1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/inet_connection_sock.h> 56 #include <net/net_namespace.h> 57 #include <net/netlabel.h> 58 #include <linux/uaccess.h> 59 #include <asm/ioctls.h> 60 #include <linux/atomic.h> 61 #include <linux/bitops.h> 62 #include <linux/interrupt.h> 63 #include <linux/netdevice.h> /* for network interface checks */ 64 #include <net/netlink.h> 65 #include <linux/tcp.h> 66 #include <linux/udp.h> 67 #include <linux/dccp.h> 68 #include <linux/quota.h> 69 #include <linux/un.h> /* for Unix socket types */ 70 #include <net/af_unix.h> /* for Unix socket types */ 71 #include <linux/parser.h> 72 #include <linux/nfs_mount.h> 73 #include <net/ipv6.h> 74 #include <linux/hugetlb.h> 75 #include <linux/personality.h> 76 #include <linux/audit.h> 77 #include <linux/string.h> 78 #include <linux/selinux.h> 79 #include <linux/mutex.h> 80 #include <linux/posix-timers.h> 81 #include <linux/syslog.h> 82 #include <linux/user_namespace.h> 83 #include <linux/export.h> 84 #include <linux/msg.h> 85 #include <linux/shm.h> 86 87 #include "avc.h" 88 #include "objsec.h" 89 #include "netif.h" 90 #include "netnode.h" 91 #include "netport.h" 92 #include "xfrm.h" 93 #include "netlabel.h" 94 #include "audit.h" 95 #include "avc_ss.h" 96 97 /* SECMARK reference count */ 98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101 int selinux_enforcing; 102 103 static int __init enforcing_setup(char *str) 104 { 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109 } 110 __setup("enforcing=", enforcing_setup); 111 #endif 112 113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116 static int __init selinux_enabled_setup(char *str) 117 { 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122 } 123 __setup("selinux=", selinux_enabled_setup); 124 #else 125 int selinux_enabled = 1; 126 #endif 127 128 static struct kmem_cache *sel_inode_cache; 129 130 /** 131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 132 * 133 * Description: 134 * This function checks the SECMARK reference counter to see if any SECMARK 135 * targets are currently configured, if the reference counter is greater than 136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 137 * enabled, false (0) if SECMARK is disabled. If the always_check_network 138 * policy capability is enabled, SECMARK is always considered enabled. 139 * 140 */ 141 static int selinux_secmark_enabled(void) 142 { 143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 144 } 145 146 /** 147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 148 * 149 * Description: 150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 151 * (1) if any are enabled or false (0) if neither are enabled. If the 152 * always_check_network policy capability is enabled, peer labeling 153 * is always considered enabled. 154 * 155 */ 156 static int selinux_peerlbl_enabled(void) 157 { 158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 159 } 160 161 static int selinux_netcache_avc_callback(u32 event) 162 { 163 if (event == AVC_CALLBACK_RESET) { 164 sel_netif_flush(); 165 sel_netnode_flush(); 166 sel_netport_flush(); 167 synchronize_net(); 168 } 169 return 0; 170 } 171 172 /* 173 * initialise the security for the init task 174 */ 175 static void cred_init_security(void) 176 { 177 struct cred *cred = (struct cred *) current->real_cred; 178 struct task_security_struct *tsec; 179 180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 181 if (!tsec) 182 panic("SELinux: Failed to initialize initial task.\n"); 183 184 tsec->osid = tsec->sid = SECINITSID_KERNEL; 185 cred->security = tsec; 186 } 187 188 /* 189 * get the security ID of a set of credentials 190 */ 191 static inline u32 cred_sid(const struct cred *cred) 192 { 193 const struct task_security_struct *tsec; 194 195 tsec = cred->security; 196 return tsec->sid; 197 } 198 199 /* 200 * get the objective security ID of a task 201 */ 202 static inline u32 task_sid(const struct task_struct *task) 203 { 204 u32 sid; 205 206 rcu_read_lock(); 207 sid = cred_sid(__task_cred(task)); 208 rcu_read_unlock(); 209 return sid; 210 } 211 212 /* 213 * get the subjective security ID of the current task 214 */ 215 static inline u32 current_sid(void) 216 { 217 const struct task_security_struct *tsec = current_security(); 218 219 return tsec->sid; 220 } 221 222 /* Allocate and free functions for each kind of security blob. */ 223 224 static int inode_alloc_security(struct inode *inode) 225 { 226 struct inode_security_struct *isec; 227 u32 sid = current_sid(); 228 229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 230 if (!isec) 231 return -ENOMEM; 232 233 mutex_init(&isec->lock); 234 INIT_LIST_HEAD(&isec->list); 235 isec->inode = inode; 236 isec->sid = SECINITSID_UNLABELED; 237 isec->sclass = SECCLASS_FILE; 238 isec->task_sid = sid; 239 inode->i_security = isec; 240 241 return 0; 242 } 243 244 static void inode_free_rcu(struct rcu_head *head) 245 { 246 struct inode_security_struct *isec; 247 248 isec = container_of(head, struct inode_security_struct, rcu); 249 kmem_cache_free(sel_inode_cache, isec); 250 } 251 252 static void inode_free_security(struct inode *inode) 253 { 254 struct inode_security_struct *isec = inode->i_security; 255 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 256 257 spin_lock(&sbsec->isec_lock); 258 if (!list_empty(&isec->list)) 259 list_del_init(&isec->list); 260 spin_unlock(&sbsec->isec_lock); 261 262 /* 263 * The inode may still be referenced in a path walk and 264 * a call to selinux_inode_permission() can be made 265 * after inode_free_security() is called. Ideally, the VFS 266 * wouldn't do this, but fixing that is a much harder 267 * job. For now, simply free the i_security via RCU, and 268 * leave the current inode->i_security pointer intact. 269 * The inode will be freed after the RCU grace period too. 270 */ 271 call_rcu(&isec->rcu, inode_free_rcu); 272 } 273 274 static int file_alloc_security(struct file *file) 275 { 276 struct file_security_struct *fsec; 277 u32 sid = current_sid(); 278 279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 280 if (!fsec) 281 return -ENOMEM; 282 283 fsec->sid = sid; 284 fsec->fown_sid = sid; 285 file->f_security = fsec; 286 287 return 0; 288 } 289 290 static void file_free_security(struct file *file) 291 { 292 struct file_security_struct *fsec = file->f_security; 293 file->f_security = NULL; 294 kfree(fsec); 295 } 296 297 static int superblock_alloc_security(struct super_block *sb) 298 { 299 struct superblock_security_struct *sbsec; 300 301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 302 if (!sbsec) 303 return -ENOMEM; 304 305 mutex_init(&sbsec->lock); 306 INIT_LIST_HEAD(&sbsec->isec_head); 307 spin_lock_init(&sbsec->isec_lock); 308 sbsec->sb = sb; 309 sbsec->sid = SECINITSID_UNLABELED; 310 sbsec->def_sid = SECINITSID_FILE; 311 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 312 sb->s_security = sbsec; 313 314 return 0; 315 } 316 317 static void superblock_free_security(struct super_block *sb) 318 { 319 struct superblock_security_struct *sbsec = sb->s_security; 320 sb->s_security = NULL; 321 kfree(sbsec); 322 } 323 324 /* The file system's label must be initialized prior to use. */ 325 326 static const char *labeling_behaviors[7] = { 327 "uses xattr", 328 "uses transition SIDs", 329 "uses task SIDs", 330 "uses genfs_contexts", 331 "not configured for labeling", 332 "uses mountpoint labeling", 333 "uses native labeling", 334 }; 335 336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 337 338 static inline int inode_doinit(struct inode *inode) 339 { 340 return inode_doinit_with_dentry(inode, NULL); 341 } 342 343 enum { 344 Opt_error = -1, 345 Opt_context = 1, 346 Opt_fscontext = 2, 347 Opt_defcontext = 3, 348 Opt_rootcontext = 4, 349 Opt_labelsupport = 5, 350 Opt_nextmntopt = 6, 351 }; 352 353 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 354 355 static const match_table_t tokens = { 356 {Opt_context, CONTEXT_STR "%s"}, 357 {Opt_fscontext, FSCONTEXT_STR "%s"}, 358 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 360 {Opt_labelsupport, LABELSUPP_STR}, 361 {Opt_error, NULL}, 362 }; 363 364 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 365 366 static int may_context_mount_sb_relabel(u32 sid, 367 struct superblock_security_struct *sbsec, 368 const struct cred *cred) 369 { 370 const struct task_security_struct *tsec = cred->security; 371 int rc; 372 373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 374 FILESYSTEM__RELABELFROM, NULL); 375 if (rc) 376 return rc; 377 378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 379 FILESYSTEM__RELABELTO, NULL); 380 return rc; 381 } 382 383 static int may_context_mount_inode_relabel(u32 sid, 384 struct superblock_security_struct *sbsec, 385 const struct cred *cred) 386 { 387 const struct task_security_struct *tsec = cred->security; 388 int rc; 389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 390 FILESYSTEM__RELABELFROM, NULL); 391 if (rc) 392 return rc; 393 394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 395 FILESYSTEM__ASSOCIATE, NULL); 396 return rc; 397 } 398 399 static int selinux_is_sblabel_mnt(struct super_block *sb) 400 { 401 struct superblock_security_struct *sbsec = sb->s_security; 402 403 return sbsec->behavior == SECURITY_FS_USE_XATTR || 404 sbsec->behavior == SECURITY_FS_USE_TRANS || 405 sbsec->behavior == SECURITY_FS_USE_TASK || 406 /* Special handling. Genfs but also in-core setxattr handler */ 407 !strcmp(sb->s_type->name, "sysfs") || 408 !strcmp(sb->s_type->name, "pstore") || 409 !strcmp(sb->s_type->name, "debugfs") || 410 !strcmp(sb->s_type->name, "rootfs"); 411 } 412 413 static int sb_finish_set_opts(struct super_block *sb) 414 { 415 struct superblock_security_struct *sbsec = sb->s_security; 416 struct dentry *root = sb->s_root; 417 struct inode *root_inode = d_backing_inode(root); 418 int rc = 0; 419 420 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 421 /* Make sure that the xattr handler exists and that no 422 error other than -ENODATA is returned by getxattr on 423 the root directory. -ENODATA is ok, as this may be 424 the first boot of the SELinux kernel before we have 425 assigned xattr values to the filesystem. */ 426 if (!root_inode->i_op->getxattr) { 427 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 428 "xattr support\n", sb->s_id, sb->s_type->name); 429 rc = -EOPNOTSUPP; 430 goto out; 431 } 432 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 433 if (rc < 0 && rc != -ENODATA) { 434 if (rc == -EOPNOTSUPP) 435 printk(KERN_WARNING "SELinux: (dev %s, type " 436 "%s) has no security xattr handler\n", 437 sb->s_id, sb->s_type->name); 438 else 439 printk(KERN_WARNING "SELinux: (dev %s, type " 440 "%s) getxattr errno %d\n", sb->s_id, 441 sb->s_type->name, -rc); 442 goto out; 443 } 444 } 445 446 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 447 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 448 sb->s_id, sb->s_type->name); 449 450 sbsec->flags |= SE_SBINITIALIZED; 451 if (selinux_is_sblabel_mnt(sb)) 452 sbsec->flags |= SBLABEL_MNT; 453 454 /* Initialize the root inode. */ 455 rc = inode_doinit_with_dentry(root_inode, root); 456 457 /* Initialize any other inodes associated with the superblock, e.g. 458 inodes created prior to initial policy load or inodes created 459 during get_sb by a pseudo filesystem that directly 460 populates itself. */ 461 spin_lock(&sbsec->isec_lock); 462 next_inode: 463 if (!list_empty(&sbsec->isec_head)) { 464 struct inode_security_struct *isec = 465 list_entry(sbsec->isec_head.next, 466 struct inode_security_struct, list); 467 struct inode *inode = isec->inode; 468 list_del_init(&isec->list); 469 spin_unlock(&sbsec->isec_lock); 470 inode = igrab(inode); 471 if (inode) { 472 if (!IS_PRIVATE(inode)) 473 inode_doinit(inode); 474 iput(inode); 475 } 476 spin_lock(&sbsec->isec_lock); 477 goto next_inode; 478 } 479 spin_unlock(&sbsec->isec_lock); 480 out: 481 return rc; 482 } 483 484 /* 485 * This function should allow an FS to ask what it's mount security 486 * options were so it can use those later for submounts, displaying 487 * mount options, or whatever. 488 */ 489 static int selinux_get_mnt_opts(const struct super_block *sb, 490 struct security_mnt_opts *opts) 491 { 492 int rc = 0, i; 493 struct superblock_security_struct *sbsec = sb->s_security; 494 char *context = NULL; 495 u32 len; 496 char tmp; 497 498 security_init_mnt_opts(opts); 499 500 if (!(sbsec->flags & SE_SBINITIALIZED)) 501 return -EINVAL; 502 503 if (!ss_initialized) 504 return -EINVAL; 505 506 /* make sure we always check enough bits to cover the mask */ 507 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 508 509 tmp = sbsec->flags & SE_MNTMASK; 510 /* count the number of mount options for this sb */ 511 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 512 if (tmp & 0x01) 513 opts->num_mnt_opts++; 514 tmp >>= 1; 515 } 516 /* Check if the Label support flag is set */ 517 if (sbsec->flags & SBLABEL_MNT) 518 opts->num_mnt_opts++; 519 520 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 521 if (!opts->mnt_opts) { 522 rc = -ENOMEM; 523 goto out_free; 524 } 525 526 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 527 if (!opts->mnt_opts_flags) { 528 rc = -ENOMEM; 529 goto out_free; 530 } 531 532 i = 0; 533 if (sbsec->flags & FSCONTEXT_MNT) { 534 rc = security_sid_to_context(sbsec->sid, &context, &len); 535 if (rc) 536 goto out_free; 537 opts->mnt_opts[i] = context; 538 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 539 } 540 if (sbsec->flags & CONTEXT_MNT) { 541 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 542 if (rc) 543 goto out_free; 544 opts->mnt_opts[i] = context; 545 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 546 } 547 if (sbsec->flags & DEFCONTEXT_MNT) { 548 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 549 if (rc) 550 goto out_free; 551 opts->mnt_opts[i] = context; 552 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 553 } 554 if (sbsec->flags & ROOTCONTEXT_MNT) { 555 struct inode *root = d_backing_inode(sbsec->sb->s_root); 556 struct inode_security_struct *isec = root->i_security; 557 558 rc = security_sid_to_context(isec->sid, &context, &len); 559 if (rc) 560 goto out_free; 561 opts->mnt_opts[i] = context; 562 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 563 } 564 if (sbsec->flags & SBLABEL_MNT) { 565 opts->mnt_opts[i] = NULL; 566 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 567 } 568 569 BUG_ON(i != opts->num_mnt_opts); 570 571 return 0; 572 573 out_free: 574 security_free_mnt_opts(opts); 575 return rc; 576 } 577 578 static int bad_option(struct superblock_security_struct *sbsec, char flag, 579 u32 old_sid, u32 new_sid) 580 { 581 char mnt_flags = sbsec->flags & SE_MNTMASK; 582 583 /* check if the old mount command had the same options */ 584 if (sbsec->flags & SE_SBINITIALIZED) 585 if (!(sbsec->flags & flag) || 586 (old_sid != new_sid)) 587 return 1; 588 589 /* check if we were passed the same options twice, 590 * aka someone passed context=a,context=b 591 */ 592 if (!(sbsec->flags & SE_SBINITIALIZED)) 593 if (mnt_flags & flag) 594 return 1; 595 return 0; 596 } 597 598 /* 599 * Allow filesystems with binary mount data to explicitly set mount point 600 * labeling information. 601 */ 602 static int selinux_set_mnt_opts(struct super_block *sb, 603 struct security_mnt_opts *opts, 604 unsigned long kern_flags, 605 unsigned long *set_kern_flags) 606 { 607 const struct cred *cred = current_cred(); 608 int rc = 0, i; 609 struct superblock_security_struct *sbsec = sb->s_security; 610 const char *name = sb->s_type->name; 611 struct inode *inode = d_backing_inode(sbsec->sb->s_root); 612 struct inode_security_struct *root_isec = inode->i_security; 613 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 614 u32 defcontext_sid = 0; 615 char **mount_options = opts->mnt_opts; 616 int *flags = opts->mnt_opts_flags; 617 int num_opts = opts->num_mnt_opts; 618 619 mutex_lock(&sbsec->lock); 620 621 if (!ss_initialized) { 622 if (!num_opts) { 623 /* Defer initialization until selinux_complete_init, 624 after the initial policy is loaded and the security 625 server is ready to handle calls. */ 626 goto out; 627 } 628 rc = -EINVAL; 629 printk(KERN_WARNING "SELinux: Unable to set superblock options " 630 "before the security server is initialized\n"); 631 goto out; 632 } 633 if (kern_flags && !set_kern_flags) { 634 /* Specifying internal flags without providing a place to 635 * place the results is not allowed */ 636 rc = -EINVAL; 637 goto out; 638 } 639 640 /* 641 * Binary mount data FS will come through this function twice. Once 642 * from an explicit call and once from the generic calls from the vfs. 643 * Since the generic VFS calls will not contain any security mount data 644 * we need to skip the double mount verification. 645 * 646 * This does open a hole in which we will not notice if the first 647 * mount using this sb set explict options and a second mount using 648 * this sb does not set any security options. (The first options 649 * will be used for both mounts) 650 */ 651 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 652 && (num_opts == 0)) 653 goto out; 654 655 /* 656 * parse the mount options, check if they are valid sids. 657 * also check if someone is trying to mount the same sb more 658 * than once with different security options. 659 */ 660 for (i = 0; i < num_opts; i++) { 661 u32 sid; 662 663 if (flags[i] == SBLABEL_MNT) 664 continue; 665 rc = security_context_to_sid(mount_options[i], 666 strlen(mount_options[i]), &sid, GFP_KERNEL); 667 if (rc) { 668 printk(KERN_WARNING "SELinux: security_context_to_sid" 669 "(%s) failed for (dev %s, type %s) errno=%d\n", 670 mount_options[i], sb->s_id, name, rc); 671 goto out; 672 } 673 switch (flags[i]) { 674 case FSCONTEXT_MNT: 675 fscontext_sid = sid; 676 677 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 678 fscontext_sid)) 679 goto out_double_mount; 680 681 sbsec->flags |= FSCONTEXT_MNT; 682 break; 683 case CONTEXT_MNT: 684 context_sid = sid; 685 686 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 687 context_sid)) 688 goto out_double_mount; 689 690 sbsec->flags |= CONTEXT_MNT; 691 break; 692 case ROOTCONTEXT_MNT: 693 rootcontext_sid = sid; 694 695 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 696 rootcontext_sid)) 697 goto out_double_mount; 698 699 sbsec->flags |= ROOTCONTEXT_MNT; 700 701 break; 702 case DEFCONTEXT_MNT: 703 defcontext_sid = sid; 704 705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 706 defcontext_sid)) 707 goto out_double_mount; 708 709 sbsec->flags |= DEFCONTEXT_MNT; 710 711 break; 712 default: 713 rc = -EINVAL; 714 goto out; 715 } 716 } 717 718 if (sbsec->flags & SE_SBINITIALIZED) { 719 /* previously mounted with options, but not on this attempt? */ 720 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 721 goto out_double_mount; 722 rc = 0; 723 goto out; 724 } 725 726 if (strcmp(sb->s_type->name, "proc") == 0) 727 sbsec->flags |= SE_SBPROC; 728 729 if (!sbsec->behavior) { 730 /* 731 * Determine the labeling behavior to use for this 732 * filesystem type. 733 */ 734 rc = security_fs_use(sb); 735 if (rc) { 736 printk(KERN_WARNING 737 "%s: security_fs_use(%s) returned %d\n", 738 __func__, sb->s_type->name, rc); 739 goto out; 740 } 741 } 742 /* sets the context of the superblock for the fs being mounted. */ 743 if (fscontext_sid) { 744 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 745 if (rc) 746 goto out; 747 748 sbsec->sid = fscontext_sid; 749 } 750 751 /* 752 * Switch to using mount point labeling behavior. 