688 } 4689 4690 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4691 { 4692 msg_msg_free_security(msg); 4693 } 4694 4695 /* message queue security operations */ 4696 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4697 { 4698 struct ipc_security_struct *isec; 4699 struct avc_audit_data ad; 4700 u32 sid = current_sid(); 4701 int rc; 4702 4703 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4704 if (rc) 4705 return rc; 4706 4707 isec = msq->q_perm.security; 4708 4709 AVC_AUDIT_DATA_INIT(&ad, IPC); 4710 ad.u.ipc_id = msq->q_perm.key; 4711 4712 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4713 MSGQ__CREATE, &ad); 4714 if (rc) { 4715 ipc_free_security(&msq->q_perm); 4716 return rc; 4717 } 4718 return 0; 4719 } 4720 4721 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4722 { 4723 ipc_free_security(&msq->q_perm); 4724 } 4725 4726 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4727 { 4728 struct ipc_security_struct *isec; 4729 struct avc_audit_data ad; 4730 u32 sid = current_sid(); 4731 4732 isec = msq->q_perm.security; 4733 4734 AVC_AUDIT_DATA_INIT(&ad, IPC); 4735 ad.u.ipc_id = msq->q_perm.key; 4736 4737 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4738 MSGQ__ASSOCIATE, &ad); 4739 } 4740 4741 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4742 { 4743 int err; 4744 int perms; 4745 4746 switch (cmd) { 4747 case IPC_INFO: 4748 case MSG_INFO: 4749 /* No specific object, just general system-wide information. */ 4750 return task_has_system(current, SYSTEM__IPC_INFO); 4751 case IPC_STAT: 4752 case MSG_STAT: 4753 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4754 break; 4755 case IPC_SET: 4756 perms = MSGQ__SETATTR; 4757 break; 4758 case IPC_RMID: 4759 perms = MSGQ__DESTROY; 4760 break; 4761 default: 4762 return 0; 4763 } 4764 4765 err = ipc_has_perm(&msq->q_perm, perms); 4766 return err; 4767 } 4768 4769 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4770 { 4771 struct ipc_security_struct *isec; 4772 struct msg_security_struct *msec; 4773 struct avc_audit_data ad; 4774 u32 sid = current_sid(); 4775 int rc; 4776 4777 isec = msq->q_perm.security; 4778 msec = msg->security; 4779 4780 /* 4781 * First time through, need to assign label to the message 4782 */ 4783 if (msec->sid == SECINITSID_UNLABELED) { 4784 /* 4785 * Compute new sid based on current process and 4786 * message queue this message will be stored in 4787 */ 4788 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4789 &msec->sid); 4790 if (rc) 4791 return rc; 4792 } 4793 4794 AVC_AUDIT_DATA_INIT(&ad, IPC); 4795 ad.u.ipc_id = msq->q_perm.key; 4796 4797 /* Can this process write to the queue? */ 4798 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4799 MSGQ__WRITE, &ad); 4800 if (!rc) 4801 /* Can this process send the message */ 4802 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4803 MSG__SEND, &ad); 4804 if (!rc) 4805 /* Can the message be put in the queue? */ 4806 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4807 MSGQ__ENQUEUE, &ad); 4808 4809 return rc; 4810 } 4811 4812 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4813 struct task_struct *target, 4814 long type, int mode) 4815 { 4816 struct ipc_security_struct *isec; 4817 struct msg_security_struct *msec; 4818 struct avc_audit_data ad; 4819 u32 sid = task_sid(target); 4820 int rc; 4821 4822 isec = msq->q_perm.security; 4823 msec = msg->security; 4824 4825 AVC_AUDIT_DATA_INIT(&ad, IPC); 4826 ad.u.ipc_id = msq->q_perm.key; 4827 4828 rc = avc_has_perm(sid, isec->sid, 4829 SECCLASS_MSGQ, MSGQ__READ, &ad); 