1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/tracehook.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 95 #include "avc.h" 96 #include "objsec.h" 97 #include "netif.h" 98 #include "netnode.h" 99 #include "netport.h" 100 #include "ibpkey.h" 101 #include "xfrm.h" 102 #include "netlabel.h" 103 #include "audit.h" 104 #include "avc_ss.h" 105 106 struct selinux_state selinux_state; 107 108 /* SECMARK reference count */ 109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 110 111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 112 static int selinux_enforcing_boot __initdata; 113 114 static int __init enforcing_setup(char *str) 115 { 116 unsigned long enforcing; 117 if (!kstrtoul(str, 0, &enforcing)) 118 selinux_enforcing_boot = enforcing ? 1 : 0; 119 return 1; 120 } 121 __setup("enforcing=", enforcing_setup); 122 #else 123 #define selinux_enforcing_boot 1 124 #endif 125 126 int selinux_enabled_boot __initdata = 1; 127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 128 static int __init selinux_enabled_setup(char *str) 129 { 130 unsigned long enabled; 131 if (!kstrtoul(str, 0, &enabled)) 132 selinux_enabled_boot = enabled ? 1 : 0; 133 return 1; 134 } 135 __setup("selinux=", selinux_enabled_setup); 136 #endif 137 138 static unsigned int selinux_checkreqprot_boot = 139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) { 146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 147 if (checkreqprot) 148 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n"); 149 } 150 return 1; 151 } 152 __setup("checkreqprot=", checkreqprot_setup); 153 154 /** 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 156 * 157 * Description: 158 * This function checks the SECMARK reference counter to see if any SECMARK 159 * targets are currently configured, if the reference counter is greater than 160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 161 * enabled, false (0) if SECMARK is disabled. If the always_check_network 162 * policy capability is enabled, SECMARK is always considered enabled. 163 * 164 */ 165 static int selinux_secmark_enabled(void) 166 { 167 return (selinux_policycap_alwaysnetwork() || 168 atomic_read(&selinux_secmark_refcount)); 169 } 170 171 /** 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 173 * 174 * Description: 175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 176 * (1) if any are enabled or false (0) if neither are enabled. If the 177 * always_check_network policy capability is enabled, peer labeling 178 * is always considered enabled. 179 * 180 */ 181 static int selinux_peerlbl_enabled(void) 182 { 183 return (selinux_policycap_alwaysnetwork() || 184 netlbl_enabled() || selinux_xfrm_enabled()); 185 } 186 187 static int selinux_netcache_avc_callback(u32 event) 188 { 189 if (event == AVC_CALLBACK_RESET) { 190 sel_netif_flush(); 191 sel_netnode_flush(); 192 sel_netport_flush(); 193 synchronize_net(); 194 } 195 return 0; 196 } 197 198 static int selinux_lsm_notifier_avc_callback(u32 event) 199 { 200 if (event == AVC_CALLBACK_RESET) { 201 sel_ib_pkey_flush(); 202 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 203 } 204 205 return 0; 206 } 207 208 /* 209 * initialise the security for the init task 210 */ 211 static void cred_init_security(void) 212 { 213 struct cred *cred = (struct cred *) current->real_cred; 214 struct task_security_struct *tsec; 215 216 tsec = selinux_cred(cred); 217 tsec->osid = tsec->sid = SECINITSID_KERNEL; 218 } 219 220 /* 221 * get the security ID of a set of credentials 222 */ 223 static inline u32 cred_sid(const struct cred *cred) 224 { 225 const struct task_security_struct *tsec; 226 227 tsec = selinux_cred(cred); 228 return tsec->sid; 229 } 230 231 /* 232 * get the objective security ID of a task 233 */ 234 static inline u32 task_sid(const struct task_struct *task) 235 { 236 u32 sid; 237 238 rcu_read_lock(); 239 sid = cred_sid(__task_cred(task)); 240 rcu_read_unlock(); 241 return sid; 242 } 243 244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 245 246 /* 247 * Try reloading inode security labels that have been marked as invalid. The 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is 249 * allowed; when set to false, returns -ECHILD when the label is 250 * invalid. The @dentry parameter should be set to a dentry of the inode. 251 */ 252 static int __inode_security_revalidate(struct inode *inode, 253 struct dentry *dentry, 254 bool may_sleep) 255 { 256 struct inode_security_struct *isec = selinux_inode(inode); 257 258 might_sleep_if(may_sleep); 259 260 if (selinux_initialized(&selinux_state) && 261 isec->initialized != LABEL_INITIALIZED) { 262 if (!may_sleep) 263 return -ECHILD; 264 265 /* 266 * Try reloading the inode security label. This will fail if 267 * @opt_dentry is NULL and no dentry for this inode can be 268 * found; in that case, continue using the old label. 269 */ 270 inode_doinit_with_dentry(inode, dentry); 271 } 272 return 0; 273 } 274 275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 276 { 277 return selinux_inode(inode); 278 } 279 280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 281 { 282 int error; 283 284 error = __inode_security_revalidate(inode, NULL, !rcu); 285 if (error) 286 return ERR_PTR(error); 287 return selinux_inode(inode); 288 } 289 290 /* 291 * Get the security label of an inode. 292 */ 293 static struct inode_security_struct *inode_security(struct inode *inode) 294 { 295 __inode_security_revalidate(inode, NULL, true); 296 return selinux_inode(inode); 297 } 298 299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 300 { 301 struct inode *inode = d_backing_inode(dentry); 302 303 return selinux_inode(inode); 304 } 305 306 /* 307 * Get the security label of a dentry's backing inode. 308 */ 309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 310 { 311 struct inode *inode = d_backing_inode(dentry); 312 313 __inode_security_revalidate(inode, dentry, true); 314 return selinux_inode(inode); 315 } 316 317 static void inode_free_security(struct inode *inode) 318 { 319 struct inode_security_struct *isec = selinux_inode(inode); 320 struct superblock_security_struct *sbsec; 321 322 if (!isec) 323 return; 324 sbsec = inode->i_sb->s_security; 325 /* 326 * As not all inode security structures are in a list, we check for 327 * empty list outside of the lock to make sure that we won't waste 328 * time taking a lock doing nothing. 329 * 330 * The list_del_init() function can be safely called more than once. 331 * It should not be possible for this function to be called with 332 * concurrent list_add(), but for better safety against future changes 333 * in the code, we use list_empty_careful() here. 334 */ 335 if (!list_empty_careful(&isec->list)) { 336 spin_lock(&sbsec->isec_lock); 337 list_del_init(&isec->list); 338 spin_unlock(&sbsec->isec_lock); 339 } 340 } 341 342 static void superblock_free_security(struct super_block *sb) 343 { 344 struct superblock_security_struct *sbsec = sb->s_security; 345 sb->s_security = NULL; 346 kfree(sbsec); 347 } 348 349 struct selinux_mnt_opts { 350 const char *fscontext, *context, *rootcontext, *defcontext; 351 }; 352 353 static void selinux_free_mnt_opts(void *mnt_opts) 354 { 355 struct selinux_mnt_opts *opts = mnt_opts; 356 kfree(opts->fscontext); 357 kfree(opts->context); 358 kfree(opts->rootcontext); 359 kfree(opts->defcontext); 360 kfree(opts); 361 } 362 363 enum { 364 Opt_error = -1, 365 Opt_context = 0, 366 Opt_defcontext = 1, 367 Opt_fscontext = 2, 368 Opt_rootcontext = 3, 369 Opt_seclabel = 4, 370 }; 371 372 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 373 static struct { 374 const char *name; 375 int len; 376 int opt; 377 bool has_arg; 378 } tokens[] = { 379 A(context, true), 380 A(fscontext, true), 381 A(defcontext, true), 382 A(rootcontext, true), 383 A(seclabel, false), 384 }; 385 #undef A 386 387 static int match_opt_prefix(char *s, int l, char **arg) 388 { 389 int i; 390 391 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 392 size_t len = tokens[i].len; 393 if (len > l || memcmp(s, tokens[i].name, len)) 394 continue; 395 if (tokens[i].has_arg) { 396 if (len == l || s[len] != '=') 397 continue; 398 *arg = s + len + 1; 399 } else if (len != l) 400 continue; 401 return tokens[i].opt; 402 } 403 return Opt_error; 404 } 405 406 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 407 408 static int may_context_mount_sb_relabel(u32 sid, 409 struct superblock_security_struct *sbsec, 410 const struct cred *cred) 411 { 412 const struct task_security_struct *tsec = selinux_cred(cred); 413 int rc; 414 415 rc = avc_has_perm(&selinux_state, 416 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 417 FILESYSTEM__RELABELFROM, NULL); 418 if (rc) 419 return rc; 420 421 rc = avc_has_perm(&selinux_state, 422 tsec->sid, sid, SECCLASS_FILESYSTEM, 423 FILESYSTEM__RELABELTO, NULL); 424 return rc; 425 } 426 427 static int may_context_mount_inode_relabel(u32 sid, 428 struct superblock_security_struct *sbsec, 429 const struct cred *cred) 430 { 431 const struct task_security_struct *tsec = selinux_cred(cred); 432 int rc; 433 rc = avc_has_perm(&selinux_state, 434 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 435 FILESYSTEM__RELABELFROM, NULL); 436 if (rc) 437 return rc; 438 439 rc = avc_has_perm(&selinux_state, 440 sid, sbsec->sid, SECCLASS_FILESYSTEM, 441 FILESYSTEM__ASSOCIATE, NULL); 442 return rc; 443 } 444 445 static int selinux_is_genfs_special_handling(struct super_block *sb) 446 { 447 /* Special handling. Genfs but also in-core setxattr handler */ 448 return !strcmp(sb->s_type->name, "sysfs") || 449 !strcmp(sb->s_type->name, "pstore") || 450 !strcmp(sb->s_type->name, "debugfs") || 451 !strcmp(sb->s_type->name, "tracefs") || 452 !strcmp(sb->s_type->name, "rootfs") || 453 (selinux_policycap_cgroupseclabel() && 454 (!strcmp(sb->s_type->name, "cgroup") || 455 !strcmp(sb->s_type->name, "cgroup2"))); 456 } 457 458 static int selinux_is_sblabel_mnt(struct super_block *sb) 459 { 460 struct superblock_security_struct *sbsec = sb->s_security; 461 462 /* 463 * IMPORTANT: Double-check logic in this function when adding a new 464 * SECURITY_FS_USE_* definition! 465 */ 466 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 467 468 switch (sbsec->behavior) { 469 case SECURITY_FS_USE_XATTR: 470 case SECURITY_FS_USE_TRANS: 471 case SECURITY_FS_USE_TASK: 472 case SECURITY_FS_USE_NATIVE: 473 return 1; 474 475 case SECURITY_FS_USE_GENFS: 476 return selinux_is_genfs_special_handling(sb); 477 478 /* Never allow relabeling on context mounts */ 479 case SECURITY_FS_USE_MNTPOINT: 480 case SECURITY_FS_USE_NONE: 481 default: 482 return 0; 483 } 484 } 485 486 static int sb_finish_set_opts(struct super_block *sb) 487 { 488 struct superblock_security_struct *sbsec = sb->s_security; 489 struct dentry *root = sb->s_root; 490 struct inode *root_inode = d_backing_inode(root); 491 int rc = 0; 492 493 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 494 /* Make sure that the xattr handler exists and that no 495 error other than -ENODATA is returned by getxattr on 496 the root directory. -ENODATA is ok, as this may be 497 the first boot of the SELinux kernel before we have 498 assigned xattr values to the filesystem. */ 499 if (!(root_inode->i_opflags & IOP_XATTR)) { 500 pr_warn("SELinux: (dev %s, type %s) has no " 501 "xattr support\n", sb->s_id, sb->s_type->name); 502 rc = -EOPNOTSUPP; 503 goto out; 504 } 505 506 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 507 if (rc < 0 && rc != -ENODATA) { 508 if (rc == -EOPNOTSUPP) 509 pr_warn("SELinux: (dev %s, type " 510 "%s) has no security xattr handler\n", 511 sb->s_id, sb->s_type->name); 512 else 513 pr_warn("SELinux: (dev %s, type " 514 "%s) getxattr errno %d\n", sb->s_id, 515 sb->s_type->name, -rc); 516 goto out; 517 } 518 } 519 520 sbsec->flags |= SE_SBINITIALIZED; 521 522 /* 523 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 524 * leave the flag untouched because sb_clone_mnt_opts might be handing 525 * us a superblock that needs the flag to be cleared. 