xref: /openbmc/linux/security/selinux/hooks.c (revision 2d68bb26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>	/* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105 
106 struct selinux_state selinux_state;
107 
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110 
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot;
113 
114 static int __init enforcing_setup(char *str)
115 {
116 	unsigned long enforcing;
117 	if (!kstrtoul(str, 0, &enforcing))
118 		selinux_enforcing_boot = enforcing ? 1 : 0;
119 	return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125 
126 int selinux_enabled __lsm_ro_after_init = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130 	unsigned long enabled;
131 	if (!kstrtoul(str, 0, &enabled))
132 		selinux_enabled = enabled ? 1 : 0;
133 	return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot))
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 	return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150 
151 /**
152  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153  *
154  * Description:
155  * This function checks the SECMARK reference counter to see if any SECMARK
156  * targets are currently configured, if the reference counter is greater than
157  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
158  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
159  * policy capability is enabled, SECMARK is always considered enabled.
160  *
161  */
162 static int selinux_secmark_enabled(void)
163 {
164 	return (selinux_policycap_alwaysnetwork() ||
165 		atomic_read(&selinux_secmark_refcount));
166 }
167 
168 /**
169  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170  *
171  * Description:
172  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
173  * (1) if any are enabled or false (0) if neither are enabled.  If the
174  * always_check_network policy capability is enabled, peer labeling
175  * is always considered enabled.
176  *
177  */
178 static int selinux_peerlbl_enabled(void)
179 {
180 	return (selinux_policycap_alwaysnetwork() ||
181 		netlbl_enabled() || selinux_xfrm_enabled());
182 }
183 
184 static int selinux_netcache_avc_callback(u32 event)
185 {
186 	if (event == AVC_CALLBACK_RESET) {
187 		sel_netif_flush();
188 		sel_netnode_flush();
189 		sel_netport_flush();
190 		synchronize_net();
191 	}
192 	return 0;
193 }
194 
195 static int selinux_lsm_notifier_avc_callback(u32 event)
196 {
197 	if (event == AVC_CALLBACK_RESET) {
198 		sel_ib_pkey_flush();
199 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200 	}
201 
202 	return 0;
203 }
204 
205 /*
206  * initialise the security for the init task
207  */
208 static void cred_init_security(void)
209 {
210 	struct cred *cred = (struct cred *) current->real_cred;
211 	struct task_security_struct *tsec;
212 
213 	tsec = selinux_cred(cred);
214 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
215 }
216 
217 /*
218  * get the security ID of a set of credentials
219  */
220 static inline u32 cred_sid(const struct cred *cred)
221 {
222 	const struct task_security_struct *tsec;
223 
224 	tsec = selinux_cred(cred);
225 	return tsec->sid;
226 }
227 
228 /*
229  * get the objective security ID of a task
230  */
231 static inline u32 task_sid(const struct task_struct *task)
232 {
233 	u32 sid;
234 
235 	rcu_read_lock();
236 	sid = cred_sid(__task_cred(task));
237 	rcu_read_unlock();
238 	return sid;
239 }
240 
241 /* Allocate and free functions for each kind of security blob. */
242 
243 static int inode_alloc_security(struct inode *inode)
244 {
245 	struct inode_security_struct *isec = selinux_inode(inode);
246 	u32 sid = current_sid();
247 
248 	spin_lock_init(&isec->lock);
249 	INIT_LIST_HEAD(&isec->list);
250 	isec->inode = inode;
251 	isec->sid = SECINITSID_UNLABELED;
252 	isec->sclass = SECCLASS_FILE;
253 	isec->task_sid = sid;
254 	isec->initialized = LABEL_INVALID;
255 
256 	return 0;
257 }
258 
259 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
260 
261 /*
262  * Try reloading inode security labels that have been marked as invalid.  The
263  * @may_sleep parameter indicates when sleeping and thus reloading labels is
264  * allowed; when set to false, returns -ECHILD when the label is
265  * invalid.  The @dentry parameter should be set to a dentry of the inode.
266  */
267 static int __inode_security_revalidate(struct inode *inode,
268 				       struct dentry *dentry,
269 				       bool may_sleep)
270 {
271 	struct inode_security_struct *isec = selinux_inode(inode);
272 
273 	might_sleep_if(may_sleep);
274 
275 	if (selinux_state.initialized &&
276 	    isec->initialized != LABEL_INITIALIZED) {
277 		if (!may_sleep)
278 			return -ECHILD;
279 
280 		/*
281 		 * Try reloading the inode security label.  This will fail if
282 		 * @opt_dentry is NULL and no dentry for this inode can be
283 		 * found; in that case, continue using the old label.
284 		 */
285 		inode_doinit_with_dentry(inode, dentry);
286 	}
287 	return 0;
288 }
289 
290 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
291 {
292 	return selinux_inode(inode);
293 }
294 
295 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
296 {
297 	int error;
298 
299 	error = __inode_security_revalidate(inode, NULL, !rcu);
300 	if (error)
301 		return ERR_PTR(error);
302 	return selinux_inode(inode);
303 }
304 
305 /*
306  * Get the security label of an inode.
307  */
308 static struct inode_security_struct *inode_security(struct inode *inode)
309 {
310 	__inode_security_revalidate(inode, NULL, true);
311 	return selinux_inode(inode);
312 }
313 
314 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
315 {
316 	struct inode *inode = d_backing_inode(dentry);
317 
318 	return selinux_inode(inode);
319 }
320 
321 /*
322  * Get the security label of a dentry's backing inode.
323  */
324 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	__inode_security_revalidate(inode, dentry, true);
329 	return selinux_inode(inode);
330 }
331 
332 static void inode_free_security(struct inode *inode)
333 {
334 	struct inode_security_struct *isec = selinux_inode(inode);
335 	struct superblock_security_struct *sbsec;
336 
337 	if (!isec)
338 		return;
339 	sbsec = inode->i_sb->s_security;
340 	/*
341 	 * As not all inode security structures are in a list, we check for
342 	 * empty list outside of the lock to make sure that we won't waste
343 	 * time taking a lock doing nothing.
344 	 *
345 	 * The list_del_init() function can be safely called more than once.
346 	 * It should not be possible for this function to be called with
347 	 * concurrent list_add(), but for better safety against future changes
348 	 * in the code, we use list_empty_careful() here.
349 	 */
350 	if (!list_empty_careful(&isec->list)) {
351 		spin_lock(&sbsec->isec_lock);
352 		list_del_init(&isec->list);
353 		spin_unlock(&sbsec->isec_lock);
354 	}
355 }
356 
357 static int file_alloc_security(struct file *file)
358 {
359 	struct file_security_struct *fsec = selinux_file(file);
360 	u32 sid = current_sid();
361 
362 	fsec->sid = sid;
363 	fsec->fown_sid = sid;
364 
365 	return 0;
366 }
367 
368 static int superblock_alloc_security(struct super_block *sb)
369 {
370 	struct superblock_security_struct *sbsec;
371 
372 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
373 	if (!sbsec)
374 		return -ENOMEM;
375 
376 	mutex_init(&sbsec->lock);
377 	INIT_LIST_HEAD(&sbsec->isec_head);
378 	spin_lock_init(&sbsec->isec_lock);
379 	sbsec->sb = sb;
380 	sbsec->sid = SECINITSID_UNLABELED;
381 	sbsec->def_sid = SECINITSID_FILE;
382 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
383 	sb->s_security = sbsec;
384 
385 	return 0;
386 }
387 
388 static void superblock_free_security(struct super_block *sb)
389 {
390 	struct superblock_security_struct *sbsec = sb->s_security;
391 	sb->s_security = NULL;
392 	kfree(sbsec);
393 }
394 
395 struct selinux_mnt_opts {
396 	const char *fscontext, *context, *rootcontext, *defcontext;
397 };
398 
399 static void selinux_free_mnt_opts(void *mnt_opts)
400 {
401 	struct selinux_mnt_opts *opts = mnt_opts;
402 	kfree(opts->fscontext);
403 	kfree(opts->context);
404 	kfree(opts->rootcontext);
405 	kfree(opts->defcontext);
406 	kfree(opts);
407 }
408 
409 static inline int inode_doinit(struct inode *inode)
410 {
411 	return inode_doinit_with_dentry(inode, NULL);
412 }
413 
414 enum {
415 	Opt_error = -1,
416 	Opt_context = 0,
417 	Opt_defcontext = 1,
418 	Opt_fscontext = 2,
419 	Opt_rootcontext = 3,
420 	Opt_seclabel = 4,
421 };
422 
423 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
424 static struct {
425 	const char *name;
426 	int len;
427 	int opt;
428 	bool has_arg;
429 } tokens[] = {
430 	A(context, true),
431 	A(fscontext, true),
432 	A(defcontext, true),
433 	A(rootcontext, true),
434 	A(seclabel, false),
435 };
436 #undef A
437 
438 static int match_opt_prefix(char *s, int l, char **arg)
439 {
440 	int i;
441 
442 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
443 		size_t len = tokens[i].len;
444 		if (len > l || memcmp(s, tokens[i].name, len))
445 			continue;
446 		if (tokens[i].has_arg) {
447 			if (len == l || s[len] != '=')
448 				continue;
449 			*arg = s + len + 1;
450 		} else if (len != l)
451 			continue;
452 		return tokens[i].opt;
453 	}
454 	return Opt_error;
455 }
456 
457 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
458 
459 static int may_context_mount_sb_relabel(u32 sid,
460 			struct superblock_security_struct *sbsec,
461 			const struct cred *cred)
462 {
463 	const struct task_security_struct *tsec = selinux_cred(cred);
464 	int rc;
465 
466 	rc = avc_has_perm(&selinux_state,
467 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
468 			  FILESYSTEM__RELABELFROM, NULL);
469 	if (rc)
470 		return rc;
471 
472 	rc = avc_has_perm(&selinux_state,
473 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
474 			  FILESYSTEM__RELABELTO, NULL);
475 	return rc;
476 }
477 
478 static int may_context_mount_inode_relabel(u32 sid,
479 			struct superblock_security_struct *sbsec,
480 			const struct cred *cred)
481 {
482 	const struct task_security_struct *tsec = selinux_cred(cred);
483 	int rc;
484 	rc = avc_has_perm(&selinux_state,
485 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
486 			  FILESYSTEM__RELABELFROM, NULL);
487 	if (rc)
488 		return rc;
489 
490 	rc = avc_has_perm(&selinux_state,
491 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
492 			  FILESYSTEM__ASSOCIATE, NULL);
493 	return rc;
494 }
495 
496 static int selinux_is_genfs_special_handling(struct super_block *sb)
497 {
498 	/* Special handling. Genfs but also in-core setxattr handler */
499 	return	!strcmp(sb->s_type->name, "sysfs") ||
500 		!strcmp(sb->s_type->name, "pstore") ||
501 		!strcmp(sb->s_type->name, "debugfs") ||
502 		!strcmp(sb->s_type->name, "tracefs") ||
503 		!strcmp(sb->s_type->name, "rootfs") ||
504 		(selinux_policycap_cgroupseclabel() &&
505 		 (!strcmp(sb->s_type->name, "cgroup") ||
506 		  !strcmp(sb->s_type->name, "cgroup2")));
507 }
508 
509 static int selinux_is_sblabel_mnt(struct super_block *sb)
510 {
511 	struct superblock_security_struct *sbsec = sb->s_security;
512 
513 	/*
514 	 * IMPORTANT: Double-check logic in this function when adding a new
515 	 * SECURITY_FS_USE_* definition!
516 	 */
517 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
518 
519 	switch (sbsec->behavior) {
520 	case SECURITY_FS_USE_XATTR:
521 	case SECURITY_FS_USE_TRANS:
522 	case SECURITY_FS_USE_TASK:
523 	case SECURITY_FS_USE_NATIVE:
524 		return 1;
525 
526 	case SECURITY_FS_USE_GENFS:
527 		return selinux_is_genfs_special_handling(sb);
528 
529 	/* Never allow relabeling on context mounts */
530 	case SECURITY_FS_USE_MNTPOINT:
531 	case SECURITY_FS_USE_NONE:
532 	default:
533 		return 0;
534 	}
535 }
536 
537 static int sb_finish_set_opts(struct super_block *sb)
538 {
539 	struct superblock_security_struct *sbsec = sb->s_security;
540 	struct dentry *root = sb->s_root;
541 	struct inode *root_inode = d_backing_inode(root);
542 	int rc = 0;
543 
544 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
545 		/* Make sure that the xattr handler exists and that no
546 		   error other than -ENODATA is returned by getxattr on
547 		   the root directory.  -ENODATA is ok, as this may be
548 		   the first boot of the SELinux kernel before we have
549 		   assigned xattr values to the filesystem. */
550 		if (!(root_inode->i_opflags & IOP_XATTR)) {
551 			pr_warn("SELinux: (dev %s, type %s) has no "
552 			       "xattr support\n", sb->s_id, sb->s_type->name);
553 			rc = -EOPNOTSUPP;
554 			goto out;
555 		}
556 
557 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
558 		if (rc < 0 && rc != -ENODATA) {
559 			if (rc == -EOPNOTSUPP)
560 				pr_warn("SELinux: (dev %s, type "
561 				       "%s) has no security xattr handler\n",
562 				       sb->s_id, sb->s_type->name);
563 			else
564 				pr_warn("SELinux: (dev %s, type "
565 				       "%s) getxattr errno %d\n", sb->s_id,
566 				       sb->s_type->name, -rc);
567 			goto out;
568 		}
569 	}
570 
571 	sbsec->flags |= SE_SBINITIALIZED;
572 
573 	/*
574 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
575 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
576 	 * us a superblock that needs the flag to be cleared.
577 	 */
578 	if (selinux_is_sblabel_mnt(sb))
579 		sbsec->flags |= SBLABEL_MNT;
580 	else
581 		sbsec->flags &= ~SBLABEL_MNT;
582 
583 	/* Initialize the root inode. */
584 	rc = inode_doinit_with_dentry(root_inode, root);
585 
586 	/* Initialize any other inodes associated with the superblock, e.g.
587 	   inodes created prior to initial policy load or inodes created
588 	   during get_sb by a pseudo filesystem that directly
589 	   populates itself. */
590 	spin_lock(&sbsec->isec_lock);
591 	while (!list_empty(&sbsec->isec_head)) {
592 		struct inode_security_struct *isec =
593 				list_first_entry(&sbsec->isec_head,
594 					   struct inode_security_struct, list);
595 		struct inode *inode = isec->inode;
596 		list_del_init(&isec->list);
597 		spin_unlock(&sbsec->isec_lock);
598 		inode = igrab(inode);
599 		if (inode) {
600 			if (!IS_PRIVATE(inode))
601 				inode_doinit(inode);
602 			iput(inode);
603 		}
604 		spin_lock(&sbsec->isec_lock);
605 	}
606 	spin_unlock(&sbsec->isec_lock);
607 out:
608 	return rc;
609 }
610 
611 static int bad_option(struct superblock_security_struct *sbsec, char flag,
612 		      u32 old_sid, u32 new_sid)
613 {
614 	char mnt_flags = sbsec->flags & SE_MNTMASK;
615 
616 	/* check if the old mount command had the same options */
617 	if (sbsec->flags & SE_SBINITIALIZED)
618 		if (!(sbsec->flags & flag) ||
619 		    (old_sid != new_sid))
620 			return 1;
621 
622 	/* check if we were passed the same options twice,
623 	 * aka someone passed context=a,context=b
624 	 */
625 	if (!(sbsec->flags & SE_SBINITIALIZED))
626 		if (mnt_flags & flag)
627 			return 1;
628 	return 0;
629 }
630 
631 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
632 {
633 	int rc = security_context_str_to_sid(&selinux_state, s,
634 					     sid, GFP_KERNEL);
635 	if (rc)
636 		pr_warn("SELinux: security_context_str_to_sid"
637 		       "(%s) failed for (dev %s, type %s) errno=%d\n",
638 		       s, sb->s_id, sb->s_type->name, rc);
639 	return rc;
640 }
641 
642 /*
643  * Allow filesystems with binary mount data to explicitly set mount point
644  * labeling information.
645  */
646 static int selinux_set_mnt_opts(struct super_block *sb,
647 				void *mnt_opts,
648 				unsigned long kern_flags,
649 				unsigned long *set_kern_flags)
650 {
651 	const struct cred *cred = current_cred();
652 	struct superblock_security_struct *sbsec = sb->s_security;
653 	struct dentry *root = sbsec->sb->s_root;
654 	struct selinux_mnt_opts *opts = mnt_opts;
655 	struct inode_security_struct *root_isec;
656 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
657 	u32 defcontext_sid = 0;
658 	int rc = 0;
659 
660 	mutex_lock(&sbsec->lock);
661 
662 	if (!selinux_state.initialized) {
663 		if (!opts) {
664 			/* Defer initialization until selinux_complete_init,
665 			   after the initial policy is loaded and the security
666 			   server is ready to handle calls. */
667 			goto out;
668 		}
669 		rc = -EINVAL;
670 		pr_warn("SELinux: Unable to set superblock options "
671 			"before the security server is initialized\n");
672 		goto out;
673 	}
674 	if (kern_flags && !set_kern_flags) {
675 		/* Specifying internal flags without providing a place to
676 		 * place the results is not allowed */
677 		rc = -EINVAL;
678 		goto out;
679 	}
680 
681 	/*
682 	 * Binary mount data FS will come through this function twice.  Once
683 	 * from an explicit call and once from the generic calls from the vfs.
684 	 * Since the generic VFS calls will not contain any security mount data
685 	 * we need to skip the double mount verification.
686 	 *
687 	 * This does open a hole in which we will not notice if the first
688 	 * mount using this sb set explict options and a second mount using
689 	 * this sb does not set any security options.  (The first options
690 	 * will be used for both mounts)
691 	 */
692 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
693 	    && !opts)
694 		goto out;
695 
696 	root_isec = backing_inode_security_novalidate(root);
697 
698 	/*
699 	 * parse the mount options, check if they are valid sids.
700 	 * also check if someone is trying to mount the same sb more
701 	 * than once with different security options.
702 	 */
703 	if (opts) {
704 		if (opts->fscontext) {
705 			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
706 			if (rc)
707 				goto out;
708 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
709 					fscontext_sid))
710 				goto out_double_mount;
711 			sbsec->flags |= FSCONTEXT_MNT;
712 		}
713 		if (opts->context) {
714 			rc = parse_sid(sb, opts->context, &context_sid);
715 			if (rc)
716 				goto out;
717 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
718 					context_sid))
719 				goto out_double_mount;
720 			sbsec->flags |= CONTEXT_MNT;
721 		}
722 		if (opts->rootcontext) {
723 			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
724 			if (rc)
725 				goto out;
726 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
727 					rootcontext_sid))
728 				goto out_double_mount;
729 			sbsec->flags |= ROOTCONTEXT_MNT;
730 		}
731 		if (opts->defcontext) {
732 			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
733 			if (rc)
734 				goto out;
735 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
736 					defcontext_sid))
737 				goto out_double_mount;
738 			sbsec->flags |= DEFCONTEXT_MNT;
739 		}
740 	}
741 
742 	if (sbsec->flags & SE_SBINITIALIZED) {
743 		/* previously mounted with options, but not on this attempt? */
744 		if ((sbsec->flags & SE_MNTMASK) && !opts)
745 			goto out_double_mount;
746 		rc = 0;
747 		goto out;
748 	}
749 
750 	if (strcmp(sb->s_type->name, "proc") == 0)
751 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
752 
753 	if (!strcmp(sb->s_type->name, "debugfs") ||
754 	    !strcmp(sb->s_type->name, "tracefs") ||
755 	    !strcmp(sb->s_type->name, "pstore"))
756 		sbsec->flags |= SE_SBGENFS;
757 
758 	if (!strcmp(sb->s_type->name, "sysfs") ||
759 	    !strcmp(sb->s_type->name, "cgroup") ||
760 	    !strcmp(sb->s_type->name, "cgroup2"))
761 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
762 
763 	if (!sbsec->behavior) {
764 		/*
765 		 * Determine the labeling behavior to use for this
766 		 * filesystem type.
767 		 */
768 		rc = security_fs_use(&selinux_state, sb);
769 		if (rc) {
770 			pr_warn("%s: security_fs_use(%s) returned %d\n",
771 					__func__, sb->s_type->name, rc);
772 			goto out;
773 		}
774 	}
775 
776 	/*
777 	 * If this is a user namespace mount and the filesystem type is not
778 	 * explicitly whitelisted, then no contexts are allowed on the command
779 	 * line and security labels must be ignored.
780 	 */
781 	if (sb->s_user_ns != &init_user_ns &&
782 	    strcmp(sb->s_type->name, "tmpfs") &&
783 	    strcmp(sb->s_type->name, "ramfs") &&
784 	    strcmp(sb->s_type->name, "devpts")) {
785 		if (context_sid || fscontext_sid || rootcontext_sid ||
786 		    defcontext_sid) {
787 			rc = -EACCES;
788 			goto out;
789 		}
790 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
791 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 			rc = security_transition_sid(&selinux_state,
793 						     current_sid(),
794 						     current_sid(),
795 						     SECCLASS_FILE, NULL,
796 						     &sbsec->mntpoint_sid);
797 			if (rc)
798 				goto out;
799 		}
800 		goto out_set_opts;
801 	}
802 
803 	/* sets the context of the superblock for the fs being mounted. */
804 	if (fscontext_sid) {
805 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
806 		if (rc)
807 			goto out;
808 
809 		sbsec->sid = fscontext_sid;
810 	}
811 
812 	/*
813 	 * Switch to using mount point labeling behavior.
814 	 * sets the label used on all file below the mountpoint, and will set
815 	 * the superblock context if not already set.
816 	 */
817 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
818 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
819 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
820 	}
821 
822 	if (context_sid) {
823 		if (!fscontext_sid) {
824 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
825 							  cred);
826 			if (rc)
827 				goto out;
828 			sbsec->sid = context_sid;
829 		} else {
830 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
831 							     cred);
832 			if (rc)
833 				goto out;
834 		}
835 		if (!rootcontext_sid)
836 			rootcontext_sid = context_sid;
837 
838 		sbsec->mntpoint_sid = context_sid;
839 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
840 	}
841 
842 	if (rootcontext_sid) {
843 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
844 						     cred);
845 		if (rc)
846 			goto out;
847 
848 		root_isec->sid = rootcontext_sid;
849 		root_isec->initialized = LABEL_INITIALIZED;
850 	}
851 
852 	if (defcontext_sid) {
853 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
854 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
855 			rc = -EINVAL;
856 			pr_warn("SELinux: defcontext option is "
857 			       "invalid for this filesystem type\n");
858 			goto out;
859 		}
860 
861 		if (defcontext_sid != sbsec->def_sid) {
862 			rc = may_context_mount_inode_relabel(defcontext_sid,
863 							     sbsec, cred);
864 			if (rc)
865 				goto out;
866 		}
867 
868 		sbsec->def_sid = defcontext_sid;
869 	}
870 
871 out_set_opts:
872 	rc = sb_finish_set_opts(sb);
873 out:
874 	mutex_unlock(&sbsec->lock);
875 	return rc;
876 out_double_mount:
877 	rc = -EINVAL;
878 	pr_warn("SELinux: mount invalid.  Same superblock, different "
879 	       "security settings for (dev %s, type %s)\n", sb->s_id,
880 	       sb->s_type->name);
881 	goto out;
882 }
883 
884 static int selinux_cmp_sb_context(const struct super_block *oldsb,
885 				    const struct super_block *newsb)
886 {
887 	struct superblock_security_struct *old = oldsb->s_security;
888 	struct superblock_security_struct *new = newsb->s_security;
889 	char oldflags = old->flags & SE_MNTMASK;
890 	char newflags = new->flags & SE_MNTMASK;
891 
892 	if (oldflags != newflags)
893 		goto mismatch;
894 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
895 		goto mismatch;
896 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
897 		goto mismatch;
898 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
899 		goto mismatch;
900 	if (oldflags & ROOTCONTEXT_MNT) {
901 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
902 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
903 		if (oldroot->sid != newroot->sid)
904 			goto mismatch;
905 	}
906 	return 0;
907 mismatch:
908 	pr_warn("SELinux: mount invalid.  Same superblock, "
909 			    "different security settings for (dev %s, "
910 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
911 	return -EBUSY;
912 }
913 
914 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
915 					struct super_block *newsb,
916 					unsigned long kern_flags,
917 					unsigned long *set_kern_flags)
918 {
919 	int rc = 0;
920 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
921 	struct superblock_security_struct *newsbsec = newsb->s_security;
922 
923 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
924 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
925 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
926 
927 	/*
928 	 * if the parent was able to be mounted it clearly had no special lsm
929 	 * mount options.  thus we can safely deal with this superblock later
930 	 */
931 	if (!selinux_state.initialized)
932 		return 0;
933 
934 	/*
935 	 * Specifying internal flags without providing a place to
936 	 * place the results is not allowed.
