1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/sock.h> 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/quota.h> 70 #include <linux/un.h> /* for Unix socket types */ 71 #include <net/af_unix.h> /* for Unix socket types */ 72 #include <linux/parser.h> 73 #include <linux/nfs_mount.h> 74 #include <net/ipv6.h> 75 #include <linux/hugetlb.h> 76 #include <linux/personality.h> 77 #include <linux/audit.h> 78 #include <linux/string.h> 79 #include <linux/selinux.h> 80 #include <linux/mutex.h> 81 #include <linux/posix-timers.h> 82 #include <linux/syslog.h> 83 #include <linux/user_namespace.h> 84 #include <linux/export.h> 85 #include <linux/msg.h> 86 #include <linux/shm.h> 87 88 #include "avc.h" 89 #include "objsec.h" 90 #include "netif.h" 91 #include "netnode.h" 92 #include "netport.h" 93 #include "xfrm.h" 94 #include "netlabel.h" 95 #include "audit.h" 96 #include "avc_ss.h" 97 98 extern struct security_operations *security_ops; 99 100 /* SECMARK reference count */ 101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 102 103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 104 int selinux_enforcing; 105 106 static int __init enforcing_setup(char *str) 107 { 108 unsigned long enforcing; 109 if (!kstrtoul(str, 0, &enforcing)) 110 selinux_enforcing = enforcing ? 1 : 0; 111 return 1; 112 } 113 __setup("enforcing=", enforcing_setup); 114 #endif 115 116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 118 119 static int __init selinux_enabled_setup(char *str) 120 { 121 unsigned long enabled; 122 if (!kstrtoul(str, 0, &enabled)) 123 selinux_enabled = enabled ? 1 : 0; 124 return 1; 125 } 126 __setup("selinux=", selinux_enabled_setup); 127 #else 128 int selinux_enabled = 1; 129 #endif 130 131 static struct kmem_cache *sel_inode_cache; 132 133 /** 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 135 * 136 * Description: 137 * This function checks the SECMARK reference counter to see if any SECMARK 138 * targets are currently configured, if the reference counter is greater than 139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 140 * enabled, false (0) if SECMARK is disabled. If the always_check_network 141 * policy capability is enabled, SECMARK is always considered enabled. 142 * 143 */ 144 static int selinux_secmark_enabled(void) 145 { 146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 147 } 148 149 /** 150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 151 * 152 * Description: 153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 154 * (1) if any are enabled or false (0) if neither are enabled. If the 155 * always_check_network policy capability is enabled, peer labeling 156 * is always considered enabled. 157 * 158 */ 159 static int selinux_peerlbl_enabled(void) 160 { 161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 162 } 163 164 static int selinux_netcache_avc_callback(u32 event) 165 { 166 if (event == AVC_CALLBACK_RESET) { 167 sel_netif_flush(); 168 sel_netnode_flush(); 169 sel_netport_flush(); 170 synchronize_net(); 171 } 172 return 0; 173 } 174 175 /* 176 * initialise the security for the init task 177 */ 178 static void cred_init_security(void) 179 { 180 struct cred *cred = (struct cred *) current->real_cred; 181 struct task_security_struct *tsec; 182 183 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 184 if (!tsec) 185 panic("SELinux: Failed to initialize initial task.\n"); 186 187 tsec->osid = tsec->sid = SECINITSID_KERNEL; 188 cred->security = tsec; 189 } 190 191 /* 192 * get the security ID of a set of credentials 193 */ 194 static inline u32 cred_sid(const struct cred *cred) 195 { 196 const struct task_security_struct *tsec; 197 198 tsec = cred->security; 199 return tsec->sid; 200 } 201 202 /* 203 * get the objective security ID of a task 204 */ 205 static inline u32 task_sid(const struct task_struct *task) 206 { 207 u32 sid; 208 209 rcu_read_lock(); 210 sid = cred_sid(__task_cred(task)); 211 rcu_read_unlock(); 212 return sid; 213 } 214 215 /* 216 * get the subjective security ID of the current task 217 */ 218 static inline u32 current_sid(void) 219 { 220 const struct task_security_struct *tsec = current_security(); 221 222 return tsec->sid; 223 } 224 225 /* Allocate and free functions for each kind of security blob. */ 226 227 static int inode_alloc_security(struct inode *inode) 228 { 229 struct inode_security_struct *isec; 230 u32 sid = current_sid(); 231 232 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 233 if (!isec) 234 return -ENOMEM; 235 236 mutex_init(&isec->lock); 237 INIT_LIST_HEAD(&isec->list); 238 isec->inode = inode; 239 isec->sid = SECINITSID_UNLABELED; 240 isec->sclass = SECCLASS_FILE; 241 isec->task_sid = sid; 242 inode->i_security = isec; 243 244 return 0; 245 } 246 247 static void inode_free_rcu(struct rcu_head *head) 248 { 249 struct inode_security_struct *isec; 250 251 isec = container_of(head, struct inode_security_struct, rcu); 252 kmem_cache_free(sel_inode_cache, isec); 253 } 254 255 static void inode_free_security(struct inode *inode) 256 { 257 struct inode_security_struct *isec = inode->i_security; 258 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 259 260 spin_lock(&sbsec->isec_lock); 261 if (!list_empty(&isec->list)) 262 list_del_init(&isec->list); 263 spin_unlock(&sbsec->isec_lock); 264 265 /* 266 * The inode may still be referenced in a path walk and 267 * a call to selinux_inode_permission() can be made 268 * after inode_free_security() is called. Ideally, the VFS 269 * wouldn't do this, but fixing that is a much harder 270 * job. For now, simply free the i_security via RCU, and 271 * leave the current inode->i_security pointer intact. 272 * The inode will be freed after the RCU grace period too. 273 */ 274 call_rcu(&isec->rcu, inode_free_rcu); 275 } 276 277 static int file_alloc_security(struct file *file) 278 { 279 struct file_security_struct *fsec; 280 u32 sid = current_sid(); 281 282 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 283 if (!fsec) 284 return -ENOMEM; 285 286 fsec->sid = sid; 287 fsec->fown_sid = sid; 288 file->f_security = fsec; 289 290 return 0; 291 } 292 293 static void file_free_security(struct file *file) 294 { 295 struct file_security_struct *fsec = file->f_security; 296 file->f_security = NULL; 297 kfree(fsec); 298 } 299 300 static int superblock_alloc_security(struct super_block *sb) 301 { 302 struct superblock_security_struct *sbsec; 303 304 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 305 if (!sbsec) 306 return -ENOMEM; 307 308 mutex_init(&sbsec->lock); 309 INIT_LIST_HEAD(&sbsec->isec_head); 310 spin_lock_init(&sbsec->isec_lock); 311 sbsec->sb = sb; 312 sbsec->sid = SECINITSID_UNLABELED; 313 sbsec->def_sid = SECINITSID_FILE; 314 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 315 sb->s_security = sbsec; 316 317 return 0; 318 } 319 320 static void superblock_free_security(struct super_block *sb) 321 { 322 struct superblock_security_struct *sbsec = sb->s_security; 323 sb->s_security = NULL; 324 kfree(sbsec); 325 } 326 327 /* The file system's label must be initialized prior to use. */ 328 329 static const char *labeling_behaviors[7] = { 330 "uses xattr", 331 "uses transition SIDs", 332 "uses task SIDs", 333 "uses genfs_contexts", 334 "not configured for labeling", 335 "uses mountpoint labeling", 336 "uses native labeling", 337 }; 338 339 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 340 341 static inline int inode_doinit(struct inode *inode) 342 { 343 return inode_doinit_with_dentry(inode, NULL); 344 } 345 346 enum { 347 Opt_error = -1, 348 Opt_context = 1, 349 Opt_fscontext = 2, 350 Opt_defcontext = 3, 351 Opt_rootcontext = 4, 352 Opt_labelsupport = 5, 353 Opt_nextmntopt = 6, 354 }; 355 356 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 357 358 static const match_table_t tokens = { 359 {Opt_context, CONTEXT_STR "%s"}, 360 {Opt_fscontext, FSCONTEXT_STR "%s"}, 361 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 363 {Opt_labelsupport, LABELSUPP_STR}, 364 {Opt_error, NULL}, 365 }; 366 367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 368 369 static int may_context_mount_sb_relabel(u32 sid, 370 struct superblock_security_struct *sbsec, 371 const struct cred *cred) 372 { 373 const struct task_security_struct *tsec = cred->security; 374 int rc; 375 376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 377 FILESYSTEM__RELABELFROM, NULL); 378 if (rc) 379 return rc; 380 381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 382 FILESYSTEM__RELABELTO, NULL); 383 return rc; 384 } 385 386 static int may_context_mount_inode_relabel(u32 sid, 387 struct superblock_security_struct *sbsec, 388 const struct cred *cred) 389 { 390 const struct task_security_struct *tsec = cred->security; 391 int rc; 392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 393 FILESYSTEM__RELABELFROM, NULL); 394 if (rc) 395 return rc; 396 397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 398 FILESYSTEM__ASSOCIATE, NULL); 399 return rc; 400 } 401 402 static int selinux_is_sblabel_mnt(struct super_block *sb) 403 { 404 struct superblock_security_struct *sbsec = sb->s_security; 405 406 if (sbsec->behavior == SECURITY_FS_USE_XATTR || 407 sbsec->behavior == SECURITY_FS_USE_TRANS || 408 sbsec->behavior == SECURITY_FS_USE_TASK) 409 return 1; 410 411 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 412 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 413 return 1; 414 415 /* 416 * Special handling for rootfs. Is genfs but supports 417 * setting SELinux context on in-core inodes. 418 */ 419 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0) 420 return 1; 421 422 return 0; 423 } 424 425 static int sb_finish_set_opts(struct super_block *sb) 426 { 427 struct superblock_security_struct *sbsec = sb->s_security; 428 struct dentry *root = sb->s_root; 429 struct inode *root_inode = root->d_inode; 430 int rc = 0; 431 432 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 433 /* Make sure that the xattr handler exists and that no 434 error other than -ENODATA is returned by getxattr on 435 the root directory. -ENODATA is ok, as this may be 436 the first boot of the SELinux kernel before we have 437 assigned xattr values to the filesystem. */ 438 if (!root_inode->i_op->getxattr) { 439 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 440 "xattr support\n", sb->s_id, sb->s_type->name); 441 rc = -EOPNOTSUPP; 442 goto out; 443 } 444 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 445 if (rc < 0 && rc != -ENODATA) { 446 if (rc == -EOPNOTSUPP) 447 printk(KERN_WARNING "SELinux: (dev %s, type " 448 "%s) has no security xattr handler\n", 449 sb->s_id, sb->s_type->name); 450 else 451 printk(KERN_WARNING "SELinux: (dev %s, type " 452 "%s) getxattr errno %d\n", sb->s_id, 453 sb->s_type->name, -rc); 454 goto out; 455 } 456 } 457 458 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 459 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 460 sb->s_id, sb->s_type->name); 461 else 462 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 463 sb->s_id, sb->s_type->name, 464 labeling_behaviors[sbsec->behavior-1]); 465 466 sbsec->flags |= SE_SBINITIALIZED; 467 if (selinux_is_sblabel_mnt(sb)) 468 sbsec->flags |= SBLABEL_MNT; 469 470 /* Initialize the root inode. */ 471 rc = inode_doinit_with_dentry(root_inode, root); 472 473 /* Initialize any other inodes associated with the superblock, e.g. 474 inodes created prior to initial policy load or inodes created 475 during get_sb by a pseudo filesystem that directly 476 populates itself. */ 477 spin_lock(&sbsec->isec_lock); 478 next_inode: 479 if (!list_empty(&sbsec->isec_head)) { 480 struct inode_security_struct *isec = 481 list_entry(sbsec->isec_head.next, 482 struct inode_security_struct, list); 483 struct inode *inode = isec->inode; 484 list_del_init(&isec->list); 485 spin_unlock(&sbsec->isec_lock); 486 inode = igrab(inode); 487 if (inode) { 488 if (!IS_PRIVATE(inode)) 489 inode_doinit(inode); 490 iput(inode); 491 } 492 spin_lock(&sbsec->isec_lock); 493 goto next_inode; 494 } 495 spin_unlock(&sbsec->isec_lock); 496 out: 497 return rc; 498 } 499 500 /* 501 * This function should allow an FS to ask what it's mount security 502 * options were so it can use those later for submounts, displaying 503 * mount options, or whatever. 504 */ 505 static int selinux_get_mnt_opts(const struct super_block *sb, 506 struct security_mnt_opts *opts) 507 { 508 int rc = 0, i; 509 struct superblock_security_struct *sbsec = sb->s_security; 510 char *context = NULL; 511 u32 len; 512 char tmp; 513 514 security_init_mnt_opts(opts); 515 516 if (!(sbsec->flags & SE_SBINITIALIZED)) 517 return -EINVAL; 518 519 if (!ss_initialized) 520 return -EINVAL; 521 522 /* make sure we always check enough bits to cover the mask */ 523 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 524 525 tmp = sbsec->flags & SE_MNTMASK; 526 /* count the number of mount options for this sb */ 527 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 528 if (tmp & 0x01) 529 opts->num_mnt_opts++; 530 tmp >>= 1; 531 } 532 /* Check if the Label support flag is set */ 533 if (sbsec->flags & SBLABEL_MNT) 534 opts->num_mnt_opts++; 535 536 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 537 if (!opts->mnt_opts) { 538 rc = -ENOMEM; 539 goto out_free; 540 } 541 542 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 543 if (!opts->mnt_opts_flags) { 544 rc = -ENOMEM; 545 goto out_free; 546 } 547 548 i = 0; 549 if (sbsec->flags & FSCONTEXT_MNT) { 550 rc = security_sid_to_context(sbsec->sid, &context, &len); 551 if (rc) 552 goto out_free; 553 opts->mnt_opts[i] = context; 554 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 555 } 556 if (sbsec->flags & CONTEXT_MNT) { 557 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 558 if (rc) 559 goto out_free; 560 opts->mnt_opts[i] = context; 561 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 562 } 563 if (sbsec->flags & DEFCONTEXT_MNT) { 564 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 565 if (rc) 566 goto out_free; 567 opts->mnt_opts[i] = context; 568 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 569 } 570 if (sbsec->flags & ROOTCONTEXT_MNT) { 571 struct inode *root = sbsec->sb->s_root->d_inode; 572 struct inode_security_struct *isec = root->i_security; 573 574 rc = security_sid_to_context(isec->sid, &context, &len); 575 if (rc) 576 goto out_free; 577 opts->mnt_opts[i] = context; 578 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 579 } 580 if (sbsec->flags & SBLABEL_MNT) { 581 opts->mnt_opts[i] = NULL; 582 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 583 } 584 585 BUG_ON(i != opts->num_mnt_opts); 586 587 return 0; 588 589 out_free: 590 security_free_mnt_opts(opts); 591 return rc; 592 } 593 594 static int bad_option(struct superblock_security_struct *sbsec, char flag, 595 u32 old_sid, u32 new_sid) 596 { 597 char mnt_flags = sbsec->flags & SE_MNTMASK; 598 599 /* check if the old mount command had the same options */ 600 if (sbsec->flags & SE_SBINITIALIZED) 601 if (!(sbsec->flags & flag) || 602 (old_sid != new_sid)) 603 return 1; 604 605 /* check if we were passed the same options twice, 606 * aka someone passed context=a,context=b 607 */ 608 if (!(sbsec->flags & SE_SBINITIALIZED)) 609 if (mnt_flags & flag) 610 return 1; 611 return 0; 612 } 613 614 /* 615 * Allow filesystems with binary mount data to explicitly set mount point 616 * labeling information. 617 */ 618 static int selinux_set_mnt_opts(struct super_block *sb, 619 struct security_mnt_opts *opts, 620 unsigned long kern_flags, 621 unsigned long *set_kern_flags) 622 { 623 const struct cred *cred = current_cred(); 624 int rc = 0, i; 625 struct superblock_security_struct *sbsec = sb->s_security; 626 const char *name = sb->s_type->name; 627 struct inode *inode = sbsec->sb->s_root->d_inode; 628 struct inode_security_struct *root_isec = inode->i_security; 629 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 630 u32 defcontext_sid = 0; 631 char **mount_options = opts->mnt_opts; 632 int *flags = opts->mnt_opts_flags; 633 int num_opts = opts->num_mnt_opts; 634 635 mutex_lock(&sbsec->lock); 636 637 if (!ss_initialized) { 638 if (!num_opts) { 639 /* Defer initialization until selinux_complete_init, 640 after the initial policy is loaded and the security 641 server is ready to handle calls. */ 642 goto out; 643 } 644 rc = -EINVAL; 645 printk(KERN_WARNING "SELinux: Unable to set superblock options " 646 "before the security server is initialized\n"); 647 goto out; 648 } 649 if (kern_flags && !set_kern_flags) { 650 /* Specifying internal flags without providing a place to 651 * place the results is not allowed */ 652 rc = -EINVAL; 653 goto out; 654 } 655 656 /* 657 * Binary mount data FS will come through this function twice. Once 658 * from an explicit call and once from the generic calls from the vfs. 659 * Since the generic VFS calls will not contain any security mount data 660 * we need to skip the double mount verification. 661 * 662 * This does open a hole in which we will not notice if the first 663 * mount using this sb set explict options and a second mount using 664 * this sb does not set any security options. (The first options 665 * will be used for both mounts) 666 */ 667 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 668 && (num_opts == 0)) 669 goto out; 670 671 /* 672 * parse the mount options, check if they are valid sids. 673 * also check if someone is trying to mount the same sb more 674 * than once with different security options. 675 */ 676 for (i = 0; i < num_opts; i++) { 677 u32 sid; 678 679 if (flags[i] == SBLABEL_MNT) 680 continue; 681 rc = security_context_to_sid(mount_options[i], 682 strlen(mount_options[i]), &sid, GFP_KERNEL); 683 if (rc) { 684 printk(KERN_WARNING "SELinux: security_context_to_sid" 685 "(%s) failed for (dev %s, type %s) errno=%d\n", 686 mount_options[i], sb->s_id, name, rc); 687 goto out; 688 } 689 switch (flags[i]) { 690 case FSCONTEXT_MNT: 691 fscontext_sid = sid; 692 693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 694 fscontext_sid)) 695 goto out_double_mount; 696 697 sbsec->flags |= FSCONTEXT_MNT; 698 break; 699 case CONTEXT_MNT: 700 context_sid = sid; 701 702 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 703 context_sid)) 704 goto out_double_mount; 705 706 sbsec->flags |= CONTEXT_MNT; 707 break; 708 case ROOTCONTEXT_MNT: 709 rootcontext_sid = sid; 710 711 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 712 rootcontext_sid)) 713 goto out_double_mount; 714 715 sbsec->flags |= ROOTCONTEXT_MNT; 716 717 break; 718 case DEFCONTEXT_MNT: 719 defcontext_sid = sid; 720 721 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 722 defcontext_sid)) 723 goto out_double_mount; 724 725 sbsec->flags |= DEFCONTEXT_MNT; 726 727 break; 728 default: 729 rc = -EINVAL; 730 goto out; 731 } 732 } 733 734 if (sbsec->flags & SE_SBINITIALIZED) { 735 /* previously mounted with options, but not on this attempt? */ 736 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 737 goto out_double_mount; 738 rc = 0; 739 goto out; 740 } 741 742 if (strcmp(sb->s_type->name, "proc") == 0) 743 sbsec->flags |= SE_SBPROC; 744 745 if (!sbsec->behavior) { 746 /* 747 * Determine the labeling behavior to use for this 748 * filesystem type. 749 */ 750 rc = security_fs_use(sb); 751 if (rc) { 752 printk(KERN_WARNING 753 "%s: security_fs_use(%s) returned %d\n", 754 __func__, sb->s_type->name, rc); 755 goto out; 756 } 757 } 758 /* sets the context of the superblock for the fs being mounted. */ 759 if (fscontext_sid) { 760 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 761 if (rc) 762 goto out; 763 764 sbsec->sid = fscontext_sid; 765 } 766 767 /* 768 * Switch to using mount point labeling behavior. 