526 */ 527 if (selinux_is_sblabel_mnt(sb)) 528 sbsec->flags |= SBLABEL_MNT; 529 else 530 sbsec->flags &= ~SBLABEL_MNT; 531 532 /* Initialize the root inode. */ 533 rc = inode_doinit_with_dentry(root_inode, root); 534 535 /* Initialize any other inodes associated with the superblock, e.g. 536 inodes created prior to initial policy load or inodes created 537 during get_sb by a pseudo filesystem that directly 538 populates itself. */ 539 spin_lock(&sbsec->isec_lock); 540 while (!list_empty(&sbsec->isec_head)) { 541 struct inode_security_struct *isec = 542 list_first_entry(&sbsec->isec_head, 543 struct inode_security_struct, list); 544 struct inode *inode = isec->inode; 545 list_del_init(&isec->list); 546 spin_unlock(&sbsec->isec_lock); 547 inode = igrab(inode); 548 if (inode) { 549 if (!IS_PRIVATE(inode)) 550 inode_doinit_with_dentry(inode, NULL); 551 iput(inode); 552 } 553 spin_lock(&sbsec->isec_lock); 554 } 555 spin_unlock(&sbsec->isec_lock); 556 out: 557 return rc; 558 } 559 560 static int bad_option(struct superblock_security_struct *sbsec, char flag, 561 u32 old_sid, u32 new_sid) 562 { 563 char mnt_flags = sbsec->flags & SE_MNTMASK; 564 565 /* check if the old mount command had the same options */ 566 if (sbsec->flags & SE_SBINITIALIZED) 567 if (!(sbsec->flags & flag) || 568 (old_sid != new_sid)) 569 return 1; 570 571 /* check if we were passed the same options twice, 572 * aka someone passed context=a,context=b 573 */ 574 if (!(sbsec->flags & SE_SBINITIALIZED)) 575 if (mnt_flags & flag) 576 return 1; 577 return 0; 578 } 579 580 static int parse_sid(struct super_block *sb, const char *s, u32 *sid) 581 { 582 int rc = security_context_str_to_sid(&selinux_state, s, 583 sid, GFP_KERNEL); 584 if (rc) 585 pr_warn("SELinux: security_context_str_to_sid" 586 "(%s) failed for (dev %s, type %s) errno=%d\n", 587 s, sb->s_id, sb->s_type->name, rc); 588 return rc; 589 } 590 591 /* 592 * Allow filesystems with binary mount data to explicitly set mount point 593 * labeling information. 594 */ 595 static int selinux_set_mnt_opts(struct super_block *sb, 596 void *mnt_opts, 597 unsigned long kern_flags, 598 unsigned long *set_kern_flags) 599 { 600 const struct cred *cred = current_cred(); 601 struct superblock_security_struct *sbsec = sb->s_security; 602 struct dentry *root = sbsec->sb->s_root; 603 struct selinux_mnt_opts *opts = mnt_opts; 604 struct inode_security_struct *root_isec; 605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 606 u32 defcontext_sid = 0; 607 int rc = 0; 608 609 mutex_lock(&sbsec->lock); 610 611 if (!selinux_initialized(&selinux_state)) { 612 if (!opts) { 613 /* Defer initialization until selinux_complete_init, 614 after the initial policy is loaded and the security 615 server is ready to handle calls. */ 616 goto out; 617 } 618 rc = -EINVAL; 619 pr_warn("SELinux: Unable to set superblock options " 620 "before the security server is initialized\n"); 621 goto out; 622 } 623 if (kern_flags && !set_kern_flags) { 624 /* Specifying internal flags without providing a place to 625 * place the results is not allowed */ 626 rc = -EINVAL; 627 goto out; 628 } 629 630 /* 631 * Binary mount data FS will come through this function twice. Once 632 * from an explicit call and once from the generic calls from the vfs. 633 * Since the generic VFS calls will not contain any security mount data 634 * we need to skip the double mount verification. 635 * 636 * This does open a hole in which we will not notice if the first 637 * mount using this sb set explict options and a second mount using 638 * this sb does not set any security options. (The first options 639 * will be used for both mounts) 640 */ 641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 642 && !opts) 643 goto out; 644 645 root_isec = backing_inode_security_novalidate(root); 646 647 /* 648 * parse the mount options, check if they are valid sids. 649 * also check if someone is trying to mount the same sb more 650 * than once with different security options. 651 */ 652 if (opts) { 653 if (opts->fscontext) { 654 rc = parse_sid(sb, opts->fscontext, &fscontext_sid); 655 if (rc) 656 goto out; 657 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 658 fscontext_sid)) 659 goto out_double_mount; 660 sbsec->flags |= FSCONTEXT_MNT; 661 } 662 if (opts->context) { 663 rc = parse_sid(sb, opts->context, &context_sid); 664 if (rc) 665 goto out; 666 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 667 context_sid)) 668 goto out_double_mount; 669 sbsec->flags |= CONTEXT_MNT; 670 } 671 if (opts->rootcontext) { 672 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); 673 if (rc) 674 goto out; 675 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 676 rootcontext_sid)) 677 goto out_double_mount; 678 sbsec->flags |= ROOTCONTEXT_MNT; 679 } 680 if (opts->defcontext) { 681 rc = parse_sid(sb, opts->defcontext, &defcontext_sid); 682 if (rc) 683 goto out; 684 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 685 defcontext_sid)) 686 goto out_double_mount; 687 sbsec->flags |= DEFCONTEXT_MNT; 688 } 689 } 690 691 if (sbsec->flags & SE_SBINITIALIZED) { 692 /* previously mounted with options, but not on this attempt? */ 693 if ((sbsec->flags & SE_MNTMASK) && !opts) 694 goto out_double_mount; 695 rc = 0; 696 goto out; 697 } 698 699 if (strcmp(sb->s_type->name, "proc") == 0) 700 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 701 702 if (!strcmp(sb->s_type->name, "debugfs") || 703 !strcmp(sb->s_type->name, "tracefs") || 704 !strcmp(sb->s_type->name, "binder") || 705 !strcmp(sb->s_type->name, "bpf") || 706 !strcmp(sb->s_type->name, "pstore")) 707 sbsec->flags |= SE_SBGENFS; 708 709 if (!strcmp(sb->s_type->name, "sysfs") || 710 !strcmp(sb->s_type->name, "cgroup") || 711 !strcmp(sb->s_type->name, "cgroup2")) 712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 713 714 if (!sbsec->behavior) { 715 /* 716 * Determine the labeling behavior to use for this 717 * filesystem type. 718 */ 719 rc = security_fs_use(&selinux_state, sb); 720 if (rc) { 721 pr_warn("%s: security_fs_use(%s) returned %d\n", 722 __func__, sb->s_type->name, rc); 723 goto out; 724 } 725 } 726 727 /* 728 * If this is a user namespace mount and the filesystem type is not 729 * explicitly whitelisted, then no contexts are allowed on the command 730 * line and security labels must be ignored. 731 */ 732 if (sb->s_user_ns != &init_user_ns && 733 strcmp(sb->s_type->name, "tmpfs") && 734 strcmp(sb->s_type->name, "ramfs") && 735 strcmp(sb->s_type->name, "devpts")) { 736 if (context_sid || fscontext_sid || rootcontext_sid || 737 defcontext_sid) { 738 rc = -EACCES; 739 goto out; 740 } 741 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 742 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 743 rc = security_transition_sid(&selinux_state, 744 current_sid(), 745 current_sid(), 746 SECCLASS_FILE, NULL, 747 &sbsec->mntpoint_sid); 748 if (rc) 749 goto out; 750 } 751 goto out_set_opts; 752 } 753 754 /* sets the context of the superblock for the fs being mounted. */ 755 if (fscontext_sid) { 756 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 757 if (rc) 758 goto out; 759 760 sbsec->sid = fscontext_sid; 761 } 762 763 /* 764 * Switch to using mount point labeling behavior. 765 * sets the label used on all file below the mountpoint, and will set 766 * the superblock context if not already set. 767 */ 768 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 769 sbsec->behavior = SECURITY_FS_USE_NATIVE; 770 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 771 } 772 773 if (context_sid) { 774 if (!fscontext_sid) { 775 rc = may_context_mount_sb_relabel(context_sid, sbsec, 776 cred); 777 if (rc) 778 goto out; 779 sbsec->sid = context_sid; 780 } else { 781 rc = may_context_mount_inode_relabel(context_sid, sbsec, 782 cred); 783 if (rc) 784 goto out; 785 } 786 if (!rootcontext_sid) 787 rootcontext_sid = context_sid; 788 789 sbsec->mntpoint_sid = context_sid; 790 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 791 } 792 793 if (rootcontext_sid) { 794 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 795 cred); 796 if (rc) 797 goto out; 798 799 root_isec->sid = rootcontext_sid; 800 root_isec->initialized = LABEL_INITIALIZED; 801 } 802 803 if (defcontext_sid) { 804 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 805 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 806 rc = -EINVAL; 807 pr_warn("SELinux: defcontext option is " 808 "invalid for this filesystem type\n"); 809 goto out; 810 } 811 812 if (defcontext_sid != sbsec->def_sid) { 813 rc = may_context_mount_inode_relabel(defcontext_sid, 814 sbsec, cred); 815 if (rc) 816 goto out; 817 } 818 819 sbsec->def_sid = defcontext_sid; 820 } 821 822 out_set_opts: 823 rc = sb_finish_set_opts(sb); 824 out: 825 mutex_unlock(&sbsec->lock); 826 return rc; 827 out_double_mount: 828 rc = -EINVAL; 829 pr_warn("SELinux: mount invalid. Same superblock, different " 830 "security settings for (dev %s, type %s)\n", sb->s_id, 831 sb->s_type->name); 832 goto out; 833 } 834 835 static int selinux_cmp_sb_context(const struct super_block *oldsb, 836 const struct super_block *newsb) 837 { 838 struct superblock_security_struct *old = oldsb->s_security; 839 struct superblock_security_struct *new = newsb->s_security; 840 char oldflags = old->flags & SE_MNTMASK; 841 char newflags = new->flags & SE_MNTMASK; 842 843 if (oldflags != newflags) 844 goto mismatch; 845 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 846 goto mismatch; 847 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 848 goto mismatch; 849 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 850 goto mismatch; 851 if (oldflags & ROOTCONTEXT_MNT) { 852 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 853 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 854 if (oldroot->sid != newroot->sid) 855 goto mismatch; 856 } 857 return 0; 858 mismatch: 859 pr_warn("SELinux: mount invalid. Same superblock, " 860 "different security settings for (dev %s, " 861 "type %s)\n", newsb->s_id, newsb->s_type->name); 862 return -EBUSY; 863 } 864 865 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 866 struct super_block *newsb, 867 unsigned long kern_flags, 868 unsigned long *set_kern_flags) 869 { 870 int rc = 0; 871 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 872 struct superblock_security_struct *newsbsec = newsb->s_security; 873 874 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 875 int set_context = (oldsbsec->flags & CONTEXT_MNT); 876 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 877 878 /* 879 * if the parent was able to be mounted it clearly had no special lsm 880 * mount options. thus we can safely deal with this superblock later 881 */ 882 if (!selinux_initialized(&selinux_state)) 883 return 0; 884 885 /* 886 * Specifying internal flags without providing a place to 887 * place the results is not allowed. 