xref: /openbmc/linux/security/selinux/hooks.c (revision 609e478b)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h>		/* for Unix socket types */
71 #include <net/af_unix.h>	/* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87 
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!kstrtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!kstrtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
141  * policy capability is enabled, SECMARK is always considered enabled.
142  *
143  */
144 static int selinux_secmark_enabled(void)
145 {
146 	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148 
149 /**
150  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151  *
152  * Description:
153  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
154  * (1) if any are enabled or false (0) if neither are enabled.  If the
155  * always_check_network policy capability is enabled, peer labeling
156  * is always considered enabled.
157  *
158  */
159 static int selinux_peerlbl_enabled(void)
160 {
161 	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163 
164 static int selinux_netcache_avc_callback(u32 event)
165 {
166 	if (event == AVC_CALLBACK_RESET) {
167 		sel_netif_flush();
168 		sel_netnode_flush();
169 		sel_netport_flush();
170 		synchronize_net();
171 	}
172 	return 0;
173 }
174 
175 /*
176  * initialise the security for the init task
177  */
178 static void cred_init_security(void)
179 {
180 	struct cred *cred = (struct cred *) current->real_cred;
181 	struct task_security_struct *tsec;
182 
183 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
184 	if (!tsec)
185 		panic("SELinux:  Failed to initialize initial task.\n");
186 
187 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
188 	cred->security = tsec;
189 }
190 
191 /*
192  * get the security ID of a set of credentials
193  */
194 static inline u32 cred_sid(const struct cred *cred)
195 {
196 	const struct task_security_struct *tsec;
197 
198 	tsec = cred->security;
199 	return tsec->sid;
200 }
201 
202 /*
203  * get the objective security ID of a task
204  */
205 static inline u32 task_sid(const struct task_struct *task)
206 {
207 	u32 sid;
208 
209 	rcu_read_lock();
210 	sid = cred_sid(__task_cred(task));
211 	rcu_read_unlock();
212 	return sid;
213 }
214 
215 /*
216  * get the subjective security ID of the current task
217  */
218 static inline u32 current_sid(void)
219 {
220 	const struct task_security_struct *tsec = current_security();
221 
222 	return tsec->sid;
223 }
224 
225 /* Allocate and free functions for each kind of security blob. */
226 
227 static int inode_alloc_security(struct inode *inode)
228 {
229 	struct inode_security_struct *isec;
230 	u32 sid = current_sid();
231 
232 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
233 	if (!isec)
234 		return -ENOMEM;
235 
236 	mutex_init(&isec->lock);
237 	INIT_LIST_HEAD(&isec->list);
238 	isec->inode = inode;
239 	isec->sid = SECINITSID_UNLABELED;
240 	isec->sclass = SECCLASS_FILE;
241 	isec->task_sid = sid;
242 	inode->i_security = isec;
243 
244 	return 0;
245 }
246 
247 static void inode_free_rcu(struct rcu_head *head)
248 {
249 	struct inode_security_struct *isec;
250 
251 	isec = container_of(head, struct inode_security_struct, rcu);
252 	kmem_cache_free(sel_inode_cache, isec);
253 }
254 
255 static void inode_free_security(struct inode *inode)
256 {
257 	struct inode_security_struct *isec = inode->i_security;
258 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
259 
260 	spin_lock(&sbsec->isec_lock);
261 	if (!list_empty(&isec->list))
262 		list_del_init(&isec->list);
263 	spin_unlock(&sbsec->isec_lock);
264 
265 	/*
266 	 * The inode may still be referenced in a path walk and
267 	 * a call to selinux_inode_permission() can be made
268 	 * after inode_free_security() is called. Ideally, the VFS
269 	 * wouldn't do this, but fixing that is a much harder
270 	 * job. For now, simply free the i_security via RCU, and
271 	 * leave the current inode->i_security pointer intact.
272 	 * The inode will be freed after the RCU grace period too.
273 	 */
274 	call_rcu(&isec->rcu, inode_free_rcu);
275 }
276 
277 static int file_alloc_security(struct file *file)
278 {
279 	struct file_security_struct *fsec;
280 	u32 sid = current_sid();
281 
282 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
283 	if (!fsec)
284 		return -ENOMEM;
285 
286 	fsec->sid = sid;
287 	fsec->fown_sid = sid;
288 	file->f_security = fsec;
289 
290 	return 0;
291 }
292 
293 static void file_free_security(struct file *file)
294 {
295 	struct file_security_struct *fsec = file->f_security;
296 	file->f_security = NULL;
297 	kfree(fsec);
298 }
299 
300 static int superblock_alloc_security(struct super_block *sb)
301 {
302 	struct superblock_security_struct *sbsec;
303 
304 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
305 	if (!sbsec)
306 		return -ENOMEM;
307 
308 	mutex_init(&sbsec->lock);
309 	INIT_LIST_HEAD(&sbsec->isec_head);
310 	spin_lock_init(&sbsec->isec_lock);
311 	sbsec->sb = sb;
312 	sbsec->sid = SECINITSID_UNLABELED;
313 	sbsec->def_sid = SECINITSID_FILE;
314 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
315 	sb->s_security = sbsec;
316 
317 	return 0;
318 }
319 
320 static void superblock_free_security(struct super_block *sb)
321 {
322 	struct superblock_security_struct *sbsec = sb->s_security;
323 	sb->s_security = NULL;
324 	kfree(sbsec);
325 }
326 
327 /* The file system's label must be initialized prior to use. */
328 
329 static const char *labeling_behaviors[7] = {
330 	"uses xattr",
331 	"uses transition SIDs",
332 	"uses task SIDs",
333 	"uses genfs_contexts",
334 	"not configured for labeling",
335 	"uses mountpoint labeling",
336 	"uses native labeling",
337 };
338 
339 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
340 
341 static inline int inode_doinit(struct inode *inode)
342 {
343 	return inode_doinit_with_dentry(inode, NULL);
344 }
345 
346 enum {
347 	Opt_error = -1,
348 	Opt_context = 1,
349 	Opt_fscontext = 2,
350 	Opt_defcontext = 3,
351 	Opt_rootcontext = 4,
352 	Opt_labelsupport = 5,
353 	Opt_nextmntopt = 6,
354 };
355 
356 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
357 
358 static const match_table_t tokens = {
359 	{Opt_context, CONTEXT_STR "%s"},
360 	{Opt_fscontext, FSCONTEXT_STR "%s"},
361 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
362 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 	{Opt_labelsupport, LABELSUPP_STR},
364 	{Opt_error, NULL},
365 };
366 
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368 
369 static int may_context_mount_sb_relabel(u32 sid,
370 			struct superblock_security_struct *sbsec,
371 			const struct cred *cred)
372 {
373 	const struct task_security_struct *tsec = cred->security;
374 	int rc;
375 
376 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 			  FILESYSTEM__RELABELFROM, NULL);
378 	if (rc)
379 		return rc;
380 
381 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 			  FILESYSTEM__RELABELTO, NULL);
383 	return rc;
384 }
385 
386 static int may_context_mount_inode_relabel(u32 sid,
387 			struct superblock_security_struct *sbsec,
388 			const struct cred *cred)
389 {
390 	const struct task_security_struct *tsec = cred->security;
391 	int rc;
392 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 			  FILESYSTEM__RELABELFROM, NULL);
394 	if (rc)
395 		return rc;
396 
397 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 			  FILESYSTEM__ASSOCIATE, NULL);
399 	return rc;
400 }
401 
402 static int selinux_is_sblabel_mnt(struct super_block *sb)
403 {
404 	struct superblock_security_struct *sbsec = sb->s_security;
405 
406 	if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
407 	    sbsec->behavior == SECURITY_FS_USE_TRANS ||
408 	    sbsec->behavior == SECURITY_FS_USE_TASK)
409 		return 1;
410 
411 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
412 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
413 		return 1;
414 
415 	/*
416 	 * Special handling for rootfs. Is genfs but supports
417 	 * setting SELinux context on in-core inodes.
418 	 */
419 	if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
420 		return 1;
421 
422 	return 0;
423 }
424 
425 static int sb_finish_set_opts(struct super_block *sb)
426 {
427 	struct superblock_security_struct *sbsec = sb->s_security;
428 	struct dentry *root = sb->s_root;
429 	struct inode *root_inode = root->d_inode;
430 	int rc = 0;
431 
432 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
433 		/* Make sure that the xattr handler exists and that no
434 		   error other than -ENODATA is returned by getxattr on
435 		   the root directory.  -ENODATA is ok, as this may be
436 		   the first boot of the SELinux kernel before we have
437 		   assigned xattr values to the filesystem. */
438 		if (!root_inode->i_op->getxattr) {
439 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
440 			       "xattr support\n", sb->s_id, sb->s_type->name);
441 			rc = -EOPNOTSUPP;
442 			goto out;
443 		}
444 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
445 		if (rc < 0 && rc != -ENODATA) {
446 			if (rc == -EOPNOTSUPP)
447 				printk(KERN_WARNING "SELinux: (dev %s, type "
448 				       "%s) has no security xattr handler\n",
449 				       sb->s_id, sb->s_type->name);
450 			else
451 				printk(KERN_WARNING "SELinux: (dev %s, type "
452 				       "%s) getxattr errno %d\n", sb->s_id,
453 				       sb->s_type->name, -rc);
454 			goto out;
455 		}
456 	}
457 
458 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
459 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
460 		       sb->s_id, sb->s_type->name);
461 	else
462 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
463 		       sb->s_id, sb->s_type->name,
464 		       labeling_behaviors[sbsec->behavior-1]);
465 
466 	sbsec->flags |= SE_SBINITIALIZED;
467 	if (selinux_is_sblabel_mnt(sb))
468 		sbsec->flags |= SBLABEL_MNT;
469 
470 	/* Initialize the root inode. */
471 	rc = inode_doinit_with_dentry(root_inode, root);
472 
473 	/* Initialize any other inodes associated with the superblock, e.g.
474 	   inodes created prior to initial policy load or inodes created
475 	   during get_sb by a pseudo filesystem that directly
476 	   populates itself. */
477 	spin_lock(&sbsec->isec_lock);
478 next_inode:
479 	if (!list_empty(&sbsec->isec_head)) {
480 		struct inode_security_struct *isec =
481 				list_entry(sbsec->isec_head.next,
482 					   struct inode_security_struct, list);
483 		struct inode *inode = isec->inode;
484 		list_del_init(&isec->list);
485 		spin_unlock(&sbsec->isec_lock);
486 		inode = igrab(inode);
487 		if (inode) {
488 			if (!IS_PRIVATE(inode))
489 				inode_doinit(inode);
490 			iput(inode);
491 		}
492 		spin_lock(&sbsec->isec_lock);
493 		goto next_inode;
494 	}
495 	spin_unlock(&sbsec->isec_lock);
496 out:
497 	return rc;
498 }
499 
500 /*
501  * This function should allow an FS to ask what it's mount security
502  * options were so it can use those later for submounts, displaying
503  * mount options, or whatever.
504  */
505 static int selinux_get_mnt_opts(const struct super_block *sb,
506 				struct security_mnt_opts *opts)
507 {
508 	int rc = 0, i;
509 	struct superblock_security_struct *sbsec = sb->s_security;
510 	char *context = NULL;
511 	u32 len;
512 	char tmp;
513 
514 	security_init_mnt_opts(opts);
515 
516 	if (!(sbsec->flags & SE_SBINITIALIZED))
517 		return -EINVAL;
518 
519 	if (!ss_initialized)
520 		return -EINVAL;
521 
522 	/* make sure we always check enough bits to cover the mask */
523 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
524 
525 	tmp = sbsec->flags & SE_MNTMASK;
526 	/* count the number of mount options for this sb */
527 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
528 		if (tmp & 0x01)
529 			opts->num_mnt_opts++;
530 		tmp >>= 1;
531 	}
532 	/* Check if the Label support flag is set */
533 	if (sbsec->flags & SBLABEL_MNT)
534 		opts->num_mnt_opts++;
535 
536 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
537 	if (!opts->mnt_opts) {
538 		rc = -ENOMEM;
539 		goto out_free;
540 	}
541 
542 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
543 	if (!opts->mnt_opts_flags) {
544 		rc = -ENOMEM;
545 		goto out_free;
546 	}
547 
548 	i = 0;
549 	if (sbsec->flags & FSCONTEXT_MNT) {
550 		rc = security_sid_to_context(sbsec->sid, &context, &len);
551 		if (rc)
552 			goto out_free;
553 		opts->mnt_opts[i] = context;
554 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
555 	}
556 	if (sbsec->flags & CONTEXT_MNT) {
557 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
558 		if (rc)
559 			goto out_free;
560 		opts->mnt_opts[i] = context;
561 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
562 	}
563 	if (sbsec->flags & DEFCONTEXT_MNT) {
564 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
565 		if (rc)
566 			goto out_free;
567 		opts->mnt_opts[i] = context;
568 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
569 	}
570 	if (sbsec->flags & ROOTCONTEXT_MNT) {
571 		struct inode *root = sbsec->sb->s_root->d_inode;
572 		struct inode_security_struct *isec = root->i_security;
573 
574 		rc = security_sid_to_context(isec->sid, &context, &len);
575 		if (rc)
576 			goto out_free;
577 		opts->mnt_opts[i] = context;
578 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
579 	}
580 	if (sbsec->flags & SBLABEL_MNT) {
581 		opts->mnt_opts[i] = NULL;
582 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
583 	}
584 
585 	BUG_ON(i != opts->num_mnt_opts);
586 
587 	return 0;
588 
589 out_free:
590 	security_free_mnt_opts(opts);
591 	return rc;
592 }
593 
594 static int bad_option(struct superblock_security_struct *sbsec, char flag,
595 		      u32 old_sid, u32 new_sid)
596 {
597 	char mnt_flags = sbsec->flags & SE_MNTMASK;
598 
599 	/* check if the old mount command had the same options */
600 	if (sbsec->flags & SE_SBINITIALIZED)
601 		if (!(sbsec->flags & flag) ||
602 		    (old_sid != new_sid))
603 			return 1;
604 
605 	/* check if we were passed the same options twice,
606 	 * aka someone passed context=a,context=b
607 	 */
608 	if (!(sbsec->flags & SE_SBINITIALIZED))
609 		if (mnt_flags & flag)
610 			return 1;
611 	return 0;
612 }
613 
614 /*
615  * Allow filesystems with binary mount data to explicitly set mount point
616  * labeling information.
617  */
618 static int selinux_set_mnt_opts(struct super_block *sb,
619 				struct security_mnt_opts *opts,
620 				unsigned long kern_flags,
621 				unsigned long *set_kern_flags)
622 {
623 	const struct cred *cred = current_cred();
624 	int rc = 0, i;
625 	struct superblock_security_struct *sbsec = sb->s_security;
626 	const char *name = sb->s_type->name;
627 	struct inode *inode = sbsec->sb->s_root->d_inode;
628 	struct inode_security_struct *root_isec = inode->i_security;
629 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
630 	u32 defcontext_sid = 0;
631 	char **mount_options = opts->mnt_opts;
632 	int *flags = opts->mnt_opts_flags;
633 	int num_opts = opts->num_mnt_opts;
634 
635 	mutex_lock(&sbsec->lock);
636 
637 	if (!ss_initialized) {
638 		if (!num_opts) {
639 			/* Defer initialization until selinux_complete_init,
640 			   after the initial policy is loaded and the security
641 			   server is ready to handle calls. */
642 			goto out;
643 		}
644 		rc = -EINVAL;
645 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
646 			"before the security server is initialized\n");
647 		goto out;
648 	}
649 	if (kern_flags && !set_kern_flags) {
650 		/* Specifying internal flags without providing a place to
651 		 * place the results is not allowed */
652 		rc = -EINVAL;
653 		goto out;
654 	}
655 
656 	/*
657 	 * Binary mount data FS will come through this function twice.  Once
658 	 * from an explicit call and once from the generic calls from the vfs.
659 	 * Since the generic VFS calls will not contain any security mount data
660 	 * we need to skip the double mount verification.
661 	 *
662 	 * This does open a hole in which we will not notice if the first
663 	 * mount using this sb set explict options and a second mount using
664 	 * this sb does not set any security options.  (The first options
665 	 * will be used for both mounts)
666 	 */
667 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
668 	    && (num_opts == 0))
669 		goto out;
670 
671 	/*
672 	 * parse the mount options, check if they are valid sids.
673 	 * also check if someone is trying to mount the same sb more
674 	 * than once with different security options.
675 	 */
676 	for (i = 0; i < num_opts; i++) {
677 		u32 sid;
678 
679 		if (flags[i] == SBLABEL_MNT)
680 			continue;
681 		rc = security_context_to_sid(mount_options[i],
682 					     strlen(mount_options[i]), &sid, GFP_KERNEL);
683 		if (rc) {
684 			printk(KERN_WARNING "SELinux: security_context_to_sid"
685 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
686 			       mount_options[i], sb->s_id, name, rc);
687 			goto out;
688 		}
689 		switch (flags[i]) {
690 		case FSCONTEXT_MNT:
691 			fscontext_sid = sid;
692 
693 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 					fscontext_sid))
695 				goto out_double_mount;
696 
697 			sbsec->flags |= FSCONTEXT_MNT;
698 			break;
699 		case CONTEXT_MNT:
700 			context_sid = sid;
701 
702 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
703 					context_sid))
704 				goto out_double_mount;
705 
706 			sbsec->flags |= CONTEXT_MNT;
707 			break;
708 		case ROOTCONTEXT_MNT:
709 			rootcontext_sid = sid;
710 
711 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
712 					rootcontext_sid))
713 				goto out_double_mount;
714 
715 			sbsec->flags |= ROOTCONTEXT_MNT;
716 
717 			break;
718 		case DEFCONTEXT_MNT:
719 			defcontext_sid = sid;
720 
721 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
722 					defcontext_sid))
723 				goto out_double_mount;
724 
725 			sbsec->flags |= DEFCONTEXT_MNT;
726 
727 			break;
728 		default:
729 			rc = -EINVAL;
730 			goto out;
731 		}
732 	}
733 
734 	if (sbsec->flags & SE_SBINITIALIZED) {
735 		/* previously mounted with options, but not on this attempt? */
736 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
737 			goto out_double_mount;
738 		rc = 0;
739 		goto out;
740 	}
741 
742 	if (strcmp(sb->s_type->name, "proc") == 0)
743 		sbsec->flags |= SE_SBPROC;
744 
745 	if (!sbsec->behavior) {
746 		/*
747 		 * Determine the labeling behavior to use for this
748 		 * filesystem type.
749 		 */
750 		rc = security_fs_use(sb);
751 		if (rc) {
752 			printk(KERN_WARNING
753 				"%s: security_fs_use(%s) returned %d\n",
754 					__func__, sb->s_type->name, rc);
755 			goto out;
756 		}
757 	}
758 	/* sets the context of the superblock for the fs being mounted. */
759 	if (fscontext_sid) {
760 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
761 		if (rc)
762 			goto out;
763 
764 		sbsec->sid = fscontext_sid;
765 	}
766 
767 	/*
768 	 * Switch to using mount point labeling behavior.
769 	 * sets the label used on all file below the mountpoint, and will set
770 	 * the superblock context if not already set.