769 * sets the label used on all file below the mountpoint, and will set 770 * the superblock context if not already set. 771 */ 772 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 773 sbsec->behavior = SECURITY_FS_USE_NATIVE; 774 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 775 } 776 777 if (context_sid) { 778 if (!fscontext_sid) { 779 rc = may_context_mount_sb_relabel(context_sid, sbsec, 780 cred); 781 if (rc) 782 goto out; 783 sbsec->sid = context_sid; 784 } else { 785 rc = may_context_mount_inode_relabel(context_sid, sbsec, 786 cred); 787 if (rc) 788 goto out; 789 } 790 if (!rootcontext_sid) 791 rootcontext_sid = context_sid; 792 793 sbsec->mntpoint_sid = context_sid; 794 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 795 } 796 797 if (rootcontext_sid) { 798 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 799 cred); 800 if (rc) 801 goto out; 802 803 root_isec->sid = rootcontext_sid; 804 root_isec->initialized = 1; 805 } 806 807 if (defcontext_sid) { 808 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 809 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 810 rc = -EINVAL; 811 printk(KERN_WARNING "SELinux: defcontext option is " 812 "invalid for this filesystem type\n"); 813 goto out; 814 } 815 816 if (defcontext_sid != sbsec->def_sid) { 817 rc = may_context_mount_inode_relabel(defcontext_sid, 818 sbsec, cred); 819 if (rc) 820 goto out; 821 } 822 823 sbsec->def_sid = defcontext_sid; 824 } 825 826 rc = sb_finish_set_opts(sb); 827 out: 828 mutex_unlock(&sbsec->lock); 829 return rc; 830 out_double_mount: 831 rc = -EINVAL; 832 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 833 "security settings for (dev %s, type %s)\n", sb->s_id, name); 834 goto out; 835 } 836 837 static int selinux_cmp_sb_context(const struct super_block *oldsb, 838 const struct super_block *newsb) 839 { 840 struct superblock_security_struct *old = oldsb->s_security; 841 struct superblock_security_struct *new = newsb->s_security; 842 char oldflags = old->flags & SE_MNTMASK; 843 char newflags = new->flags & SE_MNTMASK; 844 845 if (oldflags != newflags) 846 goto mismatch; 847 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 848 goto mismatch; 849 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 850 goto mismatch; 851 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 852 goto mismatch; 853 if (oldflags & ROOTCONTEXT_MNT) { 854 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security; 855 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security; 856 if (oldroot->sid != newroot->sid) 857 goto mismatch; 858 } 859 return 0; 860 mismatch: 861 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 862 "different security settings for (dev %s, " 863 "type %s)\n", newsb->s_id, newsb->s_type->name); 864 return -EBUSY; 865 } 866 867 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 868 struct super_block *newsb) 869 { 870 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 871 struct superblock_security_struct *newsbsec = newsb->s_security; 872 873 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 874 int set_context = (oldsbsec->flags & CONTEXT_MNT); 875 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 876 877 /* 878 * if the parent was able to be mounted it clearly had no special lsm 879 * mount options. thus we can safely deal with this superblock later 880 */ 881 if (!ss_initialized) 882 return 0; 883 884 /* how can we clone if the old one wasn't set up?? */ 885 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 886 887 /* if fs is reusing a sb, make sure that the contexts match */ 888 if (newsbsec->flags & SE_SBINITIALIZED) 889 return selinux_cmp_sb_context(oldsb, newsb); 890 891 mutex_lock(&newsbsec->lock); 892 893 newsbsec->flags = oldsbsec->flags; 894 895 newsbsec->sid = oldsbsec->sid; 896 newsbsec->def_sid = oldsbsec->def_sid; 897 newsbsec->behavior = oldsbsec->behavior; 898 899 if (set_context) { 900 u32 sid = oldsbsec->mntpoint_sid; 901 902 if (!set_fscontext) 903 newsbsec->sid = sid; 904 if (!set_rootcontext) { 905 struct inode *newinode = newsb->s_root->d_inode; 906 struct inode_security_struct *newisec = newinode->i_security; 907 newisec->sid = sid; 908 } 909 newsbsec->mntpoint_sid = sid; 910 } 911 if (set_rootcontext) { 912 const struct inode *oldinode = oldsb->s_root->d_inode; 913 const struct inode_security_struct *oldisec = oldinode->i_security; 914 struct inode *newinode = newsb->s_root->d_inode; 915 struct inode_security_struct *newisec = newinode->i_security; 916 917 newisec->sid = oldisec->sid; 918 } 919 920 sb_finish_set_opts(newsb); 921 mutex_unlock(&newsbsec->lock); 922 return 0; 923 } 924 925 static int selinux_parse_opts_str(char *options, 926 struct security_mnt_opts *opts) 927 { 928 char *p; 929 char *context = NULL, *defcontext = NULL; 930 char *fscontext = NULL, *rootcontext = NULL; 931 int rc, num_mnt_opts = 0; 932 933 opts->num_mnt_opts = 0; 934 935 /* Standard string-based options. */ 936 while ((p = strsep(&options, "|")) != NULL) { 937 int token; 938 substring_t args[MAX_OPT_ARGS]; 939 940 if (!*p) 941 continue; 942 943 token = match_token(p, tokens, args); 944 945 switch (token) { 946 case Opt_context: 947 if (context || defcontext) { 948 rc = -EINVAL; 949 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 950 goto out_err; 951 } 952 context = match_strdup(&args[0]); 953 if (!context) { 954 rc = -ENOMEM; 955 goto out_err; 956 } 957 break; 958 959 case Opt_fscontext: 960 if (fscontext) { 961 rc = -EINVAL; 962 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 963 goto out_err; 964 } 965 fscontext = match_strdup(&args[0]); 966 if (!fscontext) { 967 rc = -ENOMEM; 968 goto out_err; 969 } 970 break; 971 972 case Opt_rootcontext: 973 if (rootcontext) { 974 rc = -EINVAL; 975 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 976 goto out_err; 977 } 978 rootcontext = match_strdup(&args[0]); 979 if (!rootcontext) { 980 rc = -ENOMEM; 981 goto out_err; 982 } 983 break; 984 985 case Opt_defcontext: 986 if (context || defcontext) { 987 rc = -EINVAL; 988 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 989 goto out_err; 990 } 991 defcontext = match_strdup(&args[0]); 992 if (!defcontext) { 993 rc = -ENOMEM; 994 goto out_err; 995 } 996 break; 997 case Opt_labelsupport: 998 break; 999 default: 1000 rc = -EINVAL; 1001 printk(KERN_WARNING "SELinux: unknown mount option\n"); 1002 goto out_err; 1003 1004 } 1005 } 1006 1007 rc = -ENOMEM; 1008 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 1009 if (!opts->mnt_opts) 1010 goto out_err; 1011 1012 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 1013 if (!opts->mnt_opts_flags) { 1014 kfree(opts->mnt_opts); 1015 goto out_err; 1016 } 1017 1018 if (fscontext) { 1019 opts->mnt_opts[num_mnt_opts] = fscontext; 1020 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1021 } 1022 if (context) { 1023 opts->mnt_opts[num_mnt_opts] = context; 1024 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1025 } 1026 if (rootcontext) { 1027 opts->mnt_opts[num_mnt_opts] = rootcontext; 1028 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1029 } 1030 if (defcontext) { 1031 opts->mnt_opts[num_mnt_opts] = defcontext; 1032 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1033 } 1034 1035 opts->num_mnt_opts = num_mnt_opts; 1036 return 0; 1037 1038 out_err: 1039 kfree(context); 1040 kfree(defcontext); 1041 kfree(fscontext); 1042 kfree(rootcontext); 1043 return rc; 1044 } 1045 /* 1046 * string mount options parsing and call set the sbsec 1047 */ 1048 static int superblock_doinit(struct super_block *sb, void *data) 1049 { 1050 int rc = 0; 1051 char *options = data; 1052 struct security_mnt_opts opts; 1053 1054 security_init_mnt_opts(&opts); 1055 1056 if (!data) 1057 goto out; 1058 1059 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1060 1061 rc = selinux_parse_opts_str(options, &opts); 1062 if (rc) 1063 goto out_err; 1064 1065 out: 1066 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1067 1068 out_err: 1069 security_free_mnt_opts(&opts); 1070 return rc; 1071 } 1072 1073 static void selinux_write_opts(struct seq_file *m, 1074 struct security_mnt_opts *opts) 1075 { 1076 int i; 1077 char *prefix; 1078 1079 for (i = 0; i < opts->num_mnt_opts; i++) { 1080 char *has_comma; 1081 1082 if (opts->mnt_opts[i]) 1083 has_comma = strchr(opts->mnt_opts[i], ','); 1084 else 1085 has_comma = NULL; 1086 1087 switch (opts->mnt_opts_flags[i]) { 1088 case CONTEXT_MNT: 1089 prefix = CONTEXT_STR; 1090 break; 1091 case FSCONTEXT_MNT: 1092 prefix = FSCONTEXT_STR; 1093 break; 1094 case ROOTCONTEXT_MNT: 1095 prefix = ROOTCONTEXT_STR; 1096 break; 1097 case DEFCONTEXT_MNT: 1098 prefix = DEFCONTEXT_STR; 1099 break; 1100 case SBLABEL_MNT: 1101 seq_putc(m, ','); 1102 seq_puts(m, LABELSUPP_STR); 1103 continue; 1104 default: 1105 BUG(); 1106 return; 1107 }; 1108 /* we need a comma before each option */ 1109 seq_putc(m, ','); 1110 seq_puts(m, prefix); 1111 if (has_comma) 1112 seq_putc(m, '\"'); 1113 seq_puts(m, opts->mnt_opts[i]); 1114 if (has_comma) 1115 seq_putc(m, '\"'); 1116 } 1117 } 1118 1119 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1120 { 1121 struct security_mnt_opts opts; 1122 int rc; 1123 1124 rc = selinux_get_mnt_opts(sb, &opts); 1125 if (rc) { 1126 /* before policy load we may get EINVAL, don't show anything */ 1127 if (rc == -EINVAL) 1128 rc = 0; 1129 return rc; 1130 } 1131 1132 selinux_write_opts(m, &opts); 1133 1134 security_free_mnt_opts(&opts); 1135 1136 return rc; 1137 } 1138 1139 static inline u16 inode_mode_to_security_class(umode_t mode) 1140 { 1141 switch (mode & S_IFMT) { 1142 case S_IFSOCK: 1143 return SECCLASS_SOCK_FILE; 1144 case S_IFLNK: 1145 return SECCLASS_LNK_FILE; 1146 case S_IFREG: 1147 return SECCLASS_FILE; 1148 case S_IFBLK: 1149 return SECCLASS_BLK_FILE; 1150 case S_IFDIR: 1151 return SECCLASS_DIR; 1152 case S_IFCHR: 1153 return SECCLASS_CHR_FILE; 1154 case S_IFIFO: 1155 return SECCLASS_FIFO_FILE; 1156 1157 } 1158 1159 return SECCLASS_FILE; 1160 } 1161 1162 static inline int default_protocol_stream(int protocol) 1163 { 1164 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1165 } 1166 1167 static inline int default_protocol_dgram(int protocol) 1168 { 1169 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1170 } 1171 1172 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1173 { 1174 switch (family) { 1175 case PF_UNIX: 1176 switch (type) { 1177 case SOCK_STREAM: 1178 case SOCK_SEQPACKET: 1179 return SECCLASS_UNIX_STREAM_SOCKET; 1180 case SOCK_DGRAM: 1181 return SECCLASS_UNIX_DGRAM_SOCKET; 1182 } 1183 break; 1184 case PF_INET: 1185 case PF_INET6: 1186 switch (type) { 1187 case SOCK_STREAM: 1188 if (default_protocol_stream(protocol)) 1189 return SECCLASS_TCP_SOCKET; 1190 else 1191 return SECCLASS_RAWIP_SOCKET; 1192 case SOCK_DGRAM: 1193 if (default_protocol_dgram(protocol)) 1194 return SECCLASS_UDP_SOCKET; 1195 else 1196 return SECCLASS_RAWIP_SOCKET; 1197 case SOCK_DCCP: 1198 return SECCLASS_DCCP_SOCKET; 1199 default: 1200 return SECCLASS_RAWIP_SOCKET; 1201 } 1202 break; 1203 case PF_NETLINK: 1204 switch (protocol) { 1205 case NETLINK_ROUTE: 1206 return SECCLASS_NETLINK_ROUTE_SOCKET; 1207 case NETLINK_FIREWALL: 1208 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1209 case NETLINK_SOCK_DIAG: 1210 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1211 case NETLINK_NFLOG: 1212 return SECCLASS_NETLINK_NFLOG_SOCKET; 1213 case NETLINK_XFRM: 1214 return SECCLASS_NETLINK_XFRM_SOCKET; 1215 case NETLINK_SELINUX: 1216 return SECCLASS_NETLINK_SELINUX_SOCKET; 1217 case NETLINK_AUDIT: 1218 return SECCLASS_NETLINK_AUDIT_SOCKET; 1219 case NETLINK_IP6_FW: 1220 return SECCLASS_NETLINK_IP6FW_SOCKET; 1221 case NETLINK_DNRTMSG: 1222 return SECCLASS_NETLINK_DNRT_SOCKET; 1223 case NETLINK_KOBJECT_UEVENT: 1224 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1225 default: 1226 return SECCLASS_NETLINK_SOCKET; 1227 } 1228 case PF_PACKET: 1229 return SECCLASS_PACKET_SOCKET; 1230 case PF_KEY: 1231 return SECCLASS_KEY_SOCKET; 1232 case PF_APPLETALK: 1233 return SECCLASS_APPLETALK_SOCKET; 1234 } 1235 1236 return SECCLASS_SOCKET; 1237 } 1238 1239 #ifdef CONFIG_PROC_FS 1240 static int selinux_proc_get_sid(struct dentry *dentry, 1241 u16 tclass, 1242 u32 *sid) 1243 { 1244 int rc; 1245 char *buffer, *path; 1246 1247 buffer = (char *)__get_free_page(GFP_KERNEL); 1248 if (!buffer) 1249 return -ENOMEM; 1250 1251 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1252 if (IS_ERR(path)) 1253 rc = PTR_ERR(path); 1254 else { 1255 /* each process gets a /proc/PID/ entry. Strip off the 1256 * PID part to get a valid selinux labeling. 1257 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1258 while (path[1] >= '0' && path[1] <= '9') { 1259 path[1] = '/'; 1260 path++; 1261 } 1262 rc = security_genfs_sid("proc", path, tclass, sid); 1263 } 1264 free_page((unsigned long)buffer); 1265 return rc; 1266 } 1267 #else 1268 static int selinux_proc_get_sid(struct dentry *dentry, 1269 u16 tclass, 1270 u32 *sid) 1271 { 1272 return -EINVAL; 1273 } 1274 #endif 1275 1276 /* The inode's security attributes must be initialized before first use. */ 1277 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1278 { 1279 struct superblock_security_struct *sbsec = NULL; 1280 struct inode_security_struct *isec = inode->i_security; 1281 u32 sid; 1282 struct dentry *dentry; 1283 #define INITCONTEXTLEN 255 1284 char *context = NULL; 1285 unsigned len = 0; 1286 int rc = 0; 1287 1288 if (isec->initialized) 1289 goto out; 1290 1291 mutex_lock(&isec->lock); 1292 if (isec->initialized) 1293 goto out_unlock; 1294 1295 sbsec = inode->i_sb->s_security; 1296 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1297 /* Defer initialization until selinux_complete_init, 1298 after the initial policy is loaded and the security 1299 server is ready to handle calls. */ 1300 spin_lock(&sbsec->isec_lock); 1301 if (list_empty(&isec->list)) 1302 list_add(&isec->list, &sbsec->isec_head); 1303 spin_unlock(&sbsec->isec_lock); 1304 goto out_unlock; 1305 } 1306 1307 switch (sbsec->behavior) { 1308 case SECURITY_FS_USE_NATIVE: 1309 break; 1310 case SECURITY_FS_USE_XATTR: 1311 if (!inode->i_op->getxattr) { 1312 isec->sid = sbsec->def_sid; 1313 break; 1314 } 1315 1316 /* Need a dentry, since the xattr API requires one. 1317 Life would be simpler if we could just pass the inode. */ 1318 if (opt_dentry) { 1319 /* Called from d_instantiate or d_splice_alias. */ 1320 dentry = dget(opt_dentry); 1321 } else { 1322 /* Called from selinux_complete_init, try to find a dentry. */ 1323 dentry = d_find_alias(inode); 1324 } 1325 if (!dentry) { 1326 /* 1327 * this is can be hit on boot when a file is accessed 1328 * before the policy is loaded. When we load policy we 1329 * may find inodes that have no dentry on the 1330 * sbsec->isec_head list. No reason to complain as these 1331 * will get fixed up the next time we go through 1332 * inode_doinit with a dentry, before these inodes could 1333 * be used again by userspace. 1334 */ 1335 goto out_unlock; 1336 } 1337 1338 len = INITCONTEXTLEN; 1339 context = kmalloc(len+1, GFP_NOFS); 1340 if (!context) { 1341 rc = -ENOMEM; 1342 dput(dentry); 1343 goto out_unlock; 1344 } 1345 context[len] = '\0'; 1346 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1347 context, len); 1348 if (rc == -ERANGE) { 1349 kfree(context); 1350 1351 /* Need a larger buffer. Query for the right size. */ 1352 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1353 NULL, 0); 1354 if (rc < 0) { 1355 dput(dentry); 1356 goto out_unlock; 1357 } 1358 len = rc; 1359 context = kmalloc(len+1, GFP_NOFS); 1360 if (!context) { 1361 rc = -ENOMEM; 1362 dput(dentry); 1363 goto out_unlock; 1364 } 1365 context[len] = '\0'; 1366 rc = inode->i_op->getxattr(dentry, 1367 XATTR_NAME_SELINUX, 1368 context, len); 1369 } 1370 dput(dentry); 1371 if (rc < 0) { 1372 if (rc != -ENODATA) { 1373 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1374 "%d for dev=%s ino=%ld\n", __func__, 1375 -rc, inode->i_sb->s_id, inode->i_ino); 1376 kfree(context); 1377 goto out_unlock; 1378 } 1379 /* Map ENODATA to the default file SID */ 1380 sid = sbsec->def_sid; 1381 rc = 0; 1382 } else { 1383 rc = security_context_to_sid_default(context, rc, &sid, 1384 sbsec->def_sid, 1385 GFP_NOFS); 1386 if (rc) { 1387 char *dev = inode->i_sb->s_id; 1388 unsigned long ino = inode->i_ino; 1389 1390 if (rc == -EINVAL) { 1391 if (printk_ratelimit()) 1392 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1393 "context=%s. This indicates you may need to relabel the inode or the " 1394 "filesystem in question.\n", ino, dev, context); 1395 } else { 1396 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1397 "returned %d for dev=%s ino=%ld\n", 1398 __func__, context, -rc, dev, ino); 1399 } 1400 kfree(context); 1401 /* Leave with the unlabeled SID */ 1402 rc = 0; 1403 break; 1404 } 1405 } 1406 kfree(context); 1407 isec->sid = sid; 1408 break; 1409 case SECURITY_FS_USE_TASK: 1410 isec->sid = isec->task_sid; 1411 break; 1412 case SECURITY_FS_USE_TRANS: 1413 /* Default to the fs SID. */ 1414 isec->sid = sbsec->sid; 1415 1416 /* Try to obtain a transition SID. */ 1417 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1418 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1419 isec->sclass, NULL, &sid); 1420 if (rc) 1421 goto out_unlock; 1422 isec->sid = sid; 1423 break; 1424 case SECURITY_FS_USE_MNTPOINT: 1425 isec->sid = sbsec->mntpoint_sid; 1426 break; 1427 default: 1428 /* Default to the fs superblock SID. */ 1429 isec->sid = sbsec->sid; 1430 1431 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1432 /* We must have a dentry to determine the label on 1433 * procfs inodes */ 1434 if (opt_dentry) 1435 /* Called from d_instantiate or 1436 * d_splice_alias. */ 1437 dentry = dget(opt_dentry); 1438 else 1439 /* Called from selinux_complete_init, try to 1440 * find a dentry. */ 1441 dentry = d_find_alias(inode); 1442 /* 1443 * This can be hit on boot when a file is accessed 1444 * before the policy is loaded. When we load policy we 1445 * may find inodes that have no dentry on the 1446 * sbsec->isec_head list. No reason to complain as 1447 * these will get fixed up the next time we go through 1448 * inode_doinit() with a dentry, before these inodes 1449 * could be used again by userspace. 1450 */ 1451 if (!dentry) 1452 goto out_unlock; 1453 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1454 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid); 1455 dput(dentry); 1456 if (rc) 1457 goto out_unlock; 1458 isec->sid = sid; 1459 } 1460 break; 1461 } 1462 1463 isec->initialized = 1; 1464 1465 out_unlock: 1466 mutex_unlock(&isec->lock); 1467 out: 1468 if (isec->sclass == SECCLASS_FILE) 1469 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1470 return rc; 1471 } 1472 1473 /* Convert a Linux signal to an access vector. */ 1474 static inline u32 signal_to_av(int sig) 1475 { 1476 u32 perm = 0; 1477 1478 switch (sig) { 1479 case SIGCHLD: 1480 /* Commonly granted from child to parent. */ 1481 perm = PROCESS__SIGCHLD; 1482 break; 1483 case SIGKILL: 1484 /* Cannot be caught or ignored */ 1485 perm = PROCESS__SIGKILL; 1486 break; 1487 case SIGSTOP: 1488 /* Cannot be caught or ignored */ 1489 perm = PROCESS__SIGSTOP; 1490 break; 1491 default: 1492 /* All other signals. */ 1493 perm = PROCESS__SIGNAL; 1494 break; 1495 } 1496 1497 return perm; 1498 } 1499 1500 /* 1501 * Check permission between a pair of credentials 1502 * fork check, ptrace check, etc. 1503 */ 1504 static int cred_has_perm(const struct cred *actor, 1505 const struct cred *target, 1506 u32 perms) 1507 { 1508 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1509 1510 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1511 } 1512 1513 /* 1514 * Check permission between a pair of tasks, e.g. signal checks, 1515 * fork check, ptrace check, etc. 1516 * tsk1 is the actor and tsk2 is the target 1517 * - this uses the default subjective creds of tsk1 1518 */ 1519 static int task_has_perm(const struct task_struct *tsk1, 1520 const struct task_struct *tsk2, 1521 u32 perms) 1522 { 1523 const struct task_security_struct *__tsec1, *__tsec2; 1524 u32 sid1, sid2; 1525 1526 rcu_read_lock(); 1527 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1528 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1529 rcu_read_unlock(); 1530 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1531 } 1532 1533 /* 1534 * Check permission between current and another task, e.g. signal checks, 1535 * fork check, ptrace check, etc. 1536 * current is the actor and tsk2 is the target 1537 * - this uses current's subjective creds 1538 */ 1539 static int current_has_perm(const struct task_struct *tsk, 1540 u32 perms) 1541 { 1542 u32 sid, tsid; 1543 1544 sid = current_sid(); 1545 tsid = task_sid(tsk); 1546 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1547 } 1548 1549 #if CAP_LAST_CAP > 63 1550 #error Fix SELinux to handle capabilities > 63. 1551 #endif 1552 1553 /* Check whether a task is allowed to use a capability. */ 1554 static int cred_has_capability(const struct cred *cred, 1555 int cap, int audit) 1556 { 1557 struct common_audit_data ad; 1558 struct av_decision avd; 1559 u16 sclass; 1560 u32 sid = cred_sid(cred); 1561 u32 av = CAP_TO_MASK(cap); 1562 int rc; 1563 1564 ad.type = LSM_AUDIT_DATA_CAP; 1565 ad.u.cap = cap; 1566 1567 switch (CAP_TO_INDEX(cap)) { 1568 case 0: 1569 sclass = SECCLASS_CAPABILITY; 1570 break; 1571 case 1: 1572 sclass = SECCLASS_CAPABILITY2; 1573 break; 1574 default: 1575 printk(KERN_ERR 1576 "SELinux: out of range capability %d\n", cap); 1577 BUG(); 1578 return -EINVAL; 1579 } 1580 1581 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1582 if (audit == SECURITY_CAP_AUDIT) { 1583 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1584 if (rc2) 1585 return rc2; 1586 } 1587 return rc; 1588 } 1589 1590 /* Check whether a task is allowed to use a system operation. */ 1591 static int task_has_system(struct task_struct *tsk, 1592 u32 perms) 1593 { 1594 u32 sid = task_sid(tsk); 1595 1596 return avc_has_perm(sid, SECINITSID_KERNEL, 1597 SECCLASS_SYSTEM, perms, NULL); 1598 } 1599 1600 /* Check whether a task has a particular permission to an inode. 