937 	 */
938 	if (kern_flags && !set_kern_flags)
939 		return -EINVAL;
940 
941 	/* how can we clone if the old one wasn't set up?? */
942 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943 
944 	/* if fs is reusing a sb, make sure that the contexts match */
945 	if (newsbsec->flags & SE_SBINITIALIZED) {
946 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
947 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
948 		return selinux_cmp_sb_context(oldsb, newsb);
949 	}
950 
951 	mutex_lock(&newsbsec->lock);
952 
953 	newsbsec->flags = oldsbsec->flags;
954 
955 	newsbsec->sid = oldsbsec->sid;
956 	newsbsec->def_sid = oldsbsec->def_sid;
957 	newsbsec->behavior = oldsbsec->behavior;
958 
959 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
960 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
961 		rc = security_fs_use(&selinux_state, newsb);
962 		if (rc)
963 			goto out;
964 	}
965 
966 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
967 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
968 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
969 	}
970 
971 	if (set_context) {
972 		u32 sid = oldsbsec->mntpoint_sid;
973 
974 		if (!set_fscontext)
975 			newsbsec->sid = sid;
976 		if (!set_rootcontext) {
977 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978 			newisec->sid = sid;
979 		}
980 		newsbsec->mntpoint_sid = sid;
981 	}
982 	if (set_rootcontext) {
983 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
984 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
985 
986 		newisec->sid = oldisec->sid;
987 	}
988 
989 	sb_finish_set_opts(newsb);
990 out:
991 	mutex_unlock(&newsbsec->lock);
992 	return rc;
993 }
994 
995 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
996 {
997 	struct selinux_mnt_opts *opts = *mnt_opts;
998 
999 	if (token == Opt_seclabel)	/* eaten and completely ignored */
1000 		return 0;
1001 
1002 	if (!opts) {
1003 		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004 		if (!opts)
1005 			return -ENOMEM;
1006 		*mnt_opts = opts;
1007 	}
1008 	if (!s)
1009 		return -ENOMEM;
1010 	switch (token) {
1011 	case Opt_context:
1012 		if (opts->context || opts->defcontext)
1013 			goto Einval;
1014 		opts->context = s;
1015 		break;
1016 	case Opt_fscontext:
1017 		if (opts->fscontext)
1018 			goto Einval;
1019 		opts->fscontext = s;
1020 		break;
1021 	case Opt_rootcontext:
1022 		if (opts->rootcontext)
1023 			goto Einval;
1024 		opts->rootcontext = s;
1025 		break;
1026 	case Opt_defcontext:
1027 		if (opts->context || opts->defcontext)
1028 			goto Einval;
1029 		opts->defcontext = s;
1030 		break;
1031 	}
1032 	return 0;
1033 Einval:
1034 	pr_warn(SEL_MOUNT_FAIL_MSG);
1035 	return -EINVAL;
1036 }
1037 
1038 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039 			       void **mnt_opts)
1040 {
1041 	int token = Opt_error;
1042 	int rc, i;
1043 
1044 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045 		if (strcmp(option, tokens[i].name) == 0) {
1046 			token = tokens[i].opt;
1047 			break;
1048 		}
1049 	}
1050 
1051 	if (token == Opt_error)
1052 		return -EINVAL;
1053 
1054 	if (token != Opt_seclabel) {
1055 		val = kmemdup_nul(val, len, GFP_KERNEL);
1056 		if (!val) {
1057 			rc = -ENOMEM;
1058 			goto free_opt;
1059 		}
1060 	}
1061 	rc = selinux_add_opt(token, val, mnt_opts);
1062 	if (unlikely(rc)) {
1063 		kfree(val);
1064 		goto free_opt;
1065 	}
1066 	return rc;
1067 
1068 free_opt:
1069 	if (*mnt_opts) {
1070 		selinux_free_mnt_opts(*mnt_opts);
1071 		*mnt_opts = NULL;
1072 	}
1073 	return rc;
1074 }
1075 
1076 static int show_sid(struct seq_file *m, u32 sid)
1077 {
1078 	char *context = NULL;
1079 	u32 len;
1080 	int rc;
1081 
1082 	rc = security_sid_to_context(&selinux_state, sid,
1083 					     &context, &len);
1084 	if (!rc) {
1085 		bool has_comma = context && strchr(context, ',');
1086 
1087 		seq_putc(m, '=');
1088 		if (has_comma)
1089 			seq_putc(m, '\"');
1090 		seq_escape(m, context, "\"\n\\");
1091 		if (has_comma)
1092 			seq_putc(m, '\"');
1093 	}
1094 	kfree(context);
1095 	return rc;
1096 }
1097 
1098 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099 {
1100 	struct superblock_security_struct *sbsec = sb->s_security;
1101 	int rc;
1102 
1103 	if (!(sbsec->flags & SE_SBINITIALIZED))
1104 		return 0;
1105 
1106 	if (!selinux_state.initialized)
1107 		return 0;
1108 
1109 	if (sbsec->flags & FSCONTEXT_MNT) {
1110 		seq_putc(m, ',');
1111 		seq_puts(m, FSCONTEXT_STR);
1112 		rc = show_sid(m, sbsec->sid);
1113 		if (rc)
1114 			return rc;
1115 	}
1116 	if (sbsec->flags & CONTEXT_MNT) {
1117 		seq_putc(m, ',');
1118 		seq_puts(m, CONTEXT_STR);
1119 		rc = show_sid(m, sbsec->mntpoint_sid);
1120 		if (rc)
1121 			return rc;
1122 	}
1123 	if (sbsec->flags & DEFCONTEXT_MNT) {
1124 		seq_putc(m, ',');
1125 		seq_puts(m, DEFCONTEXT_STR);
1126 		rc = show_sid(m, sbsec->def_sid);
1127 		if (rc)
1128 			return rc;
1129 	}
1130 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1131 		struct dentry *root = sbsec->sb->s_root;
1132 		struct inode_security_struct *isec = backing_inode_security(root);
1133 		seq_putc(m, ',');
1134 		seq_puts(m, ROOTCONTEXT_STR);
1135 		rc = show_sid(m, isec->sid);
1136 		if (rc)
1137 			return rc;
1138 	}
1139 	if (sbsec->flags & SBLABEL_MNT) {
1140 		seq_putc(m, ',');
1141 		seq_puts(m, SECLABEL_STR);
1142 	}
1143 	return 0;
1144 }
1145 
1146 static inline u16 inode_mode_to_security_class(umode_t mode)
1147 {
1148 	switch (mode & S_IFMT) {
1149 	case S_IFSOCK:
1150 		return SECCLASS_SOCK_FILE;
1151 	case S_IFLNK:
1152 		return SECCLASS_LNK_FILE;
1153 	case S_IFREG:
1154 		return SECCLASS_FILE;
1155 	case S_IFBLK:
1156 		return SECCLASS_BLK_FILE;
1157 	case S_IFDIR:
1158 		return SECCLASS_DIR;
1159 	case S_IFCHR:
1160 		return SECCLASS_CHR_FILE;
1161 	case S_IFIFO:
1162 		return SECCLASS_FIFO_FILE;
1163 
1164 	}
1165 
1166 	return SECCLASS_FILE;
1167 }
1168 
1169 static inline int default_protocol_stream(int protocol)
1170 {
1171 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172 }
1173 
1174 static inline int default_protocol_dgram(int protocol)
1175 {
1176 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177 }
1178 
1179 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180 {
1181 	int extsockclass = selinux_policycap_extsockclass();
1182 
1183 	switch (family) {
1184 	case PF_UNIX:
1185 		switch (type) {
1186 		case SOCK_STREAM:
1187 		case SOCK_SEQPACKET:
1188 			return SECCLASS_UNIX_STREAM_SOCKET;
1189 		case SOCK_DGRAM:
1190 		case SOCK_RAW:
1191 			return SECCLASS_UNIX_DGRAM_SOCKET;
1192 		}
1193 		break;
1194 	case PF_INET:
1195 	case PF_INET6:
1196 		switch (type) {
1197 		case SOCK_STREAM:
1198 		case SOCK_SEQPACKET:
1199 			if (default_protocol_stream(protocol))
1200 				return SECCLASS_TCP_SOCKET;
1201 			else if (extsockclass && protocol == IPPROTO_SCTP)
1202 				return SECCLASS_SCTP_SOCKET;
1203 			else
1204 				return SECCLASS_RAWIP_SOCKET;
1205 		case SOCK_DGRAM:
1206 			if (default_protocol_dgram(protocol))
1207 				return SECCLASS_UDP_SOCKET;
1208 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209 						  protocol == IPPROTO_ICMPV6))
1210 				return SECCLASS_ICMP_SOCKET;
1211 			else
1212 				return SECCLASS_RAWIP_SOCKET;
1213 		case SOCK_DCCP:
1214 			return SECCLASS_DCCP_SOCKET;
1215 		default:
1216 			return SECCLASS_RAWIP_SOCKET;
1217 		}
1218 		break;
1219 	case PF_NETLINK:
1220 		switch (protocol) {
1221 		case NETLINK_ROUTE:
1222 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1223 		case NETLINK_SOCK_DIAG:
1224 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225 		case NETLINK_NFLOG:
1226 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1227 		case NETLINK_XFRM:
1228 			return SECCLASS_NETLINK_XFRM_SOCKET;
1229 		case NETLINK_SELINUX:
1230 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1231 		case NETLINK_ISCSI:
1232 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1233 		case NETLINK_AUDIT:
1234 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1235 		case NETLINK_FIB_LOOKUP:
1236 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237 		case NETLINK_CONNECTOR:
1238 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239 		case NETLINK_NETFILTER:
1240 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241 		case NETLINK_DNRTMSG:
1242 			return SECCLASS_NETLINK_DNRT_SOCKET;
1243 		case NETLINK_KOBJECT_UEVENT:
1244 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245 		case NETLINK_GENERIC:
1246 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1247 		case NETLINK_SCSITRANSPORT:
1248 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249 		case NETLINK_RDMA:
1250 			return SECCLASS_NETLINK_RDMA_SOCKET;
1251 		case NETLINK_CRYPTO:
1252 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253 		default:
1254 			return SECCLASS_NETLINK_SOCKET;
1255 		}
1256 	case PF_PACKET:
1257 		return SECCLASS_PACKET_SOCKET;
1258 	case PF_KEY:
1259 		return SECCLASS_KEY_SOCKET;
1260 	case PF_APPLETALK:
1261 		return SECCLASS_APPLETALK_SOCKET;
1262 	}
1263 
1264 	if (extsockclass) {
1265 		switch (family) {
1266 		case PF_AX25:
1267 			return SECCLASS_AX25_SOCKET;
1268 		case PF_IPX:
1269 			return SECCLASS_IPX_SOCKET;
1270 		case PF_NETROM:
1271 			return SECCLASS_NETROM_SOCKET;
1272 		case PF_ATMPVC:
1273 			return SECCLASS_ATMPVC_SOCKET;
1274 		case PF_X25:
1275 			return SECCLASS_X25_SOCKET;
1276 		case PF_ROSE:
1277 			return SECCLASS_ROSE_SOCKET;
1278 		case PF_DECnet:
1279 			return SECCLASS_DECNET_SOCKET;
1280 		case PF_ATMSVC:
1281 			return SECCLASS_ATMSVC_SOCKET;
1282 		case PF_RDS:
1283 			return SECCLASS_RDS_SOCKET;
1284 		case PF_IRDA:
1285 			return SECCLASS_IRDA_SOCKET;
1286 		case PF_PPPOX:
1287 			return SECCLASS_PPPOX_SOCKET;
1288 		case PF_LLC:
1289 			return SECCLASS_LLC_SOCKET;
1290 		case PF_CAN:
1291 			return SECCLASS_CAN_SOCKET;
1292 		case PF_TIPC:
1293 			return SECCLASS_TIPC_SOCKET;
1294 		case PF_BLUETOOTH:
1295 			return SECCLASS_BLUETOOTH_SOCKET;
1296 		case PF_IUCV:
1297 			return SECCLASS_IUCV_SOCKET;
1298 		case PF_RXRPC:
1299 			return SECCLASS_RXRPC_SOCKET;
1300 		case PF_ISDN:
1301 			return SECCLASS_ISDN_SOCKET;
1302 		case PF_PHONET:
1303 			return SECCLASS_PHONET_SOCKET;
1304 		case PF_IEEE802154:
1305 			return SECCLASS_IEEE802154_SOCKET;
1306 		case PF_CAIF:
1307 			return SECCLASS_CAIF_SOCKET;
1308 		case PF_ALG:
1309 			return SECCLASS_ALG_SOCKET;
1310 		case PF_NFC:
1311 			return SECCLASS_NFC_SOCKET;
1312 		case PF_VSOCK:
1313 			return SECCLASS_VSOCK_SOCKET;
1314 		case PF_KCM:
1315 			return SECCLASS_KCM_SOCKET;
1316 		case PF_QIPCRTR:
1317 			return SECCLASS_QIPCRTR_SOCKET;
1318 		case PF_SMC:
1319 			return SECCLASS_SMC_SOCKET;
1320 		case PF_XDP:
1321 			return SECCLASS_XDP_SOCKET;
1322 #if PF_MAX > 45
1323 #error New address family defined, please update this function.
1324 #endif
1325 		}
1326 	}
1327 
1328 	return SECCLASS_SOCKET;
1329 }
1330 
1331 static int selinux_genfs_get_sid(struct dentry *dentry,
1332 				 u16 tclass,
1333 				 u16 flags,
1334 				 u32 *sid)
1335 {
1336 	int rc;
1337 	struct super_block *sb = dentry->d_sb;
1338 	char *buffer, *path;
1339 
1340 	buffer = (char *)__get_free_page(GFP_KERNEL);
1341 	if (!buffer)
1342 		return -ENOMEM;
1343 
1344 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345 	if (IS_ERR(path))
1346 		rc = PTR_ERR(path);
1347 	else {
1348 		if (flags & SE_SBPROC) {
1349 			/* each process gets a /proc/PID/ entry. Strip off the
1350 			 * PID part to get a valid selinux labeling.
1351 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352 			while (path[1] >= '0' && path[1] <= '9') {
1353 				path[1] = '/';
1354 				path++;
1355 			}
1356 		}
1357 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358 					path, tclass, sid);
1359 		if (rc == -ENOENT) {
1360 			/* No match in policy, mark as unlabeled. */
1361 			*sid = SECINITSID_UNLABELED;
1362 			rc = 0;
1363 		}
1364 	}
1365 	free_page((unsigned long)buffer);
1366 	return rc;
1367 }
1368 
1369 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370 				  u32 def_sid, u32 *sid)
1371 {
1372 #define INITCONTEXTLEN 255
1373 	char *context;
1374 	unsigned int len;
1375 	int rc;
1376 
1377 	len = INITCONTEXTLEN;
1378 	context = kmalloc(len + 1, GFP_NOFS);
1379 	if (!context)
1380 		return -ENOMEM;
1381 
1382 	context[len] = '\0';
1383 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384 	if (rc == -ERANGE) {
1385 		kfree(context);
1386 
1387 		/* Need a larger buffer.  Query for the right size. */
1388 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389 		if (rc < 0)
1390 			return rc;
1391 
1392 		len = rc;
1393 		context = kmalloc(len + 1, GFP_NOFS);
1394 		if (!context)
1395 			return -ENOMEM;
1396 
1397 		context[len] = '\0';
1398 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399 				    context, len);
1400 	}
1401 	if (rc < 0) {
1402 		kfree(context);
1403 		if (rc != -ENODATA) {
1404 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406 			return rc;
1407 		}
1408 		*sid = def_sid;
1409 		return 0;
1410 	}
1411 
1412 	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413 					     def_sid, GFP_NOFS);
1414 	if (rc) {
1415 		char *dev = inode->i_sb->s_id;
1416 		unsigned long ino = inode->i_ino;
1417 
1418 		if (rc == -EINVAL) {
1419 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420 					      ino, dev, context);
1421 		} else {
1422 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423 				__func__, context, -rc, dev, ino);
1424 		}
1425 	}
1426 	kfree(context);
1427 	return 0;
1428 }
1429 
1430 /* The inode's security attributes must be initialized before first use. */
1431 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432 {
1433 	struct superblock_security_struct *sbsec = NULL;
1434 	struct inode_security_struct *isec = selinux_inode(inode);
1435 	u32 task_sid, sid = 0;
1436 	u16 sclass;
1437 	struct dentry *dentry;
1438 	int rc = 0;
1439 
1440 	if (isec->initialized == LABEL_INITIALIZED)
1441 		return 0;
1442 
1443 	spin_lock(&isec->lock);
1444 	if (isec->initialized == LABEL_INITIALIZED)
1445 		goto out_unlock;
1446 
1447 	if (isec->sclass == SECCLASS_FILE)
1448 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449 
1450 	sbsec = inode->i_sb->s_security;
1451 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452 		/* Defer initialization until selinux_complete_init,
1453 		   after the initial policy is loaded and the security
1454 		   server is ready to handle calls. */
1455 		spin_lock(&sbsec->isec_lock);
1456 		if (list_empty(&isec->list))
1457 			list_add(&isec->list, &sbsec->isec_head);
1458 		spin_unlock(&sbsec->isec_lock);
1459 		goto out_unlock;
1460 	}
1461 
1462 	sclass = isec->sclass;
1463 	task_sid = isec->task_sid;
1464 	sid = isec->sid;
1465 	isec->initialized = LABEL_PENDING;
1466 	spin_unlock(&isec->lock);
1467 
1468 	switch (sbsec->behavior) {
1469 	case SECURITY_FS_USE_NATIVE:
1470 		break;
1471 	case SECURITY_FS_USE_XATTR:
1472 		if (!(inode->i_opflags & IOP_XATTR)) {
1473 			sid = sbsec->def_sid;
1474 			break;
1475 		}
1476 		/* Need a dentry, since the xattr API requires one.
1477 		   Life would be simpler if we could just pass the inode. */
1478 		if (opt_dentry) {
1479 			/* Called from d_instantiate or d_splice_alias. */
1480 			dentry = dget(opt_dentry);
1481 		} else {
1482 			/*
1483 			 * Called from selinux_complete_init, try to find a dentry.
1484 			 * Some filesystems really want a connected one, so try
1485 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1486 			 * two, depending upon that...
1487 			 */
1488 			dentry = d_find_alias(inode);
1489 			if (!dentry)
1490 				dentry = d_find_any_alias(inode);
1491 		}
1492 		if (!dentry) {
1493 			/*
1494 			 * this is can be hit on boot when a file is accessed
1495 			 * before the policy is loaded.  When we load policy we
1496 			 * may find inodes that have no dentry on the
1497 			 * sbsec->isec_head list.  No reason to complain as these
1498 			 * will get fixed up the next time we go through
1499 			 * inode_doinit with a dentry, before these inodes could
1500 			 * be used again by userspace.
1501 			 */
1502 			goto out;
1503 		}
1504 
1505 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506 					    &sid);
1507 		dput(dentry);
1508 		if (rc)
1509 			goto out;
1510 		break;
1511 	case SECURITY_FS_USE_TASK:
1512 		sid = task_sid;
1513 		break;
1514 	case SECURITY_FS_USE_TRANS:
1515 		/* Default to the fs SID. */
1516 		sid = sbsec->sid;
1517 
1518 		/* Try to obtain a transition SID. */
1519 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1520 					     sclass, NULL, &sid);
1521 		if (rc)
1522 			goto out;
1523 		break;
1524 	case SECURITY_FS_USE_MNTPOINT:
1525 		sid = sbsec->mntpoint_sid;
1526 		break;
1527 	default:
1528 		/* Default to the fs superblock SID. */
1529 		sid = sbsec->sid;
1530 
1531 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532 			/* We must have a dentry to determine the label on
1533 			 * procfs inodes */
1534 			if (opt_dentry) {
1535 				/* Called from d_instantiate or
1536 				 * d_splice_alias. */
1537 				dentry = dget(opt_dentry);
1538 			} else {
1539 				/* Called from selinux_complete_init, try to
1540 				 * find a dentry.  Some filesystems really want
1541 				 * a connected one, so try that first.
1542 				 */
1543 				dentry = d_find_alias(inode);
1544 				if (!dentry)
1545 					dentry = d_find_any_alias(inode);
1546 			}
1547 			/*
1548 			 * This can be hit on boot when a file is accessed
1549 			 * before the policy is loaded.  When we load policy we
1550 			 * may find inodes that have no dentry on the
1551 			 * sbsec->isec_head list.  No reason to complain as
1552 			 * these will get fixed up the next time we go through
1553 			 * inode_doinit() with a dentry, before these inodes
1554 			 * could be used again by userspace.
1555 			 */
1556 			if (!dentry)
1557 				goto out;
1558 			rc = selinux_genfs_get_sid(dentry, sclass,
1559 						   sbsec->flags, &sid);
1560 			if (rc) {
1561 				dput(dentry);
1562 				goto out;
1563 			}
1564 
1565 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566 			    (inode->i_opflags & IOP_XATTR)) {
1567 				rc = inode_doinit_use_xattr(inode, dentry,
1568 							    sid, &sid);
1569 				if (rc) {
1570 					dput(dentry);
1571 					goto out;
1572 				}
1573 			}
1574 			dput(dentry);
1575 		}
1576 		break;
1577 	}
1578 
1579 out:
1580 	spin_lock(&isec->lock);
1581 	if (isec->initialized == LABEL_PENDING) {
1582 		if (!sid || rc) {
1583 			isec->initialized = LABEL_INVALID;
1584 			goto out_unlock;
1585 		}
1586 
1587 		isec->initialized = LABEL_INITIALIZED;
1588 		isec->sid = sid;
1589 	}
1590 
1591 out_unlock:
1592 	spin_unlock(&isec->lock);
1593 	return rc;
1594 }
1595 
1596 /* Convert a Linux signal to an access vector. */
1597 static inline u32 signal_to_av(int sig)
1598 {
1599 	u32 perm = 0;
1600 
1601 	switch (sig) {
1602 	case SIGCHLD:
1603 		/* Commonly granted from child to parent. */
1604 		perm = PROCESS__SIGCHLD;
1605 		break;
1606 	case SIGKILL:
1607 		/* Cannot be caught or ignored */
1608 		perm = PROCESS__SIGKILL;
1609 		break;
1610 	case SIGSTOP:
1611 		/* Cannot be caught or ignored */
1612 		perm = PROCESS__SIGSTOP;
1613 		break;
1614 	default:
1615 		/* All other signals. */
1616 		perm = PROCESS__SIGNAL;
1617 		break;
1618 	}
1619 
1620 	return perm;
1621 }
1622 
1623 #if CAP_LAST_CAP > 63
1624 #error Fix SELinux to handle capabilities > 63.
1625 #endif
1626 
1627 /* Check whether a task is allowed to use a capability. */
1628 static int cred_has_capability(const struct cred *cred,
1629 			       int cap, unsigned int opts, bool initns)
1630 {
1631 	struct common_audit_data ad;
1632 	struct av_decision avd;
1633 	u16 sclass;
1634 	u32 sid = cred_sid(cred);
1635 	u32 av = CAP_TO_MASK(cap);
1636 	int rc;
1637 
1638 	ad.type = LSM_AUDIT_DATA_CAP;
1639 	ad.u.cap = cap;
1640 
1641 	switch (CAP_TO_INDEX(cap)) {
1642 	case 0:
1643 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644 		break;
1645 	case 1:
1646 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647 		break;
1648 	default:
1649 		pr_err("SELinux:  out of range capability %d\n", cap);
1650 		BUG();
1651 		return -EINVAL;
1652 	}
1653 
1654 	rc = avc_has_perm_noaudit(&selinux_state,
1655 				  sid, sid, sclass, av, 0, &avd);
1656 	if (!(opts & CAP_OPT_NOAUDIT)) {
1657 		int rc2 = avc_audit(&selinux_state,
1658 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1659 		if (rc2)
1660 			return rc2;
1661 	}
1662 	return rc;
1663 }
1664 
1665 /* Check whether a task has a particular permission to an inode.
1666    The 'adp' parameter is optional and allows other audit
1667    data to be passed (e.g. the dentry). */
1668 static int inode_has_perm(const struct cred *cred,
1669 			  struct inode *inode,
1670 			  u32 perms,
1671 			  struct common_audit_data *adp)
1672 {
1673 	struct inode_security_struct *isec;
1674 	u32 sid;
1675 
1676 	validate_creds(cred);
1677 
1678 	if (unlikely(IS_PRIVATE(inode)))
1679 		return 0;
1680 
1681 	sid = cred_sid(cred);
1682 	isec = selinux_inode(inode);
1683 
1684 	return avc_has_perm(&selinux_state,
1685 			    sid, isec->sid, isec->sclass, perms, adp);
1686 }
1687 
1688 /* Same as inode_has_perm, but pass explicit audit data containing
1689    the dentry to help the auditing code to more easily generate the
1690    pathname if needed. */
1691 static inline int dentry_has_perm(const struct cred *cred,
1692 				  struct dentry *dentry,
1693 				  u32 av)
1694 {
1695 	struct inode *inode = d_backing_inode(dentry);
1696 	struct common_audit_data ad;
1697 
1698 	ad.type = LSM_AUDIT_DATA_DENTRY;
1699 	ad.u.dentry = dentry;
1700 	__inode_security_revalidate(inode, dentry, true);
1701 	return inode_has_perm(cred, inode, av, &ad);
1702 }
1703 
1704 /* Same as inode_has_perm, but pass explicit audit data containing
1705    the path to help the auditing code to more easily generate the
1706    pathname if needed. */
1707 static inline int path_has_perm(const struct cred *cred,
1708 				const struct path *path,
1709 				u32 av)
1710 {
1711 	struct inode *inode = d_backing_inode(path->dentry);
1712 	struct common_audit_data ad;
1713 
1714 	ad.type = LSM_AUDIT_DATA_PATH;
1715 	ad.u.path = *path;
1716 	__inode_security_revalidate(inode, path->dentry, true);
1717 	return inode_has_perm(cred, inode, av, &ad);
1718 }
1719 
1720 /* Same as path_has_perm, but uses the inode from the file struct. */
1721 static inline int file_path_has_perm(const struct cred *cred,
1722 				     struct file *file,
1723 				     u32 av)
1724 {
1725 	struct common_audit_data ad;
1726 
1727 	ad.type = LSM_AUDIT_DATA_FILE;
1728 	ad.u.file = file;
1729 	return inode_has_perm(cred, file_inode(file), av, &ad);
1730 }
1731 
1732 #ifdef CONFIG_BPF_SYSCALL
1733 static int bpf_fd_pass(struct file *file, u32 sid);
1734 #endif
1735 
1736 /* Check whether a task can use an open file descriptor to
1737    access an inode in a given way.  Check access to the
1738    descriptor itself, and then use dentry_has_perm to
1739    check a particular permission to the file.
1740    Access to the descriptor is implicitly granted if it
1741    has the same SID as the process.  If av is zero, then
1742    access to the file is not checked, e.g. for cases
1743    where only the descriptor is affected like seek. */
1744 static int file_has_perm(const struct cred *cred,
1745 			 struct file *file,
1746 			 u32 av)
1747 {
1748 	struct file_security_struct *fsec = selinux_file(file);
1749 	struct inode *inode = file_inode(file);
1750 	struct common_audit_data ad;
1751 	u32 sid = cred_sid(cred);
1752 	int rc;
1753 
1754 	ad.type = LSM_AUDIT_DATA_FILE;
1755 	ad.u.file = file;
1756 
1757 	if (sid != fsec->sid) {
1758 		rc = avc_has_perm(&selinux_state,
1759 				  sid, fsec->sid,
1760 				  SECCLASS_FD,
1761 				  FD__USE,
1762 				  &ad);
1763 		if (rc)
1764 			goto out;
1765 	}
1766 
1767 #ifdef CONFIG_BPF_SYSCALL
1768 	rc = bpf_fd_pass(file, cred_sid(cred));
1769 	if (rc)
1770 		return rc;
1771 #endif
1772 
1773 	/* av is zero if only checking access to the descriptor. */
1774 	rc = 0;
1775 	if (av)
1776 		rc = inode_has_perm(cred, inode, av, &ad);
1777 
1778 out:
1779 	return rc;
1780 }
1781 
1782 /*
1783  * Determine the label for an inode that might be unioned.