888 */ 889 if (kern_flags && !set_kern_flags) 890 return -EINVAL; 891 892 /* how can we clone if the old one wasn't set up?? */ 893 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 894 895 /* if fs is reusing a sb, make sure that the contexts match */ 896 if (newsbsec->flags & SE_SBINITIALIZED) { 897 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 898 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 899 return selinux_cmp_sb_context(oldsb, newsb); 900 } 901 902 mutex_lock(&newsbsec->lock); 903 904 newsbsec->flags = oldsbsec->flags; 905 906 newsbsec->sid = oldsbsec->sid; 907 newsbsec->def_sid = oldsbsec->def_sid; 908 newsbsec->behavior = oldsbsec->behavior; 909 910 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 911 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 912 rc = security_fs_use(&selinux_state, newsb); 913 if (rc) 914 goto out; 915 } 916 917 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 918 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 919 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 920 } 921 922 if (set_context) { 923 u32 sid = oldsbsec->mntpoint_sid; 924 925 if (!set_fscontext) 926 newsbsec->sid = sid; 927 if (!set_rootcontext) { 928 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 929 newisec->sid = sid; 930 } 931 newsbsec->mntpoint_sid = sid; 932 } 933 if (set_rootcontext) { 934 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 935 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 936 937 newisec->sid = oldisec->sid; 938 } 939 940 sb_finish_set_opts(newsb); 941 out: 942 mutex_unlock(&newsbsec->lock); 943 return rc; 944 } 945 946 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 947 { 948 struct selinux_mnt_opts *opts = *mnt_opts; 949 950 if (token == Opt_seclabel) /* eaten and completely ignored */ 951 return 0; 952 953 if (!opts) { 954 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 955 if (!opts) 956 return -ENOMEM; 957 *mnt_opts = opts; 958 } 959 if (!s) 960 return -ENOMEM; 961 switch (token) { 962 case Opt_context: 963 if (opts->context || opts->defcontext) 964 goto Einval; 965 opts->context = s; 966 break; 967 case Opt_fscontext: 968 if (opts->fscontext) 969 goto Einval; 970 opts->fscontext = s; 971 break; 972 case Opt_rootcontext: 973 if (opts->rootcontext) 974 goto Einval; 975 opts->rootcontext = s; 976 break; 977 case Opt_defcontext: 978 if (opts->context || opts->defcontext) 979 goto Einval; 980 opts->defcontext = s; 981 break; 982 } 983 return 0; 984 Einval: 985 pr_warn(SEL_MOUNT_FAIL_MSG); 986 return -EINVAL; 987 } 988 989 static int selinux_add_mnt_opt(const char *option, const char *val, int len, 990 void **mnt_opts) 991 { 992 int token = Opt_error; 993 int rc, i; 994 995 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 996 if (strcmp(option, tokens[i].name) == 0) { 997 token = tokens[i].opt; 998 break; 999 } 1000 } 1001 1002 if (token == Opt_error) 1003 return -EINVAL; 1004 1005 if (token != Opt_seclabel) { 1006 val = kmemdup_nul(val, len, GFP_KERNEL); 1007 if (!val) { 1008 rc = -ENOMEM; 1009 goto free_opt; 1010 } 1011 } 1012 rc = selinux_add_opt(token, val, mnt_opts); 1013 if (unlikely(rc)) { 1014 kfree(val); 1015 goto free_opt; 1016 } 1017 return rc; 1018 1019 free_opt: 1020 if (*mnt_opts) { 1021 selinux_free_mnt_opts(*mnt_opts); 1022 *mnt_opts = NULL; 1023 } 1024 return rc; 1025 } 1026 1027 static int show_sid(struct seq_file *m, u32 sid) 1028 { 1029 char *context = NULL; 1030 u32 len; 1031 int rc; 1032 1033 rc = security_sid_to_context(&selinux_state, sid, 1034 &context, &len); 1035 if (!rc) { 1036 bool has_comma = context && strchr(context, ','); 1037 1038 seq_putc(m, '='); 1039 if (has_comma) 1040 seq_putc(m, '\"'); 1041 seq_escape(m, context, "\"\n\\"); 1042 if (has_comma) 1043 seq_putc(m, '\"'); 1044 } 1045 kfree(context); 1046 return rc; 1047 } 1048 1049 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1050 { 1051 struct superblock_security_struct *sbsec = sb->s_security; 1052 int rc; 1053 1054 if (!(sbsec->flags & SE_SBINITIALIZED)) 1055 return 0; 1056 1057 if (!selinux_initialized(&selinux_state)) 1058 return 0; 1059 1060 if (sbsec->flags & FSCONTEXT_MNT) { 1061 seq_putc(m, ','); 1062 seq_puts(m, FSCONTEXT_STR); 1063 rc = show_sid(m, sbsec->sid); 1064 if (rc) 1065 return rc; 1066 } 1067 if (sbsec->flags & CONTEXT_MNT) { 1068 seq_putc(m, ','); 1069 seq_puts(m, CONTEXT_STR); 1070 rc = show_sid(m, sbsec->mntpoint_sid); 1071 if (rc) 1072 return rc; 1073 } 1074 if (sbsec->flags & DEFCONTEXT_MNT) { 1075 seq_putc(m, ','); 1076 seq_puts(m, DEFCONTEXT_STR); 1077 rc = show_sid(m, sbsec->def_sid); 1078 if (rc) 1079 return rc; 1080 } 1081 if (sbsec->flags & ROOTCONTEXT_MNT) { 1082 struct dentry *root = sbsec->sb->s_root; 1083 struct inode_security_struct *isec = backing_inode_security(root); 1084 seq_putc(m, ','); 1085 seq_puts(m, ROOTCONTEXT_STR); 1086 rc = show_sid(m, isec->sid); 1087 if (rc) 1088 return rc; 1089 } 1090 if (sbsec->flags & SBLABEL_MNT) { 1091 seq_putc(m, ','); 1092 seq_puts(m, SECLABEL_STR); 1093 } 1094 return 0; 1095 } 1096 1097 static inline u16 inode_mode_to_security_class(umode_t mode) 1098 { 1099 switch (mode & S_IFMT) { 1100 case S_IFSOCK: 1101 return SECCLASS_SOCK_FILE; 1102 case S_IFLNK: 1103 return SECCLASS_LNK_FILE; 1104 case S_IFREG: 1105 return SECCLASS_FILE; 1106 case S_IFBLK: 1107 return SECCLASS_BLK_FILE; 1108 case S_IFDIR: 1109 return SECCLASS_DIR; 1110 case S_IFCHR: 1111 return SECCLASS_CHR_FILE; 1112 case S_IFIFO: 1113 return SECCLASS_FIFO_FILE; 1114 1115 } 1116 1117 return SECCLASS_FILE; 1118 } 1119 1120 static inline int default_protocol_stream(int protocol) 1121 { 1122 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1123 } 1124 1125 static inline int default_protocol_dgram(int protocol) 1126 { 1127 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1128 } 1129 1130 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1131 { 1132 int extsockclass = selinux_policycap_extsockclass(); 1133 1134 switch (family) { 1135 case PF_UNIX: 1136 switch (type) { 1137 case SOCK_STREAM: 1138 case SOCK_SEQPACKET: 1139 return SECCLASS_UNIX_STREAM_SOCKET; 1140 case SOCK_DGRAM: 1141 case SOCK_RAW: 1142 return SECCLASS_UNIX_DGRAM_SOCKET; 1143 } 1144 break; 1145 case PF_INET: 1146 case PF_INET6: 1147 switch (type) { 1148 case SOCK_STREAM: 1149 case SOCK_SEQPACKET: 1150 if (default_protocol_stream(protocol)) 1151 return SECCLASS_TCP_SOCKET; 1152 else if (extsockclass && protocol == IPPROTO_SCTP) 1153 return SECCLASS_SCTP_SOCKET; 1154 else 1155 return SECCLASS_RAWIP_SOCKET; 1156 case SOCK_DGRAM: 1157 if (default_protocol_dgram(protocol)) 1158 return SECCLASS_UDP_SOCKET; 1159 else if (extsockclass && (protocol == IPPROTO_ICMP || 1160 protocol == IPPROTO_ICMPV6)) 1161 return SECCLASS_ICMP_SOCKET; 1162 else 1163 return SECCLASS_RAWIP_SOCKET; 1164 case SOCK_DCCP: 1165 return SECCLASS_DCCP_SOCKET; 1166 default: 1167 return SECCLASS_RAWIP_SOCKET; 1168 } 1169 break; 1170 case PF_NETLINK: 1171 switch (protocol) { 1172 case NETLINK_ROUTE: 1173 return SECCLASS_NETLINK_ROUTE_SOCKET; 1174 case NETLINK_SOCK_DIAG: 1175 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1176 case NETLINK_NFLOG: 1177 return SECCLASS_NETLINK_NFLOG_SOCKET; 1178 case NETLINK_XFRM: 1179 return SECCLASS_NETLINK_XFRM_SOCKET; 1180 case NETLINK_SELINUX: 1181 return SECCLASS_NETLINK_SELINUX_SOCKET; 1182 case NETLINK_ISCSI: 1183 return SECCLASS_NETLINK_ISCSI_SOCKET; 1184 case NETLINK_AUDIT: 1185 return SECCLASS_NETLINK_AUDIT_SOCKET; 1186 case NETLINK_FIB_LOOKUP: 1187 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1188 case NETLINK_CONNECTOR: 1189 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1190 case NETLINK_NETFILTER: 1191 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1192 case NETLINK_DNRTMSG: 1193 return SECCLASS_NETLINK_DNRT_SOCKET; 1194 case NETLINK_KOBJECT_UEVENT: 1195 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1196 case NETLINK_GENERIC: 1197 return SECCLASS_NETLINK_GENERIC_SOCKET; 1198 case NETLINK_SCSITRANSPORT: 1199 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1200 case NETLINK_RDMA: 1201 return SECCLASS_NETLINK_RDMA_SOCKET; 1202 case NETLINK_CRYPTO: 1203 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1204 default: 1205 return SECCLASS_NETLINK_SOCKET; 1206 } 1207 case PF_PACKET: 1208 return SECCLASS_PACKET_SOCKET; 1209 case PF_KEY: 1210 return SECCLASS_KEY_SOCKET; 1211 case PF_APPLETALK: 1212 return SECCLASS_APPLETALK_SOCKET; 1213 } 1214 1215 if (extsockclass) { 1216 switch (family) { 1217 case PF_AX25: 1218 return SECCLASS_AX25_SOCKET; 1219 case PF_IPX: 1220 return SECCLASS_IPX_SOCKET; 1221 case PF_NETROM: 1222 return SECCLASS_NETROM_SOCKET; 1223 case PF_ATMPVC: 1224 return SECCLASS_ATMPVC_SOCKET; 1225 case PF_X25: 1226 return SECCLASS_X25_SOCKET; 1227 case PF_ROSE: 1228 return SECCLASS_ROSE_SOCKET; 1229 case PF_DECnet: 1230 return SECCLASS_DECNET_SOCKET; 1231 case PF_ATMSVC: 1232 return SECCLASS_ATMSVC_SOCKET; 1233 case PF_RDS: 1234 return SECCLASS_RDS_SOCKET; 1235 case PF_IRDA: 1236 return SECCLASS_IRDA_SOCKET; 1237 case PF_PPPOX: 1238 return SECCLASS_PPPOX_SOCKET; 1239 case PF_LLC: 1240 return SECCLASS_LLC_SOCKET; 1241 case PF_CAN: 1242 return SECCLASS_CAN_SOCKET; 1243 case PF_TIPC: 1244 return SECCLASS_TIPC_SOCKET; 1245 case PF_BLUETOOTH: 1246 return SECCLASS_BLUETOOTH_SOCKET; 1247 case PF_IUCV: 1248 return SECCLASS_IUCV_SOCKET; 1249 case PF_RXRPC: 1250 return SECCLASS_RXRPC_SOCKET; 1251 case PF_ISDN: 1252 return SECCLASS_ISDN_SOCKET; 1253 case PF_PHONET: 1254 return SECCLASS_PHONET_SOCKET; 1255 case PF_IEEE802154: 1256 return SECCLASS_IEEE802154_SOCKET; 1257 case PF_CAIF: 1258 return SECCLASS_CAIF_SOCKET; 1259 case PF_ALG: 1260 return SECCLASS_ALG_SOCKET; 1261 case PF_NFC: 1262 return SECCLASS_NFC_SOCKET; 1263 case PF_VSOCK: 1264 return SECCLASS_VSOCK_SOCKET; 1265 case PF_KCM: 1266 return SECCLASS_KCM_SOCKET; 1267 case PF_QIPCRTR: 1268 return SECCLASS_QIPCRTR_SOCKET; 1269 case PF_SMC: 1270 return SECCLASS_SMC_SOCKET; 1271 case PF_XDP: 1272 return SECCLASS_XDP_SOCKET; 1273 #if PF_MAX > 45 1274 #error New address family defined, please update this function. 1275 #endif 1276 } 1277 } 1278 1279 return SECCLASS_SOCKET; 1280 } 1281 1282 static int selinux_genfs_get_sid(struct dentry *dentry, 1283 u16 tclass, 1284 u16 flags, 1285 u32 *sid) 1286 { 1287 int rc; 1288 struct super_block *sb = dentry->d_sb; 1289 char *buffer, *path; 1290 1291 buffer = (char *)__get_free_page(GFP_KERNEL); 1292 if (!buffer) 1293 return -ENOMEM; 1294 1295 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1296 if (IS_ERR(path)) 1297 rc = PTR_ERR(path); 1298 else { 1299 if (flags & SE_SBPROC) { 1300 /* each process gets a /proc/PID/ entry. Strip off the 1301 * PID part to get a valid selinux labeling. 1302 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1303 while (path[1] >= '0' && path[1] <= '9') { 1304 path[1] = '/'; 1305 path++; 1306 } 1307 } 1308 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1309 path, tclass, sid); 1310 if (rc == -ENOENT) { 1311 /* No match in policy, mark as unlabeled. */ 1312 *sid = SECINITSID_UNLABELED; 1313 rc = 0; 1314 } 1315 } 1316 free_page((unsigned long)buffer); 1317 return rc; 1318 } 1319 1320 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1321 u32 def_sid, u32 *sid) 1322 { 1323 #define INITCONTEXTLEN 255 1324 char *context; 1325 unsigned int len; 1326 int rc; 1327 1328 len = INITCONTEXTLEN; 1329 context = kmalloc(len + 1, GFP_NOFS); 1330 if (!context) 1331 return -ENOMEM; 1332 1333 context[len] = '\0'; 1334 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1335 if (rc == -ERANGE) { 1336 kfree(context); 1337 1338 /* Need a larger buffer. Query for the right size. */ 1339 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1340 if (rc < 0) 1341 return rc; 1342 1343 len = rc; 1344 context = kmalloc(len + 1, GFP_NOFS); 1345 if (!context) 1346 return -ENOMEM; 1347 1348 context[len] = '\0'; 1349 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1350 context, len); 1351 } 1352 if (rc < 0) { 1353 kfree(context); 1354 if (rc != -ENODATA) { 1355 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1356 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1357 return rc; 1358 } 1359 *sid = def_sid; 1360 return 0; 1361 } 1362 1363 rc = security_context_to_sid_default(&selinux_state, context, rc, sid, 1364 def_sid, GFP_NOFS); 1365 if (rc) { 1366 char *dev = inode->i_sb->s_id; 1367 unsigned long ino = inode->i_ino; 1368 1369 if (rc == -EINVAL) { 1370 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1371 ino, dev, context); 1372 } else { 1373 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1374 __func__, context, -rc, dev, ino); 1375 } 1376 } 1377 kfree(context); 1378 return 0; 1379 } 1380 1381 /* The inode's security attributes must be initialized before first use. */ 1382 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1383 { 1384 struct superblock_security_struct *sbsec = NULL; 1385 struct inode_security_struct *isec = selinux_inode(inode); 1386 u32 task_sid, sid = 0; 1387 u16 sclass; 1388 struct dentry *dentry; 1389 int rc = 0; 1390 1391 if (isec->initialized == LABEL_INITIALIZED) 1392 return 0; 1393 1394 spin_lock(&isec->lock); 1395 if (isec->initialized == LABEL_INITIALIZED) 1396 goto out_unlock; 1397 1398 if (isec->sclass == SECCLASS_FILE) 1399 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1400 1401 sbsec = inode->i_sb->s_security; 1402 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1403 /* Defer initialization until selinux_complete_init, 1404 after the initial policy is loaded and the security 1405 server is ready to handle calls. */ 1406 spin_lock(&sbsec->isec_lock); 1407 if (list_empty(&isec->list)) 1408 list_add(&isec->list, &sbsec->isec_head); 1409 spin_unlock(&sbsec->isec_lock); 1410 goto out_unlock; 1411 } 1412 1413 sclass = isec->sclass; 1414 task_sid = isec->task_sid; 1415 sid = isec->sid; 1416 isec->initialized = LABEL_PENDING; 1417 spin_unlock(&isec->lock); 1418 1419 switch (sbsec->behavior) { 1420 case SECURITY_FS_USE_NATIVE: 1421 break; 1422 case SECURITY_FS_USE_XATTR: 1423 if (!