1601 The 'adp' parameter is optional and allows other audit 1602 data to be passed (e.g. the dentry). */ 1603 static int inode_has_perm(const struct cred *cred, 1604 struct inode *inode, 1605 u32 perms, 1606 struct common_audit_data *adp) 1607 { 1608 struct inode_security_struct *isec; 1609 u32 sid; 1610 1611 validate_creds(cred); 1612 1613 if (unlikely(IS_PRIVATE(inode))) 1614 return 0; 1615 1616 sid = cred_sid(cred); 1617 isec = inode->i_security; 1618 1619 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1620 } 1621 1622 /* Same as inode_has_perm, but pass explicit audit data containing 1623 the dentry to help the auditing code to more easily generate the 1624 pathname if needed. */ 1625 static inline int dentry_has_perm(const struct cred *cred, 1626 struct dentry *dentry, 1627 u32 av) 1628 { 1629 struct inode *inode = dentry->d_inode; 1630 struct common_audit_data ad; 1631 1632 ad.type = LSM_AUDIT_DATA_DENTRY; 1633 ad.u.dentry = dentry; 1634 return inode_has_perm(cred, inode, av, &ad); 1635 } 1636 1637 /* Same as inode_has_perm, but pass explicit audit data containing 1638 the path to help the auditing code to more easily generate the 1639 pathname if needed. */ 1640 static inline int path_has_perm(const struct cred *cred, 1641 struct path *path, 1642 u32 av) 1643 { 1644 struct inode *inode = path->dentry->d_inode; 1645 struct common_audit_data ad; 1646 1647 ad.type = LSM_AUDIT_DATA_PATH; 1648 ad.u.path = *path; 1649 return inode_has_perm(cred, inode, av, &ad); 1650 } 1651 1652 /* Same as path_has_perm, but uses the inode from the file struct. */ 1653 static inline int file_path_has_perm(const struct cred *cred, 1654 struct file *file, 1655 u32 av) 1656 { 1657 struct common_audit_data ad; 1658 1659 ad.type = LSM_AUDIT_DATA_PATH; 1660 ad.u.path = file->f_path; 1661 return inode_has_perm(cred, file_inode(file), av, &ad); 1662 } 1663 1664 /* Check whether a task can use an open file descriptor to 1665 access an inode in a given way. Check access to the 1666 descriptor itself, and then use dentry_has_perm to 1667 check a particular permission to the file. 1668 Access to the descriptor is implicitly granted if it 1669 has the same SID as the process. If av is zero, then 1670 access to the file is not checked, e.g. for cases 1671 where only the descriptor is affected like seek. */ 1672 static int file_has_perm(const struct cred *cred, 1673 struct file *file, 1674 u32 av) 1675 { 1676 struct file_security_struct *fsec = file->f_security; 1677 struct inode *inode = file_inode(file); 1678 struct common_audit_data ad; 1679 u32 sid = cred_sid(cred); 1680 int rc; 1681 1682 ad.type = LSM_AUDIT_DATA_PATH; 1683 ad.u.path = file->f_path; 1684 1685 if (sid != fsec->sid) { 1686 rc = avc_has_perm(sid, fsec->sid, 1687 SECCLASS_FD, 1688 FD__USE, 1689 &ad); 1690 if (rc) 1691 goto out; 1692 } 1693 1694 /* av is zero if only checking access to the descriptor. */ 1695 rc = 0; 1696 if (av) 1697 rc = inode_has_perm(cred, inode, av, &ad); 1698 1699 out: 1700 return rc; 1701 } 1702 1703 /* Check whether a task can create a file. */ 1704 static int may_create(struct inode *dir, 1705 struct dentry *dentry, 1706 u16 tclass) 1707 { 1708 const struct task_security_struct *tsec = current_security(); 1709 struct inode_security_struct *dsec; 1710 struct superblock_security_struct *sbsec; 1711 u32 sid, newsid; 1712 struct common_audit_data ad; 1713 int rc; 1714 1715 dsec = dir->i_security; 1716 sbsec = dir->i_sb->s_security; 1717 1718 sid = tsec->sid; 1719 newsid = tsec->create_sid; 1720 1721 ad.type = LSM_AUDIT_DATA_DENTRY; 1722 ad.u.dentry = dentry; 1723 1724 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1725 DIR__ADD_NAME | DIR__SEARCH, 1726 &ad); 1727 if (rc) 1728 return rc; 1729 1730 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 1731 rc = security_transition_sid(sid, dsec->sid, tclass, 1732 &dentry->d_name, &newsid); 1733 if (rc) 1734 return rc; 1735 } 1736 1737 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1738 if (rc) 1739 return rc; 1740 1741 return avc_has_perm(newsid, sbsec->sid, 1742 SECCLASS_FILESYSTEM, 1743 FILESYSTEM__ASSOCIATE, &ad); 1744 } 1745 1746 /* Check whether a task can create a key. */ 1747 static int may_create_key(u32 ksid, 1748 struct task_struct *ctx) 1749 { 1750 u32 sid = task_sid(ctx); 1751 1752 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1753 } 1754 1755 #define MAY_LINK 0 1756 #define MAY_UNLINK 1 1757 #define MAY_RMDIR 2 1758 1759 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1760 static int may_link(struct inode *dir, 1761 struct dentry *dentry, 1762 int kind) 1763 1764 { 1765 struct inode_security_struct *dsec, *isec; 1766 struct common_audit_data ad; 1767 u32 sid = current_sid(); 1768 u32 av; 1769 int rc; 1770 1771 dsec = dir->i_security; 1772 isec = dentry->d_inode->i_security; 1773 1774 ad.type = LSM_AUDIT_DATA_DENTRY; 1775 ad.u.dentry = dentry; 1776 1777 av = DIR__SEARCH; 1778 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1779 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1780 if (rc) 1781 return rc; 1782 1783 switch (kind) { 1784 case MAY_LINK: 1785 av = FILE__LINK; 1786 break; 1787 case MAY_UNLINK: 1788 av = FILE__UNLINK; 1789 break; 1790 case MAY_RMDIR: 1791 av = DIR__RMDIR; 1792 break; 1793 default: 1794 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1795 __func__, kind); 1796 return 0; 1797 } 1798 1799 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1800 return rc; 1801 } 1802 1803 static inline int may_rename(struct inode *old_dir, 1804 struct dentry *old_dentry, 1805 struct inode *new_dir, 1806 struct dentry *new_dentry) 1807 { 1808 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1809 struct common_audit_data ad; 1810 u32 sid = current_sid(); 1811 u32 av; 1812 int old_is_dir, new_is_dir; 1813 int rc; 1814 1815 old_dsec = old_dir->i_security; 1816 old_isec = old_dentry->d_inode->i_security; 1817 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1818 new_dsec = new_dir->i_security; 1819 1820 ad.type = LSM_AUDIT_DATA_DENTRY; 1821 1822 ad.u.dentry = old_dentry; 1823 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1824 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1825 if (rc) 1826 return rc; 1827 rc = avc_has_perm(sid, old_isec->sid, 1828 old_isec->sclass, FILE__RENAME, &ad); 1829 if (rc) 1830 return rc; 1831 if (old_is_dir && new_dir != old_dir) { 1832 rc = avc_has_perm(sid, old_isec->sid, 1833 old_isec->sclass, DIR__REPARENT, &ad); 1834 if (rc) 1835 return rc; 1836 } 1837 1838 ad.u.dentry = new_dentry; 1839 av = DIR__ADD_NAME | DIR__SEARCH; 1840 if (new_dentry->d_inode) 1841 av |= DIR__REMOVE_NAME; 1842 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1843 if (rc) 1844 return rc; 1845 if (new_dentry->d_inode) { 1846 new_isec = new_dentry->d_inode->i_security; 1847 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1848 rc = avc_has_perm(sid, new_isec->sid, 1849 new_isec->sclass, 1850 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1851 if (rc) 1852 return rc; 1853 } 1854 1855 return 0; 1856 } 1857 1858 /* Check whether a task can perform a filesystem operation. */ 1859 static int superblock_has_perm(const struct cred *cred, 1860 struct super_block *sb, 1861 u32 perms, 1862 struct common_audit_data *ad) 1863 { 1864 struct superblock_security_struct *sbsec; 1865 u32 sid = cred_sid(cred); 1866 1867 sbsec = sb->s_security; 1868 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1869 } 1870 1871 /* Convert a Linux mode and permission mask to an access vector. */ 1872 static inline u32 file_mask_to_av(int mode, int mask) 1873 { 1874 u32 av = 0; 1875 1876 if (!S_ISDIR(mode)) { 1877 if (mask & MAY_EXEC) 1878 av |= FILE__EXECUTE; 1879 if (mask & MAY_READ) 1880 av |= FILE__READ; 1881 1882 if (mask & MAY_APPEND) 1883 av |= FILE__APPEND; 1884 else if (mask & MAY_WRITE) 1885 av |= FILE__WRITE; 1886 1887 } else { 1888 if (mask & MAY_EXEC) 1889 av |= DIR__SEARCH; 1890 if (mask & MAY_WRITE) 1891 av |= DIR__WRITE; 1892 if (mask & MAY_READ) 1893 av |= DIR__READ; 1894 } 1895 1896 return av; 1897 } 1898 1899 /* Convert a Linux file to an access vector. */ 1900 static inline u32 file_to_av(struct file *file) 1901 { 1902 u32 av = 0; 1903 1904 if (file->f_mode & FMODE_READ) 1905 av |= FILE__READ; 1906 if (file->f_mode & FMODE_WRITE) { 1907 if (file->f_flags & O_APPEND) 1908 av |= FILE__APPEND; 1909 else 1910 av |= FILE__WRITE; 1911 } 1912 if (!av) { 1913 /* 1914 * Special file opened with flags 3 for ioctl-only use. 1915 */ 1916 av = FILE__IOCTL; 1917 } 1918 1919 return av; 1920 } 1921 1922 /* 1923 * Convert a file to an access vector and include the correct open 1924 * open permission. 1925 */ 1926 static inline u32 open_file_to_av(struct file *file) 1927 { 1928 u32 av = file_to_av(file); 1929 1930 if (selinux_policycap_openperm) 1931 av |= FILE__OPEN; 1932 1933 return av; 1934 } 1935 1936 /* Hook functions begin here. */ 1937 1938 static int selinux_ptrace_access_check(struct task_struct *child, 1939 unsigned int mode) 1940 { 1941 int rc; 1942 1943 rc = cap_ptrace_access_check(child, mode); 1944 if (rc) 1945 return rc; 1946 1947 if (mode & PTRACE_MODE_READ) { 1948 u32 sid = current_sid(); 1949 u32 csid = task_sid(child); 1950 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1951 } 1952 1953 return current_has_perm(child, PROCESS__PTRACE); 1954 } 1955 1956 static int selinux_ptrace_traceme(struct task_struct *parent) 1957 { 1958 int rc; 1959 1960 rc = cap_ptrace_traceme(parent); 1961 if (rc) 1962 return rc; 1963 1964 return task_has_perm(parent, current, PROCESS__PTRACE); 1965 } 1966 1967 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1968 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1969 { 1970 int error; 1971 1972 error = current_has_perm(target, PROCESS__GETCAP); 1973 if (error) 1974 return error; 1975 1976 return cap_capget(target, effective, inheritable, permitted); 1977 } 1978 1979 static int selinux_capset(struct cred *new, const struct cred *old, 1980 const kernel_cap_t *effective, 1981 const kernel_cap_t *inheritable, 1982 const kernel_cap_t *permitted) 1983 { 1984 int error; 1985 1986 error = cap_capset(new, old, 1987 effective, inheritable, permitted); 1988 if (error) 1989 return error; 1990 1991 return cred_has_perm(old, new, PROCESS__SETCAP); 1992 } 1993 1994 /* 1995 * (This comment used to live with the selinux_task_setuid hook, 1996 * which was removed). 1997 * 1998 * Since setuid only affects the current process, and since the SELinux 1999 * controls are not based on the Linux identity attributes, SELinux does not 2000 * need to control this operation. However, SELinux does control the use of 2001 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2002 */ 2003 2004 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2005 int cap, int audit) 2006 { 2007 int rc; 2008 2009 rc = cap_capable(cred, ns, cap, audit); 2010 if (rc) 2011 return rc; 2012 2013 return cred_has_capability(cred, cap, audit); 2014 } 2015 2016 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2017 { 2018 const struct cred *cred = current_cred(); 2019 int rc = 0; 2020 2021 if (!sb) 2022 return 0; 2023 2024 switch (cmds) { 2025 case Q_SYNC: 2026 case Q_QUOTAON: 2027 case Q_QUOTAOFF: 2028 case Q_SETINFO: 2029 case Q_SETQUOTA: 2030 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2031 break; 2032 case Q_GETFMT: 2033 case Q_GETINFO: 2034 case Q_GETQUOTA: 2035 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2036 break; 2037 default: 2038 rc = 0; /* let the kernel handle invalid cmds */ 2039 break; 2040 } 2041 return rc; 2042 } 2043 2044 static int selinux_quota_on(struct dentry *dentry) 2045 { 2046 const struct cred *cred = current_cred(); 2047 2048 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2049 } 2050 2051 static int selinux_syslog(int type) 2052 { 2053 int rc; 2054 2055 switch (type) { 2056 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2057 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2058 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2059 break; 2060 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2061 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2062 /* Set level of messages printed to console */ 2063 case SYSLOG_ACTION_CONSOLE_LEVEL: 2064 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2065 break; 2066 case SYSLOG_ACTION_CLOSE: /* Close log */ 2067 case SYSLOG_ACTION_OPEN: /* Open log */ 2068 case SYSLOG_ACTION_READ: /* Read from log */ 2069 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2070 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2071 default: 2072 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2073 break; 2074 } 2075 return rc; 2076 } 2077 2078 /* 2079 * Check that a process has enough memory to allocate a new virtual 2080 * mapping. 0 means there is enough memory for the allocation to 2081 * succeed and -ENOMEM implies there is not. 2082 * 2083 * Do not audit the selinux permission check, as this is applied to all 2084 * processes that allocate mappings. 2085 */ 2086 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2087 { 2088 int rc, cap_sys_admin = 0; 2089 2090 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 2091 SECURITY_CAP_NOAUDIT); 2092 if (rc == 0) 2093 cap_sys_admin = 1; 2094 2095 return __vm_enough_memory(mm, pages, cap_sys_admin); 2096 } 2097 2098 /* binprm security operations */ 2099 2100 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2101 const struct task_security_struct *old_tsec, 2102 const struct task_security_struct *new_tsec) 2103 { 2104 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2105 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2106 int rc; 2107 2108 if (!nnp && !nosuid) 2109 return 0; /* neither NNP nor nosuid */ 2110 2111 if (new_tsec->sid == old_tsec->sid) 2112 return 0; /* No change in credentials */ 2113 2114 /* 2115 * The only transitions we permit under NNP or nosuid 2116 * are transitions to bounded SIDs, i.e. SIDs that are 2117 * guaranteed to only be allowed a subset of the permissions 2118 * of the current SID. 2119 */ 2120 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2121 if (rc) { 2122 /* 2123 * On failure, preserve the errno values for NNP vs nosuid. 2124 * NNP: Operation not permitted for caller. 2125 * nosuid: Permission denied to file. 2126 */ 2127 if (nnp) 2128 return -EPERM; 2129 else 2130 return -EACCES; 2131 } 2132 return 0; 2133 } 2134 2135 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2136 { 2137 const struct task_security_struct *old_tsec; 2138 struct task_security_struct *new_tsec; 2139 struct inode_security_struct *isec; 2140 struct common_audit_data ad; 2141 struct inode *inode = file_inode(bprm->file); 2142 int rc; 2143 2144 rc = cap_bprm_set_creds(bprm); 2145 if (rc) 2146 return rc; 2147 2148 /* SELinux context only depends on initial program or script and not 2149 * the script interpreter */ 2150 if (bprm->cred_prepared) 2151 return 0; 2152 2153 old_tsec = current_security(); 2154 new_tsec = bprm->cred->security; 2155 isec = inode->i_security; 2156 2157 /* Default to the current task SID. */ 2158 new_tsec->sid = old_tsec->sid; 2159 new_tsec->osid = old_tsec->sid; 2160 2161 /* Reset fs, key, and sock SIDs on execve. */ 2162 new_tsec->create_sid = 0; 2163 new_tsec->keycreate_sid = 0; 2164 new_tsec->sockcreate_sid = 0; 2165 2166 if (old_tsec->exec_sid) { 2167 new_tsec->sid = old_tsec->exec_sid; 2168 /* Reset exec SID on execve. */ 2169 new_tsec->exec_sid = 0; 2170 2171 /* Fail on NNP or nosuid if not an allowed transition. */ 2172 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2173 if (rc) 2174 return rc; 2175 } else { 2176 /* Check for a default transition on this program. */ 2177 rc = security_transition_sid(old_tsec->sid, isec->sid, 2178 SECCLASS_PROCESS, NULL, 2179 &new_tsec->sid); 2180 if (rc) 2181 return rc; 2182 2183 /* 2184 * Fallback to old SID on NNP or nosuid if not an allowed 2185 * transition. 2186 */ 2187 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2188 if (rc) 2189 new_tsec->sid = old_tsec->sid; 2190 } 2191 2192 ad.type = LSM_AUDIT_DATA_PATH; 2193 ad.u.path = bprm->file->f_path; 2194 2195 if (new_tsec->sid == old_tsec->sid) { 2196 rc = avc_has_perm(old_tsec->sid, isec->sid, 2197 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2198 if (rc) 2199 return rc; 2200 } else { 2201 /* Check permissions for the transition. */ 2202 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2203 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2204 if (rc) 2205 return rc; 2206 2207 rc = avc_has_perm(new_tsec->sid, isec->sid, 2208 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2209 if (rc) 2210 return rc; 2211 2212 /* Check for shared state */ 2213 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2214 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2215 SECCLASS_PROCESS, PROCESS__SHARE, 2216 NULL); 2217 if (rc) 2218 return -EPERM; 2219 } 2220 2221 /* Make sure that anyone attempting to ptrace over a task that 2222 * changes its SID has the appropriate permit */ 2223 if (bprm->unsafe & 2224 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2225 struct task_struct *tracer; 2226 struct task_security_struct *sec; 2227 u32 ptsid = 0; 2228 2229 rcu_read_lock(); 2230 tracer = ptrace_parent(current); 2231 if (likely(tracer != NULL)) { 2232 sec = __task_cred(tracer)->security; 2233 ptsid = sec->sid; 2234 } 2235 rcu_read_unlock(); 2236 2237 if (ptsid != 0) { 2238 rc = avc_has_perm(ptsid, new_tsec->sid, 2239 SECCLASS_PROCESS, 2240 PROCESS__PTRACE, NULL); 2241 if (rc) 2242 return -EPERM; 2243 } 2244 } 2245 2246 /* Clear any possibly unsafe personality bits on exec: */ 2247 bprm->per_clear |= PER_CLEAR_ON_SETID; 2248 } 2249 2250 return 0; 2251 } 2252 2253 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2254 { 2255 const struct task_security_struct *tsec = current_security(); 2256 u32 sid, osid; 2257 int atsecure = 0; 2258 2259 sid = tsec->sid; 2260 osid = tsec->osid; 2261 2262 if (osid != sid) { 2263 /* Enable secure mode for SIDs transitions unless 2264 the noatsecure permission is granted between 2265 the two SIDs, i.e. ahp returns 0. */ 2266 atsecure = avc_has_perm(osid, sid, 2267 SECCLASS_PROCESS, 2268 PROCESS__NOATSECURE, NULL); 2269 } 2270 2271 return (atsecure || cap_bprm_secureexec(bprm)); 2272 } 2273 2274 static int match_file(const void *p, struct file *file, unsigned fd) 2275 { 2276 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2277 } 2278 2279 /* Derived from fs/exec.c:flush_old_files. */ 2280 static inline void flush_unauthorized_files(const struct cred *cred, 2281 struct files_struct *files) 2282 { 2283 struct file *file, *devnull = NULL; 2284 struct tty_struct *tty; 2285 int drop_tty = 0; 2286 unsigned n; 2287 2288 tty = get_current_tty(); 2289 if (tty) { 2290 spin_lock(&tty_files_lock); 2291 if (!list_empty(&tty->tty_files)) { 2292 struct tty_file_private *file_priv; 2293 2294 /* Revalidate access to controlling tty. 2295 Use file_path_has_perm on the tty path directly 2296 rather than using file_has_perm, as this particular 2297 open file may belong to another process and we are 2298 only interested in the inode-based check here. */ 2299 file_priv = list_first_entry(&tty->tty_files, 2300 struct tty_file_private, list); 2301 file = file_priv->file; 2302 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2303 drop_tty = 1; 2304 } 2305 spin_unlock(&tty_files_lock); 2306 tty_kref_put(tty); 2307 } 2308 /* Reset controlling tty. */ 2309 if (drop_tty) 2310 no_tty(); 2311 2312 /* Revalidate access to inherited open files. */ 2313 n = iterate_fd(files, 0, match_file, cred); 2314 if (!n) /* none found? */ 2315 return; 2316 2317 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2318 if (IS_ERR(devnull)) 2319 devnull = NULL; 2320 /* replace all the matching ones with this */ 2321 do { 2322 replace_fd(n - 1, devnull, 0); 2323 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2324 if (devnull) 2325 fput(devnull); 2326 } 2327 2328 /* 2329 * Prepare a process for imminent new credential changes due to exec 2330 */ 2331 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2332 { 2333 struct task_security_struct *new_tsec; 2334 struct rlimit *rlim, *initrlim; 2335 int rc, i; 2336 2337 new_tsec = bprm->cred->security; 2338 if (new_tsec->sid == new_tsec->osid) 2339 return; 2340 2341 /* Close files for which the new task SID is not authorized. */ 2342 flush_unauthorized_files(bprm->cred, current->files); 2343 2344 /* Always clear parent death signal on SID transitions. */ 2345 current->pdeath_signal = 0; 2346 2347 /* Check whether the new SID can inherit resource limits from the old 2348 * SID. If not, reset all soft limits to the lower of the current 2349 * task's hard limit and the init task's soft limit. 2350 * 2351 * Note that the setting of hard limits (even to lower them) can be 2352 * controlled by the setrlimit check. The inclusion of the init task's 2353 * soft limit into the computation is to avoid resetting soft limits 2354 * higher than the default soft limit for cases where the default is 2355 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2356 */ 2357 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2358 PROCESS__RLIMITINH, NULL); 2359 if (rc) { 2360 /* protect against do_prlimit() */ 2361 task_lock(current); 2362 for (i = 0; i < RLIM_NLIMITS; i++) { 2363 rlim = current->signal->rlim + i; 2364 initrlim = init_task.signal->rlim + i; 2365 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2366 } 2367 task_unlock(current); 2368 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2369 } 2370 } 2371 2372 /* 2373 * Clean up the process immediately after the installation of new credentials 2374 * due to exec 2375 */ 2376 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2377 { 2378 const struct task_security_struct *tsec = current_security(); 2379 struct itimerval itimer; 2380 u32 osid, sid; 2381 int rc, i; 2382 2383 osid = tsec->osid; 2384 sid = tsec->sid; 2385 2386 if (sid == osid) 2387 return; 2388 2389 /* Check whether the new SID can inherit signal state from the old SID. 2390 * If not, clear itimers to avoid subsequent signal generation and 2391 * flush and unblock signals. 