771 	 */
772 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
773 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
774 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
775 	}
776 
777 	if (context_sid) {
778 		if (!fscontext_sid) {
779 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
780 							  cred);
781 			if (rc)
782 				goto out;
783 			sbsec->sid = context_sid;
784 		} else {
785 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
786 							     cred);
787 			if (rc)
788 				goto out;
789 		}
790 		if (!rootcontext_sid)
791 			rootcontext_sid = context_sid;
792 
793 		sbsec->mntpoint_sid = context_sid;
794 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
795 	}
796 
797 	if (rootcontext_sid) {
798 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
799 						     cred);
800 		if (rc)
801 			goto out;
802 
803 		root_isec->sid = rootcontext_sid;
804 		root_isec->initialized = 1;
805 	}
806 
807 	if (defcontext_sid) {
808 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
809 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
810 			rc = -EINVAL;
811 			printk(KERN_WARNING "SELinux: defcontext option is "
812 			       "invalid for this filesystem type\n");
813 			goto out;
814 		}
815 
816 		if (defcontext_sid != sbsec->def_sid) {
817 			rc = may_context_mount_inode_relabel(defcontext_sid,
818 							     sbsec, cred);
819 			if (rc)
820 				goto out;
821 		}
822 
823 		sbsec->def_sid = defcontext_sid;
824 	}
825 
826 	rc = sb_finish_set_opts(sb);
827 out:
828 	mutex_unlock(&sbsec->lock);
829 	return rc;
830 out_double_mount:
831 	rc = -EINVAL;
832 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
833 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
834 	goto out;
835 }
836 
837 static int selinux_cmp_sb_context(const struct super_block *oldsb,
838 				    const struct super_block *newsb)
839 {
840 	struct superblock_security_struct *old = oldsb->s_security;
841 	struct superblock_security_struct *new = newsb->s_security;
842 	char oldflags = old->flags & SE_MNTMASK;
843 	char newflags = new->flags & SE_MNTMASK;
844 
845 	if (oldflags != newflags)
846 		goto mismatch;
847 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
848 		goto mismatch;
849 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
850 		goto mismatch;
851 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
852 		goto mismatch;
853 	if (oldflags & ROOTCONTEXT_MNT) {
854 		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
855 		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
856 		if (oldroot->sid != newroot->sid)
857 			goto mismatch;
858 	}
859 	return 0;
860 mismatch:
861 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
862 			    "different security settings for (dev %s, "
863 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
864 	return -EBUSY;
865 }
866 
867 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
868 					struct super_block *newsb)
869 {
870 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
871 	struct superblock_security_struct *newsbsec = newsb->s_security;
872 
873 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
874 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
875 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
876 
877 	/*
878 	 * if the parent was able to be mounted it clearly had no special lsm
879 	 * mount options.  thus we can safely deal with this superblock later
880 	 */
881 	if (!ss_initialized)
882 		return 0;
883 
884 	/* how can we clone if the old one wasn't set up?? */
885 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
886 
887 	/* if fs is reusing a sb, make sure that the contexts match */
888 	if (newsbsec->flags & SE_SBINITIALIZED)
889 		return selinux_cmp_sb_context(oldsb, newsb);
890 
891 	mutex_lock(&newsbsec->lock);
892 
893 	newsbsec->flags = oldsbsec->flags;
894 
895 	newsbsec->sid = oldsbsec->sid;
896 	newsbsec->def_sid = oldsbsec->def_sid;
897 	newsbsec->behavior = oldsbsec->behavior;
898 
899 	if (set_context) {
900 		u32 sid = oldsbsec->mntpoint_sid;
901 
902 		if (!set_fscontext)
903 			newsbsec->sid = sid;
904 		if (!set_rootcontext) {
905 			struct inode *newinode = newsb->s_root->d_inode;
906 			struct inode_security_struct *newisec = newinode->i_security;
907 			newisec->sid = sid;
908 		}
909 		newsbsec->mntpoint_sid = sid;
910 	}
911 	if (set_rootcontext) {
912 		const struct inode *oldinode = oldsb->s_root->d_inode;
913 		const struct inode_security_struct *oldisec = oldinode->i_security;
914 		struct inode *newinode = newsb->s_root->d_inode;
915 		struct inode_security_struct *newisec = newinode->i_security;
916 
917 		newisec->sid = oldisec->sid;
918 	}
919 
920 	sb_finish_set_opts(newsb);
921 	mutex_unlock(&newsbsec->lock);
922 	return 0;
923 }
924 
925 static int selinux_parse_opts_str(char *options,
926 				  struct security_mnt_opts *opts)
927 {
928 	char *p;
929 	char *context = NULL, *defcontext = NULL;
930 	char *fscontext = NULL, *rootcontext = NULL;
931 	int rc, num_mnt_opts = 0;
932 
933 	opts->num_mnt_opts = 0;
934 
935 	/* Standard string-based options. */
936 	while ((p = strsep(&options, "|")) != NULL) {
937 		int token;
938 		substring_t args[MAX_OPT_ARGS];
939 
940 		if (!*p)
941 			continue;
942 
943 		token = match_token(p, tokens, args);
944 
945 		switch (token) {
946 		case Opt_context:
947 			if (context || defcontext) {
948 				rc = -EINVAL;
949 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
950 				goto out_err;
951 			}
952 			context = match_strdup(&args[0]);
953 			if (!context) {
954 				rc = -ENOMEM;
955 				goto out_err;
956 			}
957 			break;
958 
959 		case Opt_fscontext:
960 			if (fscontext) {
961 				rc = -EINVAL;
962 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
963 				goto out_err;
964 			}
965 			fscontext = match_strdup(&args[0]);
966 			if (!fscontext) {
967 				rc = -ENOMEM;
968 				goto out_err;
969 			}
970 			break;
971 
972 		case Opt_rootcontext:
973 			if (rootcontext) {
974 				rc = -EINVAL;
975 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
976 				goto out_err;
977 			}
978 			rootcontext = match_strdup(&args[0]);
979 			if (!rootcontext) {
980 				rc = -ENOMEM;
981 				goto out_err;
982 			}
983 			break;
984 
985 		case Opt_defcontext:
986 			if (context || defcontext) {
987 				rc = -EINVAL;
988 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
989 				goto out_err;
990 			}
991 			defcontext = match_strdup(&args[0]);
992 			if (!defcontext) {
993 				rc = -ENOMEM;
994 				goto out_err;
995 			}
996 			break;
997 		case Opt_labelsupport:
998 			break;
999 		default:
1000 			rc = -EINVAL;
1001 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1002 			goto out_err;
1003 
1004 		}
1005 	}
1006 
1007 	rc = -ENOMEM;
1008 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1009 	if (!opts->mnt_opts)
1010 		goto out_err;
1011 
1012 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1013 	if (!opts->mnt_opts_flags) {
1014 		kfree(opts->mnt_opts);
1015 		goto out_err;
1016 	}
1017 
1018 	if (fscontext) {
1019 		opts->mnt_opts[num_mnt_opts] = fscontext;
1020 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1021 	}
1022 	if (context) {
1023 		opts->mnt_opts[num_mnt_opts] = context;
1024 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1025 	}
1026 	if (rootcontext) {
1027 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1028 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1029 	}
1030 	if (defcontext) {
1031 		opts->mnt_opts[num_mnt_opts] = defcontext;
1032 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1033 	}
1034 
1035 	opts->num_mnt_opts = num_mnt_opts;
1036 	return 0;
1037 
1038 out_err:
1039 	kfree(context);
1040 	kfree(defcontext);
1041 	kfree(fscontext);
1042 	kfree(rootcontext);
1043 	return rc;
1044 }
1045 /*
1046  * string mount options parsing and call set the sbsec
1047  */
1048 static int superblock_doinit(struct super_block *sb, void *data)
1049 {
1050 	int rc = 0;
1051 	char *options = data;
1052 	struct security_mnt_opts opts;
1053 
1054 	security_init_mnt_opts(&opts);
1055 
1056 	if (!data)
1057 		goto out;
1058 
1059 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1060 
1061 	rc = selinux_parse_opts_str(options, &opts);
1062 	if (rc)
1063 		goto out_err;
1064 
1065 out:
1066 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1067 
1068 out_err:
1069 	security_free_mnt_opts(&opts);
1070 	return rc;
1071 }
1072 
1073 static void selinux_write_opts(struct seq_file *m,
1074 			       struct security_mnt_opts *opts)
1075 {
1076 	int i;
1077 	char *prefix;
1078 
1079 	for (i = 0; i < opts->num_mnt_opts; i++) {
1080 		char *has_comma;
1081 
1082 		if (opts->mnt_opts[i])
1083 			has_comma = strchr(opts->mnt_opts[i], ',');
1084 		else
1085 			has_comma = NULL;
1086 
1087 		switch (opts->mnt_opts_flags[i]) {
1088 		case CONTEXT_MNT:
1089 			prefix = CONTEXT_STR;
1090 			break;
1091 		case FSCONTEXT_MNT:
1092 			prefix = FSCONTEXT_STR;
1093 			break;
1094 		case ROOTCONTEXT_MNT:
1095 			prefix = ROOTCONTEXT_STR;
1096 			break;
1097 		case DEFCONTEXT_MNT:
1098 			prefix = DEFCONTEXT_STR;
1099 			break;
1100 		case SBLABEL_MNT:
1101 			seq_putc(m, ',');
1102 			seq_puts(m, LABELSUPP_STR);
1103 			continue;
1104 		default:
1105 			BUG();
1106 			return;
1107 		};
1108 		/* we need a comma before each option */
1109 		seq_putc(m, ',');
1110 		seq_puts(m, prefix);
1111 		if (has_comma)
1112 			seq_putc(m, '\"');
1113 		seq_puts(m, opts->mnt_opts[i]);
1114 		if (has_comma)
1115 			seq_putc(m, '\"');
1116 	}
1117 }
1118 
1119 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1120 {
1121 	struct security_mnt_opts opts;
1122 	int rc;
1123 
1124 	rc = selinux_get_mnt_opts(sb, &opts);
1125 	if (rc) {
1126 		/* before policy load we may get EINVAL, don't show anything */
1127 		if (rc == -EINVAL)
1128 			rc = 0;
1129 		return rc;
1130 	}
1131 
1132 	selinux_write_opts(m, &opts);
1133 
1134 	security_free_mnt_opts(&opts);
1135 
1136 	return rc;
1137 }
1138 
1139 static inline u16 inode_mode_to_security_class(umode_t mode)
1140 {
1141 	switch (mode & S_IFMT) {
1142 	case S_IFSOCK:
1143 		return SECCLASS_SOCK_FILE;
1144 	case S_IFLNK:
1145 		return SECCLASS_LNK_FILE;
1146 	case S_IFREG:
1147 		return SECCLASS_FILE;
1148 	case S_IFBLK:
1149 		return SECCLASS_BLK_FILE;
1150 	case S_IFDIR:
1151 		return SECCLASS_DIR;
1152 	case S_IFCHR:
1153 		return SECCLASS_CHR_FILE;
1154 	case S_IFIFO:
1155 		return SECCLASS_FIFO_FILE;
1156 
1157 	}
1158 
1159 	return SECCLASS_FILE;
1160 }
1161 
1162 static inline int default_protocol_stream(int protocol)
1163 {
1164 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1165 }
1166 
1167 static inline int default_protocol_dgram(int protocol)
1168 {
1169 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1170 }
1171 
1172 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1173 {
1174 	switch (family) {
1175 	case PF_UNIX:
1176 		switch (type) {
1177 		case SOCK_STREAM:
1178 		case SOCK_SEQPACKET:
1179 			return SECCLASS_UNIX_STREAM_SOCKET;
1180 		case SOCK_DGRAM:
1181 			return SECCLASS_UNIX_DGRAM_SOCKET;
1182 		}
1183 		break;
1184 	case PF_INET:
1185 	case PF_INET6:
1186 		switch (type) {
1187 		case SOCK_STREAM:
1188 			if (default_protocol_stream(protocol))
1189 				return SECCLASS_TCP_SOCKET;
1190 			else
1191 				return SECCLASS_RAWIP_SOCKET;
1192 		case SOCK_DGRAM:
1193 			if (default_protocol_dgram(protocol))
1194 				return SECCLASS_UDP_SOCKET;
1195 			else
1196 				return SECCLASS_RAWIP_SOCKET;
1197 		case SOCK_DCCP:
1198 			return SECCLASS_DCCP_SOCKET;
1199 		default:
1200 			return SECCLASS_RAWIP_SOCKET;
1201 		}
1202 		break;
1203 	case PF_NETLINK:
1204 		switch (protocol) {
1205 		case NETLINK_ROUTE:
1206 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1207 		case NETLINK_FIREWALL:
1208 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1209 		case NETLINK_SOCK_DIAG:
1210 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1211 		case NETLINK_NFLOG:
1212 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1213 		case NETLINK_XFRM:
1214 			return SECCLASS_NETLINK_XFRM_SOCKET;
1215 		case NETLINK_SELINUX:
1216 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1217 		case NETLINK_AUDIT:
1218 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1219 		case NETLINK_IP6_FW:
1220 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1221 		case NETLINK_DNRTMSG:
1222 			return SECCLASS_NETLINK_DNRT_SOCKET;
1223 		case NETLINK_KOBJECT_UEVENT:
1224 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1225 		default:
1226 			return SECCLASS_NETLINK_SOCKET;
1227 		}
1228 	case PF_PACKET:
1229 		return SECCLASS_PACKET_SOCKET;
1230 	case PF_KEY:
1231 		return SECCLASS_KEY_SOCKET;
1232 	case PF_APPLETALK:
1233 		return SECCLASS_APPLETALK_SOCKET;
1234 	}
1235 
1236 	return SECCLASS_SOCKET;
1237 }
1238 
1239 #ifdef CONFIG_PROC_FS
1240 static int selinux_proc_get_sid(struct dentry *dentry,
1241 				u16 tclass,
1242 				u32 *sid)
1243 {
1244 	int rc;
1245 	char *buffer, *path;
1246 
1247 	buffer = (char *)__get_free_page(GFP_KERNEL);
1248 	if (!buffer)
1249 		return -ENOMEM;
1250 
1251 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1252 	if (IS_ERR(path))
1253 		rc = PTR_ERR(path);
1254 	else {
1255 		/* each process gets a /proc/PID/ entry. Strip off the
1256 		 * PID part to get a valid selinux labeling.
1257 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1258 		while (path[1] >= '0' && path[1] <= '9') {
1259 			path[1] = '/';
1260 			path++;
1261 		}
1262 		rc = security_genfs_sid("proc", path, tclass, sid);
1263 	}
1264 	free_page((unsigned long)buffer);
1265 	return rc;
1266 }
1267 #else
1268 static int selinux_proc_get_sid(struct dentry *dentry,
1269 				u16 tclass,
1270 				u32 *sid)
1271 {
1272 	return -EINVAL;
1273 }
1274 #endif
1275 
1276 /* The inode's security attributes must be initialized before first use. */
1277 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1278 {
1279 	struct superblock_security_struct *sbsec = NULL;
1280 	struct inode_security_struct *isec = inode->i_security;
1281 	u32 sid;
1282 	struct dentry *dentry;
1283 #define INITCONTEXTLEN 255
1284 	char *context = NULL;
1285 	unsigned len = 0;
1286 	int rc = 0;
1287 
1288 	if (isec->initialized)
1289 		goto out;
1290 
1291 	mutex_lock(&isec->lock);
1292 	if (isec->initialized)
1293 		goto out_unlock;
1294 
1295 	sbsec = inode->i_sb->s_security;
1296 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1297 		/* Defer initialization until selinux_complete_init,
1298 		   after the initial policy is loaded and the security
1299 		   server is ready to handle calls. */
1300 		spin_lock(&sbsec->isec_lock);
1301 		if (list_empty(&isec->list))
1302 			list_add(&isec->list, &sbsec->isec_head);
1303 		spin_unlock(&sbsec->isec_lock);
1304 		goto out_unlock;
1305 	}
1306 
1307 	switch (sbsec->behavior) {
1308 	case SECURITY_FS_USE_NATIVE:
1309 		break;
1310 	case SECURITY_FS_USE_XATTR:
1311 		if (!inode->i_op->getxattr) {
1312 			isec->sid = sbsec->def_sid;
1313 			break;
1314 		}
1315 
1316 		/* Need a dentry, since the xattr API requires one.
1317 		   Life would be simpler if we could just pass the inode. */
1318 		if (opt_dentry) {
1319 			/* Called from d_instantiate or d_splice_alias. */
1320 			dentry = dget(opt_dentry);
1321 		} else {
1322 			/* Called from selinux_complete_init, try to find a dentry. */
1323 			dentry = d_find_alias(inode);
1324 		}
1325 		if (!dentry) {
1326 			/*
1327 			 * this is can be hit on boot when a file is accessed
1328 			 * before the policy is loaded.  When we load policy we
1329 			 * may find inodes that have no dentry on the
1330 			 * sbsec->isec_head list.  No reason to complain as these
1331 			 * will get fixed up the next time we go through
1332 			 * inode_doinit with a dentry, before these inodes could
1333 			 * be used again by userspace.
1334 			 */
1335 			goto out_unlock;
1336 		}
1337 
1338 		len = INITCONTEXTLEN;
1339 		context = kmalloc(len+1, GFP_NOFS);
1340 		if (!context) {
1341 			rc = -ENOMEM;
1342 			dput(dentry);
1343 			goto out_unlock;
1344 		}
1345 		context[len] = '\0';
1346 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1347 					   context, len);
1348 		if (rc == -ERANGE) {
1349 			kfree(context);
1350 
1351 			/* Need a larger buffer.  Query for the right size. */
1352 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1353 						   NULL, 0);
1354 			if (rc < 0) {
1355 				dput(dentry);
1356 				goto out_unlock;
1357 			}
1358 			len = rc;
1359 			context = kmalloc(len+1, GFP_NOFS);
1360 			if (!context) {
1361 				rc = -ENOMEM;
1362 				dput(dentry);
1363 				goto out_unlock;
1364 			}
1365 			context[len] = '\0';
1366 			rc = inode->i_op->getxattr(dentry,
1367 						   XATTR_NAME_SELINUX,
1368 						   context, len);
1369 		}
1370 		dput(dentry);
1371 		if (rc < 0) {
1372 			if (rc != -ENODATA) {
1373 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1374 				       "%d for dev=%s ino=%ld\n", __func__,
1375 				       -rc, inode->i_sb->s_id, inode->i_ino);
1376 				kfree(context);
1377 				goto out_unlock;
1378 			}
1379 			/* Map ENODATA to the default file SID */
1380 			sid = sbsec->def_sid;
1381 			rc = 0;
1382 		} else {
1383 			rc = security_context_to_sid_default(context, rc, &sid,
1384 							     sbsec->def_sid,
1385 							     GFP_NOFS);
1386 			if (rc) {
1387 				char *dev = inode->i_sb->s_id;
1388 				unsigned long ino = inode->i_ino;
1389 
1390 				if (rc == -EINVAL) {
1391 					if (printk_ratelimit())
1392 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1393 							"context=%s.  This indicates you may need to relabel the inode or the "
1394 							"filesystem in question.\n", ino, dev, context);
1395 				} else {
1396 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1397 					       "returned %d for dev=%s ino=%ld\n",
1398 					       __func__, context, -rc, dev, ino);
1399 				}
1400 				kfree(context);
1401 				/* Leave with the unlabeled SID */
1402 				rc = 0;
1403 				break;
1404 			}
1405 		}
1406 		kfree(context);
1407 		isec->sid = sid;
1408 		break;
1409 	case SECURITY_FS_USE_TASK:
1410 		isec->sid = isec->task_sid;
1411 		break;
1412 	case SECURITY_FS_USE_TRANS:
1413 		/* Default to the fs SID. */
1414 		isec->sid = sbsec->sid;
1415 
1416 		/* Try to obtain a transition SID. */
1417 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1418 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1419 					     isec->sclass, NULL, &sid);
1420 		if (rc)
1421 			goto out_unlock;
1422 		isec->sid = sid;
1423 		break;
1424 	case SECURITY_FS_USE_MNTPOINT:
1425 		isec->sid = sbsec->mntpoint_sid;
1426 		break;
1427 	default:
1428 		/* Default to the fs superblock SID. */
1429 		isec->sid = sbsec->sid;
1430 
1431 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1432 			/* We must have a dentry to determine the label on
1433 			 * procfs inodes */
1434 			if (opt_dentry)
1435 				/* Called from d_instantiate or
1436 				 * d_splice_alias. */
1437 				dentry = dget(opt_dentry);
1438 			else
1439 				/* Called from selinux_complete_init, try to
1440 				 * find a dentry. */
1441 				dentry = d_find_alias(inode);
1442 			/*
1443 			 * This can be hit on boot when a file is accessed
1444 			 * before the policy is loaded.  When we load policy we
1445 			 * may find inodes that have no dentry on the
1446 			 * sbsec->isec_head list.  No reason to complain as
1447 			 * these will get fixed up the next time we go through
1448 			 * inode_doinit() with a dentry, before these inodes
1449 			 * could be used again by userspace.
1450 			 */
1451 			if (!dentry)
1452 				goto out_unlock;
1453 			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1454 			rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1455 			dput(dentry);
1456 			if (rc)
1457 				goto out_unlock;
1458 			isec->sid = sid;
1459 		}
1460 		break;
1461 	}
1462 
1463 	isec->initialized = 1;
1464 
1465 out_unlock:
1466 	mutex_unlock(&isec->lock);
1467 out:
1468 	if (isec->sclass == SECCLASS_FILE)
1469 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1470 	return rc;
1471 }
1472 
1473 /* Convert a Linux signal to an access vector. */
1474 static inline u32 signal_to_av(int sig)
1475 {
1476 	u32 perm = 0;
1477 
1478 	switch (sig) {
1479 	case SIGCHLD:
1480 		/* Commonly granted from child to parent. */
1481 		perm = PROCESS__SIGCHLD;
1482 		break;
1483 	case SIGKILL:
1484 		/* Cannot be caught or ignored */
1485 		perm = PROCESS__SIGKILL;
1486 		break;
1487 	case SIGSTOP:
1488 		/* Cannot be caught or ignored */
1489 		perm = PROCESS__SIGSTOP;
1490 		break;
1491 	default:
1492 		/* All other signals. */
1493 		perm = PROCESS__SIGNAL;
1494 		break;
1495 	}
1496 
1497 	return perm;
1498 }
1499 
1500 /*
1501  * Check permission between a pair of credentials
1502  * fork check, ptrace check, etc.
1503  */
1504 static int cred_has_perm(const struct cred *actor,
1505 			 const struct cred *target,
1506 			 u32 perms)
1507 {
1508 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1509 
1510 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1511 }
1512 
1513 /*
1514  * Check permission between a pair of tasks, e.g. signal checks,
1515  * fork check, ptrace check, etc.
1516  * tsk1 is the actor and tsk2 is the target
1517  * - this uses the default subjective creds of tsk1
1518  */
1519 static int task_has_perm(const struct task_struct *tsk1,
1520 			 const struct task_struct *tsk2,
1521 			 u32 perms)
1522 {
1523 	const struct task_security_struct *__tsec1, *__tsec2;
1524 	u32 sid1, sid2;
1525 
1526 	rcu_read_lock();
1527 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1528 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1529 	rcu_read_unlock();
1530 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1531 }
1532 
1533 /*
1534  * Check permission between current and another task, e.g. signal checks,
1535  * fork check, ptrace check, etc.
1536  * current is the actor and tsk2 is the target
1537  * - this uses current's subjective creds
1538  */
1539 static int current_has_perm(const struct task_struct *tsk,
1540 			    u32 perms)
1541 {
1542 	u32 sid, tsid;
1543 
1544 	sid = current_sid();
1545 	tsid = task_sid(tsk);
1546 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1547 }
1548 
1549 #if CAP_LAST_CAP > 63
1550 #error Fix SELinux to handle capabilities > 63.
1551 #endif
1552 
1553 /* Check whether a task is allowed to use a capability. */
1554 static int cred_has_capability(const struct cred *cred,
1555 			       int cap, int audit)
1556 {
1557 	struct common_audit_data ad;
1558 	struct av_decision avd;
1559 	u16 sclass;
1560 	u32 sid = cred_sid(cred);
1561 	u32 av = CAP_TO_MASK(cap);
1562 	int rc;
1563 
1564 	ad.type = LSM_AUDIT_DATA_CAP;
1565 	ad.u.cap = cap;
1566 
1567 	switch (CAP_TO_INDEX(cap)) {
1568 	case 0:
1569 		sclass = SECCLASS_CAPABILITY;
1570 		break;
1571 	case 1:
1572 		sclass = SECCLASS_CAPABILITY2;
1573 		break;
1574 	default:
1575 		printk(KERN_ERR
1576 		       "SELinux:  out of range capability %d\n", cap);
1577 		BUG();
1578 		return -EINVAL;
1579 	}
1580 
1581 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1582 	if (audit == SECURITY_CAP_AUDIT) {
1583 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1584 		if (rc2)
1585 			return rc2;
1586 	}
1587 	return rc;
1588 }
1589 
1590 /* Check whether a task is allowed to use a system operation. */
1591 static int task_has_system(struct task_struct *tsk,
1592 			   u32 perms)
1593 {
1594 	u32 sid = task_sid(tsk);
1595 
1596 	return avc_has_perm(sid, SECINITSID_KERNEL,
1597 			    SECCLASS_SYSTEM, perms, NULL);
1598 }
1599 
1600 /* Check whether a task has a particular permission to an inode.