753 * sets the label used on all file below the mountpoint, and will set 754 * the superblock context if not already set. 755 */ 756 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 757 sbsec->behavior = SECURITY_FS_USE_NATIVE; 758 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 759 } 760 761 if (context_sid) { 762 if (!fscontext_sid) { 763 rc = may_context_mount_sb_relabel(context_sid, sbsec, 764 cred); 765 if (rc) 766 goto out; 767 sbsec->sid = context_sid; 768 } else { 769 rc = may_context_mount_inode_relabel(context_sid, sbsec, 770 cred); 771 if (rc) 772 goto out; 773 } 774 if (!rootcontext_sid) 775 rootcontext_sid = context_sid; 776 777 sbsec->mntpoint_sid = context_sid; 778 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 779 } 780 781 if (rootcontext_sid) { 782 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 783 cred); 784 if (rc) 785 goto out; 786 787 root_isec->sid = rootcontext_sid; 788 root_isec->initialized = 1; 789 } 790 791 if (defcontext_sid) { 792 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 793 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 794 rc = -EINVAL; 795 printk(KERN_WARNING "SELinux: defcontext option is " 796 "invalid for this filesystem type\n"); 797 goto out; 798 } 799 800 if (defcontext_sid != sbsec->def_sid) { 801 rc = may_context_mount_inode_relabel(defcontext_sid, 802 sbsec, cred); 803 if (rc) 804 goto out; 805 } 806 807 sbsec->def_sid = defcontext_sid; 808 } 809 810 rc = sb_finish_set_opts(sb); 811 out: 812 mutex_unlock(&sbsec->lock); 813 return rc; 814 out_double_mount: 815 rc = -EINVAL; 816 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 817 "security settings for (dev %s, type %s)\n", sb->s_id, name); 818 goto out; 819 } 820 821 static int selinux_cmp_sb_context(const struct super_block *oldsb, 822 const struct super_block *newsb) 823 { 824 struct superblock_security_struct *old = oldsb->s_security; 825 struct superblock_security_struct *new = newsb->s_security; 826 char oldflags = old->flags & SE_MNTMASK; 827 char newflags = new->flags & SE_MNTMASK; 828 829 if (oldflags != newflags) 830 goto mismatch; 831 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 832 goto mismatch; 833 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 834 goto mismatch; 835 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 836 goto mismatch; 837 if (oldflags & ROOTCONTEXT_MNT) { 838 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security; 839 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security; 840 if (oldroot->sid != newroot->sid) 841 goto mismatch; 842 } 843 return 0; 844 mismatch: 845 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 846 "different security settings for (dev %s, " 847 "type %s)\n", newsb->s_id, newsb->s_type->name); 848 return -EBUSY; 849 } 850 851 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 852 struct super_block *newsb) 853 { 854 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 855 struct superblock_security_struct *newsbsec = newsb->s_security; 856 857 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 858 int set_context = (oldsbsec->flags & CONTEXT_MNT); 859 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 860 861 /* 862 * if the parent was able to be mounted it clearly had no special lsm 863 * mount options. thus we can safely deal with this superblock later 864 */ 865 if (!ss_initialized) 866 return 0; 867 868 /* how can we clone if the old one wasn't set up?? */ 869 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 870 871 /* if fs is reusing a sb, make sure that the contexts match */ 872 if (newsbsec->flags & SE_SBINITIALIZED) 873 return selinux_cmp_sb_context(oldsb, newsb); 874 875 mutex_lock(&newsbsec->lock); 876 877 newsbsec->flags = oldsbsec->flags; 878 879 newsbsec->sid = oldsbsec->sid; 880 newsbsec->def_sid = oldsbsec->def_sid; 881 newsbsec->behavior = oldsbsec->behavior; 882 883 if (set_context) { 884 u32 sid = oldsbsec->mntpoint_sid; 885 886 if (!set_fscontext) 887 newsbsec->sid = sid; 888 if (!set_rootcontext) { 889 struct inode *newinode = d_backing_inode(newsb->s_root); 890 struct inode_security_struct *newisec = newinode->i_security; 891 newisec->sid = sid; 892 } 893 newsbsec->mntpoint_sid = sid; 894 } 895 if (set_rootcontext) { 896 const struct inode *oldinode = d_backing_inode(oldsb->s_root); 897 const struct inode_security_struct *oldisec = oldinode->i_security; 898 struct inode *newinode = d_backing_inode(newsb->s_root); 899 struct inode_security_struct *newisec = newinode->i_security; 900 901 newisec->sid = oldisec->sid; 902 } 903 904 sb_finish_set_opts(newsb); 905 mutex_unlock(&newsbsec->lock); 906 return 0; 907 } 908 909 static int selinux_parse_opts_str(char *options, 910 struct security_mnt_opts *opts) 911 { 912 char *p; 913 char *context = NULL, *defcontext = NULL; 914 char *fscontext = NULL, *rootcontext = NULL; 915 int rc, num_mnt_opts = 0; 916 917 opts->num_mnt_opts = 0; 918 919 /* Standard string-based options. */ 920 while ((p = strsep(&options, "|")) != NULL) { 921 int token; 922 substring_t args[MAX_OPT_ARGS]; 923 924 if (!*p) 925 continue; 926 927 token = match_token(p, tokens, args); 928 929 switch (token) { 930 case Opt_context: 931 if (context || defcontext) { 932 rc = -EINVAL; 933 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 934 goto out_err; 935 } 936 context = match_strdup(&args[0]); 937 if (!context) { 938 rc = -ENOMEM; 939 goto out_err; 940 } 941 break; 942 943 case Opt_fscontext: 944 if (fscontext) { 945 rc = -EINVAL; 946 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 947 goto out_err; 948 } 949 fscontext = match_strdup(&args[0]); 950 if (!fscontext) { 951 rc = -ENOMEM; 952 goto out_err; 953 } 954 break; 955 956 case Opt_rootcontext: 957 if (rootcontext) { 958 rc = -EINVAL; 959 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 960 goto out_err; 961 } 962 rootcontext = match_strdup(&args[0]); 963 if (!rootcontext) { 964 rc = -ENOMEM; 965 goto out_err; 966 } 967 break; 968 969 case Opt_defcontext: 970 if (context || defcontext) { 971 rc = -EINVAL; 972 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 973 goto out_err; 974 } 975 defcontext = match_strdup(&args[0]); 976 if (!defcontext) { 977 rc = -ENOMEM; 978 goto out_err; 979 } 980 break; 981 case Opt_labelsupport: 982 break; 983 default: 984 rc = -EINVAL; 985 printk(KERN_WARNING "SELinux: unknown mount option\n"); 986 goto out_err; 987 988 } 989 } 990 991 rc = -ENOMEM; 992 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 993 if (!opts->mnt_opts) 994 goto out_err; 995 996 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 997 if (!opts->mnt_opts_flags) { 998 kfree(opts->mnt_opts); 999 goto out_err; 1000 } 1001 1002 if (fscontext) { 1003 opts->mnt_opts[num_mnt_opts] = fscontext; 1004 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1005 } 1006 if (context) { 1007 opts->mnt_opts[num_mnt_opts] = context; 1008 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1009 } 1010 if (rootcontext) { 1011 opts->mnt_opts[num_mnt_opts] = rootcontext; 1012 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1013 } 1014 if (defcontext) { 1015 opts->mnt_opts[num_mnt_opts] = defcontext; 1016 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1017 } 1018 1019 opts->num_mnt_opts = num_mnt_opts; 1020 return 0; 1021 1022 out_err: 1023 kfree(context); 1024 kfree(defcontext); 1025 kfree(fscontext); 1026 kfree(rootcontext); 1027 return rc; 1028 } 1029 /* 1030 * string mount options parsing and call set the sbsec 1031 */ 1032 static int superblock_doinit(struct super_block *sb, void *data) 1033 { 1034 int rc = 0; 1035 char *options = data; 1036 struct security_mnt_opts opts; 1037 1038 security_init_mnt_opts(&opts); 1039 1040 if (!data) 1041 goto out; 1042 1043 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1044 1045 rc = selinux_parse_opts_str(options, &opts); 1046 if (rc) 1047 goto out_err; 1048 1049 out: 1050 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1051 1052 out_err: 1053 security_free_mnt_opts(&opts); 1054 return rc; 1055 } 1056 1057 static void selinux_write_opts(struct seq_file *m, 1058 struct security_mnt_opts *opts) 1059 { 1060 int i; 1061 char *prefix; 1062 1063 for (i = 0; i < opts->num_mnt_opts; i++) { 1064 char *has_comma; 1065 1066 if (opts->mnt_opts[i]) 1067 has_comma = strchr(opts->mnt_opts[i], ','); 1068 else 1069 has_comma = NULL; 1070 1071 switch (opts->mnt_opts_flags[i]) { 1072 case CONTEXT_MNT: 1073 prefix = CONTEXT_STR; 1074 break; 1075 case FSCONTEXT_MNT: 1076 prefix = FSCONTEXT_STR; 1077 break; 1078 case ROOTCONTEXT_MNT: 1079 prefix = ROOTCONTEXT_STR; 1080 break; 1081 case DEFCONTEXT_MNT: 1082 prefix = DEFCONTEXT_STR; 1083 break; 1084 case SBLABEL_MNT: 1085 seq_putc(m, ','); 1086 seq_puts(m, LABELSUPP_STR); 1087 continue; 1088 default: 1089 BUG(); 1090 return; 1091 }; 1092 /* we need a comma before each option */ 1093 seq_putc(m, ','); 1094 seq_puts(m, prefix); 1095 if (has_comma) 1096 seq_putc(m, '\"'); 1097 seq_puts(m, opts->mnt_opts[i]); 1098 if (has_comma) 1099 seq_putc(m, '\"'); 1100 } 1101 } 1102 1103 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1104 { 1105 struct security_mnt_opts opts; 1106 int rc; 1107 1108 rc = selinux_get_mnt_opts(sb, &opts); 1109 if (rc) { 1110 /* before policy load we may get EINVAL, don't show anything */ 1111 if (rc == -EINVAL) 1112 rc = 0; 1113 return rc; 1114 } 1115 1116 selinux_write_opts(m, &opts); 1117 1118 security_free_mnt_opts(&opts); 1119 1120 return rc; 1121 } 1122 1123 static inline u16 inode_mode_to_security_class(umode_t mode) 1124 { 1125 switch (mode & S_IFMT) { 1126 case S_IFSOCK: 1127 return SECCLASS_SOCK_FILE; 1128 case S_IFLNK: 1129 return SECCLASS_LNK_FILE; 1130 case S_IFREG: 1131 return SECCLASS_FILE; 1132 case S_IFBLK: 1133 return SECCLASS_BLK_FILE; 1134 case S_IFDIR: 1135 return SECCLASS_DIR; 1136 case S_IFCHR: 1137 return SECCLASS_CHR_FILE; 1138 case S_IFIFO: 1139 return SECCLASS_FIFO_FILE; 1140 1141 } 1142 1143 return SECCLASS_FILE; 1144 } 1145 1146 static inline int default_protocol_stream(int protocol) 1147 { 1148 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1149 } 1150 1151 static inline int default_protocol_dgram(int protocol) 1152 { 1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1154 } 1155 1156 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1157 { 1158 switch (family) { 1159 case PF_UNIX: 1160 switch (type) { 1161 case SOCK_STREAM: 1162 case SOCK_SEQPACKET: 1163 return SECCLASS_UNIX_STREAM_SOCKET; 1164 case SOCK_DGRAM: 1165 return SECCLASS_UNIX_DGRAM_SOCKET; 1166 } 1167 break; 1168 case PF_INET: 1169 case PF_INET6: 1170 switch (type) { 1171 case SOCK_STREAM: 1172 if (default_protocol_stream(protocol)) 1173 return SECCLASS_TCP_SOCKET; 1174 else 1175 return SECCLASS_RAWIP_SOCKET; 1176 case SOCK_DGRAM: 1177 if (default_protocol_dgram(protocol)) 1178 return SECCLASS_UDP_SOCKET; 1179 else 1180 return SECCLASS_RAWIP_SOCKET; 1181 case SOCK_DCCP: 1182 return SECCLASS_DCCP_SOCKET; 1183 default: 1184 return SECCLASS_RAWIP_SOCKET; 1185 } 1186 break; 1187 case PF_NETLINK: 1188 switch (protocol) { 1189 case NETLINK_ROUTE: 1190 return SECCLASS_NETLINK_ROUTE_SOCKET; 1191 case NETLINK_FIREWALL: 1192 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1193 case NETLINK_SOCK_DIAG: 1194 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1195 case NETLINK_NFLOG: 1196 return SECCLASS_NETLINK_NFLOG_SOCKET; 1197 case NETLINK_XFRM: 1198 return SECCLASS_NETLINK_XFRM_SOCKET; 1199 case NETLINK_SELINUX: 1200 return SECCLASS_NETLINK_SELINUX_SOCKET; 1201 case NETLINK_AUDIT: 1202 return SECCLASS_NETLINK_AUDIT_SOCKET; 1203 case NETLINK_IP6_FW: 1204 return SECCLASS_NETLINK_IP6FW_SOCKET; 1205 case NETLINK_DNRTMSG: 1206 return SECCLASS_NETLINK_DNRT_SOCKET; 1207 case NETLINK_KOBJECT_UEVENT: 1208 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1209 default: 1210 return SECCLASS_NETLINK_SOCKET; 1211 } 1212 case PF_PACKET: 1213 return SECCLASS_PACKET_SOCKET; 1214 case PF_KEY: 1215 return SECCLASS_KEY_SOCKET; 1216 case PF_APPLETALK: 1217 return SECCLASS_APPLETALK_SOCKET; 1218 } 1219 1220 return SECCLASS_SOCKET; 1221 } 1222 1223 #ifdef CONFIG_PROC_FS 1224 static int selinux_proc_get_sid(struct dentry *dentry, 1225 u16 tclass, 1226 u32 *sid) 1227 { 1228 int rc; 1229 char *buffer, *path; 1230 1231 buffer = (char *)__get_free_page(GFP_KERNEL); 1232 if (!buffer) 1233 return -ENOMEM; 1234 1235 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1236 if (IS_ERR(path)) 1237 rc = PTR_ERR(path); 1238 else { 1239 /* each process gets a /proc/PID/ entry. Strip off the 1240 * PID part to get a valid selinux labeling. 1241 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1242 while (path[1] >= '0' && path[1] <= '9') { 1243 path[1] = '/'; 1244 path++; 1245 } 1246 rc = security_genfs_sid("proc", path, tclass, sid); 1247 } 1248 free_page((unsigned long)buffer); 1249 return rc; 1250 } 1251 #else 1252 static int selinux_proc_get_sid(struct dentry *dentry, 1253 u16 tclass, 1254 u32 *sid) 1255 { 1256 return -EINVAL; 1257 } 1258 #endif 1259 1260 /* The inode's security attributes must be initialized before first use. */ 1261 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1262 { 1263 struct superblock_security_struct *sbsec = NULL; 1264 struct inode_security_struct *isec = inode->i_security; 1265 u32 sid; 1266 struct dentry *dentry; 1267 #define INITCONTEXTLEN 255 1268 char *context = NULL; 1269 unsigned len = 0; 1270 int rc = 0; 1271 1272 if (isec->initialized) 1273 goto out; 1274 1275 mutex_lock(&isec->lock); 1276 if (isec->initialized) 1277 goto out_unlock; 1278 1279 sbsec = inode->i_sb->s_security; 1280 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1281 /* Defer initialization until selinux_complete_init, 1282 after the initial policy is loaded and the security 1283 server is ready to handle calls. */ 1284 spin_lock(&sbsec->isec_lock); 1285 if (list_empty(&isec->list)) 1286 list_add(&isec->list, &sbsec->isec_head); 1287 spin_unlock(&sbsec->isec_lock); 1288 goto out_unlock; 1289 } 1290 1291 switch (sbsec->behavior) { 1292 case SECURITY_FS_USE_NATIVE: 1293 break; 1294 case SECURITY_FS_USE_XATTR: 1295 if (!inode->i_op->getxattr) { 1296 isec->sid = sbsec->def_sid; 1297 break; 1298 } 1299 1300 /* Need a dentry, since the xattr API requires one. 1301 Life would be simpler if we could just pass the inode. */ 1302 if (opt_dentry) { 1303 /* Called from d_instantiate or d_splice_alias. */ 1304 dentry = dget(opt_dentry); 1305 } else { 1306 /* Called from selinux_complete_init, try to find a dentry. */ 1307 dentry = d_find_alias(inode); 1308 } 1309 if (!dentry) { 1310 /* 1311 * this is can be hit on boot when a file is accessed 1312 * before the policy is loaded. When we load policy we 1313 * may find inodes that have no dentry on the 1314 * sbsec->isec_head list. No reason to complain as these 1315 * will get fixed up the next time we go through 1316 * inode_doinit with a dentry, before these inodes could 1317 * be used again by userspace. 1318 */ 1319 goto out_unlock; 1320 } 1321 1322 len = INITCONTEXTLEN; 1323 context = kmalloc(len+1, GFP_NOFS); 1324 if (!context) { 1325 rc = -ENOMEM; 1326 dput(dentry); 1327 goto out_unlock; 1328 } 1329 context[len] = '\0'; 1330 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1331 context, len); 1332 if (rc == -ERANGE) { 1333 kfree(context); 1334 1335 /* Need a larger buffer. Query for the right size. */ 1336 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1337 NULL, 0); 1338 if (rc < 0) { 1339 dput(dentry); 1340 goto out_unlock; 1341 } 1342 len = rc; 1343 context = kmalloc(len+1, GFP_NOFS); 1344 if (!context) { 1345 rc = -ENOMEM; 1346 dput(dentry); 1347 goto out_unlock; 1348 } 1349 context[len] = '\0'; 1350 rc = inode->i_op->getxattr(dentry, 1351 XATTR_NAME_SELINUX, 1352 context, len); 1353 } 1354 dput(dentry); 1355 if (rc < 0) { 1356 if (rc != -ENODATA) { 1357 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1358 "%d for dev=%s ino=%ld\n", __func__, 1359 -rc, inode->i_sb->s_id, inode->i_ino); 1360 kfree(context); 1361 goto out_unlock; 1362 } 1363 /* Map ENODATA to the default file SID */ 1364 sid = sbsec->def_sid; 1365 rc = 0; 1366 } else { 1367 rc = security_context_to_sid_default(context, rc, &sid, 1368 sbsec->def_sid, 1369 GFP_NOFS); 1370 if (rc) { 1371 char *dev = inode->i_sb->s_id; 1372 unsigned long ino = inode->i_ino; 1373 1374 if (rc == -EINVAL) { 1375 if (printk_ratelimit()) 1376 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1377 "context=%s. This indicates you may need to relabel the inode or the " 1378 "filesystem in question.\n", ino, dev, context); 1379 } else { 1380 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1381 "returned %d for dev=%s ino=%ld\n", 1382 __func__, context, -rc, dev, ino); 1383 } 1384 kfree(context); 1385 /* Leave with the unlabeled SID */ 1386 rc = 0; 1387 break; 1388 } 1389 } 1390 kfree(context); 1391 isec->sid = sid; 1392 break; 1393 case SECURITY_FS_USE_TASK: 1394 isec->sid = isec->task_sid; 1395 break; 1396 case SECURITY_FS_USE_TRANS: 1397 /* Default to the fs SID. */ 1398 isec->sid = sbsec->sid; 1399 1400 /* Try to obtain a transition SID. */ 1401 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1402 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1403 isec->sclass, NULL, &sid); 1404 if (rc) 1405 goto out_unlock; 1406 isec->sid = sid; 1407 break; 1408 case SECURITY_FS_USE_MNTPOINT: 1409 isec->sid = sbsec->mntpoint_sid; 1410 break; 1411 default: 1412 /* Default to the fs superblock SID. */ 1413 isec->sid = sbsec->sid; 1414 1415 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1416 /* We must have a dentry to determine the label on 1417 * procfs inodes */ 1418 if (opt_dentry) 1419 /* Called from d_instantiate or 1420 * d_splice_alias. */ 1421 dentry = dget(opt_dentry); 1422 else 1423 /* Called from selinux_complete_init, try to 1424 * find a dentry. */ 1425 dentry = d_find_alias(inode); 1426 /* 1427 * This can be hit on boot when a file is accessed 1428 * before the policy is loaded. When we load policy we 1429 * may find inodes that have no dentry on the 1430 * sbsec->isec_head list. No reason to complain as 1431 * these will get fixed up the next time we go through 1432 * inode_doinit() with a dentry, before these inodes 1433 * could be used again by userspace. 1434 */ 1435 if (!dentry) 1436 goto out_unlock; 1437 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1438 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid); 1439 dput(dentry); 1440 if (rc) 1441 goto out_unlock; 1442 isec->sid = sid; 1443 } 1444 break; 1445 } 1446 1447 isec->initialized = 1; 1448 1449 out_unlock: 1450 mutex_unlock(&isec->lock); 1451 out: 1452 if (isec->sclass == SECCLASS_FILE) 1453 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1454 return rc; 1455 } 1456 1457 /* Convert a Linux signal to an access vector. */ 1458 static inline u32 signal_to_av(int sig) 1459 { 1460 u32 perm = 0; 1461 1462 switch (sig) { 1463 case SIGCHLD: 1464 /* Commonly granted from child to parent. */ 1465 perm = PROCESS__SIGCHLD; 1466 break; 1467 case SIGKILL: 1468 /* Cannot be caught or ignored */ 1469 perm = PROCESS__SIGKILL; 1470 break; 1471 case SIGSTOP: 1472 /* Cannot be caught or ignored */ 1473 perm = PROCESS__SIGSTOP; 1474 break; 1475 default: 1476 /* All other signals. */ 1477 perm = PROCESS__SIGNAL; 1478 break; 1479 } 1480 1481 return perm; 1482 } 1483 1484 /* 1485 * Check permission between a pair of credentials 1486 * fork check, ptrace check, etc. 1487 */ 1488 static int cred_has_perm(const struct cred *actor, 1489 const struct cred *target, 1490 u32 perms) 1491 { 1492 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1493 1494 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1495 } 1496 1497 /* 1498 * Check permission between a pair of tasks, e.g. signal checks, 1499 * fork check, ptrace check, etc. 1500 * tsk1 is the actor and tsk2 is the target 1501 * - this uses the default subjective creds of tsk1 1502 */ 1503 static int task_has_perm(const struct task_struct *tsk1, 1504 const struct task_struct *tsk2, 1505 u32 perms) 1506 { 1507 const struct task_security_struct *__tsec1, *__tsec2; 1508 u32 sid1, sid2; 1509 1510 rcu_read_lock(); 1511 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1512 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1513 rcu_read_unlock(); 1514 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1515 } 1516 1517 /* 1518 * Check permission between current and another task, e.g. signal checks, 1519 * fork check, ptrace check, etc. 1520 * current is the actor and tsk2 is the target 1521 * - this uses current's subjective creds 1522 */ 1523 static int current_has_perm(const struct task_struct *tsk, 1524 u32 perms) 1525 { 1526 u32 sid, tsid; 1527 1528 sid = current_sid(); 1529 tsid = task_sid(tsk); 1530 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1531 } 1532 1533 #if CAP_LAST_CAP > 63 1534 #error Fix SELinux to handle capabilities > 63. 1535 #endif 1536 1537 /* Check whether a task is allowed to use a capability. */ 1538 static int cred_has_capability(const struct cred *cred, 1539 int cap, int audit) 1540 { 1541 struct common_audit_data ad; 1542 struct av_decision avd; 1543 u16 sclass; 1544 u32 sid = cred_sid(cred); 1545 u32 av = CAP_TO_MASK(cap); 1546 int rc; 1547 1548 ad.type = LSM_AUDIT_DATA_CAP; 1549 ad.u.cap = cap; 1550 1551 switch (CAP_TO_INDEX(cap)) { 1552 case 0: 1553 sclass = SECCLASS_CAPABILITY; 1554 break; 1555 case 1: 1556 sclass = SECCLASS_CAPABILITY2; 1557 break; 1558 default: 1559 printk(KERN_ERR 1560 "SELinux: out of range capability %d\n", cap); 1561 BUG(); 1562 return -EINVAL; 1563 } 1564 1565 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1566 if (audit == SECURITY_CAP_AUDIT) { 1567 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1568 if (rc2) 1569 return rc2; 1570 } 1571 return rc; 1572 } 1573 1574 /* Check whether a task is allowed to use a system operation. */ 1575 static int task_has_system(struct task_struct *tsk, 1576 u32 perms) 1577 { 1578 u32 sid = task_sid(tsk); 1579 1580 return avc_has_perm(sid, SECINITSID_KERNEL, 1581 SECCLASS_SYSTEM, perms, NULL); 1582 } 1583 1584 /* Check whether a task has a particular permission to an inode. 