(inode->i_opflags & IOP_XATTR)) { 1424 sid = sbsec->def_sid; 1425 break; 1426 } 1427 /* Need a dentry, since the xattr API requires one. 1428 Life would be simpler if we could just pass the inode. */ 1429 if (opt_dentry) { 1430 /* Called from d_instantiate or d_splice_alias. */ 1431 dentry = dget(opt_dentry); 1432 } else { 1433 /* 1434 * Called from selinux_complete_init, try to find a dentry. 1435 * Some filesystems really want a connected one, so try 1436 * that first. We could split SECURITY_FS_USE_XATTR in 1437 * two, depending upon that... 1438 */ 1439 dentry = d_find_alias(inode); 1440 if (!dentry) 1441 dentry = d_find_any_alias(inode); 1442 } 1443 if (!dentry) { 1444 /* 1445 * this is can be hit on boot when a file is accessed 1446 * before the policy is loaded. When we load policy we 1447 * may find inodes that have no dentry on the 1448 * sbsec->isec_head list. No reason to complain as these 1449 * will get fixed up the next time we go through 1450 * inode_doinit with a dentry, before these inodes could 1451 * be used again by userspace. 1452 */ 1453 goto out; 1454 } 1455 1456 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1457 &sid); 1458 dput(dentry); 1459 if (rc) 1460 goto out; 1461 break; 1462 case SECURITY_FS_USE_TASK: 1463 sid = task_sid; 1464 break; 1465 case SECURITY_FS_USE_TRANS: 1466 /* Default to the fs SID. */ 1467 sid = sbsec->sid; 1468 1469 /* Try to obtain a transition SID. */ 1470 rc = security_transition_sid(&selinux_state, task_sid, sid, 1471 sclass, NULL, &sid); 1472 if (rc) 1473 goto out; 1474 break; 1475 case SECURITY_FS_USE_MNTPOINT: 1476 sid = sbsec->mntpoint_sid; 1477 break; 1478 default: 1479 /* Default to the fs superblock SID. */ 1480 sid = sbsec->sid; 1481 1482 if ((sbsec->flags & SE_SBGENFS) && 1483 (!S_ISLNK(inode->i_mode) || 1484 selinux_policycap_genfs_seclabel_symlinks())) { 1485 /* We must have a dentry to determine the label on 1486 * procfs inodes */ 1487 if (opt_dentry) { 1488 /* Called from d_instantiate or 1489 * d_splice_alias. */ 1490 dentry = dget(opt_dentry); 1491 } else { 1492 /* Called from selinux_complete_init, try to 1493 * find a dentry. Some filesystems really want 1494 * a connected one, so try that first. 1495 */ 1496 dentry = d_find_alias(inode); 1497 if (!dentry) 1498 dentry = d_find_any_alias(inode); 1499 } 1500 /* 1501 * This can be hit on boot when a file is accessed 1502 * before the policy is loaded. When we load policy we 1503 * may find inodes that have no dentry on the 1504 * sbsec->isec_head list. No reason to complain as 1505 * these will get fixed up the next time we go through 1506 * inode_doinit() with a dentry, before these inodes 1507 * could be used again by userspace. 1508 */ 1509 if (!dentry) 1510 goto out; 1511 rc = selinux_genfs_get_sid(dentry, sclass, 1512 sbsec->flags, &sid); 1513 if (rc) { 1514 dput(dentry); 1515 goto out; 1516 } 1517 1518 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1519 (inode->i_opflags & IOP_XATTR)) { 1520 rc = inode_doinit_use_xattr(inode, dentry, 1521 sid, &sid); 1522 if (rc) { 1523 dput(dentry); 1524 goto out; 1525 } 1526 } 1527 dput(dentry); 1528 } 1529 break; 1530 } 1531 1532 out: 1533 spin_lock(&isec->lock); 1534 if (isec->initialized == LABEL_PENDING) { 1535 if (!sid || rc) { 1536 isec->initialized = LABEL_INVALID; 1537 goto out_unlock; 1538 } 1539 1540 isec->initialized = LABEL_INITIALIZED; 1541 isec->sid = sid; 1542 } 1543 1544 out_unlock: 1545 spin_unlock(&isec->lock); 1546 return rc; 1547 } 1548 1549 /* Convert a Linux signal to an access vector. */ 1550 static inline u32 signal_to_av(int sig) 1551 { 1552 u32 perm = 0; 1553 1554 switch (sig) { 1555 case SIGCHLD: 1556 /* Commonly granted from child to parent. */ 1557 perm = PROCESS__SIGCHLD; 1558 break; 1559 case SIGKILL: 1560 /* Cannot be caught or ignored */ 1561 perm = PROCESS__SIGKILL; 1562 break; 1563 case SIGSTOP: 1564 /* Cannot be caught or ignored */ 1565 perm = PROCESS__SIGSTOP; 1566 break; 1567 default: 1568 /* All other signals. */ 1569 perm = PROCESS__SIGNAL; 1570 break; 1571 } 1572 1573 return perm; 1574 } 1575 1576 #if CAP_LAST_CAP > 63 1577 #error Fix SELinux to handle capabilities > 63. 1578 #endif 1579 1580 /* Check whether a task is allowed to use a capability. */ 1581 static int cred_has_capability(const struct cred *cred, 1582 int cap, unsigned int opts, bool initns) 1583 { 1584 struct common_audit_data ad; 1585 struct av_decision avd; 1586 u16 sclass; 1587 u32 sid = cred_sid(cred); 1588 u32 av = CAP_TO_MASK(cap); 1589 int rc; 1590 1591 ad.type = LSM_AUDIT_DATA_CAP; 1592 ad.u.cap = cap; 1593 1594 switch (CAP_TO_INDEX(cap)) { 1595 case 0: 1596 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1597 break; 1598 case 1: 1599 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1600 break; 1601 default: 1602 pr_err("SELinux: out of range capability %d\n", cap); 1603 BUG(); 1604 return -EINVAL; 1605 } 1606 1607 rc = avc_has_perm_noaudit(&selinux_state, 1608 sid, sid, sclass, av, 0, &avd); 1609 if (!(opts & CAP_OPT_NOAUDIT)) { 1610 int rc2 = avc_audit(&selinux_state, 1611 sid, sid, sclass, av, &avd, rc, &ad, 0); 1612 if (rc2) 1613 return rc2; 1614 } 1615 return rc; 1616 } 1617 1618 /* Check whether a task has a particular permission to an inode. 1619 The 'adp' parameter is optional and allows other audit 1620 data to be passed (e.g. the dentry). */ 1621 static int inode_has_perm(const struct cred *cred, 1622 struct inode *inode, 1623 u32 perms, 1624 struct common_audit_data *adp) 1625 { 1626 struct inode_security_struct *isec; 1627 u32 sid; 1628 1629 validate_creds(cred); 1630 1631 if (unlikely(IS_PRIVATE(inode))) 1632 return 0; 1633 1634 sid = cred_sid(cred); 1635 isec = selinux_inode(inode); 1636 1637 return avc_has_perm(&selinux_state, 1638 sid, isec->sid, isec->sclass, perms, adp); 1639 } 1640 1641 /* Same as inode_has_perm, but pass explicit audit data containing 1642 the dentry to help the auditing code to more easily generate the 1643 pathname if needed. */ 1644 static inline int dentry_has_perm(const struct cred *cred, 1645 struct dentry *dentry, 1646 u32 av) 1647 { 1648 struct inode *inode = d_backing_inode(dentry); 1649 struct common_audit_data ad; 1650 1651 ad.type = LSM_AUDIT_DATA_DENTRY; 1652 ad.u.dentry = dentry; 1653 __inode_security_revalidate(inode, dentry, true); 1654 return inode_has_perm(cred, inode, av, &ad); 1655 } 1656 1657 /* Same as inode_has_perm, but pass explicit audit data containing 1658 the path to help the auditing code to more easily generate the 1659 pathname if needed. */ 1660 static inline int path_has_perm(const struct cred *cred, 1661 const struct path *path, 1662 u32 av) 1663 { 1664 struct inode *inode = d_backing_inode(path->dentry); 1665 struct common_audit_data ad; 1666 1667 ad.type = LSM_AUDIT_DATA_PATH; 1668 ad.u.path = *path; 1669 __inode_security_revalidate(inode, path->dentry, true); 1670 return inode_has_perm(cred, inode, av, &ad); 1671 } 1672 1673 /* Same as path_has_perm, but uses the inode from the file struct. */ 1674 static inline int file_path_has_perm(const struct cred *cred, 1675 struct file *file, 1676 u32 av) 1677 { 1678 struct common_audit_data ad; 1679 1680 ad.type = LSM_AUDIT_DATA_FILE; 1681 ad.u.file = file; 1682 return inode_has_perm(cred, file_inode(file), av, &ad); 1683 } 1684 1685 #ifdef CONFIG_BPF_SYSCALL 1686 static int bpf_fd_pass(struct file *file, u32 sid); 1687 #endif 1688 1689 /* Check whether a task can use an open file descriptor to 1690 access an inode in a given way. Check access to the 1691 descriptor itself, and then use dentry_has_perm to 1692 check a particular permission to the file. 1693 Access to the descriptor is implicitly granted if it 1694 has the same SID as the process. If av is zero, then 1695 access to the file is not checked, e.g. for cases 1696 where only the descriptor is affected like seek. */ 1697 static int file_has_perm(const struct cred *cred, 1698 struct file *file, 1699 u32 av) 1700 { 1701 struct file_security_struct *fsec = selinux_file(file); 1702 struct inode *inode = file_inode(file); 1703 struct common_audit_data ad; 1704 u32 sid = cred_sid(cred); 1705 int rc; 1706 1707 ad.type = LSM_AUDIT_DATA_FILE; 1708 ad.u.file = file; 1709 1710 if (sid != fsec->sid) { 1711 rc = avc_has_perm(&selinux_state, 1712 sid, fsec->sid, 1713 SECCLASS_FD, 1714 FD__USE, 1715 &ad); 1716 if (rc) 1717 goto out; 1718 } 1719 1720 #ifdef CONFIG_BPF_SYSCALL 1721 rc = bpf_fd_pass(file, cred_sid(cred)); 1722 if (rc) 1723 return rc; 1724 #endif 1725 1726 /* av is zero if only checking access to the descriptor. */ 1727 rc = 0; 1728 if (av) 1729 rc = inode_has_perm(cred, inode, av, &ad); 1730 1731 out: 1732 return rc; 1733 } 1734 1735 /* 1736 * Determine the label for an inode that might be unioned. 1737 */ 1738 static int 1739 selinux_determine_inode_label(const struct task_security_struct *tsec, 1740 struct inode *dir, 1741 const struct qstr *name, u16 tclass, 1742 u32 *_new_isid) 1743 { 1744 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1745 1746 if ((sbsec->flags & SE_SBINITIALIZED) && 1747 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1748 *_new_isid = sbsec->mntpoint_sid; 1749 } else if ((sbsec->flags & SBLABEL_MNT) && 1750 tsec->create_sid) { 1751 *_new_isid = tsec->create_sid; 1752 } else { 1753 const struct inode_security_struct *dsec = inode_security(dir); 1754 return security_transition_sid(&selinux_state, tsec->sid, 1755 dsec->sid, tclass, 1756 name, _new_isid); 1757 } 1758 1759 return 0; 1760 } 1761 1762 /* Check whether a task can create a file. */ 1763 static int may_create(struct inode *dir, 1764 struct dentry *dentry, 1765 u16 tclass) 1766 { 1767 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1768 struct inode_security_struct *dsec; 1769 struct superblock_security_struct *sbsec; 1770 u32 sid, newsid; 1771 struct common_audit_data ad; 1772 int rc; 1773 1774 dsec = inode_security(dir); 1775 sbsec = dir->i_sb->s_security; 1776 1777 sid = tsec->sid; 1778 1779 ad.type = LSM_AUDIT_DATA_DENTRY; 1780 ad.u.dentry = dentry; 1781 1782 rc = avc_has_perm(&selinux_state, 1783 sid, dsec->sid, SECCLASS_DIR, 1784 DIR__ADD_NAME | DIR__SEARCH, 1785 &ad); 1786 if (rc) 1787 return rc; 1788 1789 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1790 &newsid); 1791 if (rc) 1792 return rc; 1793 1794 rc = avc_has_perm(&selinux_state, 1795 sid, newsid, tclass, FILE__CREATE, &ad); 1796 if (rc) 1797 return rc; 1798 1799 return avc_has_perm(&selinux_state, 1800 newsid, sbsec->sid, 1801 SECCLASS_FILESYSTEM, 1802 FILESYSTEM__ASSOCIATE, &ad); 1803 } 1804 1805 #define MAY_LINK 0 1806 #define MAY_UNLINK 1 1807 #define MAY_RMDIR 2 1808 1809 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1810 static int may_link(struct inode *dir, 1811 struct dentry *dentry, 1812 int kind) 1813 1814 { 1815 struct inode_security_struct *dsec, *isec; 1816 struct common_audit_data ad; 1817 u32 sid = current_sid(); 1818 u32 av; 1819 int rc; 1820 1821 dsec = inode_security(dir); 1822 isec = backing_inode_security(dentry); 1823 1824 ad.type = LSM_AUDIT_DATA_DENTRY; 1825 ad.u.dentry = dentry; 1826 1827 av = DIR__SEARCH; 1828 