1601    The 'adp' parameter is optional and allows other audit
1602    data to be passed (e.g. the dentry). */
1603 static int inode_has_perm(const struct cred *cred,
1604 			  struct inode *inode,
1605 			  u32 perms,
1606 			  struct common_audit_data *adp)
1607 {
1608 	struct inode_security_struct *isec;
1609 	u32 sid;
1610 
1611 	validate_creds(cred);
1612 
1613 	if (unlikely(IS_PRIVATE(inode)))
1614 		return 0;
1615 
1616 	sid = cred_sid(cred);
1617 	isec = inode->i_security;
1618 
1619 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1620 }
1621 
1622 /* Same as inode_has_perm, but pass explicit audit data containing
1623    the dentry to help the auditing code to more easily generate the
1624    pathname if needed. */
1625 static inline int dentry_has_perm(const struct cred *cred,
1626 				  struct dentry *dentry,
1627 				  u32 av)
1628 {
1629 	struct inode *inode = dentry->d_inode;
1630 	struct common_audit_data ad;
1631 
1632 	ad.type = LSM_AUDIT_DATA_DENTRY;
1633 	ad.u.dentry = dentry;
1634 	return inode_has_perm(cred, inode, av, &ad);
1635 }
1636 
1637 /* Same as inode_has_perm, but pass explicit audit data containing
1638    the path to help the auditing code to more easily generate the
1639    pathname if needed. */
1640 static inline int path_has_perm(const struct cred *cred,
1641 				struct path *path,
1642 				u32 av)
1643 {
1644 	struct inode *inode = path->dentry->d_inode;
1645 	struct common_audit_data ad;
1646 
1647 	ad.type = LSM_AUDIT_DATA_PATH;
1648 	ad.u.path = *path;
1649 	return inode_has_perm(cred, inode, av, &ad);
1650 }
1651 
1652 /* Same as path_has_perm, but uses the inode from the file struct. */
1653 static inline int file_path_has_perm(const struct cred *cred,
1654 				     struct file *file,
1655 				     u32 av)
1656 {
1657 	struct common_audit_data ad;
1658 
1659 	ad.type = LSM_AUDIT_DATA_PATH;
1660 	ad.u.path = file->f_path;
1661 	return inode_has_perm(cred, file_inode(file), av, &ad);
1662 }
1663 
1664 /* Check whether a task can use an open file descriptor to
1665    access an inode in a given way.  Check access to the
1666    descriptor itself, and then use dentry_has_perm to
1667    check a particular permission to the file.
1668    Access to the descriptor is implicitly granted if it
1669    has the same SID as the process.  If av is zero, then
1670    access to the file is not checked, e.g. for cases
1671    where only the descriptor is affected like seek. */
1672 static int file_has_perm(const struct cred *cred,
1673 			 struct file *file,
1674 			 u32 av)
1675 {
1676 	struct file_security_struct *fsec = file->f_security;
1677 	struct inode *inode = file_inode(file);
1678 	struct common_audit_data ad;
1679 	u32 sid = cred_sid(cred);
1680 	int rc;
1681 
1682 	ad.type = LSM_AUDIT_DATA_PATH;
1683 	ad.u.path = file->f_path;
1684 
1685 	if (sid != fsec->sid) {
1686 		rc = avc_has_perm(sid, fsec->sid,
1687 				  SECCLASS_FD,
1688 				  FD__USE,
1689 				  &ad);
1690 		if (rc)
1691 			goto out;
1692 	}
1693 
1694 	/* av is zero if only checking access to the descriptor. */
1695 	rc = 0;
1696 	if (av)
1697 		rc = inode_has_perm(cred, inode, av, &ad);
1698 
1699 out:
1700 	return rc;
1701 }
1702 
1703 /* Check whether a task can create a file. */
1704 static int may_create(struct inode *dir,
1705 		      struct dentry *dentry,
1706 		      u16 tclass)
1707 {
1708 	const struct task_security_struct *tsec = current_security();
1709 	struct inode_security_struct *dsec;
1710 	struct superblock_security_struct *sbsec;
1711 	u32 sid, newsid;
1712 	struct common_audit_data ad;
1713 	int rc;
1714 
1715 	dsec = dir->i_security;
1716 	sbsec = dir->i_sb->s_security;
1717 
1718 	sid = tsec->sid;
1719 	newsid = tsec->create_sid;
1720 
1721 	ad.type = LSM_AUDIT_DATA_DENTRY;
1722 	ad.u.dentry = dentry;
1723 
1724 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1725 			  DIR__ADD_NAME | DIR__SEARCH,
1726 			  &ad);
1727 	if (rc)
1728 		return rc;
1729 
1730 	if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1731 		rc = security_transition_sid(sid, dsec->sid, tclass,
1732 					     &dentry->d_name, &newsid);
1733 		if (rc)
1734 			return rc;
1735 	}
1736 
1737 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1738 	if (rc)
1739 		return rc;
1740 
1741 	return avc_has_perm(newsid, sbsec->sid,
1742 			    SECCLASS_FILESYSTEM,
1743 			    FILESYSTEM__ASSOCIATE, &ad);
1744 }
1745 
1746 /* Check whether a task can create a key. */
1747 static int may_create_key(u32 ksid,
1748 			  struct task_struct *ctx)
1749 {
1750 	u32 sid = task_sid(ctx);
1751 
1752 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1753 }
1754 
1755 #define MAY_LINK	0
1756 #define MAY_UNLINK	1
1757 #define MAY_RMDIR	2
1758 
1759 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1760 static int may_link(struct inode *dir,
1761 		    struct dentry *dentry,
1762 		    int kind)
1763 
1764 {
1765 	struct inode_security_struct *dsec, *isec;
1766 	struct common_audit_data ad;
1767 	u32 sid = current_sid();
1768 	u32 av;
1769 	int rc;
1770 
1771 	dsec = dir->i_security;
1772 	isec = dentry->d_inode->i_security;
1773 
1774 	ad.type = LSM_AUDIT_DATA_DENTRY;
1775 	ad.u.dentry = dentry;
1776 
1777 	av = DIR__SEARCH;
1778 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1779 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1780 	if (rc)
1781 		return rc;
1782 
1783 	switch (kind) {
1784 	case MAY_LINK:
1785 		av = FILE__LINK;
1786 		break;
1787 	case MAY_UNLINK:
1788 		av = FILE__UNLINK;
1789 		break;
1790 	case MAY_RMDIR:
1791 		av = DIR__RMDIR;
1792 		break;
1793 	default:
1794 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1795 			__func__, kind);
1796 		return 0;
1797 	}
1798 
1799 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1800 	return rc;
1801 }
1802 
1803 static inline int may_rename(struct inode *old_dir,
1804 			     struct dentry *old_dentry,
1805 			     struct inode *new_dir,
1806 			     struct dentry *new_dentry)
1807 {
1808 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1809 	struct common_audit_data ad;
1810 	u32 sid = current_sid();
1811 	u32 av;
1812 	int old_is_dir, new_is_dir;
1813 	int rc;
1814 
1815 	old_dsec = old_dir->i_security;
1816 	old_isec = old_dentry->d_inode->i_security;
1817 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1818 	new_dsec = new_dir->i_security;
1819 
1820 	ad.type = LSM_AUDIT_DATA_DENTRY;
1821 
1822 	ad.u.dentry = old_dentry;
1823 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1824 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1825 	if (rc)
1826 		return rc;
1827 	rc = avc_has_perm(sid, old_isec->sid,
1828 			  old_isec->sclass, FILE__RENAME, &ad);
1829 	if (rc)
1830 		return rc;
1831 	if (old_is_dir && new_dir != old_dir) {
1832 		rc = avc_has_perm(sid, old_isec->sid,
1833 				  old_isec->sclass, DIR__REPARENT, &ad);
1834 		if (rc)
1835 			return rc;
1836 	}
1837 
1838 	ad.u.dentry = new_dentry;
1839 	av = DIR__ADD_NAME | DIR__SEARCH;
1840 	if (new_dentry->d_inode)
1841 		av |= DIR__REMOVE_NAME;
1842 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1843 	if (rc)
1844 		return rc;
1845 	if (new_dentry->d_inode) {
1846 		new_isec = new_dentry->d_inode->i_security;
1847 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1848 		rc = avc_has_perm(sid, new_isec->sid,
1849 				  new_isec->sclass,
1850 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1851 		if (rc)
1852 			return rc;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /* Check whether a task can perform a filesystem operation. */
1859 static int superblock_has_perm(const struct cred *cred,
1860 			       struct super_block *sb,
1861 			       u32 perms,
1862 			       struct common_audit_data *ad)
1863 {
1864 	struct superblock_security_struct *sbsec;
1865 	u32 sid = cred_sid(cred);
1866 
1867 	sbsec = sb->s_security;
1868 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1869 }
1870 
1871 /* Convert a Linux mode and permission mask to an access vector. */
1872 static inline u32 file_mask_to_av(int mode, int mask)
1873 {
1874 	u32 av = 0;
1875 
1876 	if (!S_ISDIR(mode)) {
1877 		if (mask & MAY_EXEC)
1878 			av |= FILE__EXECUTE;
1879 		if (mask & MAY_READ)
1880 			av |= FILE__READ;
1881 
1882 		if (mask & MAY_APPEND)
1883 			av |= FILE__APPEND;
1884 		else if (mask & MAY_WRITE)
1885 			av |= FILE__WRITE;
1886 
1887 	} else {
1888 		if (mask & MAY_EXEC)
1889 			av |= DIR__SEARCH;
1890 		if (mask & MAY_WRITE)
1891 			av |= DIR__WRITE;
1892 		if (mask & MAY_READ)
1893 			av |= DIR__READ;
1894 	}
1895 
1896 	return av;
1897 }
1898 
1899 /* Convert a Linux file to an access vector. */
1900 static inline u32 file_to_av(struct file *file)
1901 {
1902 	u32 av = 0;
1903 
1904 	if (file->f_mode & FMODE_READ)
1905 		av |= FILE__READ;
1906 	if (file->f_mode & FMODE_WRITE) {
1907 		if (file->f_flags & O_APPEND)
1908 			av |= FILE__APPEND;
1909 		else
1910 			av |= FILE__WRITE;
1911 	}
1912 	if (!av) {
1913 		/*
1914 		 * Special file opened with flags 3 for ioctl-only use.
1915 		 */
1916 		av = FILE__IOCTL;
1917 	}
1918 
1919 	return av;
1920 }
1921 
1922 /*
1923  * Convert a file to an access vector and include the correct open
1924  * open permission.
1925  */
1926 static inline u32 open_file_to_av(struct file *file)
1927 {
1928 	u32 av = file_to_av(file);
1929 
1930 	if (selinux_policycap_openperm)
1931 		av |= FILE__OPEN;
1932 
1933 	return av;
1934 }
1935 
1936 /* Hook functions begin here. */
1937 
1938 static int selinux_ptrace_access_check(struct task_struct *child,
1939 				     unsigned int mode)
1940 {
1941 	int rc;
1942 
1943 	rc = cap_ptrace_access_check(child, mode);
1944 	if (rc)
1945 		return rc;
1946 
1947 	if (mode & PTRACE_MODE_READ) {
1948 		u32 sid = current_sid();
1949 		u32 csid = task_sid(child);
1950 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1951 	}
1952 
1953 	return current_has_perm(child, PROCESS__PTRACE);
1954 }
1955 
1956 static int selinux_ptrace_traceme(struct task_struct *parent)
1957 {
1958 	int rc;
1959 
1960 	rc = cap_ptrace_traceme(parent);
1961 	if (rc)
1962 		return rc;
1963 
1964 	return task_has_perm(parent, current, PROCESS__PTRACE);
1965 }
1966 
1967 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1968 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1969 {
1970 	int error;
1971 
1972 	error = current_has_perm(target, PROCESS__GETCAP);
1973 	if (error)
1974 		return error;
1975 
1976 	return cap_capget(target, effective, inheritable, permitted);
1977 }
1978 
1979 static int selinux_capset(struct cred *new, const struct cred *old,
1980 			  const kernel_cap_t *effective,
1981 			  const kernel_cap_t *inheritable,
1982 			  const kernel_cap_t *permitted)
1983 {
1984 	int error;
1985 
1986 	error = cap_capset(new, old,
1987 				      effective, inheritable, permitted);
1988 	if (error)
1989 		return error;
1990 
1991 	return cred_has_perm(old, new, PROCESS__SETCAP);
1992 }
1993 
1994 /*
1995  * (This comment used to live with the selinux_task_setuid hook,
1996  * which was removed).
1997  *
1998  * Since setuid only affects the current process, and since the SELinux
1999  * controls are not based on the Linux identity attributes, SELinux does not
2000  * need to control this operation.  However, SELinux does control the use of
2001  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2002  */
2003 
2004 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2005 			   int cap, int audit)
2006 {
2007 	int rc;
2008 
2009 	rc = cap_capable(cred, ns, cap, audit);
2010 	if (rc)
2011 		return rc;
2012 
2013 	return cred_has_capability(cred, cap, audit);
2014 }
2015 
2016 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2017 {
2018 	const struct cred *cred = current_cred();
2019 	int rc = 0;
2020 
2021 	if (!sb)
2022 		return 0;
2023 
2024 	switch (cmds) {
2025 	case Q_SYNC:
2026 	case Q_QUOTAON:
2027 	case Q_QUOTAOFF:
2028 	case Q_SETINFO:
2029 	case Q_SETQUOTA:
2030 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2031 		break;
2032 	case Q_GETFMT:
2033 	case Q_GETINFO:
2034 	case Q_GETQUOTA:
2035 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2036 		break;
2037 	default:
2038 		rc = 0;  /* let the kernel handle invalid cmds */
2039 		break;
2040 	}
2041 	return rc;
2042 }
2043 
2044 static int selinux_quota_on(struct dentry *dentry)
2045 {
2046 	const struct cred *cred = current_cred();
2047 
2048 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2049 }
2050 
2051 static int selinux_syslog(int type)
2052 {
2053 	int rc;
2054 
2055 	switch (type) {
2056 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2057 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2058 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059 		break;
2060 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2061 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2062 	/* Set level of messages printed to console */
2063 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2064 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2065 		break;
2066 	case SYSLOG_ACTION_CLOSE:	/* Close log */
2067 	case SYSLOG_ACTION_OPEN:	/* Open log */
2068 	case SYSLOG_ACTION_READ:	/* Read from log */
2069 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2070 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2071 	default:
2072 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2073 		break;
2074 	}
2075 	return rc;
2076 }
2077 
2078 /*
2079  * Check that a process has enough memory to allocate a new virtual
2080  * mapping. 0 means there is enough memory for the allocation to
2081  * succeed and -ENOMEM implies there is not.
2082  *
2083  * Do not audit the selinux permission check, as this is applied to all
2084  * processes that allocate mappings.
2085  */
2086 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2087 {
2088 	int rc, cap_sys_admin = 0;
2089 
2090 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2091 			     SECURITY_CAP_NOAUDIT);
2092 	if (rc == 0)
2093 		cap_sys_admin = 1;
2094 
2095 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2096 }
2097 
2098 /* binprm security operations */
2099 
2100 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2101 			    const struct task_security_struct *old_tsec,
2102 			    const struct task_security_struct *new_tsec)
2103 {
2104 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2105 	int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2106 	int rc;
2107 
2108 	if (!nnp && !nosuid)
2109 		return 0; /* neither NNP nor nosuid */
2110 
2111 	if (new_tsec->sid == old_tsec->sid)
2112 		return 0; /* No change in credentials */
2113 
2114 	/*
2115 	 * The only transitions we permit under NNP or nosuid
2116 	 * are transitions to bounded SIDs, i.e. SIDs that are
2117 	 * guaranteed to only be allowed a subset of the permissions
2118 	 * of the current SID.
2119 	 */
2120 	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2121 	if (rc) {
2122 		/*
2123 		 * On failure, preserve the errno values for NNP vs nosuid.
2124 		 * NNP:  Operation not permitted for caller.
2125 		 * nosuid:  Permission denied to file.
2126 		 */
2127 		if (nnp)
2128 			return -EPERM;
2129 		else
2130 			return -EACCES;
2131 	}
2132 	return 0;
2133 }
2134 
2135 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2136 {
2137 	const struct task_security_struct *old_tsec;
2138 	struct task_security_struct *new_tsec;
2139 	struct inode_security_struct *isec;
2140 	struct common_audit_data ad;
2141 	struct inode *inode = file_inode(bprm->file);
2142 	int rc;
2143 
2144 	rc = cap_bprm_set_creds(bprm);
2145 	if (rc)
2146 		return rc;
2147 
2148 	/* SELinux context only depends on initial program or script and not
2149 	 * the script interpreter */
2150 	if (bprm->cred_prepared)
2151 		return 0;
2152 
2153 	old_tsec = current_security();
2154 	new_tsec = bprm->cred->security;
2155 	isec = inode->i_security;
2156 
2157 	/* Default to the current task SID. */
2158 	new_tsec->sid = old_tsec->sid;
2159 	new_tsec->osid = old_tsec->sid;
2160 
2161 	/* Reset fs, key, and sock SIDs on execve. */
2162 	new_tsec->create_sid = 0;
2163 	new_tsec->keycreate_sid = 0;
2164 	new_tsec->sockcreate_sid = 0;
2165 
2166 	if (old_tsec->exec_sid) {
2167 		new_tsec->sid = old_tsec->exec_sid;
2168 		/* Reset exec SID on execve. */
2169 		new_tsec->exec_sid = 0;
2170 
2171 		/* Fail on NNP or nosuid if not an allowed transition. */
2172 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2173 		if (rc)
2174 			return rc;
2175 	} else {
2176 		/* Check for a default transition on this program. */
2177 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2178 					     SECCLASS_PROCESS, NULL,
2179 					     &new_tsec->sid);
2180 		if (rc)
2181 			return rc;
2182 
2183 		/*
2184 		 * Fallback to old SID on NNP or nosuid if not an allowed
2185 		 * transition.
2186 		 */
2187 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2188 		if (rc)
2189 			new_tsec->sid = old_tsec->sid;
2190 	}
2191 
2192 	ad.type = LSM_AUDIT_DATA_PATH;
2193 	ad.u.path = bprm->file->f_path;
2194 
2195 	if (new_tsec->sid == old_tsec->sid) {
2196 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2197 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2198 		if (rc)
2199 			return rc;
2200 	} else {
2201 		/* Check permissions for the transition. */
2202 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2203 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2204 		if (rc)
2205 			return rc;
2206 
2207 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2208 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2209 		if (rc)
2210 			return rc;
2211 
2212 		/* Check for shared state */
2213 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2214 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2215 					  SECCLASS_PROCESS, PROCESS__SHARE,
2216 					  NULL);
2217 			if (rc)
2218 				return -EPERM;
2219 		}
2220 
2221 		/* Make sure that anyone attempting to ptrace over a task that
2222 		 * changes its SID has the appropriate permit */
2223 		if (bprm->unsafe &
2224 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2225 			struct task_struct *tracer;
2226 			struct task_security_struct *sec;
2227 			u32 ptsid = 0;
2228 
2229 			rcu_read_lock();
2230 			tracer = ptrace_parent(current);
2231 			if (likely(tracer != NULL)) {
2232 				sec = __task_cred(tracer)->security;
2233 				ptsid = sec->sid;
2234 			}
2235 			rcu_read_unlock();
2236 
2237 			if (ptsid != 0) {
2238 				rc = avc_has_perm(ptsid, new_tsec->sid,
2239 						  SECCLASS_PROCESS,
2240 						  PROCESS__PTRACE, NULL);
2241 				if (rc)
2242 					return -EPERM;
2243 			}
2244 		}
2245 
2246 		/* Clear any possibly unsafe personality bits on exec: */
2247 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2254 {
2255 	const struct task_security_struct *tsec = current_security();
2256 	u32 sid, osid;
2257 	int atsecure = 0;
2258 
2259 	sid = tsec->sid;
2260 	osid = tsec->osid;
2261 
2262 	if (osid != sid) {
2263 		/* Enable secure mode for SIDs transitions unless
2264 		   the noatsecure permission is granted between
2265 		   the two SIDs, i.e. ahp returns 0. */
2266 		atsecure = avc_has_perm(osid, sid,
2267 					SECCLASS_PROCESS,
2268 					PROCESS__NOATSECURE, NULL);
2269 	}
2270 
2271 	return (atsecure || cap_bprm_secureexec(bprm));
2272 }
2273 
2274 static int match_file(const void *p, struct file *file, unsigned fd)
2275 {
2276 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2277 }
2278 
2279 /* Derived from fs/exec.c:flush_old_files. */
2280 static inline void flush_unauthorized_files(const struct cred *cred,
2281 					    struct files_struct *files)
2282 {
2283 	struct file *file, *devnull = NULL;
2284 	struct tty_struct *tty;
2285 	int drop_tty = 0;
2286 	unsigned n;
2287 
2288 	tty = get_current_tty();
2289 	if (tty) {
2290 		spin_lock(&tty_files_lock);
2291 		if (!list_empty(&tty->tty_files)) {
2292 			struct tty_file_private *file_priv;
2293 
2294 			/* Revalidate access to controlling tty.
2295 			   Use file_path_has_perm on the tty path directly
2296 			   rather than using file_has_perm, as this particular
2297 			   open file may belong to another process and we are
2298 			   only interested in the inode-based check here. */
2299 			file_priv = list_first_entry(&tty->tty_files,
2300 						struct tty_file_private, list);
2301 			file = file_priv->file;
2302 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2303 				drop_tty = 1;
2304 		}
2305 		spin_unlock(&tty_files_lock);
2306 		tty_kref_put(tty);
2307 	}
2308 	/* Reset controlling tty. */
2309 	if (drop_tty)
2310 		no_tty();
2311 
2312 	/* Revalidate access to inherited open files. */
2313 	n = iterate_fd(files, 0, match_file, cred);
2314 	if (!n) /* none found? */
2315 		return;
2316 
2317 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2318 	if (IS_ERR(devnull))
2319 		devnull = NULL;
2320 	/* replace all the matching ones with this */
2321 	do {
2322 		replace_fd(n - 1, devnull, 0);
2323 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2324 	if (devnull)
2325 		fput(devnull);
2326 }
2327 
2328 /*
2329  * Prepare a process for imminent new credential changes due to exec
2330  */
2331 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2332 {
2333 	struct task_security_struct *new_tsec;
2334 	struct rlimit *rlim, *initrlim;
2335 	int rc, i;
2336 
2337 	new_tsec = bprm->cred->security;
2338 	if (new_tsec->sid == new_tsec->osid)
2339 		return;
2340 
2341 	/* Close files for which the new task SID is not authorized. */
2342 	flush_unauthorized_files(bprm->cred, current->files);
2343 
2344 	/* Always clear parent death signal on SID transitions. */
2345 	current->pdeath_signal = 0;
2346 
2347 	/* Check whether the new SID can inherit resource limits from the old
2348 	 * SID.  If not, reset all soft limits to the lower of the current
2349 	 * task's hard limit and the init task's soft limit.
2350 	 *
2351 	 * Note that the setting of hard limits (even to lower them) can be
2352 	 * controlled by the setrlimit check.  The inclusion of the init task's
2353 	 * soft limit into the computation is to avoid resetting soft limits
2354 	 * higher than the default soft limit for cases where the default is
2355 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2356 	 */
2357 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2358 			  PROCESS__RLIMITINH, NULL);
2359 	if (rc) {
2360 		/* protect against do_prlimit() */
2361 		task_lock(current);
2362 		for (i = 0; i < RLIM_NLIMITS; i++) {
2363 			rlim = current->signal->rlim + i;
2364 			initrlim = init_task.signal->rlim + i;
2365 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2366 		}
2367 		task_unlock(current);
2368 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2369 	}
2370 }
2371 
2372 /*
2373  * Clean up the process immediately after the installation of new credentials
2374  * due to exec
2375  */
2376 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2377 {
2378 	const struct task_security_struct *tsec = current_security();
2379 	struct itimerval itimer;
2380 	u32 osid, sid;
2381 	int rc, i;
2382 
2383 	osid = tsec->osid;
2384 	sid = tsec->sid;
2385 
2386 	if (sid == osid)
2387 		return;
2388 
2389 	/* Check whether the new SID can inherit signal state from the old SID.
