xref: /openbmc/linux/security/selinux/hooks.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *	This program is free software; you can redistribute it and/or modify
23  *	it under the terms of the GNU General Public License version 2,
24  *	as published by the Free Software Foundation.
25  */
26 
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/quota.h>
71 #include <linux/un.h>		/* for Unix socket types */
72 #include <net/af_unix.h>	/* for Unix socket types */
73 #include <linux/parser.h>
74 #include <linux/nfs_mount.h>
75 #include <net/ipv6.h>
76 #include <linux/hugetlb.h>
77 #include <linux/personality.h>
78 #include <linux/audit.h>
79 #include <linux/string.h>
80 #include <linux/selinux.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 
90 #include "avc.h"
91 #include "objsec.h"
92 #include "netif.h"
93 #include "netnode.h"
94 #include "netport.h"
95 #include "ibpkey.h"
96 #include "xfrm.h"
97 #include "netlabel.h"
98 #include "audit.h"
99 #include "avc_ss.h"
100 
101 /* SECMARK reference count */
102 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103 
104 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
105 int selinux_enforcing;
106 
107 static int __init enforcing_setup(char *str)
108 {
109 	unsigned long enforcing;
110 	if (!kstrtoul(str, 0, &enforcing))
111 		selinux_enforcing = enforcing ? 1 : 0;
112 	return 1;
113 }
114 __setup("enforcing=", enforcing_setup);
115 #endif
116 
117 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
118 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119 
120 static int __init selinux_enabled_setup(char *str)
121 {
122 	unsigned long enabled;
123 	if (!kstrtoul(str, 0, &enabled))
124 		selinux_enabled = enabled ? 1 : 0;
125 	return 1;
126 }
127 __setup("selinux=", selinux_enabled_setup);
128 #else
129 int selinux_enabled = 1;
130 #endif
131 
132 static struct kmem_cache *sel_inode_cache;
133 static struct kmem_cache *file_security_cache;
134 
135 /**
136  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137  *
138  * Description:
139  * This function checks the SECMARK reference counter to see if any SECMARK
140  * targets are currently configured, if the reference counter is greater than
141  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
142  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
143  * policy capability is enabled, SECMARK is always considered enabled.
144  *
145  */
146 static int selinux_secmark_enabled(void)
147 {
148 	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
149 }
150 
151 /**
152  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
153  *
154  * Description:
155  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
156  * (1) if any are enabled or false (0) if neither are enabled.  If the
157  * always_check_network policy capability is enabled, peer labeling
158  * is always considered enabled.
159  *
160  */
161 static int selinux_peerlbl_enabled(void)
162 {
163 	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
164 }
165 
166 static int selinux_netcache_avc_callback(u32 event)
167 {
168 	if (event == AVC_CALLBACK_RESET) {
169 		sel_netif_flush();
170 		sel_netnode_flush();
171 		sel_netport_flush();
172 		synchronize_net();
173 	}
174 	return 0;
175 }
176 
177 static int selinux_lsm_notifier_avc_callback(u32 event)
178 {
179 	if (event == AVC_CALLBACK_RESET) {
180 		sel_ib_pkey_flush();
181 		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
182 	}
183 
184 	return 0;
185 }
186 
187 /*
188  * initialise the security for the init task
189  */
190 static void cred_init_security(void)
191 {
192 	struct cred *cred = (struct cred *) current->real_cred;
193 	struct task_security_struct *tsec;
194 
195 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
196 	if (!tsec)
197 		panic("SELinux:  Failed to initialize initial task.\n");
198 
199 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
200 	cred->security = tsec;
201 }
202 
203 /*
204  * get the security ID of a set of credentials
205  */
206 static inline u32 cred_sid(const struct cred *cred)
207 {
208 	const struct task_security_struct *tsec;
209 
210 	tsec = cred->security;
211 	return tsec->sid;
212 }
213 
214 /*
215  * get the objective security ID of a task
216  */
217 static inline u32 task_sid(const struct task_struct *task)
218 {
219 	u32 sid;
220 
221 	rcu_read_lock();
222 	sid = cred_sid(__task_cred(task));
223 	rcu_read_unlock();
224 	return sid;
225 }
226 
227 /* Allocate and free functions for each kind of security blob. */
228 
229 static int inode_alloc_security(struct inode *inode)
230 {
231 	struct inode_security_struct *isec;
232 	u32 sid = current_sid();
233 
234 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
235 	if (!isec)
236 		return -ENOMEM;
237 
238 	spin_lock_init(&isec->lock);
239 	INIT_LIST_HEAD(&isec->list);
240 	isec->inode = inode;
241 	isec->sid = SECINITSID_UNLABELED;
242 	isec->sclass = SECCLASS_FILE;
243 	isec->task_sid = sid;
244 	isec->initialized = LABEL_INVALID;
245 	inode->i_security = isec;
246 
247 	return 0;
248 }
249 
250 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
251 
252 /*
253  * Try reloading inode security labels that have been marked as invalid.  The
254  * @may_sleep parameter indicates when sleeping and thus reloading labels is
255  * allowed; when set to false, returns -ECHILD when the label is
256  * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
257  * when no dentry is available, set it to NULL instead.
258  */
259 static int __inode_security_revalidate(struct inode *inode,
260 				       struct dentry *opt_dentry,
261 				       bool may_sleep)
262 {
263 	struct inode_security_struct *isec = inode->i_security;
264 
265 	might_sleep_if(may_sleep);
266 
267 	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
268 		if (!may_sleep)
269 			return -ECHILD;
270 
271 		/*
272 		 * Try reloading the inode security label.  This will fail if
273 		 * @opt_dentry is NULL and no dentry for this inode can be
274 		 * found; in that case, continue using the old label.
275 		 */
276 		inode_doinit_with_dentry(inode, opt_dentry);
277 	}
278 	return 0;
279 }
280 
281 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
282 {
283 	return inode->i_security;
284 }
285 
286 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
287 {
288 	int error;
289 
290 	error = __inode_security_revalidate(inode, NULL, !rcu);
291 	if (error)
292 		return ERR_PTR(error);
293 	return inode->i_security;
294 }
295 
296 /*
297  * Get the security label of an inode.
298  */
299 static struct inode_security_struct *inode_security(struct inode *inode)
300 {
301 	__inode_security_revalidate(inode, NULL, true);
302 	return inode->i_security;
303 }
304 
305 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
306 {
307 	struct inode *inode = d_backing_inode(dentry);
308 
309 	return inode->i_security;
310 }
311 
312 /*
313  * Get the security label of a dentry's backing inode.
314  */
315 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
316 {
317 	struct inode *inode = d_backing_inode(dentry);
318 
319 	__inode_security_revalidate(inode, dentry, true);
320 	return inode->i_security;
321 }
322 
323 static void inode_free_rcu(struct rcu_head *head)
324 {
325 	struct inode_security_struct *isec;
326 
327 	isec = container_of(head, struct inode_security_struct, rcu);
328 	kmem_cache_free(sel_inode_cache, isec);
329 }
330 
331 static void inode_free_security(struct inode *inode)
332 {
333 	struct inode_security_struct *isec = inode->i_security;
334 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
335 
336 	/*
337 	 * As not all inode security structures are in a list, we check for
338 	 * empty list outside of the lock to make sure that we won't waste
339 	 * time taking a lock doing nothing.
340 	 *
341 	 * The list_del_init() function can be safely called more than once.
342 	 * It should not be possible for this function to be called with
343 	 * concurrent list_add(), but for better safety against future changes
344 	 * in the code, we use list_empty_careful() here.
345 	 */
346 	if (!list_empty_careful(&isec->list)) {
347 		spin_lock(&sbsec->isec_lock);
348 		list_del_init(&isec->list);
349 		spin_unlock(&sbsec->isec_lock);
350 	}
351 
352 	/*
353 	 * The inode may still be referenced in a path walk and
354 	 * a call to selinux_inode_permission() can be made
355 	 * after inode_free_security() is called. Ideally, the VFS
356 	 * wouldn't do this, but fixing that is a much harder
357 	 * job. For now, simply free the i_security via RCU, and
358 	 * leave the current inode->i_security pointer intact.
359 	 * The inode will be freed after the RCU grace period too.
360 	 */
361 	call_rcu(&isec->rcu, inode_free_rcu);
362 }
363 
364 static int file_alloc_security(struct file *file)
365 {
366 	struct file_security_struct *fsec;
367 	u32 sid = current_sid();
368 
369 	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
370 	if (!fsec)
371 		return -ENOMEM;
372 
373 	fsec->sid = sid;
374 	fsec->fown_sid = sid;
375 	file->f_security = fsec;
376 
377 	return 0;
378 }
379 
380 static void file_free_security(struct file *file)
381 {
382 	struct file_security_struct *fsec = file->f_security;
383 	file->f_security = NULL;
384 	kmem_cache_free(file_security_cache, fsec);
385 }
386 
387 static int superblock_alloc_security(struct super_block *sb)
388 {
389 	struct superblock_security_struct *sbsec;
390 
391 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
392 	if (!sbsec)
393 		return -ENOMEM;
394 
395 	mutex_init(&sbsec->lock);
396 	INIT_LIST_HEAD(&sbsec->isec_head);
397 	spin_lock_init(&sbsec->isec_lock);
398 	sbsec->sb = sb;
399 	sbsec->sid = SECINITSID_UNLABELED;
400 	sbsec->def_sid = SECINITSID_FILE;
401 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
402 	sb->s_security = sbsec;
403 
404 	return 0;
405 }
406 
407 static void superblock_free_security(struct super_block *sb)
408 {
409 	struct superblock_security_struct *sbsec = sb->s_security;
410 	sb->s_security = NULL;
411 	kfree(sbsec);
412 }
413 
414 static inline int inode_doinit(struct inode *inode)
415 {
416 	return inode_doinit_with_dentry(inode, NULL);
417 }
418 
419 enum {
420 	Opt_error = -1,
421 	Opt_context = 1,
422 	Opt_fscontext = 2,
423 	Opt_defcontext = 3,
424 	Opt_rootcontext = 4,
425 	Opt_labelsupport = 5,
426 	Opt_nextmntopt = 6,
427 };
428 
429 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
430 
431 static const match_table_t tokens = {
432 	{Opt_context, CONTEXT_STR "%s"},
433 	{Opt_fscontext, FSCONTEXT_STR "%s"},
434 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
435 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 	{Opt_labelsupport, LABELSUPP_STR},
437 	{Opt_error, NULL},
438 };
439 
440 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
441 
442 static int may_context_mount_sb_relabel(u32 sid,
443 			struct superblock_security_struct *sbsec,
444 			const struct cred *cred)
445 {
446 	const struct task_security_struct *tsec = cred->security;
447 	int rc;
448 
449 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 			  FILESYSTEM__RELABELFROM, NULL);
451 	if (rc)
452 		return rc;
453 
454 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 			  FILESYSTEM__RELABELTO, NULL);
456 	return rc;
457 }
458 
459 static int may_context_mount_inode_relabel(u32 sid,
460 			struct superblock_security_struct *sbsec,
461 			const struct cred *cred)
462 {
463 	const struct task_security_struct *tsec = cred->security;
464 	int rc;
465 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 			  FILESYSTEM__RELABELFROM, NULL);
467 	if (rc)
468 		return rc;
469 
470 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 			  FILESYSTEM__ASSOCIATE, NULL);
472 	return rc;
473 }
474 
475 static int selinux_is_sblabel_mnt(struct super_block *sb)
476 {
477 	struct superblock_security_struct *sbsec = sb->s_security;
478 
479 	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 		sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 		sbsec->behavior == SECURITY_FS_USE_TASK ||
482 		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 		/* Special handling. Genfs but also in-core setxattr handler */
484 		!strcmp(sb->s_type->name, "sysfs") ||
485 		!strcmp(sb->s_type->name, "pstore") ||
486 		!strcmp(sb->s_type->name, "debugfs") ||
487 		!strcmp(sb->s_type->name, "tracefs") ||
488 		!strcmp(sb->s_type->name, "rootfs") ||
489 		(selinux_policycap_cgroupseclabel &&
490 		 (!strcmp(sb->s_type->name, "cgroup") ||
491 		  !strcmp(sb->s_type->name, "cgroup2")));
492 }
493 
494 static int sb_finish_set_opts(struct super_block *sb)
495 {
496 	struct superblock_security_struct *sbsec = sb->s_security;
497 	struct dentry *root = sb->s_root;
498 	struct inode *root_inode = d_backing_inode(root);
499 	int rc = 0;
500 
501 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
502 		/* Make sure that the xattr handler exists and that no
503 		   error other than -ENODATA is returned by getxattr on
504 		   the root directory.  -ENODATA is ok, as this may be
505 		   the first boot of the SELinux kernel before we have
506 		   assigned xattr values to the filesystem. */
507 		if (!(root_inode->i_opflags & IOP_XATTR)) {
508 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
509 			       "xattr support\n", sb->s_id, sb->s_type->name);
510 			rc = -EOPNOTSUPP;
511 			goto out;
512 		}
513 
514 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
515 		if (rc < 0 && rc != -ENODATA) {
516 			if (rc == -EOPNOTSUPP)
517 				printk(KERN_WARNING "SELinux: (dev %s, type "
518 				       "%s) has no security xattr handler\n",
519 				       sb->s_id, sb->s_type->name);
520 			else
521 				printk(KERN_WARNING "SELinux: (dev %s, type "
522 				       "%s) getxattr errno %d\n", sb->s_id,
523 				       sb->s_type->name, -rc);
524 			goto out;
525 		}
526 	}
527 
528 	sbsec->flags |= SE_SBINITIALIZED;
529 
530 	/*
531 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
532 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
533 	 * us a superblock that needs the flag to be cleared.
534 	 */
535 	if (selinux_is_sblabel_mnt(sb))
536 		sbsec->flags |= SBLABEL_MNT;
537 	else
538 		sbsec->flags &= ~SBLABEL_MNT;
539 
540 	/* Initialize the root inode. */
541 	rc = inode_doinit_with_dentry(root_inode, root);
542 
543 	/* Initialize any other inodes associated with the superblock, e.g.
544 	   inodes created prior to initial policy load or inodes created
545 	   during get_sb by a pseudo filesystem that directly
546 	   populates itself. */
547 	spin_lock(&sbsec->isec_lock);
548 next_inode:
549 	if (!list_empty(&sbsec->isec_head)) {
550 		struct inode_security_struct *isec =
551 				list_entry(sbsec->isec_head.next,
552 					   struct inode_security_struct, list);
553 		struct inode *inode = isec->inode;
554 		list_del_init(&isec->list);
555 		spin_unlock(&sbsec->isec_lock);
556 		inode = igrab(inode);
557 		if (inode) {
558 			if (!IS_PRIVATE(inode))
559 				inode_doinit(inode);
560 			iput(inode);
561 		}
562 		spin_lock(&sbsec->isec_lock);
563 		goto next_inode;
564 	}
565 	spin_unlock(&sbsec->isec_lock);
566 out:
567 	return rc;
568 }
569 
570 /*
571  * This function should allow an FS to ask what it's mount security
572  * options were so it can use those later for submounts, displaying
573  * mount options, or whatever.
574  */
575 static int selinux_get_mnt_opts(const struct super_block *sb,
576 				struct security_mnt_opts *opts)
577 {
578 	int rc = 0, i;
579 	struct superblock_security_struct *sbsec = sb->s_security;
580 	char *context = NULL;
581 	u32 len;
582 	char tmp;
583 
584 	security_init_mnt_opts(opts);
585 
586 	if (!(sbsec->flags & SE_SBINITIALIZED))
587 		return -EINVAL;
588 
589 	if (!ss_initialized)
590 		return -EINVAL;
591 
592 	/* make sure we always check enough bits to cover the mask */
593 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
594 
595 	tmp = sbsec->flags & SE_MNTMASK;
596 	/* count the number of mount options for this sb */
597 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
598 		if (tmp & 0x01)
599 			opts->num_mnt_opts++;
600 		tmp >>= 1;
601 	}
602 	/* Check if the Label support flag is set */
603 	if (sbsec->flags & SBLABEL_MNT)
604 		opts->num_mnt_opts++;
605 
606 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
607 	if (!opts->mnt_opts) {
608 		rc = -ENOMEM;
609 		goto out_free;
610 	}
611 
612 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
613 	if (!opts->mnt_opts_flags) {
614 		rc = -ENOMEM;
615 		goto out_free;
616 	}
617 
618 	i = 0;
619 	if (sbsec->flags & FSCONTEXT_MNT) {
620 		rc = security_sid_to_context(sbsec->sid, &context, &len);
621 		if (rc)
622 			goto out_free;
623 		opts->mnt_opts[i] = context;
624 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
625 	}
626 	if (sbsec->flags & CONTEXT_MNT) {
627 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
628 		if (rc)
629 			goto out_free;
630 		opts->mnt_opts[i] = context;
631 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
632 	}
633 	if (sbsec->flags & DEFCONTEXT_MNT) {
634 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
635 		if (rc)
636 			goto out_free;
637 		opts->mnt_opts[i] = context;
638 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
639 	}
640 	if (sbsec->flags & ROOTCONTEXT_MNT) {
641 		struct dentry *root = sbsec->sb->s_root;
642 		struct inode_security_struct *isec = backing_inode_security(root);
643 
644 		rc = security_sid_to_context(isec->sid, &context, &len);
645 		if (rc)
646 			goto out_free;
647 		opts->mnt_opts[i] = context;
648 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
649 	}
650 	if (sbsec->flags & SBLABEL_MNT) {
651 		opts->mnt_opts[i] = NULL;
652 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
653 	}
654 
655 	BUG_ON(i != opts->num_mnt_opts);
656 
657 	return 0;
658 
659 out_free:
660 	security_free_mnt_opts(opts);
661 	return rc;
662 }
663 
664 static int bad_option(struct superblock_security_struct *sbsec, char flag,
665 		      u32 old_sid, u32 new_sid)
666 {
667 	char mnt_flags = sbsec->flags & SE_MNTMASK;
668 
669 	/* check if the old mount command had the same options */
670 	if (sbsec->flags & SE_SBINITIALIZED)
671 		if (!(sbsec->flags & flag) ||
672 		    (old_sid != new_sid))
673 			return 1;
674 
675 	/* check if we were passed the same options twice,
676 	 * aka someone passed context=a,context=b
677 	 */
678 	if (!(sbsec->flags & SE_SBINITIALIZED))
679 		if (mnt_flags & flag)
680 			return 1;
681 	return 0;
682 }
683 
684 /*
685  * Allow filesystems with binary mount data to explicitly set mount point
686  * labeling information.
687  */
688 static int selinux_set_mnt_opts(struct super_block *sb,
689 				struct security_mnt_opts *opts,
690 				unsigned long kern_flags,
691 				unsigned long *set_kern_flags)
692 {
693 	const struct cred *cred = current_cred();
694 	int rc = 0, i;
695 	struct superblock_security_struct *sbsec = sb->s_security;
696 	const char *name = sb->s_type->name;
697 	struct dentry *root = sbsec->sb->s_root;
698 	struct inode_security_struct *root_isec;
699 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
700 	u32 defcontext_sid = 0;
701 	char **mount_options = opts->mnt_opts;
702 	int *flags = opts->mnt_opts_flags;
703 	int num_opts = opts->num_mnt_opts;
704 
705 	mutex_lock(&sbsec->lock);
706 
707 	if (!ss_initialized) {
708 		if (!num_opts) {
709 			/* Defer initialization until selinux_complete_init,
710 			   after the initial policy is loaded and the security
711 			   server is ready to handle calls. */
712 			goto out;
713 		}
714 		rc = -EINVAL;
715 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
716 			"before the security server is initialized\n");
717 		goto out;
718 	}
719 	if (kern_flags && !set_kern_flags) {
720 		/* Specifying internal flags without providing a place to
721 		 * place the results is not allowed */
722 		rc = -EINVAL;
723 		goto out;
724 	}
725 
726 	/*
727 	 * Binary mount data FS will come through this function twice.  Once
728 	 * from an explicit call and once from the generic calls from the vfs.
729 	 * Since the generic VFS calls will not contain any security mount data
730 	 * we need to skip the double mount verification.
731 	 *
732 	 * This does open a hole in which we will not notice if the first
733 	 * mount using this sb set explict options and a second mount using
734 	 * this sb does not set any security options.  (The first options
735 	 * will be used for both mounts)
736 	 */
737 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
738 	    && (num_opts == 0))
739 		goto out;
740 
741 	root_isec = backing_inode_security_novalidate(root);
742 
743 	/*
744 	 * parse the mount options, check if they are valid sids.
745 	 * also check if someone is trying to mount the same sb more
746 	 * than once with different security options.
747 	 */
748 	for (i = 0; i < num_opts; i++) {
749 		u32 sid;
750 
751 		if (flags[i] == SBLABEL_MNT)
752 			continue;
753 		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
754 		if (rc) {
755 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
756 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
757 			       mount_options[i], sb->s_id, name, rc);
758 			goto out;
759 		}
760 		switch (flags[i]) {
761 		case FSCONTEXT_MNT:
762 			fscontext_sid = sid;
763 
764 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
765 					fscontext_sid))
766 				goto out_double_mount;
767 
768 			sbsec->flags |= FSCONTEXT_MNT;
769 			break;
770 		case CONTEXT_MNT:
771 			context_sid = sid;
772 
773 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
774 					context_sid))
775 				goto out_double_mount;
776 
777 			sbsec->flags |= CONTEXT_MNT;
778 			break;
779 		case ROOTCONTEXT_MNT:
780 			rootcontext_sid = sid;
781 
782 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
783 					rootcontext_sid))
784 				goto out_double_mount;
785 
786 			sbsec->flags |= ROOTCONTEXT_MNT;
787 
788 			break;
789 		case DEFCONTEXT_MNT:
790 			defcontext_sid = sid;
791 
792 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
793 					defcontext_sid))
794 				goto out_double_mount;
795 
796 			sbsec->flags |= DEFCONTEXT_MNT;
797 
798 			break;
799 		default:
800 			rc = -EINVAL;
801 			goto out;
802 		}
803 	}
804 
805 	if (sbsec->flags & SE_SBINITIALIZED) {
806 		/* previously mounted with options, but not on this attempt? */
807 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
808 			goto out_double_mount;
809 		rc = 0;
810 		goto out;
811 	}
812 
813 	if (strcmp(sb->s_type->name, "proc") == 0)
814 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
815 
816 	if (!strcmp(sb->s_type->name, "debugfs") ||
817 	    !strcmp(sb->s_type->name, "tracefs") ||
818 	    !strcmp(sb->s_type->name, "sysfs") ||
819 	    !strcmp(sb->s_type->name, "pstore") ||
820 	    !strcmp(sb->s_type->name, "cgroup") ||
821 	    !strcmp(sb->s_type->name, "cgroup2"))
822 		sbsec->flags |= SE_SBGENFS;
823 
824 	if (!sbsec->behavior) {
825 		/*
826 		 * Determine the labeling behavior to use for this
827 		 * filesystem type.
828 		 */
829 		rc = security_fs_use(sb);
830 		if (rc) {
831 			printk(KERN_WARNING
832 				"%s: security_fs_use(%s) returned %d\n",
833 					__func__, sb->s_type->name, rc);
834 			goto out;
835 		}
836 	}
837 
838 	/*
839 	 * If this is a user namespace mount and the filesystem type is not
840 	 * explicitly whitelisted, then no contexts are allowed on the command
841 	 * line and security labels must be ignored.
842 	 */
843 	if (sb->s_user_ns != &init_user_ns &&
844 	    strcmp(sb->s_type->name, "tmpfs") &&
845 	    strcmp(sb->s_type->name, "ramfs") &&
846 	    strcmp(sb->s_type->name, "devpts")) {
847 		if (context_sid || fscontext_sid || rootcontext_sid ||
848 		    defcontext_sid) {
849 			rc = -EACCES;
850 			goto out;
851 		}
852 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
853 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
854 			rc = security_transition_sid(current_sid(), current_sid(),
855 						     SECCLASS_FILE, NULL,
856 						     &sbsec->mntpoint_sid);
857 			if (rc)
858 				goto out;
859 		}
860 		goto out_set_opts;
861 	}
862 
863 	/* sets the context of the superblock for the fs being mounted. */
864 	if (fscontext_sid) {
865 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
866 		if (rc)
867 			goto out;
868 
869 		sbsec->sid = fscontext_sid;
870 	}
871 
872 	/*
873 	 * Switch to using mount point labeling behavior.
874 	 * sets the label used on all file below the mountpoint, and will set
875 	 * the superblock context if not already set.