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1829 rc = avc_has_perm(&selinux_state, 1830 sid, dsec->sid, SECCLASS_DIR, av, &ad); 1831 if (rc) 1832 return rc; 1833 1834 switch (kind) { 1835 case MAY_LINK: 1836 av = FILE__LINK; 1837 break; 1838 case MAY_UNLINK: 1839 av = FILE__UNLINK; 1840 break; 1841 case MAY_RMDIR: 1842 av = DIR__RMDIR; 1843 break; 1844 default: 1845 pr_warn("SELinux: %s: unrecognized kind %d\n", 1846 __func__, kind); 1847 return 0; 1848 } 1849 1850 rc = avc_has_perm(&selinux_state, 1851 sid, isec->sid, isec->sclass, av, &ad); 1852 return rc; 1853 } 1854 1855 static inline int may_rename(struct inode *old_dir, 1856 struct dentry *old_dentry, 1857 struct inode *new_dir, 1858 struct dentry *new_dentry) 1859 { 1860 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1861 struct common_audit_data ad; 1862 u32 sid = current_sid(); 1863 u32 av; 1864 int old_is_dir, new_is_dir; 1865 int rc; 1866 1867 old_dsec = inode_security(old_dir); 1868 old_isec = backing_inode_security(old_dentry); 1869 old_is_dir = d_is_dir(old_dentry); 1870 new_dsec = inode_security(new_dir); 1871 1872 ad.type = LSM_AUDIT_DATA_DENTRY; 1873 1874 ad.u.dentry = old_dentry; 1875 rc = avc_has_perm(&selinux_state, 1876 sid, old_dsec->sid, SECCLASS_DIR, 1877 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1878 if (rc) 1879 return rc; 1880 rc = avc_has_perm(&selinux_state, 1881 sid, old_isec->sid, 1882 old_isec->sclass, FILE__RENAME, &ad); 1883 if (rc) 1884 return rc; 1885 if (old_is_dir && new_dir != old_dir) { 1886 rc = avc_has_perm(&selinux_state, 1887 sid, old_isec->sid, 1888 old_isec->sclass, DIR__REPARENT, &ad); 1889 if (rc) 1890 return rc; 1891 } 1892 1893 ad.u.dentry = new_dentry; 1894 av = DIR__ADD_NAME | DIR__SEARCH; 1895 if (d_is_positive(new_dentry)) 1896 av |= DIR__REMOVE_NAME; 1897 rc = avc_has_perm(&selinux_state, 1898 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1899 if (rc) 1900 return rc; 1901 if (d_is_positive(new_dentry)) { 1902 new_isec = backing_inode_security(new_dentry); 1903 new_is_dir = d_is_dir(new_dentry); 1904 rc = avc_has_perm(&selinux_state, 1905 sid, new_isec->sid, 1906 new_isec->sclass, 1907 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1908 if (rc) 1909 return rc; 1910 } 1911 1912 return 0; 1913 } 1914 1915 /* Check whether a task can perform a filesystem operation. */ 1916 static int superblock_has_perm(const struct cred *cred, 1917 struct super_block *sb, 1918 u32 perms, 1919 struct common_audit_data *ad) 1920 { 1921 struct superblock_security_struct *sbsec; 1922 u32 sid = cred_sid(cred); 1923 1924 sbsec = sb->s_security; 1925 return avc_has_perm(&selinux_state, 1926 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1927 } 1928 1929 /* Convert a Linux mode and permission mask to an access vector. */ 1930 static inline u32 file_mask_to_av(int mode, int mask) 1931 { 1932 u32 av = 0; 1933 1934 if (!S_ISDIR(mode)) { 1935 if (mask & MAY_EXEC) 1936 av |= FILE__EXECUTE; 1937 if (mask & MAY_READ) 1938 av |= FILE__READ; 1939 1940 if (mask & MAY_APPEND) 1941 av |= FILE__APPEND; 1942 else if (mask & MAY_WRITE) 1943 av |= FILE__WRITE; 1944 1945 } else { 1946 if (mask & MAY_EXEC) 1947 av |= DIR__SEARCH; 1948 if (mask & MAY_WRITE) 1949 av |= DIR__WRITE; 1950 if (mask & MAY_READ) 1951 av |= DIR__READ; 1952 } 1953 1954 return av; 1955 } 1956 1957 /* Convert a Linux file to an access vector. */ 1958 static inline u32 file_to_av(struct file *file) 1959 { 1960 u32 av = 0; 1961 1962 if (file->f_mode & FMODE_READ) 1963 av |= FILE__READ; 1964 if (file->f_mode & FMODE_WRITE) { 1965 if (file->f_flags & O_APPEND) 1966 av |= FILE__APPEND; 1967 else 1968 av |= FILE__WRITE; 1969 } 1970 if (!av) { 1971 /* 1972 * Special file opened with flags 3 for ioctl-only use. 1973 */ 1974 av = FILE__IOCTL; 1975 } 1976 1977 return av; 1978 } 1979 1980 /* 1981 * Convert a file to an access vector and include the correct open 1982 * open permission. 1983 */ 1984 static inline u32 open_file_to_av(struct file *file) 1985 { 1986 u32 av = file_to_av(file); 1987 struct inode *inode = file_inode(file); 1988 1989 if (selinux_policycap_openperm() && 1990 inode->i_sb->s_magic != SOCKFS_MAGIC) 1991 av |= FILE__OPEN; 1992 1993 return av; 1994 } 1995 1996 /* Hook functions begin here. */ 1997 1998 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1999 { 2000 u32 mysid = current_sid(); 2001 u32 mgrsid = task_sid(mgr); 2002 2003 return avc_has_perm(&selinux_state, 2004 mysid, mgrsid, SECCLASS_BINDER, 2005 BINDER__SET_CONTEXT_MGR, NULL); 2006 } 2007 2008 static int selinux_binder_transaction(struct task_struct *from, 2009 struct task_struct *to) 2010 { 2011 u32 mysid = current_sid(); 2012 u32 fromsid = task_sid(from); 2013 u32 tosid = task_sid(to); 2014 int rc; 2015 2016 if (mysid != fromsid) { 2017 rc = avc_has_perm(&selinux_state, 2018 mysid, fromsid, SECCLASS_BINDER, 2019 BINDER__IMPERSONATE, NULL); 2020 if (rc) 2021 return rc; 2022 } 2023 2024 return avc_has_perm(&selinux_state, 2025 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2026 NULL); 2027 } 2028 2029 static int selinux_binder_transfer_binder(struct task_struct *from, 2030 struct task_struct *to) 2031 { 2032 u32 fromsid = task_sid(from); 2033 u32 tosid = task_sid(to); 2034 2035 return avc_has_perm(&selinux_state, 2036 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2037 NULL); 2038 } 2039 2040 static int selinux_binder_transfer_file(struct task_struct *from, 2041 struct task_struct *to, 2042 struct file *file) 2043 { 2044 u32 sid = task_sid(to); 2045 struct file_security_struct *fsec = selinux_file(file); 2046 struct dentry *dentry = file->f_path.dentry; 2047 struct inode_security_struct *isec; 2048 struct common_audit_data ad; 2049 int rc; 2050 2051 ad.type = LSM_AUDIT_DATA_PATH; 2052 ad.u.path = file->f_path; 2053 2054 if (sid != fsec->sid) { 2055 rc = avc_has_perm(&selinux_state, 2056 sid, fsec->sid, 2057 SECCLASS_FD, 2058 FD__USE, 2059 &ad); 2060 if (rc) 2061 return rc; 2062 } 2063 2064 #ifdef CONFIG_BPF_SYSCALL 2065 rc = bpf_fd_pass(file, sid); 2066 if (rc) 2067 return rc; 2068 #endif 2069 2070 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2071 return 0; 2072 2073 isec = backing_inode_security(dentry); 2074 return avc_has_perm(&selinux_state, 2075 sid, isec->sid, isec->sclass, file_to_av(file), 2076 &ad); 2077 } 2078 2079 static int selinux_ptrace_access_check(struct task_struct *child, 2080 unsigned int mode) 2081 { 2082 u32 sid = current_sid(); 2083 u32 csid = task_sid(child); 2084 2085 if (mode & PTRACE_MODE_READ) 2086 return avc_has_perm(&selinux_state, 2087 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2088 2089 return avc_has_perm(&selinux_state, 2090 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2091 } 2092 2093 static int selinux_ptrace_traceme(struct task_struct *parent) 2094 { 2095 return avc_has_perm(&selinux_state, 2096 task_sid(parent), current_sid(), SECCLASS_PROCESS, 2097 PROCESS__PTRACE, NULL); 2098 } 2099 2100 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2101 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2102 { 2103 return avc_has_perm(&selinux_state, 2104 current_sid(), task_sid(target), SECCLASS_PROCESS, 2105 PROCESS__GETCAP, NULL); 2106 } 2107 2108 static int selinux_capset(struct cred *new, const struct cred *old, 2109 const kernel_cap_t *effective, 2110 const kernel_cap_t *inheritable, 2111 const kernel_cap_t *permitted) 2112 { 2113 return avc_has_perm(&selinux_state, 2114 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2115 PROCESS__SETCAP, NULL); 2116 } 2117 2118 /* 2119 * (This comment used to live with the selinux_task_setuid hook, 2120 * which was removed). 2121 * 2122 * Since setuid only affects the current process, and since the SELinux 2123 * controls are not based on the Linux identity attributes, SELinux does not 2124 * need to control this operation. However, SELinux does control the use of 2125 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2126 */ 2127 2128 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2129 int cap, unsigned int opts) 2130 { 2131 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2132 } 2133 2134 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2135 { 2136 const struct cred *cred = current_cred(); 2137 int rc = 0; 2138 2139 if (!sb) 2140 return 0; 2141 2142 switch (cmds) { 2143 case Q_SYNC: 2144 case Q_QUOTAON: 2145 case Q_QUOTAOFF: 2146 case Q_SETINFO: 2147 case Q_SETQUOTA: 2148 case Q_XQUOTAOFF: 2149 case Q_XQUOTAON: 2150 case Q_XSETQLIM: 2151 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2152 break; 2153 case Q_GETFMT: 2154 case Q_GETINFO: 2155 case Q_GETQUOTA: 2156 case Q_XGETQUOTA: 2157 case Q_XGETQSTAT: 2158 case Q_XGETQSTATV: 2159 case Q_XGETNEXTQUOTA: 2160 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2161 break; 2162 default: 2163 rc = 0; /* let the kernel handle invalid cmds */ 2164 break; 2165 } 2166 return rc; 2167 } 2168 2169 static int selinux_quota_on(struct dentry *dentry) 2170 { 2171 const struct cred *cred = current_cred(); 2172 2173 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2174 } 2175 2176 static int selinux_syslog(int type) 2177 { 2178 switch (type) { 2179 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2180 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2181 return avc_has_perm(&selinux_state, 2182 current_sid(), SECINITSID_KERNEL, 2183 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2184 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2185 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2186 /* Set level of messages printed to console */ 2187 case SYSLOG_ACTION_CONSOLE_LEVEL: 2188 return avc_has_perm(&selinux_state, 2189 current_sid(), SECINITSID_KERNEL, 2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2191 NULL); 2192 } 2193 /* All other syslog types */ 2194 return avc_has_perm(&selinux_state, 2195 current_sid(), SECINITSID_KERNEL, 2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2197 } 2198 2199 /* 2200 * Check that a process has enough memory to allocate a new virtual 2201 * mapping. 0 means there is enough memory for the allocation to 2202 * succeed and -ENOMEM implies there is not. 2203 * 2204 * Do not audit the selinux permission check, as this is applied to all 2205 * processes that allocate mappings. 2206 */ 2207 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2208 { 2209 int rc, cap_sys_admin = 0; 2210 2211 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2212 CAP_OPT_NOAUDIT, true); 2213 if (rc == 0) 2214 cap_sys_admin = 1; 2215 2216 return cap_sys_admin; 2217 } 2218 2219 /* binprm security operations */ 2220 2221 static u32 ptrace_parent_sid(void) 2222 { 2223 u32 sid = 0; 2224 struct task_struct *tracer; 2225 2226 rcu_read_lock(); 2227 tracer = ptrace_parent(current); 2228 if (tracer) 2229 sid = task_sid(tracer); 2230 rcu_read_unlock(); 2231 2232 return sid; 2233 } 2234 2235 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2236 const struct task_security_struct *old_tsec, 2237 const struct task_security_struct *new_tsec) 2238 { 2239 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2240 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2241 int rc; 2242 u32 av; 2243 2244 if (!nnp && !nosuid) 2245 return 0; /* neither NNP nor nosuid */ 2246 2247 if (new_tsec->sid == old_tsec->sid) 2248 return 0; /* No change in credentials */ 2249 2250 /* 2251 * If the policy enables the nnp_nosuid_transition policy capability, 2252 * then we permit transitions under NNP or nosuid if the 2253 * policy allows the corresponding permission between 2254 * the old and new contexts. 2255 */ 2256 if (selinux_policycap_nnp_nosuid_transition()) { 2257 av = 0; 2258 if (nnp) 2259 av |= PROCESS2__NNP_TRANSITION; 2260 if (nosuid) 2261 av |= PROCESS2__NOSUID_TRANSITION; 2262 rc = avc_has_perm(&selinux_state, 2263 old_tsec->sid, new_tsec->sid, 2264 SECCLASS_PROCESS2, av, NULL); 2265 if (!rc) 2266 return 0; 2267 } 2268 2269 /* 2270 * We also permit NNP or nosuid transitions to bounded SIDs, 2271 * i.e. SIDs that are guaranteed to only be allowed a subset 2272 * of the permissions of the current SID. 2273 */ 2274 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2275 new_tsec->sid); 2276 if (!rc) 2277 return 0; 2278 2279 /* 2280 * On failure, preserve the errno values for NNP vs nosuid. 