2390 	 * If not, clear itimers to avoid subsequent signal generation and
2391 	 * flush and unblock signals.
2392 	 *
2393 	 * This must occur _after_ the task SID has been updated so that any
2394 	 * kill done after the flush will be checked against the new SID.
2395 	 */
2396 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2397 	if (rc) {
2398 		memset(&itimer, 0, sizeof itimer);
2399 		for (i = 0; i < 3; i++)
2400 			do_setitimer(i, &itimer, NULL);
2401 		spin_lock_irq(&current->sighand->siglock);
2402 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2403 			__flush_signals(current);
2404 			flush_signal_handlers(current, 1);
2405 			sigemptyset(&current->blocked);
2406 		}
2407 		spin_unlock_irq(&current->sighand->siglock);
2408 	}
2409 
2410 	/* Wake up the parent if it is waiting so that it can recheck
2411 	 * wait permission to the new task SID. */
2412 	read_lock(&tasklist_lock);
2413 	__wake_up_parent(current, current->real_parent);
2414 	read_unlock(&tasklist_lock);
2415 }
2416 
2417 /* superblock security operations */
2418 
2419 static int selinux_sb_alloc_security(struct super_block *sb)
2420 {
2421 	return superblock_alloc_security(sb);
2422 }
2423 
2424 static void selinux_sb_free_security(struct super_block *sb)
2425 {
2426 	superblock_free_security(sb);
2427 }
2428 
2429 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2430 {
2431 	if (plen > olen)
2432 		return 0;
2433 
2434 	return !memcmp(prefix, option, plen);
2435 }
2436 
2437 static inline int selinux_option(char *option, int len)
2438 {
2439 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2440 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2441 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2442 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2443 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2444 }
2445 
2446 static inline void take_option(char **to, char *from, int *first, int len)
2447 {
2448 	if (!*first) {
2449 		**to = ',';
2450 		*to += 1;
2451 	} else
2452 		*first = 0;
2453 	memcpy(*to, from, len);
2454 	*to += len;
2455 }
2456 
2457 static inline void take_selinux_option(char **to, char *from, int *first,
2458 				       int len)
2459 {
2460 	int current_size = 0;
2461 
2462 	if (!*first) {
2463 		**to = '|';
2464 		*to += 1;
2465 	} else
2466 		*first = 0;
2467 
2468 	while (current_size < len) {
2469 		if (*from != '"') {
2470 			**to = *from;
2471 			*to += 1;
2472 		}
2473 		from += 1;
2474 		current_size += 1;
2475 	}
2476 }
2477 
2478 static int selinux_sb_copy_data(char *orig, char *copy)
2479 {
2480 	int fnosec, fsec, rc = 0;
2481 	char *in_save, *in_curr, *in_end;
2482 	char *sec_curr, *nosec_save, *nosec;
2483 	int open_quote = 0;
2484 
2485 	in_curr = orig;
2486 	sec_curr = copy;
2487 
2488 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2489 	if (!nosec) {
2490 		rc = -ENOMEM;
2491 		goto out;
2492 	}
2493 
2494 	nosec_save = nosec;
2495 	fnosec = fsec = 1;
2496 	in_save = in_end = orig;
2497 
2498 	do {
2499 		if (*in_end == '"')
2500 			open_quote = !open_quote;
2501 		if ((*in_end == ',' && open_quote == 0) ||
2502 				*in_end == '\0') {
2503 			int len = in_end - in_curr;
2504 
2505 			if (selinux_option(in_curr, len))
2506 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2507 			else
2508 				take_option(&nosec, in_curr, &fnosec, len);
2509 
2510 			in_curr = in_end + 1;
2511 		}
2512 	} while (*in_end++);
2513 
2514 	strcpy(in_save, nosec_save);
2515 	free_page((unsigned long)nosec_save);
2516 out:
2517 	return rc;
2518 }
2519 
2520 static int selinux_sb_remount(struct super_block *sb, void *data)
2521 {
2522 	int rc, i, *flags;
2523 	struct security_mnt_opts opts;
2524 	char *secdata, **mount_options;
2525 	struct superblock_security_struct *sbsec = sb->s_security;
2526 
2527 	if (!(sbsec->flags & SE_SBINITIALIZED))
2528 		return 0;
2529 
2530 	if (!data)
2531 		return 0;
2532 
2533 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2534 		return 0;
2535 
2536 	security_init_mnt_opts(&opts);
2537 	secdata = alloc_secdata();
2538 	if (!secdata)
2539 		return -ENOMEM;
2540 	rc = selinux_sb_copy_data(data, secdata);
2541 	if (rc)
2542 		goto out_free_secdata;
2543 
2544 	rc = selinux_parse_opts_str(secdata, &opts);
2545 	if (rc)
2546 		goto out_free_secdata;
2547 
2548 	mount_options = opts.mnt_opts;
2549 	flags = opts.mnt_opts_flags;
2550 
2551 	for (i = 0; i < opts.num_mnt_opts; i++) {
2552 		u32 sid;
2553 		size_t len;
2554 
2555 		if (flags[i] == SBLABEL_MNT)
2556 			continue;
2557 		len = strlen(mount_options[i]);
2558 		rc = security_context_to_sid(mount_options[i], len, &sid,
2559 					     GFP_KERNEL);
2560 		if (rc) {
2561 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2562 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2563 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2564 			goto out_free_opts;
2565 		}
2566 		rc = -EINVAL;
2567 		switch (flags[i]) {
2568 		case FSCONTEXT_MNT:
2569 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2570 				goto out_bad_option;
2571 			break;
2572 		case CONTEXT_MNT:
2573 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2574 				goto out_bad_option;
2575 			break;
2576 		case ROOTCONTEXT_MNT: {
2577 			struct inode_security_struct *root_isec;
2578 			root_isec = sb->s_root->d_inode->i_security;
2579 
2580 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2581 				goto out_bad_option;
2582 			break;
2583 		}
2584 		case DEFCONTEXT_MNT:
2585 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2586 				goto out_bad_option;
2587 			break;
2588 		default:
2589 			goto out_free_opts;
2590 		}
2591 	}
2592 
2593 	rc = 0;
2594 out_free_opts:
2595 	security_free_mnt_opts(&opts);
2596 out_free_secdata:
2597 	free_secdata(secdata);
2598 	return rc;
2599 out_bad_option:
2600 	printk(KERN_WARNING "SELinux: unable to change security options "
2601 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2602 	       sb->s_type->name);
2603 	goto out_free_opts;
2604 }
2605 
2606 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2607 {
2608 	const struct cred *cred = current_cred();
2609 	struct common_audit_data ad;
2610 	int rc;
2611 
2612 	rc = superblock_doinit(sb, data);
2613 	if (rc)
2614 		return rc;
2615 
2616 	/* Allow all mounts performed by the kernel */
2617 	if (flags & MS_KERNMOUNT)
2618 		return 0;
2619 
2620 	ad.type = LSM_AUDIT_DATA_DENTRY;
2621 	ad.u.dentry = sb->s_root;
2622 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2623 }
2624 
2625 static int selinux_sb_statfs(struct dentry *dentry)
2626 {
2627 	const struct cred *cred = current_cred();
2628 	struct common_audit_data ad;
2629 
2630 	ad.type = LSM_AUDIT_DATA_DENTRY;
2631 	ad.u.dentry = dentry->d_sb->s_root;
2632 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2633 }
2634 
2635 static int selinux_mount(const char *dev_name,
2636 			 struct path *path,
2637 			 const char *type,
2638 			 unsigned long flags,
2639 			 void *data)
2640 {
2641 	const struct cred *cred = current_cred();
2642 
2643 	if (flags & MS_REMOUNT)
2644 		return superblock_has_perm(cred, path->dentry->d_sb,
2645 					   FILESYSTEM__REMOUNT, NULL);
2646 	else
2647 		return path_has_perm(cred, path, FILE__MOUNTON);
2648 }
2649 
2650 static int selinux_umount(struct vfsmount *mnt, int flags)
2651 {
2652 	const struct cred *cred = current_cred();
2653 
2654 	return superblock_has_perm(cred, mnt->mnt_sb,
2655 				   FILESYSTEM__UNMOUNT, NULL);
2656 }
2657 
2658 /* inode security operations */
2659 
2660 static int selinux_inode_alloc_security(struct inode *inode)
2661 {
2662 	return inode_alloc_security(inode);
2663 }
2664 
2665 static void selinux_inode_free_security(struct inode *inode)
2666 {
2667 	inode_free_security(inode);
2668 }
2669 
2670 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2671 					struct qstr *name, void **ctx,
2672 					u32 *ctxlen)
2673 {
2674 	const struct cred *cred = current_cred();
2675 	struct task_security_struct *tsec;
2676 	struct inode_security_struct *dsec;
2677 	struct superblock_security_struct *sbsec;
2678 	struct inode *dir = dentry->d_parent->d_inode;
2679 	u32 newsid;
2680 	int rc;
2681 
2682 	tsec = cred->security;
2683 	dsec = dir->i_security;
2684 	sbsec = dir->i_sb->s_security;
2685 
2686 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2687 		newsid = tsec->create_sid;
2688 	} else {
2689 		rc = security_transition_sid(tsec->sid, dsec->sid,
2690 					     inode_mode_to_security_class(mode),
2691 					     name,
2692 					     &newsid);
2693 		if (rc) {
2694 			printk(KERN_WARNING
2695 				"%s: security_transition_sid failed, rc=%d\n",
2696 			       __func__, -rc);
2697 			return rc;
2698 		}
2699 	}
2700 
2701 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2702 }
2703 
2704 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2705 				       const struct qstr *qstr,
2706 				       const char **name,
2707 				       void **value, size_t *len)
2708 {
2709 	const struct task_security_struct *tsec = current_security();
2710 	struct inode_security_struct *dsec;
2711 	struct superblock_security_struct *sbsec;
2712 	u32 sid, newsid, clen;
2713 	int rc;
2714 	char *context;
2715 
2716 	dsec = dir->i_security;
2717 	sbsec = dir->i_sb->s_security;
2718 
2719 	sid = tsec->sid;
2720 	newsid = tsec->create_sid;
2721 
2722 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2723 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2724 		newsid = sbsec->mntpoint_sid;
2725 	else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2726 		rc = security_transition_sid(sid, dsec->sid,
2727 					     inode_mode_to_security_class(inode->i_mode),
2728 					     qstr, &newsid);
2729 		if (rc) {
2730 			printk(KERN_WARNING "%s:  "
2731 			       "security_transition_sid failed, rc=%d (dev=%s "
2732 			       "ino=%ld)\n",
2733 			       __func__,
2734 			       -rc, inode->i_sb->s_id, inode->i_ino);
2735 			return rc;
2736 		}
2737 	}
2738 
2739 	/* Possibly defer initialization to selinux_complete_init. */
2740 	if (sbsec->flags & SE_SBINITIALIZED) {
2741 		struct inode_security_struct *isec = inode->i_security;
2742 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2743 		isec->sid = newsid;
2744 		isec->initialized = 1;
2745 	}
2746 
2747 	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2748 		return -EOPNOTSUPP;
2749 
2750 	if (name)
2751 		*name = XATTR_SELINUX_SUFFIX;
2752 
2753 	if (value && len) {
2754 		rc = security_sid_to_context_force(newsid, &context, &clen);
2755 		if (rc)
2756 			return rc;
2757 		*value = context;
2758 		*len = clen;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2765 {
2766 	return may_create(dir, dentry, SECCLASS_FILE);
2767 }
2768 
2769 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2770 {
2771 	return may_link(dir, old_dentry, MAY_LINK);
2772 }
2773 
2774 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2775 {
2776 	return may_link(dir, dentry, MAY_UNLINK);
2777 }
2778 
2779 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2780 {
2781 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2782 }
2783 
2784 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2785 {
2786 	return may_create(dir, dentry, SECCLASS_DIR);
2787 }
2788 
2789 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2790 {
2791 	return may_link(dir, dentry, MAY_RMDIR);
2792 }
2793 
2794 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2795 {
2796 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2797 }
2798 
2799 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2800 				struct inode *new_inode, struct dentry *new_dentry)
2801 {
2802 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2803 }
2804 
2805 static int selinux_inode_readlink(struct dentry *dentry)
2806 {
2807 	const struct cred *cred = current_cred();
2808 
2809 	return dentry_has_perm(cred, dentry, FILE__READ);
2810 }
2811 
2812 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2813 {
2814 	const struct cred *cred = current_cred();
2815 
2816 	return dentry_has_perm(cred, dentry, FILE__READ);
2817 }
2818 
2819 static noinline int audit_inode_permission(struct inode *inode,
2820 					   u32 perms, u32 audited, u32 denied,
2821 					   int result,
2822 					   unsigned flags)
2823 {
2824 	struct common_audit_data ad;
2825 	struct inode_security_struct *isec = inode->i_security;
2826 	int rc;
2827 
2828 	ad.type = LSM_AUDIT_DATA_INODE;
2829 	ad.u.inode = inode;
2830 
2831 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2832 			    audited, denied, result, &ad, flags);
2833 	if (rc)
2834 		return rc;
2835 	return 0;
2836 }
2837 
2838 static int selinux_inode_permission(struct inode *inode, int mask)
2839 {
2840 	const struct cred *cred = current_cred();
2841 	u32 perms;
2842 	bool from_access;
2843 	unsigned flags = mask & MAY_NOT_BLOCK;
2844 	struct inode_security_struct *isec;
2845 	u32 sid;
2846 	struct av_decision avd;
2847 	int rc, rc2;
2848 	u32 audited, denied;
2849 
2850 	from_access = mask & MAY_ACCESS;
2851 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2852 
2853 	/* No permission to check.  Existence test. */
2854 	if (!mask)
2855 		return 0;
2856 
2857 	validate_creds(cred);
2858 
2859 	if (unlikely(IS_PRIVATE(inode)))
2860 		return 0;
2861 
2862 	perms = file_mask_to_av(inode->i_mode, mask);
2863 
2864 	sid = cred_sid(cred);
2865 	isec = inode->i_security;
2866 
2867 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2868 	audited = avc_audit_required(perms, &avd, rc,
2869 				     from_access ? FILE__AUDIT_ACCESS : 0,
2870 				     &denied);
2871 	if (likely(!audited))
2872 		return rc;
2873 
2874 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2875 	if (rc2)
2876 		return rc2;
2877 	return rc;
2878 }
2879 
2880 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2881 {
2882 	const struct cred *cred = current_cred();
2883 	unsigned int ia_valid = iattr->ia_valid;
2884 	__u32 av = FILE__WRITE;
2885 
2886 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2887 	if (ia_valid & ATTR_FORCE) {
2888 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2889 			      ATTR_FORCE);
2890 		if (!ia_valid)
2891 			return 0;
2892 	}
2893 
2894 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2895 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2896 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2897 
2898 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2899 		av |= FILE__OPEN;
2900 
2901 	return dentry_has_perm(cred, dentry, av);
2902 }
2903 
2904 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2905 {
2906 	const struct cred *cred = current_cred();
2907 	struct path path;
2908 
2909 	path.dentry = dentry;
2910 	path.mnt = mnt;
2911 
2912 	return path_has_perm(cred, &path, FILE__GETATTR);
2913 }
2914 
2915 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2916 {
2917 	const struct cred *cred = current_cred();
2918 
2919 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2920 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2921 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2922 			if (!capable(CAP_SETFCAP))
2923 				return -EPERM;
2924 		} else if (!capable(CAP_SYS_ADMIN)) {
2925 			/* A different attribute in the security namespace.
2926 			   Restrict to administrator. */
2927 			return -EPERM;
2928 		}
2929 	}
2930 
2931 	/* Not an attribute we recognize, so just check the
2932 	   ordinary setattr permission. */
2933 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2934 }
2935 
2936 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2937 				  const void *value, size_t size, int flags)
2938 {
2939 	struct inode *inode = dentry->d_inode;
2940 	struct inode_security_struct *isec = inode->i_security;
2941 	struct superblock_security_struct *sbsec;
2942 	struct common_audit_data ad;
2943 	u32 newsid, sid = current_sid();
2944 	int rc = 0;
2945 
2946 	if (strcmp(name, XATTR_NAME_SELINUX))
2947 		return selinux_inode_setotherxattr(dentry, name);
2948 
2949 	sbsec = inode->i_sb->s_security;
2950 	if (!(sbsec->flags & SBLABEL_MNT))
2951 		return -EOPNOTSUPP;
2952 
2953 	if (!inode_owner_or_capable(inode))
2954 		return -EPERM;
2955 
2956 	ad.type = LSM_AUDIT_DATA_DENTRY;
2957 	ad.u.dentry = dentry;
2958 
2959 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2960 			  FILE__RELABELFROM, &ad);
2961 	if (rc)
2962 		return rc;
2963 
2964 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2965 	if (rc == -EINVAL) {
2966 		if (!capable(CAP_MAC_ADMIN)) {
2967 			struct audit_buffer *ab;
2968 			size_t audit_size;
2969 			const char *str;
2970 
2971 			/* We strip a nul only if it is at the end, otherwise the
2972 			 * context contains a nul and we should audit that */
2973 			if (value) {
2974 				str = value;
2975 				if (str[size - 1] == '\0')
2976 					audit_size = size - 1;
2977 				else
2978 					audit_size = size;
2979 			} else {
2980 				str = "";
2981 				audit_size = 0;
2982 			}
2983 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2984 			audit_log_format(ab, "op=setxattr invalid_context=");
2985 			audit_log_n_untrustedstring(ab, value, audit_size);
2986 			audit_log_end(ab);
2987 
2988 			return rc;
2989 		}
2990 		rc = security_context_to_sid_force(value, size, &newsid);
2991 	}
2992 	if (rc)
2993 		return rc;
2994 
2995 	rc = avc_has_perm(sid, newsid, isec->sclass,
2996 			  FILE__RELABELTO, &ad);
2997 	if (rc)
2998 		return rc;
2999 
3000 	rc = security_validate_transition(isec->sid, newsid, sid,
3001 					  isec->sclass);
3002 	if (rc)
3003 		return rc;
3004 
3005 	return avc_has_perm(newsid,
3006 			    sbsec->sid,
3007 			    SECCLASS_FILESYSTEM,
3008 			    FILESYSTEM__ASSOCIATE,
3009 			    &ad);
3010 }
3011 
3012 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3013 					const void *value, size_t size,
3014 					int flags)
3015 {
3016 	struct inode *inode = dentry->d_inode;
3017 	struct inode_security_struct *isec = inode->i_security;
3018 	u32 newsid;
3019 	int rc;
3020 
3021 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3022 		/* Not an attribute we recognize, so nothing to do. */
3023 		return;
3024 	}
3025 
3026 	rc = security_context_to_sid_force(value, size, &newsid);
3027 	if (rc) {
3028 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3029 		       "for (%s, %lu), rc=%d\n",
3030 		       inode->i_sb->s_id, inode->i_ino, -rc);
3031 		return;
3032 	}
3033 
3034 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3035 	isec->sid = newsid;
3036 	isec->initialized = 1;
3037 
3038 	return;
3039 }
3040 
3041 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3042 {
3043 	const struct cred *cred = current_cred();
3044 
3045 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3046 }
3047 
3048 static int selinux_inode_listxattr(struct dentry *dentry)
3049 {
3050 	const struct cred *cred = current_cred();
3051 
3052 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3053 }
3054 
3055 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3056 {
3057 	if (strcmp(name, XATTR_NAME_SELINUX))
3058 		return selinux_inode_setotherxattr(dentry, name);
3059 
3060 	/* No one is allowed to remove a SELinux security label.
3061 	   You can change the label, but all data must be labeled. */
3062 	return -EACCES;
3063 }
3064 
3065 /*
3066  * Copy the inode security context value to the user.
3067  *
3068  * Permission check is handled by selinux_inode_getxattr hook.
3069  */
3070 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3071 {
3072 	u32 size;
3073 	int error;
3074 	char *context = NULL;
3075 	struct inode_security_struct *isec = inode->i_security;
3076 
3077 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3078 		return -EOPNOTSUPP;
3079 
3080 	/*
3081 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3082 	 * value even if it is not defined by current policy; otherwise,
3083 	 * use the in-core value under current policy.
3084 	 * Use the non-auditing forms of the permission checks since
3085 	 * getxattr may be called by unprivileged processes commonly
3086 	 * and lack of permission just means that we fall back to the
3087 	 * in-core context value, not a denial.
3088 	 */
3089 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3090 				SECURITY_CAP_NOAUDIT);
3091 	if (!error)
3092 		error = security_sid_to_context_force(isec->sid, &context,
3093 						      &size);
3094 	else
3095 		error = security_sid_to_context(isec->sid, &context, &size);
3096 	if (error)
3097 		return error;
3098 	error = size;
3099 	if (alloc) {
3100 		*buffer = context;
3101 		goto out_nofree;
3102 	}
3103 	kfree(context);
3104 out_nofree:
3105 	return error;
3106 }
3107 
3108 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3109 				     const void *value, size_t size, int flags)
3110 {
3111 	struct inode_security_struct *isec = inode->i_security;
3112 	u32 newsid;
3113 	int rc;
3114 
3115 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3116 		return -EOPNOTSUPP;
3117 
3118 	if (!value || !size)
3119 		return -EACCES;
3120 
3121 	rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3122 	if (rc)
3123 		return rc;
3124 
3125 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3126 	isec->sid = newsid;
3127 	isec->initialized = 1;
3128 	return 0;
3129 }
3130 
3131 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3132 {
3133 	const int len = sizeof(XATTR_NAME_SELINUX);
3134 	if (buffer && len <= buffer_size)
3135 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3136 	return len;
3137 }
3138 
3139 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3140 {
3141 	struct inode_security_struct *isec = inode->i_security;
3142 	*secid = isec->sid;
3143 }
3144 
3145 /* file security operations */
3146 
3147 static int selinux_revalidate_file_permission(struct file *file, int mask)
3148 {
3149 	const struct cred *cred = current_cred();
3150 	struct inode *inode = file_inode(file);
3151 
3152 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3153 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3154 		mask |= MAY_APPEND;
3155 
3156 	return file_has_perm(cred, file,
3157 			     file_mask_to_av(inode->i_mode, mask));
3158 }
3159 
3160 static int selinux_file_permission(struct file *file, int mask)
3161 {
3162 	struct inode *inode = file_inode(file);
3163 	struct file_security_struct *fsec = file->f_security;
3164 	struct inode_security_struct *isec = inode->i_security;
3165 	u32 sid = current_sid();
3166 
3167 	if (!mask)
3168 		/* No permission to check.  Existence test. */
3169 		return 0;
3170 
3171 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3172 	    fsec->pseqno == avc_policy_seqno())
3173 		/* No change since file_open check. */
3174 		return 0;
3175 
3176 	return selinux_revalidate_file_permission(file, mask);
3177 }
3178 
3179 static int selinux_file_alloc_security(struct file *file)
3180 {
3181 	return file_alloc_security(file);
3182 }
3183 
3184 static void selinux_file_free_security(struct file *file)
3185 {
3186 	file_free_security(file);
3187 }
3188 
3189 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3190 			      unsigned long arg)
3191 {
3192 	const struct cred *cred = current_cred();
3193 	int error = 0;
3194 
3195 	switch (cmd) {
3196 	case FIONREAD:
3197 	/* fall through */
3198 	case FIBMAP:
3199 	/* fall through */
3200 	case FIGETBSZ:
3201 	/* fall through */
3202 	case FS_IOC_GETFLAGS:
3203 	/* fall through */
3204 	case FS_IOC_GETVERSION:
3205 		error = file_has_perm(cred, file, FILE__GETATTR);
3206 		break;
3207 
3208 	case FS_IOC_SETFLAGS:
3209 	/* fall through */
3210 	case FS_IOC_SETVERSION:
3211 		error = file_has_perm(cred, file, FILE__SETATTR);
3212 		break;
3213 
3214 	/* sys_ioctl() checks */
3215 	case FIONBIO:
3216 	/* fall through */
3217 	case FIOASYNC:
3218 		error = file_has_perm(cred, file, 0);
3219 		break;
3220 
3221 	case KDSKBENT:
3222 	case KDSKBSENT:
3223 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3224 					    SECURITY_CAP_AUDIT);
3225 		break;
3226 
3227 	/* default case assumes that the command will go
3228 	 * to the file's ioctl() function.