4830 if (!rc) 4831 rc = avc_has_perm(sid, msec->sid, 4832 SECCLASS_MSG, MSG__RECEIVE, &ad); 4833 return rc; 4834 } 4835 4836 /* Shared Memory security operations */ 4837 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4838 { 4839 struct ipc_security_struct *isec; 4840 struct avc_audit_data ad; 4841 u32 sid = current_sid(); 4842 int rc; 4843 4844 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4845 if (rc) 4846 return rc; 4847 4848 isec = shp->shm_perm.security; 4849 4850 AVC_AUDIT_DATA_INIT(&ad, IPC); 4851 ad.u.ipc_id = shp->shm_perm.key; 4852 4853 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4854 SHM__CREATE, &ad); 4855 if (rc) { 4856 ipc_free_security(&shp->shm_perm); 4857 return rc; 4858 } 4859 return 0; 4860 } 4861 4862 static void selinux_shm_free_security(struct shmid_kernel *shp) 4863 { 4864 ipc_free_security(&shp->shm_perm); 4865 } 4866 4867 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4868 { 4869 struct ipc_security_struct *isec; 4870 struct avc_audit_data ad; 4871 u32 sid = current_sid(); 4872 4873 isec = shp->shm_perm.security; 4874 4875 AVC_AUDIT_DATA_INIT(&ad, IPC); 4876 ad.u.ipc_id = shp->shm_perm.key; 4877 4878 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4879 SHM__ASSOCIATE, &ad); 4880 } 4881 4882 /* Note, at this point, shp is locked down */ 4883 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4884 { 4885 int perms; 4886 int err; 4887 4888 switch (cmd) { 4889 case IPC_INFO: 4890 case SHM_INFO: 4891 /* No specific object, just general system-wide information. */ 4892 return task_has_system(current, SYSTEM__IPC_INFO); 4893 case IPC_STAT: 4894 case SHM_STAT: 4895 perms = SHM__GETATTR | SHM__ASSOCIATE; 4896 break; 4897 case IPC_SET: 4898 perms = SHM__SETATTR; 4899 break; 4900 case SHM_LOCK: 4901 case SHM_UNLOCK: 4902 perms = SHM__LOCK; 4903 break; 4904 case IPC_RMID: 4905 perms = SHM__DESTROY; 4906 break; 4907 default: 4908 return 0; 4909 } 4910 4911 err = ipc_has_perm(&shp->shm_perm, perms); 4912 return err; 4913 } 4914 4915 static int selinux_shm_shmat(struct shmid_kernel *shp, 4916 char __user *shmaddr, int shmflg) 4917 { 4918 u32 perms; 4919 4920 if (shmflg & SHM_RDONLY) 4921 perms = SHM__READ; 4922 else 4923 perms = SHM__READ | SHM__WRITE; 4924 4925 return ipc_has_perm(&shp->shm_perm, perms); 4926 } 4927 4928 /* Semaphore security operations */ 4929 static int selinux_sem_alloc_security(struct sem_array *sma) 4930 { 4931 struct ipc_security_struct *isec; 4932 struct avc_audit_data ad; 4933 u32 sid = current_sid(); 4934 int rc; 4935 4936 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4937 if (rc) 4938 return rc; 4939 4940 isec = sma->sem_perm.security; 4941 4942 AVC_AUDIT_DATA_INIT(&ad, IPC); 4943 ad.u.ipc_id = sma->sem_perm.key; 4944 4945 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 4946 SEM__CREATE, &ad); 4947 if (rc) { 4948 ipc_free_security(&sma->sem_perm); 4949 return rc; 4950 } 4951 return 0; 4952 } 4953 4954 static void selinux_sem_free_security(struct sem_array *sma) 4955 { 4956 ipc_free_security(&sma->sem_perm); 4957 } 4958 4959 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4960 { 4961 struct ipc_security_struct *isec; 4962 struct avc_audit_data ad; 4963 u32 sid = current_sid(); 4964 4965 isec = sma->sem_perm.security; 4966 4967 AVC_AUDIT_DATA_INIT(&ad, IPC); 4968 ad.u.ipc_id = sma->sem_perm.key; 4969 4970 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 4971 SEM__ASSOCIATE, &ad); 4972 } 4973 4974 /* Note, at this point, sma is locked down */ 4975 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4976 { 4977 int err; 4978 u32 perms; 4979 4980 switch (cmd) { 4981 case IPC_INFO: 4982 case SEM_INFO: 4983 /* No specific object, just general system-wide information. */ 4984 return task_has_system(current, SYSTEM__IPC_INFO); 4985 case GETPID: 4986 case GETNCNT: 4987 case GETZCNT: 4988 perms = SEM__GETATTR; 4989 break; 4990 case GETVAL: 4991 case GETALL: 4992 perms = SEM__READ; 4993 break; 4994 case SETVAL: 4995 case SETALL: 4996 perms = SEM__WRITE; 4997 break; 4998 case IPC_RMID: 4999 perms = SEM__DESTROY; 5000 break; 5001 case IPC_SET: 5002 perms = SEM__SETATTR; 5003 break; 5004 case IPC_STAT: 5005 case SEM_STAT: 5006 perms = SEM__GETATTR | SEM__ASSOCIATE; 5007 break; 5008 default: 5009 return 0; 5010 } 5011 5012 err = ipc_has_perm(&sma->sem_perm, perms); 5013 return err; 5014 } 5015 5016 static int selinux_sem_semop(struct sem_array *sma, 5017 struct sembuf *sops, unsigned nsops, int alter) 5018 { 5019 u32 perms; 5020 5021 if (alter) 5022 perms = SEM__READ | SEM__WRITE; 5023 else 5024 perms = SEM__READ; 5025 5026 return ipc_has_perm(&sma->sem_perm, perms); 5027 } 5028 5029 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5030 { 5031 u32 av = 0; 5032 5033 av = 0; 5034 if (flag & S_IRUGO) 5035 av |= IPC__UNIX_READ; 5036 if (flag & S_IWUGO) 5037 av |= IPC__UNIX_WRITE; 5038 5039 if (av == 0) 5040 return 0; 5041 5042 return ipc_has_perm(ipcp, av); 5043 } 5044 5045 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5046 { 5047 struct ipc_security_struct *isec = ipcp->security; 5048 *secid = isec->sid; 5049 } 5050 5051 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5052 { 5053 if (inode) 5054 inode_doinit_with_dentry(inode, dentry); 5055 } 5056 5057 static int selinux_getprocattr(struct task_struct *p, 5058 char *name, char **value) 5059 { 5060 const struct task_security_struct *__tsec; 5061 u32 sid; 5062 int error; 5063 unsigned len; 5064 5065 if (current != p) { 5066 error = current_has_perm(p, PROCESS__GETATTR); 5067 if (error) 5068 return error; 5069 } 5070 5071 rcu_read_lock(); 5072 __tsec = __task_cred(p)->security; 5073 5074 if (!strcmp(name, "current")) 5075 sid = __tsec->sid; 5076 else if (!strcmp(name, "prev")) 5077 sid = __tsec->osid; 5078 else if (!strcmp(name, "exec")) 5079 sid = __tsec->exec_sid; 5080 else if (!strcmp(name, "fscreate")) 5081 sid = __tsec->create_sid; 5082 else if (!strcmp(name, "keycreate")) 5083 sid = __tsec->keycreate_sid; 5084 else if (!strcmp(name, "sockcreate")) 5085 sid = __tsec->sockcreate_sid; 5086 else 5087 goto invalid; 5088 rcu_read_unlock(); 5089 5090 if (!sid) 5091 return 0; 5092 5093 error = security_sid_to_context(sid, value, &len); 5094 if (error) 5095 return error; 5096 return len; 5097 5098 invalid: 5099 rcu_read_unlock(); 5100 return -EINVAL; 5101 } 5102 5103 static int selinux_setprocattr(struct task_struct *p, 5104 char *name, void *value, size_t size) 5105 { 5106 struct task_security_struct *tsec; 5107 struct task_struct *tracer; 5108 struct cred *new; 5109 u32 sid = 0, ptsid; 5110 int error; 5111 char *str = value; 5112 5113 if (current != p) { 5114 /* SELinux only allows a process to change its own 5115 security attributes. */ 5116 return -EACCES; 5117 } 5118 5119 /* 5120 * Basic control over ability to set these attributes at all. 5121 * current == p, but we'll pass them separately in case the 5122 * above restriction is ever removed. 