1585 The 'adp' parameter is optional and allows other audit 1586 data to be passed (e.g. the dentry). */ 1587 static int inode_has_perm(const struct cred *cred, 1588 struct inode *inode, 1589 u32 perms, 1590 struct common_audit_data *adp) 1591 { 1592 struct inode_security_struct *isec; 1593 u32 sid; 1594 1595 validate_creds(cred); 1596 1597 if (unlikely(IS_PRIVATE(inode))) 1598 return 0; 1599 1600 sid = cred_sid(cred); 1601 isec = inode->i_security; 1602 1603 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1604 } 1605 1606 /* Same as inode_has_perm, but pass explicit audit data containing 1607 the dentry to help the auditing code to more easily generate the 1608 pathname if needed. */ 1609 static inline int dentry_has_perm(const struct cred *cred, 1610 struct dentry *dentry, 1611 u32 av) 1612 { 1613 struct inode *inode = d_backing_inode(dentry); 1614 struct common_audit_data ad; 1615 1616 ad.type = LSM_AUDIT_DATA_DENTRY; 1617 ad.u.dentry = dentry; 1618 return inode_has_perm(cred, inode, av, &ad); 1619 } 1620 1621 /* Same as inode_has_perm, but pass explicit audit data containing 1622 the path to help the auditing code to more easily generate the 1623 pathname if needed. */ 1624 static inline int path_has_perm(const struct cred *cred, 1625 const struct path *path, 1626 u32 av) 1627 { 1628 struct inode *inode = d_backing_inode(path->dentry); 1629 struct common_audit_data ad; 1630 1631 ad.type = LSM_AUDIT_DATA_PATH; 1632 ad.u.path = *path; 1633 return inode_has_perm(cred, inode, av, &ad); 1634 } 1635 1636 /* Same as path_has_perm, but uses the inode from the file struct. */ 1637 static inline int file_path_has_perm(const struct cred *cred, 1638 struct file *file, 1639 u32 av) 1640 { 1641 struct common_audit_data ad; 1642 1643 ad.type = LSM_AUDIT_DATA_PATH; 1644 ad.u.path = file->f_path; 1645 return inode_has_perm(cred, file_inode(file), av, &ad); 1646 } 1647 1648 /* Check whether a task can use an open file descriptor to 1649 access an inode in a given way. Check access to the 1650 descriptor itself, and then use dentry_has_perm to 1651 check a particular permission to the file. 1652 Access to the descriptor is implicitly granted if it 1653 has the same SID as the process. If av is zero, then 1654 access to the file is not checked, e.g. for cases 1655 where only the descriptor is affected like seek. */ 1656 static int file_has_perm(const struct cred *cred, 1657 struct file *file, 1658 u32 av) 1659 { 1660 struct file_security_struct *fsec = file->f_security; 1661 struct inode *inode = file_inode(file); 1662 struct common_audit_data ad; 1663 u32 sid = cred_sid(cred); 1664 int rc; 1665 1666 ad.type = LSM_AUDIT_DATA_PATH; 1667 ad.u.path = file->f_path; 1668 1669 if (sid != fsec->sid) { 1670 rc = avc_has_perm(sid, fsec->sid, 1671 SECCLASS_FD, 1672 FD__USE, 1673 &ad); 1674 if (rc) 1675 goto out; 1676 } 1677 1678 /* av is zero if only checking access to the descriptor. */ 1679 rc = 0; 1680 if (av) 1681 rc = inode_has_perm(cred, inode, av, &ad); 1682 1683 out: 1684 return rc; 1685 } 1686 1687 /* Check whether a task can create a file. */ 1688 static int may_create(struct inode *dir, 1689 struct dentry *dentry, 1690 u16 tclass) 1691 { 1692 const struct task_security_struct *tsec = current_security(); 1693 struct inode_security_struct *dsec; 1694 struct superblock_security_struct *sbsec; 1695 u32 sid, newsid; 1696 struct common_audit_data ad; 1697 int rc; 1698 1699 dsec = dir->i_security; 1700 sbsec = dir->i_sb->s_security; 1701 1702 sid = tsec->sid; 1703 newsid = tsec->create_sid; 1704 1705 ad.type = LSM_AUDIT_DATA_DENTRY; 1706 ad.u.dentry = dentry; 1707 1708 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1709 DIR__ADD_NAME | DIR__SEARCH, 1710 &ad); 1711 if (rc) 1712 return rc; 1713 1714 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 1715 rc = security_transition_sid(sid, dsec->sid, tclass, 1716 &dentry->d_name, &newsid); 1717 if (rc) 1718 return rc; 1719 } 1720 1721 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1722 if (rc) 1723 return rc; 1724 1725 return avc_has_perm(newsid, sbsec->sid, 1726 SECCLASS_FILESYSTEM, 1727 FILESYSTEM__ASSOCIATE, &ad); 1728 } 1729 1730 /* Check whether a task can create a key. */ 1731 static int may_create_key(u32 ksid, 1732 struct task_struct *ctx) 1733 { 1734 u32 sid = task_sid(ctx); 1735 1736 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1737 } 1738 1739 #define MAY_LINK 0 1740 #define MAY_UNLINK 1 1741 #define MAY_RMDIR 2 1742 1743 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1744 static int may_link(struct inode *dir, 1745 struct dentry *dentry, 1746 int kind) 1747 1748 { 1749 struct inode_security_struct *dsec, *isec; 1750 struct common_audit_data ad; 1751 u32 sid = current_sid(); 1752 u32 av; 1753 int rc; 1754 1755 dsec = dir->i_security; 1756 isec = d_backing_inode(dentry)->i_security; 1757 1758 ad.type = LSM_AUDIT_DATA_DENTRY; 1759 ad.u.dentry = dentry; 1760 1761 av = DIR__SEARCH; 1762 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1763 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1764 if (rc) 1765 return rc; 1766 1767 switch (kind) { 1768 case MAY_LINK: 1769 av = FILE__LINK; 1770 break; 1771 case MAY_UNLINK: 1772 av = FILE__UNLINK; 1773 break; 1774 case MAY_RMDIR: 1775 av = DIR__RMDIR; 1776 break; 1777 default: 1778 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1779 __func__, kind); 1780 return 0; 1781 } 1782 1783 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1784 return rc; 1785 } 1786 1787 static inline int may_rename(struct inode *old_dir, 1788 struct dentry *old_dentry, 1789 struct inode *new_dir, 1790 struct dentry *new_dentry) 1791 { 1792 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1793 struct common_audit_data ad; 1794 u32 sid = current_sid(); 1795 u32 av; 1796 int old_is_dir, new_is_dir; 1797 int rc; 1798 1799 old_dsec = old_dir->i_security; 1800 old_isec = d_backing_inode(old_dentry)->i_security; 1801 old_is_dir = d_is_dir(old_dentry); 1802 new_dsec = new_dir->i_security; 1803 1804 ad.type = LSM_AUDIT_DATA_DENTRY; 1805 1806 ad.u.dentry = old_dentry; 1807 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1808 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1809 if (rc) 1810 return rc; 1811 rc = avc_has_perm(sid, old_isec->sid, 1812 old_isec->sclass, FILE__RENAME, &ad); 1813 if (rc) 1814 return rc; 1815 if (old_is_dir && new_dir != old_dir) { 1816 rc = avc_has_perm(sid, old_isec->sid, 1817 old_isec->sclass, DIR__REPARENT, &ad); 1818 if (rc) 1819 return rc; 1820 } 1821 1822 ad.u.dentry = new_dentry; 1823 av = DIR__ADD_NAME | DIR__SEARCH; 1824 if (d_is_positive(new_dentry)) 1825 av |= DIR__REMOVE_NAME; 1826 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1827 if (rc) 1828 return rc; 1829 if (d_is_positive(new_dentry)) { 1830 new_isec = d_backing_inode(new_dentry)->i_security; 1831 new_is_dir = d_is_dir(new_dentry); 1832 rc = avc_has_perm(sid, new_isec->sid, 1833 new_isec->sclass, 1834 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1835 if (rc) 1836 return rc; 1837 } 1838 1839 return 0; 1840 } 1841 1842 /* Check whether a task can perform a filesystem operation. */ 1843 static int superblock_has_perm(const struct cred *cred, 1844 struct super_block *sb, 1845 u32 perms, 1846 struct common_audit_data *ad) 1847 { 1848 struct superblock_security_struct *sbsec; 1849 u32 sid = cred_sid(cred); 1850 1851 sbsec = sb->s_security; 1852 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1853 } 1854 1855 /* Convert a Linux mode and permission mask to an access vector. */ 1856 static inline u32 file_mask_to_av(int mode, int mask) 1857 { 1858 u32 av = 0; 1859 1860 if (!S_ISDIR(mode)) { 1861 if (mask & MAY_EXEC) 1862 av |= FILE__EXECUTE; 1863 if (mask & MAY_READ) 1864 av |= FILE__READ; 1865 1866 if (mask & MAY_APPEND) 1867 av |= FILE__APPEND; 1868 else if (mask & MAY_WRITE) 1869 av |= FILE__WRITE; 1870 1871 } else { 1872 if (mask & MAY_EXEC) 1873 av |= DIR__SEARCH; 1874 if (mask & MAY_WRITE) 1875 av |= DIR__WRITE; 1876 if (mask & MAY_READ) 1877 av |= DIR__READ; 1878 } 1879 1880 return av; 1881 } 1882 1883 /* Convert a Linux file to an access vector. */ 1884 static inline u32 file_to_av(struct file *file) 1885 { 1886 u32 av = 0; 1887 1888 if (file->f_mode & FMODE_READ) 1889 av |= FILE__READ; 1890 if (file->f_mode & FMODE_WRITE) { 1891 if (file->f_flags & O_APPEND) 1892 av |= FILE__APPEND; 1893 else 1894 av |= FILE__WRITE; 1895 } 1896 if (!av) { 1897 /* 1898 * Special file opened with flags 3 for ioctl-only use. 1899 */ 1900 av = FILE__IOCTL; 1901 } 1902 1903 return av; 1904 } 1905 1906 /* 1907 * Convert a file to an access vector and include the correct open 1908 * open permission. 1909 */ 1910 static inline u32 open_file_to_av(struct file *file) 1911 { 1912 u32 av = file_to_av(file); 1913 1914 if (selinux_policycap_openperm) 1915 av |= FILE__OPEN; 1916 1917 return av; 1918 } 1919 1920 /* Hook functions begin here. */ 1921 1922 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1923 { 1924 u32 mysid = current_sid(); 1925 u32 mgrsid = task_sid(mgr); 1926 1927 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 1928 BINDER__SET_CONTEXT_MGR, NULL); 1929 } 1930 1931 static int selinux_binder_transaction(struct task_struct *from, 1932 struct task_struct *to) 1933 { 1934 u32 mysid = current_sid(); 1935 u32 fromsid = task_sid(from); 1936 u32 tosid = task_sid(to); 1937 int rc; 1938 1939 if (mysid != fromsid) { 1940 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 1941 BINDER__IMPERSONATE, NULL); 1942 if (rc) 1943 return rc; 1944 } 1945 1946 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 1947 NULL); 1948 } 1949 1950 static int selinux_binder_transfer_binder(struct task_struct *from, 1951 struct task_struct *to) 1952 { 1953 u32 fromsid = task_sid(from); 1954 u32 tosid = task_sid(to); 1955 1956 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 1957 NULL); 1958 } 1959 1960 static int selinux_binder_transfer_file(struct task_struct *from, 1961 struct task_struct *to, 1962 struct file *file) 1963 { 1964 u32 sid = task_sid(to); 1965 struct file_security_struct *fsec = file->f_security; 1966 struct inode *inode = d_backing_inode(file->f_path.dentry); 1967 struct inode_security_struct *isec = inode->i_security; 1968 struct common_audit_data ad; 1969 int rc; 1970 1971 ad.type = LSM_AUDIT_DATA_PATH; 1972 ad.u.path = file->f_path; 1973 1974 if (sid != fsec->sid) { 1975 rc = avc_has_perm(sid, fsec->sid, 1976 SECCLASS_FD, 1977 FD__USE, 1978 &ad); 1979 if (rc) 1980 return rc; 1981 } 1982 1983 if (unlikely(IS_PRIVATE(inode))) 1984 return 0; 1985 1986 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 1987 &ad); 1988 } 1989 1990 static int selinux_ptrace_access_check(struct task_struct *child, 1991 unsigned int mode) 1992 { 1993 int rc; 1994 1995 rc = cap_ptrace_access_check(child, mode); 1996 if (rc) 1997 return rc; 1998 1999 if (mode & PTRACE_MODE_READ) { 2000 u32 sid = current_sid(); 2001 u32 csid = task_sid(child); 2002 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2003 } 2004 2005 return current_has_perm(child, PROCESS__PTRACE); 2006 } 2007 2008 static int selinux_ptrace_traceme(struct task_struct *parent) 2009 { 2010 int rc; 2011 2012 rc = cap_ptrace_traceme(parent); 2013 if (rc) 2014 return rc; 2015 2016 return task_has_perm(parent, current, PROCESS__PTRACE); 2017 } 2018 2019 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2020 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2021 { 2022 int error; 2023 2024 error = current_has_perm(target, PROCESS__GETCAP); 2025 if (error) 2026 return error; 2027 2028 return cap_capget(target, effective, inheritable, permitted); 2029 } 2030 2031 static int selinux_capset(struct cred *new, const struct cred *old, 2032 const kernel_cap_t *effective, 2033 const kernel_cap_t *inheritable, 2034 const kernel_cap_t *permitted) 2035 { 2036 int error; 2037 2038 error = cap_capset(new, old, 2039 effective, inheritable, permitted); 2040 if (error) 2041 return error; 2042 2043 return cred_has_perm(old, new, PROCESS__SETCAP); 2044 } 2045 2046 /* 2047 * (This comment used to live with the selinux_task_setuid hook, 2048 * which was removed). 2049 * 2050 * Since setuid only affects the current process, and since the SELinux 2051 * controls are not based on the Linux identity attributes, SELinux does not 2052 * need to control this operation. However, SELinux does control the use of 2053 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2054 */ 2055 2056 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2057 int cap, int audit) 2058 { 2059 int rc; 2060 2061 rc = cap_capable(cred, ns, cap, audit); 2062 if (rc) 2063 return rc; 2064 2065 return cred_has_capability(cred, cap, audit); 2066 } 2067 2068 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2069 { 2070 const struct cred *cred = current_cred(); 2071 int rc = 0; 2072 2073 if (!sb) 2074 return 0; 2075 2076 switch (cmds) { 2077 case Q_SYNC: 2078 case Q_QUOTAON: 2079 case Q_QUOTAOFF: 2080 case Q_SETINFO: 2081 case Q_SETQUOTA: 2082 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2083 break; 2084 case Q_GETFMT: 2085 case Q_GETINFO: 2086 case Q_GETQUOTA: 2087 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2088 break; 2089 default: 2090 rc = 0; /* let the kernel handle invalid cmds */ 2091 break; 2092 } 2093 return rc; 2094 } 2095 2096 static int selinux_quota_on(struct dentry *dentry) 2097 { 2098 const struct cred *cred = current_cred(); 2099 2100 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2101 } 2102 2103 static int selinux_syslog(int type) 2104 { 2105 int rc; 2106 2107 switch (type) { 2108 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2109 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2110 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2111 break; 2112 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2113 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2114 /* Set level of messages printed to console */ 2115 case SYSLOG_ACTION_CONSOLE_LEVEL: 2116 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2117 break; 2118 case SYSLOG_ACTION_CLOSE: /* Close log */ 2119 case SYSLOG_ACTION_OPEN: /* Open log */ 2120 case SYSLOG_ACTION_READ: /* Read from log */ 2121 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2122 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2123 default: 2124 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2125 break; 2126 } 2127 return rc; 2128 } 2129 2130 /* 2131 * Check that a process has enough memory to allocate a new virtual 2132 * mapping. 0 means there is enough memory for the allocation to 2133 * succeed and -ENOMEM implies there is not. 2134 * 2135 * Do not audit the selinux permission check, as this is applied to all 2136 * processes that allocate mappings. 2137 */ 2138 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2139 { 2140 int rc, cap_sys_admin = 0; 2141 2142 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 2143 SECURITY_CAP_NOAUDIT); 2144 if (rc == 0) 2145 cap_sys_admin = 1; 2146 2147 return __vm_enough_memory(mm, pages, cap_sys_admin); 2148 } 2149 2150 /* binprm security operations */ 2151 2152 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2153 const struct task_security_struct *old_tsec, 2154 const struct task_security_struct *new_tsec) 2155 { 2156 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2157 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2158 int rc; 2159 2160 if (!nnp && !nosuid) 2161 return 0; /* neither NNP nor nosuid */ 2162 2163 if (new_tsec->sid == old_tsec->sid) 2164 return 0; /* No change in credentials */ 2165 2166 /* 2167 * The only transitions we permit under NNP or nosuid 2168 * are transitions to bounded SIDs, i.e. SIDs that are 2169 * guaranteed to only be allowed a subset of the permissions 2170 * of the current SID. 2171 */ 2172 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2173 if (rc) { 2174 /* 2175 * On failure, preserve the errno values for NNP vs nosuid. 2176 * NNP: Operation not permitted for caller. 2177 * nosuid: Permission denied to file. 2178 */ 2179 if (nnp) 2180 return -EPERM; 2181 else 2182 return -EACCES; 2183 } 2184 return 0; 2185 } 2186 2187 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2188 { 2189 const struct task_security_struct *old_tsec; 2190 struct task_security_struct *new_tsec; 2191 struct inode_security_struct *isec; 2192 struct common_audit_data ad; 2193 struct inode *inode = file_inode(bprm->file); 2194 int rc; 2195 2196 rc = cap_bprm_set_creds(bprm); 2197 if (rc) 2198 return rc; 2199 2200 /* SELinux context only depends on initial program or script and not 2201 * the script interpreter */ 2202 if (bprm->cred_prepared) 2203 return 0; 2204 2205 old_tsec = current_security(); 2206 new_tsec = bprm->cred->security; 2207 isec = inode->i_security; 2208 2209 /* Default to the current task SID. */ 2210 new_tsec->sid = old_tsec->sid; 2211 new_tsec->osid = old_tsec->sid; 2212 2213 /* Reset fs, key, and sock SIDs on execve. */ 2214 new_tsec->create_sid = 0; 2215 new_tsec->keycreate_sid = 0; 2216 new_tsec->sockcreate_sid = 0; 2217 2218 if (old_tsec->exec_sid) { 2219 new_tsec->sid = old_tsec->exec_sid; 2220 /* Reset exec SID on execve. */ 2221 new_tsec->exec_sid = 0; 2222 2223 /* Fail on NNP or nosuid if not an allowed transition. */ 2224 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2225 if (rc) 2226 return rc; 2227 } else { 2228 /* Check for a default transition on this program. */ 2229 rc = security_transition_sid(old_tsec->sid, isec->sid, 2230 SECCLASS_PROCESS, NULL, 2231 &new_tsec->sid); 2232 if (rc) 2233 return rc; 2234 2235 /* 2236 * Fallback to old SID on NNP or nosuid if not an allowed 2237 * transition. 2238 */ 2239 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2240 if (rc) 2241 new_tsec->sid = old_tsec->sid; 2242 } 2243 2244 ad.type = LSM_AUDIT_DATA_PATH; 2245 ad.u.path = bprm->file->f_path; 2246 2247 if (new_tsec->sid == old_tsec->sid) { 2248 rc = avc_has_perm(old_tsec->sid, isec->sid, 2249 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2250 if (rc) 2251 return rc; 2252 } else { 2253 /* Check permissions for the transition. */ 2254 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2255 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2256 if (rc) 2257 return rc; 2258 2259 rc = avc_has_perm(new_tsec->sid, isec->sid, 2260 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2261 if (rc) 2262 return rc; 2263 2264 /* Check for shared state */ 2265 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2266 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2267 SECCLASS_PROCESS, PROCESS__SHARE, 2268 NULL); 2269 if (rc) 2270 return -EPERM; 2271 } 2272 2273 /* Make sure that anyone attempting to ptrace over a task that 2274 * changes its SID has the appropriate permit */ 2275 if (bprm->unsafe & 2276 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2277 struct task_struct *tracer; 2278 struct task_security_struct *sec; 2279 u32 ptsid = 0; 2280 2281 rcu_read_lock(); 2282 tracer = ptrace_parent(current); 2283 if (likely(tracer != NULL)) { 2284 sec = __task_cred(tracer)->security; 2285 ptsid = sec->sid; 2286 } 2287 rcu_read_unlock(); 2288 2289 if (ptsid != 0) { 2290 rc = avc_has_perm(ptsid, new_tsec->sid, 2291 SECCLASS_PROCESS, 2292 PROCESS__PTRACE, NULL); 2293 if (rc) 2294 return -EPERM; 2295 } 2296 } 2297 2298 /* Clear any possibly unsafe personality bits on exec: */ 2299 bprm->per_clear |= PER_CLEAR_ON_SETID; 2300 } 2301 2302 return 0; 2303 } 2304 2305 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2306 { 2307 const struct task_security_struct *tsec = current_security(); 2308 u32 sid, osid; 2309 int atsecure = 0; 2310 2311 sid = tsec->sid; 2312 osid = tsec->osid; 2313 2314 if (osid != sid) { 2315 /* Enable secure mode for SIDs transitions unless 2316 the noatsecure permission is granted between 2317 the two SIDs, i.e. ahp returns 0. */ 2318 atsecure = avc_has_perm(osid, sid, 2319 SECCLASS_PROCESS, 2320 PROCESS__NOATSECURE, NULL); 2321 } 2322 2323 return (atsecure || cap_bprm_secureexec(bprm)); 2324 } 2325 2326 static int match_file(const void *p, struct file *file, unsigned fd) 2327 { 2328 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2329 } 2330 2331 /* Derived from fs/exec.c:flush_old_files. */ 2332 static inline void flush_unauthorized_files(const struct cred *cred, 2333 struct files_struct *files) 2334 { 2335 struct file *file, *devnull = NULL; 2336 struct tty_struct *tty; 2337 int drop_tty = 0; 2338 unsigned n; 2339 2340 tty = get_current_tty(); 2341 if (tty) { 2342 spin_lock(&tty_files_lock); 2343 if (!list_empty(&tty->tty_files)) { 2344 struct tty_file_private *file_priv; 2345 2346 /* Revalidate access to controlling tty. 2347 Use file_path_has_perm on the tty path directly 2348 rather than using file_has_perm, as this particular 2349 open file may belong to another process and we are 2350 only interested in the inode-based check here. */ 2351 file_priv = list_first_entry(&tty->tty_files, 2352 struct tty_file_private, list); 2353 file = file_priv->file; 2354 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2355 drop_tty = 1; 2356 } 2357 spin_unlock(&tty_files_lock); 2358 tty_kref_put(tty); 2359 } 2360 /* Reset controlling tty. */ 2361 if (drop_tty) 2362 no_tty(); 2363 2364 /* Revalidate access to inherited open files. */ 2365 n = iterate_fd(files, 0, match_file, cred); 2366 if (!n) /* none found? */ 2367 return; 2368 2369 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2370 if (IS_ERR(devnull)) 2371 devnull = NULL; 2372 /* replace all the matching ones with this */ 2373 do { 2374 replace_fd(n - 1, devnull, 0); 2375 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2376 if (devnull) 2377 fput(devnull); 2378 } 2379 2380 /* 2381 * Prepare a process for imminent new credential changes due to exec 2382 */ 2383 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2384 { 2385 struct task_security_struct *new_tsec; 2386 struct rlimit *rlim, *initrlim; 2387 int rc, i; 2388 2389 new_tsec = bprm->cred->security; 2390 if (new_tsec->sid == new_tsec->osid) 2391 return; 2392 2393 /* Close files for which the new task SID is not authorized. */ 2394 flush_unauthorized_files(bprm->cred, current->files); 2395 2396 /* Always clear parent death signal on SID transitions. */ 2397 current->pdeath_signal = 0; 2398 2399 /* Check whether the new SID can inherit resource limits from the old 2400 * SID. If not, reset all soft limits to the lower of the current 2401 * task's hard limit and the init task's soft limit. 