876 	 */
877 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
878 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
879 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
880 	}
881 
882 	if (context_sid) {
883 		if (!fscontext_sid) {
884 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
885 							  cred);
886 			if (rc)
887 				goto out;
888 			sbsec->sid = context_sid;
889 		} else {
890 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
891 							     cred);
892 			if (rc)
893 				goto out;
894 		}
895 		if (!rootcontext_sid)
896 			rootcontext_sid = context_sid;
897 
898 		sbsec->mntpoint_sid = context_sid;
899 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
900 	}
901 
902 	if (rootcontext_sid) {
903 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
904 						     cred);
905 		if (rc)
906 			goto out;
907 
908 		root_isec->sid = rootcontext_sid;
909 		root_isec->initialized = LABEL_INITIALIZED;
910 	}
911 
912 	if (defcontext_sid) {
913 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
914 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
915 			rc = -EINVAL;
916 			printk(KERN_WARNING "SELinux: defcontext option is "
917 			       "invalid for this filesystem type\n");
918 			goto out;
919 		}
920 
921 		if (defcontext_sid != sbsec->def_sid) {
922 			rc = may_context_mount_inode_relabel(defcontext_sid,
923 							     sbsec, cred);
924 			if (rc)
925 				goto out;
926 		}
927 
928 		sbsec->def_sid = defcontext_sid;
929 	}
930 
931 out_set_opts:
932 	rc = sb_finish_set_opts(sb);
933 out:
934 	mutex_unlock(&sbsec->lock);
935 	return rc;
936 out_double_mount:
937 	rc = -EINVAL;
938 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
939 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
940 	goto out;
941 }
942 
943 static int selinux_cmp_sb_context(const struct super_block *oldsb,
944 				    const struct super_block *newsb)
945 {
946 	struct superblock_security_struct *old = oldsb->s_security;
947 	struct superblock_security_struct *new = newsb->s_security;
948 	char oldflags = old->flags & SE_MNTMASK;
949 	char newflags = new->flags & SE_MNTMASK;
950 
951 	if (oldflags != newflags)
952 		goto mismatch;
953 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
954 		goto mismatch;
955 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
956 		goto mismatch;
957 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
958 		goto mismatch;
959 	if (oldflags & ROOTCONTEXT_MNT) {
960 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
961 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
962 		if (oldroot->sid != newroot->sid)
963 			goto mismatch;
964 	}
965 	return 0;
966 mismatch:
967 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
968 			    "different security settings for (dev %s, "
969 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
970 	return -EBUSY;
971 }
972 
973 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
974 					struct super_block *newsb,
975 					unsigned long kern_flags,
976 					unsigned long *set_kern_flags)
977 {
978 	int rc = 0;
979 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
980 	struct superblock_security_struct *newsbsec = newsb->s_security;
981 
982 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
983 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
984 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
985 
986 	/*
987 	 * if the parent was able to be mounted it clearly had no special lsm
988 	 * mount options.  thus we can safely deal with this superblock later
989 	 */
990 	if (!ss_initialized)
991 		return 0;
992 
993 	/*
994 	 * Specifying internal flags without providing a place to
995 	 * place the results is not allowed.
996 	 */
997 	if (kern_flags && !set_kern_flags)
998 		return -EINVAL;
999 
1000 	/* how can we clone if the old one wasn't set up?? */
1001 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1002 
1003 	/* if fs is reusing a sb, make sure that the contexts match */
1004 	if (newsbsec->flags & SE_SBINITIALIZED)
1005 		return selinux_cmp_sb_context(oldsb, newsb);
1006 
1007 	mutex_lock(&newsbsec->lock);
1008 
1009 	newsbsec->flags = oldsbsec->flags;
1010 
1011 	newsbsec->sid = oldsbsec->sid;
1012 	newsbsec->def_sid = oldsbsec->def_sid;
1013 	newsbsec->behavior = oldsbsec->behavior;
1014 
1015 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1016 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1017 		rc = security_fs_use(newsb);
1018 		if (rc)
1019 			goto out;
1020 	}
1021 
1022 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1023 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1024 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1025 	}
1026 
1027 	if (set_context) {
1028 		u32 sid = oldsbsec->mntpoint_sid;
1029 
1030 		if (!set_fscontext)
1031 			newsbsec->sid = sid;
1032 		if (!set_rootcontext) {
1033 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1034 			newisec->sid = sid;
1035 		}
1036 		newsbsec->mntpoint_sid = sid;
1037 	}
1038 	if (set_rootcontext) {
1039 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1040 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1041 
1042 		newisec->sid = oldisec->sid;
1043 	}
1044 
1045 	sb_finish_set_opts(newsb);
1046 out:
1047 	mutex_unlock(&newsbsec->lock);
1048 	return rc;
1049 }
1050 
1051 static int selinux_parse_opts_str(char *options,
1052 				  struct security_mnt_opts *opts)
1053 {
1054 	char *p;
1055 	char *context = NULL, *defcontext = NULL;
1056 	char *fscontext = NULL, *rootcontext = NULL;
1057 	int rc, num_mnt_opts = 0;
1058 
1059 	opts->num_mnt_opts = 0;
1060 
1061 	/* Standard string-based options. */
1062 	while ((p = strsep(&options, "|")) != NULL) {
1063 		int token;
1064 		substring_t args[MAX_OPT_ARGS];
1065 
1066 		if (!*p)
1067 			continue;
1068 
1069 		token = match_token(p, tokens, args);
1070 
1071 		switch (token) {
1072 		case Opt_context:
1073 			if (context || defcontext) {
1074 				rc = -EINVAL;
1075 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1076 				goto out_err;
1077 			}
1078 			context = match_strdup(&args[0]);
1079 			if (!context) {
1080 				rc = -ENOMEM;
1081 				goto out_err;
1082 			}
1083 			break;
1084 
1085 		case Opt_fscontext:
1086 			if (fscontext) {
1087 				rc = -EINVAL;
1088 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1089 				goto out_err;
1090 			}
1091 			fscontext = match_strdup(&args[0]);
1092 			if (!fscontext) {
1093 				rc = -ENOMEM;
1094 				goto out_err;
1095 			}
1096 			break;
1097 
1098 		case Opt_rootcontext:
1099 			if (rootcontext) {
1100 				rc = -EINVAL;
1101 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1102 				goto out_err;
1103 			}
1104 			rootcontext = match_strdup(&args[0]);
1105 			if (!rootcontext) {
1106 				rc = -ENOMEM;
1107 				goto out_err;
1108 			}
1109 			break;
1110 
1111 		case Opt_defcontext:
1112 			if (context || defcontext) {
1113 				rc = -EINVAL;
1114 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1115 				goto out_err;
1116 			}
1117 			defcontext = match_strdup(&args[0]);
1118 			if (!defcontext) {
1119 				rc = -ENOMEM;
1120 				goto out_err;
1121 			}
1122 			break;
1123 		case Opt_labelsupport:
1124 			break;
1125 		default:
1126 			rc = -EINVAL;
1127 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1128 			goto out_err;
1129 
1130 		}
1131 	}
1132 
1133 	rc = -ENOMEM;
1134 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1135 	if (!opts->mnt_opts)
1136 		goto out_err;
1137 
1138 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1139 				       GFP_KERNEL);
1140 	if (!opts->mnt_opts_flags)
1141 		goto out_err;
1142 
1143 	if (fscontext) {
1144 		opts->mnt_opts[num_mnt_opts] = fscontext;
1145 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1146 	}
1147 	if (context) {
1148 		opts->mnt_opts[num_mnt_opts] = context;
1149 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1150 	}
1151 	if (rootcontext) {
1152 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1153 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1154 	}
1155 	if (defcontext) {
1156 		opts->mnt_opts[num_mnt_opts] = defcontext;
1157 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1158 	}
1159 
1160 	opts->num_mnt_opts = num_mnt_opts;
1161 	return 0;
1162 
1163 out_err:
1164 	security_free_mnt_opts(opts);
1165 	kfree(context);
1166 	kfree(defcontext);
1167 	kfree(fscontext);
1168 	kfree(rootcontext);
1169 	return rc;
1170 }
1171 /*
1172  * string mount options parsing and call set the sbsec
1173  */
1174 static int superblock_doinit(struct super_block *sb, void *data)
1175 {
1176 	int rc = 0;
1177 	char *options = data;
1178 	struct security_mnt_opts opts;
1179 
1180 	security_init_mnt_opts(&opts);
1181 
1182 	if (!data)
1183 		goto out;
1184 
1185 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1186 
1187 	rc = selinux_parse_opts_str(options, &opts);
1188 	if (rc)
1189 		goto out_err;
1190 
1191 out:
1192 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1193 
1194 out_err:
1195 	security_free_mnt_opts(&opts);
1196 	return rc;
1197 }
1198 
1199 static void selinux_write_opts(struct seq_file *m,
1200 			       struct security_mnt_opts *opts)
1201 {
1202 	int i;
1203 	char *prefix;
1204 
1205 	for (i = 0; i < opts->num_mnt_opts; i++) {
1206 		char *has_comma;
1207 
1208 		if (opts->mnt_opts[i])
1209 			has_comma = strchr(opts->mnt_opts[i], ',');
1210 		else
1211 			has_comma = NULL;
1212 
1213 		switch (opts->mnt_opts_flags[i]) {
1214 		case CONTEXT_MNT:
1215 			prefix = CONTEXT_STR;
1216 			break;
1217 		case FSCONTEXT_MNT:
1218 			prefix = FSCONTEXT_STR;
1219 			break;
1220 		case ROOTCONTEXT_MNT:
1221 			prefix = ROOTCONTEXT_STR;
1222 			break;
1223 		case DEFCONTEXT_MNT:
1224 			prefix = DEFCONTEXT_STR;
1225 			break;
1226 		case SBLABEL_MNT:
1227 			seq_putc(m, ',');
1228 			seq_puts(m, LABELSUPP_STR);
1229 			continue;
1230 		default:
1231 			BUG();
1232 			return;
1233 		};
1234 		/* we need a comma before each option */
1235 		seq_putc(m, ',');
1236 		seq_puts(m, prefix);
1237 		if (has_comma)
1238 			seq_putc(m, '\"');
1239 		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1240 		if (has_comma)
1241 			seq_putc(m, '\"');
1242 	}
1243 }
1244 
1245 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1246 {
1247 	struct security_mnt_opts opts;
1248 	int rc;
1249 
1250 	rc = selinux_get_mnt_opts(sb, &opts);
1251 	if (rc) {
1252 		/* before policy load we may get EINVAL, don't show anything */
1253 		if (rc == -EINVAL)
1254 			rc = 0;
1255 		return rc;
1256 	}
1257 
1258 	selinux_write_opts(m, &opts);
1259 
1260 	security_free_mnt_opts(&opts);
1261 
1262 	return rc;
1263 }
1264 
1265 static inline u16 inode_mode_to_security_class(umode_t mode)
1266 {
1267 	switch (mode & S_IFMT) {
1268 	case S_IFSOCK:
1269 		return SECCLASS_SOCK_FILE;
1270 	case S_IFLNK:
1271 		return SECCLASS_LNK_FILE;
1272 	case S_IFREG:
1273 		return SECCLASS_FILE;
1274 	case S_IFBLK:
1275 		return SECCLASS_BLK_FILE;
1276 	case S_IFDIR:
1277 		return SECCLASS_DIR;
1278 	case S_IFCHR:
1279 		return SECCLASS_CHR_FILE;
1280 	case S_IFIFO:
1281 		return SECCLASS_FIFO_FILE;
1282 
1283 	}
1284 
1285 	return SECCLASS_FILE;
1286 }
1287 
1288 static inline int default_protocol_stream(int protocol)
1289 {
1290 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1291 }
1292 
1293 static inline int default_protocol_dgram(int protocol)
1294 {
1295 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1296 }
1297 
1298 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1299 {
1300 	int extsockclass = selinux_policycap_extsockclass;
1301 
1302 	switch (family) {
1303 	case PF_UNIX:
1304 		switch (type) {
1305 		case SOCK_STREAM:
1306 		case SOCK_SEQPACKET:
1307 			return SECCLASS_UNIX_STREAM_SOCKET;
1308 		case SOCK_DGRAM:
1309 		case SOCK_RAW:
1310 			return SECCLASS_UNIX_DGRAM_SOCKET;
1311 		}
1312 		break;
1313 	case PF_INET:
1314 	case PF_INET6:
1315 		switch (type) {
1316 		case SOCK_STREAM:
1317 		case SOCK_SEQPACKET:
1318 			if (default_protocol_stream(protocol))
1319 				return SECCLASS_TCP_SOCKET;
1320 			else if (extsockclass && protocol == IPPROTO_SCTP)
1321 				return SECCLASS_SCTP_SOCKET;
1322 			else
1323 				return SECCLASS_RAWIP_SOCKET;
1324 		case SOCK_DGRAM:
1325 			if (default_protocol_dgram(protocol))
1326 				return SECCLASS_UDP_SOCKET;
1327 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1328 						  protocol == IPPROTO_ICMPV6))
1329 				return SECCLASS_ICMP_SOCKET;
1330 			else
1331 				return SECCLASS_RAWIP_SOCKET;
1332 		case SOCK_DCCP:
1333 			return SECCLASS_DCCP_SOCKET;
1334 		default:
1335 			return SECCLASS_RAWIP_SOCKET;
1336 		}
1337 		break;
1338 	case PF_NETLINK:
1339 		switch (protocol) {
1340 		case NETLINK_ROUTE:
1341 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1342 		case NETLINK_SOCK_DIAG:
1343 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1344 		case NETLINK_NFLOG:
1345 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1346 		case NETLINK_XFRM:
1347 			return SECCLASS_NETLINK_XFRM_SOCKET;
1348 		case NETLINK_SELINUX:
1349 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1350 		case NETLINK_ISCSI:
1351 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1352 		case NETLINK_AUDIT:
1353 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1354 		case NETLINK_FIB_LOOKUP:
1355 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1356 		case NETLINK_CONNECTOR:
1357 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1358 		case NETLINK_NETFILTER:
1359 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1360 		case NETLINK_DNRTMSG:
1361 			return SECCLASS_NETLINK_DNRT_SOCKET;
1362 		case NETLINK_KOBJECT_UEVENT:
1363 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1364 		case NETLINK_GENERIC:
1365 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1366 		case NETLINK_SCSITRANSPORT:
1367 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1368 		case NETLINK_RDMA:
1369 			return SECCLASS_NETLINK_RDMA_SOCKET;
1370 		case NETLINK_CRYPTO:
1371 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1372 		default:
1373 			return SECCLASS_NETLINK_SOCKET;
1374 		}
1375 	case PF_PACKET:
1376 		return SECCLASS_PACKET_SOCKET;
1377 	case PF_KEY:
1378 		return SECCLASS_KEY_SOCKET;
1379 	case PF_APPLETALK:
1380 		return SECCLASS_APPLETALK_SOCKET;
1381 	}
1382 
1383 	if (extsockclass) {
1384 		switch (family) {
1385 		case PF_AX25:
1386 			return SECCLASS_AX25_SOCKET;
1387 		case PF_IPX:
1388 			return SECCLASS_IPX_SOCKET;
1389 		case PF_NETROM:
1390 			return SECCLASS_NETROM_SOCKET;
1391 		case PF_ATMPVC:
1392 			return SECCLASS_ATMPVC_SOCKET;
1393 		case PF_X25:
1394 			return SECCLASS_X25_SOCKET;
1395 		case PF_ROSE:
1396 			return SECCLASS_ROSE_SOCKET;
1397 		case PF_DECnet:
1398 			return SECCLASS_DECNET_SOCKET;
1399 		case PF_ATMSVC:
1400 			return SECCLASS_ATMSVC_SOCKET;
1401 		case PF_RDS:
1402 			return SECCLASS_RDS_SOCKET;
1403 		case PF_IRDA:
1404 			return SECCLASS_IRDA_SOCKET;
1405 		case PF_PPPOX:
1406 			return SECCLASS_PPPOX_SOCKET;
1407 		case PF_LLC:
1408 			return SECCLASS_LLC_SOCKET;
1409 		case PF_CAN:
1410 			return SECCLASS_CAN_SOCKET;
1411 		case PF_TIPC:
1412 			return SECCLASS_TIPC_SOCKET;
1413 		case PF_BLUETOOTH:
1414 			return SECCLASS_BLUETOOTH_SOCKET;
1415 		case PF_IUCV:
1416 			return SECCLASS_IUCV_SOCKET;
1417 		case PF_RXRPC:
1418 			return SECCLASS_RXRPC_SOCKET;
1419 		case PF_ISDN:
1420 			return SECCLASS_ISDN_SOCKET;
1421 		case PF_PHONET:
1422 			return SECCLASS_PHONET_SOCKET;
1423 		case PF_IEEE802154:
1424 			return SECCLASS_IEEE802154_SOCKET;
1425 		case PF_CAIF:
1426 			return SECCLASS_CAIF_SOCKET;
1427 		case PF_ALG:
1428 			return SECCLASS_ALG_SOCKET;
1429 		case PF_NFC:
1430 			return SECCLASS_NFC_SOCKET;
1431 		case PF_VSOCK:
1432 			return SECCLASS_VSOCK_SOCKET;
1433 		case PF_KCM:
1434 			return SECCLASS_KCM_SOCKET;
1435 		case PF_QIPCRTR:
1436 			return SECCLASS_QIPCRTR_SOCKET;
1437 		case PF_SMC:
1438 			return SECCLASS_SMC_SOCKET;
1439 #if PF_MAX > 44
1440 #error New address family defined, please update this function.
1441 #endif
1442 		}
1443 	}
1444 
1445 	return SECCLASS_SOCKET;
1446 }
1447 
1448 static int selinux_genfs_get_sid(struct dentry *dentry,
1449 				 u16 tclass,
1450 				 u16 flags,
1451 				 u32 *sid)
1452 {
1453 	int rc;
1454 	struct super_block *sb = dentry->d_sb;
1455 	char *buffer, *path;
1456 
1457 	buffer = (char *)__get_free_page(GFP_KERNEL);
1458 	if (!buffer)
1459 		return -ENOMEM;
1460 
1461 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1462 	if (IS_ERR(path))
1463 		rc = PTR_ERR(path);
1464 	else {
1465 		if (flags & SE_SBPROC) {
1466 			/* each process gets a /proc/PID/ entry. Strip off the
1467 			 * PID part to get a valid selinux labeling.
1468 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1469 			while (path[1] >= '0' && path[1] <= '9') {
1470 				path[1] = '/';
1471 				path++;
1472 			}
1473 		}
1474 		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1475 	}
1476 	free_page((unsigned long)buffer);
1477 	return rc;
1478 }
1479 
1480 /* The inode's security attributes must be initialized before first use. */
1481 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1482 {
1483 	struct superblock_security_struct *sbsec = NULL;
1484 	struct inode_security_struct *isec = inode->i_security;
1485 	u32 task_sid, sid = 0;
1486 	u16 sclass;
1487 	struct dentry *dentry;
1488 #define INITCONTEXTLEN 255
1489 	char *context = NULL;
1490 	unsigned len = 0;
1491 	int rc = 0;
1492 
1493 	if (isec->initialized == LABEL_INITIALIZED)
1494 		return 0;
1495 
1496 	spin_lock(&isec->lock);
1497 	if (isec->initialized == LABEL_INITIALIZED)
1498 		goto out_unlock;
1499 
1500 	if (isec->sclass == SECCLASS_FILE)
1501 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1502 
1503 	sbsec = inode->i_sb->s_security;
1504 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1505 		/* Defer initialization until selinux_complete_init,
1506 		   after the initial policy is loaded and the security
1507 		   server is ready to handle calls. */
1508 		spin_lock(&sbsec->isec_lock);
1509 		if (list_empty(&isec->list))
1510 			list_add(&isec->list, &sbsec->isec_head);
1511 		spin_unlock(&sbsec->isec_lock);
1512 		goto out_unlock;
1513 	}
1514 
1515 	sclass = isec->sclass;
1516 	task_sid = isec->task_sid;
1517 	sid = isec->sid;
1518 	isec->initialized = LABEL_PENDING;
1519 	spin_unlock(&isec->lock);
1520 
1521 	switch (sbsec->behavior) {
1522 	case SECURITY_FS_USE_NATIVE:
1523 		break;
1524 	case SECURITY_FS_USE_XATTR:
1525 		if (!(inode->i_opflags & IOP_XATTR)) {
1526 			sid = sbsec->def_sid;
1527 			break;
1528 		}
1529 		/* Need a dentry, since the xattr API requires one.
1530 		   Life would be simpler if we could just pass the inode. */
1531 		if (opt_dentry) {
1532 			/* Called from d_instantiate or d_splice_alias. */
1533 			dentry = dget(opt_dentry);
1534 		} else {
1535 			/* Called from selinux_complete_init, try to find a dentry. */
1536 			dentry = d_find_alias(inode);
1537 		}
1538 		if (!dentry) {
1539 			/*
1540 			 * this is can be hit on boot when a file is accessed
1541 			 * before the policy is loaded.  When we load policy we
1542 			 * may find inodes that have no dentry on the
1543 			 * sbsec->isec_head list.  No reason to complain as these
1544 			 * will get fixed up the next time we go through
1545 			 * inode_doinit with a dentry, before these inodes could
1546 			 * be used again by userspace.
1547 			 */
1548 			goto out;
1549 		}
1550 
1551 		len = INITCONTEXTLEN;
1552 		context = kmalloc(len+1, GFP_NOFS);
1553 		if (!context) {
1554 			rc = -ENOMEM;
1555 			dput(dentry);
1556 			goto out;
1557 		}
1558 		context[len] = '\0';
1559 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1560 		if (rc == -ERANGE) {
1561 			kfree(context);
1562 
1563 			/* Need a larger buffer.  Query for the right size. */
1564 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1565 			if (rc < 0) {
1566 				dput(dentry);
1567 				goto out;
1568 			}
1569 			len = rc;
1570 			context = kmalloc(len+1, GFP_NOFS);
1571 			if (!context) {
1572 				rc = -ENOMEM;
1573 				dput(dentry);
1574 				goto out;
1575 			}
1576 			context[len] = '\0';
1577 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1578 		}
1579 		dput(dentry);
1580 		if (rc < 0) {
1581 			if (rc != -ENODATA) {
1582 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1583 				       "%d for dev=%s ino=%ld\n", __func__,
1584 				       -rc, inode->i_sb->s_id, inode->i_ino);
1585 				kfree(context);
1586 				goto out;
1587 			}
1588 			/* Map ENODATA to the default file SID */
1589 			sid = sbsec->def_sid;
1590 			rc = 0;
1591 		} else {
1592 			rc = security_context_to_sid_default(context, rc, &sid,
1593 							     sbsec->def_sid,
1594 							     GFP_NOFS);
1595 			if (rc) {
1596 				char *dev = inode->i_sb->s_id;
1597 				unsigned long ino = inode->i_ino;
1598 
1599 				if (rc == -EINVAL) {
1600 					if (printk_ratelimit())
1601 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1602 							"context=%s.  This indicates you may need to relabel the inode or the "
1603 							"filesystem in question.\n", ino, dev, context);
1604 				} else {
1605 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1606 					       "returned %d for dev=%s ino=%ld\n",
1607 					       __func__, context, -rc, dev, ino);
1608 				}
1609 				kfree(context);
1610 				/* Leave with the unlabeled SID */
1611 				rc = 0;
1612 				break;
1613 			}
1614 		}
1615 		kfree(context);
1616 		break;
1617 	case SECURITY_FS_USE_TASK:
1618 		sid = task_sid;
1619 		break;
1620 	case SECURITY_FS_USE_TRANS:
1621 		/* Default to the fs SID. */
1622 		sid = sbsec->sid;
1623 
1624 		/* Try to obtain a transition SID. */
1625 		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
1626 		if (rc)
1627 			goto out;
1628 		break;
1629 	case SECURITY_FS_USE_MNTPOINT:
1630 		sid = sbsec->mntpoint_sid;
1631 		break;
1632 	default:
1633 		/* Default to the fs superblock SID. */
1634 		sid = sbsec->sid;
1635 
1636 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1637 			/* We must have a dentry to determine the label on
1638 			 * procfs inodes */
1639 			if (opt_dentry)
1640 				/* Called from d_instantiate or
1641 				 * d_splice_alias. */
1642 				dentry = dget(opt_dentry);
1643 			else
1644 				/* Called from selinux_complete_init, try to
1645 				 * find a dentry. */
1646 				dentry = d_find_alias(inode);
1647 			/*
1648 			 * This can be hit on boot when a file is accessed
1649 			 * before the policy is loaded.  When we load policy we
1650 			 * may find inodes that have no dentry on the
1651 			 * sbsec->isec_head list.  No reason to complain as
1652 			 * these will get fixed up the next time we go through
1653 			 * inode_doinit() with a dentry, before these inodes
1654 			 * could be used again by userspace.