3229 	 */
3230 	default:
3231 		error = file_has_perm(cred, file, FILE__IOCTL);
3232 	}
3233 	return error;
3234 }
3235 
3236 static int default_noexec;
3237 
3238 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3239 {
3240 	const struct cred *cred = current_cred();
3241 	int rc = 0;
3242 
3243 	if (default_noexec &&
3244 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3245 		/*
3246 		 * We are making executable an anonymous mapping or a
3247 		 * private file mapping that will also be writable.
3248 		 * This has an additional check.
3249 		 */
3250 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3251 		if (rc)
3252 			goto error;
3253 	}
3254 
3255 	if (file) {
3256 		/* read access is always possible with a mapping */
3257 		u32 av = FILE__READ;
3258 
3259 		/* write access only matters if the mapping is shared */
3260 		if (shared && (prot & PROT_WRITE))
3261 			av |= FILE__WRITE;
3262 
3263 		if (prot & PROT_EXEC)
3264 			av |= FILE__EXECUTE;
3265 
3266 		return file_has_perm(cred, file, av);
3267 	}
3268 
3269 error:
3270 	return rc;
3271 }
3272 
3273 static int selinux_mmap_addr(unsigned long addr)
3274 {
3275 	int rc;
3276 
3277 	/* do DAC check on address space usage */
3278 	rc = cap_mmap_addr(addr);
3279 	if (rc)
3280 		return rc;
3281 
3282 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3283 		u32 sid = current_sid();
3284 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3285 				  MEMPROTECT__MMAP_ZERO, NULL);
3286 	}
3287 
3288 	return rc;
3289 }
3290 
3291 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3292 			     unsigned long prot, unsigned long flags)
3293 {
3294 	if (selinux_checkreqprot)
3295 		prot = reqprot;
3296 
3297 	return file_map_prot_check(file, prot,
3298 				   (flags & MAP_TYPE) == MAP_SHARED);
3299 }
3300 
3301 static int selinux_file_mprotect(struct vm_area_struct *vma,
3302 				 unsigned long reqprot,
3303 				 unsigned long prot)
3304 {
3305 	const struct cred *cred = current_cred();
3306 
3307 	if (selinux_checkreqprot)
3308 		prot = reqprot;
3309 
3310 	if (default_noexec &&
3311 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3312 		int rc = 0;
3313 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3314 		    vma->vm_end <= vma->vm_mm->brk) {
3315 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3316 		} else if (!vma->vm_file &&
3317 			   vma->vm_start <= vma->vm_mm->start_stack &&
3318 			   vma->vm_end >= vma->vm_mm->start_stack) {
3319 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3320 		} else if (vma->vm_file && vma->anon_vma) {
3321 			/*
3322 			 * We are making executable a file mapping that has
3323 			 * had some COW done. Since pages might have been
3324 			 * written, check ability to execute the possibly
3325 			 * modified content.  This typically should only
3326 			 * occur for text relocations.
3327 			 */
3328 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3329 		}
3330 		if (rc)
3331 			return rc;
3332 	}
3333 
3334 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3335 }
3336 
3337 static int selinux_file_lock(struct file *file, unsigned int cmd)
3338 {
3339 	const struct cred *cred = current_cred();
3340 
3341 	return file_has_perm(cred, file, FILE__LOCK);
3342 }
3343 
3344 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3345 			      unsigned long arg)
3346 {
3347 	const struct cred *cred = current_cred();
3348 	int err = 0;
3349 
3350 	switch (cmd) {
3351 	case F_SETFL:
3352 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3353 			err = file_has_perm(cred, file, FILE__WRITE);
3354 			break;
3355 		}
3356 		/* fall through */
3357 	case F_SETOWN:
3358 	case F_SETSIG:
3359 	case F_GETFL:
3360 	case F_GETOWN:
3361 	case F_GETSIG:
3362 	case F_GETOWNER_UIDS:
3363 		/* Just check FD__USE permission */
3364 		err = file_has_perm(cred, file, 0);
3365 		break;
3366 	case F_GETLK:
3367 	case F_SETLK:
3368 	case F_SETLKW:
3369 	case F_OFD_GETLK:
3370 	case F_OFD_SETLK:
3371 	case F_OFD_SETLKW:
3372 #if BITS_PER_LONG == 32
3373 	case F_GETLK64:
3374 	case F_SETLK64:
3375 	case F_SETLKW64:
3376 #endif
3377 		err = file_has_perm(cred, file, FILE__LOCK);
3378 		break;
3379 	}
3380 
3381 	return err;
3382 }
3383 
3384 static void selinux_file_set_fowner(struct file *file)
3385 {
3386 	struct file_security_struct *fsec;
3387 
3388 	fsec = file->f_security;
3389 	fsec->fown_sid = current_sid();
3390 }
3391 
3392 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3393 				       struct fown_struct *fown, int signum)
3394 {
3395 	struct file *file;
3396 	u32 sid = task_sid(tsk);
3397 	u32 perm;
3398 	struct file_security_struct *fsec;
3399 
3400 	/* struct fown_struct is never outside the context of a struct file */
3401 	file = container_of(fown, struct file, f_owner);
3402 
3403 	fsec = file->f_security;
3404 
3405 	if (!signum)
3406 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3407 	else
3408 		perm = signal_to_av(signum);
3409 
3410 	return avc_has_perm(fsec->fown_sid, sid,
3411 			    SECCLASS_PROCESS, perm, NULL);
3412 }
3413 
3414 static int selinux_file_receive(struct file *file)
3415 {
3416 	const struct cred *cred = current_cred();
3417 
3418 	return file_has_perm(cred, file, file_to_av(file));
3419 }
3420 
3421 static int selinux_file_open(struct file *file, const struct cred *cred)
3422 {
3423 	struct file_security_struct *fsec;
3424 	struct inode_security_struct *isec;
3425 
3426 	fsec = file->f_security;
3427 	isec = file_inode(file)->i_security;
3428 	/*
3429 	 * Save inode label and policy sequence number
3430 	 * at open-time so that selinux_file_permission
3431 	 * can determine whether revalidation is necessary.
3432 	 * Task label is already saved in the file security
3433 	 * struct as its SID.
3434 	 */
3435 	fsec->isid = isec->sid;
3436 	fsec->pseqno = avc_policy_seqno();
3437 	/*
3438 	 * Since the inode label or policy seqno may have changed
3439 	 * between the selinux_inode_permission check and the saving
3440 	 * of state above, recheck that access is still permitted.
3441 	 * Otherwise, access might never be revalidated against the
3442 	 * new inode label or new policy.
3443 	 * This check is not redundant - do not remove.
3444 	 */
3445 	return file_path_has_perm(cred, file, open_file_to_av(file));
3446 }
3447 
3448 /* task security operations */
3449 
3450 static int selinux_task_create(unsigned long clone_flags)
3451 {
3452 	return current_has_perm(current, PROCESS__FORK);
3453 }
3454 
3455 /*
3456  * allocate the SELinux part of blank credentials
3457  */
3458 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3459 {
3460 	struct task_security_struct *tsec;
3461 
3462 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3463 	if (!tsec)
3464 		return -ENOMEM;
3465 
3466 	cred->security = tsec;
3467 	return 0;
3468 }
3469 
3470 /*
3471  * detach and free the LSM part of a set of credentials
3472  */
3473 static void selinux_cred_free(struct cred *cred)
3474 {
3475 	struct task_security_struct *tsec = cred->security;
3476 
3477 	/*
3478 	 * cred->security == NULL if security_cred_alloc_blank() or
3479 	 * security_prepare_creds() returned an error.
3480 	 */
3481 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3482 	cred->security = (void *) 0x7UL;
3483 	kfree(tsec);
3484 }
3485 
3486 /*
3487  * prepare a new set of credentials for modification
3488  */
3489 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3490 				gfp_t gfp)
3491 {
3492 	const struct task_security_struct *old_tsec;
3493 	struct task_security_struct *tsec;
3494 
3495 	old_tsec = old->security;
3496 
3497 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3498 	if (!tsec)
3499 		return -ENOMEM;
3500 
3501 	new->security = tsec;
3502 	return 0;
3503 }
3504 
3505 /*
3506  * transfer the SELinux data to a blank set of creds
3507  */
3508 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3509 {
3510 	const struct task_security_struct *old_tsec = old->security;
3511 	struct task_security_struct *tsec = new->security;
3512 
3513 	*tsec = *old_tsec;
3514 }
3515 
3516 /*
3517  * set the security data for a kernel service
3518  * - all the creation contexts are set to unlabelled
3519  */
3520 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3521 {
3522 	struct task_security_struct *tsec = new->security;
3523 	u32 sid = current_sid();
3524 	int ret;
3525 
3526 	ret = avc_has_perm(sid, secid,
3527 			   SECCLASS_KERNEL_SERVICE,
3528 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3529 			   NULL);
3530 	if (ret == 0) {
3531 		tsec->sid = secid;
3532 		tsec->create_sid = 0;
3533 		tsec->keycreate_sid = 0;
3534 		tsec->sockcreate_sid = 0;
3535 	}
3536 	return ret;
3537 }
3538 
3539 /*
3540  * set the file creation context in a security record to the same as the
3541  * objective context of the specified inode
3542  */
3543 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3544 {
3545 	struct inode_security_struct *isec = inode->i_security;
3546 	struct task_security_struct *tsec = new->security;
3547 	u32 sid = current_sid();
3548 	int ret;
3549 
3550 	ret = avc_has_perm(sid, isec->sid,
3551 			   SECCLASS_KERNEL_SERVICE,
3552 			   KERNEL_SERVICE__CREATE_FILES_AS,
3553 			   NULL);
3554 
3555 	if (ret == 0)
3556 		tsec->create_sid = isec->sid;
3557 	return ret;
3558 }
3559 
3560 static int selinux_kernel_module_request(char *kmod_name)
3561 {
3562 	u32 sid;
3563 	struct common_audit_data ad;
3564 
3565 	sid = task_sid(current);
3566 
3567 	ad.type = LSM_AUDIT_DATA_KMOD;
3568 	ad.u.kmod_name = kmod_name;
3569 
3570 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3571 			    SYSTEM__MODULE_REQUEST, &ad);
3572 }
3573 
3574 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3575 {
3576 	return current_has_perm(p, PROCESS__SETPGID);
3577 }
3578 
3579 static int selinux_task_getpgid(struct task_struct *p)
3580 {
3581 	return current_has_perm(p, PROCESS__GETPGID);
3582 }
3583 
3584 static int selinux_task_getsid(struct task_struct *p)
3585 {
3586 	return current_has_perm(p, PROCESS__GETSESSION);
3587 }
3588 
3589 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3590 {
3591 	*secid = task_sid(p);
3592 }
3593 
3594 static int selinux_task_setnice(struct task_struct *p, int nice)
3595 {
3596 	int rc;
3597 
3598 	rc = cap_task_setnice(p, nice);
3599 	if (rc)
3600 		return rc;
3601 
3602 	return current_has_perm(p, PROCESS__SETSCHED);
3603 }
3604 
3605 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3606 {
3607 	int rc;
3608 
3609 	rc = cap_task_setioprio(p, ioprio);
3610 	if (rc)
3611 		return rc;
3612 
3613 	return current_has_perm(p, PROCESS__SETSCHED);
3614 }
3615 
3616 static int selinux_task_getioprio(struct task_struct *p)
3617 {
3618 	return current_has_perm(p, PROCESS__GETSCHED);
3619 }
3620 
3621 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3622 		struct rlimit *new_rlim)
3623 {
3624 	struct rlimit *old_rlim = p->signal->rlim + resource;
3625 
3626 	/* Control the ability to change the hard limit (whether
3627 	   lowering or raising it), so that the hard limit can
3628 	   later be used as a safe reset point for the soft limit
3629 	   upon context transitions.  See selinux_bprm_committing_creds. */
3630 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3631 		return current_has_perm(p, PROCESS__SETRLIMIT);
3632 
3633 	return 0;
3634 }
3635 
3636 static int selinux_task_setscheduler(struct task_struct *p)
3637 {
3638 	int rc;
3639 
3640 	rc = cap_task_setscheduler(p);
3641 	if (rc)
3642 		return rc;
3643 
3644 	return current_has_perm(p, PROCESS__SETSCHED);
3645 }
3646 
3647 static int selinux_task_getscheduler(struct task_struct *p)
3648 {
3649 	return current_has_perm(p, PROCESS__GETSCHED);
3650 }
3651 
3652 static int selinux_task_movememory(struct task_struct *p)
3653 {
3654 	return current_has_perm(p, PROCESS__SETSCHED);
3655 }
3656 
3657 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3658 				int sig, u32 secid)
3659 {
3660 	u32 perm;
3661 	int rc;
3662 
3663 	if (!sig)
3664 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3665 	else
3666 		perm = signal_to_av(sig);
3667 	if (secid)
3668 		rc = avc_has_perm(secid, task_sid(p),
3669 				  SECCLASS_PROCESS, perm, NULL);
3670 	else
3671 		rc = current_has_perm(p, perm);
3672 	return rc;
3673 }
3674 
3675 static int selinux_task_wait(struct task_struct *p)
3676 {
3677 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3678 }
3679 
3680 static void selinux_task_to_inode(struct task_struct *p,
3681 				  struct inode *inode)
3682 {
3683 	struct inode_security_struct *isec = inode->i_security;
3684 	u32 sid = task_sid(p);
3685 
3686 	isec->sid = sid;
3687 	isec->initialized = 1;
3688 }
3689 
3690 /* Returns error only if unable to parse addresses */
3691 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3692 			struct common_audit_data *ad, u8 *proto)
3693 {
3694 	int offset, ihlen, ret = -EINVAL;
3695 	struct iphdr _iph, *ih;
3696 
3697 	offset = skb_network_offset(skb);
3698 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3699 	if (ih == NULL)
3700 		goto out;
3701 
3702 	ihlen = ih->ihl * 4;
3703 	if (ihlen < sizeof(_iph))
3704 		goto out;
3705 
3706 	ad->u.net->v4info.saddr = ih->saddr;
3707 	ad->u.net->v4info.daddr = ih->daddr;
3708 	ret = 0;
3709 
3710 	if (proto)
3711 		*proto = ih->protocol;
3712 
3713 	switch (ih->protocol) {
3714 	case IPPROTO_TCP: {
3715 		struct tcphdr _tcph, *th;
3716 
3717 		if (ntohs(ih->frag_off) & IP_OFFSET)
3718 			break;
3719 
3720 		offset += ihlen;
3721 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3722 		if (th == NULL)
3723 			break;
3724 
3725 		ad->u.net->sport = th->source;
3726 		ad->u.net->dport = th->dest;
3727 		break;
3728 	}
3729 
3730 	case IPPROTO_UDP: {
3731 		struct udphdr _udph, *uh;
3732 
3733 		if (ntohs(ih->frag_off) & IP_OFFSET)
3734 			break;
3735 
3736 		offset += ihlen;
3737 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3738 		if (uh == NULL)
3739 			break;
3740 
3741 		ad->u.net->sport = uh->source;
3742 		ad->u.net->dport = uh->dest;
3743 		break;
3744 	}
3745 
3746 	case IPPROTO_DCCP: {
3747 		struct dccp_hdr _dccph, *dh;
3748 
3749 		if (ntohs(ih->frag_off) & IP_OFFSET)
3750 			break;
3751 
3752 		offset += ihlen;
3753 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3754 		if (dh == NULL)
3755 			break;
3756 
3757 		ad->u.net->sport = dh->dccph_sport;
3758 		ad->u.net->dport = dh->dccph_dport;
3759 		break;
3760 	}
3761 
3762 	default:
3763 		break;
3764 	}
3765 out:
3766 	return ret;
3767 }
3768 
3769 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3770 
3771 /* Returns error only if unable to parse addresses */
3772 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3773 			struct common_audit_data *ad, u8 *proto)
3774 {
3775 	u8 nexthdr;
3776 	int ret = -EINVAL, offset;
3777 	struct ipv6hdr _ipv6h, *ip6;
3778 	__be16 frag_off;
3779 
3780 	offset = skb_network_offset(skb);
3781 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3782 	if (ip6 == NULL)
3783 		goto out;
3784 
3785 	ad->u.net->v6info.saddr = ip6->saddr;
3786 	ad->u.net->v6info.daddr = ip6->daddr;
3787 	ret = 0;
3788 
3789 	nexthdr = ip6->nexthdr;
3790 	offset += sizeof(_ipv6h);
3791 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3792 	if (offset < 0)
3793 		goto out;
3794 
3795 	if (proto)
3796 		*proto = nexthdr;
3797 
3798 	switch (nexthdr) {
3799 	case IPPROTO_TCP: {
3800 		struct tcphdr _tcph, *th;
3801 
3802 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3803 		if (th == NULL)
3804 			break;
3805 
3806 		ad->u.net->sport = th->source;
3807 		ad->u.net->dport = th->dest;
3808 		break;
3809 	}
3810 
3811 	case IPPROTO_UDP: {
3812 		struct udphdr _udph, *uh;
3813 
3814 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3815 		if (uh == NULL)
3816 			break;
3817 
3818 		ad->u.net->sport = uh->source;
3819 		ad->u.net->dport = uh->dest;
3820 		break;
3821 	}
3822 
3823 	case IPPROTO_DCCP: {
3824 		struct dccp_hdr _dccph, *dh;
3825 
3826 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3827 		if (dh == NULL)
3828 			break;
3829 
3830 		ad->u.net->sport = dh->dccph_sport;
3831 		ad->u.net->dport = dh->dccph_dport;
3832 		break;
3833 	}
3834 
3835 	/* includes fragments */
3836 	default:
3837 		break;
3838 	}
3839 out:
3840 	return ret;
3841 }
3842 
3843 #endif /* IPV6 */
3844 
3845 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3846 			     char **_addrp, int src, u8 *proto)
3847 {
3848 	char *addrp;
3849 	int ret;
3850 
3851 	switch (ad->u.net->family) {
3852 	case PF_INET:
3853 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3854 		if (ret)
3855 			goto parse_error;
3856 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3857 				       &ad->u.net->v4info.daddr);
3858 		goto okay;
3859 
3860 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3861 	case PF_INET6:
3862 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3863 		if (ret)
3864 			goto parse_error;
3865 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3866 				       &ad->u.net->v6info.daddr);
3867 		goto okay;
3868 #endif	/* IPV6 */
3869 	default:
3870 		addrp = NULL;
3871 		goto okay;
3872 	}
3873 
3874 parse_error:
3875 	printk(KERN_WARNING
3876 	       "SELinux: failure in selinux_parse_skb(),"
3877 	       " unable to parse packet\n");
3878 	return ret;
3879 
3880 okay:
3881 	if (_addrp)
3882 		*_addrp = addrp;
3883 	return 0;
3884 }
3885 
3886 /**
3887  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3888  * @skb: the packet
3889  * @family: protocol family
3890  * @sid: the packet's peer label SID
3891  *
3892  * Description:
3893  * Check the various different forms of network peer labeling and determine
3894  * the peer label/SID for the packet; most of the magic actually occurs in
3895  * the security server function security_net_peersid_cmp().  The function
3896  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3897  * or -EACCES if @sid is invalid due to inconsistencies with the different
3898  * peer labels.
3899  *
3900  */
3901 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3902 {
3903 	int err;
3904 	u32 xfrm_sid;
3905 	u32 nlbl_sid;
3906 	u32 nlbl_type;
3907 
3908 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3909 	if (unlikely(err))
3910 		return -EACCES;
3911 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3912 	if (unlikely(err))
3913 		return -EACCES;
3914 
3915 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3916 	if (unlikely(err)) {
3917 		printk(KERN_WARNING
3918 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3919 		       " unable to determine packet's peer label\n");
3920 		return -EACCES;
3921 	}
3922 
3923 	return 0;
3924 }
3925 
3926 /**
3927  * selinux_conn_sid - Determine the child socket label for a connection
3928  * @sk_sid: the parent socket's SID
3929  * @skb_sid: the packet's SID
3930  * @conn_sid: the resulting connection SID
3931  *
3932  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3933  * combined with the MLS information from @skb_sid in order to create
3934  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3935  * of @sk_sid.  Returns zero on success, negative values on failure.