2392 * 2393 * This must occur _after_ the task SID has been updated so that any 2394 * kill done after the flush will be checked against the new SID. 2395 */ 2396 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2397 if (rc) { 2398 memset(&itimer, 0, sizeof itimer); 2399 for (i = 0; i < 3; i++) 2400 do_setitimer(i, &itimer, NULL); 2401 spin_lock_irq(¤t->sighand->siglock); 2402 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2403 __flush_signals(current); 2404 flush_signal_handlers(current, 1); 2405 sigemptyset(¤t->blocked); 2406 } 2407 spin_unlock_irq(¤t->sighand->siglock); 2408 } 2409 2410 /* Wake up the parent if it is waiting so that it can recheck 2411 * wait permission to the new task SID. */ 2412 read_lock(&tasklist_lock); 2413 __wake_up_parent(current, current->real_parent); 2414 read_unlock(&tasklist_lock); 2415 } 2416 2417 /* superblock security operations */ 2418 2419 static int selinux_sb_alloc_security(struct super_block *sb) 2420 { 2421 return superblock_alloc_security(sb); 2422 } 2423 2424 static void selinux_sb_free_security(struct super_block *sb) 2425 { 2426 superblock_free_security(sb); 2427 } 2428 2429 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2430 { 2431 if (plen > olen) 2432 return 0; 2433 2434 return !memcmp(prefix, option, plen); 2435 } 2436 2437 static inline int selinux_option(char *option, int len) 2438 { 2439 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2440 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2441 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2442 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2443 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2444 } 2445 2446 static inline void take_option(char **to, char *from, int *first, int len) 2447 { 2448 if (!*first) { 2449 **to = ','; 2450 *to += 1; 2451 } else 2452 *first = 0; 2453 memcpy(*to, from, len); 2454 *to += len; 2455 } 2456 2457 static inline void take_selinux_option(char **to, char *from, int *first, 2458 int len) 2459 { 2460 int current_size = 0; 2461 2462 if (!*first) { 2463 **to = '|'; 2464 *to += 1; 2465 } else 2466 *first = 0; 2467 2468 while (current_size < len) { 2469 if (*from != '"') { 2470 **to = *from; 2471 *to += 1; 2472 } 2473 from += 1; 2474 current_size += 1; 2475 } 2476 } 2477 2478 static int selinux_sb_copy_data(char *orig, char *copy) 2479 { 2480 int fnosec, fsec, rc = 0; 2481 char *in_save, *in_curr, *in_end; 2482 char *sec_curr, *nosec_save, *nosec; 2483 int open_quote = 0; 2484 2485 in_curr = orig; 2486 sec_curr = copy; 2487 2488 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2489 if (!nosec) { 2490 rc = -ENOMEM; 2491 goto out; 2492 } 2493 2494 nosec_save = nosec; 2495 fnosec = fsec = 1; 2496 in_save = in_end = orig; 2497 2498 do { 2499 if (*in_end == '"') 2500 open_quote = !open_quote; 2501 if ((*in_end == ',' && open_quote == 0) || 2502 *in_end == '\0') { 2503 int len = in_end - in_curr; 2504 2505 if (selinux_option(in_curr, len)) 2506 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2507 else 2508 take_option(&nosec, in_curr, &fnosec, len); 2509 2510 in_curr = in_end + 1; 2511 } 2512 } while (*in_end++); 2513 2514 strcpy(in_save, nosec_save); 2515 free_page((unsigned long)nosec_save); 2516 out: 2517 return rc; 2518 } 2519 2520 static int selinux_sb_remount(struct super_block *sb, void *data) 2521 { 2522 int rc, i, *flags; 2523 struct security_mnt_opts opts; 2524 char *secdata, **mount_options; 2525 struct superblock_security_struct *sbsec = sb->s_security; 2526 2527 if (!(sbsec->flags & SE_SBINITIALIZED)) 2528 return 0; 2529 2530 if (!data) 2531 return 0; 2532 2533 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2534 return 0; 2535 2536 security_init_mnt_opts(&opts); 2537 secdata = alloc_secdata(); 2538 if (!secdata) 2539 return -ENOMEM; 2540 rc = selinux_sb_copy_data(data, secdata); 2541 if (rc) 2542 goto out_free_secdata; 2543 2544 rc = selinux_parse_opts_str(secdata, &opts); 2545 if (rc) 2546 goto out_free_secdata; 2547 2548 mount_options = opts.mnt_opts; 2549 flags = opts.mnt_opts_flags; 2550 2551 for (i = 0; i < opts.num_mnt_opts; i++) { 2552 u32 sid; 2553 size_t len; 2554 2555 if (flags[i] == SBLABEL_MNT) 2556 continue; 2557 len = strlen(mount_options[i]); 2558 rc = security_context_to_sid(mount_options[i], len, &sid, 2559 GFP_KERNEL); 2560 if (rc) { 2561 printk(KERN_WARNING "SELinux: security_context_to_sid" 2562 "(%s) failed for (dev %s, type %s) errno=%d\n", 2563 mount_options[i], sb->s_id, sb->s_type->name, rc); 2564 goto out_free_opts; 2565 } 2566 rc = -EINVAL; 2567 switch (flags[i]) { 2568 case FSCONTEXT_MNT: 2569 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2570 goto out_bad_option; 2571 break; 2572 case CONTEXT_MNT: 2573 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2574 goto out_bad_option; 2575 break; 2576 case ROOTCONTEXT_MNT: { 2577 struct inode_security_struct *root_isec; 2578 root_isec = sb->s_root->d_inode->i_security; 2579 2580 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2581 goto out_bad_option; 2582 break; 2583 } 2584 case DEFCONTEXT_MNT: 2585 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2586 goto out_bad_option; 2587 break; 2588 default: 2589 goto out_free_opts; 2590 } 2591 } 2592 2593 rc = 0; 2594 out_free_opts: 2595 security_free_mnt_opts(&opts); 2596 out_free_secdata: 2597 free_secdata(secdata); 2598 return rc; 2599 out_bad_option: 2600 printk(KERN_WARNING "SELinux: unable to change security options " 2601 "during remount (dev %s, type=%s)\n", sb->s_id, 2602 sb->s_type->name); 2603 goto out_free_opts; 2604 } 2605 2606 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2607 { 2608 const struct cred *cred = current_cred(); 2609 struct common_audit_data ad; 2610 int rc; 2611 2612 rc = superblock_doinit(sb, data); 2613 if (rc) 2614 return rc; 2615 2616 /* Allow all mounts performed by the kernel */ 2617 if (flags & MS_KERNMOUNT) 2618 return 0; 2619 2620 ad.type = LSM_AUDIT_DATA_DENTRY; 2621 ad.u.dentry = sb->s_root; 2622 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2623 } 2624 2625 static int selinux_sb_statfs(struct dentry *dentry) 2626 { 2627 const struct cred *cred = current_cred(); 2628 struct common_audit_data ad; 2629 2630 ad.type = LSM_AUDIT_DATA_DENTRY; 2631 ad.u.dentry = dentry->d_sb->s_root; 2632 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2633 } 2634 2635 static int selinux_mount(const char *dev_name, 2636 struct path *path, 2637 const char *type, 2638 unsigned long flags, 2639 void *data) 2640 { 2641 const struct cred *cred = current_cred(); 2642 2643 if (flags & MS_REMOUNT) 2644 return superblock_has_perm(cred, path->dentry->d_sb, 2645 FILESYSTEM__REMOUNT, NULL); 2646 else 2647 return path_has_perm(cred, path, FILE__MOUNTON); 2648 } 2649 2650 static int selinux_umount(struct vfsmount *mnt, int flags) 2651 { 2652 const struct cred *cred = current_cred(); 2653 2654 return superblock_has_perm(cred, mnt->mnt_sb, 2655 FILESYSTEM__UNMOUNT, NULL); 2656 } 2657 2658 /* inode security operations */ 2659 2660 static int selinux_inode_alloc_security(struct inode *inode) 2661 { 2662 return inode_alloc_security(inode); 2663 } 2664 2665 static void selinux_inode_free_security(struct inode *inode) 2666 { 2667 inode_free_security(inode); 2668 } 2669 2670 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2671 struct qstr *name, void **ctx, 2672 u32 *ctxlen) 2673 { 2674 const struct cred *cred = current_cred(); 2675 struct task_security_struct *tsec; 2676 struct inode_security_struct *dsec; 2677 struct superblock_security_struct *sbsec; 2678 struct inode *dir = dentry->d_parent->d_inode; 2679 u32 newsid; 2680 int rc; 2681 2682 tsec = cred->security; 2683 dsec = dir->i_security; 2684 sbsec = dir->i_sb->s_security; 2685 2686 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2687 newsid = tsec->create_sid; 2688 } else { 2689 rc = security_transition_sid(tsec->sid, dsec->sid, 2690 inode_mode_to_security_class(mode), 2691 name, 2692 &newsid); 2693 if (rc) { 2694 printk(KERN_WARNING 2695 "%s: security_transition_sid failed, rc=%d\n", 2696 __func__, -rc); 2697 return rc; 2698 } 2699 } 2700 2701 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2702 } 2703 2704 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2705 const struct qstr *qstr, 2706 const char **name, 2707 void **value, size_t *len) 2708 { 2709 const struct task_security_struct *tsec = current_security(); 2710 struct inode_security_struct *dsec; 2711 struct superblock_security_struct *sbsec; 2712 u32 sid, newsid, clen; 2713 int rc; 2714 char *context; 2715 2716 dsec = dir->i_security; 2717 sbsec = dir->i_sb->s_security; 2718 2719 sid = tsec->sid; 2720 newsid = tsec->create_sid; 2721 2722 if ((sbsec->flags & SE_SBINITIALIZED) && 2723 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2724 newsid = sbsec->mntpoint_sid; 2725 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 2726 rc = security_transition_sid(sid, dsec->sid, 2727 inode_mode_to_security_class(inode->i_mode), 2728 qstr, &newsid); 2729 if (rc) { 2730 printk(KERN_WARNING "%s: " 2731 "security_transition_sid failed, rc=%d (dev=%s " 2732 "ino=%ld)\n", 2733 __func__, 2734 -rc, inode->i_sb->s_id, inode->i_ino); 2735 return rc; 2736 } 2737 } 2738 2739 /* Possibly defer initialization to selinux_complete_init. */ 2740 if (sbsec->flags & SE_SBINITIALIZED) { 2741 struct inode_security_struct *isec = inode->i_security; 2742 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2743 isec->sid = newsid; 2744 isec->initialized = 1; 2745 } 2746 2747 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2748 return -EOPNOTSUPP; 2749 2750 if (name) 2751 *name = XATTR_SELINUX_SUFFIX; 2752 2753 if (value && len) { 2754 rc = security_sid_to_context_force(newsid, &context, &clen); 2755 if (rc) 2756 return rc; 2757 *value = context; 2758 *len = clen; 2759 } 2760 2761 return 0; 2762 } 2763 2764 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2765 { 2766 return may_create(dir, dentry, SECCLASS_FILE); 2767 } 2768 2769 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2770 { 2771 return may_link(dir, old_dentry, MAY_LINK); 2772 } 2773 2774 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2775 { 2776 return may_link(dir, dentry, MAY_UNLINK); 2777 } 2778 2779 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2780 { 2781 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2782 } 2783 2784 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2785 { 2786 return may_create(dir, dentry, SECCLASS_DIR); 2787 } 2788 2789 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2790 { 2791 return may_link(dir, dentry, MAY_RMDIR); 2792 } 2793 2794 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2795 { 2796 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2797 } 2798 2799 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2800 struct inode *new_inode, struct dentry *new_dentry) 2801 { 2802 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2803 } 2804 2805 static int selinux_inode_readlink(struct dentry *dentry) 2806 { 2807 const struct cred *cred = current_cred(); 2808 2809 return dentry_has_perm(cred, dentry, FILE__READ); 2810 } 2811 2812 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2813 { 2814 const struct cred *cred = current_cred(); 2815 2816 return dentry_has_perm(cred, dentry, FILE__READ); 2817 } 2818 2819 static noinline int audit_inode_permission(struct inode *inode, 2820 u32 perms, u32 audited, u32 denied, 2821 int result, 2822 unsigned flags) 2823 { 2824 struct common_audit_data ad; 2825 struct inode_security_struct *isec = inode->i_security; 2826 int rc; 2827 2828 ad.type = LSM_AUDIT_DATA_INODE; 2829 ad.u.inode = inode; 2830 2831 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2832 audited, denied, result, &ad, flags); 2833 if (rc) 2834 return rc; 2835 return 0; 2836 } 2837 2838 static int selinux_inode_permission(struct inode *inode, int mask) 2839 { 2840 const struct cred *cred = current_cred(); 2841 u32 perms; 2842 bool from_access; 2843 unsigned flags = mask & MAY_NOT_BLOCK; 2844 struct inode_security_struct *isec; 2845 u32 sid; 2846 struct av_decision avd; 2847 int rc, rc2; 2848 u32 audited, denied; 2849 2850 from_access = mask & MAY_ACCESS; 2851 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2852 2853 /* No permission to check. Existence test. */ 2854 if (!mask) 2855 return 0; 2856 2857 validate_creds(cred); 2858 2859 if (unlikely(IS_PRIVATE(inode))) 2860 return 0; 2861 2862 perms = file_mask_to_av(inode->i_mode, mask); 2863 2864 sid = cred_sid(cred); 2865 isec = inode->i_security; 2866 2867 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2868 audited = avc_audit_required(perms, &avd, rc, 2869 from_access ? FILE__AUDIT_ACCESS : 0, 2870 &denied); 2871 if (likely(!audited)) 2872 return rc; 2873 2874 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2875 if (rc2) 2876 return rc2; 2877 return rc; 2878 } 2879 2880 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2881 { 2882 const struct cred *cred = current_cred(); 2883 unsigned int ia_valid = iattr->ia_valid; 2884 __u32 av = FILE__WRITE; 2885 2886 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2887 if (ia_valid & ATTR_FORCE) { 2888 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2889 ATTR_FORCE); 2890 if (!ia_valid) 2891 return 0; 2892 } 2893 2894 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2895 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2896 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2897 2898 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2899 av |= FILE__OPEN; 2900 2901 return dentry_has_perm(cred, dentry, av); 2902 } 2903 2904 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2905 { 2906 const struct cred *cred = current_cred(); 2907 struct path path; 2908 2909 path.dentry = dentry; 2910 path.mnt = mnt; 2911 2912 return path_has_perm(cred, &path, FILE__GETATTR); 2913 } 2914 2915 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2916 { 2917 const struct cred *cred = current_cred(); 2918 2919 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2920 sizeof XATTR_SECURITY_PREFIX - 1)) { 2921 if (!strcmp(name, XATTR_NAME_CAPS)) { 2922 if (!capable(CAP_SETFCAP)) 2923 return -EPERM; 2924 } else if (!capable(CAP_SYS_ADMIN)) { 2925 /* A different attribute in the security namespace. 2926 Restrict to administrator. */ 2927 return -EPERM; 2928 } 2929 } 2930 2931 /* Not an attribute we recognize, so just check the 2932 ordinary setattr permission. */ 2933 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2934 } 2935 2936 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2937 const void *value, size_t size, int flags) 2938 { 2939 struct inode *inode = dentry->d_inode; 2940 struct inode_security_struct *isec = inode->i_security; 2941 struct superblock_security_struct *sbsec; 2942 struct common_audit_data ad; 2943 u32 newsid, sid = current_sid(); 2944 int rc = 0; 2945 2946 if (strcmp(name, XATTR_NAME_SELINUX)) 2947 return selinux_inode_setotherxattr(dentry, name); 2948 2949 sbsec = inode->i_sb->s_security; 2950 if (!(sbsec->flags & SBLABEL_MNT)) 2951 return -EOPNOTSUPP; 2952 2953 if (!inode_owner_or_capable(inode)) 2954 return -EPERM; 2955 2956 ad.type = LSM_AUDIT_DATA_DENTRY; 2957 ad.u.dentry = dentry; 2958 2959 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2960 FILE__RELABELFROM, &ad); 2961 if (rc) 2962 return rc; 2963 2964 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 2965 if (rc == -EINVAL) { 2966 if (!capable(CAP_MAC_ADMIN)) { 2967 struct audit_buffer *ab; 2968 size_t audit_size; 2969 const char *str; 2970 2971 /* We strip a nul only if it is at the end, otherwise the 2972 * context contains a nul and we should audit that */ 2973 if (value) { 2974 str = value; 2975 if (str[size - 1] == '\0') 2976 audit_size = size - 1; 2977 else 2978 audit_size = size; 2979 } else { 2980 str = ""; 2981 audit_size = 0; 2982 } 2983 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 2984 audit_log_format(ab, "op=setxattr invalid_context="); 2985 audit_log_n_untrustedstring(ab, value, audit_size); 2986 audit_log_end(ab); 2987 2988 return rc; 2989 } 2990 rc = security_context_to_sid_force(value, size, &newsid); 2991 } 2992 if (rc) 2993 return rc; 2994 2995 rc = avc_has_perm(sid, newsid, isec->sclass, 2996 FILE__RELABELTO, &ad); 2997 if (rc) 2998 return rc; 2999 3000 rc = security_validate_transition(isec->sid, newsid, sid, 3001 isec->sclass); 3002 if (rc) 3003 return rc; 3004 3005 return avc_has_perm(newsid, 3006 sbsec->sid, 3007 SECCLASS_FILESYSTEM, 3008 FILESYSTEM__ASSOCIATE, 3009 &ad); 3010 } 3011 3012 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3013 const void *value, size_t size, 3014 int flags) 3015 { 3016 struct inode *inode = dentry->d_inode; 3017 struct inode_security_struct *isec = inode->i_security; 3018 u32 newsid; 3019 int rc; 3020 3021 if (strcmp(name, XATTR_NAME_SELINUX)) { 3022 /* Not an attribute we recognize, so nothing to do. */ 3023 return; 3024 } 3025 3026 rc = security_context_to_sid_force(value, size, &newsid); 3027 if (rc) { 3028 printk(KERN_ERR "SELinux: unable to map context to SID" 3029 "for (%s, %lu), rc=%d\n", 3030 inode->i_sb->s_id, inode->i_ino, -rc); 3031 return; 3032 } 3033 3034 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3035 isec->sid = newsid; 3036 isec->initialized = 1; 3037 3038 return; 3039 } 3040 3041 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3042 { 3043 const struct cred *cred = current_cred(); 3044 3045 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3046 } 3047 3048 static int selinux_inode_listxattr(struct dentry *dentry) 3049 { 3050 const struct cred *cred = current_cred(); 3051 3052 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3053 } 3054 3055 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3056 { 3057 if (strcmp(name, XATTR_NAME_SELINUX)) 3058 return selinux_inode_setotherxattr(dentry, name); 3059 3060 /* No one is allowed to remove a SELinux security label. 3061 You can change the label, but all data must be labeled. */ 3062 return -EACCES; 3063 } 3064 3065 /* 3066 * Copy the inode security context value to the user. 3067 * 3068 * Permission check is handled by selinux_inode_getxattr hook. 3069 */ 3070 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3071 { 3072 u32 size; 3073 int error; 3074 char *context = NULL; 3075 struct inode_security_struct *isec = inode->i_security; 3076 3077 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3078 return -EOPNOTSUPP; 3079 3080 /* 3081 * If the caller has CAP_MAC_ADMIN, then get the raw context 3082 * value even if it is not defined by current policy; otherwise, 3083 * use the in-core value under current policy. 3084 * Use the non-auditing forms of the permission checks since 3085 * getxattr may be called by unprivileged processes commonly 3086 * and lack of permission just means that we fall back to the 3087 * in-core context value, not a denial. 