1655 			 */
1656 			if (!dentry)
1657 				goto out;
1658 			rc = selinux_genfs_get_sid(dentry, sclass,
1659 						   sbsec->flags, &sid);
1660 			dput(dentry);
1661 			if (rc)
1662 				goto out;
1663 		}
1664 		break;
1665 	}
1666 
1667 out:
1668 	spin_lock(&isec->lock);
1669 	if (isec->initialized == LABEL_PENDING) {
1670 		if (!sid || rc) {
1671 			isec->initialized = LABEL_INVALID;
1672 			goto out_unlock;
1673 		}
1674 
1675 		isec->initialized = LABEL_INITIALIZED;
1676 		isec->sid = sid;
1677 	}
1678 
1679 out_unlock:
1680 	spin_unlock(&isec->lock);
1681 	return rc;
1682 }
1683 
1684 /* Convert a Linux signal to an access vector. */
1685 static inline u32 signal_to_av(int sig)
1686 {
1687 	u32 perm = 0;
1688 
1689 	switch (sig) {
1690 	case SIGCHLD:
1691 		/* Commonly granted from child to parent. */
1692 		perm = PROCESS__SIGCHLD;
1693 		break;
1694 	case SIGKILL:
1695 		/* Cannot be caught or ignored */
1696 		perm = PROCESS__SIGKILL;
1697 		break;
1698 	case SIGSTOP:
1699 		/* Cannot be caught or ignored */
1700 		perm = PROCESS__SIGSTOP;
1701 		break;
1702 	default:
1703 		/* All other signals. */
1704 		perm = PROCESS__SIGNAL;
1705 		break;
1706 	}
1707 
1708 	return perm;
1709 }
1710 
1711 #if CAP_LAST_CAP > 63
1712 #error Fix SELinux to handle capabilities > 63.
1713 #endif
1714 
1715 /* Check whether a task is allowed to use a capability. */
1716 static int cred_has_capability(const struct cred *cred,
1717 			       int cap, int audit, bool initns)
1718 {
1719 	struct common_audit_data ad;
1720 	struct av_decision avd;
1721 	u16 sclass;
1722 	u32 sid = cred_sid(cred);
1723 	u32 av = CAP_TO_MASK(cap);
1724 	int rc;
1725 
1726 	ad.type = LSM_AUDIT_DATA_CAP;
1727 	ad.u.cap = cap;
1728 
1729 	switch (CAP_TO_INDEX(cap)) {
1730 	case 0:
1731 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1732 		break;
1733 	case 1:
1734 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1735 		break;
1736 	default:
1737 		printk(KERN_ERR
1738 		       "SELinux:  out of range capability %d\n", cap);
1739 		BUG();
1740 		return -EINVAL;
1741 	}
1742 
1743 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1744 	if (audit == SECURITY_CAP_AUDIT) {
1745 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1746 		if (rc2)
1747 			return rc2;
1748 	}
1749 	return rc;
1750 }
1751 
1752 /* Check whether a task has a particular permission to an inode.
1753    The 'adp' parameter is optional and allows other audit
1754    data to be passed (e.g. the dentry). */
1755 static int inode_has_perm(const struct cred *cred,
1756 			  struct inode *inode,
1757 			  u32 perms,
1758 			  struct common_audit_data *adp)
1759 {
1760 	struct inode_security_struct *isec;
1761 	u32 sid;
1762 
1763 	validate_creds(cred);
1764 
1765 	if (unlikely(IS_PRIVATE(inode)))
1766 		return 0;
1767 
1768 	sid = cred_sid(cred);
1769 	isec = inode->i_security;
1770 
1771 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1772 }
1773 
1774 /* Same as inode_has_perm, but pass explicit audit data containing
1775    the dentry to help the auditing code to more easily generate the
1776    pathname if needed. */
1777 static inline int dentry_has_perm(const struct cred *cred,
1778 				  struct dentry *dentry,
1779 				  u32 av)
1780 {
1781 	struct inode *inode = d_backing_inode(dentry);
1782 	struct common_audit_data ad;
1783 
1784 	ad.type = LSM_AUDIT_DATA_DENTRY;
1785 	ad.u.dentry = dentry;
1786 	__inode_security_revalidate(inode, dentry, true);
1787 	return inode_has_perm(cred, inode, av, &ad);
1788 }
1789 
1790 /* Same as inode_has_perm, but pass explicit audit data containing
1791    the path to help the auditing code to more easily generate the
1792    pathname if needed. */
1793 static inline int path_has_perm(const struct cred *cred,
1794 				const struct path *path,
1795 				u32 av)
1796 {
1797 	struct inode *inode = d_backing_inode(path->dentry);
1798 	struct common_audit_data ad;
1799 
1800 	ad.type = LSM_AUDIT_DATA_PATH;
1801 	ad.u.path = *path;
1802 	__inode_security_revalidate(inode, path->dentry, true);
1803 	return inode_has_perm(cred, inode, av, &ad);
1804 }
1805 
1806 /* Same as path_has_perm, but uses the inode from the file struct. */
1807 static inline int file_path_has_perm(const struct cred *cred,
1808 				     struct file *file,
1809 				     u32 av)
1810 {
1811 	struct common_audit_data ad;
1812 
1813 	ad.type = LSM_AUDIT_DATA_FILE;
1814 	ad.u.file = file;
1815 	return inode_has_perm(cred, file_inode(file), av, &ad);
1816 }
1817 
1818 #ifdef CONFIG_BPF_SYSCALL
1819 static int bpf_fd_pass(struct file *file, u32 sid);
1820 #endif
1821 
1822 /* Check whether a task can use an open file descriptor to
1823    access an inode in a given way.  Check access to the
1824    descriptor itself, and then use dentry_has_perm to
1825    check a particular permission to the file.
1826    Access to the descriptor is implicitly granted if it
1827    has the same SID as the process.  If av is zero, then
1828    access to the file is not checked, e.g. for cases
1829    where only the descriptor is affected like seek. */
1830 static int file_has_perm(const struct cred *cred,
1831 			 struct file *file,
1832 			 u32 av)
1833 {
1834 	struct file_security_struct *fsec = file->f_security;
1835 	struct inode *inode = file_inode(file);
1836 	struct common_audit_data ad;
1837 	u32 sid = cred_sid(cred);
1838 	int rc;
1839 
1840 	ad.type = LSM_AUDIT_DATA_FILE;
1841 	ad.u.file = file;
1842 
1843 	if (sid != fsec->sid) {
1844 		rc = avc_has_perm(sid, fsec->sid,
1845 				  SECCLASS_FD,
1846 				  FD__USE,
1847 				  &ad);
1848 		if (rc)
1849 			goto out;
1850 	}
1851 
1852 #ifdef CONFIG_BPF_SYSCALL
1853 	rc = bpf_fd_pass(file, cred_sid(cred));
1854 	if (rc)
1855 		return rc;
1856 #endif
1857 
1858 	/* av is zero if only checking access to the descriptor. */
1859 	rc = 0;
1860 	if (av)
1861 		rc = inode_has_perm(cred, inode, av, &ad);
1862 
1863 out:
1864 	return rc;
1865 }
1866 
1867 /*
1868  * Determine the label for an inode that might be unioned.
1869  */
1870 static int
1871 selinux_determine_inode_label(const struct task_security_struct *tsec,
1872 				 struct inode *dir,
1873 				 const struct qstr *name, u16 tclass,
1874 				 u32 *_new_isid)
1875 {
1876 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1877 
1878 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1879 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1880 		*_new_isid = sbsec->mntpoint_sid;
1881 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1882 		   tsec->create_sid) {
1883 		*_new_isid = tsec->create_sid;
1884 	} else {
1885 		const struct inode_security_struct *dsec = inode_security(dir);
1886 		return security_transition_sid(tsec->sid, dsec->sid, tclass,
1887 					       name, _new_isid);
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 /* Check whether a task can create a file. */
1894 static int may_create(struct inode *dir,
1895 		      struct dentry *dentry,
1896 		      u16 tclass)
1897 {
1898 	const struct task_security_struct *tsec = current_security();
1899 	struct inode_security_struct *dsec;
1900 	struct superblock_security_struct *sbsec;
1901 	u32 sid, newsid;
1902 	struct common_audit_data ad;
1903 	int rc;
1904 
1905 	dsec = inode_security(dir);
1906 	sbsec = dir->i_sb->s_security;
1907 
1908 	sid = tsec->sid;
1909 
1910 	ad.type = LSM_AUDIT_DATA_DENTRY;
1911 	ad.u.dentry = dentry;
1912 
1913 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1914 			  DIR__ADD_NAME | DIR__SEARCH,
1915 			  &ad);
1916 	if (rc)
1917 		return rc;
1918 
1919 	rc = selinux_determine_inode_label(current_security(), dir,
1920 					   &dentry->d_name, tclass, &newsid);
1921 	if (rc)
1922 		return rc;
1923 
1924 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1925 	if (rc)
1926 		return rc;
1927 
1928 	return avc_has_perm(newsid, sbsec->sid,
1929 			    SECCLASS_FILESYSTEM,
1930 			    FILESYSTEM__ASSOCIATE, &ad);
1931 }
1932 
1933 #define MAY_LINK	0
1934 #define MAY_UNLINK	1
1935 #define MAY_RMDIR	2
1936 
1937 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1938 static int may_link(struct inode *dir,
1939 		    struct dentry *dentry,
1940 		    int kind)
1941 
1942 {
1943 	struct inode_security_struct *dsec, *isec;
1944 	struct common_audit_data ad;
1945 	u32 sid = current_sid();
1946 	u32 av;
1947 	int rc;
1948 
1949 	dsec = inode_security(dir);
1950 	isec = backing_inode_security(dentry);
1951 
1952 	ad.type = LSM_AUDIT_DATA_DENTRY;
1953 	ad.u.dentry = dentry;
1954 
1955 	av = DIR__SEARCH;
1956 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1957 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1958 	if (rc)
1959 		return rc;
1960 
1961 	switch (kind) {
1962 	case MAY_LINK:
1963 		av = FILE__LINK;
1964 		break;
1965 	case MAY_UNLINK:
1966 		av = FILE__UNLINK;
1967 		break;
1968 	case MAY_RMDIR:
1969 		av = DIR__RMDIR;
1970 		break;
1971 	default:
1972 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1973 			__func__, kind);
1974 		return 0;
1975 	}
1976 
1977 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1978 	return rc;
1979 }
1980 
1981 static inline int may_rename(struct inode *old_dir,
1982 			     struct dentry *old_dentry,
1983 			     struct inode *new_dir,
1984 			     struct dentry *new_dentry)
1985 {
1986 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1987 	struct common_audit_data ad;
1988 	u32 sid = current_sid();
1989 	u32 av;
1990 	int old_is_dir, new_is_dir;
1991 	int rc;
1992 
1993 	old_dsec = inode_security(old_dir);
1994 	old_isec = backing_inode_security(old_dentry);
1995 	old_is_dir = d_is_dir(old_dentry);
1996 	new_dsec = inode_security(new_dir);
1997 
1998 	ad.type = LSM_AUDIT_DATA_DENTRY;
1999 
2000 	ad.u.dentry = old_dentry;
2001 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
2002 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2003 	if (rc)
2004 		return rc;
2005 	rc = avc_has_perm(sid, old_isec->sid,
2006 			  old_isec->sclass, FILE__RENAME, &ad);
2007 	if (rc)
2008 		return rc;
2009 	if (old_is_dir && new_dir != old_dir) {
2010 		rc = avc_has_perm(sid, old_isec->sid,
2011 				  old_isec->sclass, DIR__REPARENT, &ad);
2012 		if (rc)
2013 			return rc;
2014 	}
2015 
2016 	ad.u.dentry = new_dentry;
2017 	av = DIR__ADD_NAME | DIR__SEARCH;
2018 	if (d_is_positive(new_dentry))
2019 		av |= DIR__REMOVE_NAME;
2020 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2021 	if (rc)
2022 		return rc;
2023 	if (d_is_positive(new_dentry)) {
2024 		new_isec = backing_inode_security(new_dentry);
2025 		new_is_dir = d_is_dir(new_dentry);
2026 		rc = avc_has_perm(sid, new_isec->sid,
2027 				  new_isec->sclass,
2028 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2029 		if (rc)
2030 			return rc;
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 /* Check whether a task can perform a filesystem operation. */
2037 static int superblock_has_perm(const struct cred *cred,
2038 			       struct super_block *sb,
2039 			       u32 perms,
2040 			       struct common_audit_data *ad)
2041 {
2042 	struct superblock_security_struct *sbsec;
2043 	u32 sid = cred_sid(cred);
2044 
2045 	sbsec = sb->s_security;
2046 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2047 }
2048 
2049 /* Convert a Linux mode and permission mask to an access vector. */
2050 static inline u32 file_mask_to_av(int mode, int mask)
2051 {
2052 	u32 av = 0;
2053 
2054 	if (!S_ISDIR(mode)) {
2055 		if (mask & MAY_EXEC)
2056 			av |= FILE__EXECUTE;
2057 		if (mask & MAY_READ)
2058 			av |= FILE__READ;
2059 
2060 		if (mask & MAY_APPEND)
2061 			av |= FILE__APPEND;
2062 		else if (mask & MAY_WRITE)
2063 			av |= FILE__WRITE;
2064 
2065 	} else {
2066 		if (mask & MAY_EXEC)
2067 			av |= DIR__SEARCH;
2068 		if (mask & MAY_WRITE)
2069 			av |= DIR__WRITE;
2070 		if (mask & MAY_READ)
2071 			av |= DIR__READ;
2072 	}
2073 
2074 	return av;
2075 }
2076 
2077 /* Convert a Linux file to an access vector. */
2078 static inline u32 file_to_av(struct file *file)
2079 {
2080 	u32 av = 0;
2081 
2082 	if (file->f_mode & FMODE_READ)
2083 		av |= FILE__READ;
2084 	if (file->f_mode & FMODE_WRITE) {
2085 		if (file->f_flags & O_APPEND)
2086 			av |= FILE__APPEND;
2087 		else
2088 			av |= FILE__WRITE;
2089 	}
2090 	if (!av) {
2091 		/*
2092 		 * Special file opened with flags 3 for ioctl-only use.
2093 		 */
2094 		av = FILE__IOCTL;
2095 	}
2096 
2097 	return av;
2098 }
2099 
2100 /*
2101  * Convert a file to an access vector and include the correct open
2102  * open permission.
2103  */
2104 static inline u32 open_file_to_av(struct file *file)
2105 {
2106 	u32 av = file_to_av(file);
2107 	struct inode *inode = file_inode(file);
2108 
2109 	if (selinux_policycap_openperm && inode->i_sb->s_magic != SOCKFS_MAGIC)
2110 		av |= FILE__OPEN;
2111 
2112 	return av;
2113 }
2114 
2115 /* Hook functions begin here. */
2116 
2117 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2118 {
2119 	u32 mysid = current_sid();
2120 	u32 mgrsid = task_sid(mgr);
2121 
2122 	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2123 			    BINDER__SET_CONTEXT_MGR, NULL);
2124 }
2125 
2126 static int selinux_binder_transaction(struct task_struct *from,
2127 				      struct task_struct *to)
2128 {
2129 	u32 mysid = current_sid();
2130 	u32 fromsid = task_sid(from);
2131 	u32 tosid = task_sid(to);
2132 	int rc;
2133 
2134 	if (mysid != fromsid) {
2135 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2136 				  BINDER__IMPERSONATE, NULL);
2137 		if (rc)
2138 			return rc;
2139 	}
2140 
2141 	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2142 			    NULL);
2143 }
2144 
2145 static int selinux_binder_transfer_binder(struct task_struct *from,
2146 					  struct task_struct *to)
2147 {
2148 	u32 fromsid = task_sid(from);
2149 	u32 tosid = task_sid(to);
2150 
2151 	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2152 			    NULL);
2153 }
2154 
2155 static int selinux_binder_transfer_file(struct task_struct *from,
2156 					struct task_struct *to,
2157 					struct file *file)
2158 {
2159 	u32 sid = task_sid(to);
2160 	struct file_security_struct *fsec = file->f_security;
2161 	struct dentry *dentry = file->f_path.dentry;
2162 	struct inode_security_struct *isec;
2163 	struct common_audit_data ad;
2164 	int rc;
2165 
2166 	ad.type = LSM_AUDIT_DATA_PATH;
2167 	ad.u.path = file->f_path;
2168 
2169 	if (sid != fsec->sid) {
2170 		rc = avc_has_perm(sid, fsec->sid,
2171 				  SECCLASS_FD,
2172 				  FD__USE,
2173 				  &ad);
2174 		if (rc)
2175 			return rc;
2176 	}
2177 
2178 #ifdef CONFIG_BPF_SYSCALL
2179 	rc = bpf_fd_pass(file, sid);
2180 	if (rc)
2181 		return rc;
2182 #endif
2183 
2184 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2185 		return 0;
2186 
2187 	isec = backing_inode_security(dentry);
2188 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2189 			    &ad);
2190 }
2191 
2192 static int selinux_ptrace_access_check(struct task_struct *child,
2193 				     unsigned int mode)
2194 {
2195 	u32 sid = current_sid();
2196 	u32 csid = task_sid(child);
2197 
2198 	if (mode & PTRACE_MODE_READ)
2199 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2200 
2201 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2202 }
2203 
2204 static int selinux_ptrace_traceme(struct task_struct *parent)
2205 {
2206 	return avc_has_perm(task_sid(parent), current_sid(), SECCLASS_PROCESS,
2207 			    PROCESS__PTRACE, NULL);
2208 }
2209 
2210 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2211 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2212 {
2213 	return avc_has_perm(current_sid(), task_sid(target), SECCLASS_PROCESS,
2214 			    PROCESS__GETCAP, NULL);
2215 }
2216 
2217 static int selinux_capset(struct cred *new, const struct cred *old,
2218 			  const kernel_cap_t *effective,
2219 			  const kernel_cap_t *inheritable,
2220 			  const kernel_cap_t *permitted)
2221 {
2222 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2223 			    PROCESS__SETCAP, NULL);
2224 }
2225 
2226 /*
2227  * (This comment used to live with the selinux_task_setuid hook,
2228  * which was removed).
2229  *
2230  * Since setuid only affects the current process, and since the SELinux
2231  * controls are not based on the Linux identity attributes, SELinux does not
2232  * need to control this operation.  However, SELinux does control the use of
2233  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2234  */
2235 
2236 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2237 			   int cap, int audit)
2238 {
2239 	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2240 }
2241 
2242 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2243 {
2244 	const struct cred *cred = current_cred();
2245 	int rc = 0;
2246 
2247 	if (!sb)
2248 		return 0;
2249 
2250 	switch (cmds) {
2251 	case Q_SYNC:
2252 	case Q_QUOTAON:
2253 	case Q_QUOTAOFF:
2254 	case Q_SETINFO:
2255 	case Q_SETQUOTA:
2256 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2257 		break;
2258 	case Q_GETFMT:
2259 	case Q_GETINFO:
2260 	case Q_GETQUOTA:
2261 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2262 		break;
2263 	default:
2264 		rc = 0;  /* let the kernel handle invalid cmds */
2265 		break;
2266 	}
2267 	return rc;
2268 }
2269 
2270 static int selinux_quota_on(struct dentry *dentry)
2271 {
2272 	const struct cred *cred = current_cred();
2273 
2274 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2275 }
2276 
2277 static int selinux_syslog(int type)
2278 {
2279 	switch (type) {
2280 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2281 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2282 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2283 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2284 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2285 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2286 	/* Set level of messages printed to console */
2287 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2288 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2289 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2290 				    NULL);
2291 	}
2292 	/* All other syslog types */
2293 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2294 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2295 }
2296 
2297 /*
2298  * Check that a process has enough memory to allocate a new virtual
2299  * mapping. 0 means there is enough memory for the allocation to
2300  * succeed and -ENOMEM implies there is not.
2301  *
2302  * Do not audit the selinux permission check, as this is applied to all
2303  * processes that allocate mappings.
2304  */
2305 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2306 {
2307 	int rc, cap_sys_admin = 0;
2308 
2309 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2310 				 SECURITY_CAP_NOAUDIT, true);
2311 	if (rc == 0)
2312 		cap_sys_admin = 1;
2313 
2314 	return cap_sys_admin;
2315 }
2316 
2317 /* binprm security operations */
2318 
2319 static u32 ptrace_parent_sid(void)
2320 {
2321 	u32 sid = 0;
2322 	struct task_struct *tracer;
2323 
2324 	rcu_read_lock();
2325 	tracer = ptrace_parent(current);
2326 	if (tracer)
2327 		sid = task_sid(tracer);
2328 	rcu_read_unlock();
2329 
2330 	return sid;
2331 }
2332 
2333 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2334 			    const struct task_security_struct *old_tsec,
2335 			    const struct task_security_struct *new_tsec)
2336 {
2337 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2338 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2339 	int rc;
2340 	u32 av;
2341 
2342 	if (!nnp && !nosuid)
2343 		return 0; /* neither NNP nor nosuid */
2344 
2345 	if (new_tsec->sid == old_tsec->sid)
2346 		return 0; /* No change in credentials */
2347 
2348 	/*
2349 	 * If the policy enables the nnp_nosuid_transition policy capability,
2350 	 * then we permit transitions under NNP or nosuid if the
2351 	 * policy allows the corresponding permission between
2352 	 * the old and new contexts.
2353 	 */
2354 	if (selinux_policycap_nnp_nosuid_transition) {
2355 		av = 0;
2356 		if (nnp)
2357 			av |= PROCESS2__NNP_TRANSITION;
2358 		if (nosuid)
2359 			av |= PROCESS2__NOSUID_TRANSITION;
2360 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2361 				  SECCLASS_PROCESS2, av, NULL);
2362 		if (!rc)
2363 			return 0;
2364 	}
2365 
2366 	/*
2367 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2368 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2369 	 * of the permissions of the current SID.
2370 	 */
2371 	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2372 	if (!rc)
2373 		return 0;
2374 
2375 	/*
2376 	 * On failure, preserve the errno values for NNP vs nosuid.
2377 	 * NNP:  Operation not permitted for caller.
2378 	 * nosuid:  Permission denied to file.
2379 	 */
2380 	if (nnp)
2381 		return -EPERM;
2382 	return -EACCES;
2383 }
2384 
2385 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2386 {
2387 	const struct task_security_struct *old_tsec;
2388 	struct task_security_struct *new_tsec;
2389 	struct inode_security_struct *isec;
2390 	struct common_audit_data ad;
2391 	struct inode *inode = file_inode(bprm->file);
2392 	int rc;
2393 
2394 	/* SELinux context only depends on initial program or script and not
2395 	 * the script interpreter */
2396 	if (bprm->called_set_creds)
2397 		return 0;
2398 
2399 	old_tsec = current_security();
2400 	new_tsec = bprm->cred->security;
2401 	isec = inode_security(inode);
2402 
2403 	/* Default to the current task SID. */
2404 	new_tsec->sid = old_tsec->sid;
2405 	new_tsec->osid = old_tsec->sid;
2406 
2407 	/* Reset fs, key, and sock SIDs on execve. */
2408 	new_tsec->create_sid = 0;
2409 	new_tsec->keycreate_sid = 0;
2410 	new_tsec->sockcreate_sid = 0;
2411 
2412 	if (old_tsec->exec_sid) {
2413 		new_tsec->sid = old_tsec->exec_sid;
2414 		/* Reset exec SID on execve. */
2415 		new_tsec->exec_sid = 0;
2416 
2417 		/* Fail on NNP or nosuid if not an allowed transition. */
2418 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2419 		if (rc)
2420 			return rc;
2421 	} else {
2422 		/* Check for a default transition on this program. */
2423 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2424 					     SECCLASS_PROCESS, NULL,
2425 					     &new_tsec->sid);
2426 		if (rc)
2427 			return rc;
2428 
2429 		/*
2430 		 * Fallback to old SID on NNP or nosuid if not an allowed
2431 		 * transition.
2432 		 */
2433 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2434 		if (rc)
2435 			new_tsec->sid = old_tsec->sid;
2436 	}
2437 
2438 	ad.type = LSM_AUDIT_DATA_FILE;
2439 	ad.u.file = bprm->file;
2440 
2441 	if (new_tsec->sid == old_tsec->sid) {
2442 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2443 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2444 		if (rc)
2445 			return rc;
2446 	} else {
2447 		/* Check permissions for the transition. */
2448 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2449 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2450 		if (rc)
2451 			return rc;
2452 
2453 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2454 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2455 		if (rc)
2456 			return rc;
2457 
2458 		/* Check for shared state */
2459 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2460 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2461 					  SECCLASS_PROCESS, PROCESS__SHARE,
2462 					  NULL);
2463 			if (rc)
2464 				return -EPERM;
2465 		}
2466 
2467 		/* Make sure that anyone attempting to ptrace over a task that
2468 		 * changes its SID has the appropriate permit */
2469 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2470 			u32 ptsid = ptrace_parent_sid();
2471 			if (ptsid != 0) {
2472 				rc = avc_has_perm(ptsid, new_tsec->sid,
2473 						  SECCLASS_PROCESS,
2474 						  PROCESS__PTRACE, NULL);
2475 				if (rc)
2476 					return -EPERM;
2477 			}
2478 		}
2479 
2480 		/* Clear any possibly unsafe personality bits on exec: */
2481 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2482 
2483 		/* Enable secure mode for SIDs transitions unless
2484 		   the noatsecure permission is granted between
2485 		   the two SIDs, i.e. ahp returns 0. */
2486 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2487 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2488 				  NULL);
2489 		bprm->secureexec |= !!rc;
2490 	}
2491 
2492 	return 0;
2493 }
2494 
2495 static int match_file(const void *p, struct file *file, unsigned fd)
2496 {
2497 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2498 }
2499 
2500 /* Derived from fs/exec.c:flush_old_files. */
2501 static inline void flush_unauthorized_files(const struct cred *cred,
2502 					    struct files_struct *files)
2503 {
2504 	struct file *file, *devnull = NULL;
2505 	struct tty_struct *tty;
2506 	int drop_tty = 0;
2507 	unsigned n;
2508 
2509 	tty = get_current_tty();
2510 	if (tty) {
2511 		spin_lock(&tty->files_lock);
2512 		if (!list_empty(&tty->tty_files)) {
2513 			struct tty_file_private *file_priv;
2514 
2515 			/* Revalidate access to controlling tty.