2281 * NNP: Operation not permitted for caller. 2282 * nosuid: Permission denied to file. 2283 */ 2284 if (nnp) 2285 return -EPERM; 2286 return -EACCES; 2287 } 2288 2289 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2290 { 2291 const struct task_security_struct *old_tsec; 2292 struct task_security_struct *new_tsec; 2293 struct inode_security_struct *isec; 2294 struct common_audit_data ad; 2295 struct inode *inode = file_inode(bprm->file); 2296 int rc; 2297 2298 /* SELinux context only depends on initial program or script and not 2299 * the script interpreter */ 2300 2301 old_tsec = selinux_cred(current_cred()); 2302 new_tsec = selinux_cred(bprm->cred); 2303 isec = inode_security(inode); 2304 2305 /* Default to the current task SID. */ 2306 new_tsec->sid = old_tsec->sid; 2307 new_tsec->osid = old_tsec->sid; 2308 2309 /* Reset fs, key, and sock SIDs on execve. */ 2310 new_tsec->create_sid = 0; 2311 new_tsec->keycreate_sid = 0; 2312 new_tsec->sockcreate_sid = 0; 2313 2314 if (old_tsec->exec_sid) { 2315 new_tsec->sid = old_tsec->exec_sid; 2316 /* Reset exec SID on execve. */ 2317 new_tsec->exec_sid = 0; 2318 2319 /* Fail on NNP or nosuid if not an allowed transition. */ 2320 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2321 if (rc) 2322 return rc; 2323 } else { 2324 /* Check for a default transition on this program. */ 2325 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2326 isec->sid, SECCLASS_PROCESS, NULL, 2327 &new_tsec->sid); 2328 if (rc) 2329 return rc; 2330 2331 /* 2332 * Fallback to old SID on NNP or nosuid if not an allowed 2333 * transition. 2334 */ 2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2336 if (rc) 2337 new_tsec->sid = old_tsec->sid; 2338 } 2339 2340 ad.type = LSM_AUDIT_DATA_FILE; 2341 ad.u.file = bprm->file; 2342 2343 if (new_tsec->sid == old_tsec->sid) { 2344 rc = avc_has_perm(&selinux_state, 2345 old_tsec->sid, isec->sid, 2346 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2347 if (rc) 2348 return rc; 2349 } else { 2350 /* Check permissions for the transition. */ 2351 rc = avc_has_perm(&selinux_state, 2352 old_tsec->sid, new_tsec->sid, 2353 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2354 if (rc) 2355 return rc; 2356 2357 rc = avc_has_perm(&selinux_state, 2358 new_tsec->sid, isec->sid, 2359 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2360 if (rc) 2361 return rc; 2362 2363 /* Check for shared state */ 2364 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2365 rc = avc_has_perm(&selinux_state, 2366 old_tsec->sid, new_tsec->sid, 2367 SECCLASS_PROCESS, PROCESS__SHARE, 2368 NULL); 2369 if (rc) 2370 return -EPERM; 2371 } 2372 2373 /* Make sure that anyone attempting to ptrace over a task that 2374 * changes its SID has the appropriate permit */ 2375 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2376 u32 ptsid = ptrace_parent_sid(); 2377 if (ptsid != 0) { 2378 rc = avc_has_perm(&selinux_state, 2379 ptsid, new_tsec->sid, 2380 SECCLASS_PROCESS, 2381 PROCESS__PTRACE, NULL); 2382 if (rc) 2383 return -EPERM; 2384 } 2385 } 2386 2387 /* Clear any possibly unsafe personality bits on exec: */ 2388 bprm->per_clear |= PER_CLEAR_ON_SETID; 2389 2390 /* Enable secure mode for SIDs transitions unless 2391 the noatsecure permission is granted between 2392 the two SIDs, i.e. ahp returns 0. */ 2393 rc = avc_has_perm(&selinux_state, 2394 old_tsec->sid, new_tsec->sid, 2395 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2396 NULL); 2397 bprm->secureexec |= !!rc; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int match_file(const void *p, struct file *file, unsigned fd) 2404 { 2405 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2406 } 2407 2408 /* Derived from fs/exec.c:flush_old_files. */ 2409 static inline void flush_unauthorized_files(const struct cred *cred, 2410 struct files_struct *files) 2411 { 2412 struct file *file, *devnull = NULL; 2413 struct tty_struct *tty; 2414 int drop_tty = 0; 2415 unsigned n; 2416 2417 tty = get_current_tty(); 2418 if (tty) { 2419 spin_lock(&tty->files_lock); 2420 if (!list_empty(&tty->tty_files)) { 2421 struct tty_file_private *file_priv; 2422 2423 /* Revalidate access to controlling tty. 2424 Use file_path_has_perm on the tty path directly 2425 rather than using file_has_perm, as this particular 2426 open file may belong to another process and we are 2427 only interested in the inode-based check here. */ 2428 file_priv = list_first_entry(&tty->tty_files, 2429 struct tty_file_private, list); 2430 file = file_priv->file; 2431 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2432 drop_tty = 1; 2433 } 2434 spin_unlock(&tty->files_lock); 2435 tty_kref_put(tty); 2436 } 2437 /* Reset controlling tty. */ 2438 if (drop_tty) 2439 no_tty(); 2440 2441 /* Revalidate access to inherited open files. */ 2442 n = iterate_fd(files, 0, match_file, cred); 2443 if (!n) /* none found? */ 2444 return; 2445 2446 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2447 if (IS_ERR(devnull)) 2448 devnull = NULL; 2449 /* replace all the matching ones with this */ 2450 do { 2451 replace_fd(n - 1, devnull, 0); 2452 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2453 if (devnull) 2454 fput(devnull); 2455 } 2456 2457 /* 2458 * Prepare a process for imminent new credential changes due to exec 2459 */ 2460 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2461 { 2462 struct task_security_struct *new_tsec; 2463 struct rlimit *rlim, *initrlim; 2464 int rc, i; 2465 2466 new_tsec = selinux_cred(bprm->cred); 2467 if (new_tsec->sid == new_tsec->osid) 2468 return; 2469 2470 /* Close files for which the new task SID is not authorized. */ 2471 flush_unauthorized_files(bprm->cred, current->files); 2472 2473 /* Always clear parent death signal on SID transitions. */ 2474 current->pdeath_signal = 0; 2475 2476 /* Check whether the new SID can inherit resource limits from the old 2477 * SID. If not, reset all soft limits to the lower of the current 2478 * task's hard limit and the init task's soft limit. 2479 * 2480 * Note that the setting of hard limits (even to lower them) can be 2481 * controlled by the setrlimit check. The inclusion of the init task's 2482 * soft limit into the computation is to avoid resetting soft limits 2483 * higher than the default soft limit for cases where the default is 2484 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2485 */ 2486 rc = avc_has_perm(&selinux_state, 2487 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2488 PROCESS__RLIMITINH, NULL); 2489 if (rc) { 2490 /* protect against do_prlimit() */ 2491 task_lock(current); 2492 for (i = 0; i < RLIM_NLIMITS; i++) { 2493 rlim = current->signal->rlim + i; 2494 initrlim = init_task.signal->rlim + i; 2495 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2496 } 2497 task_unlock(current); 2498 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2499 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2500 } 2501 } 2502 2503 /* 2504 * Clean up the process immediately after the installation of new credentials 2505 * due to exec 2506 */ 2507 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2508 { 2509 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2510 u32 osid, sid; 2511 int rc; 2512 2513 osid = tsec->osid; 2514 sid = tsec->sid; 2515 2516 if (sid == osid) 2517 return; 2518 2519 /* Check whether the new SID can inherit signal state from the old SID. 2520 * If not, clear itimers to avoid subsequent signal generation and 2521 * flush and unblock signals. 2522 * 2523 * This must occur _after_ the task SID has been updated so that any 2524 * kill done after the flush will be checked against the new SID. 2525 */ 2526 rc = avc_has_perm(&selinux_state, 2527 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2528 if (rc) { 2529 clear_itimer(); 2530 2531 spin_lock_irq(¤t->sighand->siglock); 2532 if (!fatal_signal_pending(current)) { 2533 flush_sigqueue(¤t->pending); 2534 flush_sigqueue(¤t->signal->shared_pending); 2535 flush_signal_handlers(current, 1); 2536 sigemptyset(¤t->blocked); 2537 recalc_sigpending(); 2538 } 2539 spin_unlock_irq(¤t->sighand->siglock); 2540 } 2541 2542 /* Wake up the parent if it is waiting so that it can recheck 2543 * wait permission to the new task SID. */ 2544 read_lock(&tasklist_lock); 2545 __wake_up_parent(current, current->real_parent); 2546 read_unlock(&tasklist_lock); 2547 } 2548 2549 /* superblock security operations */ 2550 2551 static int selinux_sb_alloc_security(struct super_block *sb) 2552 { 2553 struct superblock_security_struct *sbsec; 2554 2555 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 2556 if (!sbsec) 2557 return -ENOMEM; 2558 2559 mutex_init(&sbsec->lock); 2560 INIT_LIST_HEAD(&sbsec->isec_head); 2561 spin_lock_init(&sbsec->isec_lock); 2562 sbsec->sb = sb; 2563 sbsec->sid = SECINITSID_UNLABELED; 2564 sbsec->def_sid = SECINITSID_FILE; 2565 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2566 sb->s_security = sbsec; 2567 2568 return 0; 2569 } 2570 2571 static void selinux_sb_free_security(struct super_block *sb) 2572 { 2573 superblock_free_security(sb); 2574 } 2575 2576 static inline int opt_len(const char *s) 2577 { 2578 bool open_quote = false; 2579 int len; 2580 char c; 2581 2582 for (len = 0; (c = s[len]) != '\0'; len++) { 2583 if (c == '"') 2584 open_quote = !open_quote; 2585 if (c == ',' && !open_quote) 2586 break; 2587 } 2588 return len; 2589 } 2590 2591 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2592 { 2593 char *from = options; 2594 char *to = options; 2595 bool first = true; 2596 int rc; 2597 2598 while (1) { 2599 int len = opt_len(from); 2600 int token; 2601 char *arg = NULL; 2602 2603 token = match_opt_prefix(from, len, &arg); 2604 2605 if (token != Opt_error) { 2606 char *p, *q; 2607 2608 /* strip quotes */ 2609 if (arg) { 2610 for (p = q = arg; p < from + len; p++) { 2611 char c = *p; 2612 if (c != '"') 2613 *q++ = c; 2614 } 2615 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2616 if (!arg) { 2617 rc = -ENOMEM; 2618 goto free_opt; 2619 } 2620 } 2621 rc = selinux_add_opt(token, arg, mnt_opts); 2622 if (unlikely(rc)) { 2623 kfree(arg); 2624 goto free_opt; 2625 } 2626 } else { 2627 if (!first) { // copy with preceding comma 2628 from--; 2629 len++; 2630 } 2631 if (to != from) 2632 memmove(to, from, len); 2633 to += len; 2634 first = false; 2635 } 2636 if (!from[len]) 2637 break; 2638 from += len + 1; 2639 } 2640 *to = '\0'; 2641 return 0; 2642 2643 free_opt: 2644 if (*mnt_opts) { 2645 selinux_free_mnt_opts(*mnt_opts); 2646 *mnt_opts = NULL; 2647 } 2648 return rc; 2649 } 2650 2651 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2652 { 2653 struct selinux_mnt_opts *opts = mnt_opts; 2654 struct superblock_security_struct *sbsec = sb->s_security; 2655 u32 sid; 2656 int rc; 2657 2658 if (!