3088 */ 3089 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3090 SECURITY_CAP_NOAUDIT); 3091 if (!error) 3092 error = security_sid_to_context_force(isec->sid, &context, 3093 &size); 3094 else 3095 error = security_sid_to_context(isec->sid, &context, &size); 3096 if (error) 3097 return error; 3098 error = size; 3099 if (alloc) { 3100 *buffer = context; 3101 goto out_nofree; 3102 } 3103 kfree(context); 3104 out_nofree: 3105 return error; 3106 } 3107 3108 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3109 const void *value, size_t size, int flags) 3110 { 3111 struct inode_security_struct *isec = inode->i_security; 3112 u32 newsid; 3113 int rc; 3114 3115 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3116 return -EOPNOTSUPP; 3117 3118 if (!value || !size) 3119 return -EACCES; 3120 3121 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3122 if (rc) 3123 return rc; 3124 3125 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3126 isec->sid = newsid; 3127 isec->initialized = 1; 3128 return 0; 3129 } 3130 3131 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3132 { 3133 const int len = sizeof(XATTR_NAME_SELINUX); 3134 if (buffer && len <= buffer_size) 3135 memcpy(buffer, XATTR_NAME_SELINUX, len); 3136 return len; 3137 } 3138 3139 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3140 { 3141 struct inode_security_struct *isec = inode->i_security; 3142 *secid = isec->sid; 3143 } 3144 3145 /* file security operations */ 3146 3147 static int selinux_revalidate_file_permission(struct file *file, int mask) 3148 { 3149 const struct cred *cred = current_cred(); 3150 struct inode *inode = file_inode(file); 3151 3152 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3153 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3154 mask |= MAY_APPEND; 3155 3156 return file_has_perm(cred, file, 3157 file_mask_to_av(inode->i_mode, mask)); 3158 } 3159 3160 static int selinux_file_permission(struct file *file, int mask) 3161 { 3162 struct inode *inode = file_inode(file); 3163 struct file_security_struct *fsec = file->f_security; 3164 struct inode_security_struct *isec = inode->i_security; 3165 u32 sid = current_sid(); 3166 3167 if (!mask) 3168 /* No permission to check. Existence test. */ 3169 return 0; 3170 3171 if (sid == fsec->sid && fsec->isid == isec->sid && 3172 fsec->pseqno == avc_policy_seqno()) 3173 /* No change since file_open check. */ 3174 return 0; 3175 3176 return selinux_revalidate_file_permission(file, mask); 3177 } 3178 3179 static int selinux_file_alloc_security(struct file *file) 3180 { 3181 return file_alloc_security(file); 3182 } 3183 3184 static void selinux_file_free_security(struct file *file) 3185 { 3186 file_free_security(file); 3187 } 3188 3189 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3190 unsigned long arg) 3191 { 3192 const struct cred *cred = current_cred(); 3193 int error = 0; 3194 3195 switch (cmd) { 3196 case FIONREAD: 3197 /* fall through */ 3198 case FIBMAP: 3199 /* fall through */ 3200 case FIGETBSZ: 3201 /* fall through */ 3202 case FS_IOC_GETFLAGS: 3203 /* fall through */ 3204 case FS_IOC_GETVERSION: 3205 error = file_has_perm(cred, file, FILE__GETATTR); 3206 break; 3207 3208 case FS_IOC_SETFLAGS: 3209 /* fall through */ 3210 case FS_IOC_SETVERSION: 3211 error = file_has_perm(cred, file, FILE__SETATTR); 3212 break; 3213 3214 /* sys_ioctl() checks */ 3215 case FIONBIO: 3216 /* fall through */ 3217 case FIOASYNC: 3218 error = file_has_perm(cred, file, 0); 3219 break; 3220 3221 case KDSKBENT: 3222 case KDSKBSENT: 3223 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3224 SECURITY_CAP_AUDIT); 3225 break; 3226 3227 /* default case assumes that the command will go 3228 * to the file's ioctl() function. 3229 */ 3230 default: 3231 error = file_has_perm(cred, file, FILE__IOCTL); 3232 } 3233 return error; 3234 } 3235 3236 static int default_noexec; 3237 3238 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3239 { 3240 const struct cred *cred = current_cred(); 3241 int rc = 0; 3242 3243 if (default_noexec && 3244 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3245 /* 3246 * We are making executable an anonymous mapping or a 3247 * private file mapping that will also be writable. 3248 * This has an additional check. 3249 */ 3250 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3251 if (rc) 3252 goto error; 3253 } 3254 3255 if (file) { 3256 /* read access is always possible with a mapping */ 3257 u32 av = FILE__READ; 3258 3259 /* write access only matters if the mapping is shared */ 3260 if (shared && (prot & PROT_WRITE)) 3261 av |= FILE__WRITE; 3262 3263 if (prot & PROT_EXEC) 3264 av |= FILE__EXECUTE; 3265 3266 return file_has_perm(cred, file, av); 3267 } 3268 3269 error: 3270 return rc; 3271 } 3272 3273 static int selinux_mmap_addr(unsigned long addr) 3274 { 3275 int rc; 3276 3277 /* do DAC check on address space usage */ 3278 rc = cap_mmap_addr(addr); 3279 if (rc) 3280 return rc; 3281 3282 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3283 u32 sid = current_sid(); 3284 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3285 MEMPROTECT__MMAP_ZERO, NULL); 3286 } 3287 3288 return rc; 3289 } 3290 3291 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3292 unsigned long prot, unsigned long flags) 3293 { 3294 if (selinux_checkreqprot) 3295 prot = reqprot; 3296 3297 return file_map_prot_check(file, prot, 3298 (flags & MAP_TYPE) == MAP_SHARED); 3299 } 3300 3301 static int selinux_file_mprotect(struct vm_area_struct *vma, 3302 unsigned long reqprot, 3303 unsigned long prot) 3304 { 3305 const struct cred *cred = current_cred(); 3306 3307 if (selinux_checkreqprot) 3308 prot = reqprot; 3309 3310 if (default_noexec && 3311 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3312 int rc = 0; 3313 if (vma->vm_start >= vma->vm_mm->start_brk && 3314 vma->vm_end <= vma->vm_mm->brk) { 3315 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3316 } else if (!vma->vm_file && 3317 vma->vm_start <= vma->vm_mm->start_stack && 3318 vma->vm_end >= vma->vm_mm->start_stack) { 3319 rc = current_has_perm(current, PROCESS__EXECSTACK); 3320 } else if (vma->vm_file && vma->anon_vma) { 3321 /* 3322 * We are making executable a file mapping that has 3323 * had some COW done. Since pages might have been 3324 * written, check ability to execute the possibly 3325 * modified content. This typically should only 3326 * occur for text relocations. 3327 */ 3328 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3329 } 3330 if (rc) 3331 return rc; 3332 } 3333 3334 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3335 } 3336 3337 static int selinux_file_lock(struct file *file, unsigned int cmd) 3338 { 3339 const struct cred *cred = current_cred(); 3340 3341 return file_has_perm(cred, file, FILE__LOCK); 3342 } 3343 3344 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3345 unsigned long arg) 3346 { 3347 const struct cred *cred = current_cred(); 3348 int err = 0; 3349 3350 switch (cmd) { 3351 case F_SETFL: 3352 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3353 err = file_has_perm(cred, file, FILE__WRITE); 3354 break; 3355 } 3356 /* fall through */ 3357 case F_SETOWN: 3358 case F_SETSIG: 3359 case F_GETFL: 3360 case F_GETOWN: 3361 case F_GETSIG: 3362 case F_GETOWNER_UIDS: 3363 /* Just check FD__USE permission */ 3364 err = file_has_perm(cred, file, 0); 3365 break; 3366 case F_GETLK: 3367 case F_SETLK: 3368 case F_SETLKW: 3369 case F_OFD_GETLK: 3370 case F_OFD_SETLK: 3371 case F_OFD_SETLKW: 3372 #if BITS_PER_LONG == 32 3373 case F_GETLK64: 3374 case F_SETLK64: 3375 case F_SETLKW64: 3376 #endif 3377 err = file_has_perm(cred, file, FILE__LOCK); 3378 break; 3379 } 3380 3381 return err; 3382 } 3383 3384 static void selinux_file_set_fowner(struct file *file) 3385 { 3386 struct file_security_struct *fsec; 3387 3388 fsec = file->f_security; 3389 fsec->fown_sid = current_sid(); 3390 } 3391 3392 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3393 struct fown_struct *fown, int signum) 3394 { 3395 struct file *file; 3396 u32 sid = task_sid(tsk); 3397 u32 perm; 3398 struct file_security_struct *fsec; 3399 3400 /* struct fown_struct is never outside the context of a struct file */ 3401 file = container_of(fown, struct file, f_owner); 3402 3403 fsec = file->f_security; 3404 3405 if (!signum) 3406 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3407 else 3408 perm = signal_to_av(signum); 3409 3410 return avc_has_perm(fsec->fown_sid, sid, 3411 SECCLASS_PROCESS, perm, NULL); 3412 } 3413 3414 static int selinux_file_receive(struct file *file) 3415 { 3416 const struct cred *cred = current_cred(); 3417 3418 return file_has_perm(cred, file, file_to_av(file)); 3419 } 3420 3421 static int selinux_file_open(struct file *file, const struct cred *cred) 3422 { 3423 struct file_security_struct *fsec; 3424 struct inode_security_struct *isec; 3425 3426 fsec = file->f_security; 3427 isec = file_inode(file)->i_security; 3428 /* 3429 * Save inode label and policy sequence number 3430 * at open-time so that selinux_file_permission 3431 * can determine whether revalidation is necessary. 3432 * Task label is already saved in the file security 3433 * struct as its SID. 3434 */ 3435 fsec->isid = isec->sid; 3436 fsec->pseqno = avc_policy_seqno(); 3437 /* 3438 * Since the inode label or policy seqno may have changed 3439 * between the selinux_inode_permission check and the saving 3440 * of state above, recheck that access is still permitted. 3441 * Otherwise, access might never be revalidated against the 3442 * new inode label or new policy. 3443 * This check is not redundant - do not remove. 3444 */ 3445 return file_path_has_perm(cred, file, open_file_to_av(file)); 3446 } 3447 3448 /* task security operations */ 3449 3450 static int selinux_task_create(unsigned long clone_flags) 3451 { 3452 return current_has_perm(current, PROCESS__FORK); 3453 } 3454 3455 /* 3456 * allocate the SELinux part of blank credentials 3457 */ 3458 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3459 { 3460 struct task_security_struct *tsec; 3461 3462 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3463 if (!tsec) 3464 return -ENOMEM; 3465 3466 cred->security = tsec; 3467 return 0; 3468 } 3469 3470 /* 3471 * detach and free the LSM part of a set of credentials 3472 */ 3473 static void selinux_cred_free(struct cred *cred) 3474 { 3475 struct task_security_struct *tsec = cred->security; 3476 3477 /* 3478 * cred->security == NULL if security_cred_alloc_blank() or 3479 * security_prepare_creds() returned an error. 3480 */ 3481 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3482 cred->security = (void *) 0x7UL; 3483 kfree(tsec); 3484 } 3485 3486 /* 3487 * prepare a new set of credentials for modification 3488 */ 3489 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3490 gfp_t gfp) 3491 { 3492 const struct task_security_struct *old_tsec; 3493 struct task_security_struct *tsec; 3494 3495 old_tsec = old->security; 3496 3497 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3498 if (!tsec) 3499 return -ENOMEM; 3500 3501 new->security = tsec; 3502 return 0; 3503 } 3504 3505 /* 3506 * transfer the SELinux data to a blank set of creds 3507 */ 3508 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3509 { 3510 const struct task_security_struct *old_tsec = old->security; 3511 struct task_security_struct *tsec = new->security; 3512 3513 *tsec = *old_tsec; 3514 } 3515 3516 /* 3517 * set the security data for a kernel service 3518 * - all the creation contexts are set to unlabelled 3519 */ 3520 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3521 { 3522 struct task_security_struct *tsec = new->security; 3523 u32 sid = current_sid(); 3524 int ret; 3525 3526 ret = avc_has_perm(sid, secid, 3527 SECCLASS_KERNEL_SERVICE, 3528 KERNEL_SERVICE__USE_AS_OVERRIDE, 3529 NULL); 3530 if (ret == 0) { 3531 tsec->sid = secid; 3532 tsec->create_sid = 0; 3533 tsec->keycreate_sid = 0; 3534 tsec->sockcreate_sid = 0; 3535 } 3536 return ret; 3537 } 3538 3539 /* 3540 * set the file creation context in a security record to the same as the 3541 * objective context of the specified inode 3542 */ 3543 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3544 { 3545 struct inode_security_struct *isec = inode->i_security; 3546 struct task_security_struct *tsec = new->security; 3547 u32 sid = current_sid(); 3548 int ret; 3549 3550 ret = avc_has_perm(sid, isec->sid, 3551 SECCLASS_KERNEL_SERVICE, 3552 KERNEL_SERVICE__CREATE_FILES_AS, 3553 NULL); 3554 3555 if (ret == 0) 3556 tsec->create_sid = isec->sid; 3557 return ret; 3558 } 3559 3560 static int selinux_kernel_module_request(char *kmod_name) 3561 { 3562 u32 sid; 3563 struct common_audit_data ad; 3564 3565 sid = task_sid(current); 3566 3567 ad.type = LSM_AUDIT_DATA_KMOD; 3568 ad.u.kmod_name = kmod_name; 3569 3570 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3571 SYSTEM__MODULE_REQUEST, &ad); 3572 } 3573 3574 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3575 { 3576 return current_has_perm(p, PROCESS__SETPGID); 3577 } 3578 3579 static int selinux_task_getpgid(struct task_struct *p) 3580 { 3581 return current_has_perm(p, PROCESS__GETPGID); 3582 } 3583 3584 static int selinux_task_getsid(struct task_struct *p) 3585 { 3586 return current_has_perm(p, PROCESS__GETSESSION); 3587 } 3588 3589 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3590 { 3591 *secid = task_sid(p); 3592 } 3593 3594 static int selinux_task_setnice(struct task_struct *p, int nice) 3595 { 3596 int rc; 3597 3598 rc = cap_task_setnice(p, nice); 3599 if (rc) 3600 return rc; 3601 3602 return current_has_perm(p, PROCESS__SETSCHED); 3603 } 3604 3605 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3606 { 3607 int rc; 3608 3609 rc = cap_task_setioprio(p, ioprio); 3610 if (rc) 3611 return rc; 3612 3613 return current_has_perm(p, PROCESS__SETSCHED); 3614 } 3615 3616 static int selinux_task_getioprio(struct task_struct *p) 3617 { 3618 return current_has_perm(p, PROCESS__GETSCHED); 3619 } 3620 3621 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3622 struct rlimit *new_rlim) 3623 { 3624 struct rlimit *old_rlim = p->signal->rlim + resource; 3625 3626 /* Control the ability to change the hard limit (whether 3627 lowering or raising it), so that the hard limit can 3628 later be used as a safe reset point for the soft limit 3629 upon context transitions. See selinux_bprm_committing_creds. */ 3630 if (old_rlim->rlim_max != new_rlim->rlim_max) 3631 return current_has_perm(p, PROCESS__SETRLIMIT); 3632 3633 return 0; 3634 } 3635 3636 static int selinux_task_setscheduler(struct task_struct *p) 3637 { 3638 int rc; 3639 3640 rc = cap_task_setscheduler(p); 3641 if (rc) 3642 return rc; 3643 3644 return current_has_perm(p, PROCESS__SETSCHED); 3645 } 3646 3647 static int selinux_task_getscheduler(struct task_struct *p) 3648 { 3649 return current_has_perm(p, PROCESS__GETSCHED); 3650 } 3651 3652 static int selinux_task_movememory(struct task_struct *p) 3653 { 3654 return current_has_perm(p, PROCESS__SETSCHED); 3655 } 3656 3657 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3658 int sig, u32 secid) 3659 { 3660 u32 perm; 3661 int rc; 3662 3663 if (!sig) 3664 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3665 else 3666 perm = signal_to_av(sig); 3667 if (secid) 3668 rc = avc_has_perm(secid, task_sid(p), 3669 SECCLASS_PROCESS, perm, NULL); 3670 else 3671 rc = current_has_perm(p, perm); 3672 return rc; 3673 } 3674 3675 static int selinux_task_wait(struct task_struct *p) 3676 { 3677 return task_has_perm(p, current, PROCESS__SIGCHLD); 3678 } 3679 3680 static void selinux_task_to_inode(struct task_struct *p, 3681 struct inode *inode) 3682 { 3683 struct inode_security_struct *isec = inode->i_security; 3684 u32 sid = task_sid(p); 3685 3686 isec->sid = sid; 3687 isec->initialized = 1; 3688 } 3689 3690 /* Returns error only if unable to parse addresses */ 3691 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3692 struct common_audit_data *ad, u8 *proto) 3693 { 3694 int offset, ihlen, ret = -EINVAL; 3695 struct iphdr _iph, *ih; 3696 3697 offset = skb_network_offset(skb); 3698 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3699 if (ih == NULL) 3700 goto out; 3701 3702 ihlen = ih->ihl * 4; 3703 if (ihlen < sizeof(_iph)) 3704 goto out; 3705 3706 ad->u.net->v4info.saddr = ih->saddr; 3707 ad->u.net->v4info.daddr = ih->daddr; 3708 ret = 0; 3709 3710 if (proto) 3711 *proto = ih->protocol; 3712 3713 switch (ih->protocol) { 3714 case IPPROTO_TCP: { 3715 struct tcphdr _tcph, *th; 3716 3717 if (ntohs(ih->frag_off) & IP_OFFSET) 3718 break; 3719 3720 offset += ihlen; 3721 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3722 if (th == NULL) 3723 break; 3724 3725 ad->u.net->sport = th->source; 3726 ad->u.net->dport = th->dest; 3727 break; 3728 } 3729 3730 case IPPROTO_UDP: { 3731 struct udphdr _udph, *uh; 3732 3733 if (ntohs(ih->frag_off) & IP_OFFSET) 3734 break; 3735 3736 offset += ihlen; 3737 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3738 if (uh == NULL) 3739 break; 3740 3741 ad->u.net->sport = uh->source; 3742 ad->u.net->dport = uh->dest; 3743 break; 3744 } 3745 3746 case IPPROTO_DCCP: { 3747 struct dccp_hdr _dccph, *dh; 3748 3749 if (ntohs(ih->frag_off) & IP_OFFSET) 3750 break; 3751 3752 offset += ihlen; 3753 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3754 if (dh == NULL) 3755 break; 3756 3757 ad->u.net->sport = dh->dccph_sport; 3758 ad->u.net->dport = dh->dccph_dport; 3759 break; 3760 } 3761 3762 default: 3763 break; 3764 } 3765 out: 3766 return ret; 3767 } 3768 3769 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3770 3771 /* Returns error only if unable to parse addresses */ 3772 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3773 struct common_audit_data *ad, u8 *proto) 3774 { 3775 u8 nexthdr; 3776 int ret = -EINVAL, offset; 3777 struct ipv6hdr _ipv6h, *ip6; 3778 __be16 frag_off; 3779 3780 offset = skb_network_offset(skb); 3781 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3782 if (ip6 == NULL) 3783 goto out; 3784 3785 ad->u.net->v6info.saddr = ip6->saddr; 3786 ad->u.net->v6info.daddr = ip6->daddr; 3787 ret = 0; 3788 3789 nexthdr = ip6->nexthdr; 3790 offset += sizeof(_ipv6h); 3791 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3792 if (offset < 0) 3793 goto out; 3794 3795 if (proto) 3796 *proto = nexthdr; 3797 3798 switch (nexthdr) { 3799 case IPPROTO_TCP: { 3800 struct tcphdr _tcph, *th; 3801 3802 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3803 if (th == NULL) 3804 break; 3805 3806 ad->u.net->sport = th->source; 3807 ad->u.net->dport = th->dest; 3808 break; 3809 } 3810 3811 case IPPROTO_UDP: { 3812 struct udphdr _udph, *uh; 3813 3814 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3815 if (uh == NULL) 3816 break; 3817 3818 ad->u.net->sport = uh->source; 3819 ad->u.net->dport = uh->dest; 3820 break; 3821 } 3822 3823 case IPPROTO_DCCP: { 3824 struct dccp_hdr _dccph, *dh; 3825 3826 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3827 if (dh == NULL) 3828 break; 3829 3830 ad->u.net->sport = dh->dccph_sport; 3831 ad->u.net->dport = dh->dccph_dport; 3832 break; 3833 } 3834 3835 /* includes fragments */ 3836 default: 3837 break; 3838 } 3839 out: 3840 return ret; 3841 } 3842 3843 #endif /* IPV6 */ 3844 3845 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3846 char **_addrp, int src, u8 *proto) 3847 { 3848 char *addrp; 3849 int ret; 3850 3851 switch (ad->u.net->family) { 3852 case PF_INET: 3853 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3854 if (ret) 3855 goto parse_error; 3856 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3857 &ad->u.net->v4info.daddr); 3858 goto okay; 3859 3860 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3861 case PF_INET6: 3862 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3863 if (ret) 3864 goto parse_error; 3865 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3866 &ad->u.net->v6info.daddr); 3867 goto okay; 3868 #endif /* IPV6 */ 3869 default: 3870 addrp = NULL; 3871 goto okay; 3872 } 3873 3874 parse_error: 3875 printk(KERN_WARNING 3876 "SELinux: failure in selinux_parse_skb()," 3877 " unable to parse packet\n"); 3878 return ret; 3879 3880 okay: 3881 if (_addrp) 3882 *_addrp = addrp; 3883 return 0; 3884 } 3885 3886 /** 3887 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3888 * @skb: the packet 3889 * @family: protocol family 3890 * @sid: the packet's peer label SID 3891 * 3892 * Description: 3893 * Check the various different forms of network peer labeling and determine 3894 * the peer label/SID for the packet; most of the magic actually occurs in 3895 * the security server function security_net_peersid_cmp(). The function 3896 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3897 * or -EACCES if @sid is invalid due to inconsistencies with the different 3898 * peer labels. 3899 * 3900 */ 3901 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3902 { 3903 int err; 3904 u32 xfrm_sid; 3905 u32 nlbl_sid; 3906 u32 nlbl_type; 3907 3908 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3909 if (unlikely(err)) 3910 return -EACCES; 3911 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3912 if (unlikely(err)) 3913 return -EACCES; 3914 3915 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3916 if (unlikely(err)) { 3917 printk(KERN_WARNING 3918 "SELinux: failure in selinux_skb_peerlbl_sid()," 3919 " unable to determine packet's peer label\n"); 3920 return -EACCES; 3921 } 3922 3923 return 0; 3924 } 3925 3926 /** 3927 * selinux_conn_sid - Determine the child socket label for a connection 3928 * @sk_sid: the parent socket's SID 3929 * @skb_sid: the packet's SID 3930 * @conn_sid: the resulting connection SID 3931 * 3932 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3933 * combined with the MLS information from @skb_sid in order to create 3934 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 3935 * of @sk_sid. Returns zero on success, negative values on failure. 