2516 			   Use file_path_has_perm on the tty path directly
2517 			   rather than using file_has_perm, as this particular
2518 			   open file may belong to another process and we are
2519 			   only interested in the inode-based check here. */
2520 			file_priv = list_first_entry(&tty->tty_files,
2521 						struct tty_file_private, list);
2522 			file = file_priv->file;
2523 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2524 				drop_tty = 1;
2525 		}
2526 		spin_unlock(&tty->files_lock);
2527 		tty_kref_put(tty);
2528 	}
2529 	/* Reset controlling tty. */
2530 	if (drop_tty)
2531 		no_tty();
2532 
2533 	/* Revalidate access to inherited open files. */
2534 	n = iterate_fd(files, 0, match_file, cred);
2535 	if (!n) /* none found? */
2536 		return;
2537 
2538 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2539 	if (IS_ERR(devnull))
2540 		devnull = NULL;
2541 	/* replace all the matching ones with this */
2542 	do {
2543 		replace_fd(n - 1, devnull, 0);
2544 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2545 	if (devnull)
2546 		fput(devnull);
2547 }
2548 
2549 /*
2550  * Prepare a process for imminent new credential changes due to exec
2551  */
2552 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2553 {
2554 	struct task_security_struct *new_tsec;
2555 	struct rlimit *rlim, *initrlim;
2556 	int rc, i;
2557 
2558 	new_tsec = bprm->cred->security;
2559 	if (new_tsec->sid == new_tsec->osid)
2560 		return;
2561 
2562 	/* Close files for which the new task SID is not authorized. */
2563 	flush_unauthorized_files(bprm->cred, current->files);
2564 
2565 	/* Always clear parent death signal on SID transitions. */
2566 	current->pdeath_signal = 0;
2567 
2568 	/* Check whether the new SID can inherit resource limits from the old
2569 	 * SID.  If not, reset all soft limits to the lower of the current
2570 	 * task's hard limit and the init task's soft limit.
2571 	 *
2572 	 * Note that the setting of hard limits (even to lower them) can be
2573 	 * controlled by the setrlimit check.  The inclusion of the init task's
2574 	 * soft limit into the computation is to avoid resetting soft limits
2575 	 * higher than the default soft limit for cases where the default is
2576 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2577 	 */
2578 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2579 			  PROCESS__RLIMITINH, NULL);
2580 	if (rc) {
2581 		/* protect against do_prlimit() */
2582 		task_lock(current);
2583 		for (i = 0; i < RLIM_NLIMITS; i++) {
2584 			rlim = current->signal->rlim + i;
2585 			initrlim = init_task.signal->rlim + i;
2586 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2587 		}
2588 		task_unlock(current);
2589 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2590 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2591 	}
2592 }
2593 
2594 /*
2595  * Clean up the process immediately after the installation of new credentials
2596  * due to exec
2597  */
2598 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2599 {
2600 	const struct task_security_struct *tsec = current_security();
2601 	struct itimerval itimer;
2602 	u32 osid, sid;
2603 	int rc, i;
2604 
2605 	osid = tsec->osid;
2606 	sid = tsec->sid;
2607 
2608 	if (sid == osid)
2609 		return;
2610 
2611 	/* Check whether the new SID can inherit signal state from the old SID.
2612 	 * If not, clear itimers to avoid subsequent signal generation and
2613 	 * flush and unblock signals.
2614 	 *
2615 	 * This must occur _after_ the task SID has been updated so that any
2616 	 * kill done after the flush will be checked against the new SID.
2617 	 */
2618 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2619 	if (rc) {
2620 		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2621 			memset(&itimer, 0, sizeof itimer);
2622 			for (i = 0; i < 3; i++)
2623 				do_setitimer(i, &itimer, NULL);
2624 		}
2625 		spin_lock_irq(&current->sighand->siglock);
2626 		if (!fatal_signal_pending(current)) {
2627 			flush_sigqueue(&current->pending);
2628 			flush_sigqueue(&current->signal->shared_pending);
2629 			flush_signal_handlers(current, 1);
2630 			sigemptyset(&current->blocked);
2631 			recalc_sigpending();
2632 		}
2633 		spin_unlock_irq(&current->sighand->siglock);
2634 	}
2635 
2636 	/* Wake up the parent if it is waiting so that it can recheck
2637 	 * wait permission to the new task SID. */
2638 	read_lock(&tasklist_lock);
2639 	__wake_up_parent(current, current->real_parent);
2640 	read_unlock(&tasklist_lock);
2641 }
2642 
2643 /* superblock security operations */
2644 
2645 static int selinux_sb_alloc_security(struct super_block *sb)
2646 {
2647 	return superblock_alloc_security(sb);
2648 }
2649 
2650 static void selinux_sb_free_security(struct super_block *sb)
2651 {
2652 	superblock_free_security(sb);
2653 }
2654 
2655 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2656 {
2657 	if (plen > olen)
2658 		return 0;
2659 
2660 	return !memcmp(prefix, option, plen);
2661 }
2662 
2663 static inline int selinux_option(char *option, int len)
2664 {
2665 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2666 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2667 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2668 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2669 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2670 }
2671 
2672 static inline void take_option(char **to, char *from, int *first, int len)
2673 {
2674 	if (!*first) {
2675 		**to = ',';
2676 		*to += 1;
2677 	} else
2678 		*first = 0;
2679 	memcpy(*to, from, len);
2680 	*to += len;
2681 }
2682 
2683 static inline void take_selinux_option(char **to, char *from, int *first,
2684 				       int len)
2685 {
2686 	int current_size = 0;
2687 
2688 	if (!*first) {
2689 		**to = '|';
2690 		*to += 1;
2691 	} else
2692 		*first = 0;
2693 
2694 	while (current_size < len) {
2695 		if (*from != '"') {
2696 			**to = *from;
2697 			*to += 1;
2698 		}
2699 		from += 1;
2700 		current_size += 1;
2701 	}
2702 }
2703 
2704 static int selinux_sb_copy_data(char *orig, char *copy)
2705 {
2706 	int fnosec, fsec, rc = 0;
2707 	char *in_save, *in_curr, *in_end;
2708 	char *sec_curr, *nosec_save, *nosec;
2709 	int open_quote = 0;
2710 
2711 	in_curr = orig;
2712 	sec_curr = copy;
2713 
2714 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2715 	if (!nosec) {
2716 		rc = -ENOMEM;
2717 		goto out;
2718 	}
2719 
2720 	nosec_save = nosec;
2721 	fnosec = fsec = 1;
2722 	in_save = in_end = orig;
2723 
2724 	do {
2725 		if (*in_end == '"')
2726 			open_quote = !open_quote;
2727 		if ((*in_end == ',' && open_quote == 0) ||
2728 				*in_end == '\0') {
2729 			int len = in_end - in_curr;
2730 
2731 			if (selinux_option(in_curr, len))
2732 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2733 			else
2734 				take_option(&nosec, in_curr, &fnosec, len);
2735 
2736 			in_curr = in_end + 1;
2737 		}
2738 	} while (*in_end++);
2739 
2740 	strcpy(in_save, nosec_save);
2741 	free_page((unsigned long)nosec_save);
2742 out:
2743 	return rc;
2744 }
2745 
2746 static int selinux_sb_remount(struct super_block *sb, void *data)
2747 {
2748 	int rc, i, *flags;
2749 	struct security_mnt_opts opts;
2750 	char *secdata, **mount_options;
2751 	struct superblock_security_struct *sbsec = sb->s_security;
2752 
2753 	if (!(sbsec->flags & SE_SBINITIALIZED))
2754 		return 0;
2755 
2756 	if (!data)
2757 		return 0;
2758 
2759 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2760 		return 0;
2761 
2762 	security_init_mnt_opts(&opts);
2763 	secdata = alloc_secdata();
2764 	if (!secdata)
2765 		return -ENOMEM;
2766 	rc = selinux_sb_copy_data(data, secdata);
2767 	if (rc)
2768 		goto out_free_secdata;
2769 
2770 	rc = selinux_parse_opts_str(secdata, &opts);
2771 	if (rc)
2772 		goto out_free_secdata;
2773 
2774 	mount_options = opts.mnt_opts;
2775 	flags = opts.mnt_opts_flags;
2776 
2777 	for (i = 0; i < opts.num_mnt_opts; i++) {
2778 		u32 sid;
2779 
2780 		if (flags[i] == SBLABEL_MNT)
2781 			continue;
2782 		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2783 		if (rc) {
2784 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2785 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2786 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2787 			goto out_free_opts;
2788 		}
2789 		rc = -EINVAL;
2790 		switch (flags[i]) {
2791 		case FSCONTEXT_MNT:
2792 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2793 				goto out_bad_option;
2794 			break;
2795 		case CONTEXT_MNT:
2796 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2797 				goto out_bad_option;
2798 			break;
2799 		case ROOTCONTEXT_MNT: {
2800 			struct inode_security_struct *root_isec;
2801 			root_isec = backing_inode_security(sb->s_root);
2802 
2803 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2804 				goto out_bad_option;
2805 			break;
2806 		}
2807 		case DEFCONTEXT_MNT:
2808 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2809 				goto out_bad_option;
2810 			break;
2811 		default:
2812 			goto out_free_opts;
2813 		}
2814 	}
2815 
2816 	rc = 0;
2817 out_free_opts:
2818 	security_free_mnt_opts(&opts);
2819 out_free_secdata:
2820 	free_secdata(secdata);
2821 	return rc;
2822 out_bad_option:
2823 	printk(KERN_WARNING "SELinux: unable to change security options "
2824 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2825 	       sb->s_type->name);
2826 	goto out_free_opts;
2827 }
2828 
2829 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2830 {
2831 	const struct cred *cred = current_cred();
2832 	struct common_audit_data ad;
2833 	int rc;
2834 
2835 	rc = superblock_doinit(sb, data);
2836 	if (rc)
2837 		return rc;
2838 
2839 	/* Allow all mounts performed by the kernel */
2840 	if (flags & MS_KERNMOUNT)
2841 		return 0;
2842 
2843 	ad.type = LSM_AUDIT_DATA_DENTRY;
2844 	ad.u.dentry = sb->s_root;
2845 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2846 }
2847 
2848 static int selinux_sb_statfs(struct dentry *dentry)
2849 {
2850 	const struct cred *cred = current_cred();
2851 	struct common_audit_data ad;
2852 
2853 	ad.type = LSM_AUDIT_DATA_DENTRY;
2854 	ad.u.dentry = dentry->d_sb->s_root;
2855 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2856 }
2857 
2858 static int selinux_mount(const char *dev_name,
2859 			 const struct path *path,
2860 			 const char *type,
2861 			 unsigned long flags,
2862 			 void *data)
2863 {
2864 	const struct cred *cred = current_cred();
2865 
2866 	if (flags & MS_REMOUNT)
2867 		return superblock_has_perm(cred, path->dentry->d_sb,
2868 					   FILESYSTEM__REMOUNT, NULL);
2869 	else
2870 		return path_has_perm(cred, path, FILE__MOUNTON);
2871 }
2872 
2873 static int selinux_umount(struct vfsmount *mnt, int flags)
2874 {
2875 	const struct cred *cred = current_cred();
2876 
2877 	return superblock_has_perm(cred, mnt->mnt_sb,
2878 				   FILESYSTEM__UNMOUNT, NULL);
2879 }
2880 
2881 /* inode security operations */
2882 
2883 static int selinux_inode_alloc_security(struct inode *inode)
2884 {
2885 	return inode_alloc_security(inode);
2886 }
2887 
2888 static void selinux_inode_free_security(struct inode *inode)
2889 {
2890 	inode_free_security(inode);
2891 }
2892 
2893 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2894 					const struct qstr *name, void **ctx,
2895 					u32 *ctxlen)
2896 {
2897 	u32 newsid;
2898 	int rc;
2899 
2900 	rc = selinux_determine_inode_label(current_security(),
2901 					   d_inode(dentry->d_parent), name,
2902 					   inode_mode_to_security_class(mode),
2903 					   &newsid);
2904 	if (rc)
2905 		return rc;
2906 
2907 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2908 }
2909 
2910 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2911 					  struct qstr *name,
2912 					  const struct cred *old,
2913 					  struct cred *new)
2914 {
2915 	u32 newsid;
2916 	int rc;
2917 	struct task_security_struct *tsec;
2918 
2919 	rc = selinux_determine_inode_label(old->security,
2920 					   d_inode(dentry->d_parent), name,
2921 					   inode_mode_to_security_class(mode),
2922 					   &newsid);
2923 	if (rc)
2924 		return rc;
2925 
2926 	tsec = new->security;
2927 	tsec->create_sid = newsid;
2928 	return 0;
2929 }
2930 
2931 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2932 				       const struct qstr *qstr,
2933 				       const char **name,
2934 				       void **value, size_t *len)
2935 {
2936 	const struct task_security_struct *tsec = current_security();
2937 	struct superblock_security_struct *sbsec;
2938 	u32 sid, newsid, clen;
2939 	int rc;
2940 	char *context;
2941 
2942 	sbsec = dir->i_sb->s_security;
2943 
2944 	sid = tsec->sid;
2945 	newsid = tsec->create_sid;
2946 
2947 	rc = selinux_determine_inode_label(current_security(),
2948 		dir, qstr,
2949 		inode_mode_to_security_class(inode->i_mode),
2950 		&newsid);
2951 	if (rc)
2952 		return rc;
2953 
2954 	/* Possibly defer initialization to selinux_complete_init. */
2955 	if (sbsec->flags & SE_SBINITIALIZED) {
2956 		struct inode_security_struct *isec = inode->i_security;
2957 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2958 		isec->sid = newsid;
2959 		isec->initialized = LABEL_INITIALIZED;
2960 	}
2961 
2962 	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2963 		return -EOPNOTSUPP;
2964 
2965 	if (name)
2966 		*name = XATTR_SELINUX_SUFFIX;
2967 
2968 	if (value && len) {
2969 		rc = security_sid_to_context_force(newsid, &context, &clen);
2970 		if (rc)
2971 			return rc;
2972 		*value = context;
2973 		*len = clen;
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2980 {
2981 	return may_create(dir, dentry, SECCLASS_FILE);
2982 }
2983 
2984 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2985 {
2986 	return may_link(dir, old_dentry, MAY_LINK);
2987 }
2988 
2989 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2990 {
2991 	return may_link(dir, dentry, MAY_UNLINK);
2992 }
2993 
2994 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2995 {
2996 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2997 }
2998 
2999 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3000 {
3001 	return may_create(dir, dentry, SECCLASS_DIR);
3002 }
3003 
3004 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3005 {
3006 	return may_link(dir, dentry, MAY_RMDIR);
3007 }
3008 
3009 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3010 {
3011 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3012 }
3013 
3014 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3015 				struct inode *new_inode, struct dentry *new_dentry)
3016 {
3017 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3018 }
3019 
3020 static int selinux_inode_readlink(struct dentry *dentry)
3021 {
3022 	const struct cred *cred = current_cred();
3023 
3024 	return dentry_has_perm(cred, dentry, FILE__READ);
3025 }
3026 
3027 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3028 				     bool rcu)
3029 {
3030 	const struct cred *cred = current_cred();
3031 	struct common_audit_data ad;
3032 	struct inode_security_struct *isec;
3033 	u32 sid;
3034 
3035 	validate_creds(cred);
3036 
3037 	ad.type = LSM_AUDIT_DATA_DENTRY;
3038 	ad.u.dentry = dentry;
3039 	sid = cred_sid(cred);
3040 	isec = inode_security_rcu(inode, rcu);
3041 	if (IS_ERR(isec))
3042 		return PTR_ERR(isec);
3043 
3044 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
3045 				  rcu ? MAY_NOT_BLOCK : 0);
3046 }
3047 
3048 static noinline int audit_inode_permission(struct inode *inode,
3049 					   u32 perms, u32 audited, u32 denied,
3050 					   int result,
3051 					   unsigned flags)
3052 {
3053 	struct common_audit_data ad;
3054 	struct inode_security_struct *isec = inode->i_security;
3055 	int rc;
3056 
3057 	ad.type = LSM_AUDIT_DATA_INODE;
3058 	ad.u.inode = inode;
3059 
3060 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3061 			    audited, denied, result, &ad, flags);
3062 	if (rc)
3063 		return rc;
3064 	return 0;
3065 }
3066 
3067 static int selinux_inode_permission(struct inode *inode, int mask)
3068 {
3069 	const struct cred *cred = current_cred();
3070 	u32 perms;
3071 	bool from_access;
3072 	unsigned flags = mask & MAY_NOT_BLOCK;
3073 	struct inode_security_struct *isec;
3074 	u32 sid;
3075 	struct av_decision avd;
3076 	int rc, rc2;
3077 	u32 audited, denied;
3078 
3079 	from_access = mask & MAY_ACCESS;
3080 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3081 
3082 	/* No permission to check.  Existence test. */
3083 	if (!mask)
3084 		return 0;
3085 
3086 	validate_creds(cred);
3087 
3088 	if (unlikely(IS_PRIVATE(inode)))
3089 		return 0;
3090 
3091 	perms = file_mask_to_av(inode->i_mode, mask);
3092 
3093 	sid = cred_sid(cred);
3094 	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3095 	if (IS_ERR(isec))
3096 		return PTR_ERR(isec);
3097 
3098 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3099 	audited = avc_audit_required(perms, &avd, rc,
3100 				     from_access ? FILE__AUDIT_ACCESS : 0,
3101 				     &denied);
3102 	if (likely(!audited))
3103 		return rc;
3104 
3105 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3106 	if (rc2)
3107 		return rc2;
3108 	return rc;
3109 }
3110 
3111 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3112 {
3113 	const struct cred *cred = current_cred();
3114 	struct inode *inode = d_backing_inode(dentry);
3115 	unsigned int ia_valid = iattr->ia_valid;
3116 	__u32 av = FILE__WRITE;
3117 
3118 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3119 	if (ia_valid & ATTR_FORCE) {
3120 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3121 			      ATTR_FORCE);
3122 		if (!ia_valid)
3123 			return 0;
3124 	}
3125 
3126 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3127 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3128 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3129 
3130 	if (selinux_policycap_openperm &&
3131 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3132 	    (ia_valid & ATTR_SIZE) &&
3133 	    !(ia_valid & ATTR_FILE))
3134 		av |= FILE__OPEN;
3135 
3136 	return dentry_has_perm(cred, dentry, av);
3137 }
3138 
3139 static int selinux_inode_getattr(const struct path *path)
3140 {
3141 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3142 }
3143 
3144 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3145 {
3146 	const struct cred *cred = current_cred();
3147 
3148 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3149 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3150 		if (!strcmp(name, XATTR_NAME_CAPS)) {
3151 			if (!capable(CAP_SETFCAP))
3152 				return -EPERM;
3153 		} else if (!capable(CAP_SYS_ADMIN)) {
3154 			/* A different attribute in the security namespace.
3155 			   Restrict to administrator. */
3156 			return -EPERM;
3157 		}
3158 	}
3159 
3160 	/* Not an attribute we recognize, so just check the
3161 	   ordinary setattr permission. */
3162 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3163 }
3164 
3165 static bool has_cap_mac_admin(bool audit)
3166 {
3167 	const struct cred *cred = current_cred();
3168 	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3169 
3170 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3171 		return false;
3172 	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3173 		return false;
3174 	return true;
3175 }
3176 
3177 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3178 				  const void *value, size_t size, int flags)
3179 {
3180 	struct inode *inode = d_backing_inode(dentry);
3181 	struct inode_security_struct *isec;
3182 	struct superblock_security_struct *sbsec;
3183 	struct common_audit_data ad;
3184 	u32 newsid, sid = current_sid();
3185 	int rc = 0;
3186 
3187 	if (strcmp(name, XATTR_NAME_SELINUX))
3188 		return selinux_inode_setotherxattr(dentry, name);
3189 
3190 	sbsec = inode->i_sb->s_security;
3191 	if (!(sbsec->flags & SBLABEL_MNT))
3192 		return -EOPNOTSUPP;
3193 
3194 	if (!inode_owner_or_capable(inode))
3195 		return -EPERM;
3196 
3197 	ad.type = LSM_AUDIT_DATA_DENTRY;
3198 	ad.u.dentry = dentry;
3199 
3200 	isec = backing_inode_security(dentry);
3201 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3202 			  FILE__RELABELFROM, &ad);
3203 	if (rc)
3204 		return rc;
3205 
3206 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3207 	if (rc == -EINVAL) {
3208 		if (!has_cap_mac_admin(true)) {
3209 			struct audit_buffer *ab;
3210 			size_t audit_size;
3211 			const char *str;
3212 
3213 			/* We strip a nul only if it is at the end, otherwise the
3214 			 * context contains a nul and we should audit that */
3215 			if (value) {
3216 				str = value;
3217 				if (str[size - 1] == '\0')
3218 					audit_size = size - 1;
3219 				else
3220 					audit_size = size;
3221 			} else {
3222 				str = "";
3223 				audit_size = 0;
3224 			}
3225 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3226 			audit_log_format(ab, "op=setxattr invalid_context=");
3227 			audit_log_n_untrustedstring(ab, value, audit_size);
3228 			audit_log_end(ab);
3229 
3230 			return rc;
3231 		}
3232 		rc = security_context_to_sid_force(value, size, &newsid);
3233 	}
3234 	if (rc)
3235 		return rc;
3236 
3237 	rc = avc_has_perm(sid, newsid, isec->sclass,
3238 			  FILE__RELABELTO, &ad);
3239 	if (rc)
3240 		return rc;
3241 
3242 	rc = security_validate_transition(isec->sid, newsid, sid,
3243 					  isec->sclass);
3244 	if (rc)
3245 		return rc;
3246 
3247 	return avc_has_perm(newsid,
3248 			    sbsec->sid,
3249 			    SECCLASS_FILESYSTEM,
3250 			    FILESYSTEM__ASSOCIATE,
3251 			    &ad);
3252 }
3253 
3254 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3255 					const void *value, size_t size,
3256 					int flags)
3257 {
3258 	struct inode *inode = d_backing_inode(dentry);
3259 	struct inode_security_struct *isec;
3260 	u32 newsid;
3261 	int rc;
3262 
3263 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3264 		/* Not an attribute we recognize, so nothing to do. */
3265 		return;
3266 	}
3267 
3268 	rc = security_context_to_sid_force(value, size, &newsid);
3269 	if (rc) {
3270 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3271 		       "for (%s, %lu), rc=%d\n",
3272 		       inode->i_sb->s_id, inode->i_ino, -rc);
3273 		return;
3274 	}
3275 
3276 	isec = backing_inode_security(dentry);
3277 	spin_lock(&isec->lock);
3278 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3279 	isec->sid = newsid;
3280 	isec->initialized = LABEL_INITIALIZED;
3281 	spin_unlock(&isec->lock);
3282 
3283 	return;
3284 }
3285 
3286 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3287 {
3288 	const struct cred *cred = current_cred();
3289 
3290 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3291 }
3292 
3293 static int selinux_inode_listxattr(struct dentry *dentry)
3294 {
3295 	const struct cred *cred = current_cred();
3296 
3297 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3298 }
3299 
3300 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3301 {
3302 	if (strcmp(name, XATTR_NAME_SELINUX))
3303 		return selinux_inode_setotherxattr(dentry, name);
3304 
3305 	/* No one is allowed to remove a SELinux security label.
3306 	   You can change the label, but all data must be labeled. */
3307 	return -EACCES;
3308 }
3309 
3310 /*
3311  * Copy the inode security context value to the user.
3312  *
3313  * Permission check is handled by selinux_inode_getxattr hook.
3314  */
3315 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3316 {
3317 	u32 size;
3318 	int error;
3319 	char *context = NULL;
3320 	struct inode_security_struct *isec;
3321 
3322 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3323 		return -EOPNOTSUPP;
3324 
3325 	/*
3326 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3327 	 * value even if it is not defined by current policy; otherwise,
3328 	 * use the in-core value under current policy.
