1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/inet_connection_sock.h> 56 #include <net/net_namespace.h> 57 #include <net/netlabel.h> 58 #include <linux/uaccess.h> 59 #include <asm/ioctls.h> 60 #include <linux/atomic.h> 61 #include <linux/bitops.h> 62 #include <linux/interrupt.h> 63 #include <linux/netdevice.h> /* for network interface checks */ 64 #include <net/netlink.h> 65 #include <linux/tcp.h> 66 #include <linux/udp.h> 67 #include <linux/dccp.h> 68 #include <linux/quota.h> 69 #include <linux/un.h> /* for Unix socket types */ 70 #include <net/af_unix.h> /* for Unix socket types */ 71 #include <linux/parser.h> 72 #include <linux/nfs_mount.h> 73 #include <net/ipv6.h> 74 #include <linux/hugetlb.h> 75 #include <linux/personality.h> 76 #include <linux/audit.h> 77 #include <linux/string.h> 78 #include <linux/selinux.h> 79 #include <linux/mutex.h> 80 #include <linux/posix-timers.h> 81 #include <linux/syslog.h> 82 #include <linux/user_namespace.h> 83 #include <linux/export.h> 84 #include <linux/msg.h> 85 #include <linux/shm.h> 86 87 #include "avc.h" 88 #include "objsec.h" 89 #include "netif.h" 90 #include "netnode.h" 91 #include "netport.h" 92 #include "xfrm.h" 93 #include "netlabel.h" 94 #include "audit.h" 95 #include "avc_ss.h" 96 97 /* SECMARK reference count */ 98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101 int selinux_enforcing; 102 103 static int __init enforcing_setup(char *str) 104 { 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109 } 110 __setup("enforcing=", enforcing_setup); 111 #endif 112 113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116 static int __init selinux_enabled_setup(char *str) 117 { 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122 } 123 __setup("selinux=", selinux_enabled_setup); 124 #else 125 int selinux_enabled = 1; 126 #endif 127 128 static struct kmem_cache *sel_inode_cache; 129 130 /** 131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 132 * 133 * Description: 134 * This function checks the SECMARK reference counter to see if any SECMARK 135 * targets are currently configured, if the reference counter is greater than 136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 137 * enabled, false (0) if SECMARK is disabled. If the always_check_network 138 * policy capability is enabled, SECMARK is always considered enabled. 139 * 140 */ 141 static int selinux_secmark_enabled(void) 142 { 143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 144 } 145 146 /** 147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 148 * 149 * Description: 150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 151 * (1) if any are enabled or false (0) if neither are enabled. If the 152 * always_check_network policy capability is enabled, peer labeling 153 * is always considered enabled. 154 * 155 */ 156 static int selinux_peerlbl_enabled(void) 157 { 158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 159 } 160 161 static int selinux_netcache_avc_callback(u32 event) 162 { 163 if (event == AVC_CALLBACK_RESET) { 164 sel_netif_flush(); 165 sel_netnode_flush(); 166 sel_netport_flush(); 167 synchronize_net(); 168 } 169 return 0; 170 } 171 172 /* 173 * initialise the security for the init task 174 */ 175 static void cred_init_security(void) 176 { 177 struct cred *cred = (struct cred *) current->real_cred; 178 struct task_security_struct *tsec; 179 180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 181 if (!tsec) 182 panic("SELinux: Failed to initialize initial task.\n"); 183 184 tsec->osid = tsec->sid = SECINITSID_KERNEL; 185 cred->security = tsec; 186 } 187 188 /* 189 * get the security ID of a set of credentials 190 */ 191 static inline u32 cred_sid(const struct cred *cred) 192 { 193 const struct task_security_struct *tsec; 194 195 tsec = cred->security; 196 return tsec->sid; 197 } 198 199 /* 200 * get the objective security ID of a task 201 */ 202 static inline u32 task_sid(const struct task_struct *task) 203 { 204 u32 sid; 205 206 rcu_read_lock(); 207 sid = cred_sid(__task_cred(task)); 208 rcu_read_unlock(); 209 return sid; 210 } 211 212 /* 213 * get the subjective security ID of the current task 214 */ 215 static inline u32 current_sid(void) 216 { 217 const struct task_security_struct *tsec = current_security(); 218 219 return tsec->sid; 220 } 221 222 /* Allocate and free functions for each kind of security blob. */ 223 224 static int inode_alloc_security(struct inode *inode) 225 { 226 struct inode_security_struct *isec; 227 u32 sid = current_sid(); 228 229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 230 if (!isec) 231 return -ENOMEM; 232 233 mutex_init(&isec->lock); 234 INIT_LIST_HEAD(&isec->list); 235 isec->inode = inode; 236 isec->sid = SECINITSID_UNLABELED; 237 isec->sclass = SECCLASS_FILE; 238 isec->task_sid = sid; 239 inode->i_security = isec; 240 241 return 0; 242 } 243 244 static void inode_free_rcu(struct rcu_head *head) 245 { 246 struct inode_security_struct *isec; 247 248 isec = container_of(head, struct inode_security_struct, rcu); 249 kmem_cache_free(sel_inode_cache, isec); 250 } 251 252 static void inode_free_security(struct inode *inode) 253 { 254 struct inode_security_struct *isec = inode->i_security; 255 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 256 257 spin_lock(&sbsec->isec_lock); 258 if (!list_empty(&isec->list)) 259 list_del_init(&isec->list); 260 spin_unlock(&sbsec->isec_lock); 261 262 /* 263 * The inode may still be referenced in a path walk and 264 * a call to selinux_inode_permission() can be made 265 * after inode_free_security() is called. Ideally, the VFS 266 * wouldn't do this, but fixing that is a much harder 267 * job. For now, simply free the i_security via RCU, and 268 * leave the current inode->i_security pointer intact. 269 * The inode will be freed after the RCU grace period too. 270 */ 271 call_rcu(&isec->rcu, inode_free_rcu); 272 } 273 274 static int file_alloc_security(struct file *file) 275 { 276 struct file_security_struct *fsec; 277 u32 sid = current_sid(); 278 279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 280 if (!fsec) 281 return -ENOMEM; 282 283 fsec->sid = sid; 284 fsec->fown_sid = sid; 285 file->f_security = fsec; 286 287 return 0; 288 } 289 290 static void file_free_security(struct file *file) 291 { 292 struct file_security_struct *fsec = file->f_security; 293 file->f_security = NULL; 294 kfree(fsec); 295 } 296 297 static int superblock_alloc_security(struct super_block *sb) 298 { 299 struct superblock_security_struct *sbsec; 300 301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 302 if (!sbsec) 303 return -ENOMEM; 304 305 mutex_init(&sbsec->lock); 306 INIT_LIST_HEAD(&sbsec->isec_head); 307 spin_lock_init(&sbsec->isec_lock); 308 sbsec->sb = sb; 309 sbsec->sid = SECINITSID_UNLABELED; 310 sbsec->def_sid = SECINITSID_FILE; 311 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 312 sb->s_security = sbsec; 313 314 return 0; 315 } 316 317 static void superblock_free_security(struct super_block *sb) 318 { 319 struct superblock_security_struct *sbsec = sb->s_security; 320 sb->s_security = NULL; 321 kfree(sbsec); 322 } 323 324 /* The file system's label must be initialized prior to use. */ 325 326 static const char *labeling_behaviors[7] = { 327 "uses xattr", 328 "uses transition SIDs", 329 "uses task SIDs", 330 "uses genfs_contexts", 331 "not configured for labeling", 332 "uses mountpoint labeling", 333 "uses native labeling", 334 }; 335 336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 337 338 static inline int inode_doinit(struct inode *inode) 339 { 340 return inode_doinit_with_dentry(inode, NULL); 341 } 342 343 enum { 344 Opt_error = -1, 345 Opt_context = 1, 346 Opt_fscontext = 2, 347 Opt_defcontext = 3, 348 Opt_rootcontext = 4, 349 Opt_labelsupport = 5, 350 Opt_nextmntopt = 6, 351 }; 352 353 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 354 355 static const match_table_t tokens = { 356 {Opt_context, CONTEXT_STR "%s"}, 357 {Opt_fscontext, FSCONTEXT_STR "%s"}, 358 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 360 {Opt_labelsupport, LABELSUPP_STR}, 361 {Opt_error, NULL}, 362 }; 363 364 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 365 366 static int may_context_mount_sb_relabel(u32 sid, 367 struct superblock_security_struct *sbsec, 368 const struct cred *cred) 369 { 370 const struct task_security_struct *tsec = cred->security; 371 int rc; 372 373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 374 FILESYSTEM__RELABELFROM, NULL); 375 if (rc) 376 return rc; 377 378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 379 FILESYSTEM__RELABELTO, NULL); 380 return rc; 381 } 382 383 static int may_context_mount_inode_relabel(u32 sid, 384 struct superblock_security_struct *sbsec, 385 const struct cred *cred) 386 { 387 const struct task_security_struct *tsec = cred->security; 388 int rc; 389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 390 FILESYSTEM__RELABELFROM, NULL); 391 if (rc) 392 return rc; 393 394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 395 FILESYSTEM__ASSOCIATE, NULL); 396 return rc; 397 } 398 399 static int selinux_is_sblabel_mnt(struct super_block *sb) 400 { 401 struct superblock_security_struct *sbsec = sb->s_security; 402 403 return sbsec->behavior == SECURITY_FS_USE_XATTR || 404 sbsec->behavior == SECURITY_FS_USE_TRANS || 405 sbsec->behavior == SECURITY_FS_USE_TASK || 406 /* Special handling. Genfs but also in-core setxattr handler */ 407 !strcmp(sb->s_type->name, "sysfs") || 408 !strcmp(sb->s_type->name, "pstore") || 409 !strcmp(sb->s_type->name, "debugfs") || 410 !strcmp(sb->s_type->name, "rootfs"); 411 } 412 413 static int sb_finish_set_opts(struct super_block *sb) 414 { 415 struct superblock_security_struct *sbsec = sb->s_security; 416 struct dentry *root = sb->s_root; 417 struct inode *root_inode = d_backing_inode(root); 418 int rc = 0; 419 420 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 421 /* Make sure that the xattr handler exists and that no 422 error other than -ENODATA is returned by getxattr on 423 the root directory. -ENODATA is ok, as this may be 424 the first boot of the SELinux kernel before we have 425 assigned xattr values to the filesystem. */ 426 if (!root_inode->i_op->getxattr) { 427 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 428 "xattr support\n", sb->s_id, sb->s_type->name); 429 rc = -EOPNOTSUPP; 430 goto out; 431 } 432 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 433 if (rc < 0 && rc != -ENODATA) { 434 if (rc == -EOPNOTSUPP) 435 printk(KERN_WARNING "SELinux: (dev %s, type " 436 "%s) has no security xattr handler\n", 437 sb->s_id, sb->s_type->name); 438 else 439 printk(KERN_WARNING "SELinux: (dev %s, type " 440 "%s) getxattr errno %d\n", sb->s_id, 441 sb->s_type->name, -rc); 442 goto out; 443 } 444 } 445 446 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 447 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 448 sb->s_id, sb->s_type->name); 449 450 sbsec->flags |= SE_SBINITIALIZED; 451 if (selinux_is_sblabel_mnt(sb)) 452 sbsec->flags |= SBLABEL_MNT; 453 454 /* Initialize the root inode. */ 455 rc = inode_doinit_with_dentry(root_inode, root); 456 457 /* Initialize any other inodes associated with the superblock, e.g. 458 inodes created prior to initial policy load or inodes created 459 during get_sb by a pseudo filesystem that directly 460 populates itself. */ 461 spin_lock(&sbsec->isec_lock); 462 next_inode: 463 if (!list_empty(&sbsec->isec_head)) { 464 struct inode_security_struct *isec = 465 list_entry(sbsec->isec_head.next, 466 struct inode_security_struct, list); 467 struct inode *inode = isec->inode; 468 list_del_init(&isec->list); 469 spin_unlock(&sbsec->isec_lock); 470 inode = igrab(inode); 471 if (inode) { 472 if (!IS_PRIVATE(inode)) 473 inode_doinit(inode); 474 iput(inode); 475 } 476 spin_lock(&sbsec->isec_lock); 477 goto next_inode; 478 } 479 spin_unlock(&sbsec->isec_lock); 480 out: 481 return rc; 482 } 483 484 /* 485 * This function should allow an FS to ask what it's mount security 486 * options were so it can use those later for submounts, displaying 487 * mount options, or whatever. 488 */ 489 static int selinux_get_mnt_opts(const struct super_block *sb, 490 struct security_mnt_opts *opts) 491 { 492 int rc = 0, i; 493 struct superblock_security_struct *sbsec = sb->s_security; 494 char *context = NULL; 495 u32 len; 496 char tmp; 497 498 security_init_mnt_opts(opts); 499 500 if (!(sbsec->flags & SE_SBINITIALIZED)) 501 return -EINVAL; 502 503 if (!ss_initialized) 504 return -EINVAL; 505 506 /* make sure we always check enough bits to cover the mask */ 507 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 508 509 tmp = sbsec->flags & SE_MNTMASK; 510 /* count the number of mount options for this sb */ 511 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 512 if (tmp & 0x01) 513 opts->num_mnt_opts++; 514 tmp >>= 1; 515 } 516 /* Check if the Label support flag is set */ 517 if (sbsec->flags & SBLABEL_MNT) 518 opts->num_mnt_opts++; 519 520 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 521 if (!opts->mnt_opts) { 522 rc = -ENOMEM; 523 goto out_free; 524 } 525 526 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 527 if (!opts->mnt_opts_flags) { 528 rc = -ENOMEM; 529 goto out_free; 530 } 531 532 i = 0; 533 if (sbsec->flags & FSCONTEXT_MNT) { 534 rc = security_sid_to_context(sbsec->sid, &context, &len); 535 if (rc) 536 goto out_free; 537 opts->mnt_opts[i] = context; 538 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 539 } 540 if (sbsec->flags & CONTEXT_MNT) { 541 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 542 if (rc) 543 goto out_free; 544 opts->mnt_opts[i] = context; 545 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 546 } 547 if (sbsec->flags & DEFCONTEXT_MNT) { 548 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 549 if (rc) 550 goto out_free; 551 opts->mnt_opts[i] = context; 552 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 553 } 554 if (sbsec->flags & ROOTCONTEXT_MNT) { 555 struct inode *root = d_backing_inode(sbsec->sb->s_root); 556 struct inode_security_struct *isec = root->i_security; 557 558 rc = security_sid_to_context(isec->sid, &context, &len); 559 if (rc) 560 goto out_free; 561 opts->mnt_opts[i] = context; 562 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 563 } 564 if (sbsec->flags & SBLABEL_MNT) { 565 opts->mnt_opts[i] = NULL; 566 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 567 } 568 569 BUG_ON(i != opts->num_mnt_opts); 570 571 return 0; 572 573 out_free: 574 security_free_mnt_opts(opts); 575 return rc; 576 } 577 578 static int bad_option(struct superblock_security_struct *sbsec, char flag, 579 u32 old_sid, u32 new_sid) 580 { 581 char mnt_flags = sbsec->flags & SE_MNTMASK; 582 583 /* check if the old mount command had the same options */ 584 if (sbsec->flags & SE_SBINITIALIZED) 585 if (!(sbsec->flags & flag) || 586 (old_sid != new_sid)) 587 return 1; 588 589 /* check if we were passed the same options twice, 590 * aka someone passed context=a,context=b 591 */ 592 if (!(sbsec->flags & SE_SBINITIALIZED)) 593 if (mnt_flags & flag) 594 return 1; 595 return 0; 596 } 597 598 /* 599 * Allow filesystems with binary mount data to explicitly set mount point 600 * labeling information. 601 */ 602 static int selinux_set_mnt_opts(struct super_block *sb, 603 struct security_mnt_opts *opts, 604 unsigned long kern_flags, 605 unsigned long *set_kern_flags) 606 { 607 const struct cred *cred = current_cred(); 608 int rc = 0, i; 609 struct superblock_security_struct *sbsec = sb->s_security; 610 const char *name = sb->s_type->name; 611 struct inode *inode = d_backing_inode(sbsec->sb->s_root); 612 struct inode_security_struct *root_isec = inode->i_security; 613 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 614 u32 defcontext_sid = 0; 615 char **mount_options = opts->mnt_opts; 616 int *flags = opts->mnt_opts_flags; 617 int num_opts = opts->num_mnt_opts; 618 619 mutex_lock(&sbsec->lock); 620 621 if (!ss_initialized) { 622 if (!num_opts) { 623 /* Defer initialization until selinux_complete_init, 624 after the initial policy is loaded and the security 625 server is ready to handle calls. */ 626 goto out; 627 } 628 rc = -EINVAL; 629 printk(KERN_WARNING "SELinux: Unable to set superblock options " 630 "before the security server is initialized\n"); 631 goto out; 632 } 633 if (kern_flags && !set_kern_flags) { 634 /* Specifying internal flags without providing a place to 635 * place the results is not allowed */ 636 rc = -EINVAL; 637 goto out; 638 } 639 640 /* 641 * Binary mount data FS will come through this function twice. Once 642 * from an explicit call and once from the generic calls from the vfs. 643 * Since the generic VFS calls will not contain any security mount data 644 * we need to skip the double mount verification. 645 * 646 * This does open a hole in which we will not notice if the first 647 * mount using this sb set explict options and a second mount using 648 * this sb does not set any security options. (The first options 649 * will be used for both mounts) 650 */ 651 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 652 && (num_opts == 0)) 653 goto out; 654 655 /* 656 * parse the mount options, check if they are valid sids. 657 * also check if someone is trying to mount the same sb more 658 * than once with different security options. 659 */ 660 for (i = 0; i < num_opts; i++) { 661 u32 sid; 662 663 if (flags[i] == SBLABEL_MNT) 664 continue; 665 rc = security_context_to_sid(mount_options[i], 666 strlen(mount_options[i]), &sid, GFP_KERNEL); 667 if (rc) { 668 printk(KERN_WARNING "SELinux: security_context_to_sid" 669 "(%s) failed for (dev %s, type %s) errno=%d\n", 670 mount_options[i], sb->s_id, name, rc); 671 goto out; 672 } 673 switch (flags[i]) { 674 case FSCONTEXT_MNT: 675 fscontext_sid = sid; 676 677 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 678 fscontext_sid)) 679 goto out_double_mount; 680 681 sbsec->flags |= FSCONTEXT_MNT; 682 break; 683 case CONTEXT_MNT: 684 context_sid = sid; 685 686 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 687 context_sid)) 688 goto out_double_mount; 689 690 sbsec->flags |= CONTEXT_MNT; 691 break; 692 case ROOTCONTEXT_MNT: 693 rootcontext_sid = sid; 694 695 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 696 rootcontext_sid)) 697 goto out_double_mount; 698 699 sbsec->flags |= ROOTCONTEXT_MNT; 700 701 break; 702 case DEFCONTEXT_MNT: 703 defcontext_sid = sid; 704 705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 706 defcontext_sid)) 707 goto out_double_mount; 708 709 sbsec->flags |= DEFCONTEXT_MNT; 710 711 break; 712 default: 713 rc = -EINVAL; 714 goto out; 715 } 716 } 717 718 if (sbsec->flags & SE_SBINITIALIZED) { 719 /* previously mounted with options, but not on this attempt? */ 720 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 721 goto out_double_mount; 722 rc = 0; 723 goto out; 724 } 725 726 if (strcmp(sb->s_type->name, "proc") == 0) 727 sbsec->flags |= SE_SBPROC; 728 729 if (!sbsec->behavior) { 730 /* 731 * Determine the labeling behavior to use for this 732 * filesystem type. 733 */ 734 rc = security_fs_use(sb); 735 if (rc) { 736 printk(KERN_WARNING 737 "%s: security_fs_use(%s) returned %d\n", 738 __func__, sb->s_type->name, rc); 739 goto out; 740 } 741 } 742 /* sets the context of the superblock for the fs being mounted. */ 743 if (fscontext_sid) { 744 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 745 if (rc) 746 goto out; 747 748 sbsec->sid = fscontext_sid; 749 } 750 751 /* 752 * Switch to using mount point labeling behavior. 