3936  *
3937  */
3938 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3939 {
3940 	int err = 0;
3941 
3942 	if (skb_sid != SECSID_NULL)
3943 		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3944 	else
3945 		*conn_sid = sk_sid;
3946 
3947 	return err;
3948 }
3949 
3950 /* socket security operations */
3951 
3952 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3953 				 u16 secclass, u32 *socksid)
3954 {
3955 	if (tsec->sockcreate_sid > SECSID_NULL) {
3956 		*socksid = tsec->sockcreate_sid;
3957 		return 0;
3958 	}
3959 
3960 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3961 				       socksid);
3962 }
3963 
3964 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3965 {
3966 	struct sk_security_struct *sksec = sk->sk_security;
3967 	struct common_audit_data ad;
3968 	struct lsm_network_audit net = {0,};
3969 	u32 tsid = task_sid(task);
3970 
3971 	if (sksec->sid == SECINITSID_KERNEL)
3972 		return 0;
3973 
3974 	ad.type = LSM_AUDIT_DATA_NET;
3975 	ad.u.net = &net;
3976 	ad.u.net->sk = sk;
3977 
3978 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3979 }
3980 
3981 static int selinux_socket_create(int family, int type,
3982 				 int protocol, int kern)
3983 {
3984 	const struct task_security_struct *tsec = current_security();
3985 	u32 newsid;
3986 	u16 secclass;
3987 	int rc;
3988 
3989 	if (kern)
3990 		return 0;
3991 
3992 	secclass = socket_type_to_security_class(family, type, protocol);
3993 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3994 	if (rc)
3995 		return rc;
3996 
3997 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3998 }
3999 
4000 static int selinux_socket_post_create(struct socket *sock, int family,
4001 				      int type, int protocol, int kern)
4002 {
4003 	const struct task_security_struct *tsec = current_security();
4004 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4005 	struct sk_security_struct *sksec;
4006 	int err = 0;
4007 
4008 	isec->sclass = socket_type_to_security_class(family, type, protocol);
4009 
4010 	if (kern)
4011 		isec->sid = SECINITSID_KERNEL;
4012 	else {
4013 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4014 		if (err)
4015 			return err;
4016 	}
4017 
4018 	isec->initialized = 1;
4019 
4020 	if (sock->sk) {
4021 		sksec = sock->sk->sk_security;
4022 		sksec->sid = isec->sid;
4023 		sksec->sclass = isec->sclass;
4024 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4025 	}
4026 
4027 	return err;
4028 }
4029 
4030 /* Range of port numbers used to automatically bind.
4031    Need to determine whether we should perform a name_bind
4032    permission check between the socket and the port number. */
4033 
4034 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4035 {
4036 	struct sock *sk = sock->sk;
4037 	u16 family;
4038 	int err;
4039 
4040 	err = sock_has_perm(current, sk, SOCKET__BIND);
4041 	if (err)
4042 		goto out;
4043 
4044 	/*
4045 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4046 	 * Multiple address binding for SCTP is not supported yet: we just
4047 	 * check the first address now.
4048 	 */
4049 	family = sk->sk_family;
4050 	if (family == PF_INET || family == PF_INET6) {
4051 		char *addrp;
4052 		struct sk_security_struct *sksec = sk->sk_security;
4053 		struct common_audit_data ad;
4054 		struct lsm_network_audit net = {0,};
4055 		struct sockaddr_in *addr4 = NULL;
4056 		struct sockaddr_in6 *addr6 = NULL;
4057 		unsigned short snum;
4058 		u32 sid, node_perm;
4059 
4060 		if (family == PF_INET) {
4061 			addr4 = (struct sockaddr_in *)address;
4062 			snum = ntohs(addr4->sin_port);
4063 			addrp = (char *)&addr4->sin_addr.s_addr;
4064 		} else {
4065 			addr6 = (struct sockaddr_in6 *)address;
4066 			snum = ntohs(addr6->sin6_port);
4067 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4068 		}
4069 
4070 		if (snum) {
4071 			int low, high;
4072 
4073 			inet_get_local_port_range(sock_net(sk), &low, &high);
4074 
4075 			if (snum < max(PROT_SOCK, low) || snum > high) {
4076 				err = sel_netport_sid(sk->sk_protocol,
4077 						      snum, &sid);
4078 				if (err)
4079 					goto out;
4080 				ad.type = LSM_AUDIT_DATA_NET;
4081 				ad.u.net = &net;
4082 				ad.u.net->sport = htons(snum);
4083 				ad.u.net->family = family;
4084 				err = avc_has_perm(sksec->sid, sid,
4085 						   sksec->sclass,
4086 						   SOCKET__NAME_BIND, &ad);
4087 				if (err)
4088 					goto out;
4089 			}
4090 		}
4091 
4092 		switch (sksec->sclass) {
4093 		case SECCLASS_TCP_SOCKET:
4094 			node_perm = TCP_SOCKET__NODE_BIND;
4095 			break;
4096 
4097 		case SECCLASS_UDP_SOCKET:
4098 			node_perm = UDP_SOCKET__NODE_BIND;
4099 			break;
4100 
4101 		case SECCLASS_DCCP_SOCKET:
4102 			node_perm = DCCP_SOCKET__NODE_BIND;
4103 			break;
4104 
4105 		default:
4106 			node_perm = RAWIP_SOCKET__NODE_BIND;
4107 			break;
4108 		}
4109 
4110 		err = sel_netnode_sid(addrp, family, &sid);
4111 		if (err)
4112 			goto out;
4113 
4114 		ad.type = LSM_AUDIT_DATA_NET;
4115 		ad.u.net = &net;
4116 		ad.u.net->sport = htons(snum);
4117 		ad.u.net->family = family;
4118 
4119 		if (family == PF_INET)
4120 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4121 		else
4122 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4123 
4124 		err = avc_has_perm(sksec->sid, sid,
4125 				   sksec->sclass, node_perm, &ad);
4126 		if (err)
4127 			goto out;
4128 	}
4129 out:
4130 	return err;
4131 }
4132 
4133 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4134 {
4135 	struct sock *sk = sock->sk;
4136 	struct sk_security_struct *sksec = sk->sk_security;
4137 	int err;
4138 
4139 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4140 	if (err)
4141 		return err;
4142 
4143 	/*
4144 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4145 	 */
4146 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4147 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4148 		struct common_audit_data ad;
4149 		struct lsm_network_audit net = {0,};
4150 		struct sockaddr_in *addr4 = NULL;
4151 		struct sockaddr_in6 *addr6 = NULL;
4152 		unsigned short snum;
4153 		u32 sid, perm;
4154 
4155 		if (sk->sk_family == PF_INET) {
4156 			addr4 = (struct sockaddr_in *)address;
4157 			if (addrlen < sizeof(struct sockaddr_in))
4158 				return -EINVAL;
4159 			snum = ntohs(addr4->sin_port);
4160 		} else {
4161 			addr6 = (struct sockaddr_in6 *)address;
4162 			if (addrlen < SIN6_LEN_RFC2133)
4163 				return -EINVAL;
4164 			snum = ntohs(addr6->sin6_port);
4165 		}
4166 
4167 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4168 		if (err)
4169 			goto out;
4170 
4171 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4172 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4173 
4174 		ad.type = LSM_AUDIT_DATA_NET;
4175 		ad.u.net = &net;
4176 		ad.u.net->dport = htons(snum);
4177 		ad.u.net->family = sk->sk_family;
4178 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4179 		if (err)
4180 			goto out;
4181 	}
4182 
4183 	err = selinux_netlbl_socket_connect(sk, address);
4184 
4185 out:
4186 	return err;
4187 }
4188 
4189 static int selinux_socket_listen(struct socket *sock, int backlog)
4190 {
4191 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4192 }
4193 
4194 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4195 {
4196 	int err;
4197 	struct inode_security_struct *isec;
4198 	struct inode_security_struct *newisec;
4199 
4200 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4201 	if (err)
4202 		return err;
4203 
4204 	newisec = SOCK_INODE(newsock)->i_security;
4205 
4206 	isec = SOCK_INODE(sock)->i_security;
4207 	newisec->sclass = isec->sclass;
4208 	newisec->sid = isec->sid;
4209 	newisec->initialized = 1;
4210 
4211 	return 0;
4212 }
4213 
4214 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4215 				  int size)
4216 {
4217 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4218 }
4219 
4220 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4221 				  int size, int flags)
4222 {
4223 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4224 }
4225 
4226 static int selinux_socket_getsockname(struct socket *sock)
4227 {
4228 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4229 }
4230 
4231 static int selinux_socket_getpeername(struct socket *sock)
4232 {
4233 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4234 }
4235 
4236 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4237 {
4238 	int err;
4239 
4240 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4241 	if (err)
4242 		return err;
4243 
4244 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4245 }
4246 
4247 static int selinux_socket_getsockopt(struct socket *sock, int level,
4248 				     int optname)
4249 {
4250 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4251 }
4252 
4253 static int selinux_socket_shutdown(struct socket *sock, int how)
4254 {
4255 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4256 }
4257 
4258 static int selinux_socket_unix_stream_connect(struct sock *sock,
4259 					      struct sock *other,
4260 					      struct sock *newsk)
4261 {
4262 	struct sk_security_struct *sksec_sock = sock->sk_security;
4263 	struct sk_security_struct *sksec_other = other->sk_security;
4264 	struct sk_security_struct *sksec_new = newsk->sk_security;
4265 	struct common_audit_data ad;
4266 	struct lsm_network_audit net = {0,};
4267 	int err;
4268 
4269 	ad.type = LSM_AUDIT_DATA_NET;
4270 	ad.u.net = &net;
4271 	ad.u.net->sk = other;
4272 
4273 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4274 			   sksec_other->sclass,
4275 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4276 	if (err)
4277 		return err;
4278 
4279 	/* server child socket */
4280 	sksec_new->peer_sid = sksec_sock->sid;
4281 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4282 				    &sksec_new->sid);
4283 	if (err)
4284 		return err;
4285 
4286 	/* connecting socket */
4287 	sksec_sock->peer_sid = sksec_new->sid;
4288 
4289 	return 0;
4290 }
4291 
4292 static int selinux_socket_unix_may_send(struct socket *sock,
4293 					struct socket *other)
4294 {
4295 	struct sk_security_struct *ssec = sock->sk->sk_security;
4296 	struct sk_security_struct *osec = other->sk->sk_security;
4297 	struct common_audit_data ad;
4298 	struct lsm_network_audit net = {0,};
4299 
4300 	ad.type = LSM_AUDIT_DATA_NET;
4301 	ad.u.net = &net;
4302 	ad.u.net->sk = other->sk;
4303 
4304 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4305 			    &ad);
4306 }
4307 
4308 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4309 				    char *addrp, u16 family, u32 peer_sid,
4310 				    struct common_audit_data *ad)
4311 {
4312 	int err;
4313 	u32 if_sid;
4314 	u32 node_sid;
4315 
4316 	err = sel_netif_sid(ns, ifindex, &if_sid);
4317 	if (err)
4318 		return err;
4319 	err = avc_has_perm(peer_sid, if_sid,
4320 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4321 	if (err)
4322 		return err;
4323 
4324 	err = sel_netnode_sid(addrp, family, &node_sid);
4325 	if (err)
4326 		return err;
4327 	return avc_has_perm(peer_sid, node_sid,
4328 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4329 }
4330 
4331 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4332 				       u16 family)
4333 {
4334 	int err = 0;
4335 	struct sk_security_struct *sksec = sk->sk_security;
4336 	u32 sk_sid = sksec->sid;
4337 	struct common_audit_data ad;
4338 	struct lsm_network_audit net = {0,};
4339 	char *addrp;
4340 
4341 	ad.type = LSM_AUDIT_DATA_NET;
4342 	ad.u.net = &net;
4343 	ad.u.net->netif = skb->skb_iif;
4344 	ad.u.net->family = family;
4345 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4346 	if (err)
4347 		return err;
4348 
4349 	if (selinux_secmark_enabled()) {
4350 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4351 				   PACKET__RECV, &ad);
4352 		if (err)
4353 			return err;
4354 	}
4355 
4356 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4357 	if (err)
4358 		return err;
4359 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4360 
4361 	return err;
4362 }
4363 
4364 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4365 {
4366 	int err;
4367 	struct sk_security_struct *sksec = sk->sk_security;
4368 	u16 family = sk->sk_family;
4369 	u32 sk_sid = sksec->sid;
4370 	struct common_audit_data ad;
4371 	struct lsm_network_audit net = {0,};
4372 	char *addrp;
4373 	u8 secmark_active;
4374 	u8 peerlbl_active;
4375 
4376 	if (family != PF_INET && family != PF_INET6)
4377 		return 0;
4378 
4379 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4380 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4381 		family = PF_INET;
4382 
4383 	/* If any sort of compatibility mode is enabled then handoff processing
4384 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4385 	 * special handling.  We do this in an attempt to keep this function
4386 	 * as fast and as clean as possible. */
4387 	if (!selinux_policycap_netpeer)
4388 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4389 
4390 	secmark_active = selinux_secmark_enabled();
4391 	peerlbl_active = selinux_peerlbl_enabled();
4392 	if (!secmark_active && !peerlbl_active)
4393 		return 0;
4394 
4395 	ad.type = LSM_AUDIT_DATA_NET;
4396 	ad.u.net = &net;
4397 	ad.u.net->netif = skb->skb_iif;
4398 	ad.u.net->family = family;
4399 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4400 	if (err)
4401 		return err;
4402 
4403 	if (peerlbl_active) {
4404 		u32 peer_sid;
4405 
4406 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4407 		if (err)
4408 			return err;
4409 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4410 					       addrp, family, peer_sid, &ad);
4411 		if (err) {
4412 			selinux_netlbl_err(skb, err, 0);
4413 			return err;
4414 		}
4415 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4416 				   PEER__RECV, &ad);
4417 		if (err) {
4418 			selinux_netlbl_err(skb, err, 0);
4419 			return err;
4420 		}
4421 	}
4422 
4423 	if (secmark_active) {
4424 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4425 				   PACKET__RECV, &ad);
4426 		if (err)
4427 			return err;
4428 	}
4429 
4430 	return err;
4431 }
4432 
4433 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4434 					    int __user *optlen, unsigned len)
4435 {
4436 	int err = 0;
4437 	char *scontext;
4438 	u32 scontext_len;
4439 	struct sk_security_struct *sksec = sock->sk->sk_security;
4440 	u32 peer_sid = SECSID_NULL;
4441 
4442 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4443 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4444 		peer_sid = sksec->peer_sid;
4445 	if (peer_sid == SECSID_NULL)
4446 		return -ENOPROTOOPT;
4447 
4448 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4449 	if (err)
4450 		return err;
4451 
4452 	if (scontext_len > len) {
4453 		err = -ERANGE;
4454 		goto out_len;
4455 	}
4456 
4457 	if (copy_to_user(optval, scontext, scontext_len))
4458 		err = -EFAULT;
4459 
4460 out_len:
4461 	if (put_user(scontext_len, optlen))
4462 		err = -EFAULT;
4463 	kfree(scontext);
4464 	return err;
4465 }
4466 
4467 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4468 {
4469 	u32 peer_secid = SECSID_NULL;
4470 	u16 family;
4471 
4472 	if (skb && skb->protocol == htons(ETH_P_IP))
4473 		family = PF_INET;
4474 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4475 		family = PF_INET6;
4476 	else if (sock)
4477 		family = sock->sk->sk_family;
4478 	else
4479 		goto out;
4480 
4481 	if (sock && family == PF_UNIX)
4482 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4483 	else if (skb)
4484 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4485 
4486 out:
4487 	*secid = peer_secid;
4488 	if (peer_secid == SECSID_NULL)
4489 		return -EINVAL;
4490 	return 0;
4491 }
4492 
4493 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4494 {
4495 	struct sk_security_struct *sksec;
4496 
4497 	sksec = kzalloc(sizeof(*sksec), priority);
4498 	if (!sksec)
4499 		return -ENOMEM;
4500 
4501 	sksec->peer_sid = SECINITSID_UNLABELED;
4502 	sksec->sid = SECINITSID_UNLABELED;
4503 	selinux_netlbl_sk_security_reset(sksec);
4504 	sk->sk_security = sksec;
4505 
4506 	return 0;
4507 }
4508 
4509 static void selinux_sk_free_security(struct sock *sk)
4510 {
4511 	struct sk_security_struct *sksec = sk->sk_security;
4512 
4513 	sk->sk_security = NULL;
4514 	selinux_netlbl_sk_security_free(sksec);
4515 	kfree(sksec);
4516 }
4517 
4518 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4519 {
4520 	struct sk_security_struct *sksec = sk->sk_security;
4521 	struct sk_security_struct *newsksec = newsk->sk_security;
4522 
4523 	newsksec->sid = sksec->sid;
4524 	newsksec->peer_sid = sksec->peer_sid;
4525 	newsksec->sclass = sksec->sclass;
4526 
4527 	selinux_netlbl_sk_security_reset(newsksec);
4528 }
4529 
4530 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4531 {
4532 	if (!sk)
4533 		*secid = SECINITSID_ANY_SOCKET;
4534 	else {
4535 		struct sk_security_struct *sksec = sk->sk_security;
4536 
4537 		*secid = sksec->sid;
4538 	}
4539 }
4540 
4541 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4542 {
4543 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4544 	struct sk_security_struct *sksec = sk->sk_security;
4545 
4546 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4547 	    sk->sk_family == PF_UNIX)
4548 		isec->sid = sksec->sid;
4549 	sksec->sclass = isec->sclass;
4550 }
4551 
4552 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4553 				     struct request_sock *req)
4554 {
4555 	struct sk_security_struct *sksec = sk->sk_security;
4556 	int err;
4557 	u16 family = req->rsk_ops->family;
4558 	u32 connsid;
4559 	u32 peersid;
4560 
4561 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4562 	if (err)
4563 		return err;
4564 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4565 	if (err)
4566 		return err;
4567 	req->secid = connsid;
4568 	req->peer_secid = peersid;
4569 
4570 	return selinux_netlbl_inet_conn_request(req, family);
4571 }
4572 
4573 static void selinux_inet_csk_clone(struct sock *newsk,
4574 				   const struct request_sock *req)
4575 {
4576 	struct sk_security_struct *newsksec = newsk->sk_security;
4577 
4578 	newsksec->sid = req->secid;
4579 	newsksec->peer_sid = req->peer_secid;
4580 	/* NOTE: Ideally, we should also get the isec->sid for the
4581 	   new socket in sync, but we don't have the isec available yet.
4582 	   So we will wait until sock_graft to do it, by which
4583 	   time it will have been created and available. */
4584 
4585 	/* We don't need to take any sort of lock here as we are the only
4586 	 * thread with access to newsksec */
4587 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4588 }
4589 
4590 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4591 {
4592 	u16 family = sk->sk_family;
4593 	struct sk_security_struct *sksec = sk->sk_security;
4594 
4595 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4596 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4597 		family = PF_INET;
4598 
4599 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4600 }
4601 
4602 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4603 {
4604 	skb_set_owner_w(skb, sk);
4605 }
4606 
4607 static int selinux_secmark_relabel_packet(u32 sid)
4608 {
4609 	const struct task_security_struct *__tsec;
4610 	u32 tsid;
4611 
4612 	__tsec = current_security();
4613 	tsid = __tsec->sid;
4614 
4615 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4616 }
4617 
4618 static void selinux_secmark_refcount_inc(void)
4619 {
4620 	atomic_inc(&selinux_secmark_refcount);
4621 }
4622 
4623 static void selinux_secmark_refcount_dec(void)
4624 {
4625 	atomic_dec(&selinux_secmark_refcount);
4626 }
4627 
4628 static void selinux_req_classify_flow(const struct request_sock *req,
4629 				      struct flowi *fl)
4630 {
4631 	fl->flowi_secid = req->secid;
4632 }
4633 
4634 static int selinux_tun_dev_alloc_security(void **security)
4635 {
4636 	struct tun_security_struct *tunsec;
4637 
4638 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4639 	if (!tunsec)
4640 		return -ENOMEM;
4641 	tunsec->sid = current_sid();
4642 
4643 	*security = tunsec;
4644 	return 0;
4645 }
4646 
4647 static void selinux_tun_dev_free_security(void *security)
4648 {
4649 	kfree(security);
4650 }
4651 
4652 static int selinux_tun_dev_create(void)
4653 {
4654 	u32 sid = current_sid();
4655 
4656 	/* we aren't taking into account the "sockcreate" SID since the socket
4657 	 * that is being created here is not a socket in the traditional sense,
4658 	 * instead it is a private sock, accessible only to the kernel, and
4659 	 * representing a wide range of network traffic spanning multiple
4660 	 * connections unlike traditional sockets - check the TUN driver to
4661 	 * get a better understanding of why this socket is special */
4662 
4663 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4664 			    NULL);
4665 }
4666 
4667 static int selinux_tun_dev_attach_queue(void *security)
4668 {
4669 	struct tun_security_struct *tunsec = security;
4670 
4671 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4672 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4673 }
4674 
4675 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4676 {
4677 	struct tun_security_struct *tunsec = security;
4678 	struct sk_security_struct *sksec = sk->sk_security;
4679 
4680 	/* we don't currently perform any NetLabel based labeling here and it
4681 	 * isn't clear that we would want to do so anyway; while we could apply
4682 	 * labeling without the support of the TUN user the resulting labeled
4683 	 * traffic from the other end of the connection would almost certainly
4684 	 * cause confusion to the TUN user that had no idea network labeling
4685 	 * protocols were being used */
4686 
4687 	sksec->sid = tunsec->sid;
4688 	sksec->sclass = SECCLASS_TUN_SOCKET;
4689 
4690 	return 0;
4691 }
4692 
4693 static int selinux_tun_dev_open(void *security)
4694 {
4695 	struct tun_security_struct *tunsec = security;
4696 	u32 sid = current_sid();
4697 	int err;
4698 
4699 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4700 			   TUN_SOCKET__RELABELFROM, NULL);
4701 	if (err)
4702 		return err;
4703 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4704 			   TUN_SOCKET__RELABELTO, NULL);
4705 	if (err)
4706 		return err;
4707 	tunsec->sid = sid;
4708 
4709 	return 0;
4710 }
4711 
4712 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4713 {
4714 	int err = 0;
4715 	u32 perm;
4716 	struct nlmsghdr *nlh;
4717 	struct sk_security_struct *sksec = sk->sk_security;
4718 
4719 	if (skb->len < NLMSG_HDRLEN) {
4720 		err = -EINVAL;
4721 		goto out;
4722 	}
4723 	nlh = nlmsg_hdr(skb);
4724 
4725 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4726 	if (err) {
4727 		if (err == -EINVAL) {
4728 			WARN_ONCE(1, "selinux_nlmsg_perm: unrecognized netlink message:"
4729 				  " protocol=%hu nlmsg_type=%hu sclass=%hu\n",
4730 				  sk->sk_protocol, nlh->nlmsg_type, sksec->sclass);
4731 			if (!selinux_enforcing || security_get_allow_unknown())
4732 				err = 0;
4733 		}
4734 
4735 		/* Ignore */
4736 		if (err == -ENOENT)
4737 			err = 0;
4738 		goto out;
4739 	}
4740 
4741 	err = sock_has_perm(current, sk, perm);
4742 out:
4743 	return err;
4744 }
4745 
4746 #ifdef CONFIG_NETFILTER
4747 
4748 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4749 				       const struct net_device *indev,
4750 				       u16 family)
4751 {
4752 	int err;
4753 	char *addrp;
4754 	u32 peer_sid;
4755 	struct common_audit_data ad;
4756 	struct lsm_network_audit net = {0,};
4757 	u8 secmark_active;
4758 	u8 netlbl_active;
4759 	u8 peerlbl_active;
4760 
4761 	if (!selinux_policycap_netpeer)
4762 		return NF_ACCEPT;
4763 
4764 	secmark_active = selinux_secmark_enabled();
4765 	netlbl_active = netlbl_enabled();
4766 	peerlbl_active = selinux_peerlbl_enabled();
4767 	if (!secmark_active && !peerlbl_active)
4768 		return NF_ACCEPT;
4769 
4770 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4771 		return NF_DROP;
4772 
4773 	ad.type = LSM_AUDIT_DATA_NET;
4774 	ad.u.net = &net;
4775 	ad.u.net->netif = indev->ifindex;
4776 	ad.u.net->family = family;
4777 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4778 		return NF_DROP;
4779 
4780 	if (peerlbl_active) {
4781 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4782 					       addrp, family, peer_sid, &ad);
4783 		if (err) {
4784 			selinux_netlbl_err(skb, err, 1);
4785 			return NF_DROP;
4786 		}
4787 	}
4788 
4789 	if (secmark_active)
4790 		if (avc_has_perm(peer_sid, skb->secmark,
4791 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4792 			return NF_DROP;
4793 
4794 	if (netlbl_active)
4795 		/* we do this in the FORWARD path and not the POST_ROUTING
4796 		 * path because we want to make sure we apply the necessary
4797 		 * labeling before IPsec is applied so we can leverage AH
4798 		 * protection */
4799 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4800 			return NF_DROP;
4801 
4802 	return NF_ACCEPT;
4803 }
4804 
4805 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4806 					 struct sk_buff *skb,
4807 					 const struct net_device *in,
4808 					 const struct net_device *out,
4809 					 int (*okfn)(struct sk_buff *))
4810 {
4811 	return selinux_ip_forward(skb, in, PF_INET);
4812 }
4813 
4814 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4815 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4816 					 struct sk_buff *skb,
4817 					 const struct net_device *in,
4818 					 const struct net_device *out,
4819 					 int (*okfn)(struct sk_buff *))
4820 {
4821 	return selinux_ip_forward(skb, in, PF_INET6);
4822 }
4823 #endif	/* IPV6 */
4824 
4825 static unsigned int selinux_ip_output(struct sk_buff *skb,
4826 				      u16 family)
4827 {
4828 	struct sock *sk;
4829 	u32 sid;
4830 
4831 	if (!netlbl_enabled())
4832 		return NF_ACCEPT;
4833 
4834 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4835 	 * because we want to make sure we apply the necessary labeling
4836 	 * before IPsec is applied so we can leverage AH protection */
4837 	sk = skb->sk;
4838 	if (sk) {
4839 		struct sk_security_struct *sksec;
4840 
4841 		if (sk->sk_state == TCP_LISTEN)
4842 			/* if the socket is the listening state then this
4843 			 * packet is a SYN-ACK packet which means it needs to
4844 			 * be labeled based on the connection/request_sock and
4845 			 * not the parent socket.  unfortunately, we can't
4846 			 * lookup the request_sock yet as it isn't queued on
4847 			 * the parent socket until after the SYN-ACK is sent.