3329 	 * Use the non-auditing forms of the permission checks since
3330 	 * getxattr may be called by unprivileged processes commonly
3331 	 * and lack of permission just means that we fall back to the
3332 	 * in-core context value, not a denial.
3333 	 */
3334 	isec = inode_security(inode);
3335 	if (has_cap_mac_admin(false))
3336 		error = security_sid_to_context_force(isec->sid, &context,
3337 						      &size);
3338 	else
3339 		error = security_sid_to_context(isec->sid, &context, &size);
3340 	if (error)
3341 		return error;
3342 	error = size;
3343 	if (alloc) {
3344 		*buffer = context;
3345 		goto out_nofree;
3346 	}
3347 	kfree(context);
3348 out_nofree:
3349 	return error;
3350 }
3351 
3352 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3353 				     const void *value, size_t size, int flags)
3354 {
3355 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3356 	u32 newsid;
3357 	int rc;
3358 
3359 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3360 		return -EOPNOTSUPP;
3361 
3362 	if (!value || !size)
3363 		return -EACCES;
3364 
3365 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3366 	if (rc)
3367 		return rc;
3368 
3369 	spin_lock(&isec->lock);
3370 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3371 	isec->sid = newsid;
3372 	isec->initialized = LABEL_INITIALIZED;
3373 	spin_unlock(&isec->lock);
3374 	return 0;
3375 }
3376 
3377 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3378 {
3379 	const int len = sizeof(XATTR_NAME_SELINUX);
3380 	if (buffer && len <= buffer_size)
3381 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3382 	return len;
3383 }
3384 
3385 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3386 {
3387 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3388 	*secid = isec->sid;
3389 }
3390 
3391 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3392 {
3393 	u32 sid;
3394 	struct task_security_struct *tsec;
3395 	struct cred *new_creds = *new;
3396 
3397 	if (new_creds == NULL) {
3398 		new_creds = prepare_creds();
3399 		if (!new_creds)
3400 			return -ENOMEM;
3401 	}
3402 
3403 	tsec = new_creds->security;
3404 	/* Get label from overlay inode and set it in create_sid */
3405 	selinux_inode_getsecid(d_inode(src), &sid);
3406 	tsec->create_sid = sid;
3407 	*new = new_creds;
3408 	return 0;
3409 }
3410 
3411 static int selinux_inode_copy_up_xattr(const char *name)
3412 {
3413 	/* The copy_up hook above sets the initial context on an inode, but we
3414 	 * don't then want to overwrite it by blindly copying all the lower
3415 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3416 	 */
3417 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3418 		return 1; /* Discard */
3419 	/*
3420 	 * Any other attribute apart from SELINUX is not claimed, supported
3421 	 * by selinux.
3422 	 */
3423 	return -EOPNOTSUPP;
3424 }
3425 
3426 /* file security operations */
3427 
3428 static int selinux_revalidate_file_permission(struct file *file, int mask)
3429 {
3430 	const struct cred *cred = current_cred();
3431 	struct inode *inode = file_inode(file);
3432 
3433 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3434 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3435 		mask |= MAY_APPEND;
3436 
3437 	return file_has_perm(cred, file,
3438 			     file_mask_to_av(inode->i_mode, mask));
3439 }
3440 
3441 static int selinux_file_permission(struct file *file, int mask)
3442 {
3443 	struct inode *inode = file_inode(file);
3444 	struct file_security_struct *fsec = file->f_security;
3445 	struct inode_security_struct *isec;
3446 	u32 sid = current_sid();
3447 
3448 	if (!mask)
3449 		/* No permission to check.  Existence test. */
3450 		return 0;
3451 
3452 	isec = inode_security(inode);
3453 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3454 	    fsec->pseqno == avc_policy_seqno())
3455 		/* No change since file_open check. */
3456 		return 0;
3457 
3458 	return selinux_revalidate_file_permission(file, mask);
3459 }
3460 
3461 static int selinux_file_alloc_security(struct file *file)
3462 {
3463 	return file_alloc_security(file);
3464 }
3465 
3466 static void selinux_file_free_security(struct file *file)
3467 {
3468 	file_free_security(file);
3469 }
3470 
3471 /*
3472  * Check whether a task has the ioctl permission and cmd
3473  * operation to an inode.
3474  */
3475 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3476 		u32 requested, u16 cmd)
3477 {
3478 	struct common_audit_data ad;
3479 	struct file_security_struct *fsec = file->f_security;
3480 	struct inode *inode = file_inode(file);
3481 	struct inode_security_struct *isec;
3482 	struct lsm_ioctlop_audit ioctl;
3483 	u32 ssid = cred_sid(cred);
3484 	int rc;
3485 	u8 driver = cmd >> 8;
3486 	u8 xperm = cmd & 0xff;
3487 
3488 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3489 	ad.u.op = &ioctl;
3490 	ad.u.op->cmd = cmd;
3491 	ad.u.op->path = file->f_path;
3492 
3493 	if (ssid != fsec->sid) {
3494 		rc = avc_has_perm(ssid, fsec->sid,
3495 				SECCLASS_FD,
3496 				FD__USE,
3497 				&ad);
3498 		if (rc)
3499 			goto out;
3500 	}
3501 
3502 	if (unlikely(IS_PRIVATE(inode)))
3503 		return 0;
3504 
3505 	isec = inode_security(inode);
3506 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3507 			requested, driver, xperm, &ad);
3508 out:
3509 	return rc;
3510 }
3511 
3512 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3513 			      unsigned long arg)
3514 {
3515 	const struct cred *cred = current_cred();
3516 	int error = 0;
3517 
3518 	switch (cmd) {
3519 	case FIONREAD:
3520 	/* fall through */
3521 	case FIBMAP:
3522 	/* fall through */
3523 	case FIGETBSZ:
3524 	/* fall through */
3525 	case FS_IOC_GETFLAGS:
3526 	/* fall through */
3527 	case FS_IOC_GETVERSION:
3528 		error = file_has_perm(cred, file, FILE__GETATTR);
3529 		break;
3530 
3531 	case FS_IOC_SETFLAGS:
3532 	/* fall through */
3533 	case FS_IOC_SETVERSION:
3534 		error = file_has_perm(cred, file, FILE__SETATTR);
3535 		break;
3536 
3537 	/* sys_ioctl() checks */
3538 	case FIONBIO:
3539 	/* fall through */
3540 	case FIOASYNC:
3541 		error = file_has_perm(cred, file, 0);
3542 		break;
3543 
3544 	case KDSKBENT:
3545 	case KDSKBSENT:
3546 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3547 					    SECURITY_CAP_AUDIT, true);
3548 		break;
3549 
3550 	/* default case assumes that the command will go
3551 	 * to the file's ioctl() function.
3552 	 */
3553 	default:
3554 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3555 	}
3556 	return error;
3557 }
3558 
3559 static int default_noexec;
3560 
3561 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3562 {
3563 	const struct cred *cred = current_cred();
3564 	u32 sid = cred_sid(cred);
3565 	int rc = 0;
3566 
3567 	if (default_noexec &&
3568 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3569 				   (!shared && (prot & PROT_WRITE)))) {
3570 		/*
3571 		 * We are making executable an anonymous mapping or a
3572 		 * private file mapping that will also be writable.
3573 		 * This has an additional check.
3574 		 */
3575 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3576 				  PROCESS__EXECMEM, NULL);
3577 		if (rc)
3578 			goto error;
3579 	}
3580 
3581 	if (file) {
3582 		/* read access is always possible with a mapping */
3583 		u32 av = FILE__READ;
3584 
3585 		/* write access only matters if the mapping is shared */
3586 		if (shared && (prot & PROT_WRITE))
3587 			av |= FILE__WRITE;
3588 
3589 		if (prot & PROT_EXEC)
3590 			av |= FILE__EXECUTE;
3591 
3592 		return file_has_perm(cred, file, av);
3593 	}
3594 
3595 error:
3596 	return rc;
3597 }
3598 
3599 static int selinux_mmap_addr(unsigned long addr)
3600 {
3601 	int rc = 0;
3602 
3603 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3604 		u32 sid = current_sid();
3605 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3606 				  MEMPROTECT__MMAP_ZERO, NULL);
3607 	}
3608 
3609 	return rc;
3610 }
3611 
3612 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3613 			     unsigned long prot, unsigned long flags)
3614 {
3615 	struct common_audit_data ad;
3616 	int rc;
3617 
3618 	if (file) {
3619 		ad.type = LSM_AUDIT_DATA_FILE;
3620 		ad.u.file = file;
3621 		rc = inode_has_perm(current_cred(), file_inode(file),
3622 				    FILE__MAP, &ad);
3623 		if (rc)
3624 			return rc;
3625 	}
3626 
3627 	if (selinux_checkreqprot)
3628 		prot = reqprot;
3629 
3630 	return file_map_prot_check(file, prot,
3631 				   (flags & MAP_TYPE) == MAP_SHARED);
3632 }
3633 
3634 static int selinux_file_mprotect(struct vm_area_struct *vma,
3635 				 unsigned long reqprot,
3636 				 unsigned long prot)
3637 {
3638 	const struct cred *cred = current_cred();
3639 	u32 sid = cred_sid(cred);
3640 
3641 	if (selinux_checkreqprot)
3642 		prot = reqprot;
3643 
3644 	if (default_noexec &&
3645 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3646 		int rc = 0;
3647 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3648 		    vma->vm_end <= vma->vm_mm->brk) {
3649 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3650 					  PROCESS__EXECHEAP, NULL);
3651 		} else if (!vma->vm_file &&
3652 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3653 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3654 			    vma_is_stack_for_current(vma))) {
3655 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3656 					  PROCESS__EXECSTACK, NULL);
3657 		} else if (vma->vm_file && vma->anon_vma) {
3658 			/*
3659 			 * We are making executable a file mapping that has
3660 			 * had some COW done. Since pages might have been
3661 			 * written, check ability to execute the possibly
3662 			 * modified content.  This typically should only
3663 			 * occur for text relocations.
3664 			 */
3665 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3666 		}
3667 		if (rc)
3668 			return rc;
3669 	}
3670 
3671 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3672 }
3673 
3674 static int selinux_file_lock(struct file *file, unsigned int cmd)
3675 {
3676 	const struct cred *cred = current_cred();
3677 
3678 	return file_has_perm(cred, file, FILE__LOCK);
3679 }
3680 
3681 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3682 			      unsigned long arg)
3683 {
3684 	const struct cred *cred = current_cred();
3685 	int err = 0;
3686 
3687 	switch (cmd) {
3688 	case F_SETFL:
3689 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3690 			err = file_has_perm(cred, file, FILE__WRITE);
3691 			break;
3692 		}
3693 		/* fall through */
3694 	case F_SETOWN:
3695 	case F_SETSIG:
3696 	case F_GETFL:
3697 	case F_GETOWN:
3698 	case F_GETSIG:
3699 	case F_GETOWNER_UIDS:
3700 		/* Just check FD__USE permission */
3701 		err = file_has_perm(cred, file, 0);
3702 		break;
3703 	case F_GETLK:
3704 	case F_SETLK:
3705 	case F_SETLKW:
3706 	case F_OFD_GETLK:
3707 	case F_OFD_SETLK:
3708 	case F_OFD_SETLKW:
3709 #if BITS_PER_LONG == 32
3710 	case F_GETLK64:
3711 	case F_SETLK64:
3712 	case F_SETLKW64:
3713 #endif
3714 		err = file_has_perm(cred, file, FILE__LOCK);
3715 		break;
3716 	}
3717 
3718 	return err;
3719 }
3720 
3721 static void selinux_file_set_fowner(struct file *file)
3722 {
3723 	struct file_security_struct *fsec;
3724 
3725 	fsec = file->f_security;
3726 	fsec->fown_sid = current_sid();
3727 }
3728 
3729 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3730 				       struct fown_struct *fown, int signum)
3731 {
3732 	struct file *file;
3733 	u32 sid = task_sid(tsk);
3734 	u32 perm;
3735 	struct file_security_struct *fsec;
3736 
3737 	/* struct fown_struct is never outside the context of a struct file */
3738 	file = container_of(fown, struct file, f_owner);
3739 
3740 	fsec = file->f_security;
3741 
3742 	if (!signum)
3743 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3744 	else
3745 		perm = signal_to_av(signum);
3746 
3747 	return avc_has_perm(fsec->fown_sid, sid,
3748 			    SECCLASS_PROCESS, perm, NULL);
3749 }
3750 
3751 static int selinux_file_receive(struct file *file)
3752 {
3753 	const struct cred *cred = current_cred();
3754 
3755 	return file_has_perm(cred, file, file_to_av(file));
3756 }
3757 
3758 static int selinux_file_open(struct file *file, const struct cred *cred)
3759 {
3760 	struct file_security_struct *fsec;
3761 	struct inode_security_struct *isec;
3762 
3763 	fsec = file->f_security;
3764 	isec = inode_security(file_inode(file));
3765 	/*
3766 	 * Save inode label and policy sequence number
3767 	 * at open-time so that selinux_file_permission
3768 	 * can determine whether revalidation is necessary.
3769 	 * Task label is already saved in the file security
3770 	 * struct as its SID.
3771 	 */
3772 	fsec->isid = isec->sid;
3773 	fsec->pseqno = avc_policy_seqno();
3774 	/*
3775 	 * Since the inode label or policy seqno may have changed
3776 	 * between the selinux_inode_permission check and the saving
3777 	 * of state above, recheck that access is still permitted.
3778 	 * Otherwise, access might never be revalidated against the
3779 	 * new inode label or new policy.
3780 	 * This check is not redundant - do not remove.
3781 	 */
3782 	return file_path_has_perm(cred, file, open_file_to_av(file));
3783 }
3784 
3785 /* task security operations */
3786 
3787 static int selinux_task_alloc(struct task_struct *task,
3788 			      unsigned long clone_flags)
3789 {
3790 	u32 sid = current_sid();
3791 
3792 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3793 }
3794 
3795 /*
3796  * allocate the SELinux part of blank credentials
3797  */
3798 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3799 {
3800 	struct task_security_struct *tsec;
3801 
3802 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3803 	if (!tsec)
3804 		return -ENOMEM;
3805 
3806 	cred->security = tsec;
3807 	return 0;
3808 }
3809 
3810 /*
3811  * detach and free the LSM part of a set of credentials
3812  */
3813 static void selinux_cred_free(struct cred *cred)
3814 {
3815 	struct task_security_struct *tsec = cred->security;
3816 
3817 	/*
3818 	 * cred->security == NULL if security_cred_alloc_blank() or
3819 	 * security_prepare_creds() returned an error.
3820 	 */
3821 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3822 	cred->security = (void *) 0x7UL;
3823 	kfree(tsec);
3824 }
3825 
3826 /*
3827  * prepare a new set of credentials for modification
3828  */
3829 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3830 				gfp_t gfp)
3831 {
3832 	const struct task_security_struct *old_tsec;
3833 	struct task_security_struct *tsec;
3834 
3835 	old_tsec = old->security;
3836 
3837 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3838 	if (!tsec)
3839 		return -ENOMEM;
3840 
3841 	new->security = tsec;
3842 	return 0;
3843 }
3844 
3845 /*
3846  * transfer the SELinux data to a blank set of creds
3847  */
3848 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3849 {
3850 	const struct task_security_struct *old_tsec = old->security;
3851 	struct task_security_struct *tsec = new->security;
3852 
3853 	*tsec = *old_tsec;
3854 }
3855 
3856 /*
3857  * set the security data for a kernel service
3858  * - all the creation contexts are set to unlabelled
3859  */
3860 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3861 {
3862 	struct task_security_struct *tsec = new->security;
3863 	u32 sid = current_sid();
3864 	int ret;
3865 
3866 	ret = avc_has_perm(sid, secid,
3867 			   SECCLASS_KERNEL_SERVICE,
3868 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3869 			   NULL);
3870 	if (ret == 0) {
3871 		tsec->sid = secid;
3872 		tsec->create_sid = 0;
3873 		tsec->keycreate_sid = 0;
3874 		tsec->sockcreate_sid = 0;
3875 	}
3876 	return ret;
3877 }
3878 
3879 /*
3880  * set the file creation context in a security record to the same as the
3881  * objective context of the specified inode
3882  */
3883 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3884 {
3885 	struct inode_security_struct *isec = inode_security(inode);
3886 	struct task_security_struct *tsec = new->security;
3887 	u32 sid = current_sid();
3888 	int ret;
3889 
3890 	ret = avc_has_perm(sid, isec->sid,
3891 			   SECCLASS_KERNEL_SERVICE,
3892 			   KERNEL_SERVICE__CREATE_FILES_AS,
3893 			   NULL);
3894 
3895 	if (ret == 0)
3896 		tsec->create_sid = isec->sid;
3897 	return ret;
3898 }
3899 
3900 static int selinux_kernel_module_request(char *kmod_name)
3901 {
3902 	struct common_audit_data ad;
3903 
3904 	ad.type = LSM_AUDIT_DATA_KMOD;
3905 	ad.u.kmod_name = kmod_name;
3906 
3907 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3908 			    SYSTEM__MODULE_REQUEST, &ad);
3909 }
3910 
3911 static int selinux_kernel_module_from_file(struct file *file)
3912 {
3913 	struct common_audit_data ad;
3914 	struct inode_security_struct *isec;
3915 	struct file_security_struct *fsec;
3916 	u32 sid = current_sid();
3917 	int rc;
3918 
3919 	/* init_module */
3920 	if (file == NULL)
3921 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3922 					SYSTEM__MODULE_LOAD, NULL);
3923 
3924 	/* finit_module */
3925 
3926 	ad.type = LSM_AUDIT_DATA_FILE;
3927 	ad.u.file = file;
3928 
3929 	fsec = file->f_security;
3930 	if (sid != fsec->sid) {
3931 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3932 		if (rc)
3933 			return rc;
3934 	}
3935 
3936 	isec = inode_security(file_inode(file));
3937 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3938 				SYSTEM__MODULE_LOAD, &ad);
3939 }
3940 
3941 static int selinux_kernel_read_file(struct file *file,
3942 				    enum kernel_read_file_id id)
3943 {
3944 	int rc = 0;
3945 
3946 	switch (id) {
3947 	case READING_MODULE:
3948 		rc = selinux_kernel_module_from_file(file);
3949 		break;
3950 	default:
3951 		break;
3952 	}
3953 
3954 	return rc;
3955 }
3956 
3957 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3958 {
3959 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3960 			    PROCESS__SETPGID, NULL);
3961 }
3962 
3963 static int selinux_task_getpgid(struct task_struct *p)
3964 {
3965 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3966 			    PROCESS__GETPGID, NULL);
3967 }
3968 
3969 static int selinux_task_getsid(struct task_struct *p)
3970 {
3971 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3972 			    PROCESS__GETSESSION, NULL);
3973 }
3974 
3975 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3976 {
3977 	*secid = task_sid(p);
3978 }
3979 
3980 static int selinux_task_setnice(struct task_struct *p, int nice)
3981 {
3982 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3983 			    PROCESS__SETSCHED, NULL);
3984 }
3985 
3986 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3987 {
3988 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3989 			    PROCESS__SETSCHED, NULL);
3990 }
3991 
3992 static int selinux_task_getioprio(struct task_struct *p)
3993 {
3994 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3995 			    PROCESS__GETSCHED, NULL);
3996 }
3997 
3998 int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
3999 			 unsigned int flags)
4000 {
4001 	u32 av = 0;
4002 
4003 	if (!flags)
4004 		return 0;
4005 	if (flags & LSM_PRLIMIT_WRITE)
4006 		av |= PROCESS__SETRLIMIT;
4007 	if (flags & LSM_PRLIMIT_READ)
4008 		av |= PROCESS__GETRLIMIT;
4009 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4010 			    SECCLASS_PROCESS, av, NULL);
4011 }
4012 
4013 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4014 		struct rlimit *new_rlim)
4015 {
4016 	struct rlimit *old_rlim = p->signal->rlim + resource;
4017 
4018 	/* Control the ability to change the hard limit (whether
4019 	   lowering or raising it), so that the hard limit can
4020 	   later be used as a safe reset point for the soft limit
4021 	   upon context transitions.  See selinux_bprm_committing_creds. */
4022 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4023 		return avc_has_perm(current_sid(), task_sid(p),
4024 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4025 
4026 	return 0;
4027 }
4028 
4029 static int selinux_task_setscheduler(struct task_struct *p)
4030 {
4031 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
4032 			    PROCESS__SETSCHED, NULL);
4033 }
4034 
4035 static int selinux_task_getscheduler(struct task_struct *p)
4036 {
4037 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
4038 			    PROCESS__GETSCHED, NULL);
4039 }
4040 
4041 static int selinux_task_movememory(struct task_struct *p)
4042 {
4043 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
4044 			    PROCESS__SETSCHED, NULL);
4045 }
4046 
4047 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4048 				int sig, u32 secid)
4049 {
4050 	u32 perm;
4051 
4052 	if (!sig)
4053 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4054 	else
4055 		perm = signal_to_av(sig);
4056 	if (!secid)
4057 		secid = current_sid();
4058 	return avc_has_perm(secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4059 }
4060 
4061 static void selinux_task_to_inode(struct task_struct *p,
4062 				  struct inode *inode)
4063 {
4064 	struct inode_security_struct *isec = inode->i_security;
4065 	u32 sid = task_sid(p);
4066 
4067 	spin_lock(&isec->lock);
4068 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4069 	isec->sid = sid;
4070 	isec->initialized = LABEL_INITIALIZED;
4071 	spin_unlock(&isec->lock);
4072 }
4073 
4074 /* Returns error only if unable to parse addresses */
4075 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4076 			struct common_audit_data *ad, u8 *proto)
4077 {
4078 	int offset, ihlen, ret = -EINVAL;
4079 	struct iphdr _iph, *ih;
4080 
4081 	offset = skb_network_offset(skb);
4082 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4083 	if (ih == NULL)
4084 		goto out;
4085 
4086 	ihlen = ih->ihl * 4;
4087 	if (ihlen < sizeof(_iph))
4088 		goto out;
4089 
4090 	ad->u.net->v4info.saddr = ih->saddr;
4091 	ad->u.net->v4info.daddr = ih->daddr;
4092 	ret = 0;
4093 
4094 	if (proto)
4095 		*proto = ih->protocol;
4096 
4097 	switch (ih->protocol) {
4098 	case IPPROTO_TCP: {
4099 		struct tcphdr _tcph, *th;
4100 
4101 		if (ntohs(ih->frag_off) & IP_OFFSET)
4102 			break;
4103 
4104 		offset += ihlen;
4105 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4106 		if (th == NULL)
4107 			break;
4108 
4109 		ad->u.net->sport = th->source;
4110 		ad->u.net->dport = th->dest;
4111 		break;
4112 	}
4113 
4114 	case IPPROTO_UDP: {
4115 		struct udphdr _udph, *uh;
4116 
4117 		if (ntohs(ih->frag_off) & IP_OFFSET)
4118 			break;
4119 
4120 		offset += ihlen;
4121 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4122 		if (uh == NULL)
4123 			break;
4124 
4125 		ad->u.net->sport = uh->source;
4126 		ad->u.net->dport = uh->dest;
4127 		break;
4128 	}
4129 
4130 	case IPPROTO_DCCP: {
4131 		struct dccp_hdr _dccph, *dh;
4132 
4133 		if (ntohs(ih->frag_off) & IP_OFFSET)
4134 			break;
4135 
4136 		offset += ihlen;
4137 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4138 		if (dh == NULL)
4139 			break;
4140 
4141 		ad->u.net->sport = dh->dccph_sport;
4142 		ad->u.net->dport = dh->dccph_dport;
4143 		break;
4144 	}
4145 
4146 	default:
4147 		break;
4148 	}
4149 out:
4150 	return ret;
4151 }
4152 
4153 #if IS_ENABLED(CONFIG_IPV6)
4154 
4155 /* Returns error only if unable to parse addresses */
4156 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4157 			struct common_audit_data *ad, u8 *proto)
4158 {
4159 	u8 nexthdr;
4160 	int ret = -EINVAL, offset;
4161 	struct ipv6hdr _ipv6h, *ip6;
4162 	__be16 frag_off;
4163 
4164 	offset = skb_network_offset(skb);
4165 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4166 	if (ip6 == NULL)
4167 		goto out;
4168 
4169 	ad->u.net->v6info.saddr = ip6->saddr;
4170 	ad->u.net->v6info.daddr = ip6->daddr;
4171 	ret = 0;
4172 
4173 	nexthdr = ip6->nexthdr;
4174 	offset += sizeof(_ipv6h);
4175 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4176 	if (offset < 0)
4177 		goto out;
4178 
4179 	if (proto)
4180 		*proto = nexthdr;
4181 
4182 	switch (nexthdr) {
4183 	case IPPROTO_TCP: {
4184 		struct tcphdr _tcph, *th;
4185 
4186 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4187 		if (th == NULL)
4188 			break;
4189 
4190 		ad->u.net->sport = th->source;
4191 		ad->u.net->dport = th->dest;
4192 		break;
4193 	}
4194 
4195 	case IPPROTO_UDP: {
4196 		struct udphdr _udph, *uh;
4197 
4198 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4199 		if (uh == NULL)
4200 			break;
4201 
4202 		ad->u.net->sport = uh->source;
4203 		ad->u.net->dport = uh->dest;
4204 		break;
4205 	}
4206 
4207 	case IPPROTO_DCCP: {
4208 		struct dccp_hdr _dccph, *dh;
4209 
4210 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4211 		if (dh == NULL)
4212 			break;
4213 
4214 		ad->u.net->sport = dh->dccph_sport;
4215 		ad->u.net->dport = dh->dccph_dport;
4216 		break;
4217 	}
4218 
4219 	/* includes fragments */
4220 	default:
4221 		break;
4222 	}
4223 out:
4224 	return ret;
4225 }
4226 
4227 #endif /* IPV6 */
4228 
4229 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4230 			     char **_addrp, int src, u8 *proto)
4231 {
4232 	char *addrp;
4233 	int ret;
4234 
4235 	switch (ad->u.net->family) {
4236 	case PF_INET:
4237 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4238 		if (ret)
4239 			goto parse_error;
4240 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4241 				       &ad->u.net->v4info.daddr);
4242 		goto okay;
4243 
4244 #if IS_ENABLED(CONFIG_IPV6)
4245 	case PF_INET6:
4246 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4247 		if (ret)
4248 			goto parse_error;
4249 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4250 				       &ad->u.net->v6info.daddr);
4251 		goto okay;
4252 #endif	/* IPV6 */
4253 	default:
4254 		addrp = NULL;
4255 		goto okay;
4256 	}
4257 
4258 parse_error:
4259 	printk(KERN_WARNING
4260 	       "SELinux: failure in selinux_parse_skb(),"
4261 	       " unable to parse packet\n");
4262 	return ret;
4263 
4264 okay:
4265 	if (_addrp)
4266 		*_addrp = addrp;
4267 	return 0;
4268 }
4269 
4270 /**
4271  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4272  * @skb: the packet
4273  * @family: protocol family
4274  * @sid: the packet's peer label SID
4275  *
4276  * Description:
4277  * Check the various different forms of network peer labeling and determine
4278  * the peer label/SID for the packet; most of the magic actually occurs in
4279  * the security server function security_net_peersid_cmp().  The function
4280  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4281  * or -EACCES if @sid is invalid due to inconsistencies with the different
4282  * peer labels.