1784  */
1785 static int
1786 selinux_determine_inode_label(const struct task_security_struct *tsec,
1787 				 struct inode *dir,
1788 				 const struct qstr *name, u16 tclass,
1789 				 u32 *_new_isid)
1790 {
1791 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792 
1793 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1794 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795 		*_new_isid = sbsec->mntpoint_sid;
1796 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1797 		   tsec->create_sid) {
1798 		*_new_isid = tsec->create_sid;
1799 	} else {
1800 		const struct inode_security_struct *dsec = inode_security(dir);
1801 		return security_transition_sid(&selinux_state, tsec->sid,
1802 					       dsec->sid, tclass,
1803 					       name, _new_isid);
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 /* Check whether a task can create a file. */
1810 static int may_create(struct inode *dir,
1811 		      struct dentry *dentry,
1812 		      u16 tclass)
1813 {
1814 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1815 	struct inode_security_struct *dsec;
1816 	struct superblock_security_struct *sbsec;
1817 	u32 sid, newsid;
1818 	struct common_audit_data ad;
1819 	int rc;
1820 
1821 	dsec = inode_security(dir);
1822 	sbsec = dir->i_sb->s_security;
1823 
1824 	sid = tsec->sid;
1825 
1826 	ad.type = LSM_AUDIT_DATA_DENTRY;
1827 	ad.u.dentry = dentry;
1828 
1829 	rc = avc_has_perm(&selinux_state,
1830 			  sid, dsec->sid, SECCLASS_DIR,
1831 			  DIR__ADD_NAME | DIR__SEARCH,
1832 			  &ad);
1833 	if (rc)
1834 		return rc;
1835 
1836 	rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837 					   &dentry->d_name, tclass, &newsid);
1838 	if (rc)
1839 		return rc;
1840 
1841 	rc = avc_has_perm(&selinux_state,
1842 			  sid, newsid, tclass, FILE__CREATE, &ad);
1843 	if (rc)
1844 		return rc;
1845 
1846 	return avc_has_perm(&selinux_state,
1847 			    newsid, sbsec->sid,
1848 			    SECCLASS_FILESYSTEM,
1849 			    FILESYSTEM__ASSOCIATE, &ad);
1850 }
1851 
1852 #define MAY_LINK	0
1853 #define MAY_UNLINK	1
1854 #define MAY_RMDIR	2
1855 
1856 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1857 static int may_link(struct inode *dir,
1858 		    struct dentry *dentry,
1859 		    int kind)
1860 
1861 {
1862 	struct inode_security_struct *dsec, *isec;
1863 	struct common_audit_data ad;
1864 	u32 sid = current_sid();
1865 	u32 av;
1866 	int rc;
1867 
1868 	dsec = inode_security(dir);
1869 	isec = backing_inode_security(dentry);
1870 
1871 	ad.type = LSM_AUDIT_DATA_DENTRY;
1872 	ad.u.dentry = dentry;
1873 
1874 	av = DIR__SEARCH;
1875 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876 	rc = avc_has_perm(&selinux_state,
1877 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878 	if (rc)
1879 		return rc;
1880 
1881 	switch (kind) {
1882 	case MAY_LINK:
1883 		av = FILE__LINK;
1884 		break;
1885 	case MAY_UNLINK:
1886 		av = FILE__UNLINK;
1887 		break;
1888 	case MAY_RMDIR:
1889 		av = DIR__RMDIR;
1890 		break;
1891 	default:
1892 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893 			__func__, kind);
1894 		return 0;
1895 	}
1896 
1897 	rc = avc_has_perm(&selinux_state,
1898 			  sid, isec->sid, isec->sclass, av, &ad);
1899 	return rc;
1900 }
1901 
1902 static inline int may_rename(struct inode *old_dir,
1903 			     struct dentry *old_dentry,
1904 			     struct inode *new_dir,
1905 			     struct dentry *new_dentry)
1906 {
1907 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908 	struct common_audit_data ad;
1909 	u32 sid = current_sid();
1910 	u32 av;
1911 	int old_is_dir, new_is_dir;
1912 	int rc;
1913 
1914 	old_dsec = inode_security(old_dir);
1915 	old_isec = backing_inode_security(old_dentry);
1916 	old_is_dir = d_is_dir(old_dentry);
1917 	new_dsec = inode_security(new_dir);
1918 
1919 	ad.type = LSM_AUDIT_DATA_DENTRY;
1920 
1921 	ad.u.dentry = old_dentry;
1922 	rc = avc_has_perm(&selinux_state,
1923 			  sid, old_dsec->sid, SECCLASS_DIR,
1924 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925 	if (rc)
1926 		return rc;
1927 	rc = avc_has_perm(&selinux_state,
1928 			  sid, old_isec->sid,
1929 			  old_isec->sclass, FILE__RENAME, &ad);
1930 	if (rc)
1931 		return rc;
1932 	if (old_is_dir && new_dir != old_dir) {
1933 		rc = avc_has_perm(&selinux_state,
1934 				  sid, old_isec->sid,
1935 				  old_isec->sclass, DIR__REPARENT, &ad);
1936 		if (rc)
1937 			return rc;
1938 	}
1939 
1940 	ad.u.dentry = new_dentry;
1941 	av = DIR__ADD_NAME | DIR__SEARCH;
1942 	if (d_is_positive(new_dentry))
1943 		av |= DIR__REMOVE_NAME;
1944 	rc = avc_has_perm(&selinux_state,
1945 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946 	if (rc)
1947 		return rc;
1948 	if (d_is_positive(new_dentry)) {
1949 		new_isec = backing_inode_security(new_dentry);
1950 		new_is_dir = d_is_dir(new_dentry);
1951 		rc = avc_has_perm(&selinux_state,
1952 				  sid, new_isec->sid,
1953 				  new_isec->sclass,
1954 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955 		if (rc)
1956 			return rc;
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 /* Check whether a task can perform a filesystem operation. */
1963 static int superblock_has_perm(const struct cred *cred,
1964 			       struct super_block *sb,
1965 			       u32 perms,
1966 			       struct common_audit_data *ad)
1967 {
1968 	struct superblock_security_struct *sbsec;
1969 	u32 sid = cred_sid(cred);
1970 
1971 	sbsec = sb->s_security;
1972 	return avc_has_perm(&selinux_state,
1973 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974 }
1975 
1976 /* Convert a Linux mode and permission mask to an access vector. */
1977 static inline u32 file_mask_to_av(int mode, int mask)
1978 {
1979 	u32 av = 0;
1980 
1981 	if (!S_ISDIR(mode)) {
1982 		if (mask & MAY_EXEC)
1983 			av |= FILE__EXECUTE;
1984 		if (mask & MAY_READ)
1985 			av |= FILE__READ;
1986 
1987 		if (mask & MAY_APPEND)
1988 			av |= FILE__APPEND;
1989 		else if (mask & MAY_WRITE)
1990 			av |= FILE__WRITE;
1991 
1992 	} else {
1993 		if (mask & MAY_EXEC)
1994 			av |= DIR__SEARCH;
1995 		if (mask & MAY_WRITE)
1996 			av |= DIR__WRITE;
1997 		if (mask & MAY_READ)
1998 			av |= DIR__READ;
1999 	}
2000 
2001 	return av;
2002 }
2003 
2004 /* Convert a Linux file to an access vector. */
2005 static inline u32 file_to_av(struct file *file)
2006 {
2007 	u32 av = 0;
2008 
2009 	if (file->f_mode & FMODE_READ)
2010 		av |= FILE__READ;
2011 	if (file->f_mode & FMODE_WRITE) {
2012 		if (file->f_flags & O_APPEND)
2013 			av |= FILE__APPEND;
2014 		else
2015 			av |= FILE__WRITE;
2016 	}
2017 	if (!av) {
2018 		/*
2019 		 * Special file opened with flags 3 for ioctl-only use.
2020 		 */
2021 		av = FILE__IOCTL;
2022 	}
2023 
2024 	return av;
2025 }
2026 
2027 /*
2028  * Convert a file to an access vector and include the correct open
2029  * open permission.
2030  */
2031 static inline u32 open_file_to_av(struct file *file)
2032 {
2033 	u32 av = file_to_av(file);
2034 	struct inode *inode = file_inode(file);
2035 
2036 	if (selinux_policycap_openperm() &&
2037 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2038 		av |= FILE__OPEN;
2039 
2040 	return av;
2041 }
2042 
2043 /* Hook functions begin here. */
2044 
2045 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046 {
2047 	u32 mysid = current_sid();
2048 	u32 mgrsid = task_sid(mgr);
2049 
2050 	return avc_has_perm(&selinux_state,
2051 			    mysid, mgrsid, SECCLASS_BINDER,
2052 			    BINDER__SET_CONTEXT_MGR, NULL);
2053 }
2054 
2055 static int selinux_binder_transaction(struct task_struct *from,
2056 				      struct task_struct *to)
2057 {
2058 	u32 mysid = current_sid();
2059 	u32 fromsid = task_sid(from);
2060 	u32 tosid = task_sid(to);
2061 	int rc;
2062 
2063 	if (mysid != fromsid) {
2064 		rc = avc_has_perm(&selinux_state,
2065 				  mysid, fromsid, SECCLASS_BINDER,
2066 				  BINDER__IMPERSONATE, NULL);
2067 		if (rc)
2068 			return rc;
2069 	}
2070 
2071 	return avc_has_perm(&selinux_state,
2072 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073 			    NULL);
2074 }
2075 
2076 static int selinux_binder_transfer_binder(struct task_struct *from,
2077 					  struct task_struct *to)
2078 {
2079 	u32 fromsid = task_sid(from);
2080 	u32 tosid = task_sid(to);
2081 
2082 	return avc_has_perm(&selinux_state,
2083 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084 			    NULL);
2085 }
2086 
2087 static int selinux_binder_transfer_file(struct task_struct *from,
2088 					struct task_struct *to,
2089 					struct file *file)
2090 {
2091 	u32 sid = task_sid(to);
2092 	struct file_security_struct *fsec = selinux_file(file);
2093 	struct dentry *dentry = file->f_path.dentry;
2094 	struct inode_security_struct *isec;
2095 	struct common_audit_data ad;
2096 	int rc;
2097 
2098 	ad.type = LSM_AUDIT_DATA_PATH;
2099 	ad.u.path = file->f_path;
2100 
2101 	if (sid != fsec->sid) {
2102 		rc = avc_has_perm(&selinux_state,
2103 				  sid, fsec->sid,
2104 				  SECCLASS_FD,
2105 				  FD__USE,
2106 				  &ad);
2107 		if (rc)
2108 			return rc;
2109 	}
2110 
2111 #ifdef CONFIG_BPF_SYSCALL
2112 	rc = bpf_fd_pass(file, sid);
2113 	if (rc)
2114 		return rc;
2115 #endif
2116 
2117 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118 		return 0;
2119 
2120 	isec = backing_inode_security(dentry);
2121 	return avc_has_perm(&selinux_state,
2122 			    sid, isec->sid, isec->sclass, file_to_av(file),
2123 			    &ad);
2124 }
2125 
2126 static int selinux_ptrace_access_check(struct task_struct *child,
2127 				     unsigned int mode)
2128 {
2129 	u32 sid = current_sid();
2130 	u32 csid = task_sid(child);
2131 
2132 	if (mode & PTRACE_MODE_READ)
2133 		return avc_has_perm(&selinux_state,
2134 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135 
2136 	return avc_has_perm(&selinux_state,
2137 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138 }
2139 
2140 static int selinux_ptrace_traceme(struct task_struct *parent)
2141 {
2142 	return avc_has_perm(&selinux_state,
2143 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144 			    PROCESS__PTRACE, NULL);
2145 }
2146 
2147 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149 {
2150 	return avc_has_perm(&selinux_state,
2151 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2152 			    PROCESS__GETCAP, NULL);
2153 }
2154 
2155 static int selinux_capset(struct cred *new, const struct cred *old,
2156 			  const kernel_cap_t *effective,
2157 			  const kernel_cap_t *inheritable,
2158 			  const kernel_cap_t *permitted)
2159 {
2160 	return avc_has_perm(&selinux_state,
2161 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162 			    PROCESS__SETCAP, NULL);
2163 }
2164 
2165 /*
2166  * (This comment used to live with the selinux_task_setuid hook,
2167  * which was removed).
2168  *
2169  * Since setuid only affects the current process, and since the SELinux
2170  * controls are not based on the Linux identity attributes, SELinux does not
2171  * need to control this operation.  However, SELinux does control the use of
2172  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173  */
2174 
2175 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176 			   int cap, unsigned int opts)
2177 {
2178 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179 }
2180 
2181 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182 {
2183 	const struct cred *cred = current_cred();
2184 	int rc = 0;
2185 
2186 	if (!sb)
2187 		return 0;
2188 
2189 	switch (cmds) {
2190 	case Q_SYNC:
2191 	case Q_QUOTAON:
2192 	case Q_QUOTAOFF:
2193 	case Q_SETINFO:
2194 	case Q_SETQUOTA:
2195 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196 		break;
2197 	case Q_GETFMT:
2198 	case Q_GETINFO:
2199 	case Q_GETQUOTA:
2200 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201 		break;
2202 	default:
2203 		rc = 0;  /* let the kernel handle invalid cmds */
2204 		break;
2205 	}
2206 	return rc;
2207 }
2208 
2209 static int selinux_quota_on(struct dentry *dentry)
2210 {
2211 	const struct cred *cred = current_cred();
2212 
2213 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214 }
2215 
2216 static int selinux_syslog(int type)
2217 {
2218 	switch (type) {
2219 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2220 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2221 		return avc_has_perm(&selinux_state,
2222 				    current_sid(), SECINITSID_KERNEL,
2223 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2225 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2226 	/* Set level of messages printed to console */
2227 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2228 		return avc_has_perm(&selinux_state,
2229 				    current_sid(), SECINITSID_KERNEL,
2230 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231 				    NULL);
2232 	}
2233 	/* All other syslog types */
2234 	return avc_has_perm(&selinux_state,
2235 			    current_sid(), SECINITSID_KERNEL,
2236 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237 }
2238 
2239 /*
2240  * Check that a process has enough memory to allocate a new virtual
2241  * mapping. 0 means there is enough memory for the allocation to
2242  * succeed and -ENOMEM implies there is not.
2243  *
2244  * Do not audit the selinux permission check, as this is applied to all
2245  * processes that allocate mappings.
2246  */
2247 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248 {
2249 	int rc, cap_sys_admin = 0;
2250 
2251 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252 				 CAP_OPT_NOAUDIT, true);
2253 	if (rc == 0)
2254 		cap_sys_admin = 1;
2255 
2256 	return cap_sys_admin;
2257 }
2258 
2259 /* binprm security operations */
2260 
2261 static u32 ptrace_parent_sid(void)
2262 {
2263 	u32 sid = 0;
2264 	struct task_struct *tracer;
2265 
2266 	rcu_read_lock();
2267 	tracer = ptrace_parent(current);
2268 	if (tracer)
2269 		sid = task_sid(tracer);
2270 	rcu_read_unlock();
2271 
2272 	return sid;
2273 }
2274 
2275 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276 			    const struct task_security_struct *old_tsec,
2277 			    const struct task_security_struct *new_tsec)
2278 {
2279 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281 	int rc;
2282 	u32 av;
2283 
2284 	if (!nnp && !nosuid)
2285 		return 0; /* neither NNP nor nosuid */
2286 
2287 	if (new_tsec->sid == old_tsec->sid)
2288 		return 0; /* No change in credentials */
2289 
2290 	/*
2291 	 * If the policy enables the nnp_nosuid_transition policy capability,
2292 	 * then we permit transitions under NNP or nosuid if the
2293 	 * policy allows the corresponding permission between
2294 	 * the old and new contexts.
2295 	 */
2296 	if (selinux_policycap_nnp_nosuid_transition()) {
2297 		av = 0;
2298 		if (nnp)
2299 			av |= PROCESS2__NNP_TRANSITION;
2300 		if (nosuid)
2301 			av |= PROCESS2__NOSUID_TRANSITION;
2302 		rc = avc_has_perm(&selinux_state,
2303 				  old_tsec->sid, new_tsec->sid,
2304 				  SECCLASS_PROCESS2, av, NULL);
2305 		if (!rc)
2306 			return 0;
2307 	}
2308 
2309 	/*
2310 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2311 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2312 	 * of the permissions of the current SID.
2313 	 */
2314 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315 					 new_tsec->sid);
2316 	if (!rc)
2317 		return 0;
2318 
2319 	/*
2320 	 * On failure, preserve the errno values for NNP vs nosuid.
2321 	 * NNP:  Operation not permitted for caller.
2322 	 * nosuid:  Permission denied to file.
2323 	 */
2324 	if (nnp)
2325 		return -EPERM;
2326 	return -EACCES;
2327 }
2328 
2329 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330 {
2331 	const struct task_security_struct *old_tsec;
2332 	struct task_security_struct *new_tsec;
2333 	struct inode_security_struct *isec;
2334 	struct common_audit_data ad;
2335 	struct inode *inode = file_inode(bprm->file);
2336 	int rc;
2337 
2338 	/* SELinux context only depends on initial program or script and not
2339 	 * the script interpreter */
2340 	if (bprm->called_set_creds)
2341 		return 0;
2342 
2343 	old_tsec = selinux_cred(current_cred());
2344 	new_tsec = selinux_cred(bprm->cred);
2345 	isec = inode_security(inode);
2346 
2347 	/* Default to the current task SID. */
2348 	new_tsec->sid = old_tsec->sid;
2349 	new_tsec->osid = old_tsec->sid;
2350 
2351 	/* Reset fs, key, and sock SIDs on execve. */
2352 	new_tsec->create_sid = 0;
2353 	new_tsec->keycreate_sid = 0;
2354 	new_tsec->sockcreate_sid = 0;
2355 
2356 	if (old_tsec->exec_sid) {
2357 		new_tsec->sid = old_tsec->exec_sid;
2358 		/* Reset exec SID on execve. */
2359 		new_tsec->exec_sid = 0;
2360 
2361 		/* Fail on NNP or nosuid if not an allowed transition. */
2362 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check for a default transition on this program. */
2367 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368 					     isec->sid, SECCLASS_PROCESS, NULL,
2369 					     &new_tsec->sid);
2370 		if (rc)
2371 			return rc;
2372 
2373 		/*
2374 		 * Fallback to old SID on NNP or nosuid if not an allowed
2375 		 * transition.
2376 		 */
2377 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378 		if (rc)
2379 			new_tsec->sid = old_tsec->sid;
2380 	}
2381 
2382 	ad.type = LSM_AUDIT_DATA_FILE;
2383 	ad.u.file = bprm->file;
2384 
2385 	if (new_tsec->sid == old_tsec->sid) {
2386 		rc = avc_has_perm(&selinux_state,
2387 				  old_tsec->sid, isec->sid,
2388 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389 		if (rc)
2390 			return rc;
2391 	} else {
2392 		/* Check permissions for the transition. */
2393 		rc = avc_has_perm(&selinux_state,
2394 				  old_tsec->sid, new_tsec->sid,
2395 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396 		if (rc)
2397 			return rc;
2398 
2399 		rc = avc_has_perm(&selinux_state,
2400 				  new_tsec->sid, isec->sid,
2401 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402 		if (rc)
2403 			return rc;
2404 
2405 		/* Check for shared state */
2406 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407 			rc = avc_has_perm(&selinux_state,
2408 					  old_tsec->sid, new_tsec->sid,
2409 					  SECCLASS_PROCESS, PROCESS__SHARE,
2410 					  NULL);
2411 			if (rc)
2412 				return -EPERM;
2413 		}
2414 
2415 		/* Make sure that anyone attempting to ptrace over a task that
2416 		 * changes its SID has the appropriate permit */
2417 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418 			u32 ptsid = ptrace_parent_sid();
2419 			if (ptsid != 0) {
2420 				rc = avc_has_perm(&selinux_state,
2421 						  ptsid, new_tsec->sid,
2422 						  SECCLASS_PROCESS,
2423 						  PROCESS__PTRACE, NULL);
2424 				if (rc)
2425 					return -EPERM;
2426 			}
2427 		}
2428 
2429 		/* Clear any possibly unsafe personality bits on exec: */
2430 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2431 
2432 		/* Enable secure mode for SIDs transitions unless
2433 		   the noatsecure permission is granted between
2434 		   the two SIDs, i.e. ahp returns 0. */
2435 		rc = avc_has_perm(&selinux_state,
2436 				  old_tsec->sid, new_tsec->sid,
2437 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438 				  NULL);
2439 		bprm->secureexec |= !!rc;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int match_file(const void *p, struct file *file, unsigned fd)
2446 {
2447 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448 }
2449 
2450 /* Derived from fs/exec.c:flush_old_files. */
2451 static inline void flush_unauthorized_files(const struct cred *cred,
2452 					    struct files_struct *files)
2453 {
2454 	struct file *file, *devnull = NULL;
2455 	struct tty_struct *tty;
2456 	int drop_tty = 0;
2457 	unsigned n;
2458 
2459 	tty = get_current_tty();
2460 	if (tty) {
2461 		spin_lock(&tty->files_lock);
2462 		if (!list_empty(&tty->tty_files)) {
2463 			struct tty_file_private *file_priv;
2464 
2465 			/* Revalidate access to controlling tty.
2466 			   Use file_path_has_perm on the tty path directly
2467 			   rather than using file_has_perm, as this particular
2468 			   open file may belong to another process and we are
2469 			   only interested in the inode-based check here. */
2470 			file_priv = list_first_entry(&tty->tty_files,
2471 						struct tty_file_private, list);
2472 			file = file_priv->file;
2473 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474 				drop_tty = 1;
2475 		}
2476 		spin_unlock(&tty->files_lock);
2477 		tty_kref_put(tty);
2478 	}
2479 	/* Reset controlling tty. */
2480 	if (drop_tty)
2481 		no_tty();
2482 
2483 	/* Revalidate access to inherited open files. */
2484 	n = iterate_fd(files, 0, match_file, cred);
2485 	if (!n) /* none found? */
2486 		return;
2487 
2488 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489 	if (IS_ERR(devnull))
2490 		devnull = NULL;
2491 	/* replace all the matching ones with this */
2492 	do {
2493 		replace_fd(n - 1, devnull, 0);
2494 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495 	if (devnull)
2496 		fput(devnull);
2497 }
2498 
2499 /*
2500  * Prepare a process for imminent new credential changes due to exec
2501  */
2502 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503 {
2504 	struct task_security_struct *new_tsec;
2505 	struct rlimit *rlim, *initrlim;
2506 	int rc, i;
2507 
2508 	new_tsec = selinux_cred(bprm->cred);
2509 	if (new_tsec->sid == new_tsec->osid)
2510 		return;
2511 
2512 	/* Close files for which the new task SID is not authorized. */
2513 	flush_unauthorized_files(bprm->cred, current->files);
2514 
2515 	/* Always clear parent death signal on SID transitions. */
2516 	current->pdeath_signal = 0;
2517 
2518 	/* Check whether the new SID can inherit resource limits from the old
2519 	 * SID.  If not, reset all soft limits to the lower of the current
2520 	 * task's hard limit and the init task's soft limit.
2521 	 *
2522 	 * Note that the setting of hard limits (even to lower them) can be
2523 	 * controlled by the setrlimit check.  The inclusion of the init task's
2524 	 * soft limit into the computation is to avoid resetting soft limits
2525 	 * higher than the default soft limit for cases where the default is
2526 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527 	 */
2528 	rc = avc_has_perm(&selinux_state,
2529 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530 			  PROCESS__RLIMITINH, NULL);
2531 	if (rc) {
2532 		/* protect against do_prlimit() */
2533 		task_lock(current);
2534 		for (i = 0; i < RLIM_NLIMITS; i++) {
2535 			rlim = current->signal->rlim + i;
2536 			initrlim = init_task.signal->rlim + i;
2537 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538 		}
2539 		task_unlock(current);
2540 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542 	}
2543 }
2544 
2545 /*
2546  * Clean up the process immediately after the installation of new credentials
2547  * due to exec
2548  */
2549 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550 {
2551 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2552 	u32 osid, sid;
2553 	int rc;
2554 
2555 	osid = tsec->osid;
2556 	sid = tsec->sid;
2557 
2558 	if (sid == osid)
2559 		return;
2560 
2561 	/* Check whether the new SID can inherit signal state from the old SID.
2562 	 * If not, clear itimers to avoid subsequent signal generation and
2563 	 * flush and unblock signals.
2564 	 *
2565 	 * This must occur _after_ the task SID has been updated so that any
2566 	 * kill done after the flush will be checked against the new SID.