753 * sets the label used on all file below the mountpoint, and will set 754 * the superblock context if not already set. 755 */ 756 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 757 sbsec->behavior = SECURITY_FS_USE_NATIVE; 758 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 759 } 760 761 if (context_sid) { 762 if (!fscontext_sid) { 763 rc = may_context_mount_sb_relabel(context_sid, sbsec, 764 cred); 765 if (rc) 766 goto out; 767 sbsec->sid = context_sid; 768 } else { 769 rc = may_context_mount_inode_relabel(context_sid, sbsec, 770 cred); 771 if (rc) 772 goto out; 773 } 774 if (!rootcontext_sid) 775 rootcontext_sid = context_sid; 776 777 sbsec->mntpoint_sid = context_sid; 778 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 779 } 780 781 if (rootcontext_sid) { 782 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 783 cred); 784 if (rc) 785 goto out; 786 787 root_isec->sid = rootcontext_sid; 788 root_isec->initialized = 1; 789 } 790 791 if (defcontext_sid) { 792 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 793 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 794 rc = -EINVAL; 795 printk(KERN_WARNING "SELinux: defcontext option is " 796 "invalid for this filesystem type\n"); 797 goto out; 798 } 799 800 if (defcontext_sid != sbsec->def_sid) { 801 rc = may_context_mount_inode_relabel(defcontext_sid, 802 sbsec, cred); 803 if (rc) 804 goto out; 805 } 806 807 sbsec->def_sid = defcontext_sid; 808 } 809 810 rc = sb_finish_set_opts(sb); 811 out: 812 mutex_unlock(&sbsec->lock); 813 return rc; 814 out_double_mount: 815 rc = -EINVAL; 816 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 817 "security settings for (dev %s, type %s)\n", sb->s_id, name); 818 goto out; 819 } 820 821 static int selinux_cmp_sb_context(const struct super_block *oldsb, 822 const struct super_block *newsb) 823 { 824 struct superblock_security_struct *old = oldsb->s_security; 825 struct superblock_security_struct *new = newsb->s_security; 826 char oldflags = old->flags & SE_MNTMASK; 827 char newflags = new->flags & SE_MNTMASK; 828 829 if (oldflags != newflags) 830 goto mismatch; 831 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 832 goto mismatch; 833 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 834 goto mismatch; 835 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 836 goto mismatch; 837 if (oldflags & ROOTCONTEXT_MNT) { 838 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security; 839 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security; 840 if (oldroot->sid != newroot->sid) 841 goto mismatch; 842 } 843 return 0; 844 mismatch: 845 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 846 "different security settings for (dev %s, " 847 "type %s)\n", newsb->s_id, newsb->s_type->name); 848 return -EBUSY; 849 } 850 851 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 852 struct super_block *newsb) 853 { 854 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 855 struct superblock_security_struct *newsbsec = newsb->s_security; 856 857 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 858 int set_context = (oldsbsec->flags & CONTEXT_MNT); 859 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 860 861 /* 862 * if the parent was able to be mounted it clearly had no special lsm 863 * mount options. thus we can safely deal with this superblock later 864 */ 865 if (!ss_initialized) 866 return 0; 867 868 /* how can we clone if the old one wasn't set up?? */ 869 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 870 871 /* if fs is reusing a sb, make sure that the contexts match */ 872 if (newsbsec->flags & SE_SBINITIALIZED) 873 return selinux_cmp_sb_context(oldsb, newsb); 874 875 mutex_lock(&newsbsec->lock); 876 877 newsbsec->flags = oldsbsec->flags; 878 879 newsbsec->sid = oldsbsec->sid; 880 newsbsec->def_sid = oldsbsec->def_sid; 881 newsbsec->behavior = oldsbsec->behavior; 882 883 if (set_context) { 884 u32 sid = oldsbsec->mntpoint_sid; 885 886 if (!set_fscontext) 887 newsbsec->sid = sid; 888 if (!set_rootcontext) { 889 struct inode *newinode = d_backing_inode(newsb->s_root); 890 struct inode_security_struct *newisec = newinode->i_security; 891 newisec->sid = sid; 892 } 893 newsbsec->mntpoint_sid = sid; 894 } 895 if (set_rootcontext) { 896 const struct inode *oldinode = d_backing_inode(oldsb->s_root); 897 const struct inode_security_struct *oldisec = oldinode->i_security; 898 struct inode *newinode = d_backing_inode(newsb->s_root); 899 struct inode_security_struct *newisec = newinode->i_security; 900 901 newisec->sid = oldisec->sid; 902 } 903 904 sb_finish_set_opts(newsb); 905 mutex_unlock(&newsbsec->lock); 906 return 0; 907 } 908 909 static int selinux_parse_opts_str(char *options, 910 struct security_mnt_opts *opts) 911 { 912 char *p; 913 char *context = NULL, *defcontext = NULL; 914 char *fscontext = NULL, *rootcontext = NULL; 915 int rc, num_mnt_opts = 0; 916 917 opts->num_mnt_opts = 0; 918 919 /* Standard string-based options. */ 920 while ((p = strsep(&options, "|")) != NULL) { 921 int token; 922 substring_t args[MAX_OPT_ARGS]; 923 924 if (!*p) 925 continue; 926 927 token = match_token(p, tokens, args); 928 929 switch (token) { 930 case Opt_context: 931 if (context || defcontext) { 932 rc = -EINVAL; 933 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 934 goto out_err; 935 } 936 context = match_strdup(&args[0]); 937 if (!context) { 938 rc = -ENOMEM; 939 goto out_err; 940 } 941 break; 942 943 case Opt_fscontext: 944 if (fscontext) { 945 rc = -EINVAL; 946 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 947 goto out_err; 948 } 949 fscontext = match_strdup(&args[0]); 950 if (!fscontext) { 951 rc = -ENOMEM; 952 goto out_err; 953 } 954 break; 955 956 case Opt_rootcontext: 957 if (rootcontext) { 958 rc = -EINVAL; 959 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 960 goto out_err; 961 } 962 rootcontext = match_strdup(&args[0]); 963 if (!rootcontext) { 964 rc = -ENOMEM; 965 goto out_err; 966 } 967 break; 968 969 case Opt_defcontext: 970 if (context || defcontext) { 971 rc = -EINVAL; 972 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 973 goto out_err; 974 } 975 defcontext = match_strdup(&args[0]); 976 if (!defcontext) { 977 rc = -ENOMEM; 978 goto out_err; 979 } 980 break; 981 case Opt_labelsupport: 982 break; 983 default: 984 rc = -EINVAL; 985 printk(KERN_WARNING "SELinux: unknown mount option\n"); 986 goto out_err; 987 988 } 989 } 990 991 rc = -ENOMEM; 992 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 993 if (!opts->mnt_opts) 994 goto out_err; 995 996 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 997 if (!opts->mnt_opts_flags) { 998 kfree(opts->mnt_opts); 999 goto out_err; 1000 } 1001 1002 if (fscontext) { 1003 opts->mnt_opts[num_mnt_opts] = fscontext; 1004 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1005 } 1006 if (context) { 1007 opts->mnt_opts[num_mnt_opts] = context; 1008 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1009 } 1010 if (rootcontext) { 1011 opts->mnt_opts[num_mnt_opts] = rootcontext; 1012 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1013 } 1014 if (defcontext) { 1015 opts->mnt_opts[num_mnt_opts] = defcontext; 1016 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1017 } 1018 1019 opts->num_mnt_opts = num_mnt_opts; 1020 return 0; 1021 1022 out_err: 1023 kfree(context); 1024 kfree(defcontext); 1025 kfree(fscontext); 1026 kfree(rootcontext); 1027 return rc; 1028 } 1029 /* 1030 * string mount options parsing and call set the sbsec 1031 */ 1032 static int superblock_doinit(struct super_block *sb, void *data) 1033 { 1034 int rc = 0; 1035 char *options = data; 1036 struct security_mnt_opts opts; 1037 1038 security_init_mnt_opts(&opts); 1039 1040 if (!data) 1041 goto out; 1042 1043 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1044 1045 rc = selinux_parse_opts_str(options, &opts); 1046 if (rc) 1047 goto out_err; 1048 1049 out: 1050 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1051 1052 out_err: 1053 security_free_mnt_opts(&opts); 1054 return rc; 1055 } 1056 1057 static void selinux_write_opts(struct seq_file *m, 1058 struct security_mnt_opts *opts) 1059 { 1060 int i; 1061 char *prefix; 1062 1063 for (i = 0; i < opts->num_mnt_opts; i++) { 1064 char *has_comma; 1065 1066 if (opts->mnt_opts[i]) 1067 has_comma = strchr(opts->mnt_opts[i], ','); 1068 else 1069 has_comma = NULL; 1070 1071 switch (opts->mnt_opts_flags[i]) { 1072 case CONTEXT_MNT: 1073 prefix = CONTEXT_STR; 1074 break; 1075 case FSCONTEXT_MNT: 1076 prefix = FSCONTEXT_STR; 1077 break; 1078 case ROOTCONTEXT_MNT: 1079 prefix = ROOTCONTEXT_STR; 1080 break; 1081 case DEFCONTEXT_MNT: 1082 prefix = DEFCONTEXT_STR; 1083 break; 1084 case SBLABEL_MNT: 1085 seq_putc(m, ','); 1086 seq_puts(m, LABELSUPP_STR); 1087 continue; 1088 default: 1089 BUG(); 1090 return; 1091 }; 1092 /* we need a comma before each option */ 1093 seq_putc(m, ','); 1094 seq_puts(m, prefix); 1095 if (has_comma) 1096 seq_putc(m, '\"'); 1097 seq_puts(m, opts->mnt_opts[i]); 1098 if (has_comma) 1099 seq_putc(m, '\"'); 1100 } 1101 } 1102 1103 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1104 { 1105 struct security_mnt_opts opts; 1106 int rc; 1107 1108 rc = selinux_get_mnt_opts(sb, &opts); 1109 if (rc) { 1110 /* before policy load we may get EINVAL, don't show anything */ 1111 if (rc == -EINVAL) 1112 rc = 0; 1113 return rc; 1114 } 1115 1116 selinux_write_opts(m, &opts); 1117 1118 security_free_mnt_opts(&opts); 1119 1120 return rc; 1121 } 1122 1123 static inline u16 inode_mode_to_security_class(umode_t mode) 1124 { 1125 switch (mode & S_IFMT) { 1126 case S_IFSOCK: 1127 return SECCLASS_SOCK_FILE; 1128 case S_IFLNK: 1129 return SECCLASS_LNK_FILE; 1130 case S_IFREG: 1131 return SECCLASS_FILE; 1132 case S_IFBLK: 1133 return SECCLASS_BLK_FILE; 1134 case S_IFDIR: 1135 return SECCLASS_DIR; 1136 case S_IFCHR: 1137 return SECCLASS_CHR_FILE; 1138 case S_IFIFO: 1139 return SECCLASS_FIFO_FILE; 1140 1141 } 1142 1143 return SECCLASS_FILE; 1144 } 1145 1146 static inline int default_protocol_stream(int protocol) 1147 { 1148 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1149 } 1150 1151 static inline int default_protocol_dgram(int protocol) 1152 { 1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1154 } 1155 1156 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1157 { 1158 switch (family) { 1159 case PF_UNIX: 1160 switch (type) { 1161 case SOCK_STREAM: 1162 case SOCK_SEQPACKET: 1163 return SECCLASS_UNIX_STREAM_SOCKET; 1164 case SOCK_DGRAM: 1165 return SECCLASS_UNIX_DGRAM_SOCKET; 1166 } 1167 break; 1168 case PF_INET: 1169 case PF_INET6: 1170 switch (type) { 1171 case SOCK_STREAM: 1172 if (default_protocol_stream(protocol)) 1173 return SECCLASS_TCP_SOCKET; 1174 else 1175 return SECCLASS_RAWIP_SOCKET; 1176 case SOCK_DGRAM: 1177 if (default_protocol_dgram(protocol)) 1178 return SECCLASS_UDP_SOCKET; 1179 else 1180 return SECCLASS_RAWIP_SOCKET; 1181 case SOCK_DCCP: 1182 return SECCLASS_DCCP_SOCKET; 1183 default: 1184 return SECCLASS_RAWIP_SOCKET; 1185 } 1186 break; 1187 case PF_NETLINK: 1188 switch (protocol) { 1189 case NETLINK_ROUTE: 1190 return SECCLASS_NETLINK_ROUTE_SOCKET; 1191 case NETLINK_FIREWALL: 1192 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1193 case NETLINK_SOCK_DIAG: 1194 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1195 case NETLINK_NFLOG: 1196 return SECCLASS_NETLINK_NFLOG_SOCKET; 1197 case NETLINK_XFRM: 1198 return SECCLASS_NETLINK_XFRM_SOCKET; 1199 case NETLINK_SELINUX: 1200 return SECCLASS_NETLINK_SELINUX_SOCKET; 1201 case NETLINK_AUDIT: 1202 return SECCLASS_NETLINK_AUDIT_SOCKET; 1203 case NETLINK_IP6_FW: 1204 return SECCLASS_NETLINK_IP6FW_SOCKET; 1205 case NETLINK_DNRTMSG: 1206 return SECCLASS_NETLINK_DNRT_SOCKET; 1207 case NETLINK_KOBJECT_UEVENT: 1208 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1209 default: 1210 return SECCLASS_NETLINK_SOCKET; 1211 } 1212 case PF_PACKET: 1213 return SECCLASS_PACKET_SOCKET; 1214 case PF_KEY: 1215 return SECCLASS_KEY_SOCKET; 1216 case PF_APPLETALK: 1217 return SECCLASS_APPLETALK_SOCKET; 1218 } 1219 1220 return SECCLASS_SOCKET; 1221 } 1222 1223 #ifdef CONFIG_PROC_FS 1224 static int selinux_proc_get_sid(struct dentry *dentry, 1225 u16 tclass, 1226 u32 *sid) 1227 { 1228 int rc; 1229 char *buffer, *path; 1230 1231 buffer = (char *)__get_free_page(GFP_KERNEL); 1232 if (!buffer) 1233 return -ENOMEM; 1234 1235 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1236 if (IS_ERR(path)) 1237 rc = PTR_ERR(path); 1238 else { 1239 /* each process gets a /proc/PID/ entry. Strip off the 1240 * PID part to get a valid selinux labeling. 1241 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1242 while (path[1] >= '0' && path[1] <= '9') { 1243 path[1] = '/'; 1244 path++; 1245 } 1246 rc = security_genfs_sid("proc", path, tclass, sid); 1247 } 1248 free_page((unsigned long)buffer); 1249 return rc; 1250 } 1251 #else 1252 static int selinux_proc_get_sid(struct dentry *dentry, 1253 u16 tclass, 1254 u32 *sid) 1255 { 1256 return -EINVAL; 1257 } 1258 #endif 1259 1260 /* The inode's security attributes must be initialized before first use. */ 1261 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1262 { 1263 struct superblock_security_struct *sbsec = NULL; 1264 struct inode_security_struct *isec = inode->i_security; 1265 u32 sid; 1266 struct dentry *dentry; 1267 #define INITCONTEXTLEN 255 1268 char *context = NULL; 1269 unsigned len = 0; 1270 int rc = 0; 1271 1272 if (isec->initialized) 1273 goto out; 1274 1275 mutex_lock(&isec->lock); 1276 if (isec->initialized) 1277 goto out_unlock; 1278 1279 sbsec = inode->i_sb->s_security; 1280 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1281 /* Defer initialization until selinux_complete_init, 1282 after the initial policy is loaded and the security 1283 server is ready to handle calls. */ 1284 spin_lock(&sbsec->isec_lock); 1285 if (list_empty(&isec->list)) 1286 list_add(&isec->list, &sbsec->isec_head); 1287 spin_unlock(&sbsec->isec_lock); 1288 goto out_unlock; 1289 } 1290 1291 switch (sbsec->behavior) { 1292 case SECURITY_FS_USE_NATIVE: 1293 break; 1294 case SECURITY_FS_USE_XATTR: 1295 if (!inode->i_op->getxattr) { 1296 isec->sid = sbsec->def_sid; 1297 break; 1298 } 1299 1300 /* Need a dentry, since the xattr API requires one. 1301 Life would be simpler if we could just pass the inode. */ 1302 if (opt_dentry) { 1303 /* Called from d_instantiate or d_splice_alias. */ 1304 dentry = dget(opt_dentry); 1305 } else { 1306 /* Called from selinux_complete_init, try to find a dentry. */ 1307 dentry = d_find_alias(inode); 1308 } 1309 if (!dentry) { 1310 /* 1311 * this is can be hit on boot when a file is accessed 1312 * before the policy is loaded. When we load policy we 1313 * may find inodes that have no dentry on the 1314 * sbsec->isec_head list. No reason to complain as these 1315 * will get fixed up the next time we go through 1316 * inode_doinit with a dentry, before these inodes could 1317 * be used again by userspace. 1318 */ 1319 goto out_unlock; 1320 } 1321 1322 len = INITCONTEXTLEN; 1323 context = kmalloc(len+1, GFP_NOFS); 1324 if (!context) { 1325 rc = -ENOMEM; 1326 dput(dentry); 1327 goto out_unlock; 1328 } 1329 context[len] = '\0'; 1330 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1331 context, len); 1332 if (rc == -ERANGE) { 1333 kfree(context); 1334 1335 /* Need a larger buffer. Query for the right size. */ 1336 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1337 NULL, 0); 1338 if (rc < 0) { 1339 dput(dentry); 1340 goto out_unlock; 1341 } 1342 len = rc; 1343 context = kmalloc(len+1, GFP_NOFS); 1344 if (!context) { 1345 rc = -ENOMEM; 1346 dput(dentry); 1347 goto out_unlock; 1348 } 1349 context[len] = '\0'; 1350 rc = inode->i_op->getxattr(dentry, 1351 XATTR_NAME_SELINUX, 1352 context, len); 1353 } 1354 dput(dentry); 1355 if (rc < 0) { 1356 if (rc != -ENODATA) { 1357 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1358 "%d for dev=%s ino=%ld\n", __func__, 1359 -rc, inode->i_sb->s_id, inode->i_ino); 1360 kfree(context); 1361 goto out_unlock; 1362 } 1363 /* Map ENODATA to the default file SID */ 1364 sid = sbsec->def_sid; 1365 rc = 0; 1366 } else { 1367 rc = security_context_to_sid_default(context, rc, &sid, 1368 sbsec->def_sid, 1369 GFP_NOFS); 1370 if (rc) { 1371 char *dev = inode->i_sb->s_id; 1372 unsigned long ino = inode->i_ino; 1373 1374 if (rc == -EINVAL) { 1375 if (printk_ratelimit()) 1376 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1377 "context=%s. This indicates you may need to relabel the inode or the " 1378 "filesystem in question.\n", ino, dev, context); 1379 } else { 1380 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1381 "returned %d for dev=%s ino=%ld\n", 1382 __func__, context, -rc, dev, ino); 1383 } 1384 kfree(context); 1385 /* Leave with the unlabeled SID */ 1386 rc = 0; 1387 break; 1388 } 1389 } 1390 kfree(context); 1391 isec->sid = sid; 1392 break; 1393 case SECURITY_FS_USE_TASK: 1394 isec->sid = isec->task_sid; 1395 break; 1396 case SECURITY_FS_USE_TRANS: 1397 /* Default to the fs SID. */ 1398 isec->sid = sbsec->sid; 1399 1400 /* Try to obtain a transition SID. */ 1401 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1402 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1403 isec->sclass, NULL, &sid); 1404 if (rc) 1405 goto out_unlock; 1406 isec->sid = sid; 1407 break; 1408 case SECURITY_FS_USE_MNTPOINT: 1409 isec->sid = sbsec->mntpoint_sid; 1410 break; 1411 default: 1412 /* Default to the fs superblock SID. */ 1413 isec->sid = sbsec->sid; 1414 1415 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1416 /* We must have a dentry to determine the label on 1417 * procfs inodes */ 1418 if (opt_dentry) 1419 /* Called from d_instantiate or 1420 * d_splice_alias. */ 1421 dentry = dget(opt_dentry); 1422 else 1423 /* Called from selinux_complete_init, try to 1424 * find a dentry. */ 1425 dentry = d_find_alias(inode); 1426 /* 1427 * This can be hit on boot when a file is accessed 1428 * before the policy is loaded. When we load policy we 1429 * may find inodes that have no dentry on the 1430 * sbsec->isec_head list. No reason to complain as 1431 * these will get fixed up the next time we go through 1432 * inode_doinit() with a dentry, before these inodes 1433 * could be used again by userspace. 1434 */ 1435 if (!dentry) 1436 goto out_unlock; 1437 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1438 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid); 1439 dput(dentry); 1440 if (rc) 1441 goto out_unlock; 1442 isec->sid = sid; 1443 } 1444 break; 1445 } 1446 1447 isec->initialized = 1; 1448 1449 out_unlock: 1450 mutex_unlock(&isec->lock); 1451 out: 1452 if (isec->sclass == SECCLASS_FILE) 1453 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1454 return rc; 1455 } 1456 1457 /* Convert a Linux signal to an access vector. */ 1458 static inline u32 signal_to_av(int sig) 1459 { 1460 u32 perm = 0; 1461 1462 switch (sig) { 1463 case SIGCHLD: 1464 /* Commonly granted from child to parent. */ 1465 perm = PROCESS__SIGCHLD; 1466 break; 1467 case SIGKILL: 1468 /* Cannot be caught or ignored */ 1469 perm = PROCESS__SIGKILL; 1470 break; 1471 case SIGSTOP: 1472 /* Cannot be caught or ignored */ 1473 perm = PROCESS__SIGSTOP; 1474 break; 1475 default: 1476 /* All other signals. */ 1477 perm = PROCESS__SIGNAL; 1478 break; 1479 } 1480 1481 return perm; 1482 } 1483 1484 /* 1485 * Check permission between a pair of credentials 1486 * fork check, ptrace check, etc. 1487 */ 1488 static int cred_has_perm(const struct cred *actor, 1489 const struct cred *target, 1490 u32 perms) 1491 { 1492 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1493 1494 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1495 } 1496 1497 /* 1498 * Check permission between a pair of tasks, e.g. signal checks, 1499 * fork check, ptrace check, etc. 1500 * tsk1 is the actor and tsk2 is the target 1501 * - this uses the default subjective creds of tsk1 1502 */ 1503 static int task_has_perm(const struct task_struct *tsk1, 1504 const struct task_struct *tsk2, 1505 u32 perms) 1506 { 1507 const struct task_security_struct *__tsec1, *__tsec2; 1508 u32 sid1, sid2; 1509 1510 rcu_read_lock(); 1511 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1512 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1513 rcu_read_unlock(); 1514 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1515 } 1516 1517 /* 1518 * Check permission between current and another task, e.g. signal checks, 1519 * fork check, ptrace check, etc. 1520 * current is the actor and tsk2 is the target 1521 * - this uses current's subjective creds 1522 */ 1523 static int current_has_perm(const struct task_struct *tsk, 1524 u32 perms) 1525 { 1526 u32 sid, tsid; 1527 1528 sid = current_sid(); 1529 tsid = task_sid(tsk); 1530 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1531 } 1532 1533 #if CAP_LAST_CAP > 63 1534 #error Fix SELinux to handle capabilities > 63. 1535 #endif 1536 1537 /* Check whether a task is allowed to use a capability. */ 1538 static int cred_has_capability(const struct cred *cred, 1539 int cap, int audit) 1540 { 1541 struct common_audit_data ad; 1542 struct av_decision avd; 1543 u16 sclass; 1544 u32 sid = cred_sid(cred); 1545 u32 av = CAP_TO_MASK(cap); 1546 int rc; 1547 1548 ad.type = LSM_AUDIT_DATA_CAP; 1549 ad.u.cap = cap; 1550 1551 switch (CAP_TO_INDEX(cap)) { 1552 case 0: 1553 sclass = SECCLASS_CAPABILITY; 1554 break; 1555 case 1: 1556 sclass = SECCLASS_CAPABILITY2; 1557 break; 1558 default: 1559 printk(KERN_ERR 1560 "SELinux: out of range capability %d\n", cap); 1561 BUG(); 1562 return -EINVAL; 1563 } 1564 1565 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1566 if (audit == SECURITY_CAP_AUDIT) { 1567 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0); 1568 if (rc2) 1569 return rc2; 1570 } 1571 return rc; 1572 } 1573 1574 /* Check whether a task is allowed to use a system operation. */ 1575 static int task_has_system(struct task_struct *tsk, 1576 u32 perms) 1577 { 1578 u32 sid = task_sid(tsk); 1579 1580 return avc_has_perm(sid, SECINITSID_KERNEL, 1581 SECCLASS_SYSTEM, perms, NULL); 1582 } 1583 1584 /* Check whether a task has a particular permission to an inode. 