5123 */ 5124 if (!strcmp(name, "exec")) 5125 error = current_has_perm(p, PROCESS__SETEXEC); 5126 else if (!strcmp(name, "fscreate")) 5127 error = current_has_perm(p, PROCESS__SETFSCREATE); 5128 else if (!strcmp(name, "keycreate")) 5129 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5130 else if (!strcmp(name, "sockcreate")) 5131 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5132 else if (!strcmp(name, "current")) 5133 error = current_has_perm(p, PROCESS__SETCURRENT); 5134 else 5135 error = -EINVAL; 5136 if (error) 5137 return error; 5138 5139 /* Obtain a SID for the context, if one was specified. */ 5140 if (size && str[1] && str[1] != '\n') { 5141 if (str[size-1] == '\n') { 5142 str[size-1] = 0; 5143 size--; 5144 } 5145 error = security_context_to_sid(value, size, &sid); 5146 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5147 if (!capable(CAP_MAC_ADMIN)) 5148 return error; 5149 error = security_context_to_sid_force(value, size, 5150 &sid); 5151 } 5152 if (error) 5153 return error; 5154 } 5155 5156 new = prepare_creds(); 5157 if (!new) 5158 return -ENOMEM; 5159 5160 /* Permission checking based on the specified context is 5161 performed during the actual operation (execve, 5162 open/mkdir/...), when we know the full context of the 5163 operation. See selinux_bprm_set_creds for the execve 5164 checks and may_create for the file creation checks. The 5165 operation will then fail if the context is not permitted. */ 5166 tsec = new->security; 5167 if (!strcmp(name, "exec")) { 5168 tsec->exec_sid = sid; 5169 } else if (!strcmp(name, "fscreate")) { 5170 tsec->create_sid = sid; 5171 } else if (!strcmp(name, "keycreate")) { 5172 error = may_create_key(sid, p); 5173 if (error) 5174 goto abort_change; 5175 tsec->keycreate_sid = sid; 5176 } else if (!strcmp(name, "sockcreate")) { 5177 tsec->sockcreate_sid = sid; 5178 } else if (!strcmp(name, "current")) { 5179 error = -EINVAL; 5180 if (sid == 0) 5181 goto abort_change; 5182 5183 /* Only allow single threaded processes to change context */ 5184 error = -EPERM; 5185 if (!is_single_threaded(p)) { 5186 error = security_bounded_transition(tsec->sid, sid); 5187 if (error) 5188 goto abort_change; 5189 } 5190 5191 /* Check permissions for the transition. */ 5192 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5193 PROCESS__DYNTRANSITION, NULL); 5194 if (error) 5195 goto abort_change; 5196 5197 /* Check for ptracing, and update the task SID if ok. 5198 Otherwise, leave SID unchanged and fail. */ 5199 ptsid = 0; 5200 task_lock(p); 5201 tracer = tracehook_tracer_task(p); 5202 if (tracer) 5203 ptsid = task_sid(tracer); 5204 task_unlock(p); 5205 5206 if (tracer) { 5207 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5208 PROCESS__PTRACE, NULL); 5209 if (error) 5210 goto abort_change; 5211 } 5212 5213 tsec->sid = sid; 5214 } else { 5215 error = -EINVAL; 5216 goto abort_change; 5217 } 5218 5219 commit_creds(new); 5220 return size; 5221 5222 abort_change: 5223 abort_creds(new); 5224 return error; 5225 } 5226 5227 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5228 { 5229 return security_sid_to_context(secid, secdata, seclen); 5230 } 5231 5232 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5233 { 5234 return security_context_to_sid(secdata, seclen, secid); 5235 } 5236 5237 static void selinux_release_secctx(char *secdata, u32 seclen) 5238 { 5239 kfree(secdata); 5240 } 5241 5242 #ifdef CONFIG_KEYS 5243 5244 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5245 unsigned long flags) 5246 { 5247 const struct task_security_struct *tsec; 5248 struct key_security_struct *ksec; 5249 5250 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5251 if (!ksec) 5252 return -ENOMEM; 