2402 * 2403 * Note that the setting of hard limits (even to lower them) can be 2404 * controlled by the setrlimit check. The inclusion of the init task's 2405 * soft limit into the computation is to avoid resetting soft limits 2406 * higher than the default soft limit for cases where the default is 2407 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2408 */ 2409 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2410 PROCESS__RLIMITINH, NULL); 2411 if (rc) { 2412 /* protect against do_prlimit() */ 2413 task_lock(current); 2414 for (i = 0; i < RLIM_NLIMITS; i++) { 2415 rlim = current->signal->rlim + i; 2416 initrlim = init_task.signal->rlim + i; 2417 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2418 } 2419 task_unlock(current); 2420 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2421 } 2422 } 2423 2424 /* 2425 * Clean up the process immediately after the installation of new credentials 2426 * due to exec 2427 */ 2428 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2429 { 2430 const struct task_security_struct *tsec = current_security(); 2431 struct itimerval itimer; 2432 u32 osid, sid; 2433 int rc, i; 2434 2435 osid = tsec->osid; 2436 sid = tsec->sid; 2437 2438 if (sid == osid) 2439 return; 2440 2441 /* Check whether the new SID can inherit signal state from the old SID. 2442 * If not, clear itimers to avoid subsequent signal generation and 2443 * flush and unblock signals. 2444 * 2445 * This must occur _after_ the task SID has been updated so that any 2446 * kill done after the flush will be checked against the new SID. 2447 */ 2448 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2449 if (rc) { 2450 memset(&itimer, 0, sizeof itimer); 2451 for (i = 0; i < 3; i++) 2452 do_setitimer(i, &itimer, NULL); 2453 spin_lock_irq(¤t->sighand->siglock); 2454 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2455 __flush_signals(current); 2456 flush_signal_handlers(current, 1); 2457 sigemptyset(¤t->blocked); 2458 } 2459 spin_unlock_irq(¤t->sighand->siglock); 2460 } 2461 2462 /* Wake up the parent if it is waiting so that it can recheck 2463 * wait permission to the new task SID. */ 2464 read_lock(&tasklist_lock); 2465 __wake_up_parent(current, current->real_parent); 2466 read_unlock(&tasklist_lock); 2467 } 2468 2469 /* superblock security operations */ 2470 2471 static int selinux_sb_alloc_security(struct super_block *sb) 2472 { 2473 return superblock_alloc_security(sb); 2474 } 2475 2476 static void selinux_sb_free_security(struct super_block *sb) 2477 { 2478 superblock_free_security(sb); 2479 } 2480 2481 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2482 { 2483 if (plen > olen) 2484 return 0; 2485 2486 return !memcmp(prefix, option, plen); 2487 } 2488 2489 static inline int selinux_option(char *option, int len) 2490 { 2491 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2492 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2493 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2494 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2495 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2496 } 2497 2498 static inline void take_option(char **to, char *from, int *first, int len) 2499 { 2500 if (!*first) { 2501 **to = ','; 2502 *to += 1; 2503 } else 2504 *first = 0; 2505 memcpy(*to, from, len); 2506 *to += len; 2507 } 2508 2509 static inline void take_selinux_option(char **to, char *from, int *first, 2510 int len) 2511 { 2512 int current_size = 0; 2513 2514 if (!*first) { 2515 **to = '|'; 2516 *to += 1; 2517 } else 2518 *first = 0; 2519 2520 while (current_size < len) { 2521 if (*from != '"') { 2522 **to = *from; 2523 *to += 1; 2524 } 2525 from += 1; 2526 current_size += 1; 2527 } 2528 } 2529 2530 static int selinux_sb_copy_data(char *orig, char *copy) 2531 { 2532 int fnosec, fsec, rc = 0; 2533 char *in_save, *in_curr, *in_end; 2534 char *sec_curr, *nosec_save, *nosec; 2535 int open_quote = 0; 2536 2537 in_curr = orig; 2538 sec_curr = copy; 2539 2540 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2541 if (!nosec) { 2542 rc = -ENOMEM; 2543 goto out; 2544 } 2545 2546 nosec_save = nosec; 2547 fnosec = fsec = 1; 2548 in_save = in_end = orig; 2549 2550 do { 2551 if (*in_end == '"') 2552 open_quote = !open_quote; 2553 if ((*in_end == ',' && open_quote == 0) || 2554 *in_end == '\0') { 2555 int len = in_end - in_curr; 2556 2557 if (selinux_option(in_curr, len)) 2558 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2559 else 2560 take_option(&nosec, in_curr, &fnosec, len); 2561 2562 in_curr = in_end + 1; 2563 } 2564 } while (*in_end++); 2565 2566 strcpy(in_save, nosec_save); 2567 free_page((unsigned long)nosec_save); 2568 out: 2569 return rc; 2570 } 2571 2572 static int selinux_sb_remount(struct super_block *sb, void *data) 2573 { 2574 int rc, i, *flags; 2575 struct security_mnt_opts opts; 2576 char *secdata, **mount_options; 2577 struct superblock_security_struct *sbsec = sb->s_security; 2578 2579 if (!(sbsec->flags & SE_SBINITIALIZED)) 2580 return 0; 2581 2582 if (!data) 2583 return 0; 2584 2585 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2586 return 0; 2587 2588 security_init_mnt_opts(&opts); 2589 secdata = alloc_secdata(); 2590 if (!secdata) 2591 return -ENOMEM; 2592 rc = selinux_sb_copy_data(data, secdata); 2593 if (rc) 2594 goto out_free_secdata; 2595 2596 rc = selinux_parse_opts_str(secdata, &opts); 2597 if (rc) 2598 goto out_free_secdata; 2599 2600 mount_options = opts.mnt_opts; 2601 flags = opts.mnt_opts_flags; 2602 2603 for (i = 0; i < opts.num_mnt_opts; i++) { 2604 u32 sid; 2605 size_t len; 2606 2607 if (flags[i] == SBLABEL_MNT) 2608 continue; 2609 len = strlen(mount_options[i]); 2610 rc = security_context_to_sid(mount_options[i], len, &sid, 2611 GFP_KERNEL); 2612 if (rc) { 2613 printk(KERN_WARNING "SELinux: security_context_to_sid" 2614 "(%s) failed for (dev %s, type %s) errno=%d\n", 2615 mount_options[i], sb->s_id, sb->s_type->name, rc); 2616 goto out_free_opts; 2617 } 2618 rc = -EINVAL; 2619 switch (flags[i]) { 2620 case FSCONTEXT_MNT: 2621 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2622 goto out_bad_option; 2623 break; 2624 case CONTEXT_MNT: 2625 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2626 goto out_bad_option; 2627 break; 2628 case ROOTCONTEXT_MNT: { 2629 struct inode_security_struct *root_isec; 2630 root_isec = d_backing_inode(sb->s_root)->i_security; 2631 2632 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2633 goto out_bad_option; 2634 break; 2635 } 2636 case DEFCONTEXT_MNT: 2637 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2638 goto out_bad_option; 2639 break; 2640 default: 2641 goto out_free_opts; 2642 } 2643 } 2644 2645 rc = 0; 2646 out_free_opts: 2647 security_free_mnt_opts(&opts); 2648 out_free_secdata: 2649 free_secdata(secdata); 2650 return rc; 2651 out_bad_option: 2652 printk(KERN_WARNING "SELinux: unable to change security options " 2653 "during remount (dev %s, type=%s)\n", sb->s_id, 2654 sb->s_type->name); 2655 goto out_free_opts; 2656 } 2657 2658 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2659 { 2660 const struct cred *cred = current_cred(); 2661 struct common_audit_data ad; 2662 int rc; 2663 2664 rc = superblock_doinit(sb, data); 2665 if (rc) 2666 return rc; 2667 2668 /* Allow all mounts performed by the kernel */ 2669 if (flags & MS_KERNMOUNT) 2670 return 0; 2671 2672 ad.type = LSM_AUDIT_DATA_DENTRY; 2673 ad.u.dentry = sb->s_root; 2674 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2675 } 2676 2677 static int selinux_sb_statfs(struct dentry *dentry) 2678 { 2679 const struct cred *cred = current_cred(); 2680 struct common_audit_data ad; 2681 2682 ad.type = LSM_AUDIT_DATA_DENTRY; 2683 ad.u.dentry = dentry->d_sb->s_root; 2684 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2685 } 2686 2687 static int selinux_mount(const char *dev_name, 2688 struct path *path, 2689 const char *type, 2690 unsigned long flags, 2691 void *data) 2692 { 2693 const struct cred *cred = current_cred(); 2694 2695 if (flags & MS_REMOUNT) 2696 return superblock_has_perm(cred, path->dentry->d_sb, 2697 FILESYSTEM__REMOUNT, NULL); 2698 else 2699 return path_has_perm(cred, path, FILE__MOUNTON); 2700 } 2701 2702 static int selinux_umount(struct vfsmount *mnt, int flags) 2703 { 2704 const struct cred *cred = current_cred(); 2705 2706 return superblock_has_perm(cred, mnt->mnt_sb, 2707 FILESYSTEM__UNMOUNT, NULL); 2708 } 2709 2710 /* inode security operations */ 2711 2712 static int selinux_inode_alloc_security(struct inode *inode) 2713 { 2714 return inode_alloc_security(inode); 2715 } 2716 2717 static void selinux_inode_free_security(struct inode *inode) 2718 { 2719 inode_free_security(inode); 2720 } 2721 2722 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2723 struct qstr *name, void **ctx, 2724 u32 *ctxlen) 2725 { 2726 const struct cred *cred = current_cred(); 2727 struct task_security_struct *tsec; 2728 struct inode_security_struct *dsec; 2729 struct superblock_security_struct *sbsec; 2730 struct inode *dir = d_backing_inode(dentry->d_parent); 2731 u32 newsid; 2732 int rc; 2733 2734 tsec = cred->security; 2735 dsec = dir->i_security; 2736 sbsec = dir->i_sb->s_security; 2737 2738 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2739 newsid = tsec->create_sid; 2740 } else { 2741 rc = security_transition_sid(tsec->sid, dsec->sid, 2742 inode_mode_to_security_class(mode), 2743 name, 2744 &newsid); 2745 if (rc) { 2746 printk(KERN_WARNING 2747 "%s: security_transition_sid failed, rc=%d\n", 2748 __func__, -rc); 2749 return rc; 2750 } 2751 } 2752 2753 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2754 } 2755 2756 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2757 const struct qstr *qstr, 2758 const char **name, 2759 void **value, size_t *len) 2760 { 2761 const struct task_security_struct *tsec = current_security(); 2762 struct inode_security_struct *dsec; 2763 struct superblock_security_struct *sbsec; 2764 u32 sid, newsid, clen; 2765 int rc; 2766 char *context; 2767 2768 dsec = dir->i_security; 2769 sbsec = dir->i_sb->s_security; 2770 2771 sid = tsec->sid; 2772 newsid = tsec->create_sid; 2773 2774 if ((sbsec->flags & SE_SBINITIALIZED) && 2775 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2776 newsid = sbsec->mntpoint_sid; 2777 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 2778 rc = security_transition_sid(sid, dsec->sid, 2779 inode_mode_to_security_class(inode->i_mode), 2780 qstr, &newsid); 2781 if (rc) { 2782 printk(KERN_WARNING "%s: " 2783 "security_transition_sid failed, rc=%d (dev=%s " 2784 "ino=%ld)\n", 2785 __func__, 2786 -rc, inode->i_sb->s_id, inode->i_ino); 2787 return rc; 2788 } 2789 } 2790 2791 /* Possibly defer initialization to selinux_complete_init. */ 2792 if (sbsec->flags & SE_SBINITIALIZED) { 2793 struct inode_security_struct *isec = inode->i_security; 2794 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2795 isec->sid = newsid; 2796 isec->initialized = 1; 2797 } 2798 2799 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2800 return -EOPNOTSUPP; 2801 2802 if (name) 2803 *name = XATTR_SELINUX_SUFFIX; 2804 2805 if (value && len) { 2806 rc = security_sid_to_context_force(newsid, &context, &clen); 2807 if (rc) 2808 return rc; 2809 *value = context; 2810 *len = clen; 2811 } 2812 2813 return 0; 2814 } 2815 2816 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2817 { 2818 return may_create(dir, dentry, SECCLASS_FILE); 2819 } 2820 2821 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2822 { 2823 return may_link(dir, old_dentry, MAY_LINK); 2824 } 2825 2826 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2827 { 2828 return may_link(dir, dentry, MAY_UNLINK); 2829 } 2830 2831 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2832 { 2833 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2834 } 2835 2836 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2837 { 2838 return may_create(dir, dentry, SECCLASS_DIR); 2839 } 2840 2841 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2842 { 2843 return may_link(dir, dentry, MAY_RMDIR); 2844 } 2845 2846 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2847 { 2848 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2849 } 2850 2851 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2852 struct inode *new_inode, struct dentry *new_dentry) 2853 { 2854 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2855 } 2856 2857 static int selinux_inode_readlink(struct dentry *dentry) 2858 { 2859 const struct cred *cred = current_cred(); 2860 2861 return dentry_has_perm(cred, dentry, FILE__READ); 2862 } 2863 2864 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2865 { 2866 const struct cred *cred = current_cred(); 2867 2868 return dentry_has_perm(cred, dentry, FILE__READ); 2869 } 2870 2871 static noinline int audit_inode_permission(struct inode *inode, 2872 u32 perms, u32 audited, u32 denied, 2873 int result, 2874 unsigned flags) 2875 { 2876 struct common_audit_data ad; 2877 struct inode_security_struct *isec = inode->i_security; 2878 int rc; 2879 2880 ad.type = LSM_AUDIT_DATA_INODE; 2881 ad.u.inode = inode; 2882 2883 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2884 audited, denied, result, &ad, flags); 2885 if (rc) 2886 return rc; 2887 return 0; 2888 } 2889 2890 static int selinux_inode_permission(struct inode *inode, int mask) 2891 { 2892 const struct cred *cred = current_cred(); 2893 u32 perms; 2894 bool from_access; 2895 unsigned flags = mask & MAY_NOT_BLOCK; 2896 struct inode_security_struct *isec; 2897 u32 sid; 2898 struct av_decision avd; 2899 int rc, rc2; 2900 u32 audited, denied; 2901 2902 from_access = mask & MAY_ACCESS; 2903 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2904 2905 /* No permission to check. Existence test. */ 2906 if (!mask) 2907 return 0; 2908 2909 validate_creds(cred); 2910 2911 if (unlikely(IS_PRIVATE(inode))) 2912 return 0; 2913 2914 perms = file_mask_to_av(inode->i_mode, mask); 2915 2916 sid = cred_sid(cred); 2917 isec = inode->i_security; 2918 2919 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2920 audited = avc_audit_required(perms, &avd, rc, 2921 from_access ? FILE__AUDIT_ACCESS : 0, 2922 &denied); 2923 if (likely(!audited)) 2924 return rc; 2925 2926 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2927 if (rc2) 2928 return rc2; 2929 return rc; 2930 } 2931 2932 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2933 { 2934 const struct cred *cred = current_cred(); 2935 unsigned int ia_valid = iattr->ia_valid; 2936 __u32 av = FILE__WRITE; 2937 2938 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2939 if (ia_valid & ATTR_FORCE) { 2940 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2941 ATTR_FORCE); 2942 if (!ia_valid) 2943 return 0; 2944 } 2945 2946 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2947 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2948 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2949 2950 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2951 av |= FILE__OPEN; 2952 2953 return dentry_has_perm(cred, dentry, av); 2954 } 2955 2956 static int selinux_inode_getattr(const struct path *path) 2957 { 2958 return path_has_perm(current_cred(), path, FILE__GETATTR); 2959 } 2960 2961 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2962 { 2963 const struct cred *cred = current_cred(); 2964 2965 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2966 sizeof XATTR_SECURITY_PREFIX - 1)) { 2967 if (!strcmp(name, XATTR_NAME_CAPS)) { 2968 if (!capable(CAP_SETFCAP)) 2969 return -EPERM; 2970 } else if (!capable(CAP_SYS_ADMIN)) { 2971 /* A different attribute in the security namespace. 2972 Restrict to administrator. */ 2973 return -EPERM; 2974 } 2975 } 2976 2977 /* Not an attribute we recognize, so just check the 2978 ordinary setattr permission. */ 2979 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2980 } 2981 2982 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2983 const void *value, size_t size, int flags) 2984 { 2985 struct inode *inode = d_backing_inode(dentry); 2986 struct inode_security_struct *isec = inode->i_security; 2987 struct superblock_security_struct *sbsec; 2988 struct common_audit_data ad; 2989 u32 newsid, sid = current_sid(); 2990 int rc = 0; 2991 2992 if (strcmp(name, XATTR_NAME_SELINUX)) 2993 return selinux_inode_setotherxattr(dentry, name); 2994 2995 sbsec = inode->i_sb->s_security; 2996 if (!(sbsec->flags & SBLABEL_MNT)) 2997 return -EOPNOTSUPP; 2998 2999 if (!inode_owner_or_capable(inode)) 3000 return -EPERM; 3001 3002 ad.type = LSM_AUDIT_DATA_DENTRY; 3003 ad.u.dentry = dentry; 3004 3005 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3006 FILE__RELABELFROM, &ad); 3007 if (rc) 3008 return rc; 3009 3010 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3011 if (rc == -EINVAL) { 3012 if (!capable(CAP_MAC_ADMIN)) { 3013 struct audit_buffer *ab; 3014 size_t audit_size; 3015 const char *str; 3016 3017 /* We strip a nul only if it is at the end, otherwise the 3018 * context contains a nul and we should audit that */ 3019 if (value) { 3020 str = value; 3021 if (str[size - 1] == '\0') 3022 audit_size = size - 1; 3023 else 3024 audit_size = size; 3025 } else { 3026 str = ""; 3027 audit_size = 0; 3028 } 3029 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3030 audit_log_format(ab, "op=setxattr invalid_context="); 3031 audit_log_n_untrustedstring(ab, value, audit_size); 3032 audit_log_end(ab); 3033 3034 return rc; 3035 } 3036 rc = security_context_to_sid_force(value, size, &newsid); 3037 } 3038 if (rc) 3039 return rc; 3040 3041 rc = avc_has_perm(sid, newsid, isec->sclass, 3042 FILE__RELABELTO, &ad); 3043 if (rc) 3044 return rc; 3045 3046 rc = security_validate_transition(isec->sid, newsid, sid, 3047 isec->sclass); 3048 if (rc) 3049 return rc; 3050 3051 return avc_has_perm(newsid, 3052 sbsec->sid, 3053 SECCLASS_FILESYSTEM, 3054 FILESYSTEM__ASSOCIATE, 3055 &ad); 3056 } 3057 3058 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3059 const void *value, size_t size, 3060 int flags) 3061 { 3062 struct inode *inode = d_backing_inode(dentry); 3063 struct inode_security_struct *isec = inode->i_security; 3064 u32 newsid; 3065 int rc; 3066 3067 if (strcmp(name, XATTR_NAME_SELINUX)) { 3068 /* Not an attribute we recognize, so nothing to do. */ 3069 return; 3070 } 3071 3072 rc = security_context_to_sid_force(value, size, &newsid); 3073 if (rc) { 3074 printk(KERN_ERR "SELinux: unable to map context to SID" 3075 "for (%s, %lu), rc=%d\n", 3076 inode->i_sb->s_id, inode->i_ino, -rc); 3077 return; 3078 } 3079 3080 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3081 isec->sid = newsid; 3082 isec->initialized = 1; 3083 3084 return; 3085 } 3086 3087 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3088 { 3089 const struct cred *cred = current_cred(); 3090 3091 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3092 } 3093 3094 static int selinux_inode_listxattr(struct dentry *dentry) 3095 { 3096 const struct cred *cred = current_cred(); 3097 3098 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3099 } 3100 3101 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3102 { 3103 if (strcmp(name, XATTR_NAME_SELINUX)) 3104 return selinux_inode_setotherxattr(dentry, name); 3105 3106 /* No one is allowed to remove a SELinux security label. 3107 You can change the label, but all data must be labeled. */ 3108 return -EACCES; 3109 } 3110 3111 /* 3112 * Copy the inode security context value to the user. 3113 * 3114 * Permission check is handled by selinux_inode_getxattr hook. 3115 */ 3116 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3117 { 3118 u32 size; 3119 int error; 3120 char *context = NULL; 3121 struct inode_security_struct *isec = inode->i_security; 3122 3123 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3124 return -EOPNOTSUPP; 3125 3126 /* 3127 * If the caller has CAP_MAC_ADMIN, then get the raw context 3128 * value even if it is not defined by current policy; otherwise, 3129 * use the in-core value under current policy. 3130 * Use the non-auditing forms of the permission checks since 3131 * getxattr may be called by unprivileged processes commonly 3132 * and lack of permission just means that we fall back to the 3133 * in-core context value, not a denial. 