1585 The 'adp' parameter is optional and allows other audit 1586 data to be passed (e.g. the dentry). */ 1587 static int inode_has_perm(const struct cred *cred, 1588 struct inode *inode, 1589 u32 perms, 1590 struct common_audit_data *adp) 1591 { 1592 struct inode_security_struct *isec; 1593 u32 sid; 1594 1595 validate_creds(cred); 1596 1597 if (unlikely(IS_PRIVATE(inode))) 1598 return 0; 1599 1600 sid = cred_sid(cred); 1601 isec = inode->i_security; 1602 1603 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1604 } 1605 1606 /* Same as inode_has_perm, but pass explicit audit data containing 1607 the dentry to help the auditing code to more easily generate the 1608 pathname if needed. */ 1609 static inline int dentry_has_perm(const struct cred *cred, 1610 struct dentry *dentry, 1611 u32 av) 1612 { 1613 struct inode *inode = d_backing_inode(dentry); 1614 struct common_audit_data ad; 1615 1616 ad.type = LSM_AUDIT_DATA_DENTRY; 1617 ad.u.dentry = dentry; 1618 return inode_has_perm(cred, inode, av, &ad); 1619 } 1620 1621 /* Same as inode_has_perm, but pass explicit audit data containing 1622 the path to help the auditing code to more easily generate the 1623 pathname if needed. */ 1624 static inline int path_has_perm(const struct cred *cred, 1625 const struct path *path, 1626 u32 av) 1627 { 1628 struct inode *inode = d_backing_inode(path->dentry); 1629 struct common_audit_data ad; 1630 1631 ad.type = LSM_AUDIT_DATA_PATH; 1632 ad.u.path = *path; 1633 return inode_has_perm(cred, inode, av, &ad); 1634 } 1635 1636 /* Same as path_has_perm, but uses the inode from the file struct. */ 1637 static inline int file_path_has_perm(const struct cred *cred, 1638 struct file *file, 1639 u32 av) 1640 { 1641 struct common_audit_data ad; 1642 1643 ad.type = LSM_AUDIT_DATA_PATH; 1644 ad.u.path = file->f_path; 1645 return inode_has_perm(cred, file_inode(file), av, &ad); 1646 } 1647 1648 /* Check whether a task can use an open file descriptor to 1649 access an inode in a given way. Check access to the 1650 descriptor itself, and then use dentry_has_perm to 1651 check a particular permission to the file. 1652 Access to the descriptor is implicitly granted if it 1653 has the same SID as the process. If av is zero, then 1654 access to the file is not checked, e.g. for cases 1655 where only the descriptor is affected like seek. */ 1656 static int file_has_perm(const struct cred *cred, 1657 struct file *file, 1658 u32 av) 1659 { 1660 struct file_security_struct *fsec = file->f_security; 1661 struct inode *inode = file_inode(file); 1662 struct common_audit_data ad; 1663 u32 sid = cred_sid(cred); 1664 int rc; 1665 1666 ad.type = LSM_AUDIT_DATA_PATH; 1667 ad.u.path = file->f_path; 1668 1669 if (sid != fsec->sid) { 1670 rc = avc_has_perm(sid, fsec->sid, 1671 SECCLASS_FD, 1672 FD__USE, 1673 &ad); 1674 if (rc) 1675 goto out; 1676 } 1677 1678 /* av is zero if only checking access to the descriptor. */ 1679 rc = 0; 1680 if (av) 1681 rc = inode_has_perm(cred, inode, av, &ad); 1682 1683 out: 1684 return rc; 1685 } 1686 1687 /* Check whether a task can create a file. */ 1688 static int may_create(struct inode *dir, 1689 struct dentry *dentry, 1690 u16 tclass) 1691 { 1692 const struct task_security_struct *tsec = current_security(); 1693 struct inode_security_struct *dsec; 1694 struct superblock_security_struct *sbsec; 1695 u32 sid, newsid; 1696 struct common_audit_data ad; 1697 int rc; 1698 1699 dsec = dir->i_security; 1700 sbsec = dir->i_sb->s_security; 1701 1702 sid = tsec->sid; 1703 newsid = tsec->create_sid; 1704 1705 ad.type = LSM_AUDIT_DATA_DENTRY; 1706 ad.u.dentry = dentry; 1707 1708 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1709 DIR__ADD_NAME | DIR__SEARCH, 1710 &ad); 1711 if (rc) 1712 return rc; 1713 1714 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 1715 rc = security_transition_sid(sid, dsec->sid, tclass, 1716 &dentry->d_name, &newsid); 1717 if (rc) 1718 return rc; 1719 } 1720 1721 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1722 if (rc) 1723 return rc; 1724 1725 return avc_has_perm(newsid, sbsec->sid, 1726 SECCLASS_FILESYSTEM, 1727 FILESYSTEM__ASSOCIATE, &ad); 1728 } 1729 1730 /* Check whether a task can create a key. */ 1731 static int may_create_key(u32 ksid, 1732 struct task_struct *ctx) 1733 { 1734 u32 sid = task_sid(ctx); 1735 1736 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1737 } 1738 1739 #define MAY_LINK 0 1740 #define MAY_UNLINK 1 1741 #define MAY_RMDIR 2 1742 1743 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1744 static int may_link(struct inode *dir, 1745 struct dentry *dentry, 1746 int kind) 1747 1748 { 1749 struct inode_security_struct *dsec, *isec; 1750 struct common_audit_data ad; 1751 u32 sid = current_sid(); 1752 u32 av; 1753 int rc; 1754 1755 dsec = dir->i_security; 1756 isec = d_backing_inode(dentry)->i_security; 1757 1758 ad.type = LSM_AUDIT_DATA_DENTRY; 1759 ad.u.dentry = dentry; 1760 1761 av = DIR__SEARCH; 1762 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1763 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1764 if (rc) 1765 return rc; 1766 1767 switch (kind) { 1768 case MAY_LINK: 1769 av = FILE__LINK; 1770 break; 1771 case MAY_UNLINK: 1772 av = FILE__UNLINK; 1773 break; 1774 case MAY_RMDIR: 1775 av = DIR__RMDIR; 1776 break; 1777 default: 1778 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1779 __func__, kind); 1780 return 0; 1781 } 1782 1783 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1784 return rc; 1785 } 1786 1787 static inline int may_rename(struct inode *old_dir, 1788 struct dentry *old_dentry, 1789 struct inode *new_dir, 1790 struct dentry *new_dentry) 1791 { 1792 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1793 struct common_audit_data ad; 1794 u32 sid = current_sid(); 1795 u32 av; 1796 int old_is_dir, new_is_dir; 1797 int rc; 1798 1799 old_dsec = old_dir->i_security; 1800 old_isec = d_backing_inode(old_dentry)->i_security; 1801 old_is_dir = d_is_dir(old_dentry); 1802 new_dsec = new_dir->i_security; 1803 1804 ad.type = LSM_AUDIT_DATA_DENTRY; 1805 1806 ad.u.dentry = old_dentry; 1807 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1808 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1809 if (rc) 1810 return rc; 1811 rc = avc_has_perm(sid, old_isec->sid, 1812 old_isec->sclass, FILE__RENAME, &ad); 1813 if (rc) 1814 return rc; 1815 if (old_is_dir && new_dir != old_dir) { 1816 rc = avc_has_perm(sid, old_isec->sid, 1817 old_isec->sclass, DIR__REPARENT, &ad); 1818 if (rc) 1819 return rc; 1820 } 1821 1822 ad.u.dentry = new_dentry; 1823 av = DIR__ADD_NAME | DIR__SEARCH; 1824 if (d_is_positive(new_dentry)) 1825 av |= DIR__REMOVE_NAME; 1826 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1827 if (rc) 1828 return rc; 1829 if (d_is_positive(new_dentry)) { 1830 new_isec = d_backing_inode(new_dentry)->i_security; 1831 new_is_dir = d_is_dir(new_dentry); 1832 rc = avc_has_perm(sid, new_isec->sid, 1833 new_isec->sclass, 1834 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1835 if (rc) 1836 return rc; 1837 } 1838 1839 return 0; 1840 } 1841 1842 /* Check whether a task can perform a filesystem operation. */ 1843 static int superblock_has_perm(const struct cred *cred, 1844 struct super_block *sb, 1845 u32 perms, 1846 struct common_audit_data *ad) 1847 { 1848 struct superblock_security_struct *sbsec; 1849 u32 sid = cred_sid(cred); 1850 1851 sbsec = sb->s_security; 1852 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1853 } 1854 1855 /* Convert a Linux mode and permission mask to an access vector. */ 1856 static inline u32 file_mask_to_av(int mode, int mask) 1857 { 1858 u32 av = 0; 1859 1860 if (!S_ISDIR(mode)) { 1861 if (mask & MAY_EXEC) 1862 av |= FILE__EXECUTE; 1863 if (mask & MAY_READ) 1864 av |= FILE__READ; 1865 1866 if (mask & MAY_APPEND) 1867 av |= FILE__APPEND; 1868 else if (mask & MAY_WRITE) 1869 av |= FILE__WRITE; 1870 1871 } else { 1872 if (mask & MAY_EXEC) 1873 av |= DIR__SEARCH; 1874 if (mask & MAY_WRITE) 1875 av |= DIR__WRITE; 1876 if (mask & MAY_READ) 1877 av |= DIR__READ; 1878 } 1879 1880 return av; 1881 } 1882 1883 /* Convert a Linux file to an access vector. */ 1884 static inline u32 file_to_av(struct file *file) 1885 { 1886 u32 av = 0; 1887 1888 if (file->f_mode & FMODE_READ) 1889 av |= FILE__READ; 1890 if (file->f_mode & FMODE_WRITE) { 1891 if (file->f_flags & O_APPEND) 1892 av |= FILE__APPEND; 1893 else 1894 av |= FILE__WRITE; 1895 } 1896 if (!av) { 1897 /* 1898 * Special file opened with flags 3 for ioctl-only use. 1899 */ 1900 av = FILE__IOCTL; 1901 } 1902 1903 return av; 1904 } 1905 1906 /* 1907 * Convert a file to an access vector and include the correct open 1908 * open permission. 1909 */ 1910 static inline u32 open_file_to_av(struct file *file) 1911 { 1912 u32 av = file_to_av(file); 1913 1914 if (selinux_policycap_openperm) 1915 av |= FILE__OPEN; 1916 1917 return av; 1918 } 1919 1920 /* Hook functions begin here. */ 1921 1922 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1923 { 1924 u32 mysid = current_sid(); 1925 u32 mgrsid = task_sid(mgr); 1926 1927 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 1928 BINDER__SET_CONTEXT_MGR, NULL); 1929 } 1930 1931 static int selinux_binder_transaction(struct task_struct *from, 1932 struct task_struct *to) 1933 { 1934 u32 mysid = current_sid(); 1935 u32 fromsid = task_sid(from); 1936 u32 tosid = task_sid(to); 1937 int rc; 1938 1939 if (mysid != fromsid) { 1940 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 1941 BINDER__IMPERSONATE, NULL); 1942 if (rc) 1943 return rc; 1944 } 1945 1946 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 1947 NULL); 1948 } 1949 1950 static int selinux_binder_transfer_binder(struct task_struct *from, 1951 struct task_struct *to) 1952 { 1953 u32 fromsid = task_sid(from); 1954 u32 tosid = task_sid(to); 1955 1956 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 1957 NULL); 1958 } 1959 1960 static int selinux_binder_transfer_file(struct task_struct *from, 1961 struct task_struct *to, 1962 struct file *file) 1963 { 1964 u32 sid = task_sid(to); 1965 struct file_security_struct *fsec = file->f_security; 1966 struct inode *inode = d_backing_inode(file->f_path.dentry); 1967 struct inode_security_struct *isec = inode->i_security; 1968 struct common_audit_data ad; 1969 int rc; 1970 1971 ad.type = LSM_AUDIT_DATA_PATH; 1972 ad.u.path = file->f_path; 1973 1974 if (sid != fsec->sid) { 1975 rc = avc_has_perm(sid, fsec->sid, 1976 SECCLASS_FD, 1977 FD__USE, 1978 &ad); 1979 if (rc) 1980 return rc; 1981 } 1982 1983 if (unlikely(IS_PRIVATE(inode))) 1984 return 0; 1985 1986 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 1987 &ad); 1988 } 1989 1990 static int selinux_ptrace_access_check(struct task_struct *child, 1991 unsigned int mode) 1992 { 1993 int rc; 1994 1995 rc = cap_ptrace_access_check(child, mode); 1996 if (rc) 1997 return rc; 1998 1999 if (mode & PTRACE_MODE_READ) { 2000 u32 sid = current_sid(); 2001 u32 csid = task_sid(child); 2002 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2003 } 2004 2005 return current_has_perm(child, PROCESS__PTRACE); 2006 } 2007 2008 static int selinux_ptrace_traceme(struct task_struct *parent) 2009 { 2010 int rc; 2011 2012 rc = cap_ptrace_traceme(parent); 2013 if (rc) 2014 return rc; 2015 2016 return task_has_perm(parent, current, PROCESS__PTRACE); 2017 } 2018 2019 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2020 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2021 { 2022 int error; 2023 2024 error = current_has_perm(target, PROCESS__GETCAP); 2025 if (error) 2026 return error; 2027 2028 return cap_capget(target, effective, inheritable, permitted); 2029 } 2030 2031 static int selinux_capset(struct cred *new, const struct cred *old, 2032 const kernel_cap_t *effective, 2033 const kernel_cap_t *inheritable, 2034 const kernel_cap_t *permitted) 2035 { 2036 int error; 2037 2038 error = cap_capset(new, old, 2039 effective, inheritable, permitted); 2040 if (error) 2041 return error; 2042 2043 return cred_has_perm(old, new, PROCESS__SETCAP); 2044 } 2045 2046 /* 2047 * (This comment used to live with the selinux_task_setuid hook, 2048 * which was removed). 2049 * 2050 * Since setuid only affects the current process, and since the SELinux 2051 * controls are not based on the Linux identity attributes, SELinux does not 2052 * need to control this operation. However, SELinux does control the use of 2053 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2054 */ 2055 2056 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2057 int cap, int audit) 2058 { 2059 int rc; 2060 2061 rc = cap_capable(cred, ns, cap, audit); 2062 if (rc) 2063 return rc; 2064 2065 return cred_has_capability(cred, cap, audit); 2066 } 2067 2068 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2069 { 2070 const struct cred *cred = current_cred(); 2071 int rc = 0; 2072 2073 if (!sb) 2074 return 0; 2075 2076 switch (cmds) { 2077 case Q_SYNC: 2078 case Q_QUOTAON: 2079 case Q_QUOTAOFF: 2080 case Q_SETINFO: 2081 case Q_SETQUOTA: 2082 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2083 break; 2084 case Q_GETFMT: 2085 case Q_GETINFO: 2086 case Q_GETQUOTA: 2087 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2088 break; 2089 default: 2090 rc = 0; /* let the kernel handle invalid cmds */ 2091 break; 2092 } 2093 return rc; 2094 } 2095 2096 static int selinux_quota_on(struct dentry *dentry) 2097 { 2098 const struct cred *cred = current_cred(); 2099 2100 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2101 } 2102 2103 static int selinux_syslog(int type) 2104 { 2105 int rc; 2106 2107 switch (type) { 2108 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2109 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2110 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2111 break; 2112 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2113 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2114 /* Set level of messages printed to console */ 2115 case SYSLOG_ACTION_CONSOLE_LEVEL: 2116 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2117 break; 2118 case SYSLOG_ACTION_CLOSE: /* Close log */ 2119 case SYSLOG_ACTION_OPEN: /* Open log */ 2120 case SYSLOG_ACTION_READ: /* Read from log */ 2121 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2122 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2123 default: 2124 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2125 break; 2126 } 2127 return rc; 2128 } 2129 2130 /* 2131 * Check that a process has enough memory to allocate a new virtual 2132 * mapping. 0 means there is enough memory for the allocation to 2133 * succeed and -ENOMEM implies there is not. 2134 * 2135 * Do not audit the selinux permission check, as this is applied to all 2136 * processes that allocate mappings. 2137 */ 2138 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2139 { 2140 int rc, cap_sys_admin = 0; 2141 2142 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 2143 SECURITY_CAP_NOAUDIT); 2144 if (rc == 0) 2145 cap_sys_admin = 1; 2146 2147 return __vm_enough_memory(mm, pages, cap_sys_admin); 2148 } 2149 2150 /* binprm security operations */ 2151 2152 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2153 const struct task_security_struct *old_tsec, 2154 const struct task_security_struct *new_tsec) 2155 { 2156 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2157 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2158 int rc; 2159 2160 if (!nnp && !nosuid) 2161 return 0; /* neither NNP nor nosuid */ 2162 2163 if (new_tsec->sid == old_tsec->sid) 2164 return 0; /* No change in credentials */ 2165 2166 /* 2167 * The only transitions we permit under NNP or nosuid 2168 * are transitions to bounded SIDs, i.e. SIDs that are 2169 * guaranteed to only be allowed a subset of the permissions 2170 * of the current SID. 2171 */ 2172 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2173 if (rc) { 2174 /* 2175 * On failure, preserve the errno values for NNP vs nosuid. 2176 * NNP: Operation not permitted for caller. 2177 * nosuid: Permission denied to file. 2178 */ 2179 if (nnp) 2180 return -EPERM; 2181 else 2182 return -EACCES; 2183 } 2184 return 0; 2185 } 2186 2187 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2188 { 2189 const struct task_security_struct *old_tsec; 2190 struct task_security_struct *new_tsec; 2191 struct inode_security_struct *isec; 2192 struct common_audit_data ad; 2193 struct inode *inode = file_inode(bprm->file); 2194 int rc; 2195 2196 rc = cap_bprm_set_creds(bprm); 2197 if (rc) 2198 return rc; 2199 2200 /* SELinux context only depends on initial program or script and not 2201 * the script interpreter */ 2202 if (bprm->cred_prepared) 2203 return 0; 2204 2205 old_tsec = current_security(); 2206 new_tsec = bprm->cred->security; 2207 isec = inode->i_security; 2208 2209 /* Default to the current task SID. */ 2210 new_tsec->sid = old_tsec->sid; 2211 new_tsec->osid = old_tsec->sid; 2212 2213 /* Reset fs, key, and sock SIDs on execve. */ 2214 new_tsec->create_sid = 0; 2215 new_tsec->keycreate_sid = 0; 2216 new_tsec->sockcreate_sid = 0; 2217 2218 if (old_tsec->exec_sid) { 2219 new_tsec->sid = old_tsec->exec_sid; 2220 /* Reset exec SID on execve. */ 2221 new_tsec->exec_sid = 0; 2222 2223 /* Fail on NNP or nosuid if not an allowed transition. */ 2224 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2225 if (rc) 2226 return rc; 2227 } else { 2228 /* Check for a default transition on this program. */ 2229 rc = security_transition_sid(old_tsec->sid, isec->sid, 2230 SECCLASS_PROCESS, NULL, 2231 &new_tsec->sid); 2232 if (rc) 2233 return rc; 2234 2235 /* 2236 * Fallback to old SID on NNP or nosuid if not an allowed 2237 * transition. 2238 */ 2239 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2240 if (rc) 2241 new_tsec->sid = old_tsec->sid; 2242 } 2243 2244 ad.type = LSM_AUDIT_DATA_PATH; 2245 ad.u.path = bprm->file->f_path; 2246 2247 if (new_tsec->sid == old_tsec->sid) { 2248 rc = avc_has_perm(old_tsec->sid, isec->sid, 2249 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2250 if (rc) 2251 return rc; 2252 } else { 2253 /* Check permissions for the transition. */ 2254 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2255 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2256 if (rc) 2257 return rc; 2258 2259 rc = avc_has_perm(new_tsec->sid, isec->sid, 2260 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2261 if (rc) 2262 return rc; 2263 2264 /* Check for shared state */ 2265 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2266 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2267 SECCLASS_PROCESS, PROCESS__SHARE, 2268 NULL); 2269 if (rc) 2270 return -EPERM; 2271 } 2272 2273 /* Make sure that anyone attempting to ptrace over a task that 2274 * changes its SID has the appropriate permit */ 2275 if (bprm->unsafe & 2276 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2277 struct task_struct *tracer; 2278 struct task_security_struct *sec; 2279 u32 ptsid = 0; 2280 2281 rcu_read_lock(); 2282 tracer = ptrace_parent(current); 2283 if (likely(tracer != NULL)) { 2284 sec = __task_cred(tracer)->security; 2285 ptsid = sec->sid; 2286 } 2287 rcu_read_unlock(); 2288 2289 if (ptsid != 0) { 2290 rc = avc_has_perm(ptsid, new_tsec->sid, 2291 SECCLASS_PROCESS, 2292 PROCESS__PTRACE, NULL); 2293 if (rc) 2294 return -EPERM; 2295 } 2296 } 2297 2298 /* Clear any possibly unsafe personality bits on exec: */ 2299 bprm->per_clear |= PER_CLEAR_ON_SETID; 2300 } 2301 2302 return 0; 2303 } 2304 2305 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2306 { 2307 const struct task_security_struct *tsec = current_security(); 2308 u32 sid, osid; 2309 int atsecure = 0; 2310 2311 sid = tsec->sid; 2312 osid = tsec->osid; 2313 2314 if (osid != sid) { 2315 /* Enable secure mode for SIDs transitions unless 2316 the noatsecure permission is granted between 2317 the two SIDs, i.e. ahp returns 0. */ 2318 atsecure = avc_has_perm(osid, sid, 2319 SECCLASS_PROCESS, 2320 PROCESS__NOATSECURE, NULL); 2321 } 2322 2323 return (atsecure || cap_bprm_secureexec(bprm)); 2324 } 2325 2326 static int match_file(const void *p, struct file *file, unsigned fd) 2327 { 2328 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2329 } 2330 2331 /* Derived from fs/exec.c:flush_old_files. */ 2332 static inline void flush_unauthorized_files(const struct cred *cred, 2333 struct files_struct *files) 2334 { 2335 struct file *file, *devnull = NULL; 2336 struct tty_struct *tty; 2337 int drop_tty = 0; 2338 unsigned n; 2339 2340 tty = get_current_tty(); 2341 if (tty) { 2342 spin_lock(&tty_files_lock); 2343 if (!list_empty(&tty->tty_files)) { 2344 struct tty_file_private *file_priv; 2345 2346 /* Revalidate access to controlling tty. 2347 Use file_path_has_perm on the tty path directly 2348 rather than using file_has_perm, as this particular 2349 open file may belong to another process and we are 2350 only interested in the inode-based check here. */ 2351 file_priv = list_first_entry(&tty->tty_files, 2352 struct tty_file_private, list); 2353 file = file_priv->file; 2354 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2355 drop_tty = 1; 2356 } 2357 spin_unlock(&tty_files_lock); 2358 tty_kref_put(tty); 2359 } 2360 /* Reset controlling tty. */ 2361 if (drop_tty) 2362 no_tty(); 2363 2364 /* Revalidate access to inherited open files. */ 2365 n = iterate_fd(files, 0, match_file, cred); 2366 if (!n) /* none found? */ 2367 return; 2368 2369 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2370 if (IS_ERR(devnull)) 2371 devnull = NULL; 2372 /* replace all the matching ones with this */ 2373 do { 2374 replace_fd(n - 1, devnull, 0); 2375 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2376 if (devnull) 2377 fput(devnull); 2378 } 2379 2380 /* 2381 * Prepare a process for imminent new credential changes due to exec 2382 */ 2383 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2384 { 2385 struct task_security_struct *new_tsec; 2386 struct rlimit *rlim, *initrlim; 2387 int rc, i; 2388 2389 new_tsec = bprm->cred->security; 2390 if (new_tsec->sid == new_tsec->osid) 2391 return; 2392 2393 /* Close files for which the new task SID is not authorized. */ 2394 flush_unauthorized_files(bprm->cred, current->files); 2395 2396 /* Always clear parent death signal on SID transitions. */ 2397 current->pdeath_signal = 0; 2398 2399 /* Check whether the new SID can inherit resource limits from the old 2400 * SID. If not, reset all soft limits to the lower of the current 2401 * task's hard limit and the init task's soft limit. 