3936 * 3937 */ 3938 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 3939 { 3940 int err = 0; 3941 3942 if (skb_sid != SECSID_NULL) 3943 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 3944 else 3945 *conn_sid = sk_sid; 3946 3947 return err; 3948 } 3949 3950 /* socket security operations */ 3951 3952 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 3953 u16 secclass, u32 *socksid) 3954 { 3955 if (tsec->sockcreate_sid > SECSID_NULL) { 3956 *socksid = tsec->sockcreate_sid; 3957 return 0; 3958 } 3959 3960 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 3961 socksid); 3962 } 3963 3964 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 3965 { 3966 struct sk_security_struct *sksec = sk->sk_security; 3967 struct common_audit_data ad; 3968 struct lsm_network_audit net = {0,}; 3969 u32 tsid = task_sid(task); 3970 3971 if (sksec->sid == SECINITSID_KERNEL) 3972 return 0; 3973 3974 ad.type = LSM_AUDIT_DATA_NET; 3975 ad.u.net = &net; 3976 ad.u.net->sk = sk; 3977 3978 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 3979 } 3980 3981 static int selinux_socket_create(int family, int type, 3982 int protocol, int kern) 3983 { 3984 const struct task_security_struct *tsec = current_security(); 3985 u32 newsid; 3986 u16 secclass; 3987 int rc; 3988 3989 if (kern) 3990 return 0; 3991 3992 secclass = socket_type_to_security_class(family, type, protocol); 3993 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 3994 if (rc) 3995 return rc; 3996 3997 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 3998 } 3999 4000 static int selinux_socket_post_create(struct socket *sock, int family, 4001 int type, int protocol, int kern) 4002 { 4003 const struct task_security_struct *tsec = current_security(); 4004 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4005 struct sk_security_struct *sksec; 4006 int err = 0; 4007 4008 isec->sclass = socket_type_to_security_class(family, type, protocol); 4009 4010 if (kern) 4011 isec->sid = SECINITSID_KERNEL; 4012 else { 4013 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4014 if (err) 4015 return err; 4016 } 4017 4018 isec->initialized = 1; 4019 4020 if (sock->sk) { 4021 sksec = sock->sk->sk_security; 4022 sksec->sid = isec->sid; 4023 sksec->sclass = isec->sclass; 4024 err = selinux_netlbl_socket_post_create(sock->sk, family); 4025 } 4026 4027 return err; 4028 } 4029 4030 /* Range of port numbers used to automatically bind. 4031 Need to determine whether we should perform a name_bind 4032 permission check between the socket and the port number. */ 4033 4034 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4035 { 4036 struct sock *sk = sock->sk; 4037 u16 family; 4038 int err; 4039 4040 err = sock_has_perm(current, sk, SOCKET__BIND); 4041 if (err) 4042 goto out; 4043 4044 /* 4045 * If PF_INET or PF_INET6, check name_bind permission for the port. 4046 * Multiple address binding for SCTP is not supported yet: we just 4047 * check the first address now. 4048 */ 4049 family = sk->sk_family; 4050 if (family == PF_INET || family == PF_INET6) { 4051 char *addrp; 4052 struct sk_security_struct *sksec = sk->sk_security; 4053 struct common_audit_data ad; 4054 struct lsm_network_audit net = {0,}; 4055 struct sockaddr_in *addr4 = NULL; 4056 struct sockaddr_in6 *addr6 = NULL; 4057 unsigned short snum; 4058 u32 sid, node_perm; 4059 4060 if (family == PF_INET) { 4061 addr4 = (struct sockaddr_in *)address; 4062 snum = ntohs(addr4->sin_port); 4063 addrp = (char *)&addr4->sin_addr.s_addr; 4064 } else { 4065 addr6 = (struct sockaddr_in6 *)address; 4066 snum = ntohs(addr6->sin6_port); 4067 addrp = (char *)&addr6->sin6_addr.s6_addr; 4068 } 4069 4070 if (snum) { 4071 int low, high; 4072 4073 inet_get_local_port_range(sock_net(sk), &low, &high); 4074 4075 if (snum < max(PROT_SOCK, low) || snum > high) { 4076 err = sel_netport_sid(sk->sk_protocol, 4077 snum, &sid); 4078 if (err) 4079 goto out; 4080 ad.type = LSM_AUDIT_DATA_NET; 4081 ad.u.net = &net; 4082 ad.u.net->sport = htons(snum); 4083 ad.u.net->family = family; 4084 err = avc_has_perm(sksec->sid, sid, 4085 sksec->sclass, 4086 SOCKET__NAME_BIND, &ad); 4087 if (err) 4088 goto out; 4089 } 4090 } 4091 4092 switch (sksec->sclass) { 4093 case SECCLASS_TCP_SOCKET: 4094 node_perm = TCP_SOCKET__NODE_BIND; 4095 break; 4096 4097 case SECCLASS_UDP_SOCKET: 4098 node_perm = UDP_SOCKET__NODE_BIND; 4099 break; 4100 4101 case SECCLASS_DCCP_SOCKET: 4102 node_perm = DCCP_SOCKET__NODE_BIND; 4103 break; 4104 4105 default: 4106 node_perm = RAWIP_SOCKET__NODE_BIND; 4107 break; 4108 } 4109 4110 err = sel_netnode_sid(addrp, family, &sid); 4111 if (err) 4112 goto out; 4113 4114 ad.type = LSM_AUDIT_DATA_NET; 4115 ad.u.net = &net; 4116 ad.u.net->sport = htons(snum); 4117 ad.u.net->family = family; 4118 4119 if (family == PF_INET) 4120 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4121 else 4122 ad.u.net->v6info.saddr = addr6->sin6_addr; 4123 4124 err = avc_has_perm(sksec->sid, sid, 4125 sksec->sclass, node_perm, &ad); 4126 if (err) 4127 goto out; 4128 } 4129 out: 4130 return err; 4131 } 4132 4133 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4134 { 4135 struct sock *sk = sock->sk; 4136 struct sk_security_struct *sksec = sk->sk_security; 4137 int err; 4138 4139 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4140 if (err) 4141 return err; 4142 4143 /* 4144 * If a TCP or DCCP socket, check name_connect permission for the port. 4145 */ 4146 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4147 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4148 struct common_audit_data ad; 4149 struct lsm_network_audit net = {0,}; 4150 struct sockaddr_in *addr4 = NULL; 4151 struct sockaddr_in6 *addr6 = NULL; 4152 unsigned short snum; 4153 u32 sid, perm; 4154 4155 if (sk->sk_family == PF_INET) { 4156 addr4 = (struct sockaddr_in *)address; 4157 if (addrlen < sizeof(struct sockaddr_in)) 4158 return -EINVAL; 4159 snum = ntohs(addr4->sin_port); 4160 } else { 4161 addr6 = (struct sockaddr_in6 *)address; 4162 if (addrlen < SIN6_LEN_RFC2133) 4163 return -EINVAL; 4164 snum = ntohs(addr6->sin6_port); 4165 } 4166 4167 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4168 if (err) 4169 goto out; 4170 4171 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4172 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4173 4174 ad.type = LSM_AUDIT_DATA_NET; 4175 ad.u.net = &net; 4176 ad.u.net->dport = htons(snum); 4177 ad.u.net->family = sk->sk_family; 4178 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4179 if (err) 4180 goto out; 4181 } 4182 4183 err = selinux_netlbl_socket_connect(sk, address); 4184 4185 out: 4186 return err; 4187 } 4188 4189 static int selinux_socket_listen(struct socket *sock, int backlog) 4190 { 4191 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4192 } 4193 4194 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4195 { 4196 int err; 4197 struct inode_security_struct *isec; 4198 struct inode_security_struct *newisec; 4199 4200 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4201 if (err) 4202 return err; 4203 4204 newisec = SOCK_INODE(newsock)->i_security; 4205 4206 isec = SOCK_INODE(sock)->i_security; 4207 newisec->sclass = isec->sclass; 4208 newisec->sid = isec->sid; 4209 newisec->initialized = 1; 4210 4211 return 0; 4212 } 4213 4214 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4215 int size) 4216 { 4217 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4218 } 4219 4220 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4221 int size, int flags) 4222 { 4223 return sock_has_perm(current, sock->sk, SOCKET__READ); 4224 } 4225 4226 static int selinux_socket_getsockname(struct socket *sock) 4227 { 4228 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4229 } 4230 4231 static int selinux_socket_getpeername(struct socket *sock) 4232 { 4233 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4234 } 4235 4236 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4237 { 4238 int err; 4239 4240 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4241 if (err) 4242 return err; 4243 4244 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4245 } 4246 4247 static int selinux_socket_getsockopt(struct socket *sock, int level, 4248 int optname) 4249 { 4250 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4251 } 4252 4253 static int selinux_socket_shutdown(struct socket *sock, int how) 4254 { 4255 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4256 } 4257 4258 static int selinux_socket_unix_stream_connect(struct sock *sock, 4259 struct sock *other, 4260 struct sock *newsk) 4261 { 4262 struct sk_security_struct *sksec_sock = sock->sk_security; 4263 struct sk_security_struct *sksec_other = other->sk_security; 4264 struct sk_security_struct *sksec_new = newsk->sk_security; 4265 struct common_audit_data ad; 4266 struct lsm_network_audit net = {0,}; 4267 int err; 4268 4269 ad.type = LSM_AUDIT_DATA_NET; 4270 ad.u.net = &net; 4271 ad.u.net->sk = other; 4272 4273 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4274 sksec_other->sclass, 4275 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4276 if (err) 4277 return err; 4278 4279 /* server child socket */ 4280 sksec_new->peer_sid = sksec_sock->sid; 4281 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4282 &sksec_new->sid); 4283 if (err) 4284 return err; 4285 4286 /* connecting socket */ 4287 sksec_sock->peer_sid = sksec_new->sid; 4288 4289 return 0; 4290 } 4291 4292 static int selinux_socket_unix_may_send(struct socket *sock, 4293 struct socket *other) 4294 { 4295 struct sk_security_struct *ssec = sock->sk->sk_security; 4296 struct sk_security_struct *osec = other->sk->sk_security; 4297 struct common_audit_data ad; 4298 struct lsm_network_audit net = {0,}; 4299 4300 ad.type = LSM_AUDIT_DATA_NET; 4301 ad.u.net = &net; 4302 ad.u.net->sk = other->sk; 4303 4304 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4305 &ad); 4306 } 4307 4308 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4309 char *addrp, u16 family, u32 peer_sid, 4310 struct common_audit_data *ad) 4311 { 4312 int err; 4313 u32 if_sid; 4314 u32 node_sid; 4315 4316 err = sel_netif_sid(ns, ifindex, &if_sid); 4317 if (err) 4318 return err; 4319 err = avc_has_perm(peer_sid, if_sid, 4320 SECCLASS_NETIF, NETIF__INGRESS, ad); 4321 if (err) 4322 return err; 4323 4324 err = sel_netnode_sid(addrp, family, &node_sid); 4325 if (err) 4326 return err; 4327 return avc_has_perm(peer_sid, node_sid, 4328 SECCLASS_NODE, NODE__RECVFROM, ad); 4329 } 4330 4331 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4332 u16 family) 4333 { 4334 int err = 0; 4335 struct sk_security_struct *sksec = sk->sk_security; 4336 u32 sk_sid = sksec->sid; 4337 struct common_audit_data ad; 4338 struct lsm_network_audit net = {0,}; 4339 char *addrp; 4340 4341 ad.type = LSM_AUDIT_DATA_NET; 4342 ad.u.net = &net; 4343 ad.u.net->netif = skb->skb_iif; 4344 ad.u.net->family = family; 4345 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4346 if (err) 4347 return err; 4348 4349 if (selinux_secmark_enabled()) { 4350 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4351 PACKET__RECV, &ad); 4352 if (err) 4353 return err; 4354 } 4355 4356 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4357 if (err) 4358 return err; 4359 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4360 4361 return err; 4362 } 4363 4364 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4365 { 4366 int err; 4367 struct sk_security_struct *sksec = sk->sk_security; 4368 u16 family = sk->sk_family; 4369 u32 sk_sid = sksec->sid; 4370 struct common_audit_data ad; 4371 struct lsm_network_audit net = {0,}; 4372 char *addrp; 4373 u8 secmark_active; 4374 u8 peerlbl_active; 4375 4376 if (family != PF_INET && family != PF_INET6) 4377 return 0; 4378 4379 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4380 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4381 family = PF_INET; 4382 4383 /* If any sort of compatibility mode is enabled then handoff processing 4384 * to the selinux_sock_rcv_skb_compat() function to deal with the 4385 * special handling. We do this in an attempt to keep this function 4386 * as fast and as clean as possible. */ 4387 if (!selinux_policycap_netpeer) 4388 return selinux_sock_rcv_skb_compat(sk, skb, family); 4389 4390 secmark_active = selinux_secmark_enabled(); 4391 peerlbl_active = selinux_peerlbl_enabled(); 4392 if (!secmark_active && !peerlbl_active) 4393 return 0; 4394 4395 ad.type = LSM_AUDIT_DATA_NET; 4396 ad.u.net = &net; 4397 ad.u.net->netif = skb->skb_iif; 4398 ad.u.net->family = family; 4399 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4400 if (err) 4401 return err; 4402 4403 if (peerlbl_active) { 4404 u32 peer_sid; 4405 4406 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4407 if (err) 4408 return err; 4409 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4410 addrp, family, peer_sid, &ad); 4411 if (err) { 4412 selinux_netlbl_err(skb, err, 0); 4413 return err; 4414 } 4415 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4416 PEER__RECV, &ad); 4417 if (err) { 4418 selinux_netlbl_err(skb, err, 0); 4419 return err; 4420 } 4421 } 4422 4423 if (secmark_active) { 4424 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4425 PACKET__RECV, &ad); 4426 if (err) 4427 return err; 4428 } 4429 4430 return err; 4431 } 4432 4433 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4434 int __user *optlen, unsigned len) 4435 { 4436 int err = 0; 4437 char *scontext; 4438 u32 scontext_len; 4439 struct sk_security_struct *sksec = sock->sk->sk_security; 4440 u32 peer_sid = SECSID_NULL; 4441 4442 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4443 sksec->sclass == SECCLASS_TCP_SOCKET) 4444 peer_sid = sksec->peer_sid; 4445 if (peer_sid == SECSID_NULL) 4446 return -ENOPROTOOPT; 4447 4448 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4449 if (err) 4450 return err; 4451 4452 if (scontext_len > len) { 4453 err = -ERANGE; 4454 goto out_len; 4455 } 4456 4457 if (copy_to_user(optval, scontext, scontext_len)) 4458 err = -EFAULT; 4459 4460 out_len: 4461 if (put_user(scontext_len, optlen)) 4462 err = -EFAULT; 4463 kfree(scontext); 4464 return err; 4465 } 4466 4467 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4468 { 4469 u32 peer_secid = SECSID_NULL; 4470 u16 family; 4471 4472 if (skb && skb->protocol == htons(ETH_P_IP)) 4473 family = PF_INET; 4474 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4475 family = PF_INET6; 4476 else if (sock) 4477 family = sock->sk->sk_family; 4478 else 4479 goto out; 4480 4481 if (sock && family == PF_UNIX) 4482 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4483 else if (skb) 4484 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4485 4486 out: 4487 *secid = peer_secid; 4488 if (peer_secid == SECSID_NULL) 4489 return -EINVAL; 4490 return 0; 4491 } 4492 4493 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4494 { 4495 struct sk_security_struct *sksec; 4496 4497 sksec = kzalloc(sizeof(*sksec), priority); 4498 if (!sksec) 4499 return -ENOMEM; 4500 4501 sksec->peer_sid = SECINITSID_UNLABELED; 4502 sksec->sid = SECINITSID_UNLABELED; 4503 selinux_netlbl_sk_security_reset(sksec); 4504 sk->sk_security = sksec; 4505 4506 return 0; 4507 } 4508 4509 static void selinux_sk_free_security(struct sock *sk) 4510 { 4511 struct sk_security_struct *sksec = sk->sk_security; 4512 4513 sk->sk_security = NULL; 4514 selinux_netlbl_sk_security_free(sksec); 4515 kfree(sksec); 4516 } 4517 4518 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4519 { 4520 struct sk_security_struct *sksec = sk->sk_security; 4521 struct sk_security_struct *newsksec = newsk->sk_security; 4522 4523 newsksec->sid = sksec->sid; 4524 newsksec->peer_sid = sksec->peer_sid; 4525 newsksec->sclass = sksec->sclass; 4526 4527 selinux_netlbl_sk_security_reset(newsksec); 4528 } 4529 4530 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4531 { 4532 if (!sk) 4533 *secid = SECINITSID_ANY_SOCKET; 4534 else { 4535 struct sk_security_struct *sksec = sk->sk_security; 4536 4537 *secid = sksec->sid; 4538 } 4539 } 4540 4541 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4542 { 4543 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4544 struct sk_security_struct *sksec = sk->sk_security; 4545 4546 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4547 sk->sk_family == PF_UNIX) 4548 isec->sid = sksec->sid; 4549 sksec->sclass = isec->sclass; 4550 } 4551 4552 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4553 struct request_sock *req) 4554 { 4555 struct sk_security_struct *sksec = sk->sk_security; 4556 int err; 4557 u16 family = req->rsk_ops->family; 4558 u32 connsid; 4559 u32 peersid; 4560 4561 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4562 if (err) 4563 return err; 4564 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4565 if (err) 4566 return err; 4567 req->secid = connsid; 4568 req->peer_secid = peersid; 4569 4570 return selinux_netlbl_inet_conn_request(req, family); 4571 } 4572 4573 static void selinux_inet_csk_clone(struct sock *newsk, 4574 const struct request_sock *req) 4575 { 4576 struct sk_security_struct *newsksec = newsk->sk_security; 4577 4578 newsksec->sid = req->secid; 4579 newsksec->peer_sid = req->peer_secid; 4580 /* NOTE: Ideally, we should also get the isec->sid for the 4581 new socket in sync, but we don't have the isec available yet. 4582 So we will wait until sock_graft to do it, by which 4583 time it will have been created and available. */ 4584 4585 /* We don't need to take any sort of lock here as we are the only 4586 * thread with access to newsksec */ 4587 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4588 } 4589 4590 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4591 { 4592 u16 family = sk->sk_family; 4593 struct sk_security_struct *sksec = sk->sk_security; 4594 4595 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4596 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4597 family = PF_INET; 4598 4599 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4600 } 4601 4602 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk) 4603 { 4604 skb_set_owner_w(skb, sk); 4605 } 4606 4607 static int selinux_secmark_relabel_packet(u32 sid) 4608 { 4609 const struct task_security_struct *__tsec; 4610 u32 tsid; 4611 4612 __tsec = current_security(); 4613 tsid = __tsec->sid; 4614 4615 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4616 } 4617 4618 static void selinux_secmark_refcount_inc(void) 4619 { 4620 atomic_inc(&selinux_secmark_refcount); 4621 } 4622 4623 static void selinux_secmark_refcount_dec(void) 4624 { 4625 atomic_dec(&selinux_secmark_refcount); 4626 } 4627 4628 static void selinux_req_classify_flow(const struct request_sock *req, 4629 struct flowi *fl) 4630 { 4631 fl->flowi_secid = req->secid; 4632 } 4633 4634 static int selinux_tun_dev_alloc_security(void **security) 4635 { 4636 struct tun_security_struct *tunsec; 4637 4638 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4639 if (!tunsec) 4640 return -ENOMEM; 4641 tunsec->sid = current_sid(); 4642 4643 *security = tunsec; 4644 return 0; 4645 } 4646 4647 static void selinux_tun_dev_free_security(void *security) 4648 { 4649 kfree(security); 4650 } 4651 4652 static int selinux_tun_dev_create(void) 4653 { 4654 u32 sid = current_sid(); 4655 4656 /* we aren't taking into account the "sockcreate" SID since the socket 4657 * that is being created here is not a socket in the traditional sense, 4658 * instead it is a private sock, accessible only to the kernel, and 4659 * representing a wide range of network traffic spanning multiple 4660 * connections unlike traditional sockets - check the TUN driver to 4661 * get a better understanding of why this socket is special */ 4662 4663 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4664 NULL); 4665 } 4666 4667 static int selinux_tun_dev_attach_queue(void *security) 4668 { 4669 struct tun_security_struct *tunsec = security; 4670 4671 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4672 TUN_SOCKET__ATTACH_QUEUE, NULL); 4673 } 4674 4675 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4676 { 4677 struct tun_security_struct *tunsec = security; 4678 struct sk_security_struct *sksec = sk->sk_security; 4679 4680 /* we don't currently perform any NetLabel based labeling here and it 4681 * isn't clear that we would want to do so anyway; while we could apply 4682 * labeling without the support of the TUN user the resulting labeled 4683 * traffic from the other end of the connection would almost certainly 4684 * cause confusion to the TUN user that had no idea network labeling 4685 * protocols were being used */ 4686 4687 sksec->sid = tunsec->sid; 4688 sksec->sclass = SECCLASS_TUN_SOCKET; 4689 4690 return 0; 4691 } 4692 4693 static int selinux_tun_dev_open(void *security) 4694 { 4695 struct tun_security_struct *tunsec = security; 4696 u32 sid = current_sid(); 4697 int err; 4698 4699 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4700 TUN_SOCKET__RELABELFROM, NULL); 4701 if (err) 4702 return err; 4703 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4704 TUN_SOCKET__RELABELTO, NULL); 4705 if (err) 4706 return err; 4707 tunsec->sid = sid; 4708 4709 return 0; 4710 } 4711 4712 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4713 { 4714 int err = 0; 4715 u32 perm; 4716 struct nlmsghdr *nlh; 4717 struct sk_security_struct *sksec = sk->sk_security; 4718 4719 if (skb->len < NLMSG_HDRLEN) { 4720 err = -EINVAL; 4721 goto out; 4722 } 4723 nlh = nlmsg_hdr(skb); 4724 4725 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4726 if (err) { 4727 if (err == -EINVAL) { 4728 WARN_ONCE(1, "selinux_nlmsg_perm: unrecognized netlink message:" 4729 " protocol=%hu nlmsg_type=%hu sclass=%hu\n", 4730 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass); 4731 if (!selinux_enforcing || security_get_allow_unknown()) 