5253 5254 tsec = cred->security; 5255 if (tsec->keycreate_sid) 5256 ksec->sid = tsec->keycreate_sid; 5257 else 5258 ksec->sid = tsec->sid; 5259 5260 k->security = ksec; 5261 return 0; 5262 } 5263 5264 static void selinux_key_free(struct key *k) 5265 { 5266 struct key_security_struct *ksec = k->security; 5267 5268 k->security = NULL; 5269 kfree(ksec); 5270 } 5271 5272 static int selinux_key_permission(key_ref_t key_ref, 5273 const struct cred *cred, 5274 key_perm_t perm) 5275 { 5276 struct key *key; 5277 struct key_security_struct *ksec; 5278 u32 sid; 5279 5280 /* if no specific permissions are requested, we skip the 5281 permission check. No serious, additional covert channels 5282 appear to be created. */ 5283 if (perm == 0) 5284 return 0; 5285 5286 sid = cred_sid(cred); 5287 5288 key = key_ref_to_ptr(key_ref); 5289 ksec = key->security; 5290 5291 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5292 } 5293 5294 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5295 { 5296 struct key_security_struct *ksec = key->security; 5297 char *context = NULL; 5298 unsigned len; 5299 int rc; 5300 5301 rc = security_sid_to_context(ksec->sid, &context, &len); 5302 if (!rc) 5303 rc = len; 5304 *_buffer = context; 5305 return rc; 5306 } 5307 5308 #endif 5309 5310 static struct security_operations selinux_ops = { 5311 .name = "selinux", 5312 5313 .ptrace_may_access = selinux_ptrace_may_access, 5314 .ptrace_traceme = selinux_ptrace_traceme, 5315 .capget = selinux_capget, 5316 .capset = selinux_capset, 5317 .sysctl = selinux_sysctl, 5318 .capable = selinux_capable, 5319 .quotactl = selinux_quotactl, 5320 .quota_on = selinux_quota_on, 5321 .syslog = selinux_syslog, 5322 .vm_enough_memory = selinux_vm_enough_memory, 5323 5324 .netlink_send = selinux_netlink_send, 5325 .netlink_recv = selinux_netlink_recv, 5326 5327 .bprm_set_creds = selinux_bprm_set_creds, 5328 .bprm_committing_creds = selinux_bprm_committing_creds, 5329 .bprm_committed_creds = selinux_bprm_committed_creds, 5330 .bprm_secureexec = selinux_bprm_secureexec, 5331 5332 .sb_alloc_security = selinux_sb_alloc_security, 5333 .sb_free_security = selinux_sb_free_security, 5334 .sb_copy_data = selinux_sb_copy_data, 5335 .sb_kern_mount = selinux_sb_kern_mount, 5336 .sb_show_options = selinux_sb_show_options, 5337 .sb_statfs = selinux_sb_statfs, 5338 .sb_mount = selinux_mount, 5339 .sb_umount = selinux_umount, 5340 .sb_set_mnt_opts = selinux_set_mnt_opts, 5341 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5342 .sb_parse_opts_str = selinux_parse_opts_str, 5343 5344 5345 .inode_alloc_security = selinux_inode_alloc_security, 5346 .inode_free_security = selinux_inode_free_security, 5347 .inode_init_security = selinux_inode_init_security, 5348 .inode_create = selinux_inode_create, 5349 .inode_link = selinux_inode_link, 5350 .inode_unlink = selinux_inode_unlink, 5351 .inode_symlink = selinux_inode_symlink, 5352 .inode_mkdir = selinux_inode_mkdir, 5353 .inode_rmdir = selinux_inode_rmdir, 5354 .inode_mknod = selinux_inode_mknod, 5355 .inode_rename = selinux_inode_rename, 5356 .inode_readlink = selinux_inode_readlink, 5357 .inode_follow_link = selinux_inode_follow_link, 5358 .inode_permission = selinux_inode_permission, 5359 .inode_setattr = selinux_inode_setattr, 5360 .inode_getattr = selinux_inode_getattr, 5361 .inode_setxattr = selinux_inode_setxattr, 5362 .inode_post_setxattr = selinux_inode_post_setxattr, 5363 .inode_getxattr = selinux_inode_getxattr, 5364 .inode_listxattr = selinux_inode_listxattr, 5365 .inode_removexattr = selinux_inode_removexattr, 5366 .inode_getsecurity = selinux_inode_getsecurity, 5367 .inode_setsecurity = selinux_inode_setsecurity, 5368 .inode_listsecurity = selinux_inode_listsecurity, 5369 .inode_getsecid = selinux_inode_getsecid, 5370 5371 .file_permission = selinux_file_permission, 5372 .file_alloc_security = selinux_file_alloc_security, 5373 .file_free_security = selinux_file_free_security, 5374 .file_ioctl = selinux_file_ioctl, 5375 .file_mmap = selinux_file_mmap, 5376 .file_mprotect = selinux_file_mprotect, 5377 .file_lock = selinux_file_lock, 5378 .file_fcntl = selinux_file_fcntl, 5379 .file_set_fowner = selinux_file_set_fowner, 5380 .file_send_sigiotask = selinux_file_send_sigiotask, 5381 .file_receive = selinux_file_receive, 5382 5383 .dentry_open = selinux_dentry_open, 5384 5385 .task_create = selinux_task_create, 5386 .cred_free = selinux_cred_free, 5387 .cred_prepare = selinux_cred_prepare, 5388 .kernel_act_as = selinux_kernel_act_as, 5389 .kernel_create_files_as = selinux_kernel_create_files_as, 5390 .task_setpgid = selinux_task_setpgid, 5391 .task_getpgid = selinux_task_getpgid, 5392 .task_getsid = selinux_task_getsid, 5393 .task_getsecid = selinux_task_getsecid, 5394 .task_setnice = selinux_task_setnice, 5395 .task_setioprio = selinux_task_setioprio, 5396 .task_getioprio = selinux_task_getioprio, 5397 .task_setrlimit = selinux_task_setrlimit, 5398 .task_setscheduler = selinux_task_setscheduler, 5399 .task_getscheduler = selinux_task_getscheduler, 5400 .task_movememory = selinux_task_movememory, 5401 .task_kill = selinux_task_kill, 5402 .task_wait = selinux_task_wait, 5403 .task_to_inode = selinux_task_to_inode, 5404 5405 .ipc_permission = selinux_ipc_permission, 5406 .ipc_getsecid = selinux_ipc_getsecid, 5407 5408 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5409 .msg_msg_free_security = selinux_msg_msg_free_security, 5410 5411 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5412 .msg_queue_free_security = selinux_msg_queue_free_security, 5413 .msg_queue_associate = selinux_msg_queue_associate, 5414 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5415 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5416 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5417 5418 .shm_alloc_security = selinux_shm_alloc_security, 5419 .shm_free_security = selinux_shm_free_security, 5420 .shm_associate = selinux_shm_associate, 5421 .shm_shmctl = selinux_shm_shmctl, 5422 .shm_shmat = selinux_shm_shmat, 5423 5424 .sem_alloc_security = selinux_sem_alloc_security, 5425 .sem_free_security = selinux_sem_free_security, 5426 .sem_associate = selinux_sem_associate, 5427 .sem_semctl = selinux_sem_semctl, 5428 .sem_semop = selinux_sem_semop, 5429 5430 .d_instantiate = selinux_d_instantiate, 5431 5432 .getprocattr = selinux_getprocattr, 5433 .setprocattr = selinux_setprocattr, 5434 5435 .secid_to_secctx = selinux_secid_to_secctx, 5436 .secctx_to_secid = selinux_secctx_to_secid, 5437 .release_secctx = selinux_release_secctx, 5438 5439 .unix_stream_connect = selinux_socket_unix_stream_connect, 5440 .unix_may_send = selinux_socket_unix_may_send, 5441 5442 .socket_create = selinux_socket_create, 5443 .socket_post_create = selinux_socket_post_create, 5444 .socket_bind = selinux_socket_bind, 5445 .socket_connect = selinux_socket_connect, 5446 .socket_listen = selinux_socket_listen, 5447 .socket_accept = selinux_socket_accept, 5448 .socket_sendmsg = selinux_socket_sendmsg, 5449 .socket_recvmsg = selinux_socket_recvmsg, 5450 .socket_getsockname = selinux_socket_getsockname, 5451 .socket_getpeername = selinux_socket_getpeername, 5452 .socket_getsockopt = selinux_socket_getsockopt, 5453 .socket_setsockopt = selinux_socket_setsockopt, 5454 .socket_shutdown = selinux_socket_shutdown, 5455 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5456 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5457 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5458 .sk_alloc_security = selinux_sk_alloc_security, 5459 .sk_free_security = selinux_sk_free_security, 5460 .sk_clone_security = selinux_sk_clone_security, 5461 .sk_getsecid = selinux_sk_getsecid, 5462 .sock_graft = selinux_sock_graft, 5463 .inet_conn_request = selinux_inet_conn_request, 5464 .inet_csk_clone = selinux_inet_csk_clone, 5465 .inet_conn_established = selinux_inet_conn_established, 5466 .req_classify_flow = selinux_req_classify_flow, 5467 5468 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5469 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5470 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5471 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5472 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5473 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5474 .xfrm_state_free_security = selinux_xfrm_state_free, 5475 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5476 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5477 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5478 .xfrm_decode_session = selinux_xfrm_decode_session, 5479 #endif 5480 5481 #ifdef CONFIG_KEYS 5482 .key_alloc = selinux_key_alloc, 5483 .key_free = selinux_key_free, 5484 .key_permission = selinux_key_permission, 5485 .key_getsecurity = selinux_key_getsecurity, 5486 #endif 5487 5488 #ifdef CONFIG_AUDIT 5489 .audit_rule_init = selinux_audit_rule_init, 5490 .audit_rule_known = selinux_audit_rule_known, 5491 .audit_rule_match = selinux_audit_rule_match, 5492 .audit_rule_free = selinux_audit_rule_free, 5493 #endif 5494 }; 5495 5496 static __init int selinux_init(void) 5497 { 5498 if (!security_module_enable(&selinux_ops)) { 5499 selinux_enabled = 0; 5500 return 0; 5501 } 5502 5503 if (!selinux_enabled) { 5504 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5505 return 0; 5506 } 5507 5508 printk(KERN_INFO "SELinux: Initializing.\n"); 5509 5510 /* Set the security state for the initial task. */ 5511 cred_init_security(); 5512 5513 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5514 sizeof(struct inode_security_struct), 5515 0, SLAB_PANIC, NULL); 5516 avc_init(); 5517 5518 secondary_ops = security_ops; 5519 if (!secondary_ops) 5520 panic("SELinux: No initial security operations\n"); 5521 if (register_security(&selinux_ops)) 5522 panic("SELinux: Unable to register with kernel.\n"); 5523 5524 if (selinux_enforcing) 5525 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5526 else 5527 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5528 5529 return 0; 5530 } 5531 5532 void selinux_complete_init(void) 5533 { 5534 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5535 5536 /* Set up any superblocks initialized prior to the policy load. */ 5537 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5538 spin_lock(&sb_lock); 5539 spin_lock(&sb_security_lock); 5540 next_sb: 5541 if (!list_empty(&superblock_security_head)) { 5542 struct superblock_security_struct *sbsec = 5543 list_entry(superblock_security_head.next, 5544 struct superblock_security_struct, 5545 list); 5546 struct super_block *sb = sbsec->sb; 5547 sb->s_count++; 5548 spin_unlock(&sb_security_lock); 5549 spin_unlock(&sb_lock); 