2402 * 2403 * Note that the setting of hard limits (even to lower them) can be 2404 * controlled by the setrlimit check. The inclusion of the init task's 2405 * soft limit into the computation is to avoid resetting soft limits 2406 * higher than the default soft limit for cases where the default is 2407 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2408 */ 2409 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2410 PROCESS__RLIMITINH, NULL); 2411 if (rc) { 2412 /* protect against do_prlimit() */ 2413 task_lock(current); 2414 for (i = 0; i < RLIM_NLIMITS; i++) { 2415 rlim = current->signal->rlim + i; 2416 initrlim = init_task.signal->rlim + i; 2417 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2418 } 2419 task_unlock(current); 2420 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2421 } 2422 } 2423 2424 /* 2425 * Clean up the process immediately after the installation of new credentials 2426 * due to exec 2427 */ 2428 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2429 { 2430 const struct task_security_struct *tsec = current_security(); 2431 struct itimerval itimer; 2432 u32 osid, sid; 2433 int rc, i; 2434 2435 osid = tsec->osid; 2436 sid = tsec->sid; 2437 2438 if (sid == osid) 2439 return; 2440 2441 /* Check whether the new SID can inherit signal state from the old SID. 2442 * If not, clear itimers to avoid subsequent signal generation and 2443 * flush and unblock signals. 2444 * 2445 * This must occur _after_ the task SID has been updated so that any 2446 * kill done after the flush will be checked against the new SID. 2447 */ 2448 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2449 if (rc) { 2450 memset(&itimer, 0, sizeof itimer); 2451 for (i = 0; i < 3; i++) 2452 do_setitimer(i, &itimer, NULL); 2453 spin_lock_irq(¤t->sighand->siglock); 2454 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2455 __flush_signals(current); 2456 flush_signal_handlers(current, 1); 2457 sigemptyset(¤t->blocked); 2458 } 2459 spin_unlock_irq(¤t->sighand->siglock); 2460 } 2461 2462 /* Wake up the parent if it is waiting so that it can recheck 2463 * wait permission to the new task SID. */ 2464 read_lock(&tasklist_lock); 2465 __wake_up_parent(current, current->real_parent); 2466 read_unlock(&tasklist_lock); 2467 } 2468 2469 /* superblock security operations */ 2470 2471 static int selinux_sb_alloc_security(struct super_block *sb) 2472 { 2473 return superblock_alloc_security(sb); 2474 } 2475 2476 static void selinux_sb_free_security(struct super_block *sb) 2477 { 2478 superblock_free_security(sb); 2479 } 2480 2481 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2482 { 2483 if (plen > olen) 2484 return 0; 2485 2486 return !memcmp(prefix, option, plen); 2487 } 2488 2489 static inline int selinux_option(char *option, int len) 2490 { 2491 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2492 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2493 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2494 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2495 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2496 } 2497 2498 static inline void take_option(char **to, char *from, int *first, int len) 2499 { 2500 if (!*first) { 2501 **to = ','; 2502 *to += 1; 2503 } else 2504 *first = 0; 2505 memcpy(*to, from, len); 2506 *to += len; 2507 } 2508 2509 static inline void take_selinux_option(char **to, char *from, int *first, 2510 int len) 2511 { 2512 int current_size = 0; 2513 2514 if (!*first) { 2515 **to = '|'; 2516 *to += 1; 2517 } else 2518 *first = 0; 2519 2520 while (current_size < len) { 2521 if (*from != '"') { 2522 **to = *from; 2523 *to += 1; 2524 } 2525 from += 1; 2526 current_size += 1; 2527 } 2528 } 2529 2530 static int selinux_sb_copy_data(char *orig, char *copy) 2531 { 2532 int fnosec, fsec, rc = 0; 2533 char *in_save, *in_curr, *in_end; 2534 char *sec_curr, *nosec_save, *nosec; 2535 int open_quote = 0; 2536 2537 in_curr = orig; 2538 sec_curr = copy; 2539 2540 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2541 if (!nosec) { 2542 rc = -ENOMEM; 2543 goto out; 2544 } 2545 2546 nosec_save = nosec; 2547 fnosec = fsec = 1; 2548 in_save = in_end = orig; 2549 2550 do { 2551 if (*in_end == '"') 2552 open_quote = !open_quote; 2553 if ((*in_end == ',' && open_quote == 0) || 2554 *in_end == '\0') { 2555 int len = in_end - in_curr; 2556 2557 if (selinux_option(in_curr, len)) 2558 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2559 else 2560 take_option(&nosec, in_curr, &fnosec, len); 2561 2562 in_curr = in_end + 1; 2563 } 2564 } while (*in_end++); 2565 2566 strcpy(in_save, nosec_save); 2567 free_page((unsigned long)nosec_save); 2568 out: 2569 return rc; 2570 } 2571 2572 static int selinux_sb_remount(struct super_block *sb, void *data) 2573 { 2574 int rc, i, *flags; 2575 struct security_mnt_opts opts; 2576 char *secdata, **mount_options; 2577 struct superblock_security_struct *sbsec = sb->s_security; 2578 2579 if (!(sbsec->flags & SE_SBINITIALIZED)) 2580 return 0; 2581 2582 if (!data) 2583 return 0; 2584 2585 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2586 return 0; 2587 2588 security_init_mnt_opts(&opts); 2589 secdata = alloc_secdata(); 2590 if (!secdata) 2591 return -ENOMEM; 2592 rc = selinux_sb_copy_data(data, secdata); 2593 if (rc) 2594 goto out_free_secdata; 2595 2596 rc = selinux_parse_opts_str(secdata, &opts); 2597 if (rc) 2598 goto out_free_secdata; 2599 2600 mount_options = opts.mnt_opts; 2601 flags = opts.mnt_opts_flags; 2602 2603 for (i = 0; i < opts.num_mnt_opts; i++) { 2604 u32 sid; 2605 size_t len; 2606 2607 if (flags[i] == SBLABEL_MNT) 2608 continue; 2609 len = strlen(mount_options[i]); 2610 rc = security_context_to_sid(mount_options[i], len, &sid, 2611 GFP_KERNEL); 2612 if (rc) { 2613 printk(KERN_WARNING "SELinux: security_context_to_sid" 2614 "(%s) failed for (dev %s, type %s) errno=%d\n", 2615 mount_options[i], sb->s_id, sb->s_type->name, rc); 2616 goto out_free_opts; 2617 } 2618 rc = -EINVAL; 2619 switch (flags[i]) { 2620 case FSCONTEXT_MNT: 2621 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2622 goto out_bad_option; 2623 break; 2624 case CONTEXT_MNT: 2625 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2626 goto out_bad_option; 2627 break; 2628 case ROOTCONTEXT_MNT: { 2629 struct inode_security_struct *root_isec; 2630 root_isec = d_backing_inode(sb->s_root)->i_security; 2631 2632 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2633 goto out_bad_option; 2634 break; 2635 } 2636 case DEFCONTEXT_MNT: 2637 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2638 goto out_bad_option; 2639 break; 2640 default: 2641 goto out_free_opts; 2642 } 2643 } 2644 2645 rc = 0; 2646 out_free_opts: 2647 security_free_mnt_opts(&opts); 2648 out_free_secdata: 2649 free_secdata(secdata); 2650 return rc; 2651 out_bad_option: 2652 printk(KERN_WARNING "SELinux: unable to change security options " 2653 "during remount (dev %s, type=%s)\n", sb->s_id, 2654 sb->s_type->name); 2655 goto out_free_opts; 2656 } 2657 2658 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2659 { 2660 const struct cred *cred = current_cred(); 2661 struct common_audit_data ad; 2662 int rc; 2663 2664 rc = superblock_doinit(sb, data); 2665 if (rc) 2666 return rc; 2667 2668 /* Allow all mounts performed by the kernel */ 2669 if (flags & MS_KERNMOUNT) 2670 return 0; 2671 2672 ad.type = LSM_AUDIT_DATA_DENTRY; 2673 ad.u.dentry = sb->s_root; 2674 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2675 } 2676 2677 static int selinux_sb_statfs(struct dentry *dentry) 2678 { 2679 const struct cred *cred = current_cred(); 2680 struct common_audit_data ad; 2681 2682 ad.type = LSM_AUDIT_DATA_DENTRY; 2683 ad.u.dentry = dentry->d_sb->s_root; 2684 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2685 } 2686 2687 static int selinux_mount(const char *dev_name, 2688 struct path *path, 2689 const char *type, 2690 unsigned long flags, 2691 void *data) 2692 { 2693 const struct cred *cred = current_cred(); 2694 2695 if (flags & MS_REMOUNT) 2696 return superblock_has_perm(cred, path->dentry->d_sb, 2697 FILESYSTEM__REMOUNT, NULL); 2698 else 2699 return path_has_perm(cred, path, FILE__MOUNTON); 2700 } 2701 2702 static int selinux_umount(struct vfsmount *mnt, int flags) 2703 { 2704 const struct cred *cred = current_cred(); 2705 2706 return superblock_has_perm(cred, mnt->mnt_sb, 2707 FILESYSTEM__UNMOUNT, NULL); 2708 } 2709 2710 /* inode security operations */ 2711 2712 static int selinux_inode_alloc_security(struct inode *inode) 2713 { 2714 return inode_alloc_security(inode); 2715 } 2716 2717 static void selinux_inode_free_security(struct inode *inode) 2718 { 2719 inode_free_security(inode); 2720 } 2721 2722 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2723 struct qstr *name, void **ctx, 2724 u32 *ctxlen) 2725 { 2726 const struct cred *cred = current_cred(); 2727 struct task_security_struct *tsec; 2728 struct inode_security_struct *dsec; 2729 struct superblock_security_struct *sbsec; 2730 struct inode *dir = d_backing_inode(dentry->d_parent); 2731 u32 newsid; 2732 int rc; 2733 2734 tsec = cred->security; 2735 dsec = dir->i_security; 2736 sbsec = dir->i_sb->s_security; 2737 2738 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2739 newsid = tsec->create_sid; 2740 } else { 2741 rc = security_transition_sid(tsec->sid, dsec->sid, 2742 inode_mode_to_security_class(mode), 2743 name, 2744 &newsid); 2745 if (rc) { 2746 printk(KERN_WARNING 2747 "%s: security_transition_sid failed, rc=%d\n", 2748 __func__, -rc); 2749 return rc; 2750 } 2751 } 2752 2753 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2754 } 2755 2756 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2757 const struct qstr *qstr, 2758 const char **name, 2759 void **value, size_t *len) 2760 { 2761 const struct task_security_struct *tsec = current_security(); 2762 struct inode_security_struct *dsec; 2763 struct superblock_security_struct *sbsec; 2764 u32 sid, newsid, clen; 2765 int rc; 2766 char *context; 2767 2768 dsec = dir->i_security; 2769 sbsec = dir->i_sb->s_security; 2770 2771 sid = tsec->sid; 2772 newsid = tsec->create_sid; 2773 2774 if ((sbsec->flags & SE_SBINITIALIZED) && 2775 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2776 newsid = sbsec->mntpoint_sid; 2777 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 2778 rc = security_transition_sid(sid, dsec->sid, 2779 inode_mode_to_security_class(inode->i_mode), 2780 qstr, &newsid); 2781 if (rc) { 2782 printk(KERN_WARNING "%s: " 2783 "security_transition_sid failed, rc=%d (dev=%s " 2784 "ino=%ld)\n", 2785 __func__, 2786 -rc, inode->i_sb->s_id, inode->i_ino); 2787 return rc; 2788 } 2789 } 2790 2791 /* Possibly defer initialization to selinux_complete_init. */ 2792 if (sbsec->flags & SE_SBINITIALIZED) { 2793 struct inode_security_struct *isec = inode->i_security; 2794 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2795 isec->sid = newsid; 2796 isec->initialized = 1; 2797 } 2798 2799 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2800 return -EOPNOTSUPP; 2801 2802 if (name) 2803 *name = XATTR_SELINUX_SUFFIX; 2804 2805 if (value && len) { 2806 rc = security_sid_to_context_force(newsid, &context, &clen); 2807 if (rc) 2808 return rc; 2809 *value = context; 2810 *len = clen; 2811 } 2812 2813 return 0; 2814 } 2815 2816 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2817 { 2818 return may_create(dir, dentry, SECCLASS_FILE); 2819 } 2820 2821 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2822 { 2823 return may_link(dir, old_dentry, MAY_LINK); 2824 } 2825 2826 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2827 { 2828 return may_link(dir, dentry, MAY_UNLINK); 2829 } 2830 2831 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2832 { 2833 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2834 } 2835 2836 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2837 { 2838 return may_create(dir, dentry, SECCLASS_DIR); 2839 } 2840 2841 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2842 { 2843 return may_link(dir, dentry, MAY_RMDIR); 2844 } 2845 2846 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2847 { 2848 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2849 } 2850 2851 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2852 struct inode *new_inode, struct dentry *new_dentry) 2853 { 2854 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2855 } 2856 2857 static int selinux_inode_readlink(struct dentry *dentry) 2858 { 2859 const struct cred *cred = current_cred(); 2860 2861 return dentry_has_perm(cred, dentry, FILE__READ); 2862 } 2863 2864 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2865 bool rcu) 2866 { 2867 const struct cred *cred = current_cred(); 2868 struct common_audit_data ad; 2869 struct inode_security_struct *isec; 2870 u32 sid; 2871 2872 validate_creds(cred); 2873 2874 ad.type = LSM_AUDIT_DATA_DENTRY; 2875 ad.u.dentry = dentry; 2876 sid = cred_sid(cred); 2877 isec = inode->i_security; 2878 2879 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad, 2880 rcu ? MAY_NOT_BLOCK : 0); 2881 } 2882 2883 static noinline int audit_inode_permission(struct inode *inode, 2884 u32 perms, u32 audited, u32 denied, 2885 int result, 2886 unsigned flags) 2887 { 2888 struct common_audit_data ad; 2889 struct inode_security_struct *isec = inode->i_security; 2890 int rc; 2891 2892 ad.type = LSM_AUDIT_DATA_INODE; 2893 ad.u.inode = inode; 2894 2895 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2896 audited, denied, result, &ad, flags); 2897 if (rc) 2898 return rc; 2899 return 0; 2900 } 2901 2902 static int selinux_inode_permission(struct inode *inode, int mask) 2903 { 2904 const struct cred *cred = current_cred(); 2905 u32 perms; 2906 bool from_access; 2907 unsigned flags = mask & MAY_NOT_BLOCK; 2908 struct inode_security_struct *isec; 2909 u32 sid; 2910 struct av_decision avd; 2911 int rc, rc2; 2912 u32 audited, denied; 2913 2914 from_access = mask & MAY_ACCESS; 2915 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2916 2917 /* No permission to check. Existence test. */ 2918 if (!mask) 2919 return 0; 2920 2921 validate_creds(cred); 2922 2923 if (unlikely(IS_PRIVATE(inode))) 2924 return 0; 2925 2926 perms = file_mask_to_av(inode->i_mode, mask); 2927 2928 sid = cred_sid(cred); 2929 isec = inode->i_security; 2930 2931 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2932 audited = avc_audit_required(perms, &avd, rc, 2933 from_access ? FILE__AUDIT_ACCESS : 0, 2934 &denied); 2935 if (likely(!audited)) 2936 return rc; 2937 2938 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2939 if (rc2) 2940 return rc2; 2941 return rc; 2942 } 2943 2944 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2945 { 2946 const struct cred *cred = current_cred(); 2947 unsigned int ia_valid = iattr->ia_valid; 2948 __u32 av = FILE__WRITE; 2949 2950 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2951 if (ia_valid & ATTR_FORCE) { 2952 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2953 ATTR_FORCE); 2954 if (!ia_valid) 2955 return 0; 2956 } 2957 2958 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2959 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2960 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2961 2962 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2963 av |= FILE__OPEN; 2964 2965 return dentry_has_perm(cred, dentry, av); 2966 } 2967 2968 static int selinux_inode_getattr(const struct path *path) 2969 { 2970 return path_has_perm(current_cred(), path, FILE__GETATTR); 2971 } 2972 2973 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2974 { 2975 const struct cred *cred = current_cred(); 2976 2977 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2978 sizeof XATTR_SECURITY_PREFIX - 1)) { 2979 if (!strcmp(name, XATTR_NAME_CAPS)) { 2980 if (!capable(CAP_SETFCAP)) 2981 return -EPERM; 2982 } else if (!capable(CAP_SYS_ADMIN)) { 2983 /* A different attribute in the security namespace. 2984 Restrict to administrator. */ 2985 return -EPERM; 2986 } 2987 } 2988 2989 /* Not an attribute we recognize, so just check the 2990 ordinary setattr permission. */ 2991 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2992 } 2993 2994 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2995 const void *value, size_t size, int flags) 2996 { 2997 struct inode *inode = d_backing_inode(dentry); 2998 struct inode_security_struct *isec = inode->i_security; 2999 struct superblock_security_struct *sbsec; 3000 struct common_audit_data ad; 3001 u32 newsid, sid = current_sid(); 3002 int rc = 0; 3003 3004 if (strcmp(name, XATTR_NAME_SELINUX)) 3005 return selinux_inode_setotherxattr(dentry, name); 3006 3007 sbsec = inode->i_sb->s_security; 3008 if (!(sbsec->flags & SBLABEL_MNT)) 3009 return -EOPNOTSUPP; 3010 3011 if (!inode_owner_or_capable(inode)) 3012 return -EPERM; 3013 3014 ad.type = LSM_AUDIT_DATA_DENTRY; 3015 ad.u.dentry = dentry; 3016 3017 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3018 FILE__RELABELFROM, &ad); 3019 if (rc) 3020 return rc; 3021 3022 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3023 if (rc == -EINVAL) { 3024 if (!capable(CAP_MAC_ADMIN)) { 3025 struct audit_buffer *ab; 3026 size_t audit_size; 3027 const char *str; 3028 3029 /* We strip a nul only if it is at the end, otherwise the 3030 * context contains a nul and we should audit that */ 3031 if (value) { 3032 str = value; 3033 if (str[size - 1] == '\0') 3034 audit_size = size - 1; 3035 else 3036 audit_size = size; 3037 } else { 3038 str = ""; 3039 audit_size = 0; 3040 } 3041 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3042 audit_log_format(ab, "op=setxattr invalid_context="); 3043 audit_log_n_untrustedstring(ab, value, audit_size); 3044 audit_log_end(ab); 3045 3046 return rc; 3047 } 3048 rc = security_context_to_sid_force(value, size, &newsid); 3049 } 3050 if (rc) 3051 return rc; 3052 3053 rc = avc_has_perm(sid, newsid, isec->sclass, 3054 FILE__RELABELTO, &ad); 3055 if (rc) 3056 return rc; 3057 3058 rc = security_validate_transition(isec->sid, newsid, sid, 3059 isec->sclass); 3060 if (rc) 3061 return rc; 3062 3063 return avc_has_perm(newsid, 3064 sbsec->sid, 3065 SECCLASS_FILESYSTEM, 3066 FILESYSTEM__ASSOCIATE, 3067 &ad); 3068 } 3069 3070 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3071 const void *value, size_t size, 3072 int flags) 3073 { 3074 struct inode *inode = d_backing_inode(dentry); 3075 struct inode_security_struct *isec = inode->i_security; 3076 u32 newsid; 3077 int rc; 3078 3079 if (strcmp(name, XATTR_NAME_SELINUX)) { 3080 /* Not an attribute we recognize, so nothing to do. */ 3081 return; 3082 } 3083 3084 rc = security_context_to_sid_force(value, size, &newsid); 3085 if (rc) { 3086 printk(KERN_ERR "SELinux: unable to map context to SID" 3087 "for (%s, %lu), rc=%d\n", 3088 inode->i_sb->s_id, inode->i_ino, -rc); 3089 return; 3090 } 3091 3092 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3093 isec->sid = newsid; 3094 isec->initialized = 1; 3095 3096 return; 3097 } 3098 3099 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3100 { 3101 const struct cred *cred = current_cred(); 3102 3103 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3104 } 3105 3106 static int selinux_inode_listxattr(struct dentry *dentry) 3107 { 3108 const struct cred *cred = current_cred(); 3109 3110 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3111 } 3112 3113 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3114 { 3115 if (strcmp(name, XATTR_NAME_SELINUX)) 3116 return selinux_inode_setotherxattr(dentry, name); 3117 3118 /* No one is allowed to remove a SELinux security label. 3119 You can change the label, but all data must be labeled. */ 3120 return -EACCES; 3121 } 3122 3123 /* 3124 * Copy the inode security context value to the user. 3125 * 3126 * Permission check is handled by selinux_inode_getxattr hook. 3127 */ 3128 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3129 { 3130 u32 size; 3131 int error; 3132 char *context = NULL; 3133 struct inode_security_struct *isec = inode->i_security; 3134 3135 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3136 return -EOPNOTSUPP; 3137 3138 /* 3139 * If the caller has CAP_MAC_ADMIN, then get the raw context 3140 * value even if it is not defined by current policy; otherwise, 3141 * use the in-core value under current policy. 3142 * Use the non-auditing forms of the permission checks since 3143 * getxattr may be called by unprivileged processes commonly 3144 * and lack of permission just means that we fall back to the 3145 * in-core context value, not a denial. 