2567 	 */
2568 	rc = avc_has_perm(&selinux_state,
2569 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2570 	if (rc) {
2571 		clear_itimer();
2572 
2573 		spin_lock_irq(&current->sighand->siglock);
2574 		if (!fatal_signal_pending(current)) {
2575 			flush_sigqueue(&current->pending);
2576 			flush_sigqueue(&current->signal->shared_pending);
2577 			flush_signal_handlers(current, 1);
2578 			sigemptyset(&current->blocked);
2579 			recalc_sigpending();
2580 		}
2581 		spin_unlock_irq(&current->sighand->siglock);
2582 	}
2583 
2584 	/* Wake up the parent if it is waiting so that it can recheck
2585 	 * wait permission to the new task SID. */
2586 	read_lock(&tasklist_lock);
2587 	__wake_up_parent(current, current->real_parent);
2588 	read_unlock(&tasklist_lock);
2589 }
2590 
2591 /* superblock security operations */
2592 
2593 static int selinux_sb_alloc_security(struct super_block *sb)
2594 {
2595 	return superblock_alloc_security(sb);
2596 }
2597 
2598 static void selinux_sb_free_security(struct super_block *sb)
2599 {
2600 	superblock_free_security(sb);
2601 }
2602 
2603 static inline int opt_len(const char *s)
2604 {
2605 	bool open_quote = false;
2606 	int len;
2607 	char c;
2608 
2609 	for (len = 0; (c = s[len]) != '\0'; len++) {
2610 		if (c == '"')
2611 			open_quote = !open_quote;
2612 		if (c == ',' && !open_quote)
2613 			break;
2614 	}
2615 	return len;
2616 }
2617 
2618 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2619 {
2620 	char *from = options;
2621 	char *to = options;
2622 	bool first = true;
2623 	int rc;
2624 
2625 	while (1) {
2626 		int len = opt_len(from);
2627 		int token;
2628 		char *arg = NULL;
2629 
2630 		token = match_opt_prefix(from, len, &arg);
2631 
2632 		if (token != Opt_error) {
2633 			char *p, *q;
2634 
2635 			/* strip quotes */
2636 			if (arg) {
2637 				for (p = q = arg; p < from + len; p++) {
2638 					char c = *p;
2639 					if (c != '"')
2640 						*q++ = c;
2641 				}
2642 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2643 				if (!arg) {
2644 					rc = -ENOMEM;
2645 					goto free_opt;
2646 				}
2647 			}
2648 			rc = selinux_add_opt(token, arg, mnt_opts);
2649 			if (unlikely(rc)) {
2650 				kfree(arg);
2651 				goto free_opt;
2652 			}
2653 		} else {
2654 			if (!first) {	// copy with preceding comma
2655 				from--;
2656 				len++;
2657 			}
2658 			if (to != from)
2659 				memmove(to, from, len);
2660 			to += len;
2661 			first = false;
2662 		}
2663 		if (!from[len])
2664 			break;
2665 		from += len + 1;
2666 	}
2667 	*to = '\0';
2668 	return 0;
2669 
2670 free_opt:
2671 	if (*mnt_opts) {
2672 		selinux_free_mnt_opts(*mnt_opts);
2673 		*mnt_opts = NULL;
2674 	}
2675 	return rc;
2676 }
2677 
2678 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2679 {
2680 	struct selinux_mnt_opts *opts = mnt_opts;
2681 	struct superblock_security_struct *sbsec = sb->s_security;
2682 	u32 sid;
2683 	int rc;
2684 
2685 	if (!(sbsec->flags & SE_SBINITIALIZED))
2686 		return 0;
2687 
2688 	if (!opts)
2689 		return 0;
2690 
2691 	if (opts->fscontext) {
2692 		rc = parse_sid(sb, opts->fscontext, &sid);
2693 		if (rc)
2694 			return rc;
2695 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2696 			goto out_bad_option;
2697 	}
2698 	if (opts->context) {
2699 		rc = parse_sid(sb, opts->context, &sid);
2700 		if (rc)
2701 			return rc;
2702 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2703 			goto out_bad_option;
2704 	}
2705 	if (opts->rootcontext) {
2706 		struct inode_security_struct *root_isec;
2707 		root_isec = backing_inode_security(sb->s_root);
2708 		rc = parse_sid(sb, opts->rootcontext, &sid);
2709 		if (rc)
2710 			return rc;
2711 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2712 			goto out_bad_option;
2713 	}
2714 	if (opts->defcontext) {
2715 		rc = parse_sid(sb, opts->defcontext, &sid);
2716 		if (rc)
2717 			return rc;
2718 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2719 			goto out_bad_option;
2720 	}
2721 	return 0;
2722 
2723 out_bad_option:
2724 	pr_warn("SELinux: unable to change security options "
2725 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2726 	       sb->s_type->name);
2727 	return -EINVAL;
2728 }
2729 
2730 static int selinux_sb_kern_mount(struct super_block *sb)
2731 {
2732 	const struct cred *cred = current_cred();
2733 	struct common_audit_data ad;
2734 
2735 	ad.type = LSM_AUDIT_DATA_DENTRY;
2736 	ad.u.dentry = sb->s_root;
2737 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2738 }
2739 
2740 static int selinux_sb_statfs(struct dentry *dentry)
2741 {
2742 	const struct cred *cred = current_cred();
2743 	struct common_audit_data ad;
2744 
2745 	ad.type = LSM_AUDIT_DATA_DENTRY;
2746 	ad.u.dentry = dentry->d_sb->s_root;
2747 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2748 }
2749 
2750 static int selinux_mount(const char *dev_name,
2751 			 const struct path *path,
2752 			 const char *type,
2753 			 unsigned long flags,
2754 			 void *data)
2755 {
2756 	const struct cred *cred = current_cred();
2757 
2758 	if (flags & MS_REMOUNT)
2759 		return superblock_has_perm(cred, path->dentry->d_sb,
2760 					   FILESYSTEM__REMOUNT, NULL);
2761 	else
2762 		return path_has_perm(cred, path, FILE__MOUNTON);
2763 }
2764 
2765 static int selinux_umount(struct vfsmount *mnt, int flags)
2766 {
2767 	const struct cred *cred = current_cred();
2768 
2769 	return superblock_has_perm(cred, mnt->mnt_sb,
2770 				   FILESYSTEM__UNMOUNT, NULL);
2771 }
2772 
2773 static int selinux_fs_context_dup(struct fs_context *fc,
2774 				  struct fs_context *src_fc)
2775 {
2776 	const struct selinux_mnt_opts *src = src_fc->security;
2777 	struct selinux_mnt_opts *opts;
2778 
2779 	if (!src)
2780 		return 0;
2781 
2782 	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2783 	if (!fc->security)
2784 		return -ENOMEM;
2785 
2786 	opts = fc->security;
2787 
2788 	if (src->fscontext) {
2789 		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2790 		if (!opts->fscontext)
2791 			return -ENOMEM;
2792 	}
2793 	if (src->context) {
2794 		opts->context = kstrdup(src->context, GFP_KERNEL);
2795 		if (!opts->context)
2796 			return -ENOMEM;
2797 	}
2798 	if (src->rootcontext) {
2799 		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2800 		if (!opts->rootcontext)
2801 			return -ENOMEM;
2802 	}
2803 	if (src->defcontext) {
2804 		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2805 		if (!opts->defcontext)
2806 			return -ENOMEM;
2807 	}
2808 	return 0;
2809 }
2810 
2811 static const struct fs_parameter_spec selinux_param_specs[] = {
2812 	fsparam_string(CONTEXT_STR,	Opt_context),
2813 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2814 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2815 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2816 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2817 	{}
2818 };
2819 
2820 static const struct fs_parameter_description selinux_fs_parameters = {
2821 	.name		= "SELinux",
2822 	.specs		= selinux_param_specs,
2823 };
2824 
2825 static int selinux_fs_context_parse_param(struct fs_context *fc,
2826 					  struct fs_parameter *param)
2827 {
2828 	struct fs_parse_result result;
2829 	int opt, rc;
2830 
2831 	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2832 	if (opt < 0)
2833 		return opt;
2834 
2835 	rc = selinux_add_opt(opt, param->string, &fc->security);
2836 	if (!rc) {
2837 		param->string = NULL;
2838 		rc = 1;
2839 	}
2840 	return rc;
2841 }
2842 
2843 /* inode security operations */
2844 
2845 static int selinux_inode_alloc_security(struct inode *inode)
2846 {
2847 	return inode_alloc_security(inode);
2848 }
2849 
2850 static void selinux_inode_free_security(struct inode *inode)
2851 {
2852 	inode_free_security(inode);
2853 }
2854 
2855 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2856 					const struct qstr *name, void **ctx,
2857 					u32 *ctxlen)
2858 {
2859 	u32 newsid;
2860 	int rc;
2861 
2862 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2863 					   d_inode(dentry->d_parent), name,
2864 					   inode_mode_to_security_class(mode),
2865 					   &newsid);
2866 	if (rc)
2867 		return rc;
2868 
2869 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2870 				       ctxlen);
2871 }
2872 
2873 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2874 					  struct qstr *name,
2875 					  const struct cred *old,
2876 					  struct cred *new)
2877 {
2878 	u32 newsid;
2879 	int rc;
2880 	struct task_security_struct *tsec;
2881 
2882 	rc = selinux_determine_inode_label(selinux_cred(old),
2883 					   d_inode(dentry->d_parent), name,
2884 					   inode_mode_to_security_class(mode),
2885 					   &newsid);
2886 	if (rc)
2887 		return rc;
2888 
2889 	tsec = selinux_cred(new);
2890 	tsec->create_sid = newsid;
2891 	return 0;
2892 }
2893 
2894 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2895 				       const struct qstr *qstr,
2896 				       const char **name,
2897 				       void **value, size_t *len)
2898 {
2899 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2900 	struct superblock_security_struct *sbsec;
2901 	u32 newsid, clen;
2902 	int rc;
2903 	char *context;
2904 
2905 	sbsec = dir->i_sb->s_security;
2906 
2907 	newsid = tsec->create_sid;
2908 
2909 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2910 		dir, qstr,
2911 		inode_mode_to_security_class(inode->i_mode),
2912 		&newsid);
2913 	if (rc)
2914 		return rc;
2915 
2916 	/* Possibly defer initialization to selinux_complete_init. */
2917 	if (sbsec->flags & SE_SBINITIALIZED) {
2918 		struct inode_security_struct *isec = selinux_inode(inode);
2919 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2920 		isec->sid = newsid;
2921 		isec->initialized = LABEL_INITIALIZED;
2922 	}
2923 
2924 	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2925 		return -EOPNOTSUPP;
2926 
2927 	if (name)
2928 		*name = XATTR_SELINUX_SUFFIX;
2929 
2930 	if (value && len) {
2931 		rc = security_sid_to_context_force(&selinux_state, newsid,
2932 						   &context, &clen);
2933 		if (rc)
2934 			return rc;
2935 		*value = context;
2936 		*len = clen;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 	return may_create(dir, dentry, SECCLASS_FILE);
2945 }
2946 
2947 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2948 {
2949 	return may_link(dir, old_dentry, MAY_LINK);
2950 }
2951 
2952 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2953 {
2954 	return may_link(dir, dentry, MAY_UNLINK);
2955 }
2956 
2957 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2958 {
2959 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2960 }
2961 
2962 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2963 {
2964 	return may_create(dir, dentry, SECCLASS_DIR);
2965 }
2966 
2967 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2968 {
2969 	return may_link(dir, dentry, MAY_RMDIR);
2970 }
2971 
2972 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2973 {
2974 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2975 }
2976 
2977 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2978 				struct inode *new_inode, struct dentry *new_dentry)
2979 {
2980 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2981 }
2982 
2983 static int selinux_inode_readlink(struct dentry *dentry)
2984 {
2985 	const struct cred *cred = current_cred();
2986 
2987 	return dentry_has_perm(cred, dentry, FILE__READ);
2988 }
2989 
2990 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2991 				     bool rcu)
2992 {
2993 	const struct cred *cred = current_cred();
2994 	struct common_audit_data ad;
2995 	struct inode_security_struct *isec;
2996 	u32 sid;
2997 
2998 	validate_creds(cred);
2999 
3000 	ad.type = LSM_AUDIT_DATA_DENTRY;
3001 	ad.u.dentry = dentry;
3002 	sid = cred_sid(cred);
3003 	isec = inode_security_rcu(inode, rcu);
3004 	if (IS_ERR(isec))
3005 		return PTR_ERR(isec);
3006 
3007 	return avc_has_perm(&selinux_state,
3008 			    sid, isec->sid, isec->sclass, FILE__READ, &ad);
3009 }
3010 
3011 static noinline int audit_inode_permission(struct inode *inode,
3012 					   u32 perms, u32 audited, u32 denied,
3013 					   int result,
3014 					   unsigned flags)
3015 {
3016 	struct common_audit_data ad;
3017 	struct inode_security_struct *isec = selinux_inode(inode);
3018 	int rc;
3019 
3020 	ad.type = LSM_AUDIT_DATA_INODE;
3021 	ad.u.inode = inode;
3022 
3023 	rc = slow_avc_audit(&selinux_state,
3024 			    current_sid(), isec->sid, isec->sclass, perms,
3025 			    audited, denied, result, &ad, flags);
3026 	if (rc)
3027 		return rc;
3028 	return 0;
3029 }
3030 
3031 static int selinux_inode_permission(struct inode *inode, int mask)
3032 {
3033 	const struct cred *cred = current_cred();
3034 	u32 perms;
3035 	bool from_access;
3036 	unsigned flags = mask & MAY_NOT_BLOCK;
3037 	struct inode_security_struct *isec;
3038 	u32 sid;
3039 	struct av_decision avd;
3040 	int rc, rc2;
3041 	u32 audited, denied;
3042 
3043 	from_access = mask & MAY_ACCESS;
3044 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3045 
3046 	/* No permission to check.  Existence test. */
3047 	if (!mask)
3048 		return 0;
3049 
3050 	validate_creds(cred);
3051 
3052 	if (unlikely(IS_PRIVATE(inode)))
3053 		return 0;
3054 
3055 	perms = file_mask_to_av(inode->i_mode, mask);
3056 
3057 	sid = cred_sid(cred);
3058 	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3059 	if (IS_ERR(isec))
3060 		return PTR_ERR(isec);
3061 
3062 	rc = avc_has_perm_noaudit(&selinux_state,
3063 				  sid, isec->sid, isec->sclass, perms,
3064 				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3065 				  &avd);
3066 	audited = avc_audit_required(perms, &avd, rc,
3067 				     from_access ? FILE__AUDIT_ACCESS : 0,
3068 				     &denied);
3069 	if (likely(!audited))
3070 		return rc;
3071 
3072 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3073 	if (rc2)
3074 		return rc2;
3075 	return rc;
3076 }
3077 
3078 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3079 {
3080 	const struct cred *cred = current_cred();
3081 	struct inode *inode = d_backing_inode(dentry);
3082 	unsigned int ia_valid = iattr->ia_valid;
3083 	__u32 av = FILE__WRITE;
3084 
3085 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3086 	if (ia_valid & ATTR_FORCE) {
3087 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3088 			      ATTR_FORCE);
3089 		if (!ia_valid)
3090 			return 0;
3091 	}
3092 
3093 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3094 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3095 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3096 
3097 	if (selinux_policycap_openperm() &&
3098 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3099 	    (ia_valid & ATTR_SIZE) &&
3100 	    !(ia_valid & ATTR_FILE))
3101 		av |= FILE__OPEN;
3102 
3103 	return dentry_has_perm(cred, dentry, av);
3104 }
3105 
3106 static int selinux_inode_getattr(const struct path *path)
3107 {
3108 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3109 }
3110 
3111 static bool has_cap_mac_admin(bool audit)
3112 {
3113 	const struct cred *cred = current_cred();
3114 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3115 
3116 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3117 		return false;
3118 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3119 		return false;
3120 	return true;
3121 }
3122 
3123 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3124 				  const void *value, size_t size, int flags)
3125 {
3126 	struct inode *inode = d_backing_inode(dentry);
3127 	struct inode_security_struct *isec;
3128 	struct superblock_security_struct *sbsec;
3129 	struct common_audit_data ad;
3130 	u32 newsid, sid = current_sid();
3131 	int rc = 0;
3132 
3133 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3134 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3135 		if (rc)
3136 			return rc;
3137 
3138 		/* Not an attribute we recognize, so just check the
3139 		   ordinary setattr permission. */
3140 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3141 	}
3142 
3143 	if (!selinux_state.initialized)
3144 		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3145 
3146 	sbsec = inode->i_sb->s_security;
3147 	if (!(sbsec->flags & SBLABEL_MNT))
3148 		return -EOPNOTSUPP;
3149 
3150 	if (!inode_owner_or_capable(inode))
3151 		return -EPERM;
3152 
3153 	ad.type = LSM_AUDIT_DATA_DENTRY;
3154 	ad.u.dentry = dentry;
3155 
3156 	isec = backing_inode_security(dentry);
3157 	rc = avc_has_perm(&selinux_state,
3158 			  sid, isec->sid, isec->sclass,
3159 			  FILE__RELABELFROM, &ad);
3160 	if (rc)
3161 		return rc;
3162 
3163 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3164 				     GFP_KERNEL);
3165 	if (rc == -EINVAL) {
3166 		if (!has_cap_mac_admin(true)) {
3167 			struct audit_buffer *ab;
3168 			size_t audit_size;
3169 
3170 			/* We strip a nul only if it is at the end, otherwise the
3171 			 * context contains a nul and we should audit that */
3172 			if (value) {
3173 				const char *str = value;
3174 
3175 				if (str[size - 1] == '\0')
3176 					audit_size = size - 1;
3177 				else
3178 					audit_size = size;
3179 			} else {
3180 				audit_size = 0;
3181 			}
3182 			ab = audit_log_start(audit_context(),
3183 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3184 			audit_log_format(ab, "op=setxattr invalid_context=");
3185 			audit_log_n_untrustedstring(ab, value, audit_size);
3186 			audit_log_end(ab);
3187 
3188 			return rc;
3189 		}
3190 		rc = security_context_to_sid_force(&selinux_state, value,
3191 						   size, &newsid);
3192 	}
3193 	if (rc)
3194 		return rc;
3195 
3196 	rc = avc_has_perm(&selinux_state,
3197 			  sid, newsid, isec->sclass,
3198 			  FILE__RELABELTO, &ad);
3199 	if (rc)
3200 		return rc;
3201 
3202 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3203 					  sid, isec->sclass);
3204 	if (rc)
3205 		return rc;
3206 
3207 	return avc_has_perm(&selinux_state,
3208 			    newsid,
3209 			    sbsec->sid,
3210 			    SECCLASS_FILESYSTEM,
3211 			    FILESYSTEM__ASSOCIATE,
3212 			    &ad);
3213 }
3214 
3215 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3216 					const void *value, size_t size,
3217 					int flags)
3218 {
3219 	struct inode *inode = d_backing_inode(dentry);
3220 	struct inode_security_struct *isec;
3221 	u32 newsid;
3222 	int rc;
3223 
3224 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3225 		/* Not an attribute we recognize, so nothing to do. */
3226 		return;
3227 	}
3228 
3229 	if (!selinux_state.initialized) {
3230 		/* If we haven't even been initialized, then we can't validate
3231 		 * against a policy, so leave the label as invalid. It may
3232 		 * resolve to a valid label on the next revalidation try if
3233 		 * we've since initialized.
3234 		 */
3235 		return;
3236 	}
3237 
3238 	rc = security_context_to_sid_force(&selinux_state, value, size,
3239 					   &newsid);
3240 	if (rc) {
3241 		pr_err("SELinux:  unable to map context to SID"
3242 		       "for (%s, %lu), rc=%d\n",
3243 		       inode->i_sb->s_id, inode->i_ino, -rc);
3244 		return;
3245 	}
3246 
3247 	isec = backing_inode_security(dentry);
3248 	spin_lock(&isec->lock);
3249 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3250 	isec->sid = newsid;
3251 	isec->initialized = LABEL_INITIALIZED;
3252 	spin_unlock(&isec->lock);
3253 
3254 	return;
3255 }
3256 
3257 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3258 {
3259 	const struct cred *cred = current_cred();
3260 
3261 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3262 }
3263 
3264 static int selinux_inode_listxattr(struct dentry *dentry)
3265 {
3266 	const struct cred *cred = current_cred();
3267 
3268 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3269 }
3270 
3271 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3272 {
3273 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3274 		int rc = cap_inode_removexattr(dentry, name);
3275 		if (rc)
3276 			return rc;
3277 
3278 		/* Not an attribute we recognize, so just check the
3279 		   ordinary setattr permission. */
3280 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281 	}
3282 
3283 	/* No one is allowed to remove a SELinux security label.
3284 	   You can change the label, but all data must be labeled. */
3285 	return -EACCES;
3286 }
3287 
3288 static int selinux_path_notify(const struct path *path, u64 mask,
3289 						unsigned int obj_type)
3290 {
3291 	int ret;
3292 	u32 perm;
3293 
3294 	struct common_audit_data ad;
3295 
3296 	ad.type = LSM_AUDIT_DATA_PATH;
3297 	ad.u.path = *path;
3298 
3299 	/*
3300 	 * Set permission needed based on the type of mark being set.
3301 	 * Performs an additional check for sb watches.
3302 	 */
3303 	switch (obj_type) {
3304 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3305 		perm = FILE__WATCH_MOUNT;
3306 		break;
3307 	case FSNOTIFY_OBJ_TYPE_SB:
3308 		perm = FILE__WATCH_SB;
3309 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3310 						FILESYSTEM__WATCH, &ad);
3311 		if (ret)
3312 			return ret;
3313 		break;
3314 	case FSNOTIFY_OBJ_TYPE_INODE:
3315 		perm = FILE__WATCH;
3316 		break;
3317 	default:
3318 		return -EINVAL;
3319 	}
3320 
3321 	/* blocking watches require the file:watch_with_perm permission */
3322 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3323 		perm |= FILE__WATCH_WITH_PERM;
3324 
3325 	/* watches on read-like events need the file:watch_reads permission */
3326 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3327 		perm |= FILE__WATCH_READS;
3328 
3329 	return path_has_perm(current_cred(), path, perm);
3330 }
3331 
3332 /*
3333  * Copy the inode security context value to the user.
3334  *
3335  * Permission check is handled by selinux_inode_getxattr hook.
3336  */
3337 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3338 {
3339 	u32 size;
3340 	int error;
3341 	char *context = NULL;
3342 	struct inode_security_struct *isec;
3343 
3344 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3345 		return -EOPNOTSUPP;
3346 
3347 	/*
3348 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3349 	 * value even if it is not defined by current policy; otherwise,
3350 	 * use the in-core value under current policy.
3351 	 * Use the non-auditing forms of the permission checks since
3352 	 * getxattr may be called by unprivileged processes commonly
3353 	 * and lack of permission just means that we fall back to the
3354 	 * in-core context value, not a denial.
3355 	 */
3356 	isec = inode_security(inode);
3357 	if (has_cap_mac_admin(false))
3358 		error = security_sid_to_context_force(&selinux_state,
3359 						      isec->sid, &context,
3360 						      &size);
3361 	else
3362 		error = security_sid_to_context(&selinux_state, isec->sid,
3363 						&context, &size);
3364 	if (error)
3365 		return error;
3366 	error = size;
3367 	if (alloc) {
3368 		*buffer = context;
3369 		goto out_nofree;
3370 	}
3371 	kfree(context);
3372 out_nofree:
3373 	return error;
3374 }
3375 
3376 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3377 				     const void *value, size_t size, int flags)
3378 {
3379 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3380 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3381 	u32 newsid;
3382 	int rc;
3383 
3384 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3385 		return -EOPNOTSUPP;
3386 
3387 	if (!(sbsec->flags & SBLABEL_MNT))
3388 		return -EOPNOTSUPP;
3389 
3390 	if (!value || !size)
3391 		return -EACCES;
3392 
3393 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3394 				     GFP_KERNEL);
3395 	if (rc)
3396 		return rc;
3397 
3398 	spin_lock(&isec->lock);
3399 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3400 	isec->sid = newsid;
3401 	isec->initialized = LABEL_INITIALIZED;
3402 	spin_unlock(&isec->lock);
3403 	return 0;
3404 }
3405 
3406 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3407 {
3408 	const int len = sizeof(XATTR_NAME_SELINUX);
3409 	if (buffer && len <= buffer_size)
3410 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3411 	return len;
3412 }
3413 
3414 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3415 {
3416 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3417 	*secid = isec->sid;
3418 }
3419 
3420 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3421 {
3422 	u32 sid;
3423 	struct task_security_struct *tsec;
3424 	struct cred *new_creds = *new;
3425 
3426 	if (new_creds == NULL) {
3427 		new_creds = prepare_creds();
3428 		if (!new_creds)
3429 			return -ENOMEM;
3430 	}
3431 
3432 	tsec = selinux_cred(new_creds);
3433 	/* Get label from overlay inode and set it in create_sid */
3434 	selinux_inode_getsecid(d_inode(src), &sid);
3435 	tsec->create_sid = sid;
3436 	*new = new_creds;
3437 	return 0;
3438 }
3439 
3440 static int selinux_inode_copy_up_xattr(const char *name)
3441 {
3442 	/* The copy_up hook above sets the initial context on an inode, but we
3443 	 * don't then want to overwrite it by blindly copying all the lower
3444 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3445 	 */
3446 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3447 		return 1; /* Discard */
3448 	/*
3449 	 * Any other attribute apart from SELINUX is not claimed, supported
3450 	 * by selinux.
3451 	 */
3452 	return -EOPNOTSUPP;
3453 }
3454 
3455 /* kernfs node operations */
3456 
3457 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3458 					struct kernfs_node *kn)
3459 {
3460 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3461 	u32 parent_sid, newsid, clen;
3462 	int rc;
3463 	char *context;
3464 
3465 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3466 	if (rc == -ENODATA)
3467 		return 0;
3468 	else if (rc < 0)
3469 		return rc;
3470 
3471 	clen = (u32)rc;
3472 	context = kmalloc(clen, GFP_KERNEL);
3473 	if (!context)
3474 		return -ENOMEM;
3475 
3476 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3477 	if (rc < 0) {
3478 		kfree(context);
3479 		return rc;
3480 	}
3481 
3482 	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3483 				     GFP_KERNEL);
3484 	kfree(context);
3485 	if (rc)
3486 		return rc;
3487 
3488 	if (tsec->create_sid) {
3489 		newsid = tsec->create_sid;
3490 	} else {
3491 		u16 secclass = inode_mode_to_security_class(kn->mode);
3492 		struct qstr q;
3493 
3494 		q.name = kn->name;
3495 		q.hash_len = hashlen_string(kn_dir, kn->name);
3496 
3497 		rc = security_transition_sid(&selinux_state, tsec->sid,
3498 					     parent_sid, secclass, &q,
3499 					     &newsid);
3500 		if (rc)
3501 			return rc;
3502 	}
3503 
3504 	rc = security_sid_to_context_force(&selinux_state, newsid,
3505 					   &context, &clen);
3506 	if (rc)
3507 		return rc;
3508 
3509 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3510 			      XATTR_CREATE);
3511 	kfree(context);
3512 	return rc;
3513 }
3514 
3515 
3516 /* file security operations */
3517 
3518 static int selinux_revalidate_file_permission(struct file *file, int mask)
3519 {
3520 	const struct cred *cred = current_cred();
3521 	struct inode *inode = file_inode(file);
3522 
3523 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3524 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3525 		mask |= MAY_APPEND;
3526 
3527 	return file_has_perm(cred, file,
3528 			     file_mask_to_av(inode->i_mode, mask));
3529 }
3530 
3531 static int selinux_file_permission(struct file *file, int mask)
3532 {
3533 	struct inode *inode = file_inode(file);
3534 	struct file_security_struct *fsec = selinux_file(file);
3535 	struct inode_security_struct *isec;
3536 	u32 sid = current_sid();
3537 
3538 	if (!mask)
3539 		/* No permission to check.  Existence test. */
3540 		return 0;
3541 
3542 	isec = inode_security(inode);
3543 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3544 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3545 		/* No change since file_open check. */
3546 		return 0;
3547 
3548 	return selinux_revalidate_file_permission(file, mask);
3549 }
3550 
3551 static int selinux_file_alloc_security(struct file *file)
3552 {
3553 	return file_alloc_security(file);
3554 }
3555 
3556 /*
3557  * Check whether a task has the ioctl permission and cmd
3558  * operation to an inode.
3559  */
3560 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3561 		u32 requested, u16 cmd)
3562 {
3563 	struct common_audit_data ad;
3564 	struct file_security_struct *fsec = selinux_file(file);
3565 	struct inode *inode = file_inode(file);
3566 	struct inode_security_struct *isec;
3567 	struct lsm_ioctlop_audit ioctl;
3568 	u32 ssid = cred_sid(cred);
3569 	int rc;
3570 	u8 driver = cmd >> 8;
3571 	u8 xperm = cmd & 0xff;
3572 
3573 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3574 	ad.u.op = &ioctl;
3575 	ad.u.op->cmd = cmd;
3576 	ad.u.op->path = file->f_path;
3577 
3578 	if (ssid != fsec->sid) {
3579 		rc = avc_has_perm(&selinux_state,
3580 				  ssid, fsec->sid,
3581 				SECCLASS_FD,
3582 				FD__USE,
3583 				&ad);
3584 		if (rc)
3585 			goto out;
3586 	}
3587 
3588 	if (unlikely(IS_PRIVATE(inode)))
3589 		return 0;
3590 
3591 	isec = inode_security(inode);
3592 	rc = avc_has_extended_perms(&selinux_state,
3593 				    ssid, isec->sid, isec->sclass,
3594 				    requested, driver, xperm, &ad);
3595 out:
3596 	return rc;
3597 }
3598 
3599 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3600 			      unsigned long arg)
3601 {
3602 	const struct cred *cred = current_cred();
3603 	int error = 0;
3604 
3605 	switch (cmd) {
3606 	case FIONREAD:
3607 	/* fall through */
3608 	case FIBMAP:
3609 	/* fall through */
3610 	case FIGETBSZ:
3611 	/* fall through */
3612 	case FS_IOC_GETFLAGS:
3613 	/* fall through */
3614 	case FS_IOC_GETVERSION:
3615 		error = file_has_perm(cred, file, FILE__GETATTR);
3616 		break;
3617 
3618 	case FS_IOC_SETFLAGS:
3619 	/* fall through */
3620 	case FS_IOC_SETVERSION:
3621 		error = file_has_perm(cred, file, FILE__SETATTR);
3622 		break;
3623 
3624 	/* sys_ioctl() checks */
3625 	case FIONBIO:
3626 	/* fall through */
3627 	case FIOASYNC:
3628 		error = file_has_perm(cred, file, 0);
3629 		break;
3630 
3631 	case KDSKBENT:
3632 	case KDSKBSENT:
3633 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3634 					    CAP_OPT_NONE, true);
3635 		break;
3636 
3637 	/* default case assumes that the command will go
3638 	 * to the file's ioctl() function.