4848 			 * the "solution" is to simply pass the packet as-is
4849 			 * as any IP option based labeling should be copied
4850 			 * from the initial connection request (in the IP
4851 			 * layer).  it is far from ideal, but until we get a
4852 			 * security label in the packet itself this is the
4853 			 * best we can do. */
4854 			return NF_ACCEPT;
4855 
4856 		/* standard practice, label using the parent socket */
4857 		sksec = sk->sk_security;
4858 		sid = sksec->sid;
4859 	} else
4860 		sid = SECINITSID_KERNEL;
4861 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4862 		return NF_DROP;
4863 
4864 	return NF_ACCEPT;
4865 }
4866 
4867 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4868 					struct sk_buff *skb,
4869 					const struct net_device *in,
4870 					const struct net_device *out,
4871 					int (*okfn)(struct sk_buff *))
4872 {
4873 	return selinux_ip_output(skb, PF_INET);
4874 }
4875 
4876 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4877 						int ifindex,
4878 						u16 family)
4879 {
4880 	struct sock *sk = skb->sk;
4881 	struct sk_security_struct *sksec;
4882 	struct common_audit_data ad;
4883 	struct lsm_network_audit net = {0,};
4884 	char *addrp;
4885 	u8 proto;
4886 
4887 	if (sk == NULL)
4888 		return NF_ACCEPT;
4889 	sksec = sk->sk_security;
4890 
4891 	ad.type = LSM_AUDIT_DATA_NET;
4892 	ad.u.net = &net;
4893 	ad.u.net->netif = ifindex;
4894 	ad.u.net->family = family;
4895 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4896 		return NF_DROP;
4897 
4898 	if (selinux_secmark_enabled())
4899 		if (avc_has_perm(sksec->sid, skb->secmark,
4900 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4901 			return NF_DROP_ERR(-ECONNREFUSED);
4902 
4903 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4904 		return NF_DROP_ERR(-ECONNREFUSED);
4905 
4906 	return NF_ACCEPT;
4907 }
4908 
4909 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4910 					 const struct net_device *outdev,
4911 					 u16 family)
4912 {
4913 	u32 secmark_perm;
4914 	u32 peer_sid;
4915 	int ifindex = outdev->ifindex;
4916 	struct sock *sk;
4917 	struct common_audit_data ad;
4918 	struct lsm_network_audit net = {0,};
4919 	char *addrp;
4920 	u8 secmark_active;
4921 	u8 peerlbl_active;
4922 
4923 	/* If any sort of compatibility mode is enabled then handoff processing
4924 	 * to the selinux_ip_postroute_compat() function to deal with the
4925 	 * special handling.  We do this in an attempt to keep this function
4926 	 * as fast and as clean as possible. */
4927 	if (!selinux_policycap_netpeer)
4928 		return selinux_ip_postroute_compat(skb, ifindex, family);
4929 
4930 	secmark_active = selinux_secmark_enabled();
4931 	peerlbl_active = selinux_peerlbl_enabled();
4932 	if (!secmark_active && !peerlbl_active)
4933 		return NF_ACCEPT;
4934 
4935 	sk = skb->sk;
4936 
4937 #ifdef CONFIG_XFRM
4938 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4939 	 * packet transformation so allow the packet to pass without any checks
4940 	 * since we'll have another chance to perform access control checks
4941 	 * when the packet is on it's final way out.
4942 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4943 	 *       is NULL, in this case go ahead and apply access control.
4944 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4945 	 *       TCP listening state we cannot wait until the XFRM processing
4946 	 *       is done as we will miss out on the SA label if we do;
4947 	 *       unfortunately, this means more work, but it is only once per
4948 	 *       connection. */
4949 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4950 	    !(sk != NULL && sk->sk_state == TCP_LISTEN))
4951 		return NF_ACCEPT;
4952 #endif
4953 
4954 	if (sk == NULL) {
4955 		/* Without an associated socket the packet is either coming
4956 		 * from the kernel or it is being forwarded; check the packet
4957 		 * to determine which and if the packet is being forwarded
4958 		 * query the packet directly to determine the security label. */
4959 		if (skb->skb_iif) {
4960 			secmark_perm = PACKET__FORWARD_OUT;
4961 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4962 				return NF_DROP;
4963 		} else {
4964 			secmark_perm = PACKET__SEND;
4965 			peer_sid = SECINITSID_KERNEL;
4966 		}
4967 	} else if (sk->sk_state == TCP_LISTEN) {
4968 		/* Locally generated packet but the associated socket is in the
4969 		 * listening state which means this is a SYN-ACK packet.  In
4970 		 * this particular case the correct security label is assigned
4971 		 * to the connection/request_sock but unfortunately we can't
4972 		 * query the request_sock as it isn't queued on the parent
4973 		 * socket until after the SYN-ACK packet is sent; the only
4974 		 * viable choice is to regenerate the label like we do in
4975 		 * selinux_inet_conn_request().  See also selinux_ip_output()
4976 		 * for similar problems. */
4977 		u32 skb_sid;
4978 		struct sk_security_struct *sksec = sk->sk_security;
4979 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4980 			return NF_DROP;
4981 		/* At this point, if the returned skb peerlbl is SECSID_NULL
4982 		 * and the packet has been through at least one XFRM
4983 		 * transformation then we must be dealing with the "final"
4984 		 * form of labeled IPsec packet; since we've already applied
4985 		 * all of our access controls on this packet we can safely
4986 		 * pass the packet. */
4987 		if (skb_sid == SECSID_NULL) {
4988 			switch (family) {
4989 			case PF_INET:
4990 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4991 					return NF_ACCEPT;
4992 				break;
4993 			case PF_INET6:
4994 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4995 					return NF_ACCEPT;
4996 				break;
4997 			default:
4998 				return NF_DROP_ERR(-ECONNREFUSED);
4999 			}
5000 		}
5001 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5002 			return NF_DROP;
5003 		secmark_perm = PACKET__SEND;
5004 	} else {
5005 		/* Locally generated packet, fetch the security label from the
5006 		 * associated socket. */
5007 		struct sk_security_struct *sksec = sk->sk_security;
5008 		peer_sid = sksec->sid;
5009 		secmark_perm = PACKET__SEND;
5010 	}
5011 
5012 	ad.type = LSM_AUDIT_DATA_NET;
5013 	ad.u.net = &net;
5014 	ad.u.net->netif = ifindex;
5015 	ad.u.net->family = family;
5016 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5017 		return NF_DROP;
5018 
5019 	if (secmark_active)
5020 		if (avc_has_perm(peer_sid, skb->secmark,
5021 				 SECCLASS_PACKET, secmark_perm, &ad))
5022 			return NF_DROP_ERR(-ECONNREFUSED);
5023 
5024 	if (peerlbl_active) {
5025 		u32 if_sid;
5026 		u32 node_sid;
5027 
5028 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5029 			return NF_DROP;
5030 		if (avc_has_perm(peer_sid, if_sid,
5031 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5032 			return NF_DROP_ERR(-ECONNREFUSED);
5033 
5034 		if (sel_netnode_sid(addrp, family, &node_sid))
5035 			return NF_DROP;
5036 		if (avc_has_perm(peer_sid, node_sid,
5037 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5038 			return NF_DROP_ERR(-ECONNREFUSED);
5039 	}
5040 
5041 	return NF_ACCEPT;
5042 }
5043 
5044 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5045 					   struct sk_buff *skb,
5046 					   const struct net_device *in,
5047 					   const struct net_device *out,
5048 					   int (*okfn)(struct sk_buff *))
5049 {
5050 	return selinux_ip_postroute(skb, out, PF_INET);
5051 }
5052 
5053 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5054 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5055 					   struct sk_buff *skb,
5056 					   const struct net_device *in,
5057 					   const struct net_device *out,
5058 					   int (*okfn)(struct sk_buff *))
5059 {
5060 	return selinux_ip_postroute(skb, out, PF_INET6);
5061 }
5062 #endif	/* IPV6 */
5063 
5064 #endif	/* CONFIG_NETFILTER */
5065 
5066 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5067 {
5068 	int err;
5069 
5070 	err = cap_netlink_send(sk, skb);
5071 	if (err)
5072 		return err;
5073 
5074 	return selinux_nlmsg_perm(sk, skb);
5075 }
5076 
5077 static int ipc_alloc_security(struct task_struct *task,
5078 			      struct kern_ipc_perm *perm,
5079 			      u16 sclass)
5080 {
5081 	struct ipc_security_struct *isec;
5082 	u32 sid;
5083 
5084 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5085 	if (!isec)
5086 		return -ENOMEM;
5087 
5088 	sid = task_sid(task);
5089 	isec->sclass = sclass;
5090 	isec->sid = sid;
5091 	perm->security = isec;
5092 
5093 	return 0;
5094 }
5095 
5096 static void ipc_free_security(struct kern_ipc_perm *perm)
5097 {
5098 	struct ipc_security_struct *isec = perm->security;
5099 	perm->security = NULL;
5100 	kfree(isec);
5101 }
5102 
5103 static int msg_msg_alloc_security(struct msg_msg *msg)
5104 {
5105 	struct msg_security_struct *msec;
5106 
5107 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5108 	if (!msec)
5109 		return -ENOMEM;
5110 
5111 	msec->sid = SECINITSID_UNLABELED;
5112 	msg->security = msec;
5113 
5114 	return 0;
5115 }
5116 
5117 static void msg_msg_free_security(struct msg_msg *msg)
5118 {
5119 	struct msg_security_struct *msec = msg->security;
5120 
5121 	msg->security = NULL;
5122 	kfree(msec);
5123 }
5124 
5125 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5126 			u32 perms)
5127 {
5128 	struct ipc_security_struct *isec;
5129 	struct common_audit_data ad;
5130 	u32 sid = current_sid();
5131 
5132 	isec = ipc_perms->security;
5133 
5134 	ad.type = LSM_AUDIT_DATA_IPC;
5135 	ad.u.ipc_id = ipc_perms->key;
5136 
5137 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5138 }
5139 
5140 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5141 {
5142 	return msg_msg_alloc_security(msg);
5143 }
5144 
5145 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5146 {
5147 	msg_msg_free_security(msg);
5148 }
5149 
5150 /* message queue security operations */
5151 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5152 {
5153 	struct ipc_security_struct *isec;
5154 	struct common_audit_data ad;
5155 	u32 sid = current_sid();
5156 	int rc;
5157 
5158 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5159 	if (rc)
5160 		return rc;
5161 
5162 	isec = msq->q_perm.security;
5163 
5164 	ad.type = LSM_AUDIT_DATA_IPC;
5165 	ad.u.ipc_id = msq->q_perm.key;
5166 
5167 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5168 			  MSGQ__CREATE, &ad);
5169 	if (rc) {
5170 		ipc_free_security(&msq->q_perm);
5171 		return rc;
5172 	}
5173 	return 0;
5174 }
5175 
5176 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5177 {
5178 	ipc_free_security(&msq->q_perm);
5179 }
5180 
5181 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5182 {
5183 	struct ipc_security_struct *isec;
5184 	struct common_audit_data ad;
5185 	u32 sid = current_sid();
5186 
5187 	isec = msq->q_perm.security;
5188 
5189 	ad.type = LSM_AUDIT_DATA_IPC;
5190 	ad.u.ipc_id = msq->q_perm.key;
5191 
5192 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5193 			    MSGQ__ASSOCIATE, &ad);
5194 }
5195 
5196 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5197 {
5198 	int err;
5199 	int perms;
5200 
5201 	switch (cmd) {
5202 	case IPC_INFO:
5203 	case MSG_INFO:
5204 		/* No specific object, just general system-wide information. */
5205 		return task_has_system(current, SYSTEM__IPC_INFO);
5206 	case IPC_STAT:
5207 	case MSG_STAT:
5208 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5209 		break;
5210 	case IPC_SET:
5211 		perms = MSGQ__SETATTR;
5212 		break;
5213 	case IPC_RMID:
5214 		perms = MSGQ__DESTROY;
5215 		break;
5216 	default:
5217 		return 0;
5218 	}
5219 
5220 	err = ipc_has_perm(&msq->q_perm, perms);
5221 	return err;
5222 }
5223 
5224 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5225 {
5226 	struct ipc_security_struct *isec;
5227 	struct msg_security_struct *msec;
5228 	struct common_audit_data ad;
5229 	u32 sid = current_sid();
5230 	int rc;
5231 
5232 	isec = msq->q_perm.security;
5233 	msec = msg->security;
5234 
5235 	/*
5236 	 * First time through, need to assign label to the message
5237 	 */
5238 	if (msec->sid == SECINITSID_UNLABELED) {
5239 		/*
5240 		 * Compute new sid based on current process and
5241 		 * message queue this message will be stored in
5242 		 */
5243 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5244 					     NULL, &msec->sid);
5245 		if (rc)
5246 			return rc;
5247 	}
5248 
5249 	ad.type = LSM_AUDIT_DATA_IPC;
5250 	ad.u.ipc_id = msq->q_perm.key;
5251 
5252 	/* Can this process write to the queue? */
5253 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5254 			  MSGQ__WRITE, &ad);
5255 	if (!rc)
5256 		/* Can this process send the message */
5257 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5258 				  MSG__SEND, &ad);
5259 	if (!rc)
5260 		/* Can the message be put in the queue? */
5261 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5262 				  MSGQ__ENQUEUE, &ad);
5263 
5264 	return rc;
5265 }
5266 
5267 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5268 				    struct task_struct *target,
5269 				    long type, int mode)
5270 {
5271 	struct ipc_security_struct *isec;
5272 	struct msg_security_struct *msec;
5273 	struct common_audit_data ad;
5274 	u32 sid = task_sid(target);
5275 	int rc;
5276 
5277 	isec = msq->q_perm.security;
5278 	msec = msg->security;
5279 
5280 	ad.type = LSM_AUDIT_DATA_IPC;
5281 	ad.u.ipc_id = msq->q_perm.key;
5282 
5283 	rc = avc_has_perm(sid, isec->sid,
5284 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5285 	if (!rc)
5286 		rc = avc_has_perm(sid, msec->sid,
5287 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5288 	return rc;
5289 }
5290 
5291 /* Shared Memory security operations */
5292 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5293 {
5294 	struct ipc_security_struct *isec;
5295 	struct common_audit_data ad;
5296 	u32 sid = current_sid();
5297 	int rc;
5298 
5299 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5300 	if (rc)
5301 		return rc;
5302 
5303 	isec = shp->shm_perm.security;
5304 
5305 	ad.type = LSM_AUDIT_DATA_IPC;
5306 	ad.u.ipc_id = shp->shm_perm.key;
5307 
5308 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5309 			  SHM__CREATE, &ad);
5310 	if (rc) {
5311 		ipc_free_security(&shp->shm_perm);
5312 		return rc;
5313 	}
5314 	return 0;
5315 }
5316 
5317 static void selinux_shm_free_security(struct shmid_kernel *shp)
5318 {
5319 	ipc_free_security(&shp->shm_perm);
5320 }
5321 
5322 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5323 {
5324 	struct ipc_security_struct *isec;
5325 	struct common_audit_data ad;
5326 	u32 sid = current_sid();
5327 
5328 	isec = shp->shm_perm.security;
5329 
5330 	ad.type = LSM_AUDIT_DATA_IPC;
5331 	ad.u.ipc_id = shp->shm_perm.key;
5332 
5333 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5334 			    SHM__ASSOCIATE, &ad);
5335 }
5336 
5337 /* Note, at this point, shp is locked down */
5338 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5339 {
5340 	int perms;
5341 	int err;
5342 
5343 	switch (cmd) {
5344 	case IPC_INFO:
5345 	case SHM_INFO:
5346 		/* No specific object, just general system-wide information. */
5347 		return task_has_system(current, SYSTEM__IPC_INFO);
5348 	case IPC_STAT:
5349 	case SHM_STAT:
5350 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5351 		break;
5352 	case IPC_SET:
5353 		perms = SHM__SETATTR;
5354 		break;
5355 	case SHM_LOCK:
5356 	case SHM_UNLOCK:
5357 		perms = SHM__LOCK;
5358 		break;
5359 	case IPC_RMID:
5360 		perms = SHM__DESTROY;
5361 		break;
5362 	default:
5363 		return 0;
5364 	}
5365 
5366 	err = ipc_has_perm(&shp->shm_perm, perms);
5367 	return err;
5368 }
5369 
5370 static int selinux_shm_shmat(struct shmid_kernel *shp,
5371 			     char __user *shmaddr, int shmflg)
5372 {
5373 	u32 perms;
5374 
5375 	if (shmflg & SHM_RDONLY)
5376 		perms = SHM__READ;
5377 	else
5378 		perms = SHM__READ | SHM__WRITE;
5379 
5380 	return ipc_has_perm(&shp->shm_perm, perms);
5381 }
5382 
5383 /* Semaphore security operations */
5384 static int selinux_sem_alloc_security(struct sem_array *sma)
5385 {
5386 	struct ipc_security_struct *isec;
5387 	struct common_audit_data ad;
5388 	u32 sid = current_sid();
5389 	int rc;
5390 
5391 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5392 	if (rc)
5393 		return rc;
5394 
5395 	isec = sma->sem_perm.security;
5396 
5397 	ad.type = LSM_AUDIT_DATA_IPC;
5398 	ad.u.ipc_id = sma->sem_perm.key;
5399 
5400 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5401 			  SEM__CREATE, &ad);
5402 	if (rc) {
5403 		ipc_free_security(&sma->sem_perm);
5404 		return rc;
5405 	}
5406 	return 0;
5407 }
5408 
5409 static void selinux_sem_free_security(struct sem_array *sma)
5410 {
5411 	ipc_free_security(&sma->sem_perm);
5412 }
5413 
5414 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5415 {
5416 	struct ipc_security_struct *isec;
5417 	struct common_audit_data ad;
5418 	u32 sid = current_sid();
5419 
5420 	isec = sma->sem_perm.security;
5421 
5422 	ad.type = LSM_AUDIT_DATA_IPC;
5423 	ad.u.ipc_id = sma->sem_perm.key;
5424 
5425 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5426 			    SEM__ASSOCIATE, &ad);
5427 }
5428 
5429 /* Note, at this point, sma is locked down */
5430 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5431 {
5432 	int err;
5433 	u32 perms;
5434 
5435 	switch (cmd) {
5436 	case IPC_INFO:
5437 	case SEM_INFO:
5438 		/* No specific object, just general system-wide information. */
5439 		return task_has_system(current, SYSTEM__IPC_INFO);
5440 	case GETPID:
5441 	case GETNCNT:
5442 	case GETZCNT:
5443 		perms = SEM__GETATTR;
5444 		break;
5445 	case GETVAL:
5446 	case GETALL:
5447 		perms = SEM__READ;
5448 		break;
5449 	case SETVAL:
5450 	case SETALL:
5451 		perms = SEM__WRITE;
5452 		break;
5453 	case IPC_RMID:
5454 		perms = SEM__DESTROY;
5455 		break;
5456 	case IPC_SET:
5457 		perms = SEM__SETATTR;
5458 		break;
5459 	case IPC_STAT:
5460 	case SEM_STAT:
5461 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5462 		break;
5463 	default:
5464 		return 0;
5465 	}
5466 
5467 	err = ipc_has_perm(&sma->sem_perm, perms);
5468 	return err;
5469 }
5470 
5471 static int selinux_sem_semop(struct sem_array *sma,
5472 			     struct sembuf *sops, unsigned nsops, int alter)
5473 {
5474 	u32 perms;
5475 
5476 	if (alter)
5477 		perms = SEM__READ | SEM__WRITE;
5478 	else
5479 		perms = SEM__READ;
5480 
5481 	return ipc_has_perm(&sma->sem_perm, perms);
5482 }
5483 
5484 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5485 {
5486 	u32 av = 0;
5487 
5488 	av = 0;
5489 	if (flag & S_IRUGO)
5490 		av |= IPC__UNIX_READ;
5491 	if (flag & S_IWUGO)
5492 		av |= IPC__UNIX_WRITE;
5493 
5494 	if (av == 0)
5495 		return 0;
5496 
5497 	return ipc_has_perm(ipcp, av);
5498 }
5499 
5500 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5501 {
5502 	struct ipc_security_struct *isec = ipcp->security;
5503 	*secid = isec->sid;
5504 }
5505 
5506 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5507 {
5508 	if (inode)
5509 		inode_doinit_with_dentry(inode, dentry);
5510 }
5511 
5512 static int selinux_getprocattr(struct task_struct *p,
5513 			       char *name, char **value)
5514 {
5515 	const struct task_security_struct *__tsec;
5516 	u32 sid;
5517 	int error;
5518 	unsigned len;
5519 
5520 	if (current != p) {
5521 		error = current_has_perm(p, PROCESS__GETATTR);
5522 		if (error)
5523 			return error;
5524 	}
5525 
5526 	rcu_read_lock();
5527 	__tsec = __task_cred(p)->security;
5528 
5529 	if (!strcmp(name, "current"))
5530 		sid = __tsec->sid;
5531 	else if (!strcmp(name, "prev"))
5532 		sid = __tsec->osid;
5533 	else if (!strcmp(name, "exec"))
5534 		sid = __tsec->exec_sid;
5535 	else if (!strcmp(name, "fscreate"))
5536 		sid = __tsec->create_sid;
5537 	else if (!strcmp(name, "keycreate"))
5538 		sid = __tsec->keycreate_sid;
5539 	else if (!strcmp(name, "sockcreate"))
5540 		sid = __tsec->sockcreate_sid;
5541 	else
5542 		goto invalid;
5543 	rcu_read_unlock();
5544 
5545 	if (!sid)
5546 		return 0;
5547 
5548 	error = security_sid_to_context(sid, value, &len);
5549 	if (error)
5550 		return error;
5551 	return len;
5552 
5553 invalid:
5554 	rcu_read_unlock();
5555 	return -EINVAL;
5556 }
5557 
5558 static int selinux_setprocattr(struct task_struct *p,
5559 			       char *name, void *value, size_t size)
5560 {
5561 	struct task_security_struct *tsec;
5562 	struct task_struct *tracer;
5563 	struct cred *new;
5564 	u32 sid = 0, ptsid;
5565 	int error;
5566 	char *str = value;
5567 
5568 	if (current != p) {
5569 		/* SELinux only allows a process to change its own
5570 		   security attributes. */
5571 		return -EACCES;
5572 	}
5573 
5574 	/*
5575 	 * Basic control over ability to set these attributes at all.