3146 */ 3147 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3148 SECURITY_CAP_NOAUDIT); 3149 if (!error) 3150 error = security_sid_to_context_force(isec->sid, &context, 3151 &size); 3152 else 3153 error = security_sid_to_context(isec->sid, &context, &size); 3154 if (error) 3155 return error; 3156 error = size; 3157 if (alloc) { 3158 *buffer = context; 3159 goto out_nofree; 3160 } 3161 kfree(context); 3162 out_nofree: 3163 return error; 3164 } 3165 3166 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3167 const void *value, size_t size, int flags) 3168 { 3169 struct inode_security_struct *isec = inode->i_security; 3170 u32 newsid; 3171 int rc; 3172 3173 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3174 return -EOPNOTSUPP; 3175 3176 if (!value || !size) 3177 return -EACCES; 3178 3179 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3180 if (rc) 3181 return rc; 3182 3183 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3184 isec->sid = newsid; 3185 isec->initialized = 1; 3186 return 0; 3187 } 3188 3189 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3190 { 3191 const int len = sizeof(XATTR_NAME_SELINUX); 3192 if (buffer && len <= buffer_size) 3193 memcpy(buffer, XATTR_NAME_SELINUX, len); 3194 return len; 3195 } 3196 3197 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3198 { 3199 struct inode_security_struct *isec = inode->i_security; 3200 *secid = isec->sid; 3201 } 3202 3203 /* file security operations */ 3204 3205 static int selinux_revalidate_file_permission(struct file *file, int mask) 3206 { 3207 const struct cred *cred = current_cred(); 3208 struct inode *inode = file_inode(file); 3209 3210 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3211 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3212 mask |= MAY_APPEND; 3213 3214 return file_has_perm(cred, file, 3215 file_mask_to_av(inode->i_mode, mask)); 3216 } 3217 3218 static int selinux_file_permission(struct file *file, int mask) 3219 { 3220 struct inode *inode = file_inode(file); 3221 struct file_security_struct *fsec = file->f_security; 3222 struct inode_security_struct *isec = inode->i_security; 3223 u32 sid = current_sid(); 3224 3225 if (!mask) 3226 /* No permission to check. Existence test. */ 3227 return 0; 3228 3229 if (sid == fsec->sid && fsec->isid == isec->sid && 3230 fsec->pseqno == avc_policy_seqno()) 3231 /* No change since file_open check. */ 3232 return 0; 3233 3234 return selinux_revalidate_file_permission(file, mask); 3235 } 3236 3237 static int selinux_file_alloc_security(struct file *file) 3238 { 3239 return file_alloc_security(file); 3240 } 3241 3242 static void selinux_file_free_security(struct file *file) 3243 { 3244 file_free_security(file); 3245 } 3246 3247 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3248 unsigned long arg) 3249 { 3250 const struct cred *cred = current_cred(); 3251 int error = 0; 3252 3253 switch (cmd) { 3254 case FIONREAD: 3255 /* fall through */ 3256 case FIBMAP: 3257 /* fall through */ 3258 case FIGETBSZ: 3259 /* fall through */ 3260 case FS_IOC_GETFLAGS: 3261 /* fall through */ 3262 case FS_IOC_GETVERSION: 3263 error = file_has_perm(cred, file, FILE__GETATTR); 3264 break; 3265 3266 case FS_IOC_SETFLAGS: 3267 /* fall through */ 3268 case FS_IOC_SETVERSION: 3269 error = file_has_perm(cred, file, FILE__SETATTR); 3270 break; 3271 3272 /* sys_ioctl() checks */ 3273 case FIONBIO: 3274 /* fall through */ 3275 case FIOASYNC: 3276 error = file_has_perm(cred, file, 0); 3277 break; 3278 3279 case KDSKBENT: 3280 case KDSKBSENT: 3281 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3282 SECURITY_CAP_AUDIT); 3283 break; 3284 3285 /* default case assumes that the command will go 3286 * to the file's ioctl() function. 3287 */ 3288 default: 3289 error = file_has_perm(cred, file, FILE__IOCTL); 3290 } 3291 return error; 3292 } 3293 3294 static int default_noexec; 3295 3296 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3297 { 3298 const struct cred *cred = current_cred(); 3299 int rc = 0; 3300 3301 if (default_noexec && 3302 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3303 /* 3304 * We are making executable an anonymous mapping or a 3305 * private file mapping that will also be writable. 3306 * This has an additional check. 3307 */ 3308 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3309 if (rc) 3310 goto error; 3311 } 3312 3313 if (file) { 3314 /* read access is always possible with a mapping */ 3315 u32 av = FILE__READ; 3316 3317 /* write access only matters if the mapping is shared */ 3318 if (shared && (prot & PROT_WRITE)) 3319 av |= FILE__WRITE; 3320 3321 if (prot & PROT_EXEC) 3322 av |= FILE__EXECUTE; 3323 3324 return file_has_perm(cred, file, av); 3325 } 3326 3327 error: 3328 return rc; 3329 } 3330 3331 static int selinux_mmap_addr(unsigned long addr) 3332 { 3333 int rc; 3334 3335 /* do DAC check on address space usage */ 3336 rc = cap_mmap_addr(addr); 3337 if (rc) 3338 return rc; 3339 3340 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3341 u32 sid = current_sid(); 3342 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3343 MEMPROTECT__MMAP_ZERO, NULL); 3344 } 3345 3346 return rc; 3347 } 3348 3349 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3350 unsigned long prot, unsigned long flags) 3351 { 3352 if (selinux_checkreqprot) 3353 prot = reqprot; 3354 3355 return file_map_prot_check(file, prot, 3356 (flags & MAP_TYPE) == MAP_SHARED); 3357 } 3358 3359 static int selinux_file_mprotect(struct vm_area_struct *vma, 3360 unsigned long reqprot, 3361 unsigned long prot) 3362 { 3363 const struct cred *cred = current_cred(); 3364 3365 if (selinux_checkreqprot) 3366 prot = reqprot; 3367 3368 if (default_noexec && 3369 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3370 int rc = 0; 3371 if (vma->vm_start >= vma->vm_mm->start_brk && 3372 vma->vm_end <= vma->vm_mm->brk) { 3373 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3374 } else if (!vma->vm_file && 3375 vma->vm_start <= vma->vm_mm->start_stack && 3376 vma->vm_end >= vma->vm_mm->start_stack) { 3377 rc = current_has_perm(current, PROCESS__EXECSTACK); 3378 } else if (vma->vm_file && vma->anon_vma) { 3379 /* 3380 * We are making executable a file mapping that has 3381 * had some COW done. Since pages might have been 3382 * written, check ability to execute the possibly 3383 * modified content. This typically should only 3384 * occur for text relocations. 3385 */ 3386 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3387 } 3388 if (rc) 3389 return rc; 3390 } 3391 3392 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3393 } 3394 3395 static int selinux_file_lock(struct file *file, unsigned int cmd) 3396 { 3397 const struct cred *cred = current_cred(); 3398 3399 return file_has_perm(cred, file, FILE__LOCK); 3400 } 3401 3402 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3403 unsigned long arg) 3404 { 3405 const struct cred *cred = current_cred(); 3406 int err = 0; 3407 3408 switch (cmd) { 3409 case F_SETFL: 3410 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3411 err = file_has_perm(cred, file, FILE__WRITE); 3412 break; 3413 } 3414 /* fall through */ 3415 case F_SETOWN: 3416 case F_SETSIG: 3417 case F_GETFL: 3418 case F_GETOWN: 3419 case F_GETSIG: 3420 case F_GETOWNER_UIDS: 3421 /* Just check FD__USE permission */ 3422 err = file_has_perm(cred, file, 0); 3423 break; 3424 case F_GETLK: 3425 case F_SETLK: 3426 case F_SETLKW: 3427 case F_OFD_GETLK: 3428 case F_OFD_SETLK: 3429 case F_OFD_SETLKW: 3430 #if BITS_PER_LONG == 32 3431 case F_GETLK64: 3432 case F_SETLK64: 3433 case F_SETLKW64: 3434 #endif 3435 err = file_has_perm(cred, file, FILE__LOCK); 3436 break; 3437 } 3438 3439 return err; 3440 } 3441 3442 static void selinux_file_set_fowner(struct file *file) 3443 { 3444 struct file_security_struct *fsec; 3445 3446 fsec = file->f_security; 3447 fsec->fown_sid = current_sid(); 3448 } 3449 3450 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3451 struct fown_struct *fown, int signum) 3452 { 3453 struct file *file; 3454 u32 sid = task_sid(tsk); 3455 u32 perm; 3456 struct file_security_struct *fsec; 3457 3458 /* struct fown_struct is never outside the context of a struct file */ 3459 file = container_of(fown, struct file, f_owner); 3460 3461 fsec = file->f_security; 3462 3463 if (!signum) 3464 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3465 else 3466 perm = signal_to_av(signum); 3467 3468 return avc_has_perm(fsec->fown_sid, sid, 3469 SECCLASS_PROCESS, perm, NULL); 3470 } 3471 3472 static int selinux_file_receive(struct file *file) 3473 { 3474 const struct cred *cred = current_cred(); 3475 3476 return file_has_perm(cred, file, file_to_av(file)); 3477 } 3478 3479 static int selinux_file_open(struct file *file, const struct cred *cred) 3480 { 3481 struct file_security_struct *fsec; 3482 struct inode_security_struct *isec; 3483 3484 fsec = file->f_security; 3485 isec = file_inode(file)->i_security; 3486 /* 3487 * Save inode label and policy sequence number 3488 * at open-time so that selinux_file_permission 3489 * can determine whether revalidation is necessary. 3490 * Task label is already saved in the file security 3491 * struct as its SID. 3492 */ 3493 fsec->isid = isec->sid; 3494 fsec->pseqno = avc_policy_seqno(); 3495 /* 3496 * Since the inode label or policy seqno may have changed 3497 * between the selinux_inode_permission check and the saving 3498 * of state above, recheck that access is still permitted. 3499 * Otherwise, access might never be revalidated against the 3500 * new inode label or new policy. 3501 * This check is not redundant - do not remove. 3502 */ 3503 return file_path_has_perm(cred, file, open_file_to_av(file)); 3504 } 3505 3506 /* task security operations */ 3507 3508 static int selinux_task_create(unsigned long clone_flags) 3509 { 3510 return current_has_perm(current, PROCESS__FORK); 3511 } 3512 3513 /* 3514 * allocate the SELinux part of blank credentials 3515 */ 3516 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3517 { 3518 struct task_security_struct *tsec; 3519 3520 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3521 if (!tsec) 3522 return -ENOMEM; 3523 3524 cred->security = tsec; 3525 return 0; 3526 } 3527 3528 /* 3529 * detach and free the LSM part of a set of credentials 3530 */ 3531 static void selinux_cred_free(struct cred *cred) 3532 { 3533 struct task_security_struct *tsec = cred->security; 3534 3535 /* 3536 * cred->security == NULL if security_cred_alloc_blank() or 3537 * security_prepare_creds() returned an error. 3538 */ 3539 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3540 cred->security = (void *) 0x7UL; 3541 kfree(tsec); 3542 } 3543 3544 /* 3545 * prepare a new set of credentials for modification 3546 */ 3547 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3548 gfp_t gfp) 3549 { 3550 const struct task_security_struct *old_tsec; 3551 struct task_security_struct *tsec; 3552 3553 old_tsec = old->security; 3554 3555 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3556 if (!tsec) 3557 return -ENOMEM; 3558 3559 new->security = tsec; 3560 return 0; 3561 } 3562 3563 /* 3564 * transfer the SELinux data to a blank set of creds 3565 */ 3566 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3567 { 3568 const struct task_security_struct *old_tsec = old->security; 3569 struct task_security_struct *tsec = new->security; 3570 3571 *tsec = *old_tsec; 3572 } 3573 3574 /* 3575 * set the security data for a kernel service 3576 * - all the creation contexts are set to unlabelled 3577 */ 3578 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3579 { 3580 struct task_security_struct *tsec = new->security; 3581 u32 sid = current_sid(); 3582 int ret; 3583 3584 ret = avc_has_perm(sid, secid, 3585 SECCLASS_KERNEL_SERVICE, 3586 KERNEL_SERVICE__USE_AS_OVERRIDE, 3587 NULL); 3588 if (ret == 0) { 3589 tsec->sid = secid; 3590 tsec->create_sid = 0; 3591 tsec->keycreate_sid = 0; 3592 tsec->sockcreate_sid = 0; 3593 } 3594 return ret; 3595 } 3596 3597 /* 3598 * set the file creation context in a security record to the same as the 3599 * objective context of the specified inode 3600 */ 3601 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3602 { 3603 struct inode_security_struct *isec = inode->i_security; 3604 struct task_security_struct *tsec = new->security; 3605 u32 sid = current_sid(); 3606 int ret; 3607 3608 ret = avc_has_perm(sid, isec->sid, 3609 SECCLASS_KERNEL_SERVICE, 3610 KERNEL_SERVICE__CREATE_FILES_AS, 3611 NULL); 3612 3613 if (ret == 0) 3614 tsec->create_sid = isec->sid; 3615 return ret; 3616 } 3617 3618 static int selinux_kernel_module_request(char *kmod_name) 3619 { 3620 u32 sid; 3621 struct common_audit_data ad; 3622 3623 sid = task_sid(current); 3624 3625 ad.type = LSM_AUDIT_DATA_KMOD; 3626 ad.u.kmod_name = kmod_name; 3627 3628 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3629 SYSTEM__MODULE_REQUEST, &ad); 3630 } 3631 3632 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3633 { 3634 return current_has_perm(p, PROCESS__SETPGID); 3635 } 3636 3637 static int selinux_task_getpgid(struct task_struct *p) 3638 { 3639 return current_has_perm(p, PROCESS__GETPGID); 3640 } 3641 3642 static int selinux_task_getsid(struct task_struct *p) 3643 { 3644 return current_has_perm(p, PROCESS__GETSESSION); 3645 } 3646 3647 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3648 { 3649 *secid = task_sid(p); 3650 } 3651 3652 static int selinux_task_setnice(struct task_struct *p, int nice) 3653 { 3654 int rc; 3655 3656 rc = cap_task_setnice(p, nice); 3657 if (rc) 3658 return rc; 3659 3660 return current_has_perm(p, PROCESS__SETSCHED); 3661 } 3662 3663 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3664 { 3665 int rc; 3666 3667 rc = cap_task_setioprio(p, ioprio); 3668 if (rc) 3669 return rc; 3670 3671 return current_has_perm(p, PROCESS__SETSCHED); 3672 } 3673 3674 static int selinux_task_getioprio(struct task_struct *p) 3675 { 3676 return current_has_perm(p, PROCESS__GETSCHED); 3677 } 3678 3679 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3680 struct rlimit *new_rlim) 3681 { 3682 struct rlimit *old_rlim = p->signal->rlim + resource; 3683 3684 /* Control the ability to change the hard limit (whether 3685 lowering or raising it), so that the hard limit can 3686 later be used as a safe reset point for the soft limit 3687 upon context transitions. See selinux_bprm_committing_creds. */ 3688 if (old_rlim->rlim_max != new_rlim->rlim_max) 3689 return current_has_perm(p, PROCESS__SETRLIMIT); 3690 3691 return 0; 3692 } 3693 3694 static int selinux_task_setscheduler(struct task_struct *p) 3695 { 3696 int rc; 3697 3698 rc = cap_task_setscheduler(p); 3699 if (rc) 3700 return rc; 3701 3702 return current_has_perm(p, PROCESS__SETSCHED); 3703 } 3704 3705 static int selinux_task_getscheduler(struct task_struct *p) 3706 { 3707 return current_has_perm(p, PROCESS__GETSCHED); 3708 } 3709 3710 static int selinux_task_movememory(struct task_struct *p) 3711 { 3712 return current_has_perm(p, PROCESS__SETSCHED); 3713 } 3714 3715 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3716 int sig, u32 secid) 3717 { 3718 u32 perm; 3719 int rc; 3720 3721 if (!sig) 3722 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3723 else 3724 perm = signal_to_av(sig); 3725 if (secid) 3726 rc = avc_has_perm(secid, task_sid(p), 3727 SECCLASS_PROCESS, perm, NULL); 3728 else 3729 rc = current_has_perm(p, perm); 3730 return rc; 3731 } 3732 3733 static int selinux_task_wait(struct task_struct *p) 3734 { 3735 return task_has_perm(p, current, PROCESS__SIGCHLD); 3736 } 3737 3738 static void selinux_task_to_inode(struct task_struct *p, 3739 struct inode *inode) 3740 { 3741 struct inode_security_struct *isec = inode->i_security; 3742 u32 sid = task_sid(p); 3743 3744 isec->sid = sid; 3745 isec->initialized = 1; 3746 } 3747 3748 /* Returns error only if unable to parse addresses */ 3749 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3750 struct common_audit_data *ad, u8 *proto) 3751 { 3752 int offset, ihlen, ret = -EINVAL; 3753 struct iphdr _iph, *ih; 3754 3755 offset = skb_network_offset(skb); 3756 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3757 if (ih == NULL) 3758 goto out; 3759 3760 ihlen = ih->ihl * 4; 3761 if (ihlen < sizeof(_iph)) 3762 goto out; 3763 3764 ad->u.net->v4info.saddr = ih->saddr; 3765 ad->u.net->v4info.daddr = ih->daddr; 3766 ret = 0; 3767 3768 if (proto) 3769 *proto = ih->protocol; 3770 3771 switch (ih->protocol) { 3772 case IPPROTO_TCP: { 3773 struct tcphdr _tcph, *th; 3774 3775 if (ntohs(ih->frag_off) & IP_OFFSET) 3776 break; 3777 3778 offset += ihlen; 3779 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3780 if (th == NULL) 3781 break; 3782 3783 ad->u.net->sport = th->source; 3784 ad->u.net->dport = th->dest; 3785 break; 3786 } 3787 3788 case IPPROTO_UDP: { 3789 struct udphdr _udph, *uh; 3790 3791 if (ntohs(ih->frag_off) & IP_OFFSET) 3792 break; 3793 3794 offset += ihlen; 3795 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3796 if (uh == NULL) 3797 break; 3798 3799 ad->u.net->sport = uh->source; 3800 ad->u.net->dport = uh->dest; 3801 break; 3802 } 3803 3804 case IPPROTO_DCCP: { 3805 struct dccp_hdr _dccph, *dh; 3806 3807 if (ntohs(ih->frag_off) & IP_OFFSET) 3808 break; 3809 3810 offset += ihlen; 3811 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3812 if (dh == NULL) 3813 break; 3814 3815 ad->u.net->sport = dh->dccph_sport; 3816 ad->u.net->dport = dh->dccph_dport; 3817 break; 3818 } 3819 3820 default: 3821 break; 3822 } 3823 out: 3824 return ret; 3825 } 3826 3827 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3828 3829 /* Returns error only if unable to parse addresses */ 3830 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3831 struct common_audit_data *ad, u8 *proto) 3832 { 3833 u8 nexthdr; 3834 int ret = -EINVAL, offset; 3835 struct ipv6hdr _ipv6h, *ip6; 3836 __be16 frag_off; 3837 3838 offset = skb_network_offset(skb); 3839 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3840 if (ip6 == NULL) 3841 goto out; 3842 3843 ad->u.net->v6info.saddr = ip6->saddr; 3844 ad->u.net->v6info.daddr = ip6->daddr; 3845 ret = 0; 3846 3847 nexthdr = ip6->nexthdr; 3848 offset += sizeof(_ipv6h); 3849 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3850 if (offset < 0) 3851 goto out; 3852 3853 if (proto) 3854 *proto = nexthdr; 3855 3856 switch (nexthdr) { 3857 case IPPROTO_TCP: { 3858 struct tcphdr _tcph, *th; 3859 3860 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3861 if (th == NULL) 3862 break; 3863 3864 ad->u.net->sport = th->source; 3865 ad->u.net->dport = th->dest; 3866 break; 3867 } 3868 3869 case IPPROTO_UDP: { 3870 struct udphdr _udph, *uh; 3871 3872 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3873 if (uh == NULL) 3874 break; 3875 3876 ad->u.net->sport = uh->source; 3877 ad->u.net->dport = uh->dest; 3878 break; 3879 } 3880 3881 case IPPROTO_DCCP: { 3882 struct dccp_hdr _dccph, *dh; 3883 3884 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3885 if (dh == NULL) 3886 break; 3887 3888 ad->u.net->sport = dh->dccph_sport; 3889 ad->u.net->dport = dh->dccph_dport; 3890 break; 3891 } 3892 3893 /* includes fragments */ 3894 default: 3895 break; 3896 } 3897 out: 3898 return ret; 3899 } 3900 3901 #endif /* IPV6 */ 3902 3903 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3904 char **_addrp, int src, u8 *proto) 3905 { 3906 char *addrp; 3907 int ret; 3908 3909 switch (ad->u.net->family) { 3910 case PF_INET: 3911 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3912 if (ret) 3913 goto parse_error; 3914 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3915 &ad->u.net->v4info.daddr); 3916 goto okay; 3917 3918 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3919 case PF_INET6: 3920 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3921 if (ret) 3922 goto parse_error; 3923 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3924 &ad->u.net->v6info.daddr); 3925 goto okay; 3926 #endif /* IPV6 */ 3927 default: 3928 addrp = NULL; 3929 goto okay; 3930 } 3931 3932 parse_error: 3933 printk(KERN_WARNING 3934 "SELinux: failure in selinux_parse_skb()," 3935 " unable to parse packet\n"); 3936 return ret; 3937 3938 okay: 3939 if (_addrp) 3940 *_addrp = addrp; 3941 return 0; 3942 } 3943 3944 /** 3945 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3946 * @skb: the packet 3947 * @family: protocol family 3948 * @sid: the packet's peer label SID 3949 * 3950 * Description: 3951 * Check the various different forms of network peer labeling and determine 3952 * the peer label/SID for the packet; most of the magic actually occurs in 3953 * the security server function security_net_peersid_cmp(). The function 3954 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3955 * or -EACCES if @sid is invalid due to inconsistencies with the different 3956 * peer labels. 3957 * 3958 */ 3959 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3960 { 3961 int err; 3962 u32 xfrm_sid; 3963 u32 nlbl_sid; 3964 u32 nlbl_type; 3965 3966 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3967 if (unlikely(err)) 3968 return -EACCES; 3969 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3970 if (unlikely(err)) 3971 return -EACCES; 3972 3973 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3974 if (unlikely(err)) { 3975 printk(KERN_WARNING 3976 "SELinux: failure in selinux_skb_peerlbl_sid()," 3977 " unable to determine packet's peer label\n"); 3978 return -EACCES; 3979 } 3980 3981 return 0; 3982 } 3983 3984 /** 3985 * selinux_conn_sid - Determine the child socket label for a connection 3986 * @sk_sid: the parent socket's SID 3987 * @skb_sid: the packet's SID 3988 * @conn_sid: the resulting connection SID 3989 * 3990 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3991 * combined with the MLS information from @skb_sid in order to create 3992 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 3993 * of @sk_sid. Returns zero on success, negative values on failure. 