3639 	 */
3640 	default:
3641 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3642 	}
3643 	return error;
3644 }
3645 
3646 static int default_noexec;
3647 
3648 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3649 {
3650 	const struct cred *cred = current_cred();
3651 	u32 sid = cred_sid(cred);
3652 	int rc = 0;
3653 
3654 	if (default_noexec &&
3655 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3656 				   (!shared && (prot & PROT_WRITE)))) {
3657 		/*
3658 		 * We are making executable an anonymous mapping or a
3659 		 * private file mapping that will also be writable.
3660 		 * This has an additional check.
3661 		 */
3662 		rc = avc_has_perm(&selinux_state,
3663 				  sid, sid, SECCLASS_PROCESS,
3664 				  PROCESS__EXECMEM, NULL);
3665 		if (rc)
3666 			goto error;
3667 	}
3668 
3669 	if (file) {
3670 		/* read access is always possible with a mapping */
3671 		u32 av = FILE__READ;
3672 
3673 		/* write access only matters if the mapping is shared */
3674 		if (shared && (prot & PROT_WRITE))
3675 			av |= FILE__WRITE;
3676 
3677 		if (prot & PROT_EXEC)
3678 			av |= FILE__EXECUTE;
3679 
3680 		return file_has_perm(cred, file, av);
3681 	}
3682 
3683 error:
3684 	return rc;
3685 }
3686 
3687 static int selinux_mmap_addr(unsigned long addr)
3688 {
3689 	int rc = 0;
3690 
3691 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3692 		u32 sid = current_sid();
3693 		rc = avc_has_perm(&selinux_state,
3694 				  sid, sid, SECCLASS_MEMPROTECT,
3695 				  MEMPROTECT__MMAP_ZERO, NULL);
3696 	}
3697 
3698 	return rc;
3699 }
3700 
3701 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3702 			     unsigned long prot, unsigned long flags)
3703 {
3704 	struct common_audit_data ad;
3705 	int rc;
3706 
3707 	if (file) {
3708 		ad.type = LSM_AUDIT_DATA_FILE;
3709 		ad.u.file = file;
3710 		rc = inode_has_perm(current_cred(), file_inode(file),
3711 				    FILE__MAP, &ad);
3712 		if (rc)
3713 			return rc;
3714 	}
3715 
3716 	if (selinux_state.checkreqprot)
3717 		prot = reqprot;
3718 
3719 	return file_map_prot_check(file, prot,
3720 				   (flags & MAP_TYPE) == MAP_SHARED);
3721 }
3722 
3723 static int selinux_file_mprotect(struct vm_area_struct *vma,
3724 				 unsigned long reqprot,
3725 				 unsigned long prot)
3726 {
3727 	const struct cred *cred = current_cred();
3728 	u32 sid = cred_sid(cred);
3729 
3730 	if (selinux_state.checkreqprot)
3731 		prot = reqprot;
3732 
3733 	if (default_noexec &&
3734 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3735 		int rc = 0;
3736 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3737 		    vma->vm_end <= vma->vm_mm->brk) {
3738 			rc = avc_has_perm(&selinux_state,
3739 					  sid, sid, SECCLASS_PROCESS,
3740 					  PROCESS__EXECHEAP, NULL);
3741 		} else if (!vma->vm_file &&
3742 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3743 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3744 			    vma_is_stack_for_current(vma))) {
3745 			rc = avc_has_perm(&selinux_state,
3746 					  sid, sid, SECCLASS_PROCESS,
3747 					  PROCESS__EXECSTACK, NULL);
3748 		} else if (vma->vm_file && vma->anon_vma) {
3749 			/*
3750 			 * We are making executable a file mapping that has
3751 			 * had some COW done. Since pages might have been
3752 			 * written, check ability to execute the possibly
3753 			 * modified content.  This typically should only
3754 			 * occur for text relocations.
3755 			 */
3756 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3757 		}
3758 		if (rc)
3759 			return rc;
3760 	}
3761 
3762 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3763 }
3764 
3765 static int selinux_file_lock(struct file *file, unsigned int cmd)
3766 {
3767 	const struct cred *cred = current_cred();
3768 
3769 	return file_has_perm(cred, file, FILE__LOCK);
3770 }
3771 
3772 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3773 			      unsigned long arg)
3774 {
3775 	const struct cred *cred = current_cred();
3776 	int err = 0;
3777 
3778 	switch (cmd) {
3779 	case F_SETFL:
3780 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3781 			err = file_has_perm(cred, file, FILE__WRITE);
3782 			break;
3783 		}
3784 		/* fall through */
3785 	case F_SETOWN:
3786 	case F_SETSIG:
3787 	case F_GETFL:
3788 	case F_GETOWN:
3789 	case F_GETSIG:
3790 	case F_GETOWNER_UIDS:
3791 		/* Just check FD__USE permission */
3792 		err = file_has_perm(cred, file, 0);
3793 		break;
3794 	case F_GETLK:
3795 	case F_SETLK:
3796 	case F_SETLKW:
3797 	case F_OFD_GETLK:
3798 	case F_OFD_SETLK:
3799 	case F_OFD_SETLKW:
3800 #if BITS_PER_LONG == 32
3801 	case F_GETLK64:
3802 	case F_SETLK64:
3803 	case F_SETLKW64:
3804 #endif
3805 		err = file_has_perm(cred, file, FILE__LOCK);
3806 		break;
3807 	}
3808 
3809 	return err;
3810 }
3811 
3812 static void selinux_file_set_fowner(struct file *file)
3813 {
3814 	struct file_security_struct *fsec;
3815 
3816 	fsec = selinux_file(file);
3817 	fsec->fown_sid = current_sid();
3818 }
3819 
3820 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3821 				       struct fown_struct *fown, int signum)
3822 {
3823 	struct file *file;
3824 	u32 sid = task_sid(tsk);
3825 	u32 perm;
3826 	struct file_security_struct *fsec;
3827 
3828 	/* struct fown_struct is never outside the context of a struct file */
3829 	file = container_of(fown, struct file, f_owner);
3830 
3831 	fsec = selinux_file(file);
3832 
3833 	if (!signum)
3834 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3835 	else
3836 		perm = signal_to_av(signum);
3837 
3838 	return avc_has_perm(&selinux_state,
3839 			    fsec->fown_sid, sid,
3840 			    SECCLASS_PROCESS, perm, NULL);
3841 }
3842 
3843 static int selinux_file_receive(struct file *file)
3844 {
3845 	const struct cred *cred = current_cred();
3846 
3847 	return file_has_perm(cred, file, file_to_av(file));
3848 }
3849 
3850 static int selinux_file_open(struct file *file)
3851 {
3852 	struct file_security_struct *fsec;
3853 	struct inode_security_struct *isec;
3854 
3855 	fsec = selinux_file(file);
3856 	isec = inode_security(file_inode(file));
3857 	/*
3858 	 * Save inode label and policy sequence number
3859 	 * at open-time so that selinux_file_permission
3860 	 * can determine whether revalidation is necessary.
3861 	 * Task label is already saved in the file security
3862 	 * struct as its SID.
3863 	 */
3864 	fsec->isid = isec->sid;
3865 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3866 	/*
3867 	 * Since the inode label or policy seqno may have changed
3868 	 * between the selinux_inode_permission check and the saving
3869 	 * of state above, recheck that access is still permitted.
3870 	 * Otherwise, access might never be revalidated against the
3871 	 * new inode label or new policy.
3872 	 * This check is not redundant - do not remove.
3873 	 */
3874 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3875 }
3876 
3877 /* task security operations */
3878 
3879 static int selinux_task_alloc(struct task_struct *task,
3880 			      unsigned long clone_flags)
3881 {
3882 	u32 sid = current_sid();
3883 
3884 	return avc_has_perm(&selinux_state,
3885 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3886 }
3887 
3888 /*
3889  * prepare a new set of credentials for modification
3890  */
3891 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3892 				gfp_t gfp)
3893 {
3894 	const struct task_security_struct *old_tsec = selinux_cred(old);
3895 	struct task_security_struct *tsec = selinux_cred(new);
3896 
3897 	*tsec = *old_tsec;
3898 	return 0;
3899 }
3900 
3901 /*
3902  * transfer the SELinux data to a blank set of creds
3903  */
3904 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3905 {
3906 	const struct task_security_struct *old_tsec = selinux_cred(old);
3907 	struct task_security_struct *tsec = selinux_cred(new);
3908 
3909 	*tsec = *old_tsec;
3910 }
3911 
3912 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3913 {
3914 	*secid = cred_sid(c);
3915 }
3916 
3917 /*
3918  * set the security data for a kernel service
3919  * - all the creation contexts are set to unlabelled
3920  */
3921 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3922 {
3923 	struct task_security_struct *tsec = selinux_cred(new);
3924 	u32 sid = current_sid();
3925 	int ret;
3926 
3927 	ret = avc_has_perm(&selinux_state,
3928 			   sid, secid,
3929 			   SECCLASS_KERNEL_SERVICE,
3930 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3931 			   NULL);
3932 	if (ret == 0) {
3933 		tsec->sid = secid;
3934 		tsec->create_sid = 0;
3935 		tsec->keycreate_sid = 0;
3936 		tsec->sockcreate_sid = 0;
3937 	}
3938 	return ret;
3939 }
3940 
3941 /*
3942  * set the file creation context in a security record to the same as the
3943  * objective context of the specified inode
3944  */
3945 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3946 {
3947 	struct inode_security_struct *isec = inode_security(inode);
3948 	struct task_security_struct *tsec = selinux_cred(new);
3949 	u32 sid = current_sid();
3950 	int ret;
3951 
3952 	ret = avc_has_perm(&selinux_state,
3953 			   sid, isec->sid,
3954 			   SECCLASS_KERNEL_SERVICE,
3955 			   KERNEL_SERVICE__CREATE_FILES_AS,
3956 			   NULL);
3957 
3958 	if (ret == 0)
3959 		tsec->create_sid = isec->sid;
3960 	return ret;
3961 }
3962 
3963 static int selinux_kernel_module_request(char *kmod_name)
3964 {
3965 	struct common_audit_data ad;
3966 
3967 	ad.type = LSM_AUDIT_DATA_KMOD;
3968 	ad.u.kmod_name = kmod_name;
3969 
3970 	return avc_has_perm(&selinux_state,
3971 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3972 			    SYSTEM__MODULE_REQUEST, &ad);
3973 }
3974 
3975 static int selinux_kernel_module_from_file(struct file *file)
3976 {
3977 	struct common_audit_data ad;
3978 	struct inode_security_struct *isec;
3979 	struct file_security_struct *fsec;
3980 	u32 sid = current_sid();
3981 	int rc;
3982 
3983 	/* init_module */
3984 	if (file == NULL)
3985 		return avc_has_perm(&selinux_state,
3986 				    sid, sid, SECCLASS_SYSTEM,
3987 					SYSTEM__MODULE_LOAD, NULL);
3988 
3989 	/* finit_module */
3990 
3991 	ad.type = LSM_AUDIT_DATA_FILE;
3992 	ad.u.file = file;
3993 
3994 	fsec = selinux_file(file);
3995 	if (sid != fsec->sid) {
3996 		rc = avc_has_perm(&selinux_state,
3997 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3998 		if (rc)
3999 			return rc;
4000 	}
4001 
4002 	isec = inode_security(file_inode(file));
4003 	return avc_has_perm(&selinux_state,
4004 			    sid, isec->sid, SECCLASS_SYSTEM,
4005 				SYSTEM__MODULE_LOAD, &ad);
4006 }
4007 
4008 static int selinux_kernel_read_file(struct file *file,
4009 				    enum kernel_read_file_id id)
4010 {
4011 	int rc = 0;
4012 
4013 	switch (id) {
4014 	case READING_MODULE:
4015 		rc = selinux_kernel_module_from_file(file);
4016 		break;
4017 	default:
4018 		break;
4019 	}
4020 
4021 	return rc;
4022 }
4023 
4024 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4025 {
4026 	int rc = 0;
4027 
4028 	switch (id) {
4029 	case LOADING_MODULE:
4030 		rc = selinux_kernel_module_from_file(NULL);
4031 	default:
4032 		break;
4033 	}
4034 
4035 	return rc;
4036 }
4037 
4038 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4039 {
4040 	return avc_has_perm(&selinux_state,
4041 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4042 			    PROCESS__SETPGID, NULL);
4043 }
4044 
4045 static int selinux_task_getpgid(struct task_struct *p)
4046 {
4047 	return avc_has_perm(&selinux_state,
4048 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4049 			    PROCESS__GETPGID, NULL);
4050 }
4051 
4052 static int selinux_task_getsid(struct task_struct *p)
4053 {
4054 	return avc_has_perm(&selinux_state,
4055 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4056 			    PROCESS__GETSESSION, NULL);
4057 }
4058 
4059 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4060 {
4061 	*secid = task_sid(p);
4062 }
4063 
4064 static int selinux_task_setnice(struct task_struct *p, int nice)
4065 {
4066 	return avc_has_perm(&selinux_state,
4067 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4068 			    PROCESS__SETSCHED, NULL);
4069 }
4070 
4071 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4072 {
4073 	return avc_has_perm(&selinux_state,
4074 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4075 			    PROCESS__SETSCHED, NULL);
4076 }
4077 
4078 static int selinux_task_getioprio(struct task_struct *p)
4079 {
4080 	return avc_has_perm(&selinux_state,
4081 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4082 			    PROCESS__GETSCHED, NULL);
4083 }
4084 
4085 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4086 				unsigned int flags)
4087 {
4088 	u32 av = 0;
4089 
4090 	if (!flags)
4091 		return 0;
4092 	if (flags & LSM_PRLIMIT_WRITE)
4093 		av |= PROCESS__SETRLIMIT;
4094 	if (flags & LSM_PRLIMIT_READ)
4095 		av |= PROCESS__GETRLIMIT;
4096 	return avc_has_perm(&selinux_state,
4097 			    cred_sid(cred), cred_sid(tcred),
4098 			    SECCLASS_PROCESS, av, NULL);
4099 }
4100 
4101 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4102 		struct rlimit *new_rlim)
4103 {
4104 	struct rlimit *old_rlim = p->signal->rlim + resource;
4105 
4106 	/* Control the ability to change the hard limit (whether
4107 	   lowering or raising it), so that the hard limit can
4108 	   later be used as a safe reset point for the soft limit
4109 	   upon context transitions.  See selinux_bprm_committing_creds. */
4110 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4111 		return avc_has_perm(&selinux_state,
4112 				    current_sid(), task_sid(p),
4113 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4114 
4115 	return 0;
4116 }
4117 
4118 static int selinux_task_setscheduler(struct task_struct *p)
4119 {
4120 	return avc_has_perm(&selinux_state,
4121 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4122 			    PROCESS__SETSCHED, NULL);
4123 }
4124 
4125 static int selinux_task_getscheduler(struct task_struct *p)
4126 {
4127 	return avc_has_perm(&selinux_state,
4128 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4129 			    PROCESS__GETSCHED, NULL);
4130 }
4131 
4132 static int selinux_task_movememory(struct task_struct *p)
4133 {
4134 	return avc_has_perm(&selinux_state,
4135 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4136 			    PROCESS__SETSCHED, NULL);
4137 }
4138 
4139 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4140 				int sig, const struct cred *cred)
4141 {
4142 	u32 secid;
4143 	u32 perm;
4144 
4145 	if (!sig)
4146 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4147 	else
4148 		perm = signal_to_av(sig);
4149 	if (!cred)
4150 		secid = current_sid();
4151 	else
4152 		secid = cred_sid(cred);
4153 	return avc_has_perm(&selinux_state,
4154 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4155 }
4156 
4157 static void selinux_task_to_inode(struct task_struct *p,
4158 				  struct inode *inode)
4159 {
4160 	struct inode_security_struct *isec = selinux_inode(inode);
4161 	u32 sid = task_sid(p);
4162 
4163 	spin_lock(&isec->lock);
4164 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4165 	isec->sid = sid;
4166 	isec->initialized = LABEL_INITIALIZED;
4167 	spin_unlock(&isec->lock);
4168 }
4169 
4170 /* Returns error only if unable to parse addresses */
4171 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4172 			struct common_audit_data *ad, u8 *proto)
4173 {
4174 	int offset, ihlen, ret = -EINVAL;
4175 	struct iphdr _iph, *ih;
4176 
4177 	offset = skb_network_offset(skb);
4178 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4179 	if (ih == NULL)
4180 		goto out;
4181 
4182 	ihlen = ih->ihl * 4;
4183 	if (ihlen < sizeof(_iph))
4184 		goto out;
4185 
4186 	ad->u.net->v4info.saddr = ih->saddr;
4187 	ad->u.net->v4info.daddr = ih->daddr;
4188 	ret = 0;
4189 
4190 	if (proto)
4191 		*proto = ih->protocol;
4192 
4193 	switch (ih->protocol) {
4194 	case IPPROTO_TCP: {
4195 		struct tcphdr _tcph, *th;
4196 
4197 		if (ntohs(ih->frag_off) & IP_OFFSET)
4198 			break;
4199 
4200 		offset += ihlen;
4201 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4202 		if (th == NULL)
4203 			break;
4204 
4205 		ad->u.net->sport = th->source;
4206 		ad->u.net->dport = th->dest;
4207 		break;
4208 	}
4209 
4210 	case IPPROTO_UDP: {
4211 		struct udphdr _udph, *uh;
4212 
4213 		if (ntohs(ih->frag_off) & IP_OFFSET)
4214 			break;
4215 
4216 		offset += ihlen;
4217 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4218 		if (uh == NULL)
4219 			break;
4220 
4221 		ad->u.net->sport = uh->source;
4222 		ad->u.net->dport = uh->dest;
4223 		break;
4224 	}
4225 
4226 	case IPPROTO_DCCP: {
4227 		struct dccp_hdr _dccph, *dh;
4228 
4229 		if (ntohs(ih->frag_off) & IP_OFFSET)
4230 			break;
4231 
4232 		offset += ihlen;
4233 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4234 		if (dh == NULL)
4235 			break;
4236 
4237 		ad->u.net->sport = dh->dccph_sport;
4238 		ad->u.net->dport = dh->dccph_dport;
4239 		break;
4240 	}
4241 
4242 #if IS_ENABLED(CONFIG_IP_SCTP)
4243 	case IPPROTO_SCTP: {
4244 		struct sctphdr _sctph, *sh;
4245 
4246 		if (ntohs(ih->frag_off) & IP_OFFSET)
4247 			break;
4248 
4249 		offset += ihlen;
4250 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4251 		if (sh == NULL)
4252 			break;
4253 
4254 		ad->u.net->sport = sh->source;
4255 		ad->u.net->dport = sh->dest;
4256 		break;
4257 	}
4258 #endif
4259 	default:
4260 		break;
4261 	}
4262 out:
4263 	return ret;
4264 }
4265 
4266 #if IS_ENABLED(CONFIG_IPV6)
4267 
4268 /* Returns error only if unable to parse addresses */
4269 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4270 			struct common_audit_data *ad, u8 *proto)
4271 {
4272 	u8 nexthdr;
4273 	int ret = -EINVAL, offset;
4274 	struct ipv6hdr _ipv6h, *ip6;
4275 	__be16 frag_off;
4276 
4277 	offset = skb_network_offset(skb);
4278 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4279 	if (ip6 == NULL)
4280 		goto out;
4281 
4282 	ad->u.net->v6info.saddr = ip6->saddr;
4283 	ad->u.net->v6info.daddr = ip6->daddr;
4284 	ret = 0;
4285 
4286 	nexthdr = ip6->nexthdr;
4287 	offset += sizeof(_ipv6h);
4288 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4289 	if (offset < 0)
4290 		goto out;
4291 
4292 	if (proto)
4293 		*proto = nexthdr;
4294 
4295 	switch (nexthdr) {
4296 	case IPPROTO_TCP: {
4297 		struct tcphdr _tcph, *th;
4298 
4299 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4300 		if (th == NULL)
4301 			break;
4302 
4303 		ad->u.net->sport = th->source;
4304 		ad->u.net->dport = th->dest;
4305 		break;
4306 	}
4307 
4308 	case IPPROTO_UDP: {
4309 		struct udphdr _udph, *uh;
4310 
4311 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4312 		if (uh == NULL)
4313 			break;
4314 
4315 		ad->u.net->sport = uh->source;
4316 		ad->u.net->dport = uh->dest;
4317 		break;
4318 	}
4319 
4320 	case IPPROTO_DCCP: {
4321 		struct dccp_hdr _dccph, *dh;
4322 
4323 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4324 		if (dh == NULL)
4325 			break;
4326 
4327 		ad->u.net->sport = dh->dccph_sport;
4328 		ad->u.net->dport = dh->dccph_dport;
4329 		break;
4330 	}
4331 
4332 #if IS_ENABLED(CONFIG_IP_SCTP)
4333 	case IPPROTO_SCTP: {
4334 		struct sctphdr _sctph, *sh;
4335 
4336 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4337 		if (sh == NULL)
4338 			break;
4339 
4340 		ad->u.net->sport = sh->source;
4341 		ad->u.net->dport = sh->dest;
4342 		break;
4343 	}
4344 #endif
4345 	/* includes fragments */
4346 	default:
4347 		break;
4348 	}
4349 out:
4350 	return ret;
4351 }
4352 
4353 #endif /* IPV6 */
4354 
4355 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4356 			     char **_addrp, int src, u8 *proto)
4357 {
4358 	char *addrp;
4359 	int ret;
4360 
4361 	switch (ad->u.net->family) {
4362 	case PF_INET:
4363 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4364 		if (ret)
4365 			goto parse_error;
4366 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4367 				       &ad->u.net->v4info.daddr);
4368 		goto okay;
4369 
4370 #if IS_ENABLED(CONFIG_IPV6)
4371 	case PF_INET6:
4372 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4373 		if (ret)
4374 			goto parse_error;
4375 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4376 				       &ad->u.net->v6info.daddr);
4377 		goto okay;
4378 #endif	/* IPV6 */
4379 	default:
4380 		addrp = NULL;
4381 		goto okay;
4382 	}
4383 
4384 parse_error:
4385 	pr_warn(
4386 	       "SELinux: failure in selinux_parse_skb(),"
4387 	       " unable to parse packet\n");
4388 	return ret;
4389 
4390 okay:
4391 	if (_addrp)
4392 		*_addrp = addrp;
4393 	return 0;
4394 }
4395 
4396 /**
4397  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4398  * @skb: the packet
4399  * @family: protocol family
4400  * @sid: the packet's peer label SID
4401  *
4402  * Description:
4403  * Check the various different forms of network peer labeling and determine
4404  * the peer label/SID for the packet; most of the magic actually occurs in
4405  * the security server function security_net_peersid_cmp().  The function
4406  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4407  * or -EACCES if @sid is invalid due to inconsistencies with the different
4408  * peer labels.
4409  *
4410  */
4411 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4412 {
4413 	int err;
4414 	u32 xfrm_sid;
4415 	u32 nlbl_sid;
4416 	u32 nlbl_type;
4417 
4418 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4419 	if (unlikely(err))
4420 		return -EACCES;
4421 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4422 	if (unlikely(err))
4423 		return -EACCES;
4424 
4425 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4426 					   nlbl_type, xfrm_sid, sid);
4427 	if (unlikely(err)) {
4428 		pr_warn(
4429 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4430 		       " unable to determine packet's peer label\n");
4431 		return -EACCES;
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 /**
4438  * selinux_conn_sid - Determine the child socket label for a connection
4439  * @sk_sid: the parent socket's SID
4440  * @skb_sid: the packet's SID
4441  * @conn_sid: the resulting connection SID
4442  *
4443  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4444  * combined with the MLS information from @skb_sid in order to create
4445  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4446  * of @sk_sid.  Returns zero on success, negative values on failure.
4447  *
4448  */
4449 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4450 {
4451 	int err = 0;
4452 
4453 	if (skb_sid != SECSID_NULL)
4454 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4455 					    conn_sid);
4456 	else
4457 		*conn_sid = sk_sid;
4458 
4459 	return err;
4460 }
4461 
4462 /* socket security operations */
4463 
4464 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4465 				 u16 secclass, u32 *socksid)
4466 {
4467 	if (tsec->sockcreate_sid > SECSID_NULL) {
4468 		*socksid = tsec->sockcreate_sid;
4469 		return 0;
4470 	}
4471 
4472 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4473 				       secclass, NULL, socksid);
4474 }
4475 
4476 static int sock_has_perm(struct sock *sk, u32 perms)
4477 {
4478 	struct sk_security_struct *sksec = sk->sk_security;
4479 	struct common_audit_data ad;
4480 	struct lsm_network_audit net = {0,};
4481 
4482 	if (sksec->sid == SECINITSID_KERNEL)
4483 		return 0;
4484 
4485 	ad.type = LSM_AUDIT_DATA_NET;
4486 	ad.u.net = &net;
4487 	ad.u.net->sk = sk;
4488 
4489 	return avc_has_perm(&selinux_state,
4490 			    current_sid(), sksec->sid, sksec->sclass, perms,
4491 			    &ad);
4492 }
4493 
4494 static int selinux_socket_create(int family, int type,
4495 				 int protocol, int kern)
4496 {
4497 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4498 	u32 newsid;
4499 	u16 secclass;
4500 	int rc;
4501 
4502 	if (kern)
4503 		return 0;
4504 
4505 	secclass = socket_type_to_security_class(family, type, protocol);
4506 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4507 	if (rc)
4508 		return rc;
4509 
4510 	return avc_has_perm(&selinux_state,
4511 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4512 }
4513 
4514 static int selinux_socket_post_create(struct socket *sock, int family,
4515 				      int type, int protocol, int kern)
4516 {
4517 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4518 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4519 	struct sk_security_struct *sksec;
4520 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4521 	u32 sid = SECINITSID_KERNEL;
4522 	int err = 0;
4523 
4524 	if (!kern) {
4525 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4526 		if (err)
4527 			return err;
4528 	}
4529 
4530 	isec->sclass = sclass;
4531 	isec->sid = sid;
4532 	isec->initialized = LABEL_INITIALIZED;
4533 
4534 	if (sock->sk) {
4535 		sksec = sock->sk->sk_security;
4536 		sksec->sclass = sclass;
4537 		sksec->sid = sid;
4538 		/* Allows detection of the first association on this socket */
4539 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4540 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4541 
4542 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4543 	}
4544 
4545 	return err;
4546 }
4547 
4548 static int selinux_socket_socketpair(struct socket *socka,
4549 				     struct socket *sockb)
4550 {
4551 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4552 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4553 
4554 	sksec_a->peer_sid = sksec_b->sid;
4555 	sksec_b->peer_sid = sksec_a->sid;
4556 
4557 	return 0;
4558 }
4559 
4560 /* Range of port numbers used to automatically bind.