5550 down_read(&sb->s_umount); 5551 if (sb->s_root) 5552 superblock_doinit(sb, NULL); 5553 drop_super(sb); 5554 spin_lock(&sb_lock); 5555 spin_lock(&sb_security_lock); 5556 list_del_init(&sbsec->list); 5557 goto next_sb; 5558 } 5559 spin_unlock(&sb_security_lock); 5560 spin_unlock(&sb_lock); 5561 } 5562 5563 /* SELinux requires early initialization in order to label 5564 all processes and objects when they are created. */ 5565 security_initcall(selinux_init); 5566 5567 #if defined(CONFIG_NETFILTER) 5568 5569 static struct nf_hook_ops selinux_ipv4_ops[] = { 5570 { 5571 .hook = selinux_ipv4_postroute, 5572 .owner = THIS_MODULE, 5573 .pf = PF_INET, 5574 .hooknum = NF_INET_POST_ROUTING, 5575 .priority = NF_IP_PRI_SELINUX_LAST, 5576 }, 5577 { 5578 .hook = selinux_ipv4_forward, 5579 .owner = THIS_MODULE, 5580 .pf = PF_INET, 5581 .hooknum = NF_INET_FORWARD, 5582 .priority = NF_IP_PRI_SELINUX_FIRST, 5583 }, 5584 { 5585 .hook = selinux_ipv4_output, 5586 .owner = THIS_MODULE, 5587 .pf = PF_INET, 5588 .hooknum = NF_INET_LOCAL_OUT, 5589 .priority = NF_IP_PRI_SELINUX_FIRST, 5590 } 5591 }; 5592 5593 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5594 5595 static struct nf_hook_ops selinux_ipv6_ops[] = { 5596 { 5597 .hook = selinux_ipv6_postroute, 5598 .owner = THIS_MODULE, 5599 .pf = PF_INET6, 5600 .hooknum = NF_INET_POST_ROUTING, 5601 .priority = NF_IP6_PRI_SELINUX_LAST, 5602 }, 5603 { 5604 .hook = selinux_ipv6_forward, 5605 .owner = THIS_MODULE, 5606 .pf = PF_INET6, 5607 .hooknum = NF_INET_FORWARD, 5608 .priority = NF_IP6_PRI_SELINUX_FIRST, 5609 } 5610 }; 5611 5612 #endif /* IPV6 */ 5613 5614 static int __init selinux_nf_ip_init(void) 5615 { 5616 int err = 0; 5617 5618 if (!selinux_enabled) 5619 goto out; 5620 5621 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5622 5623 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5624 if (err) 5625 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5626 5627 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5628 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5629 if (err) 5630 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5631 #endif /* IPV6 */ 5632 5633 out: 5634 return err; 5635 } 5636 5637 __initcall(selinux_nf_ip_init); 5638 5639 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5640 static void selinux_nf_ip_exit(void) 5641 { 5642 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5643 5644 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5646 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5647 #endif /* IPV6 */ 5648 } 5649 #endif 5650 5651 #else /* CONFIG_NETFILTER */ 5652 5653 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5654 #define selinux_nf_ip_exit() 5655 #endif 5656 5657 #endif /* CONFIG_NETFILTER */ 5658 5659 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5660 static int selinux_disabled; 5661 5662 int selinux_disable(void) 5663 { 5664 extern void exit_sel_fs(void); 5665 5666 if (ss_initialized) { 5667 /* Not permitted after initial policy load. */ 5668 return -EINVAL; 5669 } 5670 5671 if (selinux_disabled) { 5672 /* Only do this once. */ 5673 return -EINVAL; 5674 } 5675 5676 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5677 5678 selinux_disabled = 1; 5679 selinux_enabled = 0; 5680 5681 /* Reset security_ops to the secondary module, dummy or capability. */ 5682 security_ops = secondary_ops; 5683 5684 /* Unregister netfilter hooks. */ 5685 selinux_nf_ip_exit(); 5686 5687 /* Unregister selinuxfs. */ 5688 exit_sel_fs(); 5689 5690 return 0; 5691 } 5692 #endif 5693