3994 * 3995 */ 3996 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 3997 { 3998 int err = 0; 3999 4000 if (skb_sid != SECSID_NULL) 4001 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 4002 else 4003 *conn_sid = sk_sid; 4004 4005 return err; 4006 } 4007 4008 /* socket security operations */ 4009 4010 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4011 u16 secclass, u32 *socksid) 4012 { 4013 if (tsec->sockcreate_sid > SECSID_NULL) { 4014 *socksid = tsec->sockcreate_sid; 4015 return 0; 4016 } 4017 4018 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4019 socksid); 4020 } 4021 4022 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4023 { 4024 struct sk_security_struct *sksec = sk->sk_security; 4025 struct common_audit_data ad; 4026 struct lsm_network_audit net = {0,}; 4027 u32 tsid = task_sid(task); 4028 4029 if (sksec->sid == SECINITSID_KERNEL) 4030 return 0; 4031 4032 ad.type = LSM_AUDIT_DATA_NET; 4033 ad.u.net = &net; 4034 ad.u.net->sk = sk; 4035 4036 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4037 } 4038 4039 static int selinux_socket_create(int family, int type, 4040 int protocol, int kern) 4041 { 4042 const struct task_security_struct *tsec = current_security(); 4043 u32 newsid; 4044 u16 secclass; 4045 int rc; 4046 4047 if (kern) 4048 return 0; 4049 4050 secclass = socket_type_to_security_class(family, type, protocol); 4051 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4052 if (rc) 4053 return rc; 4054 4055 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4056 } 4057 4058 static int selinux_socket_post_create(struct socket *sock, int family, 4059 int type, int protocol, int kern) 4060 { 4061 const struct task_security_struct *tsec = current_security(); 4062 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4063 struct sk_security_struct *sksec; 4064 int err = 0; 4065 4066 isec->sclass = socket_type_to_security_class(family, type, protocol); 4067 4068 if (kern) 4069 isec->sid = SECINITSID_KERNEL; 4070 else { 4071 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4072 if (err) 4073 return err; 4074 } 4075 4076 isec->initialized = 1; 4077 4078 if (sock->sk) { 4079 sksec = sock->sk->sk_security; 4080 sksec->sid = isec->sid; 4081 sksec->sclass = isec->sclass; 4082 err = selinux_netlbl_socket_post_create(sock->sk, family); 4083 } 4084 4085 return err; 4086 } 4087 4088 /* Range of port numbers used to automatically bind. 4089 Need to determine whether we should perform a name_bind 4090 permission check between the socket and the port number. */ 4091 4092 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4093 { 4094 struct sock *sk = sock->sk; 4095 u16 family; 4096 int err; 4097 4098 err = sock_has_perm(current, sk, SOCKET__BIND); 4099 if (err) 4100 goto out; 4101 4102 /* 4103 * If PF_INET or PF_INET6, check name_bind permission for the port. 4104 * Multiple address binding for SCTP is not supported yet: we just 4105 * check the first address now. 4106 */ 4107 family = sk->sk_family; 4108 if (family == PF_INET || family == PF_INET6) { 4109 char *addrp; 4110 struct sk_security_struct *sksec = sk->sk_security; 4111 struct common_audit_data ad; 4112 struct lsm_network_audit net = {0,}; 4113 struct sockaddr_in *addr4 = NULL; 4114 struct sockaddr_in6 *addr6 = NULL; 4115 unsigned short snum; 4116 u32 sid, node_perm; 4117 4118 if (family == PF_INET) { 4119 addr4 = (struct sockaddr_in *)address; 4120 snum = ntohs(addr4->sin_port); 4121 addrp = (char *)&addr4->sin_addr.s_addr; 4122 } else { 4123 addr6 = (struct sockaddr_in6 *)address; 4124 snum = ntohs(addr6->sin6_port); 4125 addrp = (char *)&addr6->sin6_addr.s6_addr; 4126 } 4127 4128 if (snum) { 4129 int low, high; 4130 4131 inet_get_local_port_range(sock_net(sk), &low, &high); 4132 4133 if (snum < max(PROT_SOCK, low) || snum > high) { 4134 err = sel_netport_sid(sk->sk_protocol, 4135 snum, &sid); 4136 if (err) 4137 goto out; 4138 ad.type = LSM_AUDIT_DATA_NET; 4139 ad.u.net = &net; 4140 ad.u.net->sport = htons(snum); 4141 ad.u.net->family = family; 4142 err = avc_has_perm(sksec->sid, sid, 4143 sksec->sclass, 4144 SOCKET__NAME_BIND, &ad); 4145 if (err) 4146 goto out; 4147 } 4148 } 4149 4150 switch (sksec->sclass) { 4151 case SECCLASS_TCP_SOCKET: 4152 node_perm = TCP_SOCKET__NODE_BIND; 4153 break; 4154 4155 case SECCLASS_UDP_SOCKET: 4156 node_perm = UDP_SOCKET__NODE_BIND; 4157 break; 4158 4159 case SECCLASS_DCCP_SOCKET: 4160 node_perm = DCCP_SOCKET__NODE_BIND; 4161 break; 4162 4163 default: 4164 node_perm = RAWIP_SOCKET__NODE_BIND; 4165 break; 4166 } 4167 4168 err = sel_netnode_sid(addrp, family, &sid); 4169 if (err) 4170 goto out; 4171 4172 ad.type = LSM_AUDIT_DATA_NET; 4173 ad.u.net = &net; 4174 ad.u.net->sport = htons(snum); 4175 ad.u.net->family = family; 4176 4177 if (family == PF_INET) 4178 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4179 else 4180 ad.u.net->v6info.saddr = addr6->sin6_addr; 4181 4182 err = avc_has_perm(sksec->sid, sid, 4183 sksec->sclass, node_perm, &ad); 4184 if (err) 4185 goto out; 4186 } 4187 out: 4188 return err; 4189 } 4190 4191 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4192 { 4193 struct sock *sk = sock->sk; 4194 struct sk_security_struct *sksec = sk->sk_security; 4195 int err; 4196 4197 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4198 if (err) 4199 return err; 4200 4201 /* 4202 * If a TCP or DCCP socket, check name_connect permission for the port. 4203 */ 4204 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4205 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4206 struct common_audit_data ad; 4207 struct lsm_network_audit net = {0,}; 4208 struct sockaddr_in *addr4 = NULL; 4209 struct sockaddr_in6 *addr6 = NULL; 4210 unsigned short snum; 4211 u32 sid, perm; 4212 4213 if (sk->sk_family == PF_INET) { 4214 addr4 = (struct sockaddr_in *)address; 4215 if (addrlen < sizeof(struct sockaddr_in)) 4216 return -EINVAL; 4217 snum = ntohs(addr4->sin_port); 4218 } else { 4219 addr6 = (struct sockaddr_in6 *)address; 4220 if (addrlen < SIN6_LEN_RFC2133) 4221 return -EINVAL; 4222 snum = ntohs(addr6->sin6_port); 4223 } 4224 4225 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4226 if (err) 4227 goto out; 4228 4229 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4230 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4231 4232 ad.type = LSM_AUDIT_DATA_NET; 4233 ad.u.net = &net; 4234 ad.u.net->dport = htons(snum); 4235 ad.u.net->family = sk->sk_family; 4236 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4237 if (err) 4238 goto out; 4239 } 4240 4241 err = selinux_netlbl_socket_connect(sk, address); 4242 4243 out: 4244 return err; 4245 } 4246 4247 static int selinux_socket_listen(struct socket *sock, int backlog) 4248 { 4249 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4250 } 4251 4252 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4253 { 4254 int err; 4255 struct inode_security_struct *isec; 4256 struct inode_security_struct *newisec; 4257 4258 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4259 if (err) 4260 return err; 4261 4262 newisec = SOCK_INODE(newsock)->i_security; 4263 4264 isec = SOCK_INODE(sock)->i_security; 4265 newisec->sclass = isec->sclass; 4266 newisec->sid = isec->sid; 4267 newisec->initialized = 1; 4268 4269 return 0; 4270 } 4271 4272 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4273 int size) 4274 { 4275 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4276 } 4277 4278 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4279 int size, int flags) 4280 { 4281 return sock_has_perm(current, sock->sk, SOCKET__READ); 4282 } 4283 4284 static int selinux_socket_getsockname(struct socket *sock) 4285 { 4286 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4287 } 4288 4289 static int selinux_socket_getpeername(struct socket *sock) 4290 { 4291 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4292 } 4293 4294 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4295 { 4296 int err; 4297 4298 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4299 if (err) 4300 return err; 4301 4302 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4303 } 4304 4305 static int selinux_socket_getsockopt(struct socket *sock, int level, 4306 int optname) 4307 { 4308 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4309 } 4310 4311 static int selinux_socket_shutdown(struct socket *sock, int how) 4312 { 4313 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4314 } 4315 4316 static int selinux_socket_unix_stream_connect(struct sock *sock, 4317 struct sock *other, 4318 struct sock *newsk) 4319 { 4320 struct sk_security_struct *sksec_sock = sock->sk_security; 4321 struct sk_security_struct *sksec_other = other->sk_security; 4322 struct sk_security_struct *sksec_new = newsk->sk_security; 4323 struct common_audit_data ad; 4324 struct lsm_network_audit net = {0,}; 4325 int err; 4326 4327 ad.type = LSM_AUDIT_DATA_NET; 4328 ad.u.net = &net; 4329 ad.u.net->sk = other; 4330 4331 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4332 sksec_other->sclass, 4333 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4334 if (err) 4335 return err; 4336 4337 /* server child socket */ 4338 sksec_new->peer_sid = sksec_sock->sid; 4339 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4340 &sksec_new->sid); 4341 if (err) 4342 return err; 4343 4344 /* connecting socket */ 4345 sksec_sock->peer_sid = sksec_new->sid; 4346 4347 return 0; 4348 } 4349 4350 static int selinux_socket_unix_may_send(struct socket *sock, 4351 struct socket *other) 4352 { 4353 struct sk_security_struct *ssec = sock->sk->sk_security; 4354 struct sk_security_struct *osec = other->sk->sk_security; 4355 struct common_audit_data ad; 4356 struct lsm_network_audit net = {0,}; 4357 4358 ad.type = LSM_AUDIT_DATA_NET; 4359 ad.u.net = &net; 4360 ad.u.net->sk = other->sk; 4361 4362 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4363 &ad); 4364 } 4365 4366 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4367 char *addrp, u16 family, u32 peer_sid, 4368 struct common_audit_data *ad) 4369 { 4370 int err; 4371 u32 if_sid; 4372 u32 node_sid; 4373 4374 err = sel_netif_sid(ns, ifindex, &if_sid); 4375 if (err) 4376 return err; 4377 err = avc_has_perm(peer_sid, if_sid, 4378 SECCLASS_NETIF, NETIF__INGRESS, ad); 4379 if (err) 4380 return err; 4381 4382 err = sel_netnode_sid(addrp, family, &node_sid); 4383 if (err) 4384 return err; 4385 return avc_has_perm(peer_sid, node_sid, 4386 SECCLASS_NODE, NODE__RECVFROM, ad); 4387 } 4388 4389 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4390 u16 family) 4391 { 4392 int err = 0; 4393 struct sk_security_struct *sksec = sk->sk_security; 4394 u32 sk_sid = sksec->sid; 4395 struct common_audit_data ad; 4396 struct lsm_network_audit net = {0,}; 4397 char *addrp; 4398 4399 ad.type = LSM_AUDIT_DATA_NET; 4400 ad.u.net = &net; 4401 ad.u.net->netif = skb->skb_iif; 4402 ad.u.net->family = family; 4403 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4404 if (err) 4405 return err; 4406 4407 if (selinux_secmark_enabled()) { 4408 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4409 PACKET__RECV, &ad); 4410 if (err) 4411 return err; 4412 } 4413 4414 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4415 if (err) 4416 return err; 4417 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4418 4419 return err; 4420 } 4421 4422 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4423 { 4424 int err; 4425 struct sk_security_struct *sksec = sk->sk_security; 4426 u16 family = sk->sk_family; 4427 u32 sk_sid = sksec->sid; 4428 struct common_audit_data ad; 4429 struct lsm_network_audit net = {0,}; 4430 char *addrp; 4431 u8 secmark_active; 4432 u8 peerlbl_active; 4433 4434 if (family != PF_INET && family != PF_INET6) 4435 return 0; 4436 4437 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4438 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4439 family = PF_INET; 4440 4441 /* If any sort of compatibility mode is enabled then handoff processing 4442 * to the selinux_sock_rcv_skb_compat() function to deal with the 4443 * special handling. We do this in an attempt to keep this function 4444 * as fast and as clean as possible. */ 4445 if (!selinux_policycap_netpeer) 4446 return selinux_sock_rcv_skb_compat(sk, skb, family); 4447 4448 secmark_active = selinux_secmark_enabled(); 4449 peerlbl_active = selinux_peerlbl_enabled(); 4450 if (!secmark_active && !peerlbl_active) 4451 return 0; 4452 4453 ad.type = LSM_AUDIT_DATA_NET; 4454 ad.u.net = &net; 4455 ad.u.net->netif = skb->skb_iif; 4456 ad.u.net->family = family; 4457 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4458 if (err) 4459 return err; 4460 4461 if (peerlbl_active) { 4462 u32 peer_sid; 4463 4464 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4465 if (err) 4466 return err; 4467 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4468 addrp, family, peer_sid, &ad); 4469 if (err) { 4470 selinux_netlbl_err(skb, err, 0); 4471 return err; 4472 } 4473 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4474 PEER__RECV, &ad); 4475 if (err) { 4476 selinux_netlbl_err(skb, err, 0); 4477 return err; 4478 } 4479 } 4480 4481 if (secmark_active) { 4482 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4483 PACKET__RECV, &ad); 4484 if (err) 4485 return err; 4486 } 4487 4488 return err; 4489 } 4490 4491 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4492 int __user *optlen, unsigned len) 4493 { 4494 int err = 0; 4495 char *scontext; 4496 u32 scontext_len; 4497 struct sk_security_struct *sksec = sock->sk->sk_security; 4498 u32 peer_sid = SECSID_NULL; 4499 4500 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4501 sksec->sclass == SECCLASS_TCP_SOCKET) 4502 peer_sid = sksec->peer_sid; 4503 if (peer_sid == SECSID_NULL) 4504 return -ENOPROTOOPT; 4505 4506 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4507 if (err) 4508 return err; 4509 4510 if (scontext_len > len) { 4511 err = -ERANGE; 4512 goto out_len; 4513 } 4514 4515 if (copy_to_user(optval, scontext, scontext_len)) 4516 err = -EFAULT; 4517 4518 out_len: 4519 if (put_user(scontext_len, optlen)) 4520 err = -EFAULT; 4521 kfree(scontext); 4522 return err; 4523 } 4524 4525 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4526 { 4527 u32 peer_secid = SECSID_NULL; 4528 u16 family; 4529 4530 if (skb && skb->protocol == htons(ETH_P_IP)) 4531 family = PF_INET; 4532 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4533 family = PF_INET6; 4534 else if (sock) 4535 family = sock->sk->sk_family; 4536 else 4537 goto out; 4538 4539 if (sock && family == PF_UNIX) 4540 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4541 else if (skb) 4542 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4543 4544 out: 4545 *secid = peer_secid; 4546 if (peer_secid == SECSID_NULL) 4547 return -EINVAL; 4548 return 0; 4549 } 4550 4551 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4552 { 4553 struct sk_security_struct *sksec; 4554 4555 sksec = kzalloc(sizeof(*sksec), priority); 4556 if (!sksec) 4557 return -ENOMEM; 4558 4559 sksec->peer_sid = SECINITSID_UNLABELED; 4560 sksec->sid = SECINITSID_UNLABELED; 4561 selinux_netlbl_sk_security_reset(sksec); 4562 sk->sk_security = sksec; 4563 4564 return 0; 4565 } 4566 4567 static void selinux_sk_free_security(struct sock *sk) 4568 { 4569 struct sk_security_struct *sksec = sk->sk_security; 4570 4571 sk->sk_security = NULL; 4572 selinux_netlbl_sk_security_free(sksec); 4573 kfree(sksec); 4574 } 4575 4576 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4577 { 4578 struct sk_security_struct *sksec = sk->sk_security; 4579 struct sk_security_struct *newsksec = newsk->sk_security; 4580 4581 newsksec->sid = sksec->sid; 4582 newsksec->peer_sid = sksec->peer_sid; 4583 newsksec->sclass = sksec->sclass; 4584 4585 selinux_netlbl_sk_security_reset(newsksec); 4586 } 4587 4588 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4589 { 4590 if (!sk) 4591 *secid = SECINITSID_ANY_SOCKET; 4592 else { 4593 struct sk_security_struct *sksec = sk->sk_security; 4594 4595 *secid = sksec->sid; 4596 } 4597 } 4598 4599 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4600 { 4601 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4602 struct sk_security_struct *sksec = sk->sk_security; 4603 4604 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4605 sk->sk_family == PF_UNIX) 4606 isec->sid = sksec->sid; 4607 sksec->sclass = isec->sclass; 4608 } 4609 4610 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4611 struct request_sock *req) 4612 { 4613 struct sk_security_struct *sksec = sk->sk_security; 4614 int err; 4615 u16 family = req->rsk_ops->family; 4616 u32 connsid; 4617 u32 peersid; 4618 4619 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4620 if (err) 4621 return err; 4622 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4623 if (err) 4624 return err; 4625 req->secid = connsid; 4626 req->peer_secid = peersid; 4627 4628 return selinux_netlbl_inet_conn_request(req, family); 4629 } 4630 4631 static void selinux_inet_csk_clone(struct sock *newsk, 4632 const struct request_sock *req) 4633 { 4634 struct sk_security_struct *newsksec = newsk->sk_security; 4635 4636 newsksec->sid = req->secid; 4637 newsksec->peer_sid = req->peer_secid; 4638 /* NOTE: Ideally, we should also get the isec->sid for the 4639 new socket in sync, but we don't have the isec available yet. 4640 So we will wait until sock_graft to do it, by which 4641 time it will have been created and available. */ 4642 4643 /* We don't need to take any sort of lock here as we are the only 4644 * thread with access to newsksec */ 4645 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4646 } 4647 4648 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4649 { 4650 u16 family = sk->sk_family; 4651 struct sk_security_struct *sksec = sk->sk_security; 4652 4653 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4654 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4655 family = PF_INET; 4656 4657 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4658 } 4659 4660 static int selinux_secmark_relabel_packet(u32 sid) 4661 { 4662 const struct task_security_struct *__tsec; 4663 u32 tsid; 4664 4665 __tsec = current_security(); 4666 tsid = __tsec->sid; 4667 4668 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4669 } 4670 4671 static void selinux_secmark_refcount_inc(void) 4672 { 4673 atomic_inc(&selinux_secmark_refcount); 4674 } 4675 4676 static void selinux_secmark_refcount_dec(void) 4677 { 4678 atomic_dec(&selinux_secmark_refcount); 4679 } 4680 4681 static void selinux_req_classify_flow(const struct request_sock *req, 4682 struct flowi *fl) 4683 { 4684 fl->flowi_secid = req->secid; 4685 } 4686 4687 static int selinux_tun_dev_alloc_security(void **security) 4688 { 4689 struct tun_security_struct *tunsec; 4690 4691 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4692 if (!tunsec) 4693 return -ENOMEM; 4694 tunsec->sid = current_sid(); 4695 4696 *security = tunsec; 4697 return 0; 4698 } 4699 4700 static void selinux_tun_dev_free_security(void *security) 4701 { 4702 kfree(security); 4703 } 4704 4705 static int selinux_tun_dev_create(void) 4706 { 4707 u32 sid = current_sid(); 4708 4709 /* we aren't taking into account the "sockcreate" SID since the socket 4710 * that is being created here is not a socket in the traditional sense, 4711 * instead it is a private sock, accessible only to the kernel, and 4712 * representing a wide range of network traffic spanning multiple 4713 * connections unlike traditional sockets - check the TUN driver to 4714 * get a better understanding of why this socket is special */ 4715 4716 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4717 NULL); 4718 } 4719 4720 static int selinux_tun_dev_attach_queue(void *security) 4721 { 4722 struct tun_security_struct *tunsec = security; 4723 4724 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4725 TUN_SOCKET__ATTACH_QUEUE, NULL); 4726 } 4727 4728 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4729 { 4730 struct tun_security_struct *tunsec = security; 4731 struct sk_security_struct *sksec = sk->sk_security; 4732 4733 /* we don't currently perform any NetLabel based labeling here and it 4734 * isn't clear that we would want to do so anyway; while we could apply 4735 * labeling without the support of the TUN user the resulting labeled 4736 * traffic from the other end of the connection would almost certainly 4737 * cause confusion to the TUN user that had no idea network labeling 4738 * protocols were being used */ 4739 4740 sksec->sid = tunsec->sid; 4741 sksec->sclass = SECCLASS_TUN_SOCKET; 4742 4743 return 0; 4744 } 4745 4746 static int selinux_tun_dev_open(void *security) 4747 { 4748 struct tun_security_struct *tunsec = security; 4749 u32 sid = current_sid(); 4750 int err; 4751 4752 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4753 TUN_SOCKET__RELABELFROM, NULL); 4754 if (err) 4755 return err; 4756 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4757 TUN_SOCKET__RELABELTO, NULL); 4758 if (err) 4759 return err; 4760 tunsec->sid = sid; 4761 4762 return 0; 4763 } 4764 4765 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4766 { 4767 int err = 0; 4768 u32 perm; 4769 struct nlmsghdr *nlh; 4770 struct