4561    Need to determine whether we should perform a name_bind
4562    permission check between the socket and the port number. */
4563 
4564 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4565 {
4566 	struct sock *sk = sock->sk;
4567 	struct sk_security_struct *sksec = sk->sk_security;
4568 	u16 family;
4569 	int err;
4570 
4571 	err = sock_has_perm(sk, SOCKET__BIND);
4572 	if (err)
4573 		goto out;
4574 
4575 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4576 	family = sk->sk_family;
4577 	if (family == PF_INET || family == PF_INET6) {
4578 		char *addrp;
4579 		struct common_audit_data ad;
4580 		struct lsm_network_audit net = {0,};
4581 		struct sockaddr_in *addr4 = NULL;
4582 		struct sockaddr_in6 *addr6 = NULL;
4583 		u16 family_sa;
4584 		unsigned short snum;
4585 		u32 sid, node_perm;
4586 
4587 		/*
4588 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4589 		 * that validates multiple binding addresses. Because of this
4590 		 * need to check address->sa_family as it is possible to have
4591 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4592 		 */
4593 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4594 			return -EINVAL;
4595 		family_sa = address->sa_family;
4596 		switch (family_sa) {
4597 		case AF_UNSPEC:
4598 		case AF_INET:
4599 			if (addrlen < sizeof(struct sockaddr_in))
4600 				return -EINVAL;
4601 			addr4 = (struct sockaddr_in *)address;
4602 			if (family_sa == AF_UNSPEC) {
4603 				/* see __inet_bind(), we only want to allow
4604 				 * AF_UNSPEC if the address is INADDR_ANY
4605 				 */
4606 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4607 					goto err_af;
4608 				family_sa = AF_INET;
4609 			}
4610 			snum = ntohs(addr4->sin_port);
4611 			addrp = (char *)&addr4->sin_addr.s_addr;
4612 			break;
4613 		case AF_INET6:
4614 			if (addrlen < SIN6_LEN_RFC2133)
4615 				return -EINVAL;
4616 			addr6 = (struct sockaddr_in6 *)address;
4617 			snum = ntohs(addr6->sin6_port);
4618 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4619 			break;
4620 		default:
4621 			goto err_af;
4622 		}
4623 
4624 		ad.type = LSM_AUDIT_DATA_NET;
4625 		ad.u.net = &net;
4626 		ad.u.net->sport = htons(snum);
4627 		ad.u.net->family = family_sa;
4628 
4629 		if (snum) {
4630 			int low, high;
4631 
4632 			inet_get_local_port_range(sock_net(sk), &low, &high);
4633 
4634 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4635 			    snum < low || snum > high) {
4636 				err = sel_netport_sid(sk->sk_protocol,
4637 						      snum, &sid);
4638 				if (err)
4639 					goto out;
4640 				err = avc_has_perm(&selinux_state,
4641 						   sksec->sid, sid,
4642 						   sksec->sclass,
4643 						   SOCKET__NAME_BIND, &ad);
4644 				if (err)
4645 					goto out;
4646 			}
4647 		}
4648 
4649 		switch (sksec->sclass) {
4650 		case SECCLASS_TCP_SOCKET:
4651 			node_perm = TCP_SOCKET__NODE_BIND;
4652 			break;
4653 
4654 		case SECCLASS_UDP_SOCKET:
4655 			node_perm = UDP_SOCKET__NODE_BIND;
4656 			break;
4657 
4658 		case SECCLASS_DCCP_SOCKET:
4659 			node_perm = DCCP_SOCKET__NODE_BIND;
4660 			break;
4661 
4662 		case SECCLASS_SCTP_SOCKET:
4663 			node_perm = SCTP_SOCKET__NODE_BIND;
4664 			break;
4665 
4666 		default:
4667 			node_perm = RAWIP_SOCKET__NODE_BIND;
4668 			break;
4669 		}
4670 
4671 		err = sel_netnode_sid(addrp, family_sa, &sid);
4672 		if (err)
4673 			goto out;
4674 
4675 		if (family_sa == AF_INET)
4676 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4677 		else
4678 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4679 
4680 		err = avc_has_perm(&selinux_state,
4681 				   sksec->sid, sid,
4682 				   sksec->sclass, node_perm, &ad);
4683 		if (err)
4684 			goto out;
4685 	}
4686 out:
4687 	return err;
4688 err_af:
4689 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4690 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4691 		return -EINVAL;
4692 	return -EAFNOSUPPORT;
4693 }
4694 
4695 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4696  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4697  */
4698 static int selinux_socket_connect_helper(struct socket *sock,
4699 					 struct sockaddr *address, int addrlen)
4700 {
4701 	struct sock *sk = sock->sk;
4702 	struct sk_security_struct *sksec = sk->sk_security;
4703 	int err;
4704 
4705 	err = sock_has_perm(sk, SOCKET__CONNECT);
4706 	if (err)
4707 		return err;
4708 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4709 		return -EINVAL;
4710 
4711 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4712 	 * way to disconnect the socket
4713 	 */
4714 	if (address->sa_family == AF_UNSPEC)
4715 		return 0;
4716 
4717 	/*
4718 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4719 	 * for the port.
4720 	 */
4721 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4722 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4723 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4724 		struct common_audit_data ad;
4725 		struct lsm_network_audit net = {0,};
4726 		struct sockaddr_in *addr4 = NULL;
4727 		struct sockaddr_in6 *addr6 = NULL;
4728 		unsigned short snum;
4729 		u32 sid, perm;
4730 
4731 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4732 		 * that validates multiple connect addresses. Because of this
4733 		 * need to check address->sa_family as it is possible to have
4734 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735 		 */
4736 		switch (address->sa_family) {
4737 		case AF_INET:
4738 			addr4 = (struct sockaddr_in *)address;
4739 			if (addrlen < sizeof(struct sockaddr_in))
4740 				return -EINVAL;
4741 			snum = ntohs(addr4->sin_port);
4742 			break;
4743 		case AF_INET6:
4744 			addr6 = (struct sockaddr_in6 *)address;
4745 			if (addrlen < SIN6_LEN_RFC2133)
4746 				return -EINVAL;
4747 			snum = ntohs(addr6->sin6_port);
4748 			break;
4749 		default:
4750 			/* Note that SCTP services expect -EINVAL, whereas
4751 			 * others expect -EAFNOSUPPORT.
4752 			 */
4753 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4754 				return -EINVAL;
4755 			else
4756 				return -EAFNOSUPPORT;
4757 		}
4758 
4759 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4760 		if (err)
4761 			return err;
4762 
4763 		switch (sksec->sclass) {
4764 		case SECCLASS_TCP_SOCKET:
4765 			perm = TCP_SOCKET__NAME_CONNECT;
4766 			break;
4767 		case SECCLASS_DCCP_SOCKET:
4768 			perm = DCCP_SOCKET__NAME_CONNECT;
4769 			break;
4770 		case SECCLASS_SCTP_SOCKET:
4771 			perm = SCTP_SOCKET__NAME_CONNECT;
4772 			break;
4773 		}
4774 
4775 		ad.type = LSM_AUDIT_DATA_NET;
4776 		ad.u.net = &net;
4777 		ad.u.net->dport = htons(snum);
4778 		ad.u.net->family = address->sa_family;
4779 		err = avc_has_perm(&selinux_state,
4780 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4781 		if (err)
4782 			return err;
4783 	}
4784 
4785 	return 0;
4786 }
4787 
4788 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4789 static int selinux_socket_connect(struct socket *sock,
4790 				  struct sockaddr *address, int addrlen)
4791 {
4792 	int err;
4793 	struct sock *sk = sock->sk;
4794 
4795 	err = selinux_socket_connect_helper(sock, address, addrlen);
4796 	if (err)
4797 		return err;
4798 
4799 	return selinux_netlbl_socket_connect(sk, address);
4800 }
4801 
4802 static int selinux_socket_listen(struct socket *sock, int backlog)
4803 {
4804 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4805 }
4806 
4807 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4808 {
4809 	int err;
4810 	struct inode_security_struct *isec;
4811 	struct inode_security_struct *newisec;
4812 	u16 sclass;
4813 	u32 sid;
4814 
4815 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4816 	if (err)
4817 		return err;
4818 
4819 	isec = inode_security_novalidate(SOCK_INODE(sock));
4820 	spin_lock(&isec->lock);
4821 	sclass = isec->sclass;
4822 	sid = isec->sid;
4823 	spin_unlock(&isec->lock);
4824 
4825 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4826 	newisec->sclass = sclass;
4827 	newisec->sid = sid;
4828 	newisec->initialized = LABEL_INITIALIZED;
4829 
4830 	return 0;
4831 }
4832 
4833 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4834 				  int size)
4835 {
4836 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4837 }
4838 
4839 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4840 				  int size, int flags)
4841 {
4842 	return sock_has_perm(sock->sk, SOCKET__READ);
4843 }
4844 
4845 static int selinux_socket_getsockname(struct socket *sock)
4846 {
4847 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4848 }
4849 
4850 static int selinux_socket_getpeername(struct socket *sock)
4851 {
4852 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4853 }
4854 
4855 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4856 {
4857 	int err;
4858 
4859 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4860 	if (err)
4861 		return err;
4862 
4863 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4864 }
4865 
4866 static int selinux_socket_getsockopt(struct socket *sock, int level,
4867 				     int optname)
4868 {
4869 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4870 }
4871 
4872 static int selinux_socket_shutdown(struct socket *sock, int how)
4873 {
4874 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4875 }
4876 
4877 static int selinux_socket_unix_stream_connect(struct sock *sock,
4878 					      struct sock *other,
4879 					      struct sock *newsk)
4880 {
4881 	struct sk_security_struct *sksec_sock = sock->sk_security;
4882 	struct sk_security_struct *sksec_other = other->sk_security;
4883 	struct sk_security_struct *sksec_new = newsk->sk_security;
4884 	struct common_audit_data ad;
4885 	struct lsm_network_audit net = {0,};
4886 	int err;
4887 
4888 	ad.type = LSM_AUDIT_DATA_NET;
4889 	ad.u.net = &net;
4890 	ad.u.net->sk = other;
4891 
4892 	err = avc_has_perm(&selinux_state,
4893 			   sksec_sock->sid, sksec_other->sid,
4894 			   sksec_other->sclass,
4895 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4896 	if (err)
4897 		return err;
4898 
4899 	/* server child socket */
4900 	sksec_new->peer_sid = sksec_sock->sid;
4901 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4902 				    sksec_sock->sid, &sksec_new->sid);
4903 	if (err)
4904 		return err;
4905 
4906 	/* connecting socket */
4907 	sksec_sock->peer_sid = sksec_new->sid;
4908 
4909 	return 0;
4910 }
4911 
4912 static int selinux_socket_unix_may_send(struct socket *sock,
4913 					struct socket *other)
4914 {
4915 	struct sk_security_struct *ssec = sock->sk->sk_security;
4916 	struct sk_security_struct *osec = other->sk->sk_security;
4917 	struct common_audit_data ad;
4918 	struct lsm_network_audit net = {0,};
4919 
4920 	ad.type = LSM_AUDIT_DATA_NET;
4921 	ad.u.net = &net;
4922 	ad.u.net->sk = other->sk;
4923 
4924 	return avc_has_perm(&selinux_state,
4925 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4926 			    &ad);
4927 }
4928 
4929 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4930 				    char *addrp, u16 family, u32 peer_sid,
4931 				    struct common_audit_data *ad)
4932 {
4933 	int err;
4934 	u32 if_sid;
4935 	u32 node_sid;
4936 
4937 	err = sel_netif_sid(ns, ifindex, &if_sid);
4938 	if (err)
4939 		return err;
4940 	err = avc_has_perm(&selinux_state,
4941 			   peer_sid, if_sid,
4942 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4943 	if (err)
4944 		return err;
4945 
4946 	err = sel_netnode_sid(addrp, family, &node_sid);
4947 	if (err)
4948 		return err;
4949 	return avc_has_perm(&selinux_state,
4950 			    peer_sid, node_sid,
4951 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4952 }
4953 
4954 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4955 				       u16 family)
4956 {
4957 	int err = 0;
4958 	struct sk_security_struct *sksec = sk->sk_security;
4959 	u32 sk_sid = sksec->sid;
4960 	struct common_audit_data ad;
4961 	struct lsm_network_audit net = {0,};
4962 	char *addrp;
4963 
4964 	ad.type = LSM_AUDIT_DATA_NET;
4965 	ad.u.net = &net;
4966 	ad.u.net->netif = skb->skb_iif;
4967 	ad.u.net->family = family;
4968 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4969 	if (err)
4970 		return err;
4971 
4972 	if (selinux_secmark_enabled()) {
4973 		err = avc_has_perm(&selinux_state,
4974 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4975 				   PACKET__RECV, &ad);
4976 		if (err)
4977 			return err;
4978 	}
4979 
4980 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4981 	if (err)
4982 		return err;
4983 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4984 
4985 	return err;
4986 }
4987 
4988 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4989 {
4990 	int err;
4991 	struct sk_security_struct *sksec = sk->sk_security;
4992 	u16 family = sk->sk_family;
4993 	u32 sk_sid = sksec->sid;
4994 	struct common_audit_data ad;
4995 	struct lsm_network_audit net = {0,};
4996 	char *addrp;
4997 	u8 secmark_active;
4998 	u8 peerlbl_active;
4999 
5000 	if (family != PF_INET && family != PF_INET6)
5001 		return 0;
5002 
5003 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5004 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5005 		family = PF_INET;
5006 
5007 	/* If any sort of compatibility mode is enabled then handoff processing
5008 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5009 	 * special handling.  We do this in an attempt to keep this function
5010 	 * as fast and as clean as possible. */
5011 	if (!selinux_policycap_netpeer())
5012 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5013 
5014 	secmark_active = selinux_secmark_enabled();
5015 	peerlbl_active = selinux_peerlbl_enabled();
5016 	if (!secmark_active && !peerlbl_active)
5017 		return 0;
5018 
5019 	ad.type = LSM_AUDIT_DATA_NET;
5020 	ad.u.net = &net;
5021 	ad.u.net->netif = skb->skb_iif;
5022 	ad.u.net->family = family;
5023 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5024 	if (err)
5025 		return err;
5026 
5027 	if (peerlbl_active) {
5028 		u32 peer_sid;
5029 
5030 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5031 		if (err)
5032 			return err;
5033 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5034 					       addrp, family, peer_sid, &ad);
5035 		if (err) {
5036 			selinux_netlbl_err(skb, family, err, 0);
5037 			return err;
5038 		}
5039 		err = avc_has_perm(&selinux_state,
5040 				   sk_sid, peer_sid, SECCLASS_PEER,
5041 				   PEER__RECV, &ad);
5042 		if (err) {
5043 			selinux_netlbl_err(skb, family, err, 0);
5044 			return err;
5045 		}
5046 	}
5047 
5048 	if (secmark_active) {
5049 		err = avc_has_perm(&selinux_state,
5050 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5051 				   PACKET__RECV, &ad);
5052 		if (err)
5053 			return err;
5054 	}
5055 
5056 	return err;
5057 }
5058 
5059 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5060 					    int __user *optlen, unsigned len)
5061 {
5062 	int err = 0;
5063 	char *scontext;
5064 	u32 scontext_len;
5065 	struct sk_security_struct *sksec = sock->sk->sk_security;
5066 	u32 peer_sid = SECSID_NULL;
5067 
5068 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5069 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5070 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5071 		peer_sid = sksec->peer_sid;
5072 	if (peer_sid == SECSID_NULL)
5073 		return -ENOPROTOOPT;
5074 
5075 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5076 				      &scontext_len);
5077 	if (err)
5078 		return err;
5079 
5080 	if (scontext_len > len) {
5081 		err = -ERANGE;
5082 		goto out_len;
5083 	}
5084 
5085 	if (copy_to_user(optval, scontext, scontext_len))
5086 		err = -EFAULT;
5087 
5088 out_len:
5089 	if (put_user(scontext_len, optlen))
5090 		err = -EFAULT;
5091 	kfree(scontext);
5092 	return err;
5093 }
5094 
5095 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5096 {
5097 	u32 peer_secid = SECSID_NULL;
5098 	u16 family;
5099 	struct inode_security_struct *isec;
5100 
5101 	if (skb && skb->protocol == htons(ETH_P_IP))
5102 		family = PF_INET;
5103 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5104 		family = PF_INET6;
5105 	else if (sock)
5106 		family = sock->sk->sk_family;
5107 	else
5108 		goto out;
5109 
5110 	if (sock && family == PF_UNIX) {
5111 		isec = inode_security_novalidate(SOCK_INODE(sock));
5112 		peer_secid = isec->sid;
5113 	} else if (skb)
5114 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5115 
5116 out:
5117 	*secid = peer_secid;
5118 	if (peer_secid == SECSID_NULL)
5119 		return -EINVAL;
5120 	return 0;
5121 }
5122 
5123 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5124 {
5125 	struct sk_security_struct *sksec;
5126 
5127 	sksec = kzalloc(sizeof(*sksec), priority);
5128 	if (!sksec)
5129 		return -ENOMEM;
5130 
5131 	sksec->peer_sid = SECINITSID_UNLABELED;
5132 	sksec->sid = SECINITSID_UNLABELED;
5133 	sksec->sclass = SECCLASS_SOCKET;
5134 	selinux_netlbl_sk_security_reset(sksec);
5135 	sk->sk_security = sksec;
5136 
5137 	return 0;
5138 }
5139 
5140 static void selinux_sk_free_security(struct sock *sk)
5141 {
5142 	struct sk_security_struct *sksec = sk->sk_security;
5143 
5144 	sk->sk_security = NULL;
5145 	selinux_netlbl_sk_security_free(sksec);
5146 	kfree(sksec);
5147 }
5148 
5149 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5150 {
5151 	struct sk_security_struct *sksec = sk->sk_security;
5152 	struct sk_security_struct *newsksec = newsk->sk_security;
5153 
5154 	newsksec->sid = sksec->sid;
5155 	newsksec->peer_sid = sksec->peer_sid;
5156 	newsksec->sclass = sksec->sclass;
5157 
5158 	selinux_netlbl_sk_security_reset(newsksec);
5159 }
5160 
5161 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5162 {
5163 	if (!sk)
5164 		*secid = SECINITSID_ANY_SOCKET;
5165 	else {
5166 		struct sk_security_struct *sksec = sk->sk_security;
5167 
5168 		*secid = sksec->sid;
5169 	}
5170 }
5171 
5172 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5173 {
5174 	struct inode_security_struct *isec =
5175 		inode_security_novalidate(SOCK_INODE(parent));
5176 	struct sk_security_struct *sksec = sk->sk_security;
5177 
5178 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5179 	    sk->sk_family == PF_UNIX)
5180 		isec->sid = sksec->sid;
5181 	sksec->sclass = isec->sclass;
5182 }
5183 
5184 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5185  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5186  * already present).
5187  */
5188 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5189 				      struct sk_buff *skb)
5190 {
5191 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5192 	struct common_audit_data ad;
5193 	struct lsm_network_audit net = {0,};
5194 	u8 peerlbl_active;
5195 	u32 peer_sid = SECINITSID_UNLABELED;
5196 	u32 conn_sid;
5197 	int err = 0;
5198 
5199 	if (!selinux_policycap_extsockclass())
5200 		return 0;
5201 
5202 	peerlbl_active = selinux_peerlbl_enabled();
5203 
5204 	if (peerlbl_active) {
5205 		/* This will return peer_sid = SECSID_NULL if there are
5206 		 * no peer labels, see security_net_peersid_resolve().
5207 		 */
5208 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5209 					      &peer_sid);
5210 		if (err)
5211 			return err;
5212 
5213 		if (peer_sid == SECSID_NULL)
5214 			peer_sid = SECINITSID_UNLABELED;
5215 	}
5216 
5217 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5218 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5219 
5220 		/* Here as first association on socket. As the peer SID
5221 		 * was allowed by peer recv (and the netif/node checks),
5222 		 * then it is approved by policy and used as the primary
5223 		 * peer SID for getpeercon(3).
5224 		 */
5225 		sksec->peer_sid = peer_sid;
5226 	} else if  (sksec->peer_sid != peer_sid) {
5227 		/* Other association peer SIDs are checked to enforce
5228 		 * consistency among the peer SIDs.
5229 		 */
5230 		ad.type = LSM_AUDIT_DATA_NET;
5231 		ad.u.net = &net;
5232 		ad.u.net->sk = ep->base.sk;
5233 		err = avc_has_perm(&selinux_state,
5234 				   sksec->peer_sid, peer_sid, sksec->sclass,
5235 				   SCTP_SOCKET__ASSOCIATION, &ad);
5236 		if (err)
5237 			return err;
5238 	}
5239 
5240 	/* Compute the MLS component for the connection and store
5241 	 * the information in ep. This will be used by SCTP TCP type
5242 	 * sockets and peeled off connections as they cause a new
5243 	 * socket to be generated. selinux_sctp_sk_clone() will then
5244 	 * plug this into the new socket.
5245 	 */
5246 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5247 	if (err)
5248 		return err;
5249 
5250 	ep->secid = conn_sid;
5251 	ep->peer_secid = peer_sid;
5252 
5253 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5254 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5255 }
5256 
5257 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5258  * based on their @optname.
5259  */
5260 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5261 				     struct sockaddr *address,
5262 				     int addrlen)
5263 {
5264 	int len, err = 0, walk_size = 0;
5265 	void *addr_buf;
5266 	struct sockaddr *addr;
5267 	struct socket *sock;
5268 
5269 	if (!selinux_policycap_extsockclass())
5270 		return 0;
5271 
5272 	/* Process one or more addresses that may be IPv4 or IPv6 */
5273 	sock = sk->sk_socket;
5274 	addr_buf = address;
5275 
5276 	while (walk_size < addrlen) {
5277 		if (walk_size + sizeof(sa_family_t) > addrlen)
5278 			return -EINVAL;
5279 
5280 		addr = addr_buf;
5281 		switch (addr->sa_family) {
5282 		case AF_UNSPEC:
5283 		case AF_INET:
5284 			len = sizeof(struct sockaddr_in);
5285 			break;
5286 		case AF_INET6:
5287 			len = sizeof(struct sockaddr_in6);
5288 			break;
5289 		default:
5290 			return -EINVAL;
5291 		}
5292 
5293 		if (walk_size + len > addrlen)
5294 			return -EINVAL;
5295 
5296 		err = -EINVAL;
5297 		switch (optname) {
5298 		/* Bind checks */
5299 		case SCTP_PRIMARY_ADDR:
5300 		case SCTP_SET_PEER_PRIMARY_ADDR:
5301 		case SCTP_SOCKOPT_BINDX_ADD:
5302 			err = selinux_socket_bind(sock, addr, len);
5303 			break;
5304 		/* Connect checks */
5305 		case SCTP_SOCKOPT_CONNECTX:
5306 		case SCTP_PARAM_SET_PRIMARY:
5307 		case SCTP_PARAM_ADD_IP:
5308 		case SCTP_SENDMSG_CONNECT:
5309 			err = selinux_socket_connect_helper(sock, addr, len);
5310 			if (err)
5311 				return err;
5312 
5313 			/* As selinux_sctp_bind_connect() is called by the
5314 			 * SCTP protocol layer, the socket is already locked,
5315 			 * therefore selinux_netlbl_socket_connect_locked() is
5316 			 * is called here. The situations handled are:
5317 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5318 			 * whenever a new IP address is added or when a new
5319 			 * primary address is selected.
5320 			 * Note that an SCTP connect(2) call happens before
5321 			 * the SCTP protocol layer and is handled via
5322 			 * selinux_socket_connect().
5323 			 */
5324 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5325 			break;
5326 		}
5327 
5328 		if (err)
5329 			return err;
5330 
5331 		addr_buf += len;
5332 		walk_size += len;
5333 	}
5334 
5335 	return 0;
5336 }
5337 
5338 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5339 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5340 				  struct sock *newsk)
5341 {
5342 	struct sk_security_struct *sksec = sk->sk_security;
5343 	struct sk_security_struct *newsksec = newsk->sk_security;
5344 
5345 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5346 	 * the non-sctp clone version.
5347 	 */
5348 	if (!selinux_policycap_extsockclass())
5349 		return selinux_sk_clone_security(sk, newsk);
5350 
5351 	newsksec->sid = ep->secid;
5352 	newsksec->peer_sid = ep->peer_secid;
5353 	newsksec->sclass = sksec->sclass;
5354 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5355 }
5356 
5357 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5358 				     struct request_sock *req)
5359 {
5360 	struct sk_security_struct *sksec = sk->sk_security;
5361 	int err;
5362 	u16 family = req->rsk_ops->family;
5363 	u32 connsid;
5364 	u32 peersid;
5365 
5366 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5367 	if (err)
5368 		return err;
5369 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5370 	if (err)
5371 		return err;
5372 	req->secid = connsid;
5373 	req->peer_secid = peersid;
5374 
5375 	return selinux_netlbl_inet_conn_request(req, family);
5376 }
5377 
5378 static void selinux_inet_csk_clone(struct sock *newsk,
5379 				   const struct request_sock *req)
5380 {
5381 	struct sk_security_struct *newsksec = newsk->sk_security;
5382 
5383 	newsksec->sid = req->secid;
5384 	newsksec->peer_sid = req->peer_secid;
5385 	/* NOTE: Ideally, we should also get the isec->sid for the
5386 	   new socket in sync, but we don't have the isec available yet.