4283  *
4284  */
4285 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4286 {
4287 	int err;
4288 	u32 xfrm_sid;
4289 	u32 nlbl_sid;
4290 	u32 nlbl_type;
4291 
4292 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4293 	if (unlikely(err))
4294 		return -EACCES;
4295 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4296 	if (unlikely(err))
4297 		return -EACCES;
4298 
4299 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4300 	if (unlikely(err)) {
4301 		printk(KERN_WARNING
4302 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4303 		       " unable to determine packet's peer label\n");
4304 		return -EACCES;
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 /**
4311  * selinux_conn_sid - Determine the child socket label for a connection
4312  * @sk_sid: the parent socket's SID
4313  * @skb_sid: the packet's SID
4314  * @conn_sid: the resulting connection SID
4315  *
4316  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4317  * combined with the MLS information from @skb_sid in order to create
4318  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4319  * of @sk_sid.  Returns zero on success, negative values on failure.
4320  *
4321  */
4322 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4323 {
4324 	int err = 0;
4325 
4326 	if (skb_sid != SECSID_NULL)
4327 		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4328 	else
4329 		*conn_sid = sk_sid;
4330 
4331 	return err;
4332 }
4333 
4334 /* socket security operations */
4335 
4336 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4337 				 u16 secclass, u32 *socksid)
4338 {
4339 	if (tsec->sockcreate_sid > SECSID_NULL) {
4340 		*socksid = tsec->sockcreate_sid;
4341 		return 0;
4342 	}
4343 
4344 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4345 				       socksid);
4346 }
4347 
4348 static int sock_has_perm(struct sock *sk, u32 perms)
4349 {
4350 	struct sk_security_struct *sksec = sk->sk_security;
4351 	struct common_audit_data ad;
4352 	struct lsm_network_audit net = {0,};
4353 
4354 	if (sksec->sid == SECINITSID_KERNEL)
4355 		return 0;
4356 
4357 	ad.type = LSM_AUDIT_DATA_NET;
4358 	ad.u.net = &net;
4359 	ad.u.net->sk = sk;
4360 
4361 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4362 			    &ad);
4363 }
4364 
4365 static int selinux_socket_create(int family, int type,
4366 				 int protocol, int kern)
4367 {
4368 	const struct task_security_struct *tsec = current_security();
4369 	u32 newsid;
4370 	u16 secclass;
4371 	int rc;
4372 
4373 	if (kern)
4374 		return 0;
4375 
4376 	secclass = socket_type_to_security_class(family, type, protocol);
4377 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4378 	if (rc)
4379 		return rc;
4380 
4381 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4382 }
4383 
4384 static int selinux_socket_post_create(struct socket *sock, int family,
4385 				      int type, int protocol, int kern)
4386 {
4387 	const struct task_security_struct *tsec = current_security();
4388 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4389 	struct sk_security_struct *sksec;
4390 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4391 	u32 sid = SECINITSID_KERNEL;
4392 	int err = 0;
4393 
4394 	if (!kern) {
4395 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4396 		if (err)
4397 			return err;
4398 	}
4399 
4400 	isec->sclass = sclass;
4401 	isec->sid = sid;
4402 	isec->initialized = LABEL_INITIALIZED;
4403 
4404 	if (sock->sk) {
4405 		sksec = sock->sk->sk_security;
4406 		sksec->sclass = sclass;
4407 		sksec->sid = sid;
4408 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4409 	}
4410 
4411 	return err;
4412 }
4413 
4414 /* Range of port numbers used to automatically bind.
4415    Need to determine whether we should perform a name_bind
4416    permission check between the socket and the port number. */
4417 
4418 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4419 {
4420 	struct sock *sk = sock->sk;
4421 	u16 family;
4422 	int err;
4423 
4424 	err = sock_has_perm(sk, SOCKET__BIND);
4425 	if (err)
4426 		goto out;
4427 
4428 	/*
4429 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4430 	 * Multiple address binding for SCTP is not supported yet: we just
4431 	 * check the first address now.
4432 	 */
4433 	family = sk->sk_family;
4434 	if (family == PF_INET || family == PF_INET6) {
4435 		char *addrp;
4436 		struct sk_security_struct *sksec = sk->sk_security;
4437 		struct common_audit_data ad;
4438 		struct lsm_network_audit net = {0,};
4439 		struct sockaddr_in *addr4 = NULL;
4440 		struct sockaddr_in6 *addr6 = NULL;
4441 		unsigned short snum;
4442 		u32 sid, node_perm;
4443 
4444 		if (family == PF_INET) {
4445 			if (addrlen < sizeof(struct sockaddr_in)) {
4446 				err = -EINVAL;
4447 				goto out;
4448 			}
4449 			addr4 = (struct sockaddr_in *)address;
4450 			snum = ntohs(addr4->sin_port);
4451 			addrp = (char *)&addr4->sin_addr.s_addr;
4452 		} else {
4453 			if (addrlen < SIN6_LEN_RFC2133) {
4454 				err = -EINVAL;
4455 				goto out;
4456 			}
4457 			addr6 = (struct sockaddr_in6 *)address;
4458 			snum = ntohs(addr6->sin6_port);
4459 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4460 		}
4461 
4462 		if (snum) {
4463 			int low, high;
4464 
4465 			inet_get_local_port_range(sock_net(sk), &low, &high);
4466 
4467 			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4468 			    snum > high) {
4469 				err = sel_netport_sid(sk->sk_protocol,
4470 						      snum, &sid);
4471 				if (err)
4472 					goto out;
4473 				ad.type = LSM_AUDIT_DATA_NET;
4474 				ad.u.net = &net;
4475 				ad.u.net->sport = htons(snum);
4476 				ad.u.net->family = family;
4477 				err = avc_has_perm(sksec->sid, sid,
4478 						   sksec->sclass,
4479 						   SOCKET__NAME_BIND, &ad);
4480 				if (err)
4481 					goto out;
4482 			}
4483 		}
4484 
4485 		switch (sksec->sclass) {
4486 		case SECCLASS_TCP_SOCKET:
4487 			node_perm = TCP_SOCKET__NODE_BIND;
4488 			break;
4489 
4490 		case SECCLASS_UDP_SOCKET:
4491 			node_perm = UDP_SOCKET__NODE_BIND;
4492 			break;
4493 
4494 		case SECCLASS_DCCP_SOCKET:
4495 			node_perm = DCCP_SOCKET__NODE_BIND;
4496 			break;
4497 
4498 		default:
4499 			node_perm = RAWIP_SOCKET__NODE_BIND;
4500 			break;
4501 		}
4502 
4503 		err = sel_netnode_sid(addrp, family, &sid);
4504 		if (err)
4505 			goto out;
4506 
4507 		ad.type = LSM_AUDIT_DATA_NET;
4508 		ad.u.net = &net;
4509 		ad.u.net->sport = htons(snum);
4510 		ad.u.net->family = family;
4511 
4512 		if (family == PF_INET)
4513 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4514 		else
4515 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4516 
4517 		err = avc_has_perm(sksec->sid, sid,
4518 				   sksec->sclass, node_perm, &ad);
4519 		if (err)
4520 			goto out;
4521 	}
4522 out:
4523 	return err;
4524 }
4525 
4526 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4527 {
4528 	struct sock *sk = sock->sk;
4529 	struct sk_security_struct *sksec = sk->sk_security;
4530 	int err;
4531 
4532 	err = sock_has_perm(sk, SOCKET__CONNECT);
4533 	if (err)
4534 		return err;
4535 
4536 	/*
4537 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4538 	 */
4539 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4540 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4541 		struct common_audit_data ad;
4542 		struct lsm_network_audit net = {0,};
4543 		struct sockaddr_in *addr4 = NULL;
4544 		struct sockaddr_in6 *addr6 = NULL;
4545 		unsigned short snum;
4546 		u32 sid, perm;
4547 
4548 		if (sk->sk_family == PF_INET) {
4549 			addr4 = (struct sockaddr_in *)address;
4550 			if (addrlen < sizeof(struct sockaddr_in))
4551 				return -EINVAL;
4552 			snum = ntohs(addr4->sin_port);
4553 		} else {
4554 			addr6 = (struct sockaddr_in6 *)address;
4555 			if (addrlen < SIN6_LEN_RFC2133)
4556 				return -EINVAL;
4557 			snum = ntohs(addr6->sin6_port);
4558 		}
4559 
4560 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4561 		if (err)
4562 			goto out;
4563 
4564 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4565 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4566 
4567 		ad.type = LSM_AUDIT_DATA_NET;
4568 		ad.u.net = &net;
4569 		ad.u.net->dport = htons(snum);
4570 		ad.u.net->family = sk->sk_family;
4571 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4572 		if (err)
4573 			goto out;
4574 	}
4575 
4576 	err = selinux_netlbl_socket_connect(sk, address);
4577 
4578 out:
4579 	return err;
4580 }
4581 
4582 static int selinux_socket_listen(struct socket *sock, int backlog)
4583 {
4584 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4585 }
4586 
4587 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4588 {
4589 	int err;
4590 	struct inode_security_struct *isec;
4591 	struct inode_security_struct *newisec;
4592 	u16 sclass;
4593 	u32 sid;
4594 
4595 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4596 	if (err)
4597 		return err;
4598 
4599 	isec = inode_security_novalidate(SOCK_INODE(sock));
4600 	spin_lock(&isec->lock);
4601 	sclass = isec->sclass;
4602 	sid = isec->sid;
4603 	spin_unlock(&isec->lock);
4604 
4605 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4606 	newisec->sclass = sclass;
4607 	newisec->sid = sid;
4608 	newisec->initialized = LABEL_INITIALIZED;
4609 
4610 	return 0;
4611 }
4612 
4613 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4614 				  int size)
4615 {
4616 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4617 }
4618 
4619 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4620 				  int size, int flags)
4621 {
4622 	return sock_has_perm(sock->sk, SOCKET__READ);
4623 }
4624 
4625 static int selinux_socket_getsockname(struct socket *sock)
4626 {
4627 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4628 }
4629 
4630 static int selinux_socket_getpeername(struct socket *sock)
4631 {
4632 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4633 }
4634 
4635 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4636 {
4637 	int err;
4638 
4639 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4640 	if (err)
4641 		return err;
4642 
4643 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4644 }
4645 
4646 static int selinux_socket_getsockopt(struct socket *sock, int level,
4647 				     int optname)
4648 {
4649 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4650 }
4651 
4652 static int selinux_socket_shutdown(struct socket *sock, int how)
4653 {
4654 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4655 }
4656 
4657 static int selinux_socket_unix_stream_connect(struct sock *sock,
4658 					      struct sock *other,
4659 					      struct sock *newsk)
4660 {
4661 	struct sk_security_struct *sksec_sock = sock->sk_security;
4662 	struct sk_security_struct *sksec_other = other->sk_security;
4663 	struct sk_security_struct *sksec_new = newsk->sk_security;
4664 	struct common_audit_data ad;
4665 	struct lsm_network_audit net = {0,};
4666 	int err;
4667 
4668 	ad.type = LSM_AUDIT_DATA_NET;
4669 	ad.u.net = &net;
4670 	ad.u.net->sk = other;
4671 
4672 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4673 			   sksec_other->sclass,
4674 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4675 	if (err)
4676 		return err;
4677 
4678 	/* server child socket */
4679 	sksec_new->peer_sid = sksec_sock->sid;
4680 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4681 				    &sksec_new->sid);
4682 	if (err)
4683 		return err;
4684 
4685 	/* connecting socket */
4686 	sksec_sock->peer_sid = sksec_new->sid;
4687 
4688 	return 0;
4689 }
4690 
4691 static int selinux_socket_unix_may_send(struct socket *sock,
4692 					struct socket *other)
4693 {
4694 	struct sk_security_struct *ssec = sock->sk->sk_security;
4695 	struct sk_security_struct *osec = other->sk->sk_security;
4696 	struct common_audit_data ad;
4697 	struct lsm_network_audit net = {0,};
4698 
4699 	ad.type = LSM_AUDIT_DATA_NET;
4700 	ad.u.net = &net;
4701 	ad.u.net->sk = other->sk;
4702 
4703 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4704 			    &ad);
4705 }
4706 
4707 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4708 				    char *addrp, u16 family, u32 peer_sid,
4709 				    struct common_audit_data *ad)
4710 {
4711 	int err;
4712 	u32 if_sid;
4713 	u32 node_sid;
4714 
4715 	err = sel_netif_sid(ns, ifindex, &if_sid);
4716 	if (err)
4717 		return err;
4718 	err = avc_has_perm(peer_sid, if_sid,
4719 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4720 	if (err)
4721 		return err;
4722 
4723 	err = sel_netnode_sid(addrp, family, &node_sid);
4724 	if (err)
4725 		return err;
4726 	return avc_has_perm(peer_sid, node_sid,
4727 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4728 }
4729 
4730 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4731 				       u16 family)
4732 {
4733 	int err = 0;
4734 	struct sk_security_struct *sksec = sk->sk_security;
4735 	u32 sk_sid = sksec->sid;
4736 	struct common_audit_data ad;
4737 	struct lsm_network_audit net = {0,};
4738 	char *addrp;
4739 
4740 	ad.type = LSM_AUDIT_DATA_NET;
4741 	ad.u.net = &net;
4742 	ad.u.net->netif = skb->skb_iif;
4743 	ad.u.net->family = family;
4744 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4745 	if (err)
4746 		return err;
4747 
4748 	if (selinux_secmark_enabled()) {
4749 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4750 				   PACKET__RECV, &ad);
4751 		if (err)
4752 			return err;
4753 	}
4754 
4755 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4756 	if (err)
4757 		return err;
4758 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4759 
4760 	return err;
4761 }
4762 
4763 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4764 {
4765 	int err;
4766 	struct sk_security_struct *sksec = sk->sk_security;
4767 	u16 family = sk->sk_family;
4768 	u32 sk_sid = sksec->sid;
4769 	struct common_audit_data ad;
4770 	struct lsm_network_audit net = {0,};
4771 	char *addrp;
4772 	u8 secmark_active;
4773 	u8 peerlbl_active;
4774 
4775 	if (family != PF_INET && family != PF_INET6)
4776 		return 0;
4777 
4778 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4779 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4780 		family = PF_INET;
4781 
4782 	/* If any sort of compatibility mode is enabled then handoff processing
4783 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4784 	 * special handling.  We do this in an attempt to keep this function
4785 	 * as fast and as clean as possible. */
4786 	if (!selinux_policycap_netpeer)
4787 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4788 
4789 	secmark_active = selinux_secmark_enabled();
4790 	peerlbl_active = selinux_peerlbl_enabled();
4791 	if (!secmark_active && !peerlbl_active)
4792 		return 0;
4793 
4794 	ad.type = LSM_AUDIT_DATA_NET;
4795 	ad.u.net = &net;
4796 	ad.u.net->netif = skb->skb_iif;
4797 	ad.u.net->family = family;
4798 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4799 	if (err)
4800 		return err;
4801 
4802 	if (peerlbl_active) {
4803 		u32 peer_sid;
4804 
4805 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4806 		if (err)
4807 			return err;
4808 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4809 					       addrp, family, peer_sid, &ad);
4810 		if (err) {
4811 			selinux_netlbl_err(skb, family, err, 0);
4812 			return err;
4813 		}
4814 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4815 				   PEER__RECV, &ad);
4816 		if (err) {
4817 			selinux_netlbl_err(skb, family, err, 0);
4818 			return err;
4819 		}
4820 	}
4821 
4822 	if (secmark_active) {
4823 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4824 				   PACKET__RECV, &ad);
4825 		if (err)
4826 			return err;
4827 	}
4828 
4829 	return err;
4830 }
4831 
4832 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4833 					    int __user *optlen, unsigned len)
4834 {
4835 	int err = 0;
4836 	char *scontext;
4837 	u32 scontext_len;
4838 	struct sk_security_struct *sksec = sock->sk->sk_security;
4839 	u32 peer_sid = SECSID_NULL;
4840 
4841 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4842 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4843 		peer_sid = sksec->peer_sid;
4844 	if (peer_sid == SECSID_NULL)
4845 		return -ENOPROTOOPT;
4846 
4847 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4848 	if (err)
4849 		return err;
4850 
4851 	if (scontext_len > len) {
4852 		err = -ERANGE;
4853 		goto out_len;
4854 	}
4855 
4856 	if (copy_to_user(optval, scontext, scontext_len))
4857 		err = -EFAULT;
4858 
4859 out_len:
4860 	if (put_user(scontext_len, optlen))
4861 		err = -EFAULT;
4862 	kfree(scontext);
4863 	return err;
4864 }
4865 
4866 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4867 {
4868 	u32 peer_secid = SECSID_NULL;
4869 	u16 family;
4870 	struct inode_security_struct *isec;
4871 
4872 	if (skb && skb->protocol == htons(ETH_P_IP))
4873 		family = PF_INET;
4874 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4875 		family = PF_INET6;
4876 	else if (sock)
4877 		family = sock->sk->sk_family;
4878 	else
4879 		goto out;
4880 
4881 	if (sock && family == PF_UNIX) {
4882 		isec = inode_security_novalidate(SOCK_INODE(sock));
4883 		peer_secid = isec->sid;
4884 	} else if (skb)
4885 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4886 
4887 out:
4888 	*secid = peer_secid;
4889 	if (peer_secid == SECSID_NULL)
4890 		return -EINVAL;
4891 	return 0;
4892 }
4893 
4894 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4895 {
4896 	struct sk_security_struct *sksec;
4897 
4898 	sksec = kzalloc(sizeof(*sksec), priority);
4899 	if (!sksec)
4900 		return -ENOMEM;
4901 
4902 	sksec->peer_sid = SECINITSID_UNLABELED;
4903 	sksec->sid = SECINITSID_UNLABELED;
4904 	sksec->sclass = SECCLASS_SOCKET;
4905 	selinux_netlbl_sk_security_reset(sksec);
4906 	sk->sk_security = sksec;
4907 
4908 	return 0;
4909 }
4910 
4911 static void selinux_sk_free_security(struct sock *sk)
4912 {
4913 	struct sk_security_struct *sksec = sk->sk_security;
4914 
4915 	sk->sk_security = NULL;
4916 	selinux_netlbl_sk_security_free(sksec);
4917 	kfree(sksec);
4918 }
4919 
4920 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4921 {
4922 	struct sk_security_struct *sksec = sk->sk_security;
4923 	struct sk_security_struct *newsksec = newsk->sk_security;
4924 
4925 	newsksec->sid = sksec->sid;
4926 	newsksec->peer_sid = sksec->peer_sid;
4927 	newsksec->sclass = sksec->sclass;
4928 
4929 	selinux_netlbl_sk_security_reset(newsksec);
4930 }
4931 
4932 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4933 {
4934 	if (!sk)
4935 		*secid = SECINITSID_ANY_SOCKET;
4936 	else {
4937 		struct sk_security_struct *sksec = sk->sk_security;
4938 
4939 		*secid = sksec->sid;
4940 	}
4941 }
4942 
4943 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4944 {
4945 	struct inode_security_struct *isec =
4946 		inode_security_novalidate(SOCK_INODE(parent));
4947 	struct sk_security_struct *sksec = sk->sk_security;
4948 
4949 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4950 	    sk->sk_family == PF_UNIX)
4951 		isec->sid = sksec->sid;
4952 	sksec->sclass = isec->sclass;
4953 }
4954 
4955 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4956 				     struct request_sock *req)
4957 {
4958 	struct sk_security_struct *sksec = sk->sk_security;
4959 	int err;
4960 	u16 family = req->rsk_ops->family;
4961 	u32 connsid;
4962 	u32 peersid;
4963 
4964 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4965 	if (err)
4966 		return err;
4967 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4968 	if (err)
4969 		return err;
4970 	req->secid = connsid;
4971 	req->peer_secid = peersid;
4972 
4973 	return selinux_netlbl_inet_conn_request(req, family);
4974 }
4975 
4976 static void selinux_inet_csk_clone(struct sock *newsk,
4977 				   const struct request_sock *req)
4978 {
4979 	struct sk_security_struct *newsksec = newsk->sk_security;
4980 
4981 	newsksec->sid = req->secid;
4982 	newsksec->peer_sid = req->peer_secid;
4983 	/* NOTE: Ideally, we should also get the isec->sid for the
4984 	   new socket in sync, but we don't have the isec available yet.