3134 */ 3135 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3136 SECURITY_CAP_NOAUDIT); 3137 if (!error) 3138 error = security_sid_to_context_force(isec->sid, &context, 3139 &size); 3140 else 3141 error = security_sid_to_context(isec->sid, &context, &size); 3142 if (error) 3143 return error; 3144 error = size; 3145 if (alloc) { 3146 *buffer = context; 3147 goto out_nofree; 3148 } 3149 kfree(context); 3150 out_nofree: 3151 return error; 3152 } 3153 3154 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3155 const void *value, size_t size, int flags) 3156 { 3157 struct inode_security_struct *isec = inode->i_security; 3158 u32 newsid; 3159 int rc; 3160 3161 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3162 return -EOPNOTSUPP; 3163 3164 if (!value || !size) 3165 return -EACCES; 3166 3167 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3168 if (rc) 3169 return rc; 3170 3171 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3172 isec->sid = newsid; 3173 isec->initialized = 1; 3174 return 0; 3175 } 3176 3177 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3178 { 3179 const int len = sizeof(XATTR_NAME_SELINUX); 3180 if (buffer && len <= buffer_size) 3181 memcpy(buffer, XATTR_NAME_SELINUX, len); 3182 return len; 3183 } 3184 3185 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3186 { 3187 struct inode_security_struct *isec = inode->i_security; 3188 *secid = isec->sid; 3189 } 3190 3191 /* file security operations */ 3192 3193 static int selinux_revalidate_file_permission(struct file *file, int mask) 3194 { 3195 const struct cred *cred = current_cred(); 3196 struct inode *inode = file_inode(file); 3197 3198 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3199 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3200 mask |= MAY_APPEND; 3201 3202 return file_has_perm(cred, file, 3203 file_mask_to_av(inode->i_mode, mask)); 3204 } 3205 3206 static int selinux_file_permission(struct file *file, int mask) 3207 { 3208 struct inode *inode = file_inode(file); 3209 struct file_security_struct *fsec = file->f_security; 3210 struct inode_security_struct *isec = inode->i_security; 3211 u32 sid = current_sid(); 3212 3213 if (!mask) 3214 /* No permission to check. Existence test. */ 3215 return 0; 3216 3217 if (sid == fsec->sid && fsec->isid == isec->sid && 3218 fsec->pseqno == avc_policy_seqno()) 3219 /* No change since file_open check. */ 3220 return 0; 3221 3222 return selinux_revalidate_file_permission(file, mask); 3223 } 3224 3225 static int selinux_file_alloc_security(struct file *file) 3226 { 3227 return file_alloc_security(file); 3228 } 3229 3230 static void selinux_file_free_security(struct file *file) 3231 { 3232 file_free_security(file); 3233 } 3234 3235 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3236 unsigned long arg) 3237 { 3238 const struct cred *cred = current_cred(); 3239 int error = 0; 3240 3241 switch (cmd) { 3242 case FIONREAD: 3243 /* fall through */ 3244 case FIBMAP: 3245 /* fall through */ 3246 case FIGETBSZ: 3247 /* fall through */ 3248 case FS_IOC_GETFLAGS: 3249 /* fall through */ 3250 case FS_IOC_GETVERSION: 3251 error = file_has_perm(cred, file, FILE__GETATTR); 3252 break; 3253 3254 case FS_IOC_SETFLAGS: 3255 /* fall through */ 3256 case FS_IOC_SETVERSION: 3257 error = file_has_perm(cred, file, FILE__SETATTR); 3258 break; 3259 3260 /* sys_ioctl() checks */ 3261 case FIONBIO: 3262 /* fall through */ 3263 case FIOASYNC: 3264 error = file_has_perm(cred, file, 0); 3265 break; 3266 3267 case KDSKBENT: 3268 case KDSKBSENT: 3269 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3270 SECURITY_CAP_AUDIT); 3271 break; 3272 3273 /* default case assumes that the command will go 3274 * to the file's ioctl() function. 3275 */ 3276 default: 3277 error = file_has_perm(cred, file, FILE__IOCTL); 3278 } 3279 return error; 3280 } 3281 3282 static int default_noexec; 3283 3284 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3285 { 3286 const struct cred *cred = current_cred(); 3287 int rc = 0; 3288 3289 if (default_noexec && 3290 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3291 /* 3292 * We are making executable an anonymous mapping or a 3293 * private file mapping that will also be writable. 3294 * This has an additional check. 3295 */ 3296 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3297 if (rc) 3298 goto error; 3299 } 3300 3301 if (file) { 3302 /* read access is always possible with a mapping */ 3303 u32 av = FILE__READ; 3304 3305 /* write access only matters if the mapping is shared */ 3306 if (shared && (prot & PROT_WRITE)) 3307 av |= FILE__WRITE; 3308 3309 if (prot & PROT_EXEC) 3310 av |= FILE__EXECUTE; 3311 3312 return file_has_perm(cred, file, av); 3313 } 3314 3315 error: 3316 return rc; 3317 } 3318 3319 static int selinux_mmap_addr(unsigned long addr) 3320 { 3321 int rc; 3322 3323 /* do DAC check on address space usage */ 3324 rc = cap_mmap_addr(addr); 3325 if (rc) 3326 return rc; 3327 3328 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3329 u32 sid = current_sid(); 3330 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3331 MEMPROTECT__MMAP_ZERO, NULL); 3332 } 3333 3334 return rc; 3335 } 3336 3337 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3338 unsigned long prot, unsigned long flags) 3339 { 3340 if (selinux_checkreqprot) 3341 prot = reqprot; 3342 3343 return file_map_prot_check(file, prot, 3344 (flags & MAP_TYPE) == MAP_SHARED); 3345 } 3346 3347 static int selinux_file_mprotect(struct vm_area_struct *vma, 3348 unsigned long reqprot, 3349 unsigned long prot) 3350 { 3351 const struct cred *cred = current_cred(); 3352 3353 if (selinux_checkreqprot) 3354 prot = reqprot; 3355 3356 if (default_noexec && 3357 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3358 int rc = 0; 3359 if (vma->vm_start >= vma->vm_mm->start_brk && 3360 vma->vm_end <= vma->vm_mm->brk) { 3361 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3362 } else if (!vma->vm_file && 3363 vma->vm_start <= vma->vm_mm->start_stack && 3364 vma->vm_end >= vma->vm_mm->start_stack) { 3365 rc = current_has_perm(current, PROCESS__EXECSTACK); 3366 } else if (vma->vm_file && vma->anon_vma) { 3367 /* 3368 * We are making executable a file mapping that has 3369 * had some COW done. Since pages might have been 3370 * written, check ability to execute the possibly 3371 * modified content. This typically should only 3372 * occur for text relocations. 3373 */ 3374 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3375 } 3376 if (rc) 3377 return rc; 3378 } 3379 3380 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3381 } 3382 3383 static int selinux_file_lock(struct file *file, unsigned int cmd) 3384 { 3385 const struct cred *cred = current_cred(); 3386 3387 return file_has_perm(cred, file, FILE__LOCK); 3388 } 3389 3390 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3391 unsigned long arg) 3392 { 3393 const struct cred *cred = current_cred(); 3394 int err = 0; 3395 3396 switch (cmd) { 3397 case F_SETFL: 3398 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3399 err = file_has_perm(cred, file, FILE__WRITE); 3400 break; 3401 } 3402 /* fall through */ 3403 case F_SETOWN: 3404 case F_SETSIG: 3405 case F_GETFL: 3406 case F_GETOWN: 3407 case F_GETSIG: 3408 case F_GETOWNER_UIDS: 3409 /* Just check FD__USE permission */ 3410 err = file_has_perm(cred, file, 0); 3411 break; 3412 case F_GETLK: 3413 case F_SETLK: 3414 case F_SETLKW: 3415 case F_OFD_GETLK: 3416 case F_OFD_SETLK: 3417 case F_OFD_SETLKW: 3418 #if BITS_PER_LONG == 32 3419 case F_GETLK64: 3420 case F_SETLK64: 3421 case F_SETLKW64: 3422 #endif 3423 err = file_has_perm(cred, file, FILE__LOCK); 3424 break; 3425 } 3426 3427 return err; 3428 } 3429 3430 static void selinux_file_set_fowner(struct file *file) 3431 { 3432 struct file_security_struct *fsec; 3433 3434 fsec = file->f_security; 3435 fsec->fown_sid = current_sid(); 3436 } 3437 3438 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3439 struct fown_struct *fown, int signum) 3440 { 3441 struct file *file; 3442 u32 sid = task_sid(tsk); 3443 u32 perm; 3444 struct file_security_struct *fsec; 3445 3446 /* struct fown_struct is never outside the context of a struct file */ 3447 file = container_of(fown, struct file, f_owner); 3448 3449 fsec = file->f_security; 3450 3451 if (!signum) 3452 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3453 else 3454 perm = signal_to_av(signum); 3455 3456 return avc_has_perm(fsec->fown_sid, sid, 3457 SECCLASS_PROCESS, perm, NULL); 3458 } 3459 3460 static int selinux_file_receive(struct file *file) 3461 { 3462 const struct cred *cred = current_cred(); 3463 3464 return file_has_perm(cred, file, file_to_av(file)); 3465 } 3466 3467 static int selinux_file_open(struct file *file, const struct cred *cred) 3468 { 3469 struct file_security_struct *fsec; 3470 struct inode_security_struct *isec; 3471 3472 fsec = file->f_security; 3473 isec = file_inode(file)->i_security; 3474 /* 3475 * Save inode label and policy sequence number 3476 * at open-time so that selinux_file_permission 3477 * can determine whether revalidation is necessary. 3478 * Task label is already saved in the file security 3479 * struct as its SID. 3480 */ 3481 fsec->isid = isec->sid; 3482 fsec->pseqno = avc_policy_seqno(); 3483 /* 3484 * Since the inode label or policy seqno may have changed 3485 * between the selinux_inode_permission check and the saving 3486 * of state above, recheck that access is still permitted. 3487 * Otherwise, access might never be revalidated against the 3488 * new inode label or new policy. 3489 * This check is not redundant - do not remove. 3490 */ 3491 return file_path_has_perm(cred, file, open_file_to_av(file)); 3492 } 3493 3494 /* task security operations */ 3495 3496 static int selinux_task_create(unsigned long clone_flags) 3497 { 3498 return current_has_perm(current, PROCESS__FORK); 3499 } 3500 3501 /* 3502 * allocate the SELinux part of blank credentials 3503 */ 3504 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3505 { 3506 struct task_security_struct *tsec; 3507 3508 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3509 if (!tsec) 3510 return -ENOMEM; 3511 3512 cred->security = tsec; 3513 return 0; 3514 } 3515 3516 /* 3517 * detach and free the LSM part of a set of credentials 3518 */ 3519 static void selinux_cred_free(struct cred *cred) 3520 { 3521 struct task_security_struct *tsec = cred->security; 3522 3523 /* 3524 * cred->security == NULL if security_cred_alloc_blank() or 3525 * security_prepare_creds() returned an error. 3526 */ 3527 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3528 cred->security = (void *) 0x7UL; 3529 kfree(tsec); 3530 } 3531 3532 /* 3533 * prepare a new set of credentials for modification 3534 */ 3535 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3536 gfp_t gfp) 3537 { 3538 const struct task_security_struct *old_tsec; 3539 struct task_security_struct *tsec; 3540 3541 old_tsec = old->security; 3542 3543 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3544 if (!tsec) 3545 return -ENOMEM; 3546 3547 new->security = tsec; 3548 return 0; 3549 } 3550 3551 /* 3552 * transfer the SELinux data to a blank set of creds 3553 */ 3554 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3555 { 3556 const struct task_security_struct *old_tsec = old->security; 3557 struct task_security_struct *tsec = new->security; 3558 3559 *tsec = *old_tsec; 3560 } 3561 3562 /* 3563 * set the security data for a kernel service 3564 * - all the creation contexts are set to unlabelled 3565 */ 3566 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3567 { 3568 struct task_security_struct *tsec = new->security; 3569 u32 sid = current_sid(); 3570 int ret; 3571 3572 ret = avc_has_perm(sid, secid, 3573 SECCLASS_KERNEL_SERVICE, 3574 KERNEL_SERVICE__USE_AS_OVERRIDE, 3575 NULL); 3576 if (ret == 0) { 3577 tsec->sid = secid; 3578 tsec->create_sid = 0; 3579 tsec->keycreate_sid = 0; 3580 tsec->sockcreate_sid = 0; 3581 } 3582 return ret; 3583 } 3584 3585 /* 3586 * set the file creation context in a security record to the same as the 3587 * objective context of the specified inode 3588 */ 3589 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3590 { 3591 struct inode_security_struct *isec = inode->i_security; 3592 struct task_security_struct *tsec = new->security; 3593 u32 sid = current_sid(); 3594 int ret; 3595 3596 ret = avc_has_perm(sid, isec->sid, 3597 SECCLASS_KERNEL_SERVICE, 3598 KERNEL_SERVICE__CREATE_FILES_AS, 3599 NULL); 3600 3601 if (ret == 0) 3602 tsec->create_sid = isec->sid; 3603 return ret; 3604 } 3605 3606 static int selinux_kernel_module_request(char *kmod_name) 3607 { 3608 u32 sid; 3609 struct common_audit_data ad; 3610 3611 sid = task_sid(current); 3612 3613 ad.type = LSM_AUDIT_DATA_KMOD; 3614 ad.u.kmod_name = kmod_name; 3615 3616 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3617 SYSTEM__MODULE_REQUEST, &ad); 3618 } 3619 3620 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3621 { 3622 return current_has_perm(p, PROCESS__SETPGID); 3623 } 3624 3625 static int selinux_task_getpgid(struct task_struct *p) 3626 { 3627 return current_has_perm(p, PROCESS__GETPGID); 3628 } 3629 3630 static int selinux_task_getsid(struct task_struct *p) 3631 { 3632 return current_has_perm(p, PROCESS__GETSESSION); 3633 } 3634 3635 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3636 { 3637 *secid = task_sid(p); 3638 } 3639 3640 static int selinux_task_setnice(struct task_struct *p, int nice) 3641 { 3642 int rc; 3643 3644 rc = cap_task_setnice(p, nice); 3645 if (rc) 3646 return rc; 3647 3648 return current_has_perm(p, PROCESS__SETSCHED); 3649 } 3650 3651 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3652 { 3653 int rc; 3654 3655 rc = cap_task_setioprio(p, ioprio); 3656 if (rc) 3657 return rc; 3658 3659 return current_has_perm(p, PROCESS__SETSCHED); 3660 } 3661 3662 static int selinux_task_getioprio(struct task_struct *p) 3663 { 3664 return current_has_perm(p, PROCESS__GETSCHED); 3665 } 3666 3667 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3668 struct rlimit *new_rlim) 3669 { 3670 struct rlimit *old_rlim = p->signal->rlim + resource; 3671 3672 /* Control the ability to change the hard limit (whether 3673 lowering or raising it), so that the hard limit can 3674 later be used as a safe reset point for the soft limit 3675 upon context transitions. See selinux_bprm_committing_creds. */ 3676 if (old_rlim->rlim_max != new_rlim->rlim_max) 3677 return current_has_perm(p, PROCESS__SETRLIMIT); 3678 3679 return 0; 3680 } 3681 3682 static int selinux_task_setscheduler(struct task_struct *p) 3683 { 3684 int rc; 3685 3686 rc = cap_task_setscheduler(p); 3687 if (rc) 3688 return rc; 3689 3690 return current_has_perm(p, PROCESS__SETSCHED); 3691 } 3692 3693 static int selinux_task_getscheduler(struct task_struct *p) 3694 { 3695 return current_has_perm(p, PROCESS__GETSCHED); 3696 } 3697 3698 static int selinux_task_movememory(struct task_struct *p) 3699 { 3700 return current_has_perm(p, PROCESS__SETSCHED); 3701 } 3702 3703 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3704 int sig, u32 secid) 3705 { 3706 u32 perm; 3707 int rc; 3708 3709 if (!sig) 3710 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3711 else 3712 perm = signal_to_av(sig); 3713 if (secid) 3714 rc = avc_has_perm(secid, task_sid(p), 3715 SECCLASS_PROCESS, perm, NULL); 3716 else 3717 rc = current_has_perm(p, perm); 3718 return rc; 3719 } 3720 3721 static int selinux_task_wait(struct task_struct *p) 3722 { 3723 return task_has_perm(p, current, PROCESS__SIGCHLD); 3724 } 3725 3726 static void selinux_task_to_inode(struct task_struct *p, 3727 struct inode *inode) 3728 { 3729 struct inode_security_struct *isec = inode->i_security; 3730 u32 sid = task_sid(p); 3731 3732 isec->sid = sid; 3733 isec->initialized = 1; 3734 } 3735 3736 /* Returns error only if unable to parse addresses */ 3737 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3738 struct common_audit_data *ad, u8 *proto) 3739 { 3740 int offset, ihlen, ret = -EINVAL; 3741 struct iphdr _iph, *ih; 3742 3743 offset = skb_network_offset(skb); 3744 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3745 if (ih == NULL) 3746 goto out; 3747 3748 ihlen = ih->ihl * 4; 3749 if (ihlen < sizeof(_iph)) 3750 goto out; 3751 3752 ad->u.net->v4info.saddr = ih->saddr; 3753 ad->u.net->v4info.daddr = ih->daddr; 3754 ret = 0; 3755 3756 if (proto) 3757 *proto = ih->protocol; 3758 3759 switch (ih->protocol) { 3760 case IPPROTO_TCP: { 3761 struct tcphdr _tcph, *th; 3762 3763 if (ntohs(ih->frag_off) & IP_OFFSET) 3764 break; 3765 3766 offset += ihlen; 3767 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3768 if (th == NULL) 3769 break; 3770 3771 ad->u.net->sport = th->source; 3772 ad->u.net->dport = th->dest; 3773 break; 3774 } 3775 3776 case IPPROTO_UDP: { 3777 struct udphdr _udph, *uh; 3778 3779 if (ntohs(ih->frag_off) & IP_OFFSET) 3780 break; 3781 3782 offset += ihlen; 3783 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3784 if (uh == NULL) 3785 break; 3786 3787 ad->u.net->sport = uh->source; 3788 ad->u.net->dport = uh->dest; 3789 break; 3790 } 3791 3792 case IPPROTO_DCCP: { 3793 struct dccp_hdr _dccph, *dh; 3794 3795 if (ntohs(ih->frag_off) & IP_OFFSET) 3796 break; 3797 3798 offset += ihlen; 3799 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3800 if (dh == NULL) 3801 break; 3802 3803 ad->u.net->sport = dh->dccph_sport; 3804 ad->u.net->dport = dh->dccph_dport; 3805 break; 3806 } 3807 3808 default: 3809 break; 3810 } 3811 out: 3812 return ret; 3813 } 3814 3815 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3816 3817 /* Returns error only if unable to parse addresses */ 3818 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3819 struct common_audit_data *ad, u8 *proto) 3820 { 3821 u8 nexthdr; 3822 int ret = -EINVAL, offset; 3823 struct ipv6hdr _ipv6h, *ip6; 3824 __be16 frag_off; 3825 3826 offset = skb_network_offset(skb); 3827 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3828 if (ip6 == NULL) 3829 goto out; 3830 3831 ad->u.net->v6info.saddr = ip6->saddr; 3832 ad->u.net->v6info.daddr = ip6->daddr; 3833 ret = 0; 3834 3835 nexthdr = ip6->nexthdr; 3836 offset += sizeof(_ipv6h); 3837 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3838 if (offset < 0) 3839 goto out; 3840 3841 if (proto) 3842 *proto = nexthdr; 3843 3844 switch (nexthdr) { 3845 case IPPROTO_TCP: { 3846 struct tcphdr _tcph, *th; 3847 3848 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3849 if (th == NULL) 3850 break; 3851 3852 ad->u.net->sport = th->source; 3853 ad->u.net->dport = th->dest; 3854 break; 3855 } 3856 3857 case IPPROTO_UDP: { 3858 struct udphdr _udph, *uh; 3859 3860 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3861 if (uh == NULL) 3862 break; 3863 3864 ad->u.net->sport = uh->source; 3865 ad->u.net->dport = uh->dest; 3866 break; 3867 } 3868 3869 case IPPROTO_DCCP: { 3870 struct dccp_hdr _dccph, *dh; 3871 3872 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3873 if (dh == NULL) 3874 break; 3875 3876 ad->u.net->sport = dh->dccph_sport; 3877 ad->u.net->dport = dh->dccph_dport; 3878 break; 3879 } 3880 3881 /* includes fragments */ 3882 default: 3883 break; 3884 } 3885 out: 3886 return ret; 3887 } 3888 3889 #endif /* IPV6 */ 3890 3891 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3892 char **_addrp, int src, u8 *proto) 3893 { 3894 char *addrp; 3895 int ret; 3896 3897 switch (ad->u.net->family) { 3898 case PF_INET: 3899 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3900 if (ret) 3901 goto parse_error; 3902 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3903 &ad->u.net->v4info.daddr); 3904 goto okay; 3905 3906 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3907 case PF_INET6: 3908 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3909 if (ret) 3910 goto parse_error; 3911 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3912 &ad->u.net->v6info.daddr); 3913 goto okay; 3914 #endif /* IPV6 */ 3915 default: 3916 addrp = NULL; 3917 goto okay; 3918 } 3919 3920 parse_error: 3921 printk(KERN_WARNING 3922 "SELinux: failure in selinux_parse_skb()," 3923 " unable to parse packet\n"); 3924 return ret; 3925 3926 okay: 3927 if (_addrp) 3928 *_addrp = addrp; 3929 return 0; 3930 } 3931 3932 /** 3933 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3934 * @skb: the packet 3935 * @family: protocol family 3936 * @sid: the packet's peer label SID 3937 * 3938 * Description: 3939 * Check the various different forms of network peer labeling and determine 3940 * the peer label/SID for the packet; most of the magic actually occurs in 3941 * the security server function security_net_peersid_cmp(). The function 3942 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3943 * or -EACCES if @sid is invalid due to inconsistencies with the different 3944 * peer labels. 3945 * 3946 */ 3947 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3948 { 3949 int err; 3950 u32 xfrm_sid; 3951 u32 nlbl_sid; 3952 u32 nlbl_type; 3953 3954 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3955 if (unlikely(err)) 3956 return -EACCES; 3957 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3958 if (unlikely(err)) 3959 return -EACCES; 3960 3961 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3962 if (unlikely(err)) { 3963 printk(KERN_WARNING 3964 "SELinux: failure in selinux_skb_peerlbl_sid()," 3965 " unable to determine packet's peer label\n"); 3966 return -EACCES; 3967 } 3968 3969 return 0; 3970 } 3971 3972 /** 3973 * selinux_conn_sid - Determine the child socket label for a connection 3974 * @sk_sid: the parent socket's SID 3975 * @skb_sid: the packet's SID 3976 * @conn_sid: the resulting connection SID 3977 * 3978 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3979 * combined with the MLS information from @skb_sid in order to create 3980 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 3981 * of @sk_sid. Returns zero on success, negative values on failure. 