sk_security_struct *sksec = sk->sk_security; 4771 4772 if (skb->len < NLMSG_HDRLEN) { 4773 err = -EINVAL; 4774 goto out; 4775 } 4776 nlh = nlmsg_hdr(skb); 4777 4778 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4779 if (err) { 4780 if (err == -EINVAL) { 4781 printk(KERN_WARNING 4782 "SELinux: unrecognized netlink message:" 4783 " protocol=%hu nlmsg_type=%hu sclass=%hu\n", 4784 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass); 4785 if (!selinux_enforcing || security_get_allow_unknown()) 4786 err = 0; 4787 } 4788 4789 /* Ignore */ 4790 if (err == -ENOENT) 4791 err = 0; 4792 goto out; 4793 } 4794 4795 err = sock_has_perm(current, sk, perm); 4796 out: 4797 return err; 4798 } 4799 4800 #ifdef CONFIG_NETFILTER 4801 4802 static unsigned int selinux_ip_forward(struct sk_buff *skb, 4803 const struct net_device *indev, 4804 u16 family) 4805 { 4806 int err; 4807 char *addrp; 4808 u32 peer_sid; 4809 struct common_audit_data ad; 4810 struct lsm_network_audit net = {0,}; 4811 u8 secmark_active; 4812 u8 netlbl_active; 4813 u8 peerlbl_active; 4814 4815 if (!selinux_policycap_netpeer) 4816 return NF_ACCEPT; 4817 4818 secmark_active = selinux_secmark_enabled(); 4819 netlbl_active = netlbl_enabled(); 4820 peerlbl_active = selinux_peerlbl_enabled(); 4821 if (!secmark_active && !peerlbl_active) 4822 return NF_ACCEPT; 4823 4824 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4825 return NF_DROP; 4826 4827 ad.type = LSM_AUDIT_DATA_NET; 4828 ad.u.net = &net; 4829 ad.u.net->netif = indev->ifindex; 4830 ad.u.net->family = family; 4831 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4832 return NF_DROP; 4833 4834 if (peerlbl_active) { 4835 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4836 addrp, family, peer_sid, &ad); 4837 if (err) { 4838 selinux_netlbl_err(skb, err, 1); 4839 return NF_DROP; 4840 } 4841 } 4842 4843 if (secmark_active) 4844 if (avc_has_perm(peer_sid, skb->secmark, 4845 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4846 return NF_DROP; 4847 4848 if (netlbl_active) 4849 /* we do this in the FORWARD path and not the POST_ROUTING 4850 * path because we want to make sure we apply the necessary 4851 * labeling before IPsec is applied so we can leverage AH 4852 * protection */ 4853 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4854 return NF_DROP; 4855 4856 return NF_ACCEPT; 4857 } 4858 4859 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4860 struct sk_buff *skb, 4861 const struct nf_hook_state *state) 4862 { 4863 return selinux_ip_forward(skb, state->in, PF_INET); 4864 } 4865 4866 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4867 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4868 struct sk_buff *skb, 4869 const struct nf_hook_state *state) 4870 { 4871 return selinux_ip_forward(skb, state->in, PF_INET6); 4872 } 4873 #endif /* IPV6 */ 4874 4875 static unsigned int selinux_ip_output(struct sk_buff *skb, 4876 u16 family) 4877 { 4878 struct sock *sk; 4879 u32 sid; 4880 4881 if (!netlbl_enabled()) 4882 return NF_ACCEPT; 4883 4884 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4885 * because we want to make sure we apply the necessary labeling 4886 * before IPsec is applied so we can leverage AH protection */ 4887 sk = skb->sk; 4888 if (sk) { 4889 struct sk_security_struct *sksec; 4890 4891 if (sk->sk_state == TCP_LISTEN) 4892 /* if the socket is the listening state then this 4893 * packet is a SYN-ACK packet which means it needs to 4894 * be labeled based on the connection/request_sock and 4895 * not the parent socket. unfortunately, we can't 4896 * lookup the request_sock yet as it isn't queued on 4897 * the parent socket until after the SYN-ACK is sent. 4898 * the "solution" is to simply pass the packet as-is 4899 * as any IP option based labeling should be copied 4900 * from the initial connection request (in the IP 4901 * layer). it is far from ideal, but until we get a 4902 * security label in the packet itself this is the 4903 * best we can do. */ 4904 return NF_ACCEPT; 4905 4906 /* standard practice, label using the parent socket */ 4907 sksec = sk->sk_security; 4908 sid = sksec->sid; 4909 } else 4910 sid = SECINITSID_KERNEL; 4911 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4912 return NF_DROP; 4913 4914 return NF_ACCEPT; 4915 } 4916 4917 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4918 struct sk_buff *skb, 4919 const struct nf_hook_state *state) 4920 { 4921 return selinux_ip_output(skb, PF_INET); 4922 } 4923 4924 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4925 int ifindex, 4926 u16 family) 4927 { 4928 struct sock *sk = skb->sk; 4929 struct sk_security_struct *sksec; 4930 struct common_audit_data ad; 4931 struct lsm_network_audit net = {0,}; 4932 char *addrp; 4933 u8 proto; 4934 4935 if (sk == NULL) 4936 return NF_ACCEPT; 4937 sksec = sk->sk_security; 4938 4939 ad.type = LSM_AUDIT_DATA_NET; 4940 ad.u.net = &net; 4941 ad.u.net->netif = ifindex; 4942 ad.u.net->family = family; 4943 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4944 return NF_DROP; 4945 4946 if (selinux_secmark_enabled()) 4947 if (avc_has_perm(sksec->sid, skb->secmark, 4948 SECCLASS_PACKET, PACKET__SEND, &ad)) 4949 return NF_DROP_ERR(-ECONNREFUSED); 4950 4951 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4952 return NF_DROP_ERR(-ECONNREFUSED); 4953 4954 return NF_ACCEPT; 4955 } 4956 4957 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4958 const struct net_device *outdev, 4959 u16 family) 4960 { 4961 u32 secmark_perm; 4962 u32 peer_sid; 4963 int ifindex = outdev->ifindex; 4964 struct sock *sk; 4965 struct common_audit_data ad; 4966 struct lsm_network_audit net = {0,}; 4967 char *addrp; 4968 u8 secmark_active; 4969 u8 peerlbl_active; 4970 4971 /* If any sort of compatibility mode is enabled then handoff processing 4972 * to the selinux_ip_postroute_compat() function to deal with the 4973 * special handling. We do this in an attempt to keep this function 4974 * as fast and as clean as possible. */ 4975 if (!selinux_policycap_netpeer) 4976 return selinux_ip_postroute_compat(skb, ifindex, family); 4977 4978 secmark_active = selinux_secmark_enabled(); 4979 peerlbl_active = selinux_peerlbl_enabled(); 4980 if (!secmark_active && !peerlbl_active) 4981 return NF_ACCEPT; 4982 4983 sk = skb->sk; 4984 4985 #ifdef CONFIG_XFRM 4986 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4987 * packet transformation so allow the packet to pass without any checks 4988 * since we'll have another chance to perform access control checks 4989 * when the packet is on it's final way out. 4990 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4991 * is NULL, in this case go ahead and apply access control. 4992 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 4993 * TCP listening state we cannot wait until the XFRM processing 4994 * is done as we will miss out on the SA label if we do; 4995 * unfortunately, this means more work, but it is only once per 4996 * connection. */ 4997 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 4998 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 4999 return NF_ACCEPT; 5000 #endif 5001 5002 if (sk == NULL) { 5003 /* Without an associated socket the packet is either coming 5004 * from the kernel or it is being forwarded; check the packet 5005 * to determine which and if the packet is being forwarded 5006 * query the packet directly to determine the security label. */ 5007 if (skb->skb_iif) { 5008 secmark_perm = PACKET__FORWARD_OUT; 5009 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5010 return NF_DROP; 5011 } else { 5012 secmark_perm = PACKET__SEND; 5013 peer_sid = SECINITSID_KERNEL; 5014 } 5015 } else if (sk->sk_state == TCP_LISTEN) { 5016 /* Locally generated packet but the associated socket is in the 5017 * listening state which means this is a SYN-ACK packet. In 5018 * this particular case the correct security label is assigned 5019 * to the connection/request_sock but unfortunately we can't 5020 * query the request_sock as it isn't queued on the parent 5021 * socket until after the SYN-ACK packet is sent; the only 5022 * viable choice is to regenerate the label like we do in 5023 * selinux_inet_conn_request(). See also selinux_ip_output() 5024 * for similar problems. */ 5025 u32 skb_sid; 5026 struct sk_security_struct *sksec = sk->sk_security; 5027 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5028 return NF_DROP; 5029 /* At this point, if the returned skb peerlbl is SECSID_NULL 5030 * and the packet has been through at least one XFRM 5031 * transformation then we must be dealing with the "final" 5032 * form of labeled IPsec packet; since we've already applied 5033 * all of our access controls on this packet we can safely 5034 * pass the packet. */ 5035 if (skb_sid == SECSID_NULL) { 5036 switch (family) { 5037 case PF_INET: 5038 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5039 return NF_ACCEPT; 5040 break; 5041 case PF_INET6: 5042 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5043 return NF_ACCEPT; 5044 break; 5045 default: 5046 return NF_DROP_ERR(-ECONNREFUSED); 5047 } 5048 } 5049 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5050 return NF_DROP; 5051 secmark_perm = PACKET__SEND; 5052 } else { 5053 /* Locally generated packet, fetch the security label from the 5054 * associated socket. */ 5055 struct sk_security_struct *sksec = sk->sk_security; 5056 peer_sid = sksec->sid; 5057 secmark_perm = PACKET__SEND; 5058 } 5059 5060 ad.type = LSM_AUDIT_DATA_NET; 5061 ad.u.net = &net; 5062 ad.u.net->netif = ifindex; 5063 ad.u.net->family = family; 5064 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5065 return NF_DROP; 5066 5067 if (secmark_active) 5068 if (avc_has_perm(peer_sid, skb->secmark, 5069 SECCLASS_PACKET, secmark_perm, &ad)) 5070 return NF_DROP_ERR(-ECONNREFUSED); 5071 5072 if (peerlbl_active) { 5073 u32 if_sid; 5074 u32 node_sid; 5075 5076 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5077 return NF_DROP; 5078 if (avc_has_perm(peer_sid, if_sid, 5079 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5080 return NF_DROP_ERR(-ECONNREFUSED); 5081 5082 if (sel_netnode_sid(addrp, family, &node_sid)) 5083 return NF_DROP; 5084 if (avc_has_perm(peer_sid, node_sid, 5085 SECCLASS_NODE, NODE__SENDTO, &ad)) 5086 return NF_DROP_ERR(-ECONNREFUSED); 5087 } 5088 5089 return NF_ACCEPT; 5090 } 5091 5092 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5093 struct sk_buff *skb, 5094 const struct nf_hook_state *state) 5095 { 5096 return selinux_ip_postroute(skb, state->out, PF_INET); 5097 } 5098 5099 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5100 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5101 struct sk_buff *skb, 5102 const struct nf_hook_state *state) 5103 { 5104 return selinux_ip_postroute(skb, state->out, PF_INET6); 5105 } 5106 #endif /* IPV6 */ 5107 5108 #endif /* CONFIG_NETFILTER */ 5109 5110 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5111 { 5112 int err; 5113 5114 err = cap_netlink_send(sk, skb); 5115 if (err) 5116 return err; 5117 5118 return selinux_nlmsg_perm(sk, skb); 5119 } 5120 5121 static int ipc_alloc_security(struct task_struct *task, 5122 struct kern_ipc_perm *perm, 5123 u16 sclass) 5124 { 5125 struct ipc_security_struct *isec; 5126 u32 sid; 5127 5128 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5129 if (!isec) 5130 return -ENOMEM; 5131 5132 sid = task_sid(task); 5133 isec->sclass = sclass; 5134 isec->sid = sid; 5135 perm->security = isec; 5136 5137 return 0; 5138 } 5139 5140 static void ipc_free_security(struct kern_ipc_perm *perm) 5141 { 5142 struct ipc_security_struct *isec = perm->security; 5143 perm->security = NULL; 5144 kfree(isec); 5145 } 5146 5147 static int msg_msg_alloc_security(struct msg_msg *msg) 5148 { 5149 struct msg_security_struct *msec; 5150 5151 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5152 if (!msec) 5153 return -ENOMEM; 5154 5155 msec->sid = SECINITSID_UNLABELED; 5156 msg->security = msec; 5157 5158 return 0; 5159 } 5160 5161 static void msg_msg_free_security(struct msg_msg *msg) 5162 { 5163 struct msg_security_struct *msec = msg->security; 5164 5165 msg->security = NULL; 5166 kfree(msec); 5167 } 5168 5169 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5170 u32 perms) 5171 { 5172 struct ipc_security_struct *isec; 5173 struct common_audit_data ad; 5174 u32 sid = current_sid(); 5175 5176 isec = ipc_perms->security; 5177 5178 ad.type = LSM_AUDIT_DATA_IPC; 5179 ad.u.ipc_id = ipc_perms->key; 5180 5181 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5182 } 5183 5184 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5185 { 5186 return msg_msg_alloc_security(msg); 5187 } 5188 5189 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5190 { 5191 msg_msg_free_security(msg); 5192 } 5193 5194 /* message queue security operations */ 5195 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5196 { 5197 struct ipc_security_struct *isec; 5198 struct common_audit_data ad; 5199 u32 sid = current_sid(); 5200 int rc; 5201 5202 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5203 if (rc) 5204 return rc; 5205 5206 isec = msq->q_perm.security; 5207 5208 ad.type = LSM_AUDIT_DATA_IPC; 5209 ad.u.ipc_id = msq->q_perm.key; 5210 5211 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5212 MSGQ__CREATE, &ad); 5213 if (rc) { 5214 ipc_free_security(&msq->q_perm); 5215 return rc; 5216 } 5217 return 0; 5218 } 5219 5220 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5221 { 5222 ipc_free_security(&msq->q_perm); 5223 } 5224 5225 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5226 { 5227 struct ipc_security_struct *isec; 5228 struct common_audit_data ad; 5229 u32 sid = current_sid(); 5230 5231 isec = msq->q_perm.security; 5232 5233 ad.type = LSM_AUDIT_DATA_IPC; 5234 ad.u.ipc_id = msq->q_perm.key; 5235 5236 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5237 MSGQ__ASSOCIATE, &ad); 5238 } 5239 5240 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5241 { 5242 int err; 5243 int perms; 5244 5245 switch (cmd) { 5246 case IPC_INFO: 5247 case MSG_INFO: 5248 /* No specific object, just general system-wide information. */ 5249 return task_has_system(current, SYSTEM__IPC_INFO); 5250 case IPC_STAT: 5251 case MSG_STAT: 5252 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5253 break; 5254 case IPC_SET: 5255 perms = MSGQ__SETATTR; 5256 break; 5257 case IPC_RMID: 5258 perms = MSGQ__DESTROY; 5259 break; 5260 default: 5261 return 0; 5262 } 5263 5264 err = ipc_has_perm(&msq->q_perm, perms); 5265 return err; 5266 } 5267 5268 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5269 { 5270 struct ipc_security_struct *isec; 5271 struct msg_security_struct *msec; 5272 struct common_audit_data ad; 5273 u32 sid = current_sid(); 5274 int rc; 5275 5276 isec = msq->q_perm.security; 5277 msec = msg->security; 5278 5279 /* 5280 * First time through, need to assign label to the message 5281 */ 5282 if (msec->sid == SECINITSID_UNLABELED) { 5283 /* 5284 * Compute new sid based on current process and 5285 * message queue this message will be stored in 5286 */ 5287 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5288 NULL, &msec->sid); 5289 if (rc) 5290 return rc; 5291 } 5292 5293 ad.type = LSM_AUDIT_DATA_IPC; 5294 ad.u.ipc_id = msq->q_perm.key; 5295 5296 /* Can this process write to the queue? */ 5297 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5298 MSGQ__WRITE, &ad); 5299 if (!rc) 5300 /* Can this process send the message */ 5301 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5302 MSG__SEND, &ad); 5303 if (!rc) 5304 /* Can the message be put in the queue? */ 5305 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5306 MSGQ__ENQUEUE, &ad); 5307 5308 return rc; 5309 } 5310 5311 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5312 struct task_struct *target, 5313 long type, int mode) 5314 { 5315 struct ipc_security_struct *isec; 5316 struct msg_security_struct *msec; 5317 struct common_audit_data ad; 5318 u32 sid = task_sid(target); 5319 int rc; 5320 5321 isec = msq->q_perm.security; 5322 msec = msg->security; 5323 5324 ad.type = LSM_AUDIT_DATA_IPC; 5325 ad.u.ipc_id = msq->q_perm.key; 5326 5327 rc = avc_has_perm(sid, isec->sid, 5328 SECCLASS_MSGQ, MSGQ__READ, &ad); 5329 if (!rc) 5330 rc = avc_has_perm(sid, msec->sid, 5331 SECCLASS_MSG, MSG__RECEIVE, &ad); 5332 return rc; 5333 } 5334 5335 /* Shared Memory security operations */ 5336 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5337 { 5338 struct ipc_security_struct *isec; 5339 struct common_audit_data ad; 5340 u32 sid = current_sid(); 5341 int rc; 5342 5343 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5344 if (rc) 5345 return rc; 5346 5347 isec = shp->shm_perm.security; 5348 5349 ad.type = LSM_AUDIT_DATA_IPC; 5350 ad.u.ipc_id = shp->shm_perm.key; 5351 5352 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5353 SHM__CREATE, &ad); 5354 if (rc) { 5355 ipc_free_security(&shp->shm_perm); 5356 return rc; 5357 } 5358 return 0; 5359 } 5360 5361 static void selinux_shm_free_security(struct shmid_kernel *shp) 5362 { 5363 ipc_free_security(&shp->shm_perm); 5364 } 5365 5366 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5367 { 5368 struct ipc_security_struct *isec; 5369 struct common_audit_data ad; 5370 u32 sid = current_sid(); 5371 5372 isec = shp->shm_perm.security; 5373 5374 ad.type = LSM_AUDIT_DATA_IPC; 5375 ad.u.ipc_id = shp->shm_perm.key; 5376 5377 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5378 SHM__ASSOCIATE, &ad); 5379 } 5380 5381 /* Note, at this point, shp is locked down */ 5382 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5383 { 5384 int perms; 5385 int err; 5386 5387 switch (cmd) { 5388 case IPC_INFO: 5389 case SHM_INFO: 5390 /* No specific object, just general system-wide information. */ 5391 return task_has_system(current, SYSTEM__IPC_INFO); 5392 case IPC_STAT: 5393 case SHM_STAT: 5394 perms = SHM__GETATTR | SHM__ASSOCIATE; 5395 break; 5396 case IPC_SET: 5397 perms = SHM__SETATTR; 5398 break; 5399 case SHM_LOCK: 5400 case SHM_UNLOCK: 5401 perms = SHM__LOCK; 5402 break; 5403 case IPC_RMID: 5404 perms = SHM__DESTROY; 5405 break; 5406 default: 5407 return 0; 5408 } 5409 5410 err = ipc_has_perm(&shp->shm_perm, perms); 5411 return err; 5412 } 5413 5414 static int selinux_shm_shmat(struct shmid_kernel *shp, 5415 char __user *shmaddr, int shmflg) 5416 { 5417 u32 perms; 5418 5419 if (shmflg & SHM_RDONLY) 5420 perms = SHM__READ; 5421 else 5422 perms = SHM__READ | SHM__WRITE; 5423 5424 return ipc_has_perm(&shp->shm_perm, perms); 5425 } 5426 5427 /* Semaphore security operations */ 5428 static int selinux_sem_alloc_security(struct sem_array *sma) 5429 { 5430 struct ipc_security_struct *isec; 5431 struct common_audit_data ad; 5432 u32 sid = current_sid(); 5433 int rc; 5434 5435 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5436 if (rc) 5437 return rc; 5438 5439 isec = sma->sem_perm.security; 5440 5441 ad.type = LSM_AUDIT_DATA_IPC; 5442 ad.u.ipc_id = sma->sem_perm.key; 5443 5444 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5445 SEM__CREATE, &ad); 5446 if (rc) { 5447 ipc_free_security(&sma->sem_perm); 5448 return rc; 5449 } 5450 return 0; 5451 } 5452 5453 static void selinux_sem_free_security(struct sem_array *sma) 5454 { 5455 ipc_free_security(&sma->sem_perm); 5456 } 5457 5458 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5459 { 5460 struct ipc_security_struct *isec; 5461 struct common_audit_data ad; 5462 u32 sid = current_sid(); 5463 5464 isec = sma->sem_perm.security; 5465 5466 ad.type = LSM_AUDIT_DATA_IPC; 5467 ad.u.ipc_id = sma->sem_perm.key; 5468 5469 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5470 SEM__ASSOCIATE, &ad); 5471 } 5472 5473 /* Note, at this point, sma is locked down */ 5474 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5475 { 5476 int err; 5477 u32 perms; 5478 5479 switch (cmd) { 5480 case IPC_INFO: 5481 case SEM_INFO: 5482 /* No specific object, just general system-wide information. */ 5483 return task_has_system(current, SYSTEM__IPC_INFO); 5484 case GETPID: 5485 case GETNCNT: 5486 case GETZCNT: 5487 perms = SEM__GETATTR; 5488 break; 5489 case GETVAL: 5490 case GETALL: 5491 perms = SEM__READ; 5492 break; 5493 case SETVAL: 5494 case SETALL: 5495 perms = SEM__WRITE; 5496 break; 5497 case IPC_RMID: 5498 perms = SEM__DESTROY; 5499 break; 5500 case IPC_SET: 5501 perms = SEM__SETATTR; 5502 break; 5503 case IPC_STAT: 5504 case SEM_STAT: 5505 perms = SEM__GETATTR | SEM__ASSOCIATE; 5506 break; 5507 default: 5508 return 0; 5509 } 5510 5511 err = ipc_has_perm(&sma->sem_perm, perms); 5512 return err; 5513 } 5514 5515 static int selinux_sem_semop(struct sem_array *sma, 5516 struct sembuf *sops, unsigned nsops, int alter) 5517 { 5518 u32 perms; 5519 5520 if (alter) 5521 perms = SEM__READ | SEM__WRITE; 5522 else 5523 perms = SEM__READ; 5524 5525 return ipc_has_perm(&sma->sem_perm, perms); 5526 } 5527 5528 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5529 { 5530 u32 av = 0; 5531 5532 av = 0; 5533 if (flag & S_IRUGO) 5534 av |= IPC__UNIX_READ; 5535 if (flag & S_IWUGO) 5536 av |= IPC__UNIX_WRITE; 5537 5538 if (av == 0) 5539 return 0; 5540 5541 return ipc_has_perm(ipcp, av); 5542 } 5543 5544 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5545 { 5546 struct ipc_security_struct *isec = ipcp->security; 5547 *secid = isec->sid; 5548 } 5549 5550 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5551 { 5552 if (inode) 5553 inode_doinit_with_dentry(inode, dentry); 5554 } 5555 5556 static int selinux_getprocattr(struct task_struct *p, 5557 char *name, char **value) 5558 { 5559 const struct task_security_struct *__tsec; 5560 u32 sid; 5561 int error; 5562 unsigned len; 5563 5564 if (current != p) { 5565 error = current_has_perm(p, PROCESS__GETATTR); 5566 if (error) 5567 return error; 5568 } 5569 5570 rcu_read_lock(); 5571 __tsec = __task_cred(p)->security; 5572 5573 if (!strcmp(name, "current")) 5574 sid = __tsec->sid; 5575 else if (!strcmp(name, "prev")) 5576 sid = __tsec->osid; 5577 else if (!strcmp(name, "exec")) 5578 sid = __tsec->exec_sid; 5579 else if (!strcmp(name, "fscreate")) 5580 sid = __tsec->create_sid; 5581 else if (!strcmp(name, "keycreate")) 5582 sid = __tsec->keycreate_sid; 5583 else if (!strcmp(name, "sockcreate")) 5584 sid = __tsec->sockcreate_sid; 5585 else 5586 goto invalid; 5587 rcu_read_unlock(); 5588 5589 if (!sid) 5590 return 0; 5591 5592 error = security_sid_to_context(sid, value, &len); 5593 if (error) 5594 return error; 5595 return len; 5596 5597 invalid: 5598 rcu_read_unlock(); 5599 return -EINVAL; 5600 } 5601 5602 static int selinux_setprocattr(struct task_struct *p, 5603 char *name, void *value, size_t size) 5604 { 5605 struct task_security_struct *tsec; 5606 struct task_struct *tracer; 5607 struct cred *new; 5608 u32 sid = 0, ptsid; 5609 int error; 5610 char *str = value; 5611 5612 if (current != p) { 5613 /* SELinux only allows a process to change its own 5614 security attributes. */ 5615 return -EACCES; 5616 } 5617 5618 /* 5619 * Basic control over ability to set these attributes at all. 5620 * current == p, but we'll pass them separately in case the 5621 * above restriction is ever removed. 