4985 	   So we will wait until sock_graft to do it, by which
4986 	   time it will have been created and available. */
4987 
4988 	/* We don't need to take any sort of lock here as we are the only
4989 	 * thread with access to newsksec */
4990 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4991 }
4992 
4993 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4994 {
4995 	u16 family = sk->sk_family;
4996 	struct sk_security_struct *sksec = sk->sk_security;
4997 
4998 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4999 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5000 		family = PF_INET;
5001 
5002 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5003 }
5004 
5005 static int selinux_secmark_relabel_packet(u32 sid)
5006 {
5007 	const struct task_security_struct *__tsec;
5008 	u32 tsid;
5009 
5010 	__tsec = current_security();
5011 	tsid = __tsec->sid;
5012 
5013 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
5014 }
5015 
5016 static void selinux_secmark_refcount_inc(void)
5017 {
5018 	atomic_inc(&selinux_secmark_refcount);
5019 }
5020 
5021 static void selinux_secmark_refcount_dec(void)
5022 {
5023 	atomic_dec(&selinux_secmark_refcount);
5024 }
5025 
5026 static void selinux_req_classify_flow(const struct request_sock *req,
5027 				      struct flowi *fl)
5028 {
5029 	fl->flowi_secid = req->secid;
5030 }
5031 
5032 static int selinux_tun_dev_alloc_security(void **security)
5033 {
5034 	struct tun_security_struct *tunsec;
5035 
5036 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5037 	if (!tunsec)
5038 		return -ENOMEM;
5039 	tunsec->sid = current_sid();
5040 
5041 	*security = tunsec;
5042 	return 0;
5043 }
5044 
5045 static void selinux_tun_dev_free_security(void *security)
5046 {
5047 	kfree(security);
5048 }
5049 
5050 static int selinux_tun_dev_create(void)
5051 {
5052 	u32 sid = current_sid();
5053 
5054 	/* we aren't taking into account the "sockcreate" SID since the socket
5055 	 * that is being created here is not a socket in the traditional sense,
5056 	 * instead it is a private sock, accessible only to the kernel, and
5057 	 * representing a wide range of network traffic spanning multiple
5058 	 * connections unlike traditional sockets - check the TUN driver to
5059 	 * get a better understanding of why this socket is special */
5060 
5061 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5062 			    NULL);
5063 }
5064 
5065 static int selinux_tun_dev_attach_queue(void *security)
5066 {
5067 	struct tun_security_struct *tunsec = security;
5068 
5069 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5070 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5071 }
5072 
5073 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5074 {
5075 	struct tun_security_struct *tunsec = security;
5076 	struct sk_security_struct *sksec = sk->sk_security;
5077 
5078 	/* we don't currently perform any NetLabel based labeling here and it
5079 	 * isn't clear that we would want to do so anyway; while we could apply
5080 	 * labeling without the support of the TUN user the resulting labeled
5081 	 * traffic from the other end of the connection would almost certainly
5082 	 * cause confusion to the TUN user that had no idea network labeling
5083 	 * protocols were being used */
5084 
5085 	sksec->sid = tunsec->sid;
5086 	sksec->sclass = SECCLASS_TUN_SOCKET;
5087 
5088 	return 0;
5089 }
5090 
5091 static int selinux_tun_dev_open(void *security)
5092 {
5093 	struct tun_security_struct *tunsec = security;
5094 	u32 sid = current_sid();
5095 	int err;
5096 
5097 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5098 			   TUN_SOCKET__RELABELFROM, NULL);
5099 	if (err)
5100 		return err;
5101 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5102 			   TUN_SOCKET__RELABELTO, NULL);
5103 	if (err)
5104 		return err;
5105 	tunsec->sid = sid;
5106 
5107 	return 0;
5108 }
5109 
5110 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5111 {
5112 	int err = 0;
5113 	u32 perm;
5114 	struct nlmsghdr *nlh;
5115 	struct sk_security_struct *sksec = sk->sk_security;
5116 
5117 	if (skb->len < NLMSG_HDRLEN) {
5118 		err = -EINVAL;
5119 		goto out;
5120 	}
5121 	nlh = nlmsg_hdr(skb);
5122 
5123 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5124 	if (err) {
5125 		if (err == -EINVAL) {
5126 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5127 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5128 			       " pig=%d comm=%s\n",
5129 			       sk->sk_protocol, nlh->nlmsg_type,
5130 			       secclass_map[sksec->sclass - 1].name,
5131 			       task_pid_nr(current), current->comm);
5132 			if (!selinux_enforcing || security_get_allow_unknown())
5133 				err = 0;
5134 		}
5135 
5136 		/* Ignore */
5137 		if (err == -ENOENT)
5138 			err = 0;
5139 		goto out;
5140 	}
5141 
5142 	err = sock_has_perm(sk, perm);
5143 out:
5144 	return err;
5145 }
5146 
5147 #ifdef CONFIG_NETFILTER
5148 
5149 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5150 				       const struct net_device *indev,
5151 				       u16 family)
5152 {
5153 	int err;
5154 	char *addrp;
5155 	u32 peer_sid;
5156 	struct common_audit_data ad;
5157 	struct lsm_network_audit net = {0,};
5158 	u8 secmark_active;
5159 	u8 netlbl_active;
5160 	u8 peerlbl_active;
5161 
5162 	if (!selinux_policycap_netpeer)
5163 		return NF_ACCEPT;
5164 
5165 	secmark_active = selinux_secmark_enabled();
5166 	netlbl_active = netlbl_enabled();
5167 	peerlbl_active = selinux_peerlbl_enabled();
5168 	if (!secmark_active && !peerlbl_active)
5169 		return NF_ACCEPT;
5170 
5171 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5172 		return NF_DROP;
5173 
5174 	ad.type = LSM_AUDIT_DATA_NET;
5175 	ad.u.net = &net;
5176 	ad.u.net->netif = indev->ifindex;
5177 	ad.u.net->family = family;
5178 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5179 		return NF_DROP;
5180 
5181 	if (peerlbl_active) {
5182 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5183 					       addrp, family, peer_sid, &ad);
5184 		if (err) {
5185 			selinux_netlbl_err(skb, family, err, 1);
5186 			return NF_DROP;
5187 		}
5188 	}
5189 
5190 	if (secmark_active)
5191 		if (avc_has_perm(peer_sid, skb->secmark,
5192 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5193 			return NF_DROP;
5194 
5195 	if (netlbl_active)
5196 		/* we do this in the FORWARD path and not the POST_ROUTING
5197 		 * path because we want to make sure we apply the necessary
5198 		 * labeling before IPsec is applied so we can leverage AH
5199 		 * protection */
5200 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5201 			return NF_DROP;
5202 
5203 	return NF_ACCEPT;
5204 }
5205 
5206 static unsigned int selinux_ipv4_forward(void *priv,
5207 					 struct sk_buff *skb,
5208 					 const struct nf_hook_state *state)
5209 {
5210 	return selinux_ip_forward(skb, state->in, PF_INET);
5211 }
5212 
5213 #if IS_ENABLED(CONFIG_IPV6)
5214 static unsigned int selinux_ipv6_forward(void *priv,
5215 					 struct sk_buff *skb,
5216 					 const struct nf_hook_state *state)
5217 {
5218 	return selinux_ip_forward(skb, state->in, PF_INET6);
5219 }
5220 #endif	/* IPV6 */
5221 
5222 static unsigned int selinux_ip_output(struct sk_buff *skb,
5223 				      u16 family)
5224 {
5225 	struct sock *sk;
5226 	u32 sid;
5227 
5228 	if (!netlbl_enabled())
5229 		return NF_ACCEPT;
5230 
5231 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5232 	 * because we want to make sure we apply the necessary labeling
5233 	 * before IPsec is applied so we can leverage AH protection */
5234 	sk = skb->sk;
5235 	if (sk) {
5236 		struct sk_security_struct *sksec;
5237 
5238 		if (sk_listener(sk))
5239 			/* if the socket is the listening state then this
5240 			 * packet is a SYN-ACK packet which means it needs to
5241 			 * be labeled based on the connection/request_sock and
5242 			 * not the parent socket.  unfortunately, we can't
5243 			 * lookup the request_sock yet as it isn't queued on
5244 			 * the parent socket until after the SYN-ACK is sent.
5245 			 * the "solution" is to simply pass the packet as-is
5246 			 * as any IP option based labeling should be copied
5247 			 * from the initial connection request (in the IP
5248 			 * layer).  it is far from ideal, but until we get a
5249 			 * security label in the packet itself this is the
5250 			 * best we can do. */
5251 			return NF_ACCEPT;
5252 
5253 		/* standard practice, label using the parent socket */
5254 		sksec = sk->sk_security;
5255 		sid = sksec->sid;
5256 	} else
5257 		sid = SECINITSID_KERNEL;
5258 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5259 		return NF_DROP;
5260 
5261 	return NF_ACCEPT;
5262 }
5263 
5264 static unsigned int selinux_ipv4_output(void *priv,
5265 					struct sk_buff *skb,
5266 					const struct nf_hook_state *state)
5267 {
5268 	return selinux_ip_output(skb, PF_INET);
5269 }
5270 
5271 #if IS_ENABLED(CONFIG_IPV6)
5272 static unsigned int selinux_ipv6_output(void *priv,
5273 					struct sk_buff *skb,
5274 					const struct nf_hook_state *state)
5275 {
5276 	return selinux_ip_output(skb, PF_INET6);
5277 }
5278 #endif	/* IPV6 */
5279 
5280 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5281 						int ifindex,
5282 						u16 family)
5283 {
5284 	struct sock *sk = skb_to_full_sk(skb);
5285 	struct sk_security_struct *sksec;
5286 	struct common_audit_data ad;
5287 	struct lsm_network_audit net = {0,};
5288 	char *addrp;
5289 	u8 proto;
5290 
5291 	if (sk == NULL)
5292 		return NF_ACCEPT;
5293 	sksec = sk->sk_security;
5294 
5295 	ad.type = LSM_AUDIT_DATA_NET;
5296 	ad.u.net = &net;
5297 	ad.u.net->netif = ifindex;
5298 	ad.u.net->family = family;
5299 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5300 		return NF_DROP;
5301 
5302 	if (selinux_secmark_enabled())
5303 		if (avc_has_perm(sksec->sid, skb->secmark,
5304 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5305 			return NF_DROP_ERR(-ECONNREFUSED);
5306 
5307 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5308 		return NF_DROP_ERR(-ECONNREFUSED);
5309 
5310 	return NF_ACCEPT;
5311 }
5312 
5313 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5314 					 const struct net_device *outdev,
5315 					 u16 family)
5316 {
5317 	u32 secmark_perm;
5318 	u32 peer_sid;
5319 	int ifindex = outdev->ifindex;
5320 	struct sock *sk;
5321 	struct common_audit_data ad;
5322 	struct lsm_network_audit net = {0,};
5323 	char *addrp;
5324 	u8 secmark_active;
5325 	u8 peerlbl_active;
5326 
5327 	/* If any sort of compatibility mode is enabled then handoff processing
5328 	 * to the selinux_ip_postroute_compat() function to deal with the
5329 	 * special handling.  We do this in an attempt to keep this function
5330 	 * as fast and as clean as possible. */
5331 	if (!selinux_policycap_netpeer)
5332 		return selinux_ip_postroute_compat(skb, ifindex, family);
5333 
5334 	secmark_active = selinux_secmark_enabled();
5335 	peerlbl_active = selinux_peerlbl_enabled();
5336 	if (!secmark_active && !peerlbl_active)
5337 		return NF_ACCEPT;
5338 
5339 	sk = skb_to_full_sk(skb);
5340 
5341 #ifdef CONFIG_XFRM
5342 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5343 	 * packet transformation so allow the packet to pass without any checks
5344 	 * since we'll have another chance to perform access control checks
5345 	 * when the packet is on it's final way out.
5346 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5347 	 *       is NULL, in this case go ahead and apply access control.
5348 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5349 	 *       TCP listening state we cannot wait until the XFRM processing
5350 	 *       is done as we will miss out on the SA label if we do;
5351 	 *       unfortunately, this means more work, but it is only once per
5352 	 *       connection. */
5353 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5354 	    !(sk && sk_listener(sk)))
5355 		return NF_ACCEPT;
5356 #endif
5357 
5358 	if (sk == NULL) {
5359 		/* Without an associated socket the packet is either coming
5360 		 * from the kernel or it is being forwarded; check the packet
5361 		 * to determine which and if the packet is being forwarded
5362 		 * query the packet directly to determine the security label. */
5363 		if (skb->skb_iif) {
5364 			secmark_perm = PACKET__FORWARD_OUT;
5365 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5366 				return NF_DROP;
5367 		} else {
5368 			secmark_perm = PACKET__SEND;
5369 			peer_sid = SECINITSID_KERNEL;
5370 		}
5371 	} else if (sk_listener(sk)) {
5372 		/* Locally generated packet but the associated socket is in the
5373 		 * listening state which means this is a SYN-ACK packet.  In
5374 		 * this particular case the correct security label is assigned
5375 		 * to the connection/request_sock but unfortunately we can't
5376 		 * query the request_sock as it isn't queued on the parent
5377 		 * socket until after the SYN-ACK packet is sent; the only
5378 		 * viable choice is to regenerate the label like we do in
5379 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5380 		 * for similar problems. */
5381 		u32 skb_sid;
5382 		struct sk_security_struct *sksec;
5383 
5384 		sksec = sk->sk_security;
5385 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5386 			return NF_DROP;
5387 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5388 		 * and the packet has been through at least one XFRM
5389 		 * transformation then we must be dealing with the "final"
5390 		 * form of labeled IPsec packet; since we've already applied
5391 		 * all of our access controls on this packet we can safely
5392 		 * pass the packet. */
5393 		if (skb_sid == SECSID_NULL) {
5394 			switch (family) {
5395 			case PF_INET:
5396 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5397 					return NF_ACCEPT;
5398 				break;
5399 			case PF_INET6:
5400 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5401 					return NF_ACCEPT;
5402 				break;
5403 			default:
5404 				return NF_DROP_ERR(-ECONNREFUSED);
5405 			}
5406 		}
5407 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5408 			return NF_DROP;
5409 		secmark_perm = PACKET__SEND;
5410 	} else {
5411 		/* Locally generated packet, fetch the security label from the
5412 		 * associated socket. */
5413 		struct sk_security_struct *sksec = sk->sk_security;
5414 		peer_sid = sksec->sid;
5415 		secmark_perm = PACKET__SEND;
5416 	}
5417 
5418 	ad.type = LSM_AUDIT_DATA_NET;
5419 	ad.u.net = &net;
5420 	ad.u.net->netif = ifindex;
5421 	ad.u.net->family = family;
5422 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5423 		return NF_DROP;
5424 
5425 	if (secmark_active)
5426 		if (avc_has_perm(peer_sid, skb->secmark,
5427 				 SECCLASS_PACKET, secmark_perm, &ad))
5428 			return NF_DROP_ERR(-ECONNREFUSED);
5429 
5430 	if (peerlbl_active) {
5431 		u32 if_sid;
5432 		u32 node_sid;
5433 
5434 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5435 			return NF_DROP;
5436 		if (avc_has_perm(peer_sid, if_sid,
5437 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5438 			return NF_DROP_ERR(-ECONNREFUSED);
5439 
5440 		if (sel_netnode_sid(addrp, family, &node_sid))
5441 			return NF_DROP;
5442 		if (avc_has_perm(peer_sid, node_sid,
5443 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5444 			return NF_DROP_ERR(-ECONNREFUSED);
5445 	}
5446 
5447 	return NF_ACCEPT;
5448 }
5449 
5450 static unsigned int selinux_ipv4_postroute(void *priv,
5451 					   struct sk_buff *skb,
5452 					   const struct nf_hook_state *state)
5453 {
5454 	return selinux_ip_postroute(skb, state->out, PF_INET);
5455 }
5456 
5457 #if IS_ENABLED(CONFIG_IPV6)
5458 static unsigned int selinux_ipv6_postroute(void *priv,
5459 					   struct sk_buff *skb,
5460 					   const struct nf_hook_state *state)
5461 {
5462 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5463 }
5464 #endif	/* IPV6 */
5465 
5466 #endif	/* CONFIG_NETFILTER */
5467 
5468 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5469 {
5470 	return selinux_nlmsg_perm(sk, skb);
5471 }
5472 
5473 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5474 			      u16 sclass)
5475 {
5476 	struct ipc_security_struct *isec;
5477 
5478 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5479 	if (!isec)
5480 		return -ENOMEM;
5481 
5482 	isec->sclass = sclass;
5483 	isec->sid = current_sid();
5484 	perm->security = isec;
5485 
5486 	return 0;
5487 }
5488 
5489 static void ipc_free_security(struct kern_ipc_perm *perm)
5490 {
5491 	struct ipc_security_struct *isec = perm->security;
5492 	perm->security = NULL;
5493 	kfree(isec);
5494 }
5495 
5496 static int msg_msg_alloc_security(struct msg_msg *msg)
5497 {
5498 	struct msg_security_struct *msec;
5499 
5500 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5501 	if (!msec)
5502 		return -ENOMEM;
5503 
5504 	msec->sid = SECINITSID_UNLABELED;
5505 	msg->security = msec;
5506 
5507 	return 0;
5508 }
5509 
5510 static void msg_msg_free_security(struct msg_msg *msg)
5511 {
5512 	struct msg_security_struct *msec = msg->security;
5513 
5514 	msg->security = NULL;
5515 	kfree(msec);
5516 }
5517 
5518 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5519 			u32 perms)
5520 {
5521 	struct ipc_security_struct *isec;
5522 	struct common_audit_data ad;
5523 	u32 sid = current_sid();
5524 
5525 	isec = ipc_perms->security;
5526 
5527 	ad.type = LSM_AUDIT_DATA_IPC;
5528 	ad.u.ipc_id = ipc_perms->key;
5529 
5530 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5531 }
5532 
5533 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5534 {
5535 	return msg_msg_alloc_security(msg);
5536 }
5537 
5538 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5539 {
5540 	msg_msg_free_security(msg);
5541 }
5542 
5543 /* message queue security operations */
5544 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5545 {
5546 	struct ipc_security_struct *isec;
5547 	struct common_audit_data ad;
5548 	u32 sid = current_sid();
5549 	int rc;
5550 
5551 	rc = ipc_alloc_security(&msq->q_perm, SECCLASS_MSGQ);
5552 	if (rc)
5553 		return rc;
5554 
5555 	isec = msq->q_perm.security;
5556 
5557 	ad.type = LSM_AUDIT_DATA_IPC;
5558 	ad.u.ipc_id = msq->q_perm.key;
5559 
5560 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5561 			  MSGQ__CREATE, &ad);
5562 	if (rc) {
5563 		ipc_free_security(&msq->q_perm);
5564 		return rc;
5565 	}
5566 	return 0;
5567 }
5568 
5569 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5570 {
5571 	ipc_free_security(&msq->q_perm);
5572 }
5573 
5574 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5575 {
5576 	struct ipc_security_struct *isec;
5577 	struct common_audit_data ad;
5578 	u32 sid = current_sid();
5579 
5580 	isec = msq->q_perm.security;
5581 
5582 	ad.type = LSM_AUDIT_DATA_IPC;
5583 	ad.u.ipc_id = msq->q_perm.key;
5584 
5585 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5586 			    MSGQ__ASSOCIATE, &ad);
5587 }
5588 
5589 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5590 {
5591 	int err;
5592 	int perms;
5593 
5594 	switch (cmd) {
5595 	case IPC_INFO:
5596 	case MSG_INFO:
5597 		/* No specific object, just general system-wide information. */
5598 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5599 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5600 	case IPC_STAT:
5601 	case MSG_STAT:
5602 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5603 		break;
5604 	case IPC_SET:
5605 		perms = MSGQ__SETATTR;
5606 		break;
5607 	case IPC_RMID:
5608 		perms = MSGQ__DESTROY;
5609 		break;
5610 	default:
5611 		return 0;
5612 	}
5613 
5614 	err = ipc_has_perm(&msq->q_perm, perms);
5615 	return err;
5616 }
5617 
5618 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5619 {
5620 	struct ipc_security_struct *isec;
5621 	struct msg_security_struct *msec;
5622 	struct common_audit_data ad;
5623 	u32 sid = current_sid();
5624 	int rc;
5625 
5626 	isec = msq->q_perm.security;
5627 	msec = msg->security;
5628 
5629 	/*
5630 	 * First time through, need to assign label to the message
5631 	 */
5632 	if (msec->sid == SECINITSID_UNLABELED) {
5633 		/*
5634 		 * Compute new sid based on current process and
5635 		 * message queue this message will be stored in
5636 		 */
5637 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5638 					     NULL, &msec->sid);
5639 		if (rc)
5640 			return rc;
5641 	}
5642 
5643 	ad.type = LSM_AUDIT_DATA_IPC;
5644 	ad.u.ipc_id = msq->q_perm.key;
5645 
5646 	/* Can this process write to the queue? */
5647 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5648 			  MSGQ__WRITE, &ad);
5649 	if (!rc)
5650 		/* Can this process send the message */
5651 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5652 				  MSG__SEND, &ad);
5653 	if (!rc)
5654 		/* Can the message be put in the queue? */
5655 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5656 				  MSGQ__ENQUEUE, &ad);
5657 
5658 	return rc;
5659 }
5660 
5661 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5662 				    struct task_struct *target,
5663 				    long type, int mode)
5664 {
5665 	struct ipc_security_struct *isec;
5666 	struct msg_security_struct *msec;
5667 	struct common_audit_data ad;
5668 	u32 sid = task_sid(target);
5669 	int rc;
5670 
5671 	isec = msq->q_perm.security;
5672 	msec = msg->security;
5673 
5674 	ad.type = LSM_AUDIT_DATA_IPC;
5675 	ad.u.ipc_id = msq->q_perm.key;
5676 
5677 	rc = avc_has_perm(sid, isec->sid,
5678 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5679 	if (!rc)
5680 		rc = avc_has_perm(sid, msec->sid,
5681 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5682 	return rc;
5683 }
5684 
5685 /* Shared Memory security operations */
5686 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5687 {
5688 	struct ipc_security_struct *isec;
5689 	struct common_audit_data ad;
5690 	u32 sid = current_sid();
5691 	int rc;
5692 
5693 	rc = ipc_alloc_security(&shp->shm_perm, SECCLASS_SHM);
5694 	if (rc)
5695 		return rc;
5696 
5697 	isec = shp->shm_perm.security;
5698 
5699 	ad.type = LSM_AUDIT_DATA_IPC;
5700 	ad.u.ipc_id = shp->shm_perm.key;
5701 
5702 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5703 			  SHM__CREATE, &ad);
5704 	if (rc) {
5705 		ipc_free_security(&shp->shm_perm);
5706 		return rc;
5707 	}
5708 	return 0;
5709 }
5710 
5711 static void selinux_shm_free_security(struct shmid_kernel *shp)
5712 {
5713 	ipc_free_security(&shp->shm_perm);
5714 }
5715 
5716 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5717 {
5718 	struct ipc_security_struct *isec;
5719 	struct common_audit_data ad;
5720 	u32 sid = current_sid();
5721 
5722 	isec = shp->shm_perm.security;
5723 
5724 	ad.type = LSM_AUDIT_DATA_IPC;
5725 	ad.u.ipc_id = shp->shm_perm.key;
5726 
5727 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5728 			    SHM__ASSOCIATE, &ad);
5729 }
5730 
5731 /* Note, at this point, shp is locked down */
5732 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5733 {
5734 	int perms;
5735 	int err;
5736 
5737 	switch (cmd) {
5738 	case IPC_INFO:
5739 	case SHM_INFO:
5740 		/* No specific object, just general system-wide information. */
5741 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5742 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5743 	case IPC_STAT:
5744 	case SHM_STAT:
5745 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5746 		break;
5747 	case IPC_SET:
5748 		perms = SHM__SETATTR;
5749 		break;
5750 	case SHM_LOCK:
5751 	case SHM_UNLOCK:
5752 		perms = SHM__LOCK;
5753 		break;
5754 	case IPC_RMID:
5755 		perms = SHM__DESTROY;
5756 		break;
5757 	default:
5758 		return 0;
5759 	}
5760 
5761 	err = ipc_has_perm(&shp->shm_perm, perms);
5762 	return err;
5763 }
5764 
5765 static int selinux_shm_shmat(struct shmid_kernel *shp,
5766 			     char __user *shmaddr, int shmflg)
5767 {
5768 	u32 perms;
5769 
5770 	if (shmflg & SHM_RDONLY)
5771 		perms = SHM__READ;
5772 	else
5773 		perms = SHM__READ | SHM__WRITE;
5774 
5775 	return ipc_has_perm(&shp->shm_perm, perms);
5776 }
5777 
5778 /* Semaphore security operations */
5779 static int selinux_sem_alloc_security(struct sem_array *sma)
5780 {
5781 	struct ipc_security_struct *isec;
5782 	struct common_audit_data ad;
5783 	u32 sid = current_sid();
5784 	int rc;
5785 
5786 	rc = ipc_alloc_security(&sma->sem_perm, SECCLASS_SEM);
5787 	if (rc)
5788 		return rc;
5789 
5790 	isec = sma->sem_perm.security;
5791 
5792 	ad.type = LSM_AUDIT_DATA_IPC;
5793 	ad.u.ipc_id = sma->sem_perm.key;
5794 
5795 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5796 			  SEM__CREATE, &ad);
5797 	if (rc) {
5798 		ipc_free_security(&sma->sem_perm);
5799 		return rc;
5800 	}
5801 	return 0;
5802 }
5803 
5804 static void selinux_sem_free_security(struct sem_array *sma)
5805 {
5806 	ipc_free_security(&sma->sem_perm);
5807 }
5808 
5809 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5810 {
5811 	struct ipc_security_struct *isec;
5812 	struct common_audit_data ad;
5813 	u32 sid = current_sid();
5814 
5815 	isec = sma->sem_perm.security;
5816 
5817 	ad.type = LSM_AUDIT_DATA_IPC;
5818 	ad.u.ipc_id = sma->sem_perm.key;
5819 
5820 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5821 			    SEM__ASSOCIATE, &ad);
5822 }
5823 
5824 /* Note, at this point, sma is locked down */
5825 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5826 {
5827 	int err;
5828 	u32 perms;
5829 
5830 	switch (cmd) {
5831 	case IPC_INFO:
5832 	case SEM_INFO:
5833 		/* No specific object, just general system-wide information. */
5834 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5835 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5836 	case GETPID:
5837 	case GETNCNT:
5838 	case GETZCNT:
5839 		perms = SEM__GETATTR;
5840 		break;
5841 	case GETVAL:
5842 	case GETALL:
5843 		perms = SEM__READ;
5844 		break;
5845 	case SETVAL:
5846 	case SETALL:
5847 		perms = SEM__WRITE;
5848 		break;
5849 	case IPC_RMID:
5850 		perms = SEM__DESTROY;
5851 		break;
5852 	case IPC_SET:
5853 		perms = SEM__SETATTR;
5854 		break;
5855 	case IPC_STAT:
5856 	case SEM_STAT:
5857 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5858 		break;
5859 	default:
5860 		return 0;
5861 	}
5862 
5863 	err = ipc_has_perm(&sma->sem_perm, perms);
5864 	return err;
5865 }
5866 
5867 static int selinux_sem_semop(struct sem_array *sma,
5868 			     struct sembuf *sops, unsigned nsops, int alter)
5869 {
5870 	u32 perms;
5871 
5872 	if (alter)
5873 		perms = SEM__READ | SEM__WRITE;
5874 	else
5875 		perms = SEM__READ;
5876 
5877 	return ipc_has_perm(&sma->sem_perm, perms);
5878 }
5879 
5880 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5881 {
5882 	u32 av = 0;
5883 
5884 	av = 0;
5885 	if (flag & S_IRUGO)
5886 		av |= IPC__UNIX_READ;
5887 	if (flag & S_IWUGO)
5888 		av |= IPC__UNIX_WRITE;
5889 
5890 	if (av == 0)
5891 		return 0;
5892 
5893 	return ipc_has_perm(ipcp, av);
5894 }
5895 
5896 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5897 {
5898 	struct ipc_security_struct *isec = ipcp->security;
5899 	*secid = isec->sid;
5900 }
5901 
5902 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5903 {
5904 	if (inode)
5905 		inode_doinit_with_dentry(inode, dentry);
5906 }
5907 
5908 static int selinux_getprocattr(struct task_struct *p,
5909 			       char *name, char **value)
5910 {
5911 	const struct task_security_struct *__tsec;
5912 	u32 sid;
5913 	int error;
5914 	unsigned len;
5915 
5916 	rcu_read_lock();
5917 	__tsec = __task_cred(p)->security;
5918 
5919 	if (current != p) {
5920 		error = avc_has_perm(current_sid(), __tsec->sid,
5921 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
5922 		if (error)
5923 			goto bad;
5924 	}
5925 
5926 	if (!strcmp(name, "current"))
5927 		sid = __tsec->sid;
5928 	else if (!strcmp(name, "prev"))
5929 		sid = __tsec->osid;
5930 	else if (!strcmp(name, "exec"))
5931 		sid = __tsec->exec_sid;
5932 	else if (!strcmp(name, "fscreate"))
5933 		sid = __tsec->create_sid;
5934 	else if (!strcmp(name, "keycreate"))
5935 		sid = __tsec->keycreate_sid;
5936 	else if (!strcmp(name, "sockcreate"))
5937 		sid = __tsec->sockcreate_sid;
5938 	else {
5939 		error = -EINVAL;
5940 		goto bad;
5941 	}
5942 	rcu_read_unlock();
5943 
5944 	if (!sid)
5945 		return 0;
5946 
5947 	error = security_sid_to_context(sid, value, &len);
5948 	if (error)
5949 		return error;
5950 	return len;
5951 
5952 bad:
5953 	rcu_read_unlock();
5954 	return error;
5955 }
5956 
5957 static int selinux_setprocattr(const char *name, void *value, size_t size)
5958 {
5959 	struct task_security_struct *tsec;
5960 	struct cred *new;
5961 	u32 mysid = current_sid(), sid = 0, ptsid;
5962 	int error;
5963 	char *str = value;
5964 
5965 	/*
5966 	 * Basic control over ability to set these attributes at all.