4732 err = 0; 4733 } 4734 4735 /* Ignore */ 4736 if (err == -ENOENT) 4737 err = 0; 4738 goto out; 4739 } 4740 4741 err = sock_has_perm(current, sk, perm); 4742 out: 4743 return err; 4744 } 4745 4746 #ifdef CONFIG_NETFILTER 4747 4748 static unsigned int selinux_ip_forward(struct sk_buff *skb, 4749 const struct net_device *indev, 4750 u16 family) 4751 { 4752 int err; 4753 char *addrp; 4754 u32 peer_sid; 4755 struct common_audit_data ad; 4756 struct lsm_network_audit net = {0,}; 4757 u8 secmark_active; 4758 u8 netlbl_active; 4759 u8 peerlbl_active; 4760 4761 if (!selinux_policycap_netpeer) 4762 return NF_ACCEPT; 4763 4764 secmark_active = selinux_secmark_enabled(); 4765 netlbl_active = netlbl_enabled(); 4766 peerlbl_active = selinux_peerlbl_enabled(); 4767 if (!secmark_active && !peerlbl_active) 4768 return NF_ACCEPT; 4769 4770 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4771 return NF_DROP; 4772 4773 ad.type = LSM_AUDIT_DATA_NET; 4774 ad.u.net = &net; 4775 ad.u.net->netif = indev->ifindex; 4776 ad.u.net->family = family; 4777 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4778 return NF_DROP; 4779 4780 if (peerlbl_active) { 4781 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4782 addrp, family, peer_sid, &ad); 4783 if (err) { 4784 selinux_netlbl_err(skb, err, 1); 4785 return NF_DROP; 4786 } 4787 } 4788 4789 if (secmark_active) 4790 if (avc_has_perm(peer_sid, skb->secmark, 4791 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4792 return NF_DROP; 4793 4794 if (netlbl_active) 4795 /* we do this in the FORWARD path and not the POST_ROUTING 4796 * path because we want to make sure we apply the necessary 4797 * labeling before IPsec is applied so we can leverage AH 4798 * protection */ 4799 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4800 return NF_DROP; 4801 4802 return NF_ACCEPT; 4803 } 4804 4805 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4806 struct sk_buff *skb, 4807 const struct net_device *in, 4808 const struct net_device *out, 4809 int (*okfn)(struct sk_buff *)) 4810 { 4811 return selinux_ip_forward(skb, in, PF_INET); 4812 } 4813 4814 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4815 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4816 struct sk_buff *skb, 4817 const struct net_device *in, 4818 const struct net_device *out, 4819 int (*okfn)(struct sk_buff *)) 4820 { 4821 return selinux_ip_forward(skb, in, PF_INET6); 4822 } 4823 #endif /* IPV6 */ 4824 4825 static unsigned int selinux_ip_output(struct sk_buff *skb, 4826 u16 family) 4827 { 4828 struct sock *sk; 4829 u32 sid; 4830 4831 if (!netlbl_enabled()) 4832 return NF_ACCEPT; 4833 4834 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4835 * because we want to make sure we apply the necessary labeling 4836 * before IPsec is applied so we can leverage AH protection */ 4837 sk = skb->sk; 4838 if (sk) { 4839 struct sk_security_struct *sksec; 4840 4841 if (sk->sk_state == TCP_LISTEN) 4842 /* if the socket is the listening state then this 4843 * packet is a SYN-ACK packet which means it needs to 4844 * be labeled based on the connection/request_sock and 4845 * not the parent socket. unfortunately, we can't 4846 * lookup the request_sock yet as it isn't queued on 4847 * the parent socket until after the SYN-ACK is sent. 4848 * the "solution" is to simply pass the packet as-is 4849 * as any IP option based labeling should be copied 4850 * from the initial connection request (in the IP 4851 * layer). it is far from ideal, but until we get a 4852 * security label in the packet itself this is the 4853 * best we can do. */ 4854 return NF_ACCEPT; 4855 4856 /* standard practice, label using the parent socket */ 4857 sksec = sk->sk_security; 4858 sid = sksec->sid; 4859 } else 4860 sid = SECINITSID_KERNEL; 4861 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4862 return NF_DROP; 4863 4864 return NF_ACCEPT; 4865 } 4866 4867 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4868 struct sk_buff *skb, 4869 const struct net_device *in, 4870 const struct net_device *out, 4871 int (*okfn)(struct sk_buff *)) 4872 { 4873 return selinux_ip_output(skb, PF_INET); 4874 } 4875 4876 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4877 int ifindex, 4878 u16 family) 4879 { 4880 struct sock *sk = skb->sk; 4881 struct sk_security_struct *sksec; 4882 struct common_audit_data ad; 4883 struct lsm_network_audit net = {0,}; 4884 char *addrp; 4885 u8 proto; 4886 4887 if (sk == NULL) 4888 return NF_ACCEPT; 4889 sksec = sk->sk_security; 4890 4891 ad.type = LSM_AUDIT_DATA_NET; 4892 ad.u.net = &net; 4893 ad.u.net->netif = ifindex; 4894 ad.u.net->family = family; 4895 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4896 return NF_DROP; 4897 4898 if (selinux_secmark_enabled()) 4899 if (avc_has_perm(sksec->sid, skb->secmark, 4900 SECCLASS_PACKET, PACKET__SEND, &ad)) 4901 return NF_DROP_ERR(-ECONNREFUSED); 4902 4903 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4904 return NF_DROP_ERR(-ECONNREFUSED); 4905 4906 return NF_ACCEPT; 4907 } 4908 4909 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4910 const struct net_device *outdev, 4911 u16 family) 4912 { 4913 u32 secmark_perm; 4914 u32 peer_sid; 4915 int ifindex = outdev->ifindex; 4916 struct sock *sk; 4917 struct common_audit_data ad; 4918 struct lsm_network_audit net = {0,}; 4919 char *addrp; 4920 u8 secmark_active; 4921 u8 peerlbl_active; 4922 4923 /* If any sort of compatibility mode is enabled then handoff processing 4924 * to the selinux_ip_postroute_compat() function to deal with the 4925 * special handling. We do this in an attempt to keep this function 4926 * as fast and as clean as possible. */ 4927 if (!selinux_policycap_netpeer) 4928 return selinux_ip_postroute_compat(skb, ifindex, family); 4929 4930 secmark_active = selinux_secmark_enabled(); 4931 peerlbl_active = selinux_peerlbl_enabled(); 4932 if (!secmark_active && !peerlbl_active) 4933 return NF_ACCEPT; 4934 4935 sk = skb->sk; 4936 4937 #ifdef CONFIG_XFRM 4938 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4939 * packet transformation so allow the packet to pass without any checks 4940 * since we'll have another chance to perform access control checks 4941 * when the packet is on it's final way out. 4942 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4943 * is NULL, in this case go ahead and apply access control. 4944 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 4945 * TCP listening state we cannot wait until the XFRM processing 4946 * is done as we will miss out on the SA label if we do; 4947 * unfortunately, this means more work, but it is only once per 4948 * connection. */ 4949 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 4950 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 4951 return NF_ACCEPT; 4952 #endif 4953 4954 if (sk == NULL) { 4955 /* Without an associated socket the packet is either coming 4956 * from the kernel or it is being forwarded; check the packet 4957 * to determine which and if the packet is being forwarded 4958 * query the packet directly to determine the security label. */ 4959 if (skb->skb_iif) { 4960 secmark_perm = PACKET__FORWARD_OUT; 4961 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4962 return NF_DROP; 4963 } else { 4964 secmark_perm = PACKET__SEND; 4965 peer_sid = SECINITSID_KERNEL; 4966 } 4967 } else if (sk->sk_state == TCP_LISTEN) { 4968 /* Locally generated packet but the associated socket is in the 4969 * listening state which means this is a SYN-ACK packet. In 4970 * this particular case the correct security label is assigned 4971 * to the connection/request_sock but unfortunately we can't 4972 * query the request_sock as it isn't queued on the parent 4973 * socket until after the SYN-ACK packet is sent; the only 4974 * viable choice is to regenerate the label like we do in 4975 * selinux_inet_conn_request(). See also selinux_ip_output() 4976 * for similar problems. */ 4977 u32 skb_sid; 4978 struct sk_security_struct *sksec = sk->sk_security; 4979 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 4980 return NF_DROP; 4981 /* At this point, if the returned skb peerlbl is SECSID_NULL 4982 * and the packet has been through at least one XFRM 4983 * transformation then we must be dealing with the "final" 4984 * form of labeled IPsec packet; since we've already applied 4985 * all of our access controls on this packet we can safely 4986 * pass the packet. */ 4987 if (skb_sid == SECSID_NULL) { 4988 switch (family) { 4989 case PF_INET: 4990 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 4991 return NF_ACCEPT; 4992 break; 4993 case PF_INET6: 4994 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 4995 return NF_ACCEPT; 4996 break; 4997 default: 4998 return NF_DROP_ERR(-ECONNREFUSED); 4999 } 5000 } 5001 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5002 return NF_DROP; 5003 secmark_perm = PACKET__SEND; 5004 } else { 5005 /* Locally generated packet, fetch the security label from the 5006 * associated socket. */ 5007 struct sk_security_struct *sksec = sk->sk_security; 5008 peer_sid = sksec->sid; 5009 secmark_perm = PACKET__SEND; 5010 } 5011 5012 ad.type = LSM_AUDIT_DATA_NET; 5013 ad.u.net = &net; 5014 ad.u.net->netif = ifindex; 5015 ad.u.net->family = family; 5016 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5017 return NF_DROP; 5018 5019 if (secmark_active) 5020 if (avc_has_perm(peer_sid, skb->secmark, 5021 SECCLASS_PACKET, secmark_perm, &ad)) 5022 return NF_DROP_ERR(-ECONNREFUSED); 5023 5024 if (peerlbl_active) { 5025 u32 if_sid; 5026 u32 node_sid; 5027 5028 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5029 return NF_DROP; 5030 if (avc_has_perm(peer_sid, if_sid, 5031 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5032 return NF_DROP_ERR(-ECONNREFUSED); 5033 5034 if (sel_netnode_sid(addrp, family, &node_sid)) 5035 return NF_DROP; 5036 if (avc_has_perm(peer_sid, node_sid, 5037 SECCLASS_NODE, NODE__SENDTO, &ad)) 5038 return NF_DROP_ERR(-ECONNREFUSED); 5039 } 5040 5041 return NF_ACCEPT; 5042 } 5043 5044 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5045 struct sk_buff *skb, 5046 const struct net_device *in, 5047 const struct net_device *out, 5048 int (*okfn)(struct sk_buff *)) 5049 { 5050 return selinux_ip_postroute(skb, out, PF_INET); 5051 } 5052 5053 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5054 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5055 struct sk_buff *skb, 5056 const struct net_device *in, 5057 const struct net_device *out, 5058 int (*okfn)(struct sk_buff *)) 5059 { 5060 return selinux_ip_postroute(skb, out, PF_INET6); 5061 } 5062 #endif /* IPV6 */ 5063 5064 #endif /* CONFIG_NETFILTER */ 5065 5066 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5067 { 5068 int err; 5069 5070 err = cap_netlink_send(sk, skb); 5071 if (err) 5072 return err; 5073 5074 return selinux_nlmsg_perm(sk, skb); 5075 } 5076 5077 static int ipc_alloc_security(struct task_struct *task, 5078 struct kern_ipc_perm *perm, 5079 u16 sclass) 5080 { 5081 struct ipc_security_struct *isec; 5082 u32 sid; 5083 5084 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5085 if (!isec) 5086 return -ENOMEM; 5087 5088 sid = task_sid(task); 5089 isec->sclass = sclass; 5090 isec->sid = sid; 5091 perm->security = isec; 5092 5093 return 0; 5094 } 5095 5096 static void ipc_free_security(struct kern_ipc_perm *perm) 5097 { 5098 struct ipc_security_struct *isec = perm->security; 5099 perm->security = NULL; 5100 kfree(isec); 5101 } 5102 5103 static int msg_msg_alloc_security(struct msg_msg *msg) 5104 { 5105 struct msg_security_struct *msec; 5106 5107 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5108 if (!msec) 5109 return -ENOMEM; 5110 5111 msec->sid = SECINITSID_UNLABELED; 5112 msg->security = msec; 5113 5114 return 0; 5115 } 5116 5117 static void msg_msg_free_security(struct msg_msg *msg) 5118 { 5119 struct msg_security_struct *msec = msg->security; 5120 5121 msg->security = NULL; 5122 kfree(msec); 5123 } 5124 5125 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5126 u32 perms) 5127 { 5128 struct ipc_security_struct *isec; 5129 struct common_audit_data ad; 5130 u32 sid = current_sid(); 5131 5132 isec = ipc_perms->security; 5133 5134 ad.type = LSM_AUDIT_DATA_IPC; 5135 ad.u.ipc_id = ipc_perms->key; 5136 5137 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5138 } 5139 5140 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5141 { 5142 return msg_msg_alloc_security(msg); 5143 } 5144 5145 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5146 { 5147 msg_msg_free_security(msg); 5148 } 5149 5150 /* message queue security operations */ 5151 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5152 { 5153 struct ipc_security_struct *isec; 5154 struct common_audit_data ad; 5155 u32 sid = current_sid(); 5156 int rc; 5157 5158 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5159 if (rc) 5160 return rc; 5161 5162 isec = msq->q_perm.security; 5163 5164 ad.type = LSM_AUDIT_DATA_IPC; 5165 ad.u.ipc_id = msq->q_perm.key; 5166 5167 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5168 MSGQ__CREATE, &ad); 5169 if (rc) { 5170 ipc_free_security(&msq->q_perm); 5171 return rc; 5172 } 5173 return 0; 5174 } 5175 5176 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5177 { 5178 ipc_free_security(&msq->q_perm); 5179 } 5180 5181 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5182 { 5183 struct ipc_security_struct *isec; 5184 struct common_audit_data ad; 5185 u32 sid = current_sid(); 5186 5187 isec = msq->q_perm.security; 5188 5189 ad.type = LSM_AUDIT_DATA_IPC; 5190 ad.u.ipc_id = msq->q_perm.key; 5191 5192 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5193 MSGQ__ASSOCIATE, &ad); 5194 } 5195 5196 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5197 { 5198 int err; 5199 int perms; 5200 5201 switch (cmd) { 5202 case IPC_INFO: 5203 case MSG_INFO: 5204 /* No specific object, just general system-wide information. */ 5205 return task_has_system(current, SYSTEM__IPC_INFO); 5206 case IPC_STAT: 5207 case MSG_STAT: 5208 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5209 break; 5210 case IPC_SET: 5211 perms = MSGQ__SETATTR; 5212 break; 5213 case IPC_RMID: 5214 perms = MSGQ__DESTROY; 5215 break; 5216 default: 5217 return 0; 5218 } 5219 5220 err = ipc_has_perm(&msq->q_perm, perms); 5221 return err; 5222 } 5223 5224 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5225 { 5226 struct ipc_security_struct *isec; 5227 struct msg_security_struct *msec; 5228 struct common_audit_data ad; 5229 u32 sid = current_sid(); 5230 int rc; 5231 5232 isec = msq->q_perm.security; 5233 msec = msg->security; 5234 5235 /* 5236 * First time through, need to assign label to the message 5237 */ 5238 if (msec->sid == SECINITSID_UNLABELED) { 5239 /* 5240 * Compute new sid based on current process and 5241 * message queue this message will be stored in 5242 */ 5243 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5244 NULL, &msec->sid); 5245 if (rc) 5246 return rc; 5247 } 5248 5249 ad.type = LSM_AUDIT_DATA_IPC; 5250 ad.u.ipc_id = msq->q_perm.key; 5251 5252 /* Can this process write to the queue? */ 5253 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5254 MSGQ__WRITE, &ad); 5255 if (!rc) 5256 /* Can this process send the message */ 5257 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5258 MSG__SEND, &ad); 5259 if (!rc) 5260 /* Can the message be put in the queue? */ 5261 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5262 MSGQ__ENQUEUE, &ad); 5263 5264 return rc; 5265 } 5266 5267 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5268 struct task_struct *target, 5269 long type, int mode) 5270 { 5271 struct ipc_security_struct *isec; 5272 struct msg_security_struct *msec; 5273 struct common_audit_data ad; 5274 u32 sid = task_sid(target); 5275 int rc; 5276 5277 isec = msq->q_perm.security; 5278 msec = msg->security; 5279 5280 ad.type = LSM_AUDIT_DATA_IPC; 5281 ad.u.ipc_id = msq->q_perm.key; 5282 5283 rc = avc_has_perm(sid, isec->sid, 5284 SECCLASS_MSGQ, MSGQ__READ, &ad); 5285 if (!rc) 5286 rc = avc_has_perm(sid, msec->sid, 5287 SECCLASS_MSG, MSG__RECEIVE, &ad); 5288 return rc; 5289 } 5290 5291 /* Shared Memory security operations */ 5292 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5293 { 5294 struct ipc_security_struct *isec; 5295 struct common_audit_data ad; 5296 u32 sid = current_sid(); 5297 int rc; 5298 5299 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5300 if (rc) 5301 return rc; 5302 5303 isec = shp->shm_perm.security; 5304 5305 ad.type = LSM_AUDIT_DATA_IPC; 5306 ad.u.ipc_id = shp->shm_perm.key; 5307 5308 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5309 SHM__CREATE, &ad); 5310 if (rc) { 5311 ipc_free_security(&shp->shm_perm); 5312 return rc; 5313 } 5314 return 0; 5315 } 5316 5317 static void selinux_shm_free_security(struct shmid_kernel *shp) 5318 { 5319 ipc_free_security(&shp->shm_perm); 5320 } 5321 5322 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5323 { 5324 struct ipc_security_struct *isec; 5325 struct common_audit_data ad; 5326 u32 sid = current_sid(); 5327 5328 isec = shp->shm_perm.security; 5329 5330 ad.type = LSM_AUDIT_DATA_IPC; 5331 ad.u.ipc_id = shp->shm_perm.key; 5332 5333 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5334 SHM__ASSOCIATE, &ad); 5335 } 5336 5337 /* Note, at this point, shp is locked down */ 5338 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5339 { 5340 int perms; 5341 int err; 5342 5343 switch (cmd) { 5344 case IPC_INFO: 5345 case SHM_INFO: 5346 /* No specific object, just general system-wide information. */ 5347 return task_has_system(current, SYSTEM__IPC_INFO); 5348 case IPC_STAT: 5349 case SHM_STAT: 5350 perms = SHM__GETATTR | SHM__ASSOCIATE; 5351 break; 5352 case IPC_SET: 5353 perms = SHM__SETATTR; 5354 break; 5355 case SHM_LOCK: 5356 case SHM_UNLOCK: 5357 perms = SHM__LOCK; 5358 break; 5359 case IPC_RMID: 5360 perms = SHM__DESTROY; 5361 break; 5362 default: 5363 return 0; 5364 } 5365 5366 err = ipc_has_perm(&shp->shm_perm, perms); 5367 return err; 5368 } 5369 5370 static int selinux_shm_shmat(struct shmid_kernel *shp, 5371 char __user *shmaddr, int shmflg) 5372 { 5373 u32 perms; 5374 5375 if (shmflg & SHM_RDONLY) 5376 perms = SHM__READ; 5377 else 5378 perms = SHM__READ | SHM__WRITE; 5379 5380 return ipc_has_perm(&shp->shm_perm, perms); 5381 } 5382 5383 /* Semaphore security operations */ 5384 static int selinux_sem_alloc_security(struct sem_array *sma) 5385 { 5386 struct ipc_security_struct *isec; 5387 struct common_audit_data ad; 5388 u32 sid = current_sid(); 5389 int rc; 5390 5391 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5392 if (rc) 5393 return rc; 5394 5395 isec = sma->sem_perm.security; 5396 5397 ad.type = LSM_AUDIT_DATA_IPC; 5398 ad.u.ipc_id = sma->sem_perm.key; 5399 5400 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5401 SEM__CREATE, &ad); 5402 if (rc) { 5403 ipc_free_security(&sma->sem_perm); 5404 return rc; 5405 } 5406 return 0; 5407 } 5408 5409 static void selinux_sem_free_security(struct sem_array *sma) 5410 { 5411 ipc_free_security(&sma->sem_perm); 5412 } 5413 5414 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5415 { 5416 struct ipc_security_struct *isec; 5417 struct common_audit_data ad; 5418 u32 sid = current_sid(); 5419 5420 isec = sma->sem_perm.security; 5421 5422 ad.type = LSM_AUDIT_DATA_IPC; 5423 ad.u.ipc_id = sma->sem_perm.key; 5424 5425 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5426 SEM__ASSOCIATE, &ad); 5427 } 5428 5429 /* Note, at this point, sma is locked down */ 5430 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5431 { 5432 int err; 5433 u32 perms; 5434 5435 switch (cmd) { 5436 case IPC_INFO: 5437 case SEM_INFO: 5438 /* No specific object, just general system-wide information. */ 5439 return task_has_system(current, SYSTEM__IPC_INFO); 5440 case GETPID: 5441 case GETNCNT: 5442 case GETZCNT: 5443 perms = SEM__GETATTR; 5444 break; 5445 case GETVAL: 5446 case GETALL: 5447 perms = SEM__READ; 5448 break; 5449 case SETVAL: 5450 case SETALL: 5451 perms = SEM__WRITE; 5452 break; 5453 case IPC_RMID: 5454 perms = SEM__DESTROY; 5455 break; 5456 case IPC_SET: 5457 perms = SEM__SETATTR; 5458 break; 5459 case IPC_STAT: 5460 case SEM_STAT: 5461 perms = SEM__GETATTR | SEM__ASSOCIATE; 5462 break; 5463 default: 5464 return 0; 5465 } 5466 5467 err = ipc_has_perm(&sma->sem_perm, perms); 5468 return err; 5469 } 5470 5471 static int selinux_sem_semop(struct sem_array *sma, 5472 struct sembuf *sops, unsigned nsops, int alter) 5473 { 5474 u32 perms; 5475 5476 if (alter) 5477 perms = SEM__READ | SEM__WRITE; 5478 else 5479 perms = SEM__READ; 5480 5481 return ipc_has_perm(&sma->sem_perm, perms); 5482 } 5483 5484 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5485 { 5486 u32 av = 0; 5487 5488 av = 0; 5489 if (flag & S_IRUGO) 5490 av |= IPC__UNIX_READ; 5491 if (flag & S_IWUGO) 5492 av |= IPC__UNIX_WRITE; 5493 5494 if (av == 0) 5495 return 0; 5496 5497 return ipc_has_perm(ipcp, av); 5498 } 5499 5500 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5501 { 5502 struct ipc_security_struct *isec = ipcp->security; 5503 *secid = isec->sid; 5504 } 5505 5506 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5507 { 5508 if (inode) 5509 inode_doinit_with_dentry(inode, dentry); 5510 } 5511 5512 static int selinux_getprocattr(struct task_struct *p, 5513 char *name, char **value) 5514 { 5515 const struct task_security_struct *__tsec; 5516 u32 sid; 5517 int error; 5518 unsigned len; 5519 5520 if (current != p) { 5521 error = current_has_perm(p, PROCESS__GETATTR); 5522 if (error) 5523 return error; 5524 } 5525 5526 rcu_read_lock(); 5527 __tsec = __task_cred(p)->security; 5528 5529 if (!strcmp(name, "current")) 5530 sid = __tsec->sid; 5531 else if (!strcmp(name, "prev")) 5532 sid = __tsec->osid; 5533 else if (!strcmp(name, "exec")) 5534 sid = __tsec->exec_sid; 5535 else if (!strcmp(name, "fscreate")) 5536 sid = __tsec->create_sid; 5537 else if (!strcmp(name, "keycreate")) 5538 sid = __tsec->keycreate_sid; 5539 else if (!strcmp(name, "sockcreate")) 5540 sid = __tsec->sockcreate_sid; 5541 else 5542 goto invalid; 5543 rcu_read_unlock(); 5544 5545 if (!sid) 5546 return 0; 5547 5548 error = security_sid_to_context(sid, value, &len); 5549 if (error) 5550 return error; 5551 return len; 5552 5553 invalid: 5554 rcu_read_unlock(); 5555 return -EINVAL; 5556 } 5557 5558 static int selinux_setprocattr(struct task_struct *p, 5559 char *name, void *value, size_t size) 5560 { 5561 struct task_security_struct *tsec; 5562 struct task_struct *tracer; 5563 struct cred *new; 5564 u32 sid = 0, ptsid; 5565 int error; 5566 char *str = value; 5567 5568 if (current != p) { 5569 /* SELinux only allows a process to change its own 5570 security attributes. */ 5571 return -EACCES; 5572 } 5573 5574 /* 5575 * Basic control over ability to set these attributes at all. 5576 * current == p, but we'll pass them separately in case the 5577 * above restriction is ever removed. 