3982 * 3983 */ 3984 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 3985 { 3986 int err = 0; 3987 3988 if (skb_sid != SECSID_NULL) 3989 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 3990 else 3991 *conn_sid = sk_sid; 3992 3993 return err; 3994 } 3995 3996 /* socket security operations */ 3997 3998 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 3999 u16 secclass, u32 *socksid) 4000 { 4001 if (tsec->sockcreate_sid > SECSID_NULL) { 4002 *socksid = tsec->sockcreate_sid; 4003 return 0; 4004 } 4005 4006 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4007 socksid); 4008 } 4009 4010 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4011 { 4012 struct sk_security_struct *sksec = sk->sk_security; 4013 struct common_audit_data ad; 4014 struct lsm_network_audit net = {0,}; 4015 u32 tsid = task_sid(task); 4016 4017 if (sksec->sid == SECINITSID_KERNEL) 4018 return 0; 4019 4020 ad.type = LSM_AUDIT_DATA_NET; 4021 ad.u.net = &net; 4022 ad.u.net->sk = sk; 4023 4024 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4025 } 4026 4027 static int selinux_socket_create(int family, int type, 4028 int protocol, int kern) 4029 { 4030 const struct task_security_struct *tsec = current_security(); 4031 u32 newsid; 4032 u16 secclass; 4033 int rc; 4034 4035 if (kern) 4036 return 0; 4037 4038 secclass = socket_type_to_security_class(family, type, protocol); 4039 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4040 if (rc) 4041 return rc; 4042 4043 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4044 } 4045 4046 static int selinux_socket_post_create(struct socket *sock, int family, 4047 int type, int protocol, int kern) 4048 { 4049 const struct task_security_struct *tsec = current_security(); 4050 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4051 struct sk_security_struct *sksec; 4052 int err = 0; 4053 4054 isec->sclass = socket_type_to_security_class(family, type, protocol); 4055 4056 if (kern) 4057 isec->sid = SECINITSID_KERNEL; 4058 else { 4059 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4060 if (err) 4061 return err; 4062 } 4063 4064 isec->initialized = 1; 4065 4066 if (sock->sk) { 4067 sksec = sock->sk->sk_security; 4068 sksec->sid = isec->sid; 4069 sksec->sclass = isec->sclass; 4070 err = selinux_netlbl_socket_post_create(sock->sk, family); 4071 } 4072 4073 return err; 4074 } 4075 4076 /* Range of port numbers used to automatically bind. 4077 Need to determine whether we should perform a name_bind 4078 permission check between the socket and the port number. */ 4079 4080 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4081 { 4082 struct sock *sk = sock->sk; 4083 u16 family; 4084 int err; 4085 4086 err = sock_has_perm(current, sk, SOCKET__BIND); 4087 if (err) 4088 goto out; 4089 4090 /* 4091 * If PF_INET or PF_INET6, check name_bind permission for the port. 4092 * Multiple address binding for SCTP is not supported yet: we just 4093 * check the first address now. 4094 */ 4095 family = sk->sk_family; 4096 if (family == PF_INET || family == PF_INET6) { 4097 char *addrp; 4098 struct sk_security_struct *sksec = sk->sk_security; 4099 struct common_audit_data ad; 4100 struct lsm_network_audit net = {0,}; 4101 struct sockaddr_in *addr4 = NULL; 4102 struct sockaddr_in6 *addr6 = NULL; 4103 unsigned short snum; 4104 u32 sid, node_perm; 4105 4106 if (family == PF_INET) { 4107 addr4 = (struct sockaddr_in *)address; 4108 snum = ntohs(addr4->sin_port); 4109 addrp = (char *)&addr4->sin_addr.s_addr; 4110 } else { 4111 addr6 = (struct sockaddr_in6 *)address; 4112 snum = ntohs(addr6->sin6_port); 4113 addrp = (char *)&addr6->sin6_addr.s6_addr; 4114 } 4115 4116 if (snum) { 4117 int low, high; 4118 4119 inet_get_local_port_range(sock_net(sk), &low, &high); 4120 4121 if (snum < max(PROT_SOCK, low) || snum > high) { 4122 err = sel_netport_sid(sk->sk_protocol, 4123 snum, &sid); 4124 if (err) 4125 goto out; 4126 ad.type = LSM_AUDIT_DATA_NET; 4127 ad.u.net = &net; 4128 ad.u.net->sport = htons(snum); 4129 ad.u.net->family = family; 4130 err = avc_has_perm(sksec->sid, sid, 4131 sksec->sclass, 4132 SOCKET__NAME_BIND, &ad); 4133 if (err) 4134 goto out; 4135 } 4136 } 4137 4138 switch (sksec->sclass) { 4139 case SECCLASS_TCP_SOCKET: 4140 node_perm = TCP_SOCKET__NODE_BIND; 4141 break; 4142 4143 case SECCLASS_UDP_SOCKET: 4144 node_perm = UDP_SOCKET__NODE_BIND; 4145 break; 4146 4147 case SECCLASS_DCCP_SOCKET: 4148 node_perm = DCCP_SOCKET__NODE_BIND; 4149 break; 4150 4151 default: 4152 node_perm = RAWIP_SOCKET__NODE_BIND; 4153 break; 4154 } 4155 4156 err = sel_netnode_sid(addrp, family, &sid); 4157 if (err) 4158 goto out; 4159 4160 ad.type = LSM_AUDIT_DATA_NET; 4161 ad.u.net = &net; 4162 ad.u.net->sport = htons(snum); 4163 ad.u.net->family = family; 4164 4165 if (family == PF_INET) 4166 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4167 else 4168 ad.u.net->v6info.saddr = addr6->sin6_addr; 4169 4170 err = avc_has_perm(sksec->sid, sid, 4171 sksec->sclass, node_perm, &ad); 4172 if (err) 4173 goto out; 4174 } 4175 out: 4176 return err; 4177 } 4178 4179 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4180 { 4181 struct sock *sk = sock->sk; 4182 struct sk_security_struct *sksec = sk->sk_security; 4183 int err; 4184 4185 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4186 if (err) 4187 return err; 4188 4189 /* 4190 * If a TCP or DCCP socket, check name_connect permission for the port. 4191 */ 4192 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4193 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4194 struct common_audit_data ad; 4195 struct lsm_network_audit net = {0,}; 4196 struct sockaddr_in *addr4 = NULL; 4197 struct sockaddr_in6 *addr6 = NULL; 4198 unsigned short snum; 4199 u32 sid, perm; 4200 4201 if (sk->sk_family == PF_INET) { 4202 addr4 = (struct sockaddr_in *)address; 4203 if (addrlen < sizeof(struct sockaddr_in)) 4204 return -EINVAL; 4205 snum = ntohs(addr4->sin_port); 4206 } else { 4207 addr6 = (struct sockaddr_in6 *)address; 4208 if (addrlen < SIN6_LEN_RFC2133) 4209 return -EINVAL; 4210 snum = ntohs(addr6->sin6_port); 4211 } 4212 4213 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4214 if (err) 4215 goto out; 4216 4217 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4218 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4219 4220 ad.type = LSM_AUDIT_DATA_NET; 4221 ad.u.net = &net; 4222 ad.u.net->dport = htons(snum); 4223 ad.u.net->family = sk->sk_family; 4224 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4225 if (err) 4226 goto out; 4227 } 4228 4229 err = selinux_netlbl_socket_connect(sk, address); 4230 4231 out: 4232 return err; 4233 } 4234 4235 static int selinux_socket_listen(struct socket *sock, int backlog) 4236 { 4237 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4238 } 4239 4240 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4241 { 4242 int err; 4243 struct inode_security_struct *isec; 4244 struct inode_security_struct *newisec; 4245 4246 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4247 if (err) 4248 return err; 4249 4250 newisec = SOCK_INODE(newsock)->i_security; 4251 4252 isec = SOCK_INODE(sock)->i_security; 4253 newisec->sclass = isec->sclass; 4254 newisec->sid = isec->sid; 4255 newisec->initialized = 1; 4256 4257 return 0; 4258 } 4259 4260 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4261 int size) 4262 { 4263 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4264 } 4265 4266 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4267 int size, int flags) 4268 { 4269 return sock_has_perm(current, sock->sk, SOCKET__READ); 4270 } 4271 4272 static int selinux_socket_getsockname(struct socket *sock) 4273 { 4274 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4275 } 4276 4277 static int selinux_socket_getpeername(struct socket *sock) 4278 { 4279 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4280 } 4281 4282 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4283 { 4284 int err; 4285 4286 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4287 if (err) 4288 return err; 4289 4290 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4291 } 4292 4293 static int selinux_socket_getsockopt(struct socket *sock, int level, 4294 int optname) 4295 { 4296 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4297 } 4298 4299 static int selinux_socket_shutdown(struct socket *sock, int how) 4300 { 4301 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4302 } 4303 4304 static int selinux_socket_unix_stream_connect(struct sock *sock, 4305 struct sock *other, 4306 struct sock *newsk) 4307 { 4308 struct sk_security_struct *sksec_sock = sock->sk_security; 4309 struct sk_security_struct *sksec_other = other->sk_security; 4310 struct sk_security_struct *sksec_new = newsk->sk_security; 4311 struct common_audit_data ad; 4312 struct lsm_network_audit net = {0,}; 4313 int err; 4314 4315 ad.type = LSM_AUDIT_DATA_NET; 4316 ad.u.net = &net; 4317 ad.u.net->sk = other; 4318 4319 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4320 sksec_other->sclass, 4321 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4322 if (err) 4323 return err; 4324 4325 /* server child socket */ 4326 sksec_new->peer_sid = sksec_sock->sid; 4327 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4328 &sksec_new->sid); 4329 if (err) 4330 return err; 4331 4332 /* connecting socket */ 4333 sksec_sock->peer_sid = sksec_new->sid; 4334 4335 return 0; 4336 } 4337 4338 static int selinux_socket_unix_may_send(struct socket *sock, 4339 struct socket *other) 4340 { 4341 struct sk_security_struct *ssec = sock->sk->sk_security; 4342 struct sk_security_struct *osec = other->sk->sk_security; 4343 struct common_audit_data ad; 4344 struct lsm_network_audit net = {0,}; 4345 4346 ad.type = LSM_AUDIT_DATA_NET; 4347 ad.u.net = &net; 4348 ad.u.net->sk = other->sk; 4349 4350 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4351 &ad); 4352 } 4353 4354 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4355 char *addrp, u16 family, u32 peer_sid, 4356 struct common_audit_data *ad) 4357 { 4358 int err; 4359 u32 if_sid; 4360 u32 node_sid; 4361 4362 err = sel_netif_sid(ns, ifindex, &if_sid); 4363 if (err) 4364 return err; 4365 err = avc_has_perm(peer_sid, if_sid, 4366 SECCLASS_NETIF, NETIF__INGRESS, ad); 4367 if (err) 4368 return err; 4369 4370 err = sel_netnode_sid(addrp, family, &node_sid); 4371 if (err) 4372 return err; 4373 return avc_has_perm(peer_sid, node_sid, 4374 SECCLASS_NODE, NODE__RECVFROM, ad); 4375 } 4376 4377 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4378 u16 family) 4379 { 4380 int err = 0; 4381 struct sk_security_struct *sksec = sk->sk_security; 4382 u32 sk_sid = sksec->sid; 4383 struct common_audit_data ad; 4384 struct lsm_network_audit net = {0,}; 4385 char *addrp; 4386 4387 ad.type = LSM_AUDIT_DATA_NET; 4388 ad.u.net = &net; 4389 ad.u.net->netif = skb->skb_iif; 4390 ad.u.net->family = family; 4391 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4392 if (err) 4393 return err; 4394 4395 if (selinux_secmark_enabled()) { 4396 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4397 PACKET__RECV, &ad); 4398 if (err) 4399 return err; 4400 } 4401 4402 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4403 if (err) 4404 return err; 4405 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4406 4407 return err; 4408 } 4409 4410 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4411 { 4412 int err; 4413 struct sk_security_struct *sksec = sk->sk_security; 4414 u16 family = sk->sk_family; 4415 u32 sk_sid = sksec->sid; 4416 struct common_audit_data ad; 4417 struct lsm_network_audit net = {0,}; 4418 char *addrp; 4419 u8 secmark_active; 4420 u8 peerlbl_active; 4421 4422 if (family != PF_INET && family != PF_INET6) 4423 return 0; 4424 4425 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4426 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4427 family = PF_INET; 4428 4429 /* If any sort of compatibility mode is enabled then handoff processing 4430 * to the selinux_sock_rcv_skb_compat() function to deal with the 4431 * special handling. We do this in an attempt to keep this function 4432 * as fast and as clean as possible. */ 4433 if (!selinux_policycap_netpeer) 4434 return selinux_sock_rcv_skb_compat(sk, skb, family); 4435 4436 secmark_active = selinux_secmark_enabled(); 4437 peerlbl_active = selinux_peerlbl_enabled(); 4438 if (!secmark_active && !peerlbl_active) 4439 return 0; 4440 4441 ad.type = LSM_AUDIT_DATA_NET; 4442 ad.u.net = &net; 4443 ad.u.net->netif = skb->skb_iif; 4444 ad.u.net->family = family; 4445 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4446 if (err) 4447 return err; 4448 4449 if (peerlbl_active) { 4450 u32 peer_sid; 4451 4452 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4453 if (err) 4454 return err; 4455 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4456 addrp, family, peer_sid, &ad); 4457 if (err) { 4458 selinux_netlbl_err(skb, err, 0); 4459 return err; 4460 } 4461 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4462 PEER__RECV, &ad); 4463 if (err) { 4464 selinux_netlbl_err(skb, err, 0); 4465 return err; 4466 } 4467 } 4468 4469 if (secmark_active) { 4470 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4471 PACKET__RECV, &ad); 4472 if (err) 4473 return err; 4474 } 4475 4476 return err; 4477 } 4478 4479 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4480 int __user *optlen, unsigned len) 4481 { 4482 int err = 0; 4483 char *scontext; 4484 u32 scontext_len; 4485 struct sk_security_struct *sksec = sock->sk->sk_security; 4486 u32 peer_sid = SECSID_NULL; 4487 4488 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4489 sksec->sclass == SECCLASS_TCP_SOCKET) 4490 peer_sid = sksec->peer_sid; 4491 if (peer_sid == SECSID_NULL) 4492 return -ENOPROTOOPT; 4493 4494 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4495 if (err) 4496 return err; 4497 4498 if (scontext_len > len) { 4499 err = -ERANGE; 4500 goto out_len; 4501 } 4502 4503 if (copy_to_user(optval, scontext, scontext_len)) 4504 err = -EFAULT; 4505 4506 out_len: 4507 if (put_user(scontext_len, optlen)) 4508 err = -EFAULT; 4509 kfree(scontext); 4510 return err; 4511 } 4512 4513 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4514 { 4515 u32 peer_secid = SECSID_NULL; 4516 u16 family; 4517 4518 if (skb && skb->protocol == htons(ETH_P_IP)) 4519 family = PF_INET; 4520 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4521 family = PF_INET6; 4522 else if (sock) 4523 family = sock->sk->sk_family; 4524 else 4525 goto out; 4526 4527 if (sock && family == PF_UNIX) 4528 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4529 else if (skb) 4530 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4531 4532 out: 4533 *secid = peer_secid; 4534 if (peer_secid == SECSID_NULL) 4535 return -EINVAL; 4536 return 0; 4537 } 4538 4539 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4540 { 4541 struct sk_security_struct *sksec; 4542 4543 sksec = kzalloc(sizeof(*sksec), priority); 4544 if (!sksec) 4545 return -ENOMEM; 4546 4547 sksec->peer_sid = SECINITSID_UNLABELED; 4548 sksec->sid = SECINITSID_UNLABELED; 4549 selinux_netlbl_sk_security_reset(sksec); 4550 sk->sk_security = sksec; 4551 4552 return 0; 4553 } 4554 4555 static void selinux_sk_free_security(struct sock *sk) 4556 { 4557 struct sk_security_struct *sksec = sk->sk_security; 4558 4559 sk->sk_security = NULL; 4560 selinux_netlbl_sk_security_free(sksec); 4561 kfree(sksec); 4562 } 4563 4564 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4565 { 4566 struct sk_security_struct *sksec = sk->sk_security; 4567 struct sk_security_struct *newsksec = newsk->sk_security; 4568 4569 newsksec->sid = sksec->sid; 4570 newsksec->peer_sid = sksec->peer_sid; 4571 newsksec->sclass = sksec->sclass; 4572 4573 selinux_netlbl_sk_security_reset(newsksec); 4574 } 4575 4576 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4577 { 4578 if (!sk) 4579 *secid = SECINITSID_ANY_SOCKET; 4580 else { 4581 struct sk_security_struct *sksec = sk->sk_security; 4582 4583 *secid = sksec->sid; 4584 } 4585 } 4586 4587 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4588 { 4589 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4590 struct sk_security_struct *sksec = sk->sk_security; 4591 4592 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4593 sk->sk_family == PF_UNIX) 4594 isec->sid = sksec->sid; 4595 sksec->sclass = isec->sclass; 4596 } 4597 4598 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4599 struct request_sock *req) 4600 { 4601 struct sk_security_struct *sksec = sk->sk_security; 4602 int err; 4603 u16 family = req->rsk_ops->family; 4604 u32 connsid; 4605 u32 peersid; 4606 4607 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4608 if (err) 4609 return err; 4610 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4611 if (err) 4612 return err; 4613 req->secid = connsid; 4614 req->peer_secid = peersid; 4615 4616 return selinux_netlbl_inet_conn_request(req, family); 4617 } 4618 4619 static void selinux_inet_csk_clone(struct sock *newsk, 4620 const struct request_sock *req) 4621 { 4622 struct sk_security_struct *newsksec = newsk->sk_security; 4623 4624 newsksec->sid = req->secid; 4625 newsksec->peer_sid = req->peer_secid; 4626 /* NOTE: Ideally, we should also get the isec->sid for the 4627 new socket in sync, but we don't have the isec available yet. 4628 So we will wait until sock_graft to do it, by which 4629 time it will have been created and available. */ 4630 4631 /* We don't need to take any sort of lock here as we are the only 4632 * thread with access to newsksec */ 4633 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4634 } 4635 4636 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4637 { 4638 u16 family = sk->sk_family; 4639 struct sk_security_struct *sksec = sk->sk_security; 4640 4641 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4642 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4643 family = PF_INET; 4644 4645 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4646 } 4647 4648 static int selinux_secmark_relabel_packet(u32 sid) 4649 { 4650 const struct task_security_struct *__tsec; 4651 u32 tsid; 4652 4653 __tsec = current_security(); 4654 tsid = __tsec->sid; 4655 4656 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4657 } 4658 4659 static void selinux_secmark_refcount_inc(void) 4660 { 4661 atomic_inc(&selinux_secmark_refcount); 4662 } 4663 4664 static void selinux_secmark_refcount_dec(void) 4665 { 4666 atomic_dec(&selinux_secmark_refcount); 4667 } 4668 4669 static void selinux_req_classify_flow(const struct request_sock *req, 4670 struct flowi *fl) 4671 { 4672 fl->flowi_secid = req->secid; 4673 } 4674 4675 static int selinux_tun_dev_alloc_security(void **security) 4676 { 4677 struct tun_security_struct *tunsec; 4678 4679 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4680 if (!tunsec) 4681 return -ENOMEM; 4682 tunsec->sid = current_sid(); 4683 4684 *security = tunsec; 4685 return 0; 4686 } 4687 4688 static void selinux_tun_dev_free_security(void *security) 4689 { 4690 kfree(security); 4691 } 4692 4693 static int selinux_tun_dev_create(void) 4694 { 4695 u32 sid = current_sid(); 4696 4697 /* we aren't taking into account the "sockcreate" SID since the socket 4698 * that is being created here is not a socket in the traditional sense, 4699 * instead it is a private sock, accessible only to the kernel, and 4700 * representing a wide range of network traffic spanning multiple 4701 * connections unlike traditional sockets - check the TUN driver to 4702 * get a better understanding of why this socket is special */ 4703 4704 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4705 NULL); 4706 } 4707 4708 static int selinux_tun_dev_attach_queue(void *security) 4709 { 4710 struct tun_security_struct *tunsec = security; 4711 4712 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4713 TUN_SOCKET__ATTACH_QUEUE, NULL); 4714 } 4715 4716 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4717 { 4718 struct tun_security_struct *tunsec = security; 4719 struct sk_security_struct *sksec = sk->sk_security; 4720 4721 /* we don't currently perform any NetLabel based labeling here and it 4722 * isn't clear that we would want to do so anyway; while we could apply 4723 * labeling without the support of the TUN user the resulting labeled 4724 * traffic from the other end of the connection would almost certainly 4725 * cause confusion to the TUN user that had no idea network labeling 4726 * protocols were being used */ 4727 4728 sksec->sid = tunsec->sid; 4729 sksec->sclass = SECCLASS_TUN_SOCKET; 4730 4731 return 0; 4732 } 4733 4734 static int selinux_tun_dev_open(void *security) 4735 { 4736 struct tun_security_struct *tunsec = security; 4737 u32 sid = current_sid(); 4738 int err; 4739 4740 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4741 TUN_SOCKET__RELABELFROM, NULL); 4742 if (err) 4743 return err; 4744 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4745 TUN_SOCKET__RELABELTO, NULL); 4746 if (err) 4747 return err; 4748 tunsec->sid = sid; 4749 4750 return 0; 4751 } 4752 4753 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4754 { 4755 int err = 0; 4756 u32 perm; 4757 struct nlmsghdr *nlh; 4758 struct sk_security_struct *sksec = sk->sk_security; 4759 4760 if (skb->len < NLMSG_HDRLEN) { 