(sbsec->flags & SE_SBINITIALIZED)) 2659 return 0; 2660 2661 if (!opts) 2662 return 0; 2663 2664 if (opts->fscontext) { 2665 rc = parse_sid(sb, opts->fscontext, &sid); 2666 if (rc) 2667 return rc; 2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2669 goto out_bad_option; 2670 } 2671 if (opts->context) { 2672 rc = parse_sid(sb, opts->context, &sid); 2673 if (rc) 2674 return rc; 2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2676 goto out_bad_option; 2677 } 2678 if (opts->rootcontext) { 2679 struct inode_security_struct *root_isec; 2680 root_isec = backing_inode_security(sb->s_root); 2681 rc = parse_sid(sb, opts->rootcontext, &sid); 2682 if (rc) 2683 return rc; 2684 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2685 goto out_bad_option; 2686 } 2687 if (opts->defcontext) { 2688 rc = parse_sid(sb, opts->defcontext, &sid); 2689 if (rc) 2690 return rc; 2691 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2692 goto out_bad_option; 2693 } 2694 return 0; 2695 2696 out_bad_option: 2697 pr_warn("SELinux: unable to change security options " 2698 "during remount (dev %s, type=%s)\n", sb->s_id, 2699 sb->s_type->name); 2700 return -EINVAL; 2701 } 2702 2703 static int selinux_sb_kern_mount(struct super_block *sb) 2704 { 2705 const struct cred *cred = current_cred(); 2706 struct common_audit_data ad; 2707 2708 ad.type = LSM_AUDIT_DATA_DENTRY; 2709 ad.u.dentry = sb->s_root; 2710 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2711 } 2712 2713 static int selinux_sb_statfs(struct dentry *dentry) 2714 { 2715 const struct cred *cred = current_cred(); 2716 struct common_audit_data ad; 2717 2718 ad.type = LSM_AUDIT_DATA_DENTRY; 2719 ad.u.dentry = dentry->d_sb->s_root; 2720 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2721 } 2722 2723 static int selinux_mount(const char *dev_name, 2724 const struct path *path, 2725 const char *type, 2726 unsigned long flags, 2727 void *data) 2728 { 2729 const struct cred *cred = current_cred(); 2730 2731 if (flags & MS_REMOUNT) 2732 return superblock_has_perm(cred, path->dentry->d_sb, 2733 FILESYSTEM__REMOUNT, NULL); 2734 else 2735 return path_has_perm(cred, path, FILE__MOUNTON); 2736 } 2737 2738 static int selinux_move_mount(const struct path *from_path, 2739 const struct path *to_path) 2740 { 2741 const struct cred *cred = current_cred(); 2742 2743 return path_has_perm(cred, to_path, FILE__MOUNTON); 2744 } 2745 2746 static int selinux_umount(struct vfsmount *mnt, int flags) 2747 { 2748 const struct cred *cred = current_cred(); 2749 2750 return superblock_has_perm(cred, mnt->mnt_sb, 2751 FILESYSTEM__UNMOUNT, NULL); 2752 } 2753 2754 static int selinux_fs_context_dup(struct fs_context *fc, 2755 struct fs_context *src_fc) 2756 { 2757 const struct selinux_mnt_opts *src = src_fc->security; 2758 struct selinux_mnt_opts *opts; 2759 2760 if (!src) 2761 return 0; 2762 2763 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 2764 if (!fc->security) 2765 return -ENOMEM; 2766 2767 opts = fc->security; 2768 2769 if (src->fscontext) { 2770 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); 2771 if (!opts->fscontext) 2772 return -ENOMEM; 2773 } 2774 if (src->context) { 2775 opts->context = kstrdup(src->context, GFP_KERNEL); 2776 if (!opts->context) 2777 return -ENOMEM; 2778 } 2779 if (src->rootcontext) { 2780 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); 2781 if (!opts->rootcontext) 2782 return -ENOMEM; 2783 } 2784 if (src->defcontext) { 2785 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); 2786 if (!opts->defcontext) 2787 return -ENOMEM; 2788 } 2789 return 0; 2790 } 2791 2792 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2793 fsparam_string(CONTEXT_STR, Opt_context), 2794 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2795 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2796 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2797 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2798 {} 2799 }; 2800 2801 static int selinux_fs_context_parse_param(struct fs_context *fc, 2802 struct fs_parameter *param) 2803 { 2804 struct fs_parse_result result; 2805 int opt, rc; 2806 2807 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2808 if (opt < 0) 2809 return opt; 2810 2811 rc = selinux_add_opt(opt, param->string, &fc->security); 2812 if (!rc) { 2813 param->string = NULL; 2814 rc = 1; 2815 } 2816 return rc; 2817 } 2818 2819 /* inode security operations */ 2820 2821 static int selinux_inode_alloc_security(struct inode *inode) 2822 { 2823 struct inode_security_struct *isec = selinux_inode(inode); 2824 u32 sid = current_sid(); 2825 2826 spin_lock_init(&isec->lock); 2827 INIT_LIST_HEAD(&isec->list); 2828 isec->inode = inode; 2829 isec->sid = SECINITSID_UNLABELED; 2830 isec->sclass = SECCLASS_FILE; 2831 isec->task_sid = sid; 2832 isec->initialized = LABEL_INVALID; 2833 2834 return 0; 2835 } 2836 2837 static void selinux_inode_free_security(struct inode *inode) 2838 { 2839 inode_free_security(inode); 2840 } 2841 2842 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2843 const struct qstr *name, void **ctx, 2844 u32 *ctxlen) 2845 { 2846 u32 newsid; 2847 int rc; 2848 2849 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2850 d_inode(dentry->d_parent), name, 2851 inode_mode_to_security_class(mode), 2852 &newsid); 2853 if (rc) 2854 return rc; 2855 2856 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2857 ctxlen); 2858 } 2859 2860 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2861 struct qstr *name, 2862 const struct cred *old, 2863 struct cred *new) 2864 { 2865 u32 newsid; 2866 int rc; 2867 struct task_security_struct *tsec; 2868 2869 rc = selinux_determine_inode_label(selinux_cred(old), 2870 d_inode(dentry->d_parent), name, 2871 inode_mode_to_security_class(mode), 2872 &newsid); 2873 if (rc) 2874 return rc; 2875 2876 tsec = selinux_cred(new); 2877 tsec->create_sid = newsid; 2878 return 0; 2879 } 2880 2881 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2882 const struct qstr *qstr, 2883 const char **name, 2884 void **value, size_t *len) 2885 { 2886 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2887 struct superblock_security_struct *sbsec; 2888 u32 newsid, clen; 2889 int rc; 2890 char *context; 2891 2892 sbsec = dir->i_sb->s_security; 2893 2894 newsid = tsec->create_sid; 2895 2896 rc = selinux_determine_inode_label(tsec, dir, qstr, 2897 inode_mode_to_security_class(inode->i_mode), 2898 &newsid); 2899 if (rc) 2900 return rc; 2901 2902 /* Possibly defer initialization to selinux_complete_init. */ 2903 if (sbsec->flags & SE_SBINITIALIZED) { 2904 struct inode_security_struct *isec = selinux_inode(inode); 2905 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2906 isec->sid = newsid; 2907 isec->initialized = LABEL_INITIALIZED; 2908 } 2909 2910 if (!selinux_initialized(&selinux_state) || 2911 !(sbsec->flags & SBLABEL_MNT)) 2912 return -EOPNOTSUPP; 2913 2914 if (name) 2915 *name = XATTR_SELINUX_SUFFIX; 2916 2917 if (value && len) { 2918 rc = security_sid_to_context_force(&selinux_state, newsid, 2919 &context, &clen); 2920 if (rc) 2921 return rc; 2922 *value = context; 2923 *len = clen; 2924 } 2925 2926 return 0; 2927 } 2928 2929 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2930 { 2931 return may_create(dir, dentry, SECCLASS_FILE); 2932 } 2933 2934 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2935 { 2936 return may_link(dir, old_dentry, MAY_LINK); 2937 } 2938 2939 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2940 { 2941 return may_link(dir, dentry, MAY_UNLINK); 2942 } 2943 2944 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2945 { 2946 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2947 } 2948 2949 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2950 { 2951 return may_create(dir, dentry, SECCLASS_DIR); 2952 } 2953 2954 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2955 { 2956 return may_link(dir, dentry, MAY_RMDIR); 2957 } 2958 2959 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2960 { 2961 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2962 } 2963 2964 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2965 struct inode *new_inode, struct dentry *new_dentry) 2966 { 2967 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2968 } 2969 2970 static int selinux_inode_readlink(struct dentry *dentry) 2971 { 2972 const struct cred *cred = current_cred(); 2973 2974 return dentry_has_perm(cred, dentry, FILE__READ); 2975 } 2976 2977 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2978 bool rcu) 2979 { 2980 const struct cred *cred = current_cred(); 2981 struct common_audit_data ad; 2982 struct inode_security_struct *isec; 2983 u32 sid; 2984 2985 validate_creds(cred); 2986 2987 ad.type = LSM_AUDIT_DATA_DENTRY; 2988 ad.u.dentry = dentry; 2989 sid = cred_sid(cred); 2990 isec = inode_security_rcu(inode, rcu); 2991 if (IS_ERR(isec)) 2992 return PTR_ERR(isec); 2993 2994 return avc_has_perm_flags(&selinux_state, 2995 sid, isec->sid, isec->sclass, FILE__READ, &ad, 2996 rcu ? MAY_NOT_BLOCK : 0); 2997 } 2998 2999 static noinline int audit_inode_permission(struct inode *inode, 3000 u32 perms, u32 audited, u32 denied, 3001 int result) 3002 { 3003 struct common_audit_data ad; 3004 struct inode_security_struct *isec = selinux_inode(inode); 3005 int rc; 3006 3007 ad.type = LSM_AUDIT_DATA_INODE; 3008 ad.u.inode = inode; 3009 3010 rc = slow_avc_audit(&selinux_state, 3011 current_sid(), isec->sid, isec->sclass, perms, 3012 audited, denied, result, &ad); 3013 if (rc) 3014 return rc; 3015 return 0; 3016 } 3017 3018 static int selinux_inode_permission(struct inode *inode, int mask) 3019 { 3020 const struct cred *cred = current_cred(); 3021 u32 perms; 3022 bool from_access; 3023 bool no_block = mask & MAY_NOT_BLOCK; 3024 struct inode_security_struct *isec; 3025 u32 sid; 3026 struct av_decision avd; 3027 int rc, rc2; 3028 u32 audited, denied; 3029 3030 from_access = mask & MAY_ACCESS; 3031 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3032 3033 /* No permission to check. Existence test. */ 3034 if (!mask) 3035 return 0; 3036 3037 validate_creds(cred); 3038 3039 if (unlikely(IS_PRIVATE(inode))) 3040 return 0; 3041 3042 perms = file_mask_to_av(inode->i_mode, mask); 3043 3044 sid = cred_sid(cred); 3045 isec = inode_security_rcu(inode, no_block); 3046 if (IS_ERR(isec)) 3047 return PTR_ERR(isec); 3048 3049 rc = avc_has_perm_noaudit(&selinux_state, 3050 sid, isec->sid, isec->sclass, perms, 3051 no_block ? AVC_NONBLOCKING : 0, 3052 &avd); 3053 audited = avc_audit_required(perms, &avd, rc, 3054 from_access ? FILE__AUDIT_ACCESS : 0, 3055 &denied); 3056 if (likely(!audited)) 3057 return rc; 3058 3059 /* fall back to ref-walk if we have to generate audit */ 3060 if (no_block) 3061 return -ECHILD; 3062 3063 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3064 if (rc2) 3065 return rc2; 3066 return rc; 3067 } 3068 3069 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3070 { 3071 const struct cred *cred = current_cred(); 3072 struct inode *inode = d_backing_inode(dentry); 3073 unsigned int ia_valid = iattr->ia_valid; 3074 __u32 av = FILE__WRITE; 3075 3076 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3077 if (ia_valid & ATTR_FORCE) { 3078 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3079 ATTR_FORCE); 3080 if (!ia_valid) 3081 return 0; 3082 } 3083 3084 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3085 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3086 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3087 3088 if (selinux_policycap_openperm() && 3089 inode->i_sb->s_magic != SOCKFS_MAGIC && 3090 (ia_valid & ATTR_SIZE) && 3091 !(ia_valid & ATTR_FILE)) 3092 av |= FILE__OPEN; 3093 3094 return dentry_has_perm(cred, dentry, av); 3095 } 3096 3097 static int selinux_inode_getattr(const struct path *path) 3098 { 3099 return path_has_perm(current_cred(), path, FILE__GETATTR); 3100 } 3101 3102 static bool has_cap_mac_admin(bool audit) 3103 { 3104 const struct cred *cred = current_cred(); 3105 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3106 3107 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3108 return false; 3109 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3110 return false; 3111 return true; 3112 } 3113 3114 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3115 const void *value, size_t size, int flags) 3116 { 3117 struct inode *inode = d_backing_inode(dentry); 3118 struct inode_security_struct *isec; 3119 struct superblock_security_struct *sbsec; 3120 struct common_audit_data ad; 3121 u32 newsid, sid = current_sid(); 3122 int rc = 0; 3123 3124 if (strcmp(name, XATTR_NAME_SELINUX)) { 3125 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3126 if (rc) 3127 return rc; 3128 3129 /* Not an attribute we recognize, so just check the 3130 ordinary setattr permission. */ 3131 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3132 } 3133 3134 if (!selinux_initialized(&selinux_state)) 3135 return (inode_owner_or_capable(inode) ? 0 : -EPERM); 3136 3137 sbsec = inode->i_sb->s_security; 3138 if (!