5387 	   So we will wait until sock_graft to do it, by which
5388 	   time it will have been created and available. */
5389 
5390 	/* We don't need to take any sort of lock here as we are the only
5391 	 * thread with access to newsksec */
5392 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5393 }
5394 
5395 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5396 {
5397 	u16 family = sk->sk_family;
5398 	struct sk_security_struct *sksec = sk->sk_security;
5399 
5400 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5401 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5402 		family = PF_INET;
5403 
5404 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5405 }
5406 
5407 static int selinux_secmark_relabel_packet(u32 sid)
5408 {
5409 	const struct task_security_struct *__tsec;
5410 	u32 tsid;
5411 
5412 	__tsec = selinux_cred(current_cred());
5413 	tsid = __tsec->sid;
5414 
5415 	return avc_has_perm(&selinux_state,
5416 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5417 			    NULL);
5418 }
5419 
5420 static void selinux_secmark_refcount_inc(void)
5421 {
5422 	atomic_inc(&selinux_secmark_refcount);
5423 }
5424 
5425 static void selinux_secmark_refcount_dec(void)
5426 {
5427 	atomic_dec(&selinux_secmark_refcount);
5428 }
5429 
5430 static void selinux_req_classify_flow(const struct request_sock *req,
5431 				      struct flowi *fl)
5432 {
5433 	fl->flowi_secid = req->secid;
5434 }
5435 
5436 static int selinux_tun_dev_alloc_security(void **security)
5437 {
5438 	struct tun_security_struct *tunsec;
5439 
5440 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5441 	if (!tunsec)
5442 		return -ENOMEM;
5443 	tunsec->sid = current_sid();
5444 
5445 	*security = tunsec;
5446 	return 0;
5447 }
5448 
5449 static void selinux_tun_dev_free_security(void *security)
5450 {
5451 	kfree(security);
5452 }
5453 
5454 static int selinux_tun_dev_create(void)
5455 {
5456 	u32 sid = current_sid();
5457 
5458 	/* we aren't taking into account the "sockcreate" SID since the socket
5459 	 * that is being created here is not a socket in the traditional sense,
5460 	 * instead it is a private sock, accessible only to the kernel, and
5461 	 * representing a wide range of network traffic spanning multiple
5462 	 * connections unlike traditional sockets - check the TUN driver to
5463 	 * get a better understanding of why this socket is special */
5464 
5465 	return avc_has_perm(&selinux_state,
5466 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5467 			    NULL);
5468 }
5469 
5470 static int selinux_tun_dev_attach_queue(void *security)
5471 {
5472 	struct tun_security_struct *tunsec = security;
5473 
5474 	return avc_has_perm(&selinux_state,
5475 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5476 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5477 }
5478 
5479 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5480 {
5481 	struct tun_security_struct *tunsec = security;
5482 	struct sk_security_struct *sksec = sk->sk_security;
5483 
5484 	/* we don't currently perform any NetLabel based labeling here and it
5485 	 * isn't clear that we would want to do so anyway; while we could apply
5486 	 * labeling without the support of the TUN user the resulting labeled
5487 	 * traffic from the other end of the connection would almost certainly
5488 	 * cause confusion to the TUN user that had no idea network labeling
5489 	 * protocols were being used */
5490 
5491 	sksec->sid = tunsec->sid;
5492 	sksec->sclass = SECCLASS_TUN_SOCKET;
5493 
5494 	return 0;
5495 }
5496 
5497 static int selinux_tun_dev_open(void *security)
5498 {
5499 	struct tun_security_struct *tunsec = security;
5500 	u32 sid = current_sid();
5501 	int err;
5502 
5503 	err = avc_has_perm(&selinux_state,
5504 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5505 			   TUN_SOCKET__RELABELFROM, NULL);
5506 	if (err)
5507 		return err;
5508 	err = avc_has_perm(&selinux_state,
5509 			   sid, sid, SECCLASS_TUN_SOCKET,
5510 			   TUN_SOCKET__RELABELTO, NULL);
5511 	if (err)
5512 		return err;
5513 	tunsec->sid = sid;
5514 
5515 	return 0;
5516 }
5517 
5518 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5519 {
5520 	int err = 0;
5521 	u32 perm;
5522 	struct nlmsghdr *nlh;
5523 	struct sk_security_struct *sksec = sk->sk_security;
5524 
5525 	if (skb->len < NLMSG_HDRLEN) {
5526 		err = -EINVAL;
5527 		goto out;
5528 	}
5529 	nlh = nlmsg_hdr(skb);
5530 
5531 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5532 	if (err) {
5533 		if (err == -EINVAL) {
5534 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5535 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5536 			       " pig=%d comm=%s\n",
5537 			       sk->sk_protocol, nlh->nlmsg_type,
5538 			       secclass_map[sksec->sclass - 1].name,
5539 			       task_pid_nr(current), current->comm);
5540 			if (!enforcing_enabled(&selinux_state) ||
5541 			    security_get_allow_unknown(&selinux_state))
5542 				err = 0;
5543 		}
5544 
5545 		/* Ignore */
5546 		if (err == -ENOENT)
5547 			err = 0;
5548 		goto out;
5549 	}
5550 
5551 	err = sock_has_perm(sk, perm);
5552 out:
5553 	return err;
5554 }
5555 
5556 #ifdef CONFIG_NETFILTER
5557 
5558 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5559 				       const struct net_device *indev,
5560 				       u16 family)
5561 {
5562 	int err;
5563 	char *addrp;
5564 	u32 peer_sid;
5565 	struct common_audit_data ad;
5566 	struct lsm_network_audit net = {0,};
5567 	u8 secmark_active;
5568 	u8 netlbl_active;
5569 	u8 peerlbl_active;
5570 
5571 	if (!selinux_policycap_netpeer())
5572 		return NF_ACCEPT;
5573 
5574 	secmark_active = selinux_secmark_enabled();
5575 	netlbl_active = netlbl_enabled();
5576 	peerlbl_active = selinux_peerlbl_enabled();
5577 	if (!secmark_active && !peerlbl_active)
5578 		return NF_ACCEPT;
5579 
5580 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5581 		return NF_DROP;
5582 
5583 	ad.type = LSM_AUDIT_DATA_NET;
5584 	ad.u.net = &net;
5585 	ad.u.net->netif = indev->ifindex;
5586 	ad.u.net->family = family;
5587 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5588 		return NF_DROP;
5589 
5590 	if (peerlbl_active) {
5591 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5592 					       addrp, family, peer_sid, &ad);
5593 		if (err) {
5594 			selinux_netlbl_err(skb, family, err, 1);
5595 			return NF_DROP;
5596 		}
5597 	}
5598 
5599 	if (secmark_active)
5600 		if (avc_has_perm(&selinux_state,
5601 				 peer_sid, skb->secmark,
5602 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5603 			return NF_DROP;
5604 
5605 	if (netlbl_active)
5606 		/* we do this in the FORWARD path and not the POST_ROUTING
5607 		 * path because we want to make sure we apply the necessary
5608 		 * labeling before IPsec is applied so we can leverage AH
5609 		 * protection */
5610 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5611 			return NF_DROP;
5612 
5613 	return NF_ACCEPT;
5614 }
5615 
5616 static unsigned int selinux_ipv4_forward(void *priv,
5617 					 struct sk_buff *skb,
5618 					 const struct nf_hook_state *state)
5619 {
5620 	return selinux_ip_forward(skb, state->in, PF_INET);
5621 }
5622 
5623 #if IS_ENABLED(CONFIG_IPV6)
5624 static unsigned int selinux_ipv6_forward(void *priv,
5625 					 struct sk_buff *skb,
5626 					 const struct nf_hook_state *state)
5627 {
5628 	return selinux_ip_forward(skb, state->in, PF_INET6);
5629 }
5630 #endif	/* IPV6 */
5631 
5632 static unsigned int selinux_ip_output(struct sk_buff *skb,
5633 				      u16 family)
5634 {
5635 	struct sock *sk;
5636 	u32 sid;
5637 
5638 	if (!netlbl_enabled())
5639 		return NF_ACCEPT;
5640 
5641 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5642 	 * because we want to make sure we apply the necessary labeling
5643 	 * before IPsec is applied so we can leverage AH protection */
5644 	sk = skb->sk;
5645 	if (sk) {
5646 		struct sk_security_struct *sksec;
5647 
5648 		if (sk_listener(sk))
5649 			/* if the socket is the listening state then this
5650 			 * packet is a SYN-ACK packet which means it needs to
5651 			 * be labeled based on the connection/request_sock and
5652 			 * not the parent socket.  unfortunately, we can't
5653 			 * lookup the request_sock yet as it isn't queued on
5654 			 * the parent socket until after the SYN-ACK is sent.
5655 			 * the "solution" is to simply pass the packet as-is
5656 			 * as any IP option based labeling should be copied
5657 			 * from the initial connection request (in the IP
5658 			 * layer).  it is far from ideal, but until we get a
5659 			 * security label in the packet itself this is the
5660 			 * best we can do. */
5661 			return NF_ACCEPT;
5662 
5663 		/* standard practice, label using the parent socket */
5664 		sksec = sk->sk_security;
5665 		sid = sksec->sid;
5666 	} else
5667 		sid = SECINITSID_KERNEL;
5668 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5669 		return NF_DROP;
5670 
5671 	return NF_ACCEPT;
5672 }
5673 
5674 static unsigned int selinux_ipv4_output(void *priv,
5675 					struct sk_buff *skb,
5676 					const struct nf_hook_state *state)
5677 {
5678 	return selinux_ip_output(skb, PF_INET);
5679 }
5680 
5681 #if IS_ENABLED(CONFIG_IPV6)
5682 static unsigned int selinux_ipv6_output(void *priv,
5683 					struct sk_buff *skb,
5684 					const struct nf_hook_state *state)
5685 {
5686 	return selinux_ip_output(skb, PF_INET6);
5687 }
5688 #endif	/* IPV6 */
5689 
5690 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5691 						int ifindex,
5692 						u16 family)
5693 {
5694 	struct sock *sk = skb_to_full_sk(skb);
5695 	struct sk_security_struct *sksec;
5696 	struct common_audit_data ad;
5697 	struct lsm_network_audit net = {0,};
5698 	char *addrp;
5699 	u8 proto;
5700 
5701 	if (sk == NULL)
5702 		return NF_ACCEPT;
5703 	sksec = sk->sk_security;
5704 
5705 	ad.type = LSM_AUDIT_DATA_NET;
5706 	ad.u.net = &net;
5707 	ad.u.net->netif = ifindex;
5708 	ad.u.net->family = family;
5709 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5710 		return NF_DROP;
5711 
5712 	if (selinux_secmark_enabled())
5713 		if (avc_has_perm(&selinux_state,
5714 				 sksec->sid, skb->secmark,
5715 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5716 			return NF_DROP_ERR(-ECONNREFUSED);
5717 
5718 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5719 		return NF_DROP_ERR(-ECONNREFUSED);
5720 
5721 	return NF_ACCEPT;
5722 }
5723 
5724 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5725 					 const struct net_device *outdev,
5726 					 u16 family)
5727 {
5728 	u32 secmark_perm;
5729 	u32 peer_sid;
5730 	int ifindex = outdev->ifindex;
5731 	struct sock *sk;
5732 	struct common_audit_data ad;
5733 	struct lsm_network_audit net = {0,};
5734 	char *addrp;
5735 	u8 secmark_active;
5736 	u8 peerlbl_active;
5737 
5738 	/* If any sort of compatibility mode is enabled then handoff processing
5739 	 * to the selinux_ip_postroute_compat() function to deal with the
5740 	 * special handling.  We do this in an attempt to keep this function
5741 	 * as fast and as clean as possible. */
5742 	if (!selinux_policycap_netpeer())
5743 		return selinux_ip_postroute_compat(skb, ifindex, family);
5744 
5745 	secmark_active = selinux_secmark_enabled();
5746 	peerlbl_active = selinux_peerlbl_enabled();
5747 	if (!secmark_active && !peerlbl_active)
5748 		return NF_ACCEPT;
5749 
5750 	sk = skb_to_full_sk(skb);
5751 
5752 #ifdef CONFIG_XFRM
5753 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5754 	 * packet transformation so allow the packet to pass without any checks
5755 	 * since we'll have another chance to perform access control checks
5756 	 * when the packet is on it's final way out.
5757 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5758 	 *       is NULL, in this case go ahead and apply access control.
5759 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5760 	 *       TCP listening state we cannot wait until the XFRM processing
5761 	 *       is done as we will miss out on the SA label if we do;
5762 	 *       unfortunately, this means more work, but it is only once per
5763 	 *       connection. */
5764 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5765 	    !(sk && sk_listener(sk)))
5766 		return NF_ACCEPT;
5767 #endif
5768 
5769 	if (sk == NULL) {
5770 		/* Without an associated socket the packet is either coming
5771 		 * from the kernel or it is being forwarded; check the packet
5772 		 * to determine which and if the packet is being forwarded
5773 		 * query the packet directly to determine the security label. */
5774 		if (skb->skb_iif) {
5775 			secmark_perm = PACKET__FORWARD_OUT;
5776 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5777 				return NF_DROP;
5778 		} else {
5779 			secmark_perm = PACKET__SEND;
5780 			peer_sid = SECINITSID_KERNEL;
5781 		}
5782 	} else if (sk_listener(sk)) {
5783 		/* Locally generated packet but the associated socket is in the
5784 		 * listening state which means this is a SYN-ACK packet.  In
5785 		 * this particular case the correct security label is assigned
5786 		 * to the connection/request_sock but unfortunately we can't
5787 		 * query the request_sock as it isn't queued on the parent
5788 		 * socket until after the SYN-ACK packet is sent; the only
5789 		 * viable choice is to regenerate the label like we do in
5790 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5791 		 * for similar problems. */
5792 		u32 skb_sid;
5793 		struct sk_security_struct *sksec;
5794 
5795 		sksec = sk->sk_security;
5796 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5797 			return NF_DROP;
5798 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5799 		 * and the packet has been through at least one XFRM
5800 		 * transformation then we must be dealing with the "final"
5801 		 * form of labeled IPsec packet; since we've already applied
5802 		 * all of our access controls on this packet we can safely
5803 		 * pass the packet. */
5804 		if (skb_sid == SECSID_NULL) {
5805 			switch (family) {
5806 			case PF_INET:
5807 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5808 					return NF_ACCEPT;
5809 				break;
5810 			case PF_INET6:
5811 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5812 					return NF_ACCEPT;
5813 				break;
5814 			default:
5815 				return NF_DROP_ERR(-ECONNREFUSED);
5816 			}
5817 		}
5818 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5819 			return NF_DROP;
5820 		secmark_perm = PACKET__SEND;
5821 	} else {
5822 		/* Locally generated packet, fetch the security label from the
5823 		 * associated socket. */
5824 		struct sk_security_struct *sksec = sk->sk_security;
5825 		peer_sid = sksec->sid;
5826 		secmark_perm = PACKET__SEND;
5827 	}
5828 
5829 	ad.type = LSM_AUDIT_DATA_NET;
5830 	ad.u.net = &net;
5831 	ad.u.net->netif = ifindex;
5832 	ad.u.net->family = family;
5833 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5834 		return NF_DROP;
5835 
5836 	if (secmark_active)
5837 		if (avc_has_perm(&selinux_state,
5838 				 peer_sid, skb->secmark,
5839 				 SECCLASS_PACKET, secmark_perm, &ad))
5840 			return NF_DROP_ERR(-ECONNREFUSED);
5841 
5842 	if (peerlbl_active) {
5843 		u32 if_sid;
5844 		u32 node_sid;
5845 
5846 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5847 			return NF_DROP;
5848 		if (avc_has_perm(&selinux_state,
5849 				 peer_sid, if_sid,
5850 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5851 			return NF_DROP_ERR(-ECONNREFUSED);
5852 
5853 		if (sel_netnode_sid(addrp, family, &node_sid))
5854 			return NF_DROP;
5855 		if (avc_has_perm(&selinux_state,
5856 				 peer_sid, node_sid,
5857 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5858 			return NF_DROP_ERR(-ECONNREFUSED);
5859 	}
5860 
5861 	return NF_ACCEPT;
5862 }
5863 
5864 static unsigned int selinux_ipv4_postroute(void *priv,
5865 					   struct sk_buff *skb,
5866 					   const struct nf_hook_state *state)
5867 {
5868 	return selinux_ip_postroute(skb, state->out, PF_INET);
5869 }
5870 
5871 #if IS_ENABLED(CONFIG_IPV6)
5872 static unsigned int selinux_ipv6_postroute(void *priv,
5873 					   struct sk_buff *skb,
5874 					   const struct nf_hook_state *state)
5875 {
5876 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5877 }
5878 #endif	/* IPV6 */
5879 
5880 #endif	/* CONFIG_NETFILTER */
5881 
5882 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5883 {
5884 	return selinux_nlmsg_perm(sk, skb);
5885 }
5886 
5887 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5888 {
5889 	isec->sclass = sclass;
5890 	isec->sid = current_sid();
5891 }
5892 
5893 static int msg_msg_alloc_security(struct msg_msg *msg)
5894 {
5895 	struct msg_security_struct *msec;
5896 
5897 	msec = selinux_msg_msg(msg);
5898 	msec->sid = SECINITSID_UNLABELED;
5899 
5900 	return 0;
5901 }
5902 
5903 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5904 			u32 perms)
5905 {
5906 	struct ipc_security_struct *isec;
5907 	struct common_audit_data ad;
5908 	u32 sid = current_sid();
5909 
5910 	isec = selinux_ipc(ipc_perms);
5911 
5912 	ad.type = LSM_AUDIT_DATA_IPC;
5913 	ad.u.ipc_id = ipc_perms->key;
5914 
5915 	return avc_has_perm(&selinux_state,
5916 			    sid, isec->sid, isec->sclass, perms, &ad);
5917 }
5918 
5919 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5920 {
5921 	return msg_msg_alloc_security(msg);
5922 }
5923 
5924 /* message queue security operations */
5925 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5926 {
5927 	struct ipc_security_struct *isec;
5928 	struct common_audit_data ad;
5929 	u32 sid = current_sid();
5930 	int rc;
5931 
5932 	isec = selinux_ipc(msq);
5933 	ipc_init_security(isec, SECCLASS_MSGQ);
5934 
5935 	ad.type = LSM_AUDIT_DATA_IPC;
5936 	ad.u.ipc_id = msq->key;
5937 
5938 	rc = avc_has_perm(&selinux_state,
5939 			  sid, isec->sid, SECCLASS_MSGQ,
5940 			  MSGQ__CREATE, &ad);
5941 	return rc;
5942 }
5943 
5944 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5945 {
5946 	struct ipc_security_struct *isec;
5947 	struct common_audit_data ad;
5948 	u32 sid = current_sid();
5949 
5950 	isec = selinux_ipc(msq);
5951 
5952 	ad.type = LSM_AUDIT_DATA_IPC;
5953 	ad.u.ipc_id = msq->key;
5954 
5955 	return avc_has_perm(&selinux_state,
5956 			    sid, isec->sid, SECCLASS_MSGQ,
5957 			    MSGQ__ASSOCIATE, &ad);
5958 }
5959 
5960 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5961 {
5962 	int err;
5963 	int perms;
5964 
5965 	switch (cmd) {
5966 	case IPC_INFO:
5967 	case MSG_INFO:
5968 		/* No specific object, just general system-wide information. */
5969 		return avc_has_perm(&selinux_state,
5970 				    current_sid(), SECINITSID_KERNEL,
5971 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5972 	case IPC_STAT:
5973 	case MSG_STAT:
5974 	case MSG_STAT_ANY:
5975 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5976 		break;
5977 	case IPC_SET:
5978 		perms = MSGQ__SETATTR;
5979 		break;
5980 	case IPC_RMID:
5981 		perms = MSGQ__DESTROY;
5982 		break;
5983 	default:
5984 		return 0;
5985 	}
5986 
5987 	err = ipc_has_perm(msq, perms);
5988 	return err;
5989 }
5990 
5991 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5992 {
5993 	struct ipc_security_struct *isec;
5994 	struct msg_security_struct *msec;
5995 	struct common_audit_data ad;
5996 	u32 sid = current_sid();
5997 	int rc;
5998 
5999 	isec = selinux_ipc(msq);
6000 	msec = selinux_msg_msg(msg);
6001 
6002 	/*
6003 	 * First time through, need to assign label to the message
6004 	 */
6005 	if (msec->sid == SECINITSID_UNLABELED) {
6006 		/*
6007 		 * Compute new sid based on current process and
6008 		 * message queue this message will be stored in
6009 		 */
6010 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6011 					     SECCLASS_MSG, NULL, &msec->sid);
6012 		if (rc)
6013 			return rc;
6014 	}
6015 
6016 	ad.type = LSM_AUDIT_DATA_IPC;
6017 	ad.u.ipc_id = msq->key;
6018 
6019 	/* Can this process write to the queue? */
6020 	rc = avc_has_perm(&selinux_state,
6021 			  sid, isec->sid, SECCLASS_MSGQ,
6022 			  MSGQ__WRITE, &ad);
6023 	if (!rc)
6024 		/* Can this process send the message */
6025 		rc = avc_has_perm(&selinux_state,
6026 				  sid, msec->sid, SECCLASS_MSG,
6027 				  MSG__SEND, &ad);
6028 	if (!rc)
6029 		/* Can the message be put in the queue? */
6030 		rc = avc_has_perm(&selinux_state,
6031 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6032 				  MSGQ__ENQUEUE, &ad);
6033 
6034 	return rc;
6035 }
6036 
6037 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6038 				    struct task_struct *target,
6039 				    long type, int mode)
6040 {
6041 	struct ipc_security_struct *isec;
6042 	struct msg_security_struct *msec;
6043 	struct common_audit_data ad;
6044 	u32 sid = task_sid(target);
6045 	int rc;
6046 
6047 	isec = selinux_ipc(msq);
6048 	msec = selinux_msg_msg(msg);
6049 
6050 	ad.type = LSM_AUDIT_DATA_IPC;
6051 	ad.u.ipc_id = msq->key;
6052 
6053 	rc = avc_has_perm(&selinux_state,
6054 			  sid, isec->sid,
6055 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6056 	if (!rc)
6057 		rc = avc_has_perm(&selinux_state,
6058 				  sid, msec->sid,
6059 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6060 	return rc;
6061 }
6062 
6063 /* Shared Memory security operations */
6064 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6065 {
6066 	struct ipc_security_struct *isec;
6067 	struct common_audit_data ad;
6068 	u32 sid = current_sid();
6069 	int rc;
6070 
6071 	isec = selinux_ipc(shp);
6072 	ipc_init_security(isec, SECCLASS_SHM);
6073 
6074 	ad.type = LSM_AUDIT_DATA_IPC;
6075 	ad.u.ipc_id = shp->key;
6076 
6077 	rc = avc_has_perm(&selinux_state,
6078 			  sid, isec->sid, SECCLASS_SHM,
6079 			  SHM__CREATE, &ad);
6080 	return rc;
6081 }
6082 
6083 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6084 {
6085 	struct ipc_security_struct *isec;
6086 	struct common_audit_data ad;
6087 	u32 sid = current_sid();
6088 
6089 	isec = selinux_ipc(shp);
6090 
6091 	ad.type = LSM_AUDIT_DATA_IPC;
6092 	ad.u.ipc_id = shp->key;
6093 
6094 	return avc_has_perm(&selinux_state,
6095 			    sid, isec->sid, SECCLASS_SHM,
6096 			    SHM__ASSOCIATE, &ad);
6097 }
6098 
6099 /* Note, at this point, shp is locked down */
6100 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6101 {
6102 	int perms;
6103 	int err;
6104 
6105 	switch (cmd) {
6106 	case IPC_INFO:
6107 	case SHM_INFO:
6108 		/* No specific object, just general system-wide information. */
6109 		return avc_has_perm(&selinux_state,
6110 				    current_sid(), SECINITSID_KERNEL,
6111 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6112 	case IPC_STAT:
6113 	case SHM_STAT:
6114 	case SHM_STAT_ANY:
6115 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6116 		break;
6117 	case IPC_SET:
6118 		perms = SHM__SETATTR;
6119 		break;
6120 	case SHM_LOCK:
6121 	case SHM_UNLOCK:
6122 		perms = SHM__LOCK;
6123 		break;
6124 	case IPC_RMID:
6125 		perms = SHM__DESTROY;
6126 		break;
6127 	default:
6128 		return 0;
6129 	}
6130 
6131 	err = ipc_has_perm(shp, perms);
6132 	return err;
6133 }
6134 
6135 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6136 			     char __user *shmaddr, int shmflg)
6137 {
6138 	u32 perms;
6139 
6140 	if (shmflg & SHM_RDONLY)
6141 		perms = SHM__READ;
6142 	else
6143 		perms = SHM__READ | SHM__WRITE;
6144 
6145 	return ipc_has_perm(shp, perms);
6146 }
6147 
6148 /* Semaphore security operations */
6149 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6150 {
6151 	struct ipc_security_struct *isec;
6152 	struct common_audit_data ad;
6153 	u32 sid = current_sid();
6154 	int rc;
6155 
6156 	isec = selinux_ipc(sma);
6157 	ipc_init_security(isec, SECCLASS_SEM);
6158 
6159 	ad.type = LSM_AUDIT_DATA_IPC;
6160 	ad.u.ipc_id = sma->key;
6161 
6162 	rc = avc_has_perm(&selinux_state,
6163 			  sid, isec->sid, SECCLASS_SEM,
6164 			  SEM__CREATE, &ad);
6165 	return rc;
6166 }
6167 
6168 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6169 {
6170 	struct ipc_security_struct *isec;
6171 	struct common_audit_data ad;
6172 	u32 sid = current_sid();
6173 
6174 	isec = selinux_ipc(sma);
6175 
6176 	ad.type = LSM_AUDIT_DATA_IPC;
6177 	ad.u.ipc_id = sma->key;
6178 
6179 	return avc_has_perm(&selinux_state,
6180 			    sid, isec->sid, SECCLASS_SEM,
6181 			    SEM__ASSOCIATE, &ad);
6182 }
6183 
6184 /* Note, at this point, sma is locked down */
6185 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6186 {
6187 	int err;
6188 	u32 perms;
6189 
6190 	switch (cmd) {
6191 	case IPC_INFO:
6192 	case SEM_INFO:
6193 		/* No specific object, just general system-wide information. */
6194 		return avc_has_perm(&selinux_state,
6195 				    current_sid(), SECINITSID_KERNEL,
6196 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6197 	case GETPID:
6198 	case GETNCNT:
6199 	case GETZCNT:
6200 		perms = SEM__GETATTR;
6201 		break;
6202 	case GETVAL:
6203 	case GETALL:
6204 		perms = SEM__READ;
6205 		break;
6206 	case SETVAL:
6207 	case SETALL:
6208 		perms = SEM__WRITE;
6209 		break;
6210 	case IPC_RMID:
6211 		perms = SEM__DESTROY;
6212 		break;
6213 	case IPC_SET:
6214 		perms = SEM__SETATTR;
6215 		break;
6216 	case IPC_STAT:
6217 	case SEM_STAT:
6218 	case SEM_STAT_ANY:
6219 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6220 		break;
6221 	default:
6222 		return 0;
6223 	}
6224 
6225 	err = ipc_has_perm(sma, perms);
6226 	return err;
6227 }
6228 
6229 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6230 			     struct sembuf *sops, unsigned nsops, int alter)
6231 {
6232 	u32 perms;
6233 
6234 	if (alter)
6235 		perms = SEM__READ | SEM__WRITE;
6236 	else
6237 		perms = SEM__READ;
6238 
6239 	return ipc_has_perm(sma, perms);
6240 }
6241 
6242 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6243 {
6244 	u32 av = 0;
6245 
6246 	av = 0;
6247 	if (flag & S_IRUGO)
6248 		av |= IPC__UNIX_READ;
6249 	if (flag & S_IWUGO)
6250 		av |= IPC__UNIX_WRITE;
6251 
6252 	if (av == 0)
6253 		return 0;
6254 
6255 	return ipc_has_perm(ipcp, av);
6256 }
6257 
6258 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6259 {
6260 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6261 	*secid = isec->sid;
6262 }
6263 
6264 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6265 {
6266 	if (inode)
6267 		inode_doinit_with_dentry(inode, dentry);
6268 }
6269 
6270 static int selinux_getprocattr(struct task_struct *p,
6271 			       char *name, char **value)
6272 {
6273 	const struct task_security_struct *__tsec;
6274 	u32 sid;
6275 	int error;
6276 	unsigned len;
6277 
6278 	rcu_read_lock();
6279 	__tsec = selinux_cred(__task_cred(p));
6280 
6281 	if (current != p) {
6282 		error = avc_has_perm(&selinux_state,
6283 				     current_sid(), __tsec->sid,
6284 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6285 		if (error)
6286 			goto bad;
6287 	}
6288 
6289 	if (!strcmp(name, "current"))
6290 		sid = __tsec->sid;
6291 	else if (!strcmp(name, "prev"))
6292 		sid = __tsec->osid;
6293 	else if (!strcmp(name, "exec"))
6294 		sid = __tsec->exec_sid;
6295 	else if (!strcmp(name, "fscreate"))
6296 		sid = __tsec->create_sid;
6297 	else if (!strcmp(name, "keycreate"))
6298 		sid = __tsec->keycreate_sid;
6299 	else if (!strcmp(name, "sockcreate"))
6300 		sid = __tsec->sockcreate_sid;
6301 	else {
6302 		error = -EINVAL;
6303 		goto bad;
6304 	}
6305 	rcu_read_unlock();
6306 
6307 	if (!sid)
6308 		return 0;
6309 
6310 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6311 	if (error)
6312 		return error;
6313 	return len;
6314 
6315 bad:
6316 	rcu_read_unlock();
6317 	return error;
6318 }
6319 
6320 static int selinux_setprocattr(const char *name, void *value, size_t size)
6321 {
6322 	struct task_security_struct *tsec;
6323 	struct cred *new;
6324 	u32 mysid = current_sid(), sid = 0, ptsid;
6325 	int error;
6326 	char *str = value;
6327 
6328 	/*
6329 	 * Basic control over ability to set these attributes at all.