4761 err = -EINVAL; 4762 goto out; 4763 } 4764 nlh = nlmsg_hdr(skb); 4765 4766 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4767 if (err) { 4768 if (err == -EINVAL) { 4769 printk(KERN_WARNING 4770 "SELinux: unrecognized netlink message:" 4771 " protocol=%hu nlmsg_type=%hu sclass=%hu\n", 4772 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass); 4773 if (!selinux_enforcing || security_get_allow_unknown()) 4774 err = 0; 4775 } 4776 4777 /* Ignore */ 4778 if (err == -ENOENT) 4779 err = 0; 4780 goto out; 4781 } 4782 4783 err = sock_has_perm(current, sk, perm); 4784 out: 4785 return err; 4786 } 4787 4788 #ifdef CONFIG_NETFILTER 4789 4790 static unsigned int selinux_ip_forward(struct sk_buff *skb, 4791 const struct net_device *indev, 4792 u16 family) 4793 { 4794 int err; 4795 char *addrp; 4796 u32 peer_sid; 4797 struct common_audit_data ad; 4798 struct lsm_network_audit net = {0,}; 4799 u8 secmark_active; 4800 u8 netlbl_active; 4801 u8 peerlbl_active; 4802 4803 if (!selinux_policycap_netpeer) 4804 return NF_ACCEPT; 4805 4806 secmark_active = selinux_secmark_enabled(); 4807 netlbl_active = netlbl_enabled(); 4808 peerlbl_active = selinux_peerlbl_enabled(); 4809 if (!secmark_active && !peerlbl_active) 4810 return NF_ACCEPT; 4811 4812 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4813 return NF_DROP; 4814 4815 ad.type = LSM_AUDIT_DATA_NET; 4816 ad.u.net = &net; 4817 ad.u.net->netif = indev->ifindex; 4818 ad.u.net->family = family; 4819 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4820 return NF_DROP; 4821 4822 if (peerlbl_active) { 4823 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4824 addrp, family, peer_sid, &ad); 4825 if (err) { 4826 selinux_netlbl_err(skb, err, 1); 4827 return NF_DROP; 4828 } 4829 } 4830 4831 if (secmark_active) 4832 if (avc_has_perm(peer_sid, skb->secmark, 4833 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4834 return NF_DROP; 4835 4836 if (netlbl_active) 4837 /* we do this in the FORWARD path and not the POST_ROUTING 4838 * path because we want to make sure we apply the necessary 4839 * labeling before IPsec is applied so we can leverage AH 4840 * protection */ 4841 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4842 return NF_DROP; 4843 4844 return NF_ACCEPT; 4845 } 4846 4847 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4848 struct sk_buff *skb, 4849 const struct nf_hook_state *state) 4850 { 4851 return selinux_ip_forward(skb, state->in, PF_INET); 4852 } 4853 4854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4855 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4856 struct sk_buff *skb, 4857 const struct nf_hook_state *state) 4858 { 4859 return selinux_ip_forward(skb, state->in, PF_INET6); 4860 } 4861 #endif /* IPV6 */ 4862 4863 static unsigned int selinux_ip_output(struct sk_buff *skb, 4864 u16 family) 4865 { 4866 struct sock *sk; 4867 u32 sid; 4868 4869 if (!netlbl_enabled()) 4870 return NF_ACCEPT; 4871 4872 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4873 * because we want to make sure we apply the necessary labeling 4874 * before IPsec is applied so we can leverage AH protection */ 4875 sk = skb->sk; 4876 if (sk) { 4877 struct sk_security_struct *sksec; 4878 4879 if (sk->sk_state == TCP_LISTEN) 4880 /* if the socket is the listening state then this 4881 * packet is a SYN-ACK packet which means it needs to 4882 * be labeled based on the connection/request_sock and 4883 * not the parent socket. unfortunately, we can't 4884 * lookup the request_sock yet as it isn't queued on 4885 * the parent socket until after the SYN-ACK is sent. 4886 * the "solution" is to simply pass the packet as-is 4887 * as any IP option based labeling should be copied 4888 * from the initial connection request (in the IP 4889 * layer). it is far from ideal, but until we get a 4890 * security label in the packet itself this is the 4891 * best we can do. */ 4892 return NF_ACCEPT; 4893 4894 /* standard practice, label using the parent socket */ 4895 sksec = sk->sk_security; 4896 sid = sksec->sid; 4897 } else 4898 sid = SECINITSID_KERNEL; 4899 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4900 return NF_DROP; 4901 4902 return NF_ACCEPT; 4903 } 4904 4905 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4906 struct sk_buff *skb, 4907 const struct nf_hook_state *state) 4908 { 4909 return selinux_ip_output(skb, PF_INET); 4910 } 4911 4912 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4913 int ifindex, 4914 u16 family) 4915 { 4916 struct sock *sk = skb->sk; 4917 struct sk_security_struct *sksec; 4918 struct common_audit_data ad; 4919 struct lsm_network_audit net = {0,}; 4920 char *addrp; 4921 u8 proto; 4922 4923 if (sk == NULL) 4924 return NF_ACCEPT; 4925 sksec = sk->sk_security; 4926 4927 ad.type = LSM_AUDIT_DATA_NET; 4928 ad.u.net = &net; 4929 ad.u.net->netif = ifindex; 4930 ad.u.net->family = family; 4931 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4932 return NF_DROP; 4933 4934 if (selinux_secmark_enabled()) 4935 if (avc_has_perm(sksec->sid, skb->secmark, 4936 SECCLASS_PACKET, PACKET__SEND, &ad)) 4937 return NF_DROP_ERR(-ECONNREFUSED); 4938 4939 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4940 return NF_DROP_ERR(-ECONNREFUSED); 4941 4942 return NF_ACCEPT; 4943 } 4944 4945 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4946 const struct net_device *outdev, 4947 u16 family) 4948 { 4949 u32 secmark_perm; 4950 u32 peer_sid; 4951 int ifindex = outdev->ifindex; 4952 struct sock *sk; 4953 struct common_audit_data ad; 4954 struct lsm_network_audit net = {0,}; 4955 char *addrp; 4956 u8 secmark_active; 4957 u8 peerlbl_active; 4958 4959 /* If any sort of compatibility mode is enabled then handoff processing 4960 * to the selinux_ip_postroute_compat() function to deal with the 4961 * special handling. We do this in an attempt to keep this function 4962 * as fast and as clean as possible. */ 4963 if (!selinux_policycap_netpeer) 4964 return selinux_ip_postroute_compat(skb, ifindex, family); 4965 4966 secmark_active = selinux_secmark_enabled(); 4967 peerlbl_active = selinux_peerlbl_enabled(); 4968 if (!secmark_active && !peerlbl_active) 4969 return NF_ACCEPT; 4970 4971 sk = skb->sk; 4972 4973 #ifdef CONFIG_XFRM 4974 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4975 * packet transformation so allow the packet to pass without any checks 4976 * since we'll have another chance to perform access control checks 4977 * when the packet is on it's final way out. 4978 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4979 * is NULL, in this case go ahead and apply access control. 4980 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 4981 * TCP listening state we cannot wait until the XFRM processing 4982 * is done as we will miss out on the SA label if we do; 4983 * unfortunately, this means more work, but it is only once per 4984 * connection. */ 4985 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 4986 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 4987 return NF_ACCEPT; 4988 #endif 4989 4990 if (sk == NULL) { 4991 /* Without an associated socket the packet is either coming 4992 * from the kernel or it is being forwarded; check the packet 4993 * to determine which and if the packet is being forwarded 4994 * query the packet directly to determine the security label. */ 4995 if (skb->skb_iif) { 4996 secmark_perm = PACKET__FORWARD_OUT; 4997 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4998 return NF_DROP; 4999 } else { 5000 secmark_perm = PACKET__SEND; 5001 peer_sid = SECINITSID_KERNEL; 5002 } 5003 } else if (sk->sk_state == TCP_LISTEN) { 5004 /* Locally generated packet but the associated socket is in the 5005 * listening state which means this is a SYN-ACK packet. In 5006 * this particular case the correct security label is assigned 5007 * to the connection/request_sock but unfortunately we can't 5008 * query the request_sock as it isn't queued on the parent 5009 * socket until after the SYN-ACK packet is sent; the only 5010 * viable choice is to regenerate the label like we do in 5011 * selinux_inet_conn_request(). See also selinux_ip_output() 5012 * for similar problems. */ 5013 u32 skb_sid; 5014 struct sk_security_struct *sksec = sk->sk_security; 5015 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5016 return NF_DROP; 5017 /* At this point, if the returned skb peerlbl is SECSID_NULL 5018 * and the packet has been through at least one XFRM 5019 * transformation then we must be dealing with the "final" 5020 * form of labeled IPsec packet; since we've already applied 5021 * all of our access controls on this packet we can safely 5022 * pass the packet. */ 5023 if (skb_sid == SECSID_NULL) { 5024 switch (family) { 5025 case PF_INET: 5026 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5027 return NF_ACCEPT; 5028 break; 5029 case PF_INET6: 5030 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5031 return NF_ACCEPT; 5032 break; 5033 default: 5034 return NF_DROP_ERR(-ECONNREFUSED); 5035 } 5036 } 5037 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5038 return NF_DROP; 5039 secmark_perm = PACKET__SEND; 5040 } else { 5041 /* Locally generated packet, fetch the security label from the 5042 * associated socket. */ 5043 struct sk_security_struct *sksec = sk->sk_security; 5044 peer_sid = sksec->sid; 5045 secmark_perm = PACKET__SEND; 5046 } 5047 5048 ad.type = LSM_AUDIT_DATA_NET; 5049 ad.u.net = &net; 5050 ad.u.net->netif = ifindex; 5051 ad.u.net->family = family; 5052 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5053 return NF_DROP; 5054 5055 if (secmark_active) 5056 if (avc_has_perm(peer_sid, skb->secmark, 5057 SECCLASS_PACKET, secmark_perm, &ad)) 5058 return NF_DROP_ERR(-ECONNREFUSED); 5059 5060 if (peerlbl_active) { 5061 u32 if_sid; 5062 u32 node_sid; 5063 5064 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5065 return NF_DROP; 5066 if (avc_has_perm(peer_sid, if_sid, 5067 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5068 return NF_DROP_ERR(-ECONNREFUSED); 5069 5070 if (sel_netnode_sid(addrp, family, &node_sid)) 5071 return NF_DROP; 5072 if (avc_has_perm(peer_sid, node_sid, 5073 SECCLASS_NODE, NODE__SENDTO, &ad)) 5074 return NF_DROP_ERR(-ECONNREFUSED); 5075 } 5076 5077 return NF_ACCEPT; 5078 } 5079 5080 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5081 struct sk_buff *skb, 5082 const struct nf_hook_state *state) 5083 { 5084 return selinux_ip_postroute(skb, state->out, PF_INET); 5085 } 5086 5087 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5088 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5089 struct sk_buff *skb, 5090 const struct nf_hook_state *state) 5091 { 5092 return selinux_ip_postroute(skb, state->out, PF_INET6); 5093 } 5094 #endif /* IPV6 */ 5095 5096 #endif /* CONFIG_NETFILTER */ 5097 5098 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5099 { 5100 int err; 5101 5102 err = cap_netlink_send(sk, skb); 5103 if (err) 5104 return err; 5105 5106 return selinux_nlmsg_perm(sk, skb); 5107 } 5108 5109 static int ipc_alloc_security(struct task_struct *task, 5110 struct kern_ipc_perm *perm, 5111 u16 sclass) 5112 { 5113 struct ipc_security_struct *isec; 5114 u32 sid; 5115 5116 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5117 if (!isec) 5118 return -ENOMEM; 5119 5120 sid = task_sid(task); 5121 isec->sclass = sclass; 5122 isec->sid = sid; 5123 perm->security = isec; 5124 5125 return 0; 5126 } 5127 5128 static void ipc_free_security(struct kern_ipc_perm *perm) 5129 { 5130 struct ipc_security_struct *isec = perm->security; 5131 perm->security = NULL; 5132 kfree(isec); 5133 } 5134 5135 static int msg_msg_alloc_security(struct msg_msg *msg) 5136 { 5137 struct msg_security_struct *msec; 5138 5139 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5140 if (!msec) 5141 return -ENOMEM; 5142 5143 msec->sid = SECINITSID_UNLABELED; 5144 msg->security = msec; 5145 5146 return 0; 5147 } 5148 5149 static void msg_msg_free_security(struct msg_msg *msg) 5150 { 5151 struct msg_security_struct *msec = msg->security; 5152 5153 msg->security = NULL; 5154 kfree(msec); 5155 } 5156 5157 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5158 u32 perms) 5159 { 5160 struct ipc_security_struct *isec; 5161 struct common_audit_data ad; 5162 u32 sid = current_sid(); 5163 5164 isec = ipc_perms->security; 5165 5166 ad.type = LSM_AUDIT_DATA_IPC; 5167 ad.u.ipc_id = ipc_perms->key; 5168 5169 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5170 } 5171 5172 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5173 { 5174 return msg_msg_alloc_security(msg); 5175 } 5176 5177 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5178 { 5179 msg_msg_free_security(msg); 5180 } 5181 5182 /* message queue security operations */ 5183 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5184 { 5185 struct ipc_security_struct *isec; 5186 struct common_audit_data ad; 5187 u32 sid = current_sid(); 5188 int rc; 5189 5190 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5191 if (rc) 5192 return rc; 5193 5194 isec = msq->q_perm.security; 5195 5196 ad.type = LSM_AUDIT_DATA_IPC; 5197 ad.u.ipc_id = msq->q_perm.key; 5198 5199 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5200 MSGQ__CREATE, &ad); 5201 if (rc) { 5202 ipc_free_security(&msq->q_perm); 5203 return rc; 5204 } 5205 return 0; 5206 } 5207 5208 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5209 { 5210 ipc_free_security(&msq->q_perm); 5211 } 5212 5213 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5214 { 5215 struct ipc_security_struct *isec; 5216 struct common_audit_data ad; 5217 u32 sid = current_sid(); 5218 5219 isec = msq->q_perm.security; 5220 5221 ad.type = LSM_AUDIT_DATA_IPC; 5222 ad.u.ipc_id = msq->q_perm.key; 5223 5224 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5225 MSGQ__ASSOCIATE, &ad); 5226 } 5227 5228 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5229 { 5230 int err; 5231 int perms; 5232 5233 switch (cmd) { 5234 case IPC_INFO: 5235 case MSG_INFO: 5236 /* No specific object, just general system-wide information. */ 5237 return task_has_system(current, SYSTEM__IPC_INFO); 5238 case IPC_STAT: 5239 case MSG_STAT: 5240 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5241 break; 5242 case IPC_SET: 5243 perms = MSGQ__SETATTR; 5244 break; 5245 case IPC_RMID: 5246 perms = MSGQ__DESTROY; 5247 break; 5248 default: 5249 return 0; 5250 } 5251 5252 err = ipc_has_perm(&msq->q_perm, perms); 5253 return err; 5254 } 5255 5256 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5257 { 5258 struct ipc_security_struct *isec; 5259 struct msg_security_struct *msec; 5260 struct common_audit_data ad; 5261 u32 sid = current_sid(); 5262 int rc; 5263 5264 isec = msq->q_perm.security; 5265 msec = msg->security; 5266 5267 /* 5268 * First time through, need to assign label to the message 5269 */ 5270 if (msec->sid == SECINITSID_UNLABELED) { 5271 /* 5272 * Compute new sid based on current process and 5273 * message queue this message will be stored in 5274 */ 5275 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5276 NULL, &msec->sid); 5277 if (rc) 5278 return rc; 5279 } 5280 5281 ad.type = LSM_AUDIT_DATA_IPC; 5282 ad.u.ipc_id = msq->q_perm.key; 5283 5284 /* Can this process write to the queue? */ 5285 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5286 MSGQ__WRITE, &ad); 5287 if (!rc) 5288 /* Can this process send the message */ 5289 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5290 MSG__SEND, &ad); 5291 if (!rc) 5292 /* Can the message be put in the queue? */ 5293 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5294 MSGQ__ENQUEUE, &ad); 5295 5296 return rc; 5297 } 5298 5299 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5300 struct task_struct *target, 5301 long type, int mode) 5302 { 5303 struct ipc_security_struct *isec; 5304 struct msg_security_struct *msec; 5305 struct common_audit_data ad; 5306 u32 sid = task_sid(target); 5307 int rc; 5308 5309 isec = msq->q_perm.security; 5310 msec = msg->security; 5311 5312 ad.type = LSM_AUDIT_DATA_IPC; 5313 ad.u.ipc_id = msq->q_perm.key; 5314 5315 rc = avc_has_perm(sid, isec->sid, 5316 SECCLASS_MSGQ, MSGQ__READ, &ad); 5317 if (!rc) 5318 rc = avc_has_perm(sid, msec->sid, 5319 SECCLASS_MSG, MSG__RECEIVE, &ad); 5320 return rc; 5321 } 5322 5323 /* Shared Memory security operations */ 5324 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5325 { 5326 struct ipc_security_struct *isec; 5327 struct common_audit_data ad; 5328 u32 sid = current_sid(); 5329 int rc; 5330 5331 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5332 if (rc) 5333 return rc; 5334 5335 isec = shp->shm_perm.security; 5336 5337 ad.type = LSM_AUDIT_DATA_IPC; 5338 ad.u.ipc_id = shp->shm_perm.key; 5339 5340 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5341 SHM__CREATE, &ad); 5342 if (rc) { 5343 ipc_free_security(&shp->shm_perm); 5344 return rc; 5345 } 5346 return 0; 5347 } 5348 5349 static void selinux_shm_free_security(struct shmid_kernel *shp) 5350 { 5351 ipc_free_security(&shp->shm_perm); 5352 } 5353 5354 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5355 { 5356 struct ipc_security_struct *isec; 5357 struct common_audit_data ad; 5358 u32 sid = current_sid(); 5359 5360 isec = shp->shm_perm.security; 5361 5362 ad.type = LSM_AUDIT_DATA_IPC; 5363 ad.u.ipc_id = shp->shm_perm.key; 5364 5365 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5366 SHM__ASSOCIATE, &ad); 5367 } 5368 5369 /* Note, at this point, shp is locked down */ 5370 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5371 { 5372 int perms; 5373 int err; 5374 5375 switch (cmd) { 5376 case IPC_INFO: 5377 case SHM_INFO: 5378 /* No specific object, just general system-wide information. */ 5379 return task_has_system(current, SYSTEM__IPC_INFO); 5380 case IPC_STAT: 5381 case SHM_STAT: 5382 perms = SHM__GETATTR | SHM__ASSOCIATE; 5383 break; 5384 case IPC_SET: 5385 perms = SHM__SETATTR; 5386 break; 5387 case SHM_LOCK: 5388 case SHM_UNLOCK: 5389 perms = SHM__LOCK; 5390 break; 5391 case IPC_RMID: 5392 perms = SHM__DESTROY; 5393 break; 5394 default: 5395 return 0; 5396 } 5397 5398 err = ipc_has_perm(&shp->shm_perm, perms); 5399 return err; 5400 } 5401 5402 static int selinux_shm_shmat(struct shmid_kernel *shp, 5403 char __user *shmaddr, int shmflg) 5404 { 5405 u32 perms; 5406 5407 if (shmflg & SHM_RDONLY) 5408 perms = SHM__READ; 5409 else 5410 perms = SHM__READ | SHM__WRITE; 5411 5412 return ipc_has_perm(&shp->shm_perm, perms); 5413 } 5414 5415 /* Semaphore security operations */ 5416 static int selinux_sem_alloc_security(struct sem_array *sma) 5417 { 5418 struct ipc_security_struct *isec; 5419 struct common_audit_data ad; 5420 u32 sid = current_sid(); 5421 int rc; 5422 5423 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5424 if (rc) 5425 return rc; 5426 5427 isec = sma->sem_perm.security; 5428 5429 ad.type = LSM_AUDIT_DATA_IPC; 5430 ad.u.ipc_id = sma->sem_perm.key; 5431 5432 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5433 SEM__CREATE, &ad); 5434 if (rc) { 5435 ipc_free_security(&sma->sem_perm); 5436 return rc; 5437 } 5438 return 0; 5439 } 5440 5441 static void selinux_sem_free_security(struct sem_array *sma) 5442 { 5443 ipc_free_security(&sma->sem_perm); 5444 } 5445 5446 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5447 { 5448 struct ipc_security_struct *isec; 5449 struct common_audit_data ad; 5450 u32 sid = current_sid(); 5451 5452 isec = sma->sem_perm.security; 5453 5454 ad.type = LSM_AUDIT_DATA_IPC; 5455 ad.u.ipc_id = sma->sem_perm.key; 5456 5457 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5458 SEM__ASSOCIATE, &ad); 5459 } 5460 5461 /* Note, at this point, sma is locked down */ 5462 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5463 { 5464 int err; 5465 u32 perms; 5466 5467 switch (cmd) { 5468 case IPC_INFO: 5469 case SEM_INFO: 5470 /* No specific object, just general system-wide information. */ 5471 return task_has_system(current, SYSTEM__IPC_INFO); 5472 case GETPID: 5473 case GETNCNT: 5474 case GETZCNT: 5475 perms = SEM__GETATTR; 5476 break; 5477 case GETVAL: 5478 case GETALL: 5479 perms = SEM__READ; 5480 break; 5481 case SETVAL: 5482 case SETALL: 5483 perms = SEM__WRITE; 5484 break; 5485 case IPC_RMID: 5486 perms = SEM__DESTROY; 5487 break; 5488 case IPC_SET: 5489 perms = SEM__SETATTR; 5490 break; 5491 case IPC_STAT: 5492 case SEM_STAT: 5493 perms = SEM__GETATTR | SEM__ASSOCIATE; 5494 break; 5495 default: 5496 return 0; 5497 } 5498 5499 err = ipc_has_perm(&sma->sem_perm, perms); 5500 return err; 5501 } 5502 5503 static int selinux_sem_semop(struct sem_array *sma, 5504 struct sembuf *sops, unsigned nsops, int alter) 5505 { 5506 u32 perms; 5507 5508 if (alter) 5509 perms = SEM__READ | SEM__WRITE; 5510 else 5511 perms = SEM__READ; 5512 5513 return ipc_has_perm(&sma->sem_perm, perms); 5514 } 5515 5516 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5517 { 5518 u32 av = 0; 5519 5520 av = 0; 5521 if (flag & S_IRUGO) 5522 av |= IPC__UNIX_READ; 5523 if (flag & S_IWUGO) 5524 av |= IPC__UNIX_WRITE; 5525 5526 if (av == 0) 5527 return 0; 5528 5529 return ipc_has_perm(ipcp, av); 5530 } 5531 5532 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5533 { 5534 struct ipc_security_struct *isec = ipcp->security; 5535 *secid = isec->sid; 5536 } 5537 5538 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5539 { 5540 if (inode) 5541 inode_doinit_with_dentry(inode, dentry); 5542 } 5543 5544 static int selinux_getprocattr(struct task_struct *p, 5545 char *name, char **value) 5546 { 5547 const struct task_security_struct *__tsec; 5548 u32 sid; 5549 int error; 5550 unsigned len; 5551 5552 if (current != p) { 5553 error = current_has_perm(p, PROCESS__GETATTR); 5554 if (error) 5555 return error; 5556 } 5557 5558 rcu_read_lock(); 5559 __tsec = __task_cred(p)->security; 5560 5561 if (!strcmp(name, "current")) 5562 sid = __tsec->sid; 5563 else if (!strcmp(name, "prev")) 5564 sid = __tsec->osid; 5565 else if (!strcmp(name, "exec")) 5566 sid = __tsec->exec_sid; 5567 else if (!strcmp(name, "fscreate")) 5568 sid = __tsec->create_sid; 5569 else if (!strcmp(name, "keycreate")) 5570 sid = __tsec->keycreate_sid; 5571 else if (!strcmp(name, "sockcreate")) 5572 sid = __tsec->sockcreate_sid; 5573 else 5574 goto invalid; 5575 rcu_read_unlock(); 5576 5577 if (!sid) 5578 return 0; 5579 5580 error = security_sid_to_context(sid, value, &len); 5581 if (error) 5582 return error; 5583 return len; 5584 5585 invalid: 5586 rcu_read_unlock(); 5587 return -EINVAL; 5588 } 5589 5590 static int selinux_setprocattr(struct task_struct *p, 5591 char *name, void *value, size_t size) 5592 { 5593 struct task_security_struct *tsec; 5594 struct task_struct *tracer; 5595 struct cred *new; 5596 u32 sid = 0, ptsid; 5597 int error; 5598 char *str = value; 5599 5600 if (current != p) { 5601 /* SELinux only allows a process to change its own 5602 security attributes. */ 5603 return -EACCES; 5604 } 5605 5606 /* 5607 * Basic control over ability to set these attributes at all. 5608 * current == p, but we'll pass them separately in case the 5609 * above restriction is ever removed. 