5578 */ 5579 if (!strcmp(name, "exec")) 5580 error = current_has_perm(p, PROCESS__SETEXEC); 5581 else if (!strcmp(name, "fscreate")) 5582 error = current_has_perm(p, PROCESS__SETFSCREATE); 5583 else if (!strcmp(name, "keycreate")) 5584 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5585 else if (!strcmp(name, "sockcreate")) 5586 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5587 else if (!strcmp(name, "current")) 5588 error = current_has_perm(p, PROCESS__SETCURRENT); 5589 else 5590 error = -EINVAL; 5591 if (error) 5592 return error; 5593 5594 /* Obtain a SID for the context, if one was specified. */ 5595 if (size && str[1] && str[1] != '\n') { 5596 if (str[size-1] == '\n') { 5597 str[size-1] = 0; 5598 size--; 5599 } 5600 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5601 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5602 if (!capable(CAP_MAC_ADMIN)) { 5603 struct audit_buffer *ab; 5604 size_t audit_size; 5605 5606 /* We strip a nul only if it is at the end, otherwise the 5607 * context contains a nul and we should audit that */ 5608 if (str[size - 1] == '\0') 5609 audit_size = size - 1; 5610 else 5611 audit_size = size; 5612 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5613 audit_log_format(ab, "op=fscreate invalid_context="); 5614 audit_log_n_untrustedstring(ab, value, audit_size); 5615 audit_log_end(ab); 5616 5617 return error; 5618 } 5619 error = security_context_to_sid_force(value, size, 5620 &sid); 5621 } 5622 if (error) 5623 return error; 5624 } 5625 5626 new = prepare_creds(); 5627 if (!new) 5628 return -ENOMEM; 5629 5630 /* Permission checking based on the specified context is 5631 performed during the actual operation (execve, 5632 open/mkdir/...), when we know the full context of the 5633 operation. See selinux_bprm_set_creds for the execve 5634 checks and may_create for the file creation checks. The 5635 operation will then fail if the context is not permitted. */ 5636 tsec = new->security; 5637 if (!strcmp(name, "exec")) { 5638 tsec->exec_sid = sid; 5639 } else if (!strcmp(name, "fscreate")) { 5640 tsec->create_sid = sid; 5641 } else if (!strcmp(name, "keycreate")) { 5642 error = may_create_key(sid, p); 5643 if (error) 5644 goto abort_change; 5645 tsec->keycreate_sid = sid; 5646 } else if (!strcmp(name, "sockcreate")) { 5647 tsec->sockcreate_sid = sid; 5648 } else if (!strcmp(name, "current")) { 5649 error = -EINVAL; 5650 if (sid == 0) 5651 goto abort_change; 5652 5653 /* Only allow single threaded processes to change context */ 5654 error = -EPERM; 5655 if (!current_is_single_threaded()) { 5656 error = security_bounded_transition(tsec->sid, sid); 5657 if (error) 5658 goto abort_change; 5659 } 5660 5661 /* Check permissions for the transition. */ 5662 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5663 PROCESS__DYNTRANSITION, NULL); 5664 if (error) 5665 goto abort_change; 5666 5667 /* Check for ptracing, and update the task SID if ok. 5668 Otherwise, leave SID unchanged and fail. */ 5669 ptsid = 0; 5670 rcu_read_lock(); 5671 tracer = ptrace_parent(p); 5672 if (tracer) 5673 ptsid = task_sid(tracer); 5674 rcu_read_unlock(); 5675 5676 if (tracer) { 5677 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5678 PROCESS__PTRACE, NULL); 5679 if (error) 5680 goto abort_change; 5681 } 5682 5683 tsec->sid = sid; 5684 } else { 5685 error = -EINVAL; 5686 goto abort_change; 5687 } 5688 5689 commit_creds(new); 5690 return size; 5691 5692 abort_change: 5693 abort_creds(new); 5694 return error; 5695 } 5696 5697 static int selinux_ismaclabel(const char *name) 5698 { 5699 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5700 } 5701 5702 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5703 { 5704 return security_sid_to_context(secid, secdata, seclen); 5705 } 5706 5707 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5708 { 5709 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5710 } 5711 5712 static void selinux_release_secctx(char *secdata, u32 seclen) 5713 { 5714 kfree(secdata); 5715 } 5716 5717 /* 5718 * called with inode->i_mutex locked 5719 */ 5720 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5721 { 5722 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5723 } 5724 5725 /* 5726 * called with inode->i_mutex locked 5727 */ 5728 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5729 { 5730 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5731 } 5732 5733 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5734 { 5735 int len = 0; 5736 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5737 ctx, true); 5738 if (len < 0) 5739 return len; 5740 *ctxlen = len; 5741 return 0; 5742 } 5743 #ifdef CONFIG_KEYS 5744 5745 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5746 unsigned long flags) 5747 { 5748 const struct task_security_struct *tsec; 5749 struct key_security_struct *ksec; 5750 5751 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5752 if (!ksec) 5753 return -ENOMEM; 5754 5755 tsec = cred->security; 5756 if (tsec->keycreate_sid) 5757 ksec->sid = tsec->keycreate_sid; 5758 else 5759 ksec->sid = tsec->sid; 5760 5761 k->security = ksec; 5762 return 0; 5763 } 5764 5765 static void selinux_key_free(struct key *k) 5766 { 5767 struct key_security_struct *ksec = k->security; 5768 5769 k->security = NULL; 5770 kfree(ksec); 5771 } 5772 5773 static int selinux_key_permission(key_ref_t key_ref, 5774 const struct cred *cred, 5775 unsigned perm) 5776 { 5777 struct key *key; 5778 struct key_security_struct *ksec; 5779 u32 sid; 5780 5781 /* if no specific permissions are requested, we skip the 5782 permission check. No serious, additional covert channels 5783 appear to be created. */ 5784 if (perm == 0) 5785 return 0; 5786 5787 sid = cred_sid(cred); 5788 5789 key = key_ref_to_ptr(key_ref); 5790 ksec = key->security; 5791 5792 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5793 } 5794 5795 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5796 { 5797 struct key_security_struct *ksec = key->security; 5798 char *context = NULL; 5799 unsigned len; 5800 int rc; 5801 5802 rc = security_sid_to_context(ksec->sid, &context, &len); 5803 if (!rc) 5804 rc = len; 5805 *_buffer = context; 5806 return rc; 5807 } 5808 5809 #endif 5810 5811 static struct security_operations selinux_ops = { 5812 .name = "selinux", 5813 5814 .ptrace_access_check = selinux_ptrace_access_check, 5815 .ptrace_traceme = selinux_ptrace_traceme, 5816 .capget = selinux_capget, 5817 .capset = selinux_capset, 5818 .capable = selinux_capable, 5819 .quotactl = selinux_quotactl, 5820 .quota_on = selinux_quota_on, 5821 .syslog = selinux_syslog, 5822 .vm_enough_memory = selinux_vm_enough_memory, 5823 5824 .netlink_send = selinux_netlink_send, 5825 5826 .bprm_set_creds = selinux_bprm_set_creds, 5827 .bprm_committing_creds = selinux_bprm_committing_creds, 5828 .bprm_committed_creds = selinux_bprm_committed_creds, 5829 .bprm_secureexec = selinux_bprm_secureexec, 5830 5831 .sb_alloc_security = selinux_sb_alloc_security, 5832 .sb_free_security = selinux_sb_free_security, 5833 .sb_copy_data = selinux_sb_copy_data, 5834 .sb_remount = selinux_sb_remount, 5835 .sb_kern_mount = selinux_sb_kern_mount, 5836 .sb_show_options = selinux_sb_show_options, 5837 .sb_statfs = selinux_sb_statfs, 5838 .sb_mount = selinux_mount, 5839 .sb_umount = selinux_umount, 5840 .sb_set_mnt_opts = selinux_set_mnt_opts, 5841 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5842 .sb_parse_opts_str = selinux_parse_opts_str, 5843 5844 .dentry_init_security = selinux_dentry_init_security, 5845 5846 .inode_alloc_security = selinux_inode_alloc_security, 5847 .inode_free_security = selinux_inode_free_security, 5848 .inode_init_security = selinux_inode_init_security, 5849 .inode_create = selinux_inode_create, 5850 .inode_link = selinux_inode_link, 5851 .inode_unlink = selinux_inode_unlink, 5852 .inode_symlink = selinux_inode_symlink, 5853 .inode_mkdir = selinux_inode_mkdir, 5854 .inode_rmdir = selinux_inode_rmdir, 5855 .inode_mknod = selinux_inode_mknod, 5856 .inode_rename = selinux_inode_rename, 5857 .inode_readlink = selinux_inode_readlink, 5858 .inode_follow_link = selinux_inode_follow_link, 5859 .inode_permission = selinux_inode_permission, 5860 .inode_setattr = selinux_inode_setattr, 5861 .inode_getattr = selinux_inode_getattr, 5862 .inode_setxattr = selinux_inode_setxattr, 5863 .inode_post_setxattr = selinux_inode_post_setxattr, 5864 .inode_getxattr = selinux_inode_getxattr, 5865 .inode_listxattr = selinux_inode_listxattr, 5866 .inode_removexattr = selinux_inode_removexattr, 5867 .inode_getsecurity = selinux_inode_getsecurity, 5868 .inode_setsecurity = selinux_inode_setsecurity, 5869 .inode_listsecurity = selinux_inode_listsecurity, 5870 .inode_getsecid = selinux_inode_getsecid, 5871 5872 .file_permission = selinux_file_permission, 5873 .file_alloc_security = selinux_file_alloc_security, 5874 .file_free_security = selinux_file_free_security, 5875 .file_ioctl = selinux_file_ioctl, 5876 .mmap_file = selinux_mmap_file, 5877 .mmap_addr = selinux_mmap_addr, 5878 .file_mprotect = selinux_file_mprotect, 5879 .file_lock = selinux_file_lock, 5880 .file_fcntl = selinux_file_fcntl, 5881 .file_set_fowner = selinux_file_set_fowner, 5882 .file_send_sigiotask = selinux_file_send_sigiotask, 5883 .file_receive = selinux_file_receive, 5884 5885 .file_open = selinux_file_open, 5886 5887 .task_create = selinux_task_create, 5888 .cred_alloc_blank = selinux_cred_alloc_blank, 5889 .cred_free = selinux_cred_free, 5890 .cred_prepare = selinux_cred_prepare, 5891 .cred_transfer = selinux_cred_transfer, 5892 .kernel_act_as = selinux_kernel_act_as, 5893 .kernel_create_files_as = selinux_kernel_create_files_as, 5894 .kernel_module_request = selinux_kernel_module_request, 5895 .task_setpgid = selinux_task_setpgid, 5896 .task_getpgid = selinux_task_getpgid, 5897 .task_getsid = selinux_task_getsid, 5898 .task_getsecid = selinux_task_getsecid, 5899 .task_setnice = selinux_task_setnice, 5900 .task_setioprio = selinux_task_setioprio, 5901 .task_getioprio = selinux_task_getioprio, 5902 .task_setrlimit = selinux_task_setrlimit, 5903 .task_setscheduler = selinux_task_setscheduler, 5904 .task_getscheduler = selinux_task_getscheduler, 5905 .task_movememory = selinux_task_movememory, 5906 .task_kill = selinux_task_kill, 5907 .task_wait = selinux_task_wait, 5908 .task_to_inode = selinux_task_to_inode, 5909 5910 .ipc_permission = selinux_ipc_permission, 5911 .ipc_getsecid = selinux_ipc_getsecid, 5912 5913 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5914 .msg_msg_free_security = selinux_msg_msg_free_security, 5915 5916 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5917 .msg_queue_free_security = selinux_msg_queue_free_security, 5918 .msg_queue_associate = selinux_msg_queue_associate, 5919 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5920 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5921 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5922 5923 .shm_alloc_security = selinux_shm_alloc_security, 5924 .shm_free_security = selinux_shm_free_security, 5925 .shm_associate = selinux_shm_associate, 5926 .shm_shmctl = selinux_shm_shmctl, 5927 .shm_shmat = selinux_shm_shmat, 5928 5929 .sem_alloc_security = selinux_sem_alloc_security, 5930 .sem_free_security = selinux_sem_free_security, 5931 .sem_associate = selinux_sem_associate, 5932 .sem_semctl = selinux_sem_semctl, 5933 .sem_semop = selinux_sem_semop, 5934 5935 .d_instantiate = selinux_d_instantiate, 5936 5937 .getprocattr = selinux_getprocattr, 5938 .setprocattr = selinux_setprocattr, 5939 5940 .ismaclabel = selinux_ismaclabel, 5941 .secid_to_secctx = selinux_secid_to_secctx, 5942 .secctx_to_secid = selinux_secctx_to_secid, 5943 .release_secctx = selinux_release_secctx, 5944 .inode_notifysecctx = selinux_inode_notifysecctx, 5945 .inode_setsecctx = selinux_inode_setsecctx, 5946 .inode_getsecctx = selinux_inode_getsecctx, 5947 5948 .unix_stream_connect = selinux_socket_unix_stream_connect, 5949 .unix_may_send = selinux_socket_unix_may_send, 5950 5951 .socket_create = selinux_socket_create, 5952 .socket_post_create = selinux_socket_post_create, 5953 .socket_bind = selinux_socket_bind, 5954 .socket_connect = selinux_socket_connect, 5955 .socket_listen = selinux_socket_listen, 5956 .socket_accept = selinux_socket_accept, 5957 .socket_sendmsg = selinux_socket_sendmsg, 5958 .socket_recvmsg = selinux_socket_recvmsg, 5959 .socket_getsockname = selinux_socket_getsockname, 5960 .socket_getpeername = selinux_socket_getpeername, 5961 .socket_getsockopt = selinux_socket_getsockopt, 5962 .socket_setsockopt = selinux_socket_setsockopt, 5963 .socket_shutdown = selinux_socket_shutdown, 5964 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5965 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5966 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5967 .sk_alloc_security = selinux_sk_alloc_security, 5968 .sk_free_security = selinux_sk_free_security, 5969 .sk_clone_security = selinux_sk_clone_security, 5970 .sk_getsecid = selinux_sk_getsecid, 5971 .sock_graft = selinux_sock_graft, 5972 .inet_conn_request = selinux_inet_conn_request, 5973 .inet_csk_clone = selinux_inet_csk_clone, 5974 .inet_conn_established = selinux_inet_conn_established, 5975 .secmark_relabel_packet = selinux_secmark_relabel_packet, 5976 .secmark_refcount_inc = selinux_secmark_refcount_inc, 5977 .secmark_refcount_dec = selinux_secmark_refcount_dec, 5978 .req_classify_flow = selinux_req_classify_flow, 5979 .tun_dev_alloc_security = selinux_tun_dev_alloc_security, 5980 .tun_dev_free_security = selinux_tun_dev_free_security, 5981 .tun_dev_create = selinux_tun_dev_create, 5982 .tun_dev_attach_queue = selinux_tun_dev_attach_queue, 5983 .tun_dev_attach = selinux_tun_dev_attach, 5984 .tun_dev_open = selinux_tun_dev_open, 5985 .skb_owned_by = selinux_skb_owned_by, 5986 5987 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5988 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5989 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5990 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5991 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5992 .xfrm_state_alloc = selinux_xfrm_state_alloc, 5993 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire, 5994 .xfrm_state_free_security = selinux_xfrm_state_free, 5995 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5996 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5997 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5998 .xfrm_decode_session = selinux_xfrm_decode_session, 5999 #endif 6000 6001 #ifdef CONFIG_KEYS 6002 .key_alloc = selinux_key_alloc, 6003 .key_free = selinux_key_free, 6004 .key_permission = selinux_key_permission, 6005 .key_getsecurity = selinux_key_getsecurity, 6006 #endif 6007 6008 #ifdef CONFIG_AUDIT 6009 .audit_rule_init = selinux_audit_rule_init, 6010 .audit_rule_known = selinux_audit_rule_known, 6011 .audit_rule_match = selinux_audit_rule_match, 6012 .audit_rule_free = selinux_audit_rule_free, 6013 #endif 6014 }; 6015 6016 static __init int selinux_init(void) 6017 { 6018 if (!security_module_enable(&selinux_ops)) { 6019 selinux_enabled = 0; 6020 return 0; 6021 } 6022 6023 if (!selinux_enabled) { 6024 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6025 return 0; 6026 } 6027 6028 printk(KERN_INFO "SELinux: Initializing.\n"); 6029 6030 /* Set the security state for the initial task. */ 6031 cred_init_security(); 6032 6033 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6034 6035 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6036 sizeof(struct inode_security_struct), 6037 0, SLAB_PANIC, NULL); 6038 avc_init(); 6039 6040 if (register_security(&selinux_ops)) 6041 panic("SELinux: Unable to register with kernel.\n"); 6042 6043 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6044 panic("SELinux: Unable to register AVC netcache callback\n"); 6045 6046 if (selinux_enforcing) 6047 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6048 else 6049 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6050 6051 return 0; 6052 } 6053 6054 static void delayed_superblock_init(struct super_block *sb, void *unused) 6055 { 6056 superblock_doinit(sb, NULL); 6057 } 6058 6059 void selinux_complete_init(void) 6060 { 6061 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6062 6063 /* Set up any superblocks initialized prior to the policy load. */ 6064 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6065 iterate_supers(delayed_superblock_init, NULL); 6066 } 6067 6068 /* SELinux requires early initialization in order to label 6069 all processes and objects when they are created. */ 6070 security_initcall(selinux_init); 6071 6072 #if defined(CONFIG_NETFILTER) 6073 6074 static struct nf_hook_ops selinux_nf_ops[] = { 6075 { 6076 .hook = selinux_ipv4_postroute, 6077 .owner = THIS_MODULE, 6078 .pf = NFPROTO_IPV4, 6079 .hooknum = NF_INET_POST_ROUTING, 6080 .priority = NF_IP_PRI_SELINUX_LAST, 6081 }, 6082 { 6083 .hook = selinux_ipv4_forward, 6084 .owner = THIS_MODULE, 6085 .pf = NFPROTO_IPV4, 6086 .hooknum = NF_INET_FORWARD, 6087 .priority = NF_IP_PRI_SELINUX_FIRST, 6088 }, 6089 { 6090 .hook = selinux_ipv4_output, 6091 .owner = THIS_MODULE, 6092 .pf = NFPROTO_IPV4, 6093 .hooknum = NF_INET_LOCAL_OUT, 6094 .priority = NF_IP_PRI_SELINUX_FIRST, 6095 }, 6096 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6097 { 6098 .hook = selinux_ipv6_postroute, 6099 .owner = THIS_MODULE, 6100 .pf = NFPROTO_IPV6, 6101 .hooknum = NF_INET_POST_ROUTING, 6102 .priority = NF_IP6_PRI_SELINUX_LAST, 6103 }, 6104 { 6105 .hook = selinux_ipv6_forward, 6106 .owner = THIS_MODULE, 6107 .pf = NFPROTO_IPV6, 6108 .hooknum = NF_INET_FORWARD, 6109 .priority = NF_IP6_PRI_SELINUX_FIRST, 6110 }, 6111 #endif /* IPV6 */ 6112 }; 6113 6114 static int __init selinux_nf_ip_init(void) 6115 { 6116 int err; 6117 6118 if (!selinux_enabled) 6119 return 0; 6120 6121 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6122 6123 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6124 if (err) 6125 panic("SELinux: nf_register_hooks: error %d\n", err); 6126 6127 return 0; 6128 } 6129 6130 __initcall(selinux_nf_ip_init); 6131 6132 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6133 static void selinux_nf_ip_exit(void) 6134 { 6135 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6136 6137 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6138 } 6139 #endif 6140 6141 #else /* CONFIG_NETFILTER */ 6142 6143 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6144 #define selinux_nf_ip_exit() 6145 #endif 6146 6147 #endif /* CONFIG_NETFILTER */ 6148 6149 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6150 static int selinux_disabled; 6151 6152 int selinux_disable(void) 6153 { 6154 if (ss_initialized) { 6155 /* Not permitted after initial policy load. */ 6156 return -EINVAL; 6157 } 6158 6159 if (selinux_disabled) { 6160 /* Only do this once. */ 6161 return -EINVAL; 6162 } 6163 6164 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6165 6166 selinux_disabled = 1; 6167 selinux_enabled = 0; 6168 6169 reset_security_ops(); 6170 6171 /* Try to destroy the avc node cache */ 6172 avc_disable(); 6173 6174 /* Unregister netfilter hooks. */ 6175 selinux_nf_ip_exit(); 6176 6177 /* Unregister selinuxfs. */ 6178 exit_sel_fs(); 6179 6180 return 0; 6181 } 6182 #endif 6183