5622 */ 5623 if (!strcmp(name, "exec")) 5624 error = current_has_perm(p, PROCESS__SETEXEC); 5625 else if (!strcmp(name, "fscreate")) 5626 error = current_has_perm(p, PROCESS__SETFSCREATE); 5627 else if (!strcmp(name, "keycreate")) 5628 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5629 else if (!strcmp(name, "sockcreate")) 5630 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5631 else if (!strcmp(name, "current")) 5632 error = current_has_perm(p, PROCESS__SETCURRENT); 5633 else 5634 error = -EINVAL; 5635 if (error) 5636 return error; 5637 5638 /* Obtain a SID for the context, if one was specified. */ 5639 if (size && str[1] && str[1] != '\n') { 5640 if (str[size-1] == '\n') { 5641 str[size-1] = 0; 5642 size--; 5643 } 5644 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5645 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5646 if (!capable(CAP_MAC_ADMIN)) { 5647 struct audit_buffer *ab; 5648 size_t audit_size; 5649 5650 /* We strip a nul only if it is at the end, otherwise the 5651 * context contains a nul and we should audit that */ 5652 if (str[size - 1] == '\0') 5653 audit_size = size - 1; 5654 else 5655 audit_size = size; 5656 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5657 audit_log_format(ab, "op=fscreate invalid_context="); 5658 audit_log_n_untrustedstring(ab, value, audit_size); 5659 audit_log_end(ab); 5660 5661 return error; 5662 } 5663 error = security_context_to_sid_force(value, size, 5664 &sid); 5665 } 5666 if (error) 5667 return error; 5668 } 5669 5670 new = prepare_creds(); 5671 if (!new) 5672 return -ENOMEM; 5673 5674 /* Permission checking based on the specified context is 5675 performed during the actual operation (execve, 5676 open/mkdir/...), when we know the full context of the 5677 operation. See selinux_bprm_set_creds for the execve 5678 checks and may_create for the file creation checks. The 5679 operation will then fail if the context is not permitted. */ 5680 tsec = new->security; 5681 if (!strcmp(name, "exec")) { 5682 tsec->exec_sid = sid; 5683 } else if (!strcmp(name, "fscreate")) { 5684 tsec->create_sid = sid; 5685 } else if (!strcmp(name, "keycreate")) { 5686 error = may_create_key(sid, p); 5687 if (error) 5688 goto abort_change; 5689 tsec->keycreate_sid = sid; 5690 } else if (!strcmp(name, "sockcreate")) { 5691 tsec->sockcreate_sid = sid; 5692 } else if (!strcmp(name, "current")) { 5693 error = -EINVAL; 5694 if (sid == 0) 5695 goto abort_change; 5696 5697 /* Only allow single threaded processes to change context */ 5698 error = -EPERM; 5699 if (!current_is_single_threaded()) { 5700 error = security_bounded_transition(tsec->sid, sid); 5701 if (error) 5702 goto abort_change; 5703 } 5704 5705 /* Check permissions for the transition. */ 5706 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5707 PROCESS__DYNTRANSITION, NULL); 5708 if (error) 5709 goto abort_change; 5710 5711 /* Check for ptracing, and update the task SID if ok. 5712 Otherwise, leave SID unchanged and fail. */ 5713 ptsid = 0; 5714 rcu_read_lock(); 5715 tracer = ptrace_parent(p); 5716 if (tracer) 5717 ptsid = task_sid(tracer); 5718 rcu_read_unlock(); 5719 5720 if (tracer) { 5721 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5722 PROCESS__PTRACE, NULL); 5723 if (error) 5724 goto abort_change; 5725 } 5726 5727 tsec->sid = sid; 5728 } else { 5729 error = -EINVAL; 5730 goto abort_change; 5731 } 5732 5733 commit_creds(new); 5734 return size; 5735 5736 abort_change: 5737 abort_creds(new); 5738 return error; 5739 } 5740 5741 static int selinux_ismaclabel(const char *name) 5742 { 5743 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5744 } 5745 5746 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5747 { 5748 return security_sid_to_context(secid, secdata, seclen); 5749 } 5750 5751 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5752 { 5753 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5754 } 5755 5756 static void selinux_release_secctx(char *secdata, u32 seclen) 5757 { 5758 kfree(secdata); 5759 } 5760 5761 /* 5762 * called with inode->i_mutex locked 5763 */ 5764 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5765 { 5766 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5767 } 5768 5769 /* 5770 * called with inode->i_mutex locked 5771 */ 5772 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5773 { 5774 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5775 } 5776 5777 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5778 { 5779 int len = 0; 5780 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5781 ctx, true); 5782 if (len < 0) 5783 return len; 5784 *ctxlen = len; 5785 return 0; 5786 } 5787 #ifdef CONFIG_KEYS 5788 5789 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5790 unsigned long flags) 5791 { 5792 const struct task_security_struct *tsec; 5793 struct key_security_struct *ksec; 5794 5795 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5796 if (!ksec) 5797 return -ENOMEM; 5798 5799 tsec = cred->security; 5800 if (tsec->keycreate_sid) 5801 ksec->sid = tsec->keycreate_sid; 5802 else 5803 ksec->sid = tsec->sid; 5804 5805 k->security = ksec; 5806 return 0; 5807 } 5808 5809 static void selinux_key_free(struct key *k) 5810 { 5811 struct key_security_struct *ksec = k->security; 5812 5813 k->security = NULL; 5814 kfree(ksec); 5815 } 5816 5817 static int selinux_key_permission(key_ref_t key_ref, 5818 const struct cred *cred, 5819 unsigned perm) 5820 { 5821 struct key *key; 5822 struct key_security_struct *ksec; 5823 u32 sid; 5824 5825 /* if no specific permissions are requested, we skip the 5826 permission check. No serious, additional covert channels 5827 appear to be created. */ 5828 if (perm == 0) 5829 return 0; 5830 5831 sid = cred_sid(cred); 5832 5833 key = key_ref_to_ptr(key_ref); 5834 ksec = key->security; 5835 5836 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5837 } 5838 5839 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5840 { 5841 struct key_security_struct *ksec = key->security; 5842 char *context = NULL; 5843 unsigned len; 5844 int rc; 5845 5846 rc = security_sid_to_context(ksec->sid, &context, &len); 5847 if (!rc) 5848 rc = len; 5849 *_buffer = context; 5850 return rc; 5851 } 5852 5853 #endif 5854 5855 static struct security_operations selinux_ops = { 5856 .name = "selinux", 5857 5858 .binder_set_context_mgr = selinux_binder_set_context_mgr, 5859 .binder_transaction = selinux_binder_transaction, 5860 .binder_transfer_binder = selinux_binder_transfer_binder, 5861 .binder_transfer_file = selinux_binder_transfer_file, 5862 5863 .ptrace_access_check = selinux_ptrace_access_check, 5864 .ptrace_traceme = selinux_ptrace_traceme, 5865 .capget = selinux_capget, 5866 .capset = selinux_capset, 5867 .capable = selinux_capable, 5868 .quotactl = selinux_quotactl, 5869 .quota_on = selinux_quota_on, 5870 .syslog = selinux_syslog, 5871 .vm_enough_memory = selinux_vm_enough_memory, 5872 5873 .netlink_send = selinux_netlink_send, 5874 5875 .bprm_set_creds = selinux_bprm_set_creds, 5876 .bprm_committing_creds = selinux_bprm_committing_creds, 5877 .bprm_committed_creds = selinux_bprm_committed_creds, 5878 .bprm_secureexec = selinux_bprm_secureexec, 5879 5880 .sb_alloc_security = selinux_sb_alloc_security, 5881 .sb_free_security = selinux_sb_free_security, 5882 .sb_copy_data = selinux_sb_copy_data, 5883 .sb_remount = selinux_sb_remount, 5884 .sb_kern_mount = selinux_sb_kern_mount, 5885 .sb_show_options = selinux_sb_show_options, 5886 .sb_statfs = selinux_sb_statfs, 5887 .sb_mount = selinux_mount, 5888 .sb_umount = selinux_umount, 5889 .sb_set_mnt_opts = selinux_set_mnt_opts, 5890 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5891 .sb_parse_opts_str = selinux_parse_opts_str, 5892 5893 .dentry_init_security = selinux_dentry_init_security, 5894 5895 .inode_alloc_security = selinux_inode_alloc_security, 5896 .inode_free_security = selinux_inode_free_security, 5897 .inode_init_security = selinux_inode_init_security, 5898 .inode_create = selinux_inode_create, 5899 .inode_link = selinux_inode_link, 5900 .inode_unlink = selinux_inode_unlink, 5901 .inode_symlink = selinux_inode_symlink, 5902 .inode_mkdir = selinux_inode_mkdir, 5903 .inode_rmdir = selinux_inode_rmdir, 5904 .inode_mknod = selinux_inode_mknod, 5905 .inode_rename = selinux_inode_rename, 5906 .inode_readlink = selinux_inode_readlink, 5907 .inode_follow_link = selinux_inode_follow_link, 5908 .inode_permission = selinux_inode_permission, 5909 .inode_setattr = selinux_inode_setattr, 5910 .inode_getattr = selinux_inode_getattr, 5911 .inode_setxattr = selinux_inode_setxattr, 5912 .inode_post_setxattr = selinux_inode_post_setxattr, 5913 .inode_getxattr = selinux_inode_getxattr, 5914 .inode_listxattr = selinux_inode_listxattr, 5915 .inode_removexattr = selinux_inode_removexattr, 5916 .inode_getsecurity = selinux_inode_getsecurity, 5917 .inode_setsecurity = selinux_inode_setsecurity, 5918 .inode_listsecurity = selinux_inode_listsecurity, 5919 .inode_getsecid = selinux_inode_getsecid, 5920 5921 .file_permission = selinux_file_permission, 5922 .file_alloc_security = selinux_file_alloc_security, 5923 .file_free_security = selinux_file_free_security, 5924 .file_ioctl = selinux_file_ioctl, 5925 .mmap_file = selinux_mmap_file, 5926 .mmap_addr = selinux_mmap_addr, 5927 .file_mprotect = selinux_file_mprotect, 5928 .file_lock = selinux_file_lock, 5929 .file_fcntl = selinux_file_fcntl, 5930 .file_set_fowner = selinux_file_set_fowner, 5931 .file_send_sigiotask = selinux_file_send_sigiotask, 5932 .file_receive = selinux_file_receive, 5933 5934 .file_open = selinux_file_open, 5935 5936 .task_create = selinux_task_create, 5937 .cred_alloc_blank = selinux_cred_alloc_blank, 5938 .cred_free = selinux_cred_free, 5939 .cred_prepare = selinux_cred_prepare, 5940 .cred_transfer = selinux_cred_transfer, 5941 .kernel_act_as = selinux_kernel_act_as, 5942 .kernel_create_files_as = selinux_kernel_create_files_as, 5943 .kernel_module_request = selinux_kernel_module_request, 5944 .task_setpgid = selinux_task_setpgid, 5945 .task_getpgid = selinux_task_getpgid, 5946 .task_getsid = selinux_task_getsid, 5947 .task_getsecid = selinux_task_getsecid, 5948 .task_setnice = selinux_task_setnice, 5949 .task_setioprio = selinux_task_setioprio, 5950 .task_getioprio = selinux_task_getioprio, 5951 .task_setrlimit = selinux_task_setrlimit, 5952 .task_setscheduler = selinux_task_setscheduler, 5953 .task_getscheduler = selinux_task_getscheduler, 5954 .task_movememory = selinux_task_movememory, 5955 .task_kill = selinux_task_kill, 5956 .task_wait = selinux_task_wait, 5957 .task_to_inode = selinux_task_to_inode, 5958 5959 .ipc_permission = selinux_ipc_permission, 5960 .ipc_getsecid = selinux_ipc_getsecid, 5961 5962 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5963 .msg_msg_free_security = selinux_msg_msg_free_security, 5964 5965 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5966 .msg_queue_free_security = selinux_msg_queue_free_security, 5967 .msg_queue_associate = selinux_msg_queue_associate, 5968 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5969 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5970 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5971 5972 .shm_alloc_security = selinux_shm_alloc_security, 5973 .shm_free_security = selinux_shm_free_security, 5974 .shm_associate = selinux_shm_associate, 5975 .shm_shmctl = selinux_shm_shmctl, 5976 .shm_shmat = selinux_shm_shmat, 5977 5978 .sem_alloc_security = selinux_sem_alloc_security, 5979 .sem_free_security = selinux_sem_free_security, 5980 .sem_associate = selinux_sem_associate, 5981 .sem_semctl = selinux_sem_semctl, 5982 .sem_semop = selinux_sem_semop, 5983 5984 .d_instantiate = selinux_d_instantiate, 5985 5986 .getprocattr = selinux_getprocattr, 5987 .setprocattr = selinux_setprocattr, 5988 5989 .ismaclabel = selinux_ismaclabel, 5990 .secid_to_secctx = selinux_secid_to_secctx, 5991 .secctx_to_secid = selinux_secctx_to_secid, 5992 .release_secctx = selinux_release_secctx, 5993 .inode_notifysecctx = selinux_inode_notifysecctx, 5994 .inode_setsecctx = selinux_inode_setsecctx, 5995 .inode_getsecctx = selinux_inode_getsecctx, 5996 5997 .unix_stream_connect = selinux_socket_unix_stream_connect, 5998 .unix_may_send = selinux_socket_unix_may_send, 5999 6000 .socket_create = selinux_socket_create, 6001 .socket_post_create = selinux_socket_post_create, 6002 .socket_bind = selinux_socket_bind, 6003 .socket_connect = selinux_socket_connect, 6004 .socket_listen = selinux_socket_listen, 6005 .socket_accept = selinux_socket_accept, 6006 .socket_sendmsg = selinux_socket_sendmsg, 6007 .socket_recvmsg = selinux_socket_recvmsg, 6008 .socket_getsockname = selinux_socket_getsockname, 6009 .socket_getpeername = selinux_socket_getpeername, 6010 .socket_getsockopt = selinux_socket_getsockopt, 6011 .socket_setsockopt = selinux_socket_setsockopt, 6012 .socket_shutdown = selinux_socket_shutdown, 6013 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 6014 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 6015 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 6016 .sk_alloc_security = selinux_sk_alloc_security, 6017 .sk_free_security = selinux_sk_free_security, 6018 .sk_clone_security = selinux_sk_clone_security, 6019 .sk_getsecid = selinux_sk_getsecid, 6020 .sock_graft = selinux_sock_graft, 6021 .inet_conn_request = selinux_inet_conn_request, 6022 .inet_csk_clone = selinux_inet_csk_clone, 6023 .inet_conn_established = selinux_inet_conn_established, 6024 .secmark_relabel_packet = selinux_secmark_relabel_packet, 6025 .secmark_refcount_inc = selinux_secmark_refcount_inc, 6026 .secmark_refcount_dec = selinux_secmark_refcount_dec, 6027 .req_classify_flow = selinux_req_classify_flow, 6028 .tun_dev_alloc_security = selinux_tun_dev_alloc_security, 6029 .tun_dev_free_security = selinux_tun_dev_free_security, 6030 .tun_dev_create = selinux_tun_dev_create, 6031 .tun_dev_attach_queue = selinux_tun_dev_attach_queue, 6032 .tun_dev_attach = selinux_tun_dev_attach, 6033 .tun_dev_open = selinux_tun_dev_open, 6034 6035 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6036 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 6037 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 6038 .xfrm_policy_free_security = selinux_xfrm_policy_free, 6039 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 6040 .xfrm_state_alloc = selinux_xfrm_state_alloc, 6041 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire, 6042 .xfrm_state_free_security = selinux_xfrm_state_free, 6043 .xfrm_state_delete_security = selinux_xfrm_state_delete, 6044 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 6045 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 6046 .xfrm_decode_session = selinux_xfrm_decode_session, 6047 #endif 6048 6049 #ifdef CONFIG_KEYS 6050 .key_alloc = selinux_key_alloc, 6051 .key_free = selinux_key_free, 6052 .key_permission = selinux_key_permission, 6053 .key_getsecurity = selinux_key_getsecurity, 6054 #endif 6055 6056 #ifdef CONFIG_AUDIT 6057 .audit_rule_init = selinux_audit_rule_init, 6058 .audit_rule_known = selinux_audit_rule_known, 6059 .audit_rule_match = selinux_audit_rule_match, 6060 .audit_rule_free = selinux_audit_rule_free, 6061 #endif 6062 }; 6063 6064 static __init int selinux_init(void) 6065 { 6066 if (!security_module_enable(&selinux_ops)) { 6067 selinux_enabled = 0; 6068 return 0; 6069 } 6070 6071 if (!selinux_enabled) { 6072 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6073 return 0; 6074 } 6075 6076 printk(KERN_INFO "SELinux: Initializing.\n"); 6077 6078 /* Set the security state for the initial task. */ 6079 cred_init_security(); 6080 6081 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6082 6083 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6084 sizeof(struct inode_security_struct), 6085 0, SLAB_PANIC, NULL); 6086 avc_init(); 6087 6088 if (register_security(&selinux_ops)) 6089 panic("SELinux: Unable to register with kernel.\n"); 6090 6091 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6092 panic("SELinux: Unable to register AVC netcache callback\n"); 6093 6094 if (selinux_enforcing) 6095 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6096 else 6097 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6098 6099 return 0; 6100 } 6101 6102 static void delayed_superblock_init(struct super_block *sb, void *unused) 6103 { 6104 superblock_doinit(sb, NULL); 6105 } 6106 6107 void selinux_complete_init(void) 6108 { 6109 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6110 6111 /* Set up any superblocks initialized prior to the policy load. */ 6112 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6113 iterate_supers(delayed_superblock_init, NULL); 6114 } 6115 6116 /* SELinux requires early initialization in order to label 6117 all processes and objects when they are created. */ 6118 security_initcall(selinux_init); 6119 6120 #if defined(CONFIG_NETFILTER) 6121 6122 static struct nf_hook_ops selinux_nf_ops[] = { 6123 { 6124 .hook = selinux_ipv4_postroute, 6125 .owner = THIS_MODULE, 6126 .pf = NFPROTO_IPV4, 6127 .hooknum = NF_INET_POST_ROUTING, 6128 .priority = NF_IP_PRI_SELINUX_LAST, 6129 }, 6130 { 6131 .hook = selinux_ipv4_forward, 6132 .owner = THIS_MODULE, 6133 .pf = NFPROTO_IPV4, 6134 .hooknum = NF_INET_FORWARD, 6135 .priority = NF_IP_PRI_SELINUX_FIRST, 6136 }, 6137 { 6138 .hook = selinux_ipv4_output, 6139 .owner = THIS_MODULE, 6140 .pf = NFPROTO_IPV4, 6141 .hooknum = NF_INET_LOCAL_OUT, 6142 .priority = NF_IP_PRI_SELINUX_FIRST, 6143 }, 6144 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6145 { 6146 .hook = selinux_ipv6_postroute, 6147 .owner = THIS_MODULE, 6148 .pf = NFPROTO_IPV6, 6149 .hooknum = NF_INET_POST_ROUTING, 6150 .priority = NF_IP6_PRI_SELINUX_LAST, 6151 }, 6152 { 6153 .hook = selinux_ipv6_forward, 6154 .owner = THIS_MODULE, 6155 .pf = NFPROTO_IPV6, 6156 .hooknum = NF_INET_FORWARD, 6157 .priority = NF_IP6_PRI_SELINUX_FIRST, 6158 }, 6159 #endif /* IPV6 */ 6160 }; 6161 6162 static int __init selinux_nf_ip_init(void) 6163 { 6164 int err; 6165 6166 if (!selinux_enabled) 6167 return 0; 6168 6169 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6170 6171 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6172 if (err) 6173 panic("SELinux: nf_register_hooks: error %d\n", err); 6174 6175 return 0; 6176 } 6177 6178 __initcall(selinux_nf_ip_init); 6179 6180 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6181 static void selinux_nf_ip_exit(void) 6182 { 6183 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6184 6185 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6186 } 6187 #endif 6188 6189 #else /* CONFIG_NETFILTER */ 6190 6191 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6192 #define selinux_nf_ip_exit() 6193 #endif 6194 6195 #endif /* CONFIG_NETFILTER */ 6196 6197 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6198 static int selinux_disabled; 6199 6200 int selinux_disable(void) 6201 { 6202 if (ss_initialized) { 6203 /* Not permitted after initial policy load. */ 6204 return -EINVAL; 6205 } 6206 6207 if (selinux_disabled) { 6208 /* Only do this once. */ 6209 return -EINVAL; 6210 } 6211 6212 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6213 6214 selinux_disabled = 1; 6215 selinux_enabled = 0; 6216 6217 reset_security_ops(); 6218 6219 /* Try to destroy the avc node cache */ 6220 avc_disable(); 6221 6222 /* Unregister netfilter hooks. */ 6223 selinux_nf_ip_exit(); 6224 6225 /* Unregister selinuxfs. */ 6226 exit_sel_fs(); 6227 6228 return 0; 6229 } 6230 #endif 6231