5576 	 * current == p, but we'll pass them separately in case the
5577 	 * above restriction is ever removed.
5578 	 */
5579 	if (!strcmp(name, "exec"))
5580 		error = current_has_perm(p, PROCESS__SETEXEC);
5581 	else if (!strcmp(name, "fscreate"))
5582 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5583 	else if (!strcmp(name, "keycreate"))
5584 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5585 	else if (!strcmp(name, "sockcreate"))
5586 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5587 	else if (!strcmp(name, "current"))
5588 		error = current_has_perm(p, PROCESS__SETCURRENT);
5589 	else
5590 		error = -EINVAL;
5591 	if (error)
5592 		return error;
5593 
5594 	/* Obtain a SID for the context, if one was specified. */
5595 	if (size && str[1] && str[1] != '\n') {
5596 		if (str[size-1] == '\n') {
5597 			str[size-1] = 0;
5598 			size--;
5599 		}
5600 		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5601 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5602 			if (!capable(CAP_MAC_ADMIN)) {
5603 				struct audit_buffer *ab;
5604 				size_t audit_size;
5605 
5606 				/* We strip a nul only if it is at the end, otherwise the
5607 				 * context contains a nul and we should audit that */
5608 				if (str[size - 1] == '\0')
5609 					audit_size = size - 1;
5610 				else
5611 					audit_size = size;
5612 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5613 				audit_log_format(ab, "op=fscreate invalid_context=");
5614 				audit_log_n_untrustedstring(ab, value, audit_size);
5615 				audit_log_end(ab);
5616 
5617 				return error;
5618 			}
5619 			error = security_context_to_sid_force(value, size,
5620 							      &sid);
5621 		}
5622 		if (error)
5623 			return error;
5624 	}
5625 
5626 	new = prepare_creds();
5627 	if (!new)
5628 		return -ENOMEM;
5629 
5630 	/* Permission checking based on the specified context is
5631 	   performed during the actual operation (execve,
5632 	   open/mkdir/...), when we know the full context of the
5633 	   operation.  See selinux_bprm_set_creds for the execve
5634 	   checks and may_create for the file creation checks. The
5635 	   operation will then fail if the context is not permitted. */
5636 	tsec = new->security;
5637 	if (!strcmp(name, "exec")) {
5638 		tsec->exec_sid = sid;
5639 	} else if (!strcmp(name, "fscreate")) {
5640 		tsec->create_sid = sid;
5641 	} else if (!strcmp(name, "keycreate")) {
5642 		error = may_create_key(sid, p);
5643 		if (error)
5644 			goto abort_change;
5645 		tsec->keycreate_sid = sid;
5646 	} else if (!strcmp(name, "sockcreate")) {
5647 		tsec->sockcreate_sid = sid;
5648 	} else if (!strcmp(name, "current")) {
5649 		error = -EINVAL;
5650 		if (sid == 0)
5651 			goto abort_change;
5652 
5653 		/* Only allow single threaded processes to change context */
5654 		error = -EPERM;
5655 		if (!current_is_single_threaded()) {
5656 			error = security_bounded_transition(tsec->sid, sid);
5657 			if (error)
5658 				goto abort_change;
5659 		}
5660 
5661 		/* Check permissions for the transition. */
5662 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5663 				     PROCESS__DYNTRANSITION, NULL);
5664 		if (error)
5665 			goto abort_change;
5666 
5667 		/* Check for ptracing, and update the task SID if ok.
5668 		   Otherwise, leave SID unchanged and fail. */
5669 		ptsid = 0;
5670 		rcu_read_lock();
5671 		tracer = ptrace_parent(p);
5672 		if (tracer)
5673 			ptsid = task_sid(tracer);
5674 		rcu_read_unlock();
5675 
5676 		if (tracer) {
5677 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5678 					     PROCESS__PTRACE, NULL);
5679 			if (error)
5680 				goto abort_change;
5681 		}
5682 
5683 		tsec->sid = sid;
5684 	} else {
5685 		error = -EINVAL;
5686 		goto abort_change;
5687 	}
5688 
5689 	commit_creds(new);
5690 	return size;
5691 
5692 abort_change:
5693 	abort_creds(new);
5694 	return error;
5695 }
5696 
5697 static int selinux_ismaclabel(const char *name)
5698 {
5699 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5700 }
5701 
5702 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5703 {
5704 	return security_sid_to_context(secid, secdata, seclen);
5705 }
5706 
5707 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5708 {
5709 	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5710 }
5711 
5712 static void selinux_release_secctx(char *secdata, u32 seclen)
5713 {
5714 	kfree(secdata);
5715 }
5716 
5717 /*
5718  *	called with inode->i_mutex locked
5719  */
5720 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5721 {
5722 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5723 }
5724 
5725 /*
5726  *	called with inode->i_mutex locked
5727  */
5728 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5729 {
5730 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5731 }
5732 
5733 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5734 {
5735 	int len = 0;
5736 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5737 						ctx, true);
5738 	if (len < 0)
5739 		return len;
5740 	*ctxlen = len;
5741 	return 0;
5742 }
5743 #ifdef CONFIG_KEYS
5744 
5745 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5746 			     unsigned long flags)
5747 {
5748 	const struct task_security_struct *tsec;
5749 	struct key_security_struct *ksec;
5750 
5751 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5752 	if (!ksec)
5753 		return -ENOMEM;
5754 
5755 	tsec = cred->security;
5756 	if (tsec->keycreate_sid)
5757 		ksec->sid = tsec->keycreate_sid;
5758 	else
5759 		ksec->sid = tsec->sid;
5760 
5761 	k->security = ksec;
5762 	return 0;
5763 }
5764 
5765 static void selinux_key_free(struct key *k)
5766 {
5767 	struct key_security_struct *ksec = k->security;
5768 
5769 	k->security = NULL;
5770 	kfree(ksec);
5771 }
5772 
5773 static int selinux_key_permission(key_ref_t key_ref,
5774 				  const struct cred *cred,
5775 				  unsigned perm)
5776 {
5777 	struct key *key;
5778 	struct key_security_struct *ksec;
5779 	u32 sid;
5780 
5781 	/* if no specific permissions are requested, we skip the
5782 	   permission check. No serious, additional covert channels
5783 	   appear to be created. */
5784 	if (perm == 0)
5785 		return 0;
5786 
5787 	sid = cred_sid(cred);
5788 
5789 	key = key_ref_to_ptr(key_ref);
5790 	ksec = key->security;
5791 
5792 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5793 }
5794 
5795 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5796 {
5797 	struct key_security_struct *ksec = key->security;
5798 	char *context = NULL;
5799 	unsigned len;
5800 	int rc;
5801 
5802 	rc = security_sid_to_context(ksec->sid, &context, &len);
5803 	if (!rc)
5804 		rc = len;
5805 	*_buffer = context;
5806 	return rc;
5807 }
5808 
5809 #endif
5810 
5811 static struct security_operations selinux_ops = {
5812 	.name =				"selinux",
5813 
5814 	.ptrace_access_check =		selinux_ptrace_access_check,
5815 	.ptrace_traceme =		selinux_ptrace_traceme,
5816 	.capget =			selinux_capget,
5817 	.capset =			selinux_capset,
5818 	.capable =			selinux_capable,
5819 	.quotactl =			selinux_quotactl,
5820 	.quota_on =			selinux_quota_on,
5821 	.syslog =			selinux_syslog,
5822 	.vm_enough_memory =		selinux_vm_enough_memory,
5823 
5824 	.netlink_send =			selinux_netlink_send,
5825 
5826 	.bprm_set_creds =		selinux_bprm_set_creds,
5827 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5828 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5829 	.bprm_secureexec =		selinux_bprm_secureexec,
5830 
5831 	.sb_alloc_security =		selinux_sb_alloc_security,
5832 	.sb_free_security =		selinux_sb_free_security,
5833 	.sb_copy_data =			selinux_sb_copy_data,
5834 	.sb_remount =			selinux_sb_remount,
5835 	.sb_kern_mount =		selinux_sb_kern_mount,
5836 	.sb_show_options =		selinux_sb_show_options,
5837 	.sb_statfs =			selinux_sb_statfs,
5838 	.sb_mount =			selinux_mount,
5839 	.sb_umount =			selinux_umount,
5840 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5841 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5842 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5843 
5844 	.dentry_init_security =		selinux_dentry_init_security,
5845 
5846 	.inode_alloc_security =		selinux_inode_alloc_security,
5847 	.inode_free_security =		selinux_inode_free_security,
5848 	.inode_init_security =		selinux_inode_init_security,
5849 	.inode_create =			selinux_inode_create,
5850 	.inode_link =			selinux_inode_link,
5851 	.inode_unlink =			selinux_inode_unlink,
5852 	.inode_symlink =		selinux_inode_symlink,
5853 	.inode_mkdir =			selinux_inode_mkdir,
5854 	.inode_rmdir =			selinux_inode_rmdir,
5855 	.inode_mknod =			selinux_inode_mknod,
5856 	.inode_rename =			selinux_inode_rename,
5857 	.inode_readlink =		selinux_inode_readlink,
5858 	.inode_follow_link =		selinux_inode_follow_link,
5859 	.inode_permission =		selinux_inode_permission,
5860 	.inode_setattr =		selinux_inode_setattr,
5861 	.inode_getattr =		selinux_inode_getattr,
5862 	.inode_setxattr =		selinux_inode_setxattr,
5863 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5864 	.inode_getxattr =		selinux_inode_getxattr,
5865 	.inode_listxattr =		selinux_inode_listxattr,
5866 	.inode_removexattr =		selinux_inode_removexattr,
5867 	.inode_getsecurity =		selinux_inode_getsecurity,
5868 	.inode_setsecurity =		selinux_inode_setsecurity,
5869 	.inode_listsecurity =		selinux_inode_listsecurity,
5870 	.inode_getsecid =		selinux_inode_getsecid,
5871 
5872 	.file_permission =		selinux_file_permission,
5873 	.file_alloc_security =		selinux_file_alloc_security,
5874 	.file_free_security =		selinux_file_free_security,
5875 	.file_ioctl =			selinux_file_ioctl,
5876 	.mmap_file =			selinux_mmap_file,
5877 	.mmap_addr =			selinux_mmap_addr,
5878 	.file_mprotect =		selinux_file_mprotect,
5879 	.file_lock =			selinux_file_lock,
5880 	.file_fcntl =			selinux_file_fcntl,
5881 	.file_set_fowner =		selinux_file_set_fowner,
5882 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5883 	.file_receive =			selinux_file_receive,
5884 
5885 	.file_open =			selinux_file_open,
5886 
5887 	.task_create =			selinux_task_create,
5888 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5889 	.cred_free =			selinux_cred_free,
5890 	.cred_prepare =			selinux_cred_prepare,
5891 	.cred_transfer =		selinux_cred_transfer,
5892 	.kernel_act_as =		selinux_kernel_act_as,
5893 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5894 	.kernel_module_request =	selinux_kernel_module_request,
5895 	.task_setpgid =			selinux_task_setpgid,
5896 	.task_getpgid =			selinux_task_getpgid,
5897 	.task_getsid =			selinux_task_getsid,
5898 	.task_getsecid =		selinux_task_getsecid,
5899 	.task_setnice =			selinux_task_setnice,
5900 	.task_setioprio =		selinux_task_setioprio,
5901 	.task_getioprio =		selinux_task_getioprio,
5902 	.task_setrlimit =		selinux_task_setrlimit,
5903 	.task_setscheduler =		selinux_task_setscheduler,
5904 	.task_getscheduler =		selinux_task_getscheduler,
5905 	.task_movememory =		selinux_task_movememory,
5906 	.task_kill =			selinux_task_kill,
5907 	.task_wait =			selinux_task_wait,
5908 	.task_to_inode =		selinux_task_to_inode,
5909 
5910 	.ipc_permission =		selinux_ipc_permission,
5911 	.ipc_getsecid =			selinux_ipc_getsecid,
5912 
5913 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5914 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5915 
5916 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5917 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5918 	.msg_queue_associate =		selinux_msg_queue_associate,
5919 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5920 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5921 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5922 
5923 	.shm_alloc_security =		selinux_shm_alloc_security,
5924 	.shm_free_security =		selinux_shm_free_security,
5925 	.shm_associate =		selinux_shm_associate,
5926 	.shm_shmctl =			selinux_shm_shmctl,
5927 	.shm_shmat =			selinux_shm_shmat,
5928 
5929 	.sem_alloc_security =		selinux_sem_alloc_security,
5930 	.sem_free_security =		selinux_sem_free_security,
5931 	.sem_associate =		selinux_sem_associate,
5932 	.sem_semctl =			selinux_sem_semctl,
5933 	.sem_semop =			selinux_sem_semop,
5934 
5935 	.d_instantiate =		selinux_d_instantiate,
5936 
5937 	.getprocattr =			selinux_getprocattr,
5938 	.setprocattr =			selinux_setprocattr,
5939 
5940 	.ismaclabel =			selinux_ismaclabel,
5941 	.secid_to_secctx =		selinux_secid_to_secctx,
5942 	.secctx_to_secid =		selinux_secctx_to_secid,
5943 	.release_secctx =		selinux_release_secctx,
5944 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5945 	.inode_setsecctx =		selinux_inode_setsecctx,
5946 	.inode_getsecctx =		selinux_inode_getsecctx,
5947 
5948 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5949 	.unix_may_send =		selinux_socket_unix_may_send,
5950 
5951 	.socket_create =		selinux_socket_create,
5952 	.socket_post_create =		selinux_socket_post_create,
5953 	.socket_bind =			selinux_socket_bind,
5954 	.socket_connect =		selinux_socket_connect,
5955 	.socket_listen =		selinux_socket_listen,
5956 	.socket_accept =		selinux_socket_accept,
5957 	.socket_sendmsg =		selinux_socket_sendmsg,
5958 	.socket_recvmsg =		selinux_socket_recvmsg,
5959 	.socket_getsockname =		selinux_socket_getsockname,
5960 	.socket_getpeername =		selinux_socket_getpeername,
5961 	.socket_getsockopt =		selinux_socket_getsockopt,
5962 	.socket_setsockopt =		selinux_socket_setsockopt,
5963 	.socket_shutdown =		selinux_socket_shutdown,
5964 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5965 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5966 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5967 	.sk_alloc_security =		selinux_sk_alloc_security,
5968 	.sk_free_security =		selinux_sk_free_security,
5969 	.sk_clone_security =		selinux_sk_clone_security,
5970 	.sk_getsecid =			selinux_sk_getsecid,
5971 	.sock_graft =			selinux_sock_graft,
5972 	.inet_conn_request =		selinux_inet_conn_request,
5973 	.inet_csk_clone =		selinux_inet_csk_clone,
5974 	.inet_conn_established =	selinux_inet_conn_established,
5975 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5976 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5977 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5978 	.req_classify_flow =		selinux_req_classify_flow,
5979 	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5980 	.tun_dev_free_security =	selinux_tun_dev_free_security,
5981 	.tun_dev_create =		selinux_tun_dev_create,
5982 	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5983 	.tun_dev_attach =		selinux_tun_dev_attach,
5984 	.tun_dev_open =			selinux_tun_dev_open,
5985 	.skb_owned_by =			selinux_skb_owned_by,
5986 
5987 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5988 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5989 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5990 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5991 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5992 	.xfrm_state_alloc =		selinux_xfrm_state_alloc,
5993 	.xfrm_state_alloc_acquire =	selinux_xfrm_state_alloc_acquire,
5994 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5995 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5996 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5997 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5998 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5999 #endif
6000 
6001 #ifdef CONFIG_KEYS
6002 	.key_alloc =			selinux_key_alloc,
6003 	.key_free =			selinux_key_free,
6004 	.key_permission =		selinux_key_permission,
6005 	.key_getsecurity =		selinux_key_getsecurity,
6006 #endif
6007 
6008 #ifdef CONFIG_AUDIT
6009 	.audit_rule_init =		selinux_audit_rule_init,
6010 	.audit_rule_known =		selinux_audit_rule_known,
6011 	.audit_rule_match =		selinux_audit_rule_match,
6012 	.audit_rule_free =		selinux_audit_rule_free,
6013 #endif
6014 };
6015 
6016 static __init int selinux_init(void)
6017 {
6018 	if (!security_module_enable(&selinux_ops)) {
6019 		selinux_enabled = 0;
6020 		return 0;
6021 	}
6022 
6023 	if (!selinux_enabled) {
6024 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6025 		return 0;
6026 	}
6027 
6028 	printk(KERN_INFO "SELinux:  Initializing.\n");
6029 
6030 	/* Set the security state for the initial task. */
6031 	cred_init_security();
6032 
6033 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6034 
6035 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6036 					    sizeof(struct inode_security_struct),
6037 					    0, SLAB_PANIC, NULL);
6038 	avc_init();
6039 
6040 	if (register_security(&selinux_ops))
6041 		panic("SELinux: Unable to register with kernel.\n");
6042 
6043 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6044 		panic("SELinux: Unable to register AVC netcache callback\n");
6045 
6046 	if (selinux_enforcing)
6047 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6048 	else
6049 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6050 
6051 	return 0;
6052 }
6053 
6054 static void delayed_superblock_init(struct super_block *sb, void *unused)
6055 {
6056 	superblock_doinit(sb, NULL);
6057 }
6058 
6059 void selinux_complete_init(void)
6060 {
6061 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6062 
6063 	/* Set up any superblocks initialized prior to the policy load. */
6064 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6065 	iterate_supers(delayed_superblock_init, NULL);
6066 }
6067 
6068 /* SELinux requires early initialization in order to label
6069    all processes and objects when they are created. */
6070 security_initcall(selinux_init);
6071 
6072 #if defined(CONFIG_NETFILTER)
6073 
6074 static struct nf_hook_ops selinux_nf_ops[] = {
6075 	{
6076 		.hook =		selinux_ipv4_postroute,
6077 		.owner =	THIS_MODULE,
6078 		.pf =		NFPROTO_IPV4,
6079 		.hooknum =	NF_INET_POST_ROUTING,
6080 		.priority =	NF_IP_PRI_SELINUX_LAST,
6081 	},
6082 	{
6083 		.hook =		selinux_ipv4_forward,
6084 		.owner =	THIS_MODULE,
6085 		.pf =		NFPROTO_IPV4,
6086 		.hooknum =	NF_INET_FORWARD,
6087 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6088 	},
6089 	{
6090 		.hook =		selinux_ipv4_output,
6091 		.owner =	THIS_MODULE,
6092 		.pf =		NFPROTO_IPV4,
6093 		.hooknum =	NF_INET_LOCAL_OUT,
6094 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6095 	},
6096 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6097 	{
6098 		.hook =		selinux_ipv6_postroute,
6099 		.owner =	THIS_MODULE,
6100 		.pf =		NFPROTO_IPV6,
6101 		.hooknum =	NF_INET_POST_ROUTING,
6102 		.priority =	NF_IP6_PRI_SELINUX_LAST,
6103 	},
6104 	{
6105 		.hook =		selinux_ipv6_forward,
6106 		.owner =	THIS_MODULE,
6107 		.pf =		NFPROTO_IPV6,
6108 		.hooknum =	NF_INET_FORWARD,
6109 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6110 	},
6111 #endif	/* IPV6 */
6112 };
6113 
6114 static int __init selinux_nf_ip_init(void)
6115 {
6116 	int err;
6117 
6118 	if (!selinux_enabled)
6119 		return 0;
6120 
6121 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6122 
6123 	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6124 	if (err)
6125 		panic("SELinux: nf_register_hooks: error %d\n", err);
6126 
6127 	return 0;
6128 }
6129 
6130 __initcall(selinux_nf_ip_init);
6131 
6132 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6133 static void selinux_nf_ip_exit(void)
6134 {
6135 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6136 
6137 	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6138 }
6139 #endif
6140 
6141 #else /* CONFIG_NETFILTER */
6142 
6143 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6144 #define selinux_nf_ip_exit()
6145 #endif
6146 
6147 #endif /* CONFIG_NETFILTER */
6148 
6149 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6150 static int selinux_disabled;
6151 
6152 int selinux_disable(void)
6153 {
6154 	if (ss_initialized) {
6155 		/* Not permitted after initial policy load. */
6156 		return -EINVAL;
6157 	}
6158 
6159 	if (selinux_disabled) {
6160 		/* Only do this once. */
6161 		return -EINVAL;
6162 	}
6163 
6164 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6165 
6166 	selinux_disabled = 1;
6167 	selinux_enabled = 0;
6168 
6169 	reset_security_ops();
6170 
6171 	/* Try to destroy the avc node cache */
6172 	avc_disable();
6173 
6174 	/* Unregister netfilter hooks. */
6175 	selinux_nf_ip_exit();
6176 
6177 	/* Unregister selinuxfs. */
6178 	exit_sel_fs();
6179 
6180 	return 0;
6181 }
6182 #endif
6183