5610 */ 5611 if (!strcmp(name, "exec")) 5612 error = current_has_perm(p, PROCESS__SETEXEC); 5613 else if (!strcmp(name, "fscreate")) 5614 error = current_has_perm(p, PROCESS__SETFSCREATE); 5615 else if (!strcmp(name, "keycreate")) 5616 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5617 else if (!strcmp(name, "sockcreate")) 5618 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5619 else if (!strcmp(name, "current")) 5620 error = current_has_perm(p, PROCESS__SETCURRENT); 5621 else 5622 error = -EINVAL; 5623 if (error) 5624 return error; 5625 5626 /* Obtain a SID for the context, if one was specified. */ 5627 if (size && str[1] && str[1] != '\n') { 5628 if (str[size-1] == '\n') { 5629 str[size-1] = 0; 5630 size--; 5631 } 5632 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5633 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5634 if (!capable(CAP_MAC_ADMIN)) { 5635 struct audit_buffer *ab; 5636 size_t audit_size; 5637 5638 /* We strip a nul only if it is at the end, otherwise the 5639 * context contains a nul and we should audit that */ 5640 if (str[size - 1] == '\0') 5641 audit_size = size - 1; 5642 else 5643 audit_size = size; 5644 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5645 audit_log_format(ab, "op=fscreate invalid_context="); 5646 audit_log_n_untrustedstring(ab, value, audit_size); 5647 audit_log_end(ab); 5648 5649 return error; 5650 } 5651 error = security_context_to_sid_force(value, size, 5652 &sid); 5653 } 5654 if (error) 5655 return error; 5656 } 5657 5658 new = prepare_creds(); 5659 if (!new) 5660 return -ENOMEM; 5661 5662 /* Permission checking based on the specified context is 5663 performed during the actual operation (execve, 5664 open/mkdir/...), when we know the full context of the 5665 operation. See selinux_bprm_set_creds for the execve 5666 checks and may_create for the file creation checks. The 5667 operation will then fail if the context is not permitted. */ 5668 tsec = new->security; 5669 if (!strcmp(name, "exec")) { 5670 tsec->exec_sid = sid; 5671 } else if (!strcmp(name, "fscreate")) { 5672 tsec->create_sid = sid; 5673 } else if (!strcmp(name, "keycreate")) { 5674 error = may_create_key(sid, p); 5675 if (error) 5676 goto abort_change; 5677 tsec->keycreate_sid = sid; 5678 } else if (!strcmp(name, "sockcreate")) { 5679 tsec->sockcreate_sid = sid; 5680 } else if (!strcmp(name, "current")) { 5681 error = -EINVAL; 5682 if (sid == 0) 5683 goto abort_change; 5684 5685 /* Only allow single threaded processes to change context */ 5686 error = -EPERM; 5687 if (!current_is_single_threaded()) { 5688 error = security_bounded_transition(tsec->sid, sid); 5689 if (error) 5690 goto abort_change; 5691 } 5692 5693 /* Check permissions for the transition. */ 5694 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5695 PROCESS__DYNTRANSITION, NULL); 5696 if (error) 5697 goto abort_change; 5698 5699 /* Check for ptracing, and update the task SID if ok. 5700 Otherwise, leave SID unchanged and fail. */ 5701 ptsid = 0; 5702 rcu_read_lock(); 5703 tracer = ptrace_parent(p); 5704 if (tracer) 5705 ptsid = task_sid(tracer); 5706 rcu_read_unlock(); 5707 5708 if (tracer) { 5709 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5710 PROCESS__PTRACE, NULL); 5711 if (error) 5712 goto abort_change; 5713 } 5714 5715 tsec->sid = sid; 5716 } else { 5717 error = -EINVAL; 5718 goto abort_change; 5719 } 5720 5721 commit_creds(new); 5722 return size; 5723 5724 abort_change: 5725 abort_creds(new); 5726 return error; 5727 } 5728 5729 static int selinux_ismaclabel(const char *name) 5730 { 5731 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5732 } 5733 5734 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5735 { 5736 return security_sid_to_context(secid, secdata, seclen); 5737 } 5738 5739 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5740 { 5741 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5742 } 5743 5744 static void selinux_release_secctx(char *secdata, u32 seclen) 5745 { 5746 kfree(secdata); 5747 } 5748 5749 /* 5750 * called with inode->i_mutex locked 5751 */ 5752 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5753 { 5754 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5755 } 5756 5757 /* 5758 * called with inode->i_mutex locked 5759 */ 5760 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5761 { 5762 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5763 } 5764 5765 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5766 { 5767 int len = 0; 5768 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5769 ctx, true); 5770 if (len < 0) 5771 return len; 5772 *ctxlen = len; 5773 return 0; 5774 } 5775 #ifdef CONFIG_KEYS 5776 5777 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5778 unsigned long flags) 5779 { 5780 const struct task_security_struct *tsec; 5781 struct key_security_struct *ksec; 5782 5783 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5784 if (!ksec) 5785 return -ENOMEM; 5786 5787 tsec = cred->security; 5788 if (tsec->keycreate_sid) 5789 ksec->sid = tsec->keycreate_sid; 5790 else 5791 ksec->sid = tsec->sid; 5792 5793 k->security = ksec; 5794 return 0; 5795 } 5796 5797 static void selinux_key_free(struct key *k) 5798 { 5799 struct key_security_struct *ksec = k->security; 5800 5801 k->security = NULL; 5802 kfree(ksec); 5803 } 5804 5805 static int selinux_key_permission(key_ref_t key_ref, 5806 const struct cred *cred, 5807 unsigned perm) 5808 { 5809 struct key *key; 5810 struct key_security_struct *ksec; 5811 u32 sid; 5812 5813 /* if no specific permissions are requested, we skip the 5814 permission check. No serious, additional covert channels 5815 appear to be created. */ 5816 if (perm == 0) 5817 return 0; 5818 5819 sid = cred_sid(cred); 5820 5821 key = key_ref_to_ptr(key_ref); 5822 ksec = key->security; 5823 5824 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5825 } 5826 5827 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5828 { 5829 struct key_security_struct *ksec = key->security; 5830 char *context = NULL; 5831 unsigned len; 5832 int rc; 5833 5834 rc = security_sid_to_context(ksec->sid, &context, &len); 5835 if (!rc) 5836 rc = len; 5837 *_buffer = context; 5838 return rc; 5839 } 5840 5841 #endif 5842 5843 static struct security_operations selinux_ops = { 5844 .name = "selinux", 5845 5846 .binder_set_context_mgr = selinux_binder_set_context_mgr, 5847 .binder_transaction = selinux_binder_transaction, 5848 .binder_transfer_binder = selinux_binder_transfer_binder, 5849 .binder_transfer_file = selinux_binder_transfer_file, 5850 5851 .ptrace_access_check = selinux_ptrace_access_check, 5852 .ptrace_traceme = selinux_ptrace_traceme, 5853 .capget = selinux_capget, 5854 .capset = selinux_capset, 5855 .capable = selinux_capable, 5856 .quotactl = selinux_quotactl, 5857 .quota_on = selinux_quota_on, 5858 .syslog = selinux_syslog, 5859 .vm_enough_memory = selinux_vm_enough_memory, 5860 5861 .netlink_send = selinux_netlink_send, 5862 5863 .bprm_set_creds = selinux_bprm_set_creds, 5864 .bprm_committing_creds = selinux_bprm_committing_creds, 5865 .bprm_committed_creds = selinux_bprm_committed_creds, 5866 .bprm_secureexec = selinux_bprm_secureexec, 5867 5868 .sb_alloc_security = selinux_sb_alloc_security, 5869 .sb_free_security = selinux_sb_free_security, 5870 .sb_copy_data = selinux_sb_copy_data, 5871 .sb_remount = selinux_sb_remount, 5872 .sb_kern_mount = selinux_sb_kern_mount, 5873 .sb_show_options = selinux_sb_show_options, 5874 .sb_statfs = selinux_sb_statfs, 5875 .sb_mount = selinux_mount, 5876 .sb_umount = selinux_umount, 5877 .sb_set_mnt_opts = selinux_set_mnt_opts, 5878 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5879 .sb_parse_opts_str = selinux_parse_opts_str, 5880 5881 .dentry_init_security = selinux_dentry_init_security, 5882 5883 .inode_alloc_security = selinux_inode_alloc_security, 5884 .inode_free_security = selinux_inode_free_security, 5885 .inode_init_security = selinux_inode_init_security, 5886 .inode_create = selinux_inode_create, 5887 .inode_link = selinux_inode_link, 5888 .inode_unlink = selinux_inode_unlink, 5889 .inode_symlink = selinux_inode_symlink, 5890 .inode_mkdir = selinux_inode_mkdir, 5891 .inode_rmdir = selinux_inode_rmdir, 5892 .inode_mknod = selinux_inode_mknod, 5893 .inode_rename = selinux_inode_rename, 5894 .inode_readlink = selinux_inode_readlink, 5895 .inode_follow_link = selinux_inode_follow_link, 5896 .inode_permission = selinux_inode_permission, 5897 .inode_setattr = selinux_inode_setattr, 5898 .inode_getattr = selinux_inode_getattr, 5899 .inode_setxattr = selinux_inode_setxattr, 5900 .inode_post_setxattr = selinux_inode_post_setxattr, 5901 .inode_getxattr = selinux_inode_getxattr, 5902 .inode_listxattr = selinux_inode_listxattr, 5903 .inode_removexattr = selinux_inode_removexattr, 5904 .inode_getsecurity = selinux_inode_getsecurity, 5905 .inode_setsecurity = selinux_inode_setsecurity, 5906 .inode_listsecurity = selinux_inode_listsecurity, 5907 .inode_getsecid = selinux_inode_getsecid, 5908 5909 .file_permission = selinux_file_permission, 5910 .file_alloc_security = selinux_file_alloc_security, 5911 .file_free_security = selinux_file_free_security, 5912 .file_ioctl = selinux_file_ioctl, 5913 .mmap_file = selinux_mmap_file, 5914 .mmap_addr = selinux_mmap_addr, 5915 .file_mprotect = selinux_file_mprotect, 5916 .file_lock = selinux_file_lock, 5917 .file_fcntl = selinux_file_fcntl, 5918 .file_set_fowner = selinux_file_set_fowner, 5919 .file_send_sigiotask = selinux_file_send_sigiotask, 5920 .file_receive = selinux_file_receive, 5921 5922 .file_open = selinux_file_open, 5923 5924 .task_create = selinux_task_create, 5925 .cred_alloc_blank = selinux_cred_alloc_blank, 5926 .cred_free = selinux_cred_free, 5927 .cred_prepare = selinux_cred_prepare, 5928 .cred_transfer = selinux_cred_transfer, 5929 .kernel_act_as = selinux_kernel_act_as, 5930 .kernel_create_files_as = selinux_kernel_create_files_as, 5931 .kernel_module_request = selinux_kernel_module_request, 5932 .task_setpgid = selinux_task_setpgid, 5933 .task_getpgid = selinux_task_getpgid, 5934 .task_getsid = selinux_task_getsid, 5935 .task_getsecid = selinux_task_getsecid, 5936 .task_setnice = selinux_task_setnice, 5937 .task_setioprio = selinux_task_setioprio, 5938 .task_getioprio = selinux_task_getioprio, 5939 .task_setrlimit = selinux_task_setrlimit, 5940 .task_setscheduler = selinux_task_setscheduler, 5941 .task_getscheduler = selinux_task_getscheduler, 5942 .task_movememory = selinux_task_movememory, 5943 .task_kill = selinux_task_kill, 5944 .task_wait = selinux_task_wait, 5945 .task_to_inode = selinux_task_to_inode, 5946 5947 .ipc_permission = selinux_ipc_permission, 5948 .ipc_getsecid = selinux_ipc_getsecid, 5949 5950 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5951 .msg_msg_free_security = selinux_msg_msg_free_security, 5952 5953 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5954 .msg_queue_free_security = selinux_msg_queue_free_security, 5955 .msg_queue_associate = selinux_msg_queue_associate, 5956 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5957 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5958 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5959 5960 .shm_alloc_security = selinux_shm_alloc_security, 5961 .shm_free_security = selinux_shm_free_security, 5962 .shm_associate = selinux_shm_associate, 5963 .shm_shmctl = selinux_shm_shmctl, 5964 .shm_shmat = selinux_shm_shmat, 5965 5966 .sem_alloc_security = selinux_sem_alloc_security, 5967 .sem_free_security = selinux_sem_free_security, 5968 .sem_associate = selinux_sem_associate, 5969 .sem_semctl = selinux_sem_semctl, 5970 .sem_semop = selinux_sem_semop, 5971 5972 .d_instantiate = selinux_d_instantiate, 5973 5974 .getprocattr = selinux_getprocattr, 5975 .setprocattr = selinux_setprocattr, 5976 5977 .ismaclabel = selinux_ismaclabel, 5978 .secid_to_secctx = selinux_secid_to_secctx, 5979 .secctx_to_secid = selinux_secctx_to_secid, 5980 .release_secctx = selinux_release_secctx, 5981 .inode_notifysecctx = selinux_inode_notifysecctx, 5982 .inode_setsecctx = selinux_inode_setsecctx, 5983 .inode_getsecctx = selinux_inode_getsecctx, 5984 5985 .unix_stream_connect = selinux_socket_unix_stream_connect, 5986 .unix_may_send = selinux_socket_unix_may_send, 5987 5988 .socket_create = selinux_socket_create, 5989 .socket_post_create = selinux_socket_post_create, 5990 .socket_bind = selinux_socket_bind, 5991 .socket_connect = selinux_socket_connect, 5992 .socket_listen = selinux_socket_listen, 5993 .socket_accept = selinux_socket_accept, 5994 .socket_sendmsg = selinux_socket_sendmsg, 5995 .socket_recvmsg = selinux_socket_recvmsg, 5996 .socket_getsockname = selinux_socket_getsockname, 5997 .socket_getpeername = selinux_socket_getpeername, 5998 .socket_getsockopt = selinux_socket_getsockopt, 5999 .socket_setsockopt = selinux_socket_setsockopt, 6000 .socket_shutdown = selinux_socket_shutdown, 6001 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 6002 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 6003 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 6004 .sk_alloc_security = selinux_sk_alloc_security, 6005 .sk_free_security = selinux_sk_free_security, 6006 .sk_clone_security = selinux_sk_clone_security, 6007 .sk_getsecid = selinux_sk_getsecid, 6008 .sock_graft = selinux_sock_graft, 6009 .inet_conn_request = selinux_inet_conn_request, 6010 .inet_csk_clone = selinux_inet_csk_clone, 6011 .inet_conn_established = selinux_inet_conn_established, 6012 .secmark_relabel_packet = selinux_secmark_relabel_packet, 6013 .secmark_refcount_inc = selinux_secmark_refcount_inc, 6014 .secmark_refcount_dec = selinux_secmark_refcount_dec, 6015 .req_classify_flow = selinux_req_classify_flow, 6016 .tun_dev_alloc_security = selinux_tun_dev_alloc_security, 6017 .tun_dev_free_security = selinux_tun_dev_free_security, 6018 .tun_dev_create = selinux_tun_dev_create, 6019 .tun_dev_attach_queue = selinux_tun_dev_attach_queue, 6020 .tun_dev_attach = selinux_tun_dev_attach, 6021 .tun_dev_open = selinux_tun_dev_open, 6022 6023 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6024 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 6025 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 6026 .xfrm_policy_free_security = selinux_xfrm_policy_free, 6027 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 6028 .xfrm_state_alloc = selinux_xfrm_state_alloc, 6029 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire, 6030 .xfrm_state_free_security = selinux_xfrm_state_free, 6031 .xfrm_state_delete_security = selinux_xfrm_state_delete, 6032 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 6033 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 6034 .xfrm_decode_session = selinux_xfrm_decode_session, 6035 #endif 6036 6037 #ifdef CONFIG_KEYS 6038 .key_alloc = selinux_key_alloc, 6039 .key_free = selinux_key_free, 6040 .key_permission = selinux_key_permission, 6041 .key_getsecurity = selinux_key_getsecurity, 6042 #endif 6043 6044 #ifdef CONFIG_AUDIT 6045 .audit_rule_init = selinux_audit_rule_init, 6046 .audit_rule_known = selinux_audit_rule_known, 6047 .audit_rule_match = selinux_audit_rule_match, 6048 .audit_rule_free = selinux_audit_rule_free, 6049 #endif 6050 }; 6051 6052 static __init int selinux_init(void) 6053 { 6054 if (!security_module_enable(&selinux_ops)) { 6055 selinux_enabled = 0; 6056 return 0; 6057 } 6058 6059 if (!selinux_enabled) { 6060 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6061 return 0; 6062 } 6063 6064 printk(KERN_INFO "SELinux: Initializing.\n"); 6065 6066 /* Set the security state for the initial task. */ 6067 cred_init_security(); 6068 6069 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6070 6071 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6072 sizeof(struct inode_security_struct), 6073 0, SLAB_PANIC, NULL); 6074 avc_init(); 6075 6076 if (register_security(&selinux_ops)) 6077 panic("SELinux: Unable to register with kernel.\n"); 6078 6079 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6080 panic("SELinux: Unable to register AVC netcache callback\n"); 6081 6082 if (selinux_enforcing) 6083 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6084 else 6085 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6086 6087 return 0; 6088 } 6089 6090 static void delayed_superblock_init(struct super_block *sb, void *unused) 6091 { 6092 superblock_doinit(sb, NULL); 6093 } 6094 6095 void selinux_complete_init(void) 6096 { 6097 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6098 6099 /* Set up any superblocks initialized prior to the policy load. */ 6100 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6101 iterate_supers(delayed_superblock_init, NULL); 6102 } 6103 6104 /* SELinux requires early initialization in order to label 6105 all processes and objects when they are created. */ 6106 security_initcall(selinux_init); 6107 6108 #if defined(CONFIG_NETFILTER) 6109 6110 static struct nf_hook_ops selinux_nf_ops[] = { 6111 { 6112 .hook = selinux_ipv4_postroute, 6113 .owner = THIS_MODULE, 6114 .pf = NFPROTO_IPV4, 6115 .hooknum = NF_INET_POST_ROUTING, 6116 .priority = NF_IP_PRI_SELINUX_LAST, 6117 }, 6118 { 6119 .hook = selinux_ipv4_forward, 6120 .owner = THIS_MODULE, 6121 .pf = NFPROTO_IPV4, 6122 .hooknum = NF_INET_FORWARD, 6123 .priority = NF_IP_PRI_SELINUX_FIRST, 6124 }, 6125 { 6126 .hook = selinux_ipv4_output, 6127 .owner = THIS_MODULE, 6128 .pf = NFPROTO_IPV4, 6129 .hooknum = NF_INET_LOCAL_OUT, 6130 .priority = NF_IP_PRI_SELINUX_FIRST, 6131 }, 6132 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6133 { 6134 .hook = selinux_ipv6_postroute, 6135 .owner = THIS_MODULE, 6136 .pf = NFPROTO_IPV6, 6137 .hooknum = NF_INET_POST_ROUTING, 6138 .priority = NF_IP6_PRI_SELINUX_LAST, 6139 }, 6140 { 6141 .hook = selinux_ipv6_forward, 6142 .owner = THIS_MODULE, 6143 .pf = NFPROTO_IPV6, 6144 .hooknum = NF_INET_FORWARD, 6145 .priority = NF_IP6_PRI_SELINUX_FIRST, 6146 }, 6147 #endif /* IPV6 */ 6148 }; 6149 6150 static int __init selinux_nf_ip_init(void) 6151 { 6152 int err; 6153 6154 if (!selinux_enabled) 6155 return 0; 6156 6157 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6158 6159 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6160 if (err) 6161 panic("SELinux: nf_register_hooks: error %d\n", err); 6162 6163 return 0; 6164 } 6165 6166 __initcall(selinux_nf_ip_init); 6167 6168 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6169 static void selinux_nf_ip_exit(void) 6170 { 6171 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6172 6173 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6174 } 6175 #endif 6176 6177 #else /* CONFIG_NETFILTER */ 6178 6179 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6180 #define selinux_nf_ip_exit() 6181 #endif 6182 6183 #endif /* CONFIG_NETFILTER */ 6184 6185 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6186 static int selinux_disabled; 6187 6188 int selinux_disable(void) 6189 { 6190 if (ss_initialized) { 6191 /* Not permitted after initial policy load. */ 6192 return -EINVAL; 6193 } 6194 6195 if (selinux_disabled) { 6196 /* Only do this once. */ 6197 return -EINVAL; 6198 } 6199 6200 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6201 6202 selinux_disabled = 1; 6203 selinux_enabled = 0; 6204 6205 reset_security_ops(); 6206 6207 /* Try to destroy the avc node cache */ 6208 avc_disable(); 6209 6210 /* Unregister netfilter hooks. */ 6211 selinux_nf_ip_exit(); 6212 6213 /* Unregister selinuxfs. */ 6214 exit_sel_fs(); 6215 6216 return 0; 6217 } 6218 #endif 6219