5967 	 */
5968 	if (!strcmp(name, "exec"))
5969 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5970 				     PROCESS__SETEXEC, NULL);
5971 	else if (!strcmp(name, "fscreate"))
5972 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5973 				     PROCESS__SETFSCREATE, NULL);
5974 	else if (!strcmp(name, "keycreate"))
5975 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5976 				     PROCESS__SETKEYCREATE, NULL);
5977 	else if (!strcmp(name, "sockcreate"))
5978 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5979 				     PROCESS__SETSOCKCREATE, NULL);
5980 	else if (!strcmp(name, "current"))
5981 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5982 				     PROCESS__SETCURRENT, NULL);
5983 	else
5984 		error = -EINVAL;
5985 	if (error)
5986 		return error;
5987 
5988 	/* Obtain a SID for the context, if one was specified. */
5989 	if (size && str[0] && str[0] != '\n') {
5990 		if (str[size-1] == '\n') {
5991 			str[size-1] = 0;
5992 			size--;
5993 		}
5994 		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5995 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5996 			if (!has_cap_mac_admin(true)) {
5997 				struct audit_buffer *ab;
5998 				size_t audit_size;
5999 
6000 				/* We strip a nul only if it is at the end, otherwise the
6001 				 * context contains a nul and we should audit that */
6002 				if (str[size - 1] == '\0')
6003 					audit_size = size - 1;
6004 				else
6005 					audit_size = size;
6006 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6007 				audit_log_format(ab, "op=fscreate invalid_context=");
6008 				audit_log_n_untrustedstring(ab, value, audit_size);
6009 				audit_log_end(ab);
6010 
6011 				return error;
6012 			}
6013 			error = security_context_to_sid_force(value, size,
6014 							      &sid);
6015 		}
6016 		if (error)
6017 			return error;
6018 	}
6019 
6020 	new = prepare_creds();
6021 	if (!new)
6022 		return -ENOMEM;
6023 
6024 	/* Permission checking based on the specified context is
6025 	   performed during the actual operation (execve,
6026 	   open/mkdir/...), when we know the full context of the
6027 	   operation.  See selinux_bprm_set_creds for the execve
6028 	   checks and may_create for the file creation checks. The
6029 	   operation will then fail if the context is not permitted. */
6030 	tsec = new->security;
6031 	if (!strcmp(name, "exec")) {
6032 		tsec->exec_sid = sid;
6033 	} else if (!strcmp(name, "fscreate")) {
6034 		tsec->create_sid = sid;
6035 	} else if (!strcmp(name, "keycreate")) {
6036 		error = avc_has_perm(mysid, sid, SECCLASS_KEY, KEY__CREATE,
6037 				     NULL);
6038 		if (error)
6039 			goto abort_change;
6040 		tsec->keycreate_sid = sid;
6041 	} else if (!strcmp(name, "sockcreate")) {
6042 		tsec->sockcreate_sid = sid;
6043 	} else if (!strcmp(name, "current")) {
6044 		error = -EINVAL;
6045 		if (sid == 0)
6046 			goto abort_change;
6047 
6048 		/* Only allow single threaded processes to change context */
6049 		error = -EPERM;
6050 		if (!current_is_single_threaded()) {
6051 			error = security_bounded_transition(tsec->sid, sid);
6052 			if (error)
6053 				goto abort_change;
6054 		}
6055 
6056 		/* Check permissions for the transition. */
6057 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6058 				     PROCESS__DYNTRANSITION, NULL);
6059 		if (error)
6060 			goto abort_change;
6061 
6062 		/* Check for ptracing, and update the task SID if ok.
6063 		   Otherwise, leave SID unchanged and fail. */
6064 		ptsid = ptrace_parent_sid();
6065 		if (ptsid != 0) {
6066 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6067 					     PROCESS__PTRACE, NULL);
6068 			if (error)
6069 				goto abort_change;
6070 		}
6071 
6072 		tsec->sid = sid;
6073 	} else {
6074 		error = -EINVAL;
6075 		goto abort_change;
6076 	}
6077 
6078 	commit_creds(new);
6079 	return size;
6080 
6081 abort_change:
6082 	abort_creds(new);
6083 	return error;
6084 }
6085 
6086 static int selinux_ismaclabel(const char *name)
6087 {
6088 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6089 }
6090 
6091 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6092 {
6093 	return security_sid_to_context(secid, secdata, seclen);
6094 }
6095 
6096 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6097 {
6098 	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
6099 }
6100 
6101 static void selinux_release_secctx(char *secdata, u32 seclen)
6102 {
6103 	kfree(secdata);
6104 }
6105 
6106 static void selinux_inode_invalidate_secctx(struct inode *inode)
6107 {
6108 	struct inode_security_struct *isec = inode->i_security;
6109 
6110 	spin_lock(&isec->lock);
6111 	isec->initialized = LABEL_INVALID;
6112 	spin_unlock(&isec->lock);
6113 }
6114 
6115 /*
6116  *	called with inode->i_mutex locked
6117  */
6118 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6119 {
6120 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6121 }
6122 
6123 /*
6124  *	called with inode->i_mutex locked
6125  */
6126 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6127 {
6128 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6129 }
6130 
6131 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6132 {
6133 	int len = 0;
6134 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6135 						ctx, true);
6136 	if (len < 0)
6137 		return len;
6138 	*ctxlen = len;
6139 	return 0;
6140 }
6141 #ifdef CONFIG_KEYS
6142 
6143 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6144 			     unsigned long flags)
6145 {
6146 	const struct task_security_struct *tsec;
6147 	struct key_security_struct *ksec;
6148 
6149 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6150 	if (!ksec)
6151 		return -ENOMEM;
6152 
6153 	tsec = cred->security;
6154 	if (tsec->keycreate_sid)
6155 		ksec->sid = tsec->keycreate_sid;
6156 	else
6157 		ksec->sid = tsec->sid;
6158 
6159 	k->security = ksec;
6160 	return 0;
6161 }
6162 
6163 static void selinux_key_free(struct key *k)
6164 {
6165 	struct key_security_struct *ksec = k->security;
6166 
6167 	k->security = NULL;
6168 	kfree(ksec);
6169 }
6170 
6171 static int selinux_key_permission(key_ref_t key_ref,
6172 				  const struct cred *cred,
6173 				  unsigned perm)
6174 {
6175 	struct key *key;
6176 	struct key_security_struct *ksec;
6177 	u32 sid;
6178 
6179 	/* if no specific permissions are requested, we skip the
6180 	   permission check. No serious, additional covert channels
6181 	   appear to be created. */
6182 	if (perm == 0)
6183 		return 0;
6184 
6185 	sid = cred_sid(cred);
6186 
6187 	key = key_ref_to_ptr(key_ref);
6188 	ksec = key->security;
6189 
6190 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6191 }
6192 
6193 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6194 {
6195 	struct key_security_struct *ksec = key->security;
6196 	char *context = NULL;
6197 	unsigned len;
6198 	int rc;
6199 
6200 	rc = security_sid_to_context(ksec->sid, &context, &len);
6201 	if (!rc)
6202 		rc = len;
6203 	*_buffer = context;
6204 	return rc;
6205 }
6206 #endif
6207 
6208 #ifdef CONFIG_SECURITY_INFINIBAND
6209 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6210 {
6211 	struct common_audit_data ad;
6212 	int err;
6213 	u32 sid = 0;
6214 	struct ib_security_struct *sec = ib_sec;
6215 	struct lsm_ibpkey_audit ibpkey;
6216 
6217 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6218 	if (err)
6219 		return err;
6220 
6221 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6222 	ibpkey.subnet_prefix = subnet_prefix;
6223 	ibpkey.pkey = pkey_val;
6224 	ad.u.ibpkey = &ibpkey;
6225 	return avc_has_perm(sec->sid, sid,
6226 			    SECCLASS_INFINIBAND_PKEY,
6227 			    INFINIBAND_PKEY__ACCESS, &ad);
6228 }
6229 
6230 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6231 					    u8 port_num)
6232 {
6233 	struct common_audit_data ad;
6234 	int err;
6235 	u32 sid = 0;
6236 	struct ib_security_struct *sec = ib_sec;
6237 	struct lsm_ibendport_audit ibendport;
6238 
6239 	err = security_ib_endport_sid(dev_name, port_num, &sid);
6240 
6241 	if (err)
6242 		return err;
6243 
6244 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6245 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6246 	ibendport.port = port_num;
6247 	ad.u.ibendport = &ibendport;
6248 	return avc_has_perm(sec->sid, sid,
6249 			    SECCLASS_INFINIBAND_ENDPORT,
6250 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6251 }
6252 
6253 static int selinux_ib_alloc_security(void **ib_sec)
6254 {
6255 	struct ib_security_struct *sec;
6256 
6257 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6258 	if (!sec)
6259 		return -ENOMEM;
6260 	sec->sid = current_sid();
6261 
6262 	*ib_sec = sec;
6263 	return 0;
6264 }
6265 
6266 static void selinux_ib_free_security(void *ib_sec)
6267 {
6268 	kfree(ib_sec);
6269 }
6270 #endif
6271 
6272 #ifdef CONFIG_BPF_SYSCALL
6273 static int selinux_bpf(int cmd, union bpf_attr *attr,
6274 				     unsigned int size)
6275 {
6276 	u32 sid = current_sid();
6277 	int ret;
6278 
6279 	switch (cmd) {
6280 	case BPF_MAP_CREATE:
6281 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6282 				   NULL);
6283 		break;
6284 	case BPF_PROG_LOAD:
6285 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6286 				   NULL);
6287 		break;
6288 	default:
6289 		ret = 0;
6290 		break;
6291 	}
6292 
6293 	return ret;
6294 }
6295 
6296 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6297 {
6298 	u32 av = 0;
6299 
6300 	if (fmode & FMODE_READ)
6301 		av |= BPF__MAP_READ;
6302 	if (fmode & FMODE_WRITE)
6303 		av |= BPF__MAP_WRITE;
6304 	return av;
6305 }
6306 
6307 /* This function will check the file pass through unix socket or binder to see
6308  * if it is a bpf related object. And apply correspinding checks on the bpf
6309  * object based on the type. The bpf maps and programs, not like other files and
6310  * socket, are using a shared anonymous inode inside the kernel as their inode.
6311  * So checking that inode cannot identify if the process have privilege to
6312  * access the bpf object and that's why we have to add this additional check in
6313  * selinux_file_receive and selinux_binder_transfer_files.
6314  */
6315 static int bpf_fd_pass(struct file *file, u32 sid)
6316 {
6317 	struct bpf_security_struct *bpfsec;
6318 	struct bpf_prog *prog;
6319 	struct bpf_map *map;
6320 	int ret;
6321 
6322 	if (file->f_op == &bpf_map_fops) {
6323 		map = file->private_data;
6324 		bpfsec = map->security;
6325 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6326 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6327 		if (ret)
6328 			return ret;
6329 	} else if (file->f_op == &bpf_prog_fops) {
6330 		prog = file->private_data;
6331 		bpfsec = prog->aux->security;
6332 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6333 				   BPF__PROG_RUN, NULL);
6334 		if (ret)
6335 			return ret;
6336 	}
6337 	return 0;
6338 }
6339 
6340 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6341 {
6342 	u32 sid = current_sid();
6343 	struct bpf_security_struct *bpfsec;
6344 
6345 	bpfsec = map->security;
6346 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6347 			    bpf_map_fmode_to_av(fmode), NULL);
6348 }
6349 
6350 static int selinux_bpf_prog(struct bpf_prog *prog)
6351 {
6352 	u32 sid = current_sid();
6353 	struct bpf_security_struct *bpfsec;
6354 
6355 	bpfsec = prog->aux->security;
6356 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6357 			    BPF__PROG_RUN, NULL);
6358 }
6359 
6360 static int selinux_bpf_map_alloc(struct bpf_map *map)
6361 {
6362 	struct bpf_security_struct *bpfsec;
6363 
6364 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6365 	if (!bpfsec)
6366 		return -ENOMEM;
6367 
6368 	bpfsec->sid = current_sid();
6369 	map->security = bpfsec;
6370 
6371 	return 0;
6372 }
6373 
6374 static void selinux_bpf_map_free(struct bpf_map *map)
6375 {
6376 	struct bpf_security_struct *bpfsec = map->security;
6377 
6378 	map->security = NULL;
6379 	kfree(bpfsec);
6380 }
6381 
6382 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6383 {
6384 	struct bpf_security_struct *bpfsec;
6385 
6386 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6387 	if (!bpfsec)
6388 		return -ENOMEM;
6389 
6390 	bpfsec->sid = current_sid();
6391 	aux->security = bpfsec;
6392 
6393 	return 0;
6394 }
6395 
6396 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6397 {
6398 	struct bpf_security_struct *bpfsec = aux->security;
6399 
6400 	aux->security = NULL;
6401 	kfree(bpfsec);
6402 }
6403 #endif
6404 
6405 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6406 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6407 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6408 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6409 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6410 
6411 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6412 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6413 	LSM_HOOK_INIT(capget, selinux_capget),
6414 	LSM_HOOK_INIT(capset, selinux_capset),
6415 	LSM_HOOK_INIT(capable, selinux_capable),
6416 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6417 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6418 	LSM_HOOK_INIT(syslog, selinux_syslog),
6419 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6420 
6421 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6422 
6423 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6424 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6425 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6426 
6427 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6428 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6429 	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6430 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6431 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6432 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6433 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6434 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6435 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6436 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6437 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6438 	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6439 
6440 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6441 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6442 
6443 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6444 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6445 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6446 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6447 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6448 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6449 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6450 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6451 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6452 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6453 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6454 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6455 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6456 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6457 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6458 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6459 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6460 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6461 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6462 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6463 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6464 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6465 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6466 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6467 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6468 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6469 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6470 
6471 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6472 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6473 	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6474 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6475 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6476 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6477 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6478 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6479 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6480 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6481 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6482 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6483 
6484 	LSM_HOOK_INIT(file_open, selinux_file_open),
6485 
6486 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6487 	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6488 	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6489 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6490 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6491 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6492 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6493 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6494 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6495 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6496 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6497 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6498 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6499 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6500 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6501 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6502 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6503 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6504 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6505 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6506 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6507 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6508 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6509 
6510 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6511 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6512 
6513 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6514 	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6515 
6516 	LSM_HOOK_INIT(msg_queue_alloc_security,
6517 			selinux_msg_queue_alloc_security),
6518 	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6519 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6520 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6521 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6522 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6523 
6524 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6525 	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6526 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6527 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6528 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6529 
6530 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6531 	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6532 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6533 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6534 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6535 
6536 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6537 
6538 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6539 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6540 
6541 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6542 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6543 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6544 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6545 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6546 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6547 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6548 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6549 
6550 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6551 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6552 
6553 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6554 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6555 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6556 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6557 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6558 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6559 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6560 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6561 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6562 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6563 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6564 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6565 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6566 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6567 	LSM_HOOK_INIT(socket_getpeersec_stream,
6568 			selinux_socket_getpeersec_stream),
6569 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6570 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6571 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6572 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6573 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6574 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6575 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6576 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6577 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6578 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6579 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6580 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6581 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6582 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6583 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6584 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6585 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6586 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6587 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6588 #ifdef CONFIG_SECURITY_INFINIBAND
6589 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6590 	LSM_HOOK_INIT(ib_endport_manage_subnet,
6591 		      selinux_ib_endport_manage_subnet),
6592 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6593 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6594 #endif
6595 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6596 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6597 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6598 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6599 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6600 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6601 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6602 			selinux_xfrm_state_alloc_acquire),
6603 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6604 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6605 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6606 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6607 			selinux_xfrm_state_pol_flow_match),
6608 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6609 #endif
6610 
6611 #ifdef CONFIG_KEYS
6612 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6613 	LSM_HOOK_INIT(key_free, selinux_key_free),
6614 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6615 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6616 #endif
6617 
6618 #ifdef CONFIG_AUDIT
6619 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6620 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6621 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6622 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6623 #endif
6624 
6625 #ifdef CONFIG_BPF_SYSCALL
6626 	LSM_HOOK_INIT(bpf, selinux_bpf),
6627 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
6628 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
6629 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
6630 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
6631 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
6632 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
6633 #endif
6634 };
6635 
6636 static __init int selinux_init(void)
6637 {
6638 	if (!security_module_enable("selinux")) {
6639 		selinux_enabled = 0;
6640 		return 0;
6641 	}
6642 
6643 	if (!selinux_enabled) {
6644 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6645 		return 0;
6646 	}
6647 
6648 	printk(KERN_INFO "SELinux:  Initializing.\n");
6649 
6650 	/* Set the security state for the initial task. */
6651 	cred_init_security();
6652 
6653 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6654 
6655 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6656 					    sizeof(struct inode_security_struct),
6657 					    0, SLAB_PANIC, NULL);
6658 	file_security_cache = kmem_cache_create("selinux_file_security",
6659 					    sizeof(struct file_security_struct),
6660 					    0, SLAB_PANIC, NULL);
6661 	avc_init();
6662 
6663 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
6664 
6665 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6666 		panic("SELinux: Unable to register AVC netcache callback\n");
6667 
6668 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
6669 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
6670 
6671 	if (selinux_enforcing)
6672 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6673 	else
6674 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6675 
6676 	return 0;
6677 }
6678 
6679 static void delayed_superblock_init(struct super_block *sb, void *unused)
6680 {
6681 	superblock_doinit(sb, NULL);
6682 }
6683 
6684 void selinux_complete_init(void)
6685 {
6686 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6687 
6688 	/* Set up any superblocks initialized prior to the policy load. */
6689 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6690 	iterate_supers(delayed_superblock_init, NULL);
6691 }
6692 
6693 /* SELinux requires early initialization in order to label
6694    all processes and objects when they are created. */
6695 security_initcall(selinux_init);
6696 
6697 #if defined(CONFIG_NETFILTER)
6698 
6699 static const struct nf_hook_ops selinux_nf_ops[] = {
6700 	{
6701 		.hook =		selinux_ipv4_postroute,
6702 		.pf =		NFPROTO_IPV4,
6703 		.hooknum =	NF_INET_POST_ROUTING,
6704 		.priority =	NF_IP_PRI_SELINUX_LAST,
6705 	},
6706 	{
6707 		.hook =		selinux_ipv4_forward,
6708 		.pf =		NFPROTO_IPV4,
6709 		.hooknum =	NF_INET_FORWARD,
6710 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6711 	},
6712 	{
6713 		.hook =		selinux_ipv4_output,
6714 		.pf =		NFPROTO_IPV4,
6715 		.hooknum =	NF_INET_LOCAL_OUT,
6716 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6717 	},
6718 #if IS_ENABLED(CONFIG_IPV6)
6719 	{
6720 		.hook =		selinux_ipv6_postroute,
6721 		.pf =		NFPROTO_IPV6,
6722 		.hooknum =	NF_INET_POST_ROUTING,
6723 		.priority =	NF_IP6_PRI_SELINUX_LAST,
6724 	},
6725 	{
6726 		.hook =		selinux_ipv6_forward,
6727 		.pf =		NFPROTO_IPV6,
6728 		.hooknum =	NF_INET_FORWARD,
6729 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6730 	},
6731 	{
6732 		.hook =		selinux_ipv6_output,
6733 		.pf =		NFPROTO_IPV6,
6734 		.hooknum =	NF_INET_LOCAL_OUT,
6735 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6736 	},
6737 #endif	/* IPV6 */
6738 };
6739 
6740 static int __net_init selinux_nf_register(struct net *net)
6741 {
6742 	return nf_register_net_hooks(net, selinux_nf_ops,
6743 				     ARRAY_SIZE(selinux_nf_ops));
6744 }
6745 
6746 static void __net_exit selinux_nf_unregister(struct net *net)
6747 {
6748 	nf_unregister_net_hooks(net, selinux_nf_ops,
6749 				ARRAY_SIZE(selinux_nf_ops));
6750 }
6751 
6752 static struct pernet_operations selinux_net_ops = {
6753 	.init = selinux_nf_register,
6754 	.exit = selinux_nf_unregister,
6755 };
6756 
6757 static int __init selinux_nf_ip_init(void)
6758 {
6759 	int err;
6760 
6761 	if (!selinux_enabled)
6762 		return 0;
6763 
6764 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6765 
6766 	err = register_pernet_subsys(&selinux_net_ops);
6767 	if (err)
6768 		panic("SELinux: register_pernet_subsys: error %d\n", err);
6769 
6770 	return 0;
6771 }
6772 __initcall(selinux_nf_ip_init);
6773 
6774 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6775 static void selinux_nf_ip_exit(void)
6776 {
6777 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6778 
6779 	unregister_pernet_subsys(&selinux_net_ops);
6780 }
6781 #endif
6782 
6783 #else /* CONFIG_NETFILTER */
6784 
6785 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6786 #define selinux_nf_ip_exit()
6787 #endif
6788 
6789 #endif /* CONFIG_NETFILTER */
6790 
6791 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6792 static int selinux_disabled;
6793 
6794 int selinux_disable(void)
6795 {
6796 	if (ss_initialized) {
6797 		/* Not permitted after initial policy load. */
6798 		return -EINVAL;
6799 	}
6800 
6801 	if (selinux_disabled) {
6802 		/* Only do this once. */
6803 		return -EINVAL;
6804 	}
6805 
6806 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6807 
6808 	selinux_disabled = 1;
6809 	selinux_enabled = 0;
6810 
6811 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6812 
6813 	/* Try to destroy the avc node cache */
6814 	avc_disable();
6815 
6816 	/* Unregister netfilter hooks. */
6817 	selinux_nf_ip_exit();
6818 
6819 	/* Unregister selinuxfs. */
6820 	exit_sel_fs();
6821 
6822 	return 0;
6823 }
6824 #endif
6825