6330 	 */
6331 	if (!strcmp(name, "exec"))
6332 		error = avc_has_perm(&selinux_state,
6333 				     mysid, mysid, SECCLASS_PROCESS,
6334 				     PROCESS__SETEXEC, NULL);
6335 	else if (!strcmp(name, "fscreate"))
6336 		error = avc_has_perm(&selinux_state,
6337 				     mysid, mysid, SECCLASS_PROCESS,
6338 				     PROCESS__SETFSCREATE, NULL);
6339 	else if (!strcmp(name, "keycreate"))
6340 		error = avc_has_perm(&selinux_state,
6341 				     mysid, mysid, SECCLASS_PROCESS,
6342 				     PROCESS__SETKEYCREATE, NULL);
6343 	else if (!strcmp(name, "sockcreate"))
6344 		error = avc_has_perm(&selinux_state,
6345 				     mysid, mysid, SECCLASS_PROCESS,
6346 				     PROCESS__SETSOCKCREATE, NULL);
6347 	else if (!strcmp(name, "current"))
6348 		error = avc_has_perm(&selinux_state,
6349 				     mysid, mysid, SECCLASS_PROCESS,
6350 				     PROCESS__SETCURRENT, NULL);
6351 	else
6352 		error = -EINVAL;
6353 	if (error)
6354 		return error;
6355 
6356 	/* Obtain a SID for the context, if one was specified. */
6357 	if (size && str[0] && str[0] != '\n') {
6358 		if (str[size-1] == '\n') {
6359 			str[size-1] = 0;
6360 			size--;
6361 		}
6362 		error = security_context_to_sid(&selinux_state, value, size,
6363 						&sid, GFP_KERNEL);
6364 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6365 			if (!has_cap_mac_admin(true)) {
6366 				struct audit_buffer *ab;
6367 				size_t audit_size;
6368 
6369 				/* We strip a nul only if it is at the end, otherwise the
6370 				 * context contains a nul and we should audit that */
6371 				if (str[size - 1] == '\0')
6372 					audit_size = size - 1;
6373 				else
6374 					audit_size = size;
6375 				ab = audit_log_start(audit_context(),
6376 						     GFP_ATOMIC,
6377 						     AUDIT_SELINUX_ERR);
6378 				audit_log_format(ab, "op=fscreate invalid_context=");
6379 				audit_log_n_untrustedstring(ab, value, audit_size);
6380 				audit_log_end(ab);
6381 
6382 				return error;
6383 			}
6384 			error = security_context_to_sid_force(
6385 						      &selinux_state,
6386 						      value, size, &sid);
6387 		}
6388 		if (error)
6389 			return error;
6390 	}
6391 
6392 	new = prepare_creds();
6393 	if (!new)
6394 		return -ENOMEM;
6395 
6396 	/* Permission checking based on the specified context is
6397 	   performed during the actual operation (execve,
6398 	   open/mkdir/...), when we know the full context of the
6399 	   operation.  See selinux_bprm_set_creds for the execve
6400 	   checks and may_create for the file creation checks. The
6401 	   operation will then fail if the context is not permitted. */
6402 	tsec = selinux_cred(new);
6403 	if (!strcmp(name, "exec")) {
6404 		tsec->exec_sid = sid;
6405 	} else if (!strcmp(name, "fscreate")) {
6406 		tsec->create_sid = sid;
6407 	} else if (!strcmp(name, "keycreate")) {
6408 		if (sid) {
6409 			error = avc_has_perm(&selinux_state, mysid, sid,
6410 					     SECCLASS_KEY, KEY__CREATE, NULL);
6411 			if (error)
6412 				goto abort_change;
6413 		}
6414 		tsec->keycreate_sid = sid;
6415 	} else if (!strcmp(name, "sockcreate")) {
6416 		tsec->sockcreate_sid = sid;
6417 	} else if (!strcmp(name, "current")) {
6418 		error = -EINVAL;
6419 		if (sid == 0)
6420 			goto abort_change;
6421 
6422 		/* Only allow single threaded processes to change context */
6423 		error = -EPERM;
6424 		if (!current_is_single_threaded()) {
6425 			error = security_bounded_transition(&selinux_state,
6426 							    tsec->sid, sid);
6427 			if (error)
6428 				goto abort_change;
6429 		}
6430 
6431 		/* Check permissions for the transition. */
6432 		error = avc_has_perm(&selinux_state,
6433 				     tsec->sid, sid, SECCLASS_PROCESS,
6434 				     PROCESS__DYNTRANSITION, NULL);
6435 		if (error)
6436 			goto abort_change;
6437 
6438 		/* Check for ptracing, and update the task SID if ok.
6439 		   Otherwise, leave SID unchanged and fail. */
6440 		ptsid = ptrace_parent_sid();
6441 		if (ptsid != 0) {
6442 			error = avc_has_perm(&selinux_state,
6443 					     ptsid, sid, SECCLASS_PROCESS,
6444 					     PROCESS__PTRACE, NULL);
6445 			if (error)
6446 				goto abort_change;
6447 		}
6448 
6449 		tsec->sid = sid;
6450 	} else {
6451 		error = -EINVAL;
6452 		goto abort_change;
6453 	}
6454 
6455 	commit_creds(new);
6456 	return size;
6457 
6458 abort_change:
6459 	abort_creds(new);
6460 	return error;
6461 }
6462 
6463 static int selinux_ismaclabel(const char *name)
6464 {
6465 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6466 }
6467 
6468 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6469 {
6470 	return security_sid_to_context(&selinux_state, secid,
6471 				       secdata, seclen);
6472 }
6473 
6474 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6475 {
6476 	return security_context_to_sid(&selinux_state, secdata, seclen,
6477 				       secid, GFP_KERNEL);
6478 }
6479 
6480 static void selinux_release_secctx(char *secdata, u32 seclen)
6481 {
6482 	kfree(secdata);
6483 }
6484 
6485 static void selinux_inode_invalidate_secctx(struct inode *inode)
6486 {
6487 	struct inode_security_struct *isec = selinux_inode(inode);
6488 
6489 	spin_lock(&isec->lock);
6490 	isec->initialized = LABEL_INVALID;
6491 	spin_unlock(&isec->lock);
6492 }
6493 
6494 /*
6495  *	called with inode->i_mutex locked
6496  */
6497 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6498 {
6499 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6500 					   ctx, ctxlen, 0);
6501 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6502 	return rc == -EOPNOTSUPP ? 0 : rc;
6503 }
6504 
6505 /*
6506  *	called with inode->i_mutex locked
6507  */
6508 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6509 {
6510 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6511 }
6512 
6513 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6514 {
6515 	int len = 0;
6516 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6517 						ctx, true);
6518 	if (len < 0)
6519 		return len;
6520 	*ctxlen = len;
6521 	return 0;
6522 }
6523 #ifdef CONFIG_KEYS
6524 
6525 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6526 			     unsigned long flags)
6527 {
6528 	const struct task_security_struct *tsec;
6529 	struct key_security_struct *ksec;
6530 
6531 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6532 	if (!ksec)
6533 		return -ENOMEM;
6534 
6535 	tsec = selinux_cred(cred);
6536 	if (tsec->keycreate_sid)
6537 		ksec->sid = tsec->keycreate_sid;
6538 	else
6539 		ksec->sid = tsec->sid;
6540 
6541 	k->security = ksec;
6542 	return 0;
6543 }
6544 
6545 static void selinux_key_free(struct key *k)
6546 {
6547 	struct key_security_struct *ksec = k->security;
6548 
6549 	k->security = NULL;
6550 	kfree(ksec);
6551 }
6552 
6553 static int selinux_key_permission(key_ref_t key_ref,
6554 				  const struct cred *cred,
6555 				  unsigned perm)
6556 {
6557 	struct key *key;
6558 	struct key_security_struct *ksec;
6559 	u32 sid;
6560 
6561 	/* if no specific permissions are requested, we skip the
6562 	   permission check. No serious, additional covert channels
6563 	   appear to be created. */
6564 	if (perm == 0)
6565 		return 0;
6566 
6567 	sid = cred_sid(cred);
6568 
6569 	key = key_ref_to_ptr(key_ref);
6570 	ksec = key->security;
6571 
6572 	return avc_has_perm(&selinux_state,
6573 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6574 }
6575 
6576 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6577 {
6578 	struct key_security_struct *ksec = key->security;
6579 	char *context = NULL;
6580 	unsigned len;
6581 	int rc;
6582 
6583 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6584 				     &context, &len);
6585 	if (!rc)
6586 		rc = len;
6587 	*_buffer = context;
6588 	return rc;
6589 }
6590 #endif
6591 
6592 #ifdef CONFIG_SECURITY_INFINIBAND
6593 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6594 {
6595 	struct common_audit_data ad;
6596 	int err;
6597 	u32 sid = 0;
6598 	struct ib_security_struct *sec = ib_sec;
6599 	struct lsm_ibpkey_audit ibpkey;
6600 
6601 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6602 	if (err)
6603 		return err;
6604 
6605 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6606 	ibpkey.subnet_prefix = subnet_prefix;
6607 	ibpkey.pkey = pkey_val;
6608 	ad.u.ibpkey = &ibpkey;
6609 	return avc_has_perm(&selinux_state,
6610 			    sec->sid, sid,
6611 			    SECCLASS_INFINIBAND_PKEY,
6612 			    INFINIBAND_PKEY__ACCESS, &ad);
6613 }
6614 
6615 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6616 					    u8 port_num)
6617 {
6618 	struct common_audit_data ad;
6619 	int err;
6620 	u32 sid = 0;
6621 	struct ib_security_struct *sec = ib_sec;
6622 	struct lsm_ibendport_audit ibendport;
6623 
6624 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6625 				      &sid);
6626 
6627 	if (err)
6628 		return err;
6629 
6630 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6631 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6632 	ibendport.port = port_num;
6633 	ad.u.ibendport = &ibendport;
6634 	return avc_has_perm(&selinux_state,
6635 			    sec->sid, sid,
6636 			    SECCLASS_INFINIBAND_ENDPORT,
6637 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6638 }
6639 
6640 static int selinux_ib_alloc_security(void **ib_sec)
6641 {
6642 	struct ib_security_struct *sec;
6643 
6644 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6645 	if (!sec)
6646 		return -ENOMEM;
6647 	sec->sid = current_sid();
6648 
6649 	*ib_sec = sec;
6650 	return 0;
6651 }
6652 
6653 static void selinux_ib_free_security(void *ib_sec)
6654 {
6655 	kfree(ib_sec);
6656 }
6657 #endif
6658 
6659 #ifdef CONFIG_BPF_SYSCALL
6660 static int selinux_bpf(int cmd, union bpf_attr *attr,
6661 				     unsigned int size)
6662 {
6663 	u32 sid = current_sid();
6664 	int ret;
6665 
6666 	switch (cmd) {
6667 	case BPF_MAP_CREATE:
6668 		ret = avc_has_perm(&selinux_state,
6669 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6670 				   NULL);
6671 		break;
6672 	case BPF_PROG_LOAD:
6673 		ret = avc_has_perm(&selinux_state,
6674 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6675 				   NULL);
6676 		break;
6677 	default:
6678 		ret = 0;
6679 		break;
6680 	}
6681 
6682 	return ret;
6683 }
6684 
6685 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6686 {
6687 	u32 av = 0;
6688 
6689 	if (fmode & FMODE_READ)
6690 		av |= BPF__MAP_READ;
6691 	if (fmode & FMODE_WRITE)
6692 		av |= BPF__MAP_WRITE;
6693 	return av;
6694 }
6695 
6696 /* This function will check the file pass through unix socket or binder to see
6697  * if it is a bpf related object. And apply correspinding checks on the bpf
6698  * object based on the type. The bpf maps and programs, not like other files and
6699  * socket, are using a shared anonymous inode inside the kernel as their inode.
6700  * So checking that inode cannot identify if the process have privilege to
6701  * access the bpf object and that's why we have to add this additional check in
6702  * selinux_file_receive and selinux_binder_transfer_files.
6703  */
6704 static int bpf_fd_pass(struct file *file, u32 sid)
6705 {
6706 	struct bpf_security_struct *bpfsec;
6707 	struct bpf_prog *prog;
6708 	struct bpf_map *map;
6709 	int ret;
6710 
6711 	if (file->f_op == &bpf_map_fops) {
6712 		map = file->private_data;
6713 		bpfsec = map->security;
6714 		ret = avc_has_perm(&selinux_state,
6715 				   sid, bpfsec->sid, SECCLASS_BPF,
6716 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6717 		if (ret)
6718 			return ret;
6719 	} else if (file->f_op == &bpf_prog_fops) {
6720 		prog = file->private_data;
6721 		bpfsec = prog->aux->security;
6722 		ret = avc_has_perm(&selinux_state,
6723 				   sid, bpfsec->sid, SECCLASS_BPF,
6724 				   BPF__PROG_RUN, NULL);
6725 		if (ret)
6726 			return ret;
6727 	}
6728 	return 0;
6729 }
6730 
6731 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6732 {
6733 	u32 sid = current_sid();
6734 	struct bpf_security_struct *bpfsec;
6735 
6736 	bpfsec = map->security;
6737 	return avc_has_perm(&selinux_state,
6738 			    sid, bpfsec->sid, SECCLASS_BPF,
6739 			    bpf_map_fmode_to_av(fmode), NULL);
6740 }
6741 
6742 static int selinux_bpf_prog(struct bpf_prog *prog)
6743 {
6744 	u32 sid = current_sid();
6745 	struct bpf_security_struct *bpfsec;
6746 
6747 	bpfsec = prog->aux->security;
6748 	return avc_has_perm(&selinux_state,
6749 			    sid, bpfsec->sid, SECCLASS_BPF,
6750 			    BPF__PROG_RUN, NULL);
6751 }
6752 
6753 static int selinux_bpf_map_alloc(struct bpf_map *map)
6754 {
6755 	struct bpf_security_struct *bpfsec;
6756 
6757 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6758 	if (!bpfsec)
6759 		return -ENOMEM;
6760 
6761 	bpfsec->sid = current_sid();
6762 	map->security = bpfsec;
6763 
6764 	return 0;
6765 }
6766 
6767 static void selinux_bpf_map_free(struct bpf_map *map)
6768 {
6769 	struct bpf_security_struct *bpfsec = map->security;
6770 
6771 	map->security = NULL;
6772 	kfree(bpfsec);
6773 }
6774 
6775 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6776 {
6777 	struct bpf_security_struct *bpfsec;
6778 
6779 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6780 	if (!bpfsec)
6781 		return -ENOMEM;
6782 
6783 	bpfsec->sid = current_sid();
6784 	aux->security = bpfsec;
6785 
6786 	return 0;
6787 }
6788 
6789 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6790 {
6791 	struct bpf_security_struct *bpfsec = aux->security;
6792 
6793 	aux->security = NULL;
6794 	kfree(bpfsec);
6795 }
6796 #endif
6797 
6798 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6799 	.lbs_cred = sizeof(struct task_security_struct),
6800 	.lbs_file = sizeof(struct file_security_struct),
6801 	.lbs_inode = sizeof(struct inode_security_struct),
6802 	.lbs_ipc = sizeof(struct ipc_security_struct),
6803 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6804 };
6805 
6806 #ifdef CONFIG_PERF_EVENTS
6807 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6808 {
6809 	u32 requested, sid = current_sid();
6810 
6811 	if (type == PERF_SECURITY_OPEN)
6812 		requested = PERF_EVENT__OPEN;
6813 	else if (type == PERF_SECURITY_CPU)
6814 		requested = PERF_EVENT__CPU;
6815 	else if (type == PERF_SECURITY_KERNEL)
6816 		requested = PERF_EVENT__KERNEL;
6817 	else if (type == PERF_SECURITY_TRACEPOINT)
6818 		requested = PERF_EVENT__TRACEPOINT;
6819 	else
6820 		return -EINVAL;
6821 
6822 	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6823 			    requested, NULL);
6824 }
6825 
6826 static int selinux_perf_event_alloc(struct perf_event *event)
6827 {
6828 	struct perf_event_security_struct *perfsec;
6829 
6830 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6831 	if (!perfsec)
6832 		return -ENOMEM;
6833 
6834 	perfsec->sid = current_sid();
6835 	event->security = perfsec;
6836 
6837 	return 0;
6838 }
6839 
6840 static void selinux_perf_event_free(struct perf_event *event)
6841 {
6842 	struct perf_event_security_struct *perfsec = event->security;
6843 
6844 	event->security = NULL;
6845 	kfree(perfsec);
6846 }
6847 
6848 static int selinux_perf_event_read(struct perf_event *event)
6849 {
6850 	struct perf_event_security_struct *perfsec = event->security;
6851 	u32 sid = current_sid();
6852 
6853 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6854 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6855 }
6856 
6857 static int selinux_perf_event_write(struct perf_event *event)
6858 {
6859 	struct perf_event_security_struct *perfsec = event->security;
6860 	u32 sid = current_sid();
6861 
6862 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6863 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6864 }
6865 #endif
6866 
6867 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6868 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6869 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6870 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6871 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6872 
6873 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6874 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6875 	LSM_HOOK_INIT(capget, selinux_capget),
6876 	LSM_HOOK_INIT(capset, selinux_capset),
6877 	LSM_HOOK_INIT(capable, selinux_capable),
6878 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6879 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6880 	LSM_HOOK_INIT(syslog, selinux_syslog),
6881 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6882 
6883 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6884 
6885 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6886 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6887 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6888 
6889 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6890 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6891 
6892 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6893 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6894 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6895 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6896 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6897 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6898 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6899 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6900 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6901 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6902 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6903 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6904 	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6905 
6906 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6907 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6908 
6909 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6910 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6911 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6912 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6913 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6914 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6915 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6916 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6917 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6918 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6919 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6920 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6921 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6922 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6923 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6924 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6925 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6926 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6927 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6928 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6929 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6930 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6931 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6932 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6933 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6934 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6935 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6936 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6937 
6938 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6939 
6940 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6941 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6942 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6943 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6944 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6945 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6946 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6947 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6948 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6949 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6950 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6951 
6952 	LSM_HOOK_INIT(file_open, selinux_file_open),
6953 
6954 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6955 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6956 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6957 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6958 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6959 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6960 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6961 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6962 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6963 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6964 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6965 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6966 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6967 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6968 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6969 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6970 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6971 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6972 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6973 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6974 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6975 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6976 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6977 
6978 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6979 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6980 
6981 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6982 
6983 	LSM_HOOK_INIT(msg_queue_alloc_security,
6984 			selinux_msg_queue_alloc_security),
6985 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6986 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6987 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6988 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6989 
6990 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6991 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994 
6995 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6997 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6998 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6999 
7000 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7001 
7002 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7003 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7004 
7005 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7006 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7007 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7008 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7009 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7010 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7011 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7012 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7013 
7014 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7015 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7016 
7017 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7018 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7019 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7020 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032 	LSM_HOOK_INIT(socket_getpeersec_stream,
7033 			selinux_socket_getpeersec_stream),
7034 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056 #ifdef CONFIG_SECURITY_INFINIBAND
7057 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7059 		      selinux_ib_endport_manage_subnet),
7060 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062 #endif
7063 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7064 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070 			selinux_xfrm_state_alloc_acquire),
7071 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075 			selinux_xfrm_state_pol_flow_match),
7076 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077 #endif
7078 
7079 #ifdef CONFIG_KEYS
7080 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081 	LSM_HOOK_INIT(key_free, selinux_key_free),
7082 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084 #endif
7085 
7086 #ifdef CONFIG_AUDIT
7087 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091 #endif
7092 
7093 #ifdef CONFIG_BPF_SYSCALL
7094 	LSM_HOOK_INIT(bpf, selinux_bpf),
7095 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101 #endif
7102 
7103 #ifdef CONFIG_PERF_EVENTS
7104 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7105 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7106 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7107 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7108 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7109 #endif
7110 };
7111 
7112 static __init int selinux_init(void)
7113 {
7114 	pr_info("SELinux:  Initializing.\n");
7115 
7116 	memset(&selinux_state, 0, sizeof(selinux_state));
7117 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7118 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7119 	selinux_ss_init(&selinux_state.ss);
7120 	selinux_avc_init(&selinux_state.avc);
7121 
7122 	/* Set the security state for the initial task. */
7123 	cred_init_security();
7124 
7125 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7126 
7127 	avc_init();
7128 
7129 	avtab_cache_init();
7130 
7131 	ebitmap_cache_init();
7132 
7133 	hashtab_cache_init();
7134 
7135 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7136 
7137 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7138 		panic("SELinux: Unable to register AVC netcache callback\n");
7139 
7140 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7141 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7142 
7143 	if (selinux_enforcing_boot)
7144 		pr_debug("SELinux:  Starting in enforcing mode\n");
7145 	else
7146 		pr_debug("SELinux:  Starting in permissive mode\n");
7147 
7148 	fs_validate_description(&selinux_fs_parameters);
7149 
7150 	return 0;
7151 }
7152 
7153 static void delayed_superblock_init(struct super_block *sb, void *unused)
7154 {
7155 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7156 }
7157 
7158 void selinux_complete_init(void)
7159 {
7160 	pr_debug("SELinux:  Completing initialization.\n");
7161 
7162 	/* Set up any superblocks initialized prior to the policy load. */
7163 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7164 	iterate_supers(delayed_superblock_init, NULL);
7165 }
7166 
7167 /* SELinux requires early initialization in order to label
7168    all processes and objects when they are created. */
7169 DEFINE_LSM(selinux) = {
7170 	.name = "selinux",
7171 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7172 	.enabled = &selinux_enabled,
7173 	.blobs = &selinux_blob_sizes,
7174 	.init = selinux_init,
7175 };
7176 
7177 #if defined(CONFIG_NETFILTER)
7178 
7179 static const struct nf_hook_ops selinux_nf_ops[] = {
7180 	{
7181 		.hook =		selinux_ipv4_postroute,
7182 		.pf =		NFPROTO_IPV4,
7183 		.hooknum =	NF_INET_POST_ROUTING,
7184 		.priority =	NF_IP_PRI_SELINUX_LAST,
7185 	},
7186 	{
7187 		.hook =		selinux_ipv4_forward,
7188 		.pf =		NFPROTO_IPV4,
7189 		.hooknum =	NF_INET_FORWARD,
7190 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7191 	},
7192 	{
7193 		.hook =		selinux_ipv4_output,
7194 		.pf =		NFPROTO_IPV4,
7195 		.hooknum =	NF_INET_LOCAL_OUT,
7196 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7197 	},
7198 #if IS_ENABLED(CONFIG_IPV6)
7199 	{
7200 		.hook =		selinux_ipv6_postroute,
7201 		.pf =		NFPROTO_IPV6,
7202 		.hooknum =	NF_INET_POST_ROUTING,
7203 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7204 	},
7205 	{
7206 		.hook =		selinux_ipv6_forward,
7207 		.pf =		NFPROTO_IPV6,
7208 		.hooknum =	NF_INET_FORWARD,
7209 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7210 	},
7211 	{
7212 		.hook =		selinux_ipv6_output,
7213 		.pf =		NFPROTO_IPV6,
7214 		.hooknum =	NF_INET_LOCAL_OUT,
7215 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7216 	},
7217 #endif	/* IPV6 */
7218 };
7219 
7220 static int __net_init selinux_nf_register(struct net *net)
7221 {
7222 	return nf_register_net_hooks(net, selinux_nf_ops,
7223 				     ARRAY_SIZE(selinux_nf_ops));
7224 }
7225 
7226 static void __net_exit selinux_nf_unregister(struct net *net)
7227 {
7228 	nf_unregister_net_hooks(net, selinux_nf_ops,
7229 				ARRAY_SIZE(selinux_nf_ops));
7230 }
7231 
7232 static struct pernet_operations selinux_net_ops = {
7233 	.init = selinux_nf_register,
7234 	.exit = selinux_nf_unregister,
7235 };
7236 
7237 static int __init selinux_nf_ip_init(void)
7238 {
7239 	int err;
7240 
7241 	if (!selinux_enabled)
7242 		return 0;
7243 
7244 	pr_debug("SELinux:  Registering netfilter hooks\n");
7245 
7246 	err = register_pernet_subsys(&selinux_net_ops);
7247 	if (err)
7248 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7249 
7250 	return 0;
7251 }
7252 __initcall(selinux_nf_ip_init);
7253 
7254 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255 static void selinux_nf_ip_exit(void)
7256 {
7257 	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7258 
7259 	unregister_pernet_subsys(&selinux_net_ops);
7260 }
7261 #endif
7262 
7263 #else /* CONFIG_NETFILTER */
7264 
7265 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266 #define selinux_nf_ip_exit()
7267 #endif
7268 
7269 #endif /* CONFIG_NETFILTER */
7270 
7271 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272 int selinux_disable(struct selinux_state *state)
7273 {
7274 	if (state->initialized) {
7275 		/* Not permitted after initial policy load. */
7276 		return -EINVAL;
7277 	}
7278 
7279 	if (state->disabled) {
7280 		/* Only do this once. */
7281 		return -EINVAL;
7282 	}
7283 
7284 	state->disabled = 1;
7285 
7286 	pr_info("SELinux:  Disabled at runtime.\n");
7287 
7288 	selinux_enabled = 0;
7289 
7290 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291 
7292 	/* Try to destroy the avc node cache */
7293 	avc_disable();
7294 
7295 	/* Unregister netfilter hooks. */
7296 	selinux_nf_ip_exit();
7297 
7298 	/* Unregister selinuxfs. */
7299 	exit_sel_fs();
7300 
7301 	return 0;
7302 }
7303 #endif
7304