(sbsec->flags & SBLABEL_MNT)) 3139 return -EOPNOTSUPP; 3140 3141 if (!inode_owner_or_capable(inode)) 3142 return -EPERM; 3143 3144 ad.type = LSM_AUDIT_DATA_DENTRY; 3145 ad.u.dentry = dentry; 3146 3147 isec = backing_inode_security(dentry); 3148 rc = avc_has_perm(&selinux_state, 3149 sid, isec->sid, isec->sclass, 3150 FILE__RELABELFROM, &ad); 3151 if (rc) 3152 return rc; 3153 3154 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3155 GFP_KERNEL); 3156 if (rc == -EINVAL) { 3157 if (!has_cap_mac_admin(true)) { 3158 struct audit_buffer *ab; 3159 size_t audit_size; 3160 3161 /* We strip a nul only if it is at the end, otherwise the 3162 * context contains a nul and we should audit that */ 3163 if (value) { 3164 const char *str = value; 3165 3166 if (str[size - 1] == '\0') 3167 audit_size = size - 1; 3168 else 3169 audit_size = size; 3170 } else { 3171 audit_size = 0; 3172 } 3173 ab = audit_log_start(audit_context(), 3174 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3175 audit_log_format(ab, "op=setxattr invalid_context="); 3176 audit_log_n_untrustedstring(ab, value, audit_size); 3177 audit_log_end(ab); 3178 3179 return rc; 3180 } 3181 rc = security_context_to_sid_force(&selinux_state, value, 3182 size, &newsid); 3183 } 3184 if (rc) 3185 return rc; 3186 3187 rc = avc_has_perm(&selinux_state, 3188 sid, newsid, isec->sclass, 3189 FILE__RELABELTO, &ad); 3190 if (rc) 3191 return rc; 3192 3193 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3194 sid, isec->sclass); 3195 if (rc) 3196 return rc; 3197 3198 return avc_has_perm(&selinux_state, 3199 newsid, 3200 sbsec->sid, 3201 SECCLASS_FILESYSTEM, 3202 FILESYSTEM__ASSOCIATE, 3203 &ad); 3204 } 3205 3206 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3207 const void *value, size_t size, 3208 int flags) 3209 { 3210 struct inode *inode = d_backing_inode(dentry); 3211 struct inode_security_struct *isec; 3212 u32 newsid; 3213 int rc; 3214 3215 if (strcmp(name, XATTR_NAME_SELINUX)) { 3216 /* Not an attribute we recognize, so nothing to do. */ 3217 return; 3218 } 3219 3220 if (!selinux_initialized(&selinux_state)) { 3221 /* If we haven't even been initialized, then we can't validate 3222 * against a policy, so leave the label as invalid. It may 3223 * resolve to a valid label on the next revalidation try if 3224 * we've since initialized. 3225 */ 3226 return; 3227 } 3228 3229 rc = security_context_to_sid_force(&selinux_state, value, size, 3230 &newsid); 3231 if (rc) { 3232 pr_err("SELinux: unable to map context to SID" 3233 "for (%s, %lu), rc=%d\n", 3234 inode->i_sb->s_id, inode->i_ino, -rc); 3235 return; 3236 } 3237 3238 isec = backing_inode_security(dentry); 3239 spin_lock(&isec->lock); 3240 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3241 isec->sid = newsid; 3242 isec->initialized = LABEL_INITIALIZED; 3243 spin_unlock(&isec->lock); 3244 3245 return; 3246 } 3247 3248 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3249 { 3250 const struct cred *cred = current_cred(); 3251 3252 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3253 } 3254 3255 static int selinux_inode_listxattr(struct dentry *dentry) 3256 { 3257 const struct cred *cred = current_cred(); 3258 3259 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3260 } 3261 3262 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3263 { 3264 if (strcmp(name, XATTR_NAME_SELINUX)) { 3265 int rc = cap_inode_removexattr(dentry, name); 3266 if (rc) 3267 return rc; 3268 3269 /* Not an attribute we recognize, so just check the 3270 ordinary setattr permission. */ 3271 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3272 } 3273 3274 /* No one is allowed to remove a SELinux security label. 3275 You can change the label, but all data must be labeled. */ 3276 return -EACCES; 3277 } 3278 3279 static int selinux_path_notify(const struct path *path, u64 mask, 3280 unsigned int obj_type) 3281 { 3282 int ret; 3283 u32 perm; 3284 3285 struct common_audit_data ad; 3286 3287 ad.type = LSM_AUDIT_DATA_PATH; 3288 ad.u.path = *path; 3289 3290 /* 3291 * Set permission needed based on the type of mark being set. 3292 * Performs an additional check for sb watches. 3293 */ 3294 switch (obj_type) { 3295 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3296 perm = FILE__WATCH_MOUNT; 3297 break; 3298 case FSNOTIFY_OBJ_TYPE_SB: 3299 perm = FILE__WATCH_SB; 3300 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3301 FILESYSTEM__WATCH, &ad); 3302 if (ret) 3303 return ret; 3304 break; 3305 case FSNOTIFY_OBJ_TYPE_INODE: 3306 perm = FILE__WATCH; 3307 break; 3308 default: 3309 return -EINVAL; 3310 } 3311 3312 /* blocking watches require the file:watch_with_perm permission */ 3313 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3314 perm |= FILE__WATCH_WITH_PERM; 3315 3316 /* watches on read-like events need the file:watch_reads permission */ 3317 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3318 perm |= FILE__WATCH_READS; 3319 3320 return path_has_perm(current_cred(), path, perm); 3321 } 3322 3323 /* 3324 * Copy the inode security context value to the user. 3325 * 3326 * Permission check is handled by selinux_inode_getxattr hook. 3327 */ 3328 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3329 { 3330 u32 size; 3331 int error; 3332 char *context = NULL; 3333 struct inode_security_struct *isec; 3334 3335 /* 3336 * If we're not initialized yet, then we can't validate contexts, so 3337 * just let vfs_getxattr fall back to using the on-disk xattr. 3338 */ 3339 if (!selinux_initialized(&selinux_state) || 3340 strcmp(name, XATTR_SELINUX_SUFFIX)) 3341 return -EOPNOTSUPP; 3342 3343 /* 3344 * If the caller has CAP_MAC_ADMIN, then get the raw context 3345 * value even if it is not defined by current policy; otherwise, 3346 * use the in-core value under current policy. 3347 * Use the non-auditing forms of the permission checks since 3348 * getxattr may be called by unprivileged processes commonly 3349 * and lack of permission just means that we fall back to the 3350 * in-core context value, not a denial. 3351 */ 3352 isec = inode_security(inode); 3353 if (has_cap_mac_admin(false)) 3354 error = security_sid_to_context_force(&selinux_state, 3355 isec->sid, &context, 3356 &size); 3357 else 3358 error = security_sid_to_context(&selinux_state, isec->sid, 3359 &context, &size); 3360 if (error) 3361 return error; 3362 error = size; 3363 if (alloc) { 3364 *buffer = context; 3365 goto out_nofree; 3366 } 3367 kfree(context); 3368 out_nofree: 3369 return error; 3370 } 3371 3372 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3373 const void *value, size_t size, int flags) 3374 { 3375 struct inode_security_struct *isec = inode_security_novalidate(inode); 3376 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 3377 u32 newsid; 3378 int rc; 3379 3380 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3381 return -EOPNOTSUPP; 3382 3383 if (!(sbsec->flags & SBLABEL_MNT)) 3384 return -EOPNOTSUPP; 3385 3386 if (!value || !size) 3387 return -EACCES; 3388 3389 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3390 GFP_KERNEL); 3391 if (rc) 3392 return rc; 3393 3394 spin_lock(&isec->lock); 3395 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3396 isec->sid = newsid; 3397 isec->initialized = LABEL_INITIALIZED; 3398 spin_unlock(&isec->lock); 3399 return 0; 3400 } 3401 3402 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3403 { 3404 const int len = sizeof(XATTR_NAME_SELINUX); 3405 if (buffer && len <= buffer_size) 3406 memcpy(buffer, XATTR_NAME_SELINUX, len); 3407 return len; 3408 } 3409 3410 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3411 { 3412 struct inode_security_struct *isec = inode_security_novalidate(inode); 3413 *secid = isec->sid; 3414 } 3415 3416 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3417 { 3418 u32 sid; 3419 struct task_security_struct *tsec; 3420 struct cred *new_creds = *new; 3421 3422 if (new_creds == NULL) { 3423 new_creds = prepare_creds(); 3424 if (!new_creds) 3425 return -ENOMEM; 3426 } 3427 3428 tsec = selinux_cred(new_creds); 3429 /* Get label from overlay inode and set it in create_sid */ 3430 selinux_inode_getsecid(d_inode(src), &sid); 3431 tsec->create_sid = sid; 3432 *new = new_creds; 3433 return 0; 3434 } 3435 3436 static int selinux_inode_copy_up_xattr(const char *name) 3437 { 3438 /* The copy_up hook above sets the initial context on an inode, but we 3439 * don't then want to overwrite it by blindly copying all the lower 3440 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3441 */ 3442 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3443 return 1; /* Discard */ 3444 /* 3445 * Any other attribute apart from SELINUX is not claimed, supported 3446 * by selinux. 3447 */ 3448 return -EOPNOTSUPP; 3449 } 3450 3451 /* kernfs node operations */ 3452 3453 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3454 struct kernfs_node *kn) 3455 { 3456 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3457 u32 parent_sid, newsid, clen; 3458 int rc; 3459 char *context; 3460 3461 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3462 if (rc == -ENODATA) 3463 return 0; 3464 else if (rc < 0) 3465 return rc; 3466 3467 clen = (u32)rc; 3468 context = kmalloc(clen, GFP_KERNEL); 3469 if (!context) 3470 return -ENOMEM; 3471 3472 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3473 if (rc < 0) { 3474 kfree(context); 3475 return rc; 3476 } 3477 3478 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, 3479 GFP_KERNEL); 3480 kfree(context); 3481 if (rc) 3482 return rc; 3483 3484 if (tsec->create_sid) { 3485 newsid = tsec->create_sid; 3486 } else { 3487 u16 secclass = inode_mode_to_security_class(kn->mode); 3488 struct qstr q; 3489 3490 q.name = kn->name; 3491 q.hash_len = hashlen_string(kn_dir, kn->name); 3492 3493 rc = security_transition_sid(&selinux_state, tsec->sid, 3494 parent_sid, secclass, &q, 3495 &newsid); 3496 if (rc) 3497 return rc; 3498 } 3499 3500 rc = security_sid_to_context_force(&selinux_state, newsid, 3501 &context, &clen); 3502 if (rc) 3503 return rc; 3504 3505 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3506 XATTR_CREATE); 3507 kfree(context); 3508 return rc; 3509 } 3510 3511 3512 /* file security operations */ 3513 3514 static int selinux_revalidate_file_permission(struct file *file, int mask) 3515 { 3516 const struct cred *cred = current_cred(); 3517 struct inode *inode = file_inode(file); 3518 3519 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3520 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3521 mask |= MAY_APPEND; 3522 3523 return file_has_perm(cred, file, 3524 file_mask_to_av(inode->i_mode, mask)); 3525 } 3526 3527 static int selinux_file_permission(struct file *file, int mask) 3528 { 3529 struct inode *inode = file_inode(file); 3530 struct file_security_struct *fsec = selinux_file(file); 3531 struct inode_security_struct *isec; 3532 u32 sid = current_sid(); 3533 3534 if (!mask) 3535 /* No permission to check. Existence test. */ 3536 return 0; 3537 3538 isec = inode_security(inode); 3539 if (sid == fsec->sid && fsec->isid == isec->sid && 3540 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3541 /* No change since file_open check. */ 3542 return 0; 3543 3544 return selinux_revalidate_file_permission(file, mask); 3545 } 3546 3547 static int selinux_file_alloc_security(struct file *file) 3548 { 3549 struct file_security_struct *fsec = selinux_file(file); 3550 u32 sid = current_sid(); 3551 3552 fsec->sid = sid; 3553 fsec->fown_sid = sid; 3554 3555 return 0; 3556 } 3557 3558 /* 3559 * Check whether a task has the ioctl permission and cmd 3560 * operation to an inode. 3561 */ 3562 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3563 u32 requested, u16 cmd) 3564 { 3565 struct common_audit_data ad; 3566 struct file_security_struct *fsec = selinux_file(file); 3567 struct inode *inode = file_inode(file); 3568 struct inode_security_struct *isec; 3569 struct lsm_ioctlop_audit ioctl; 3570 u32 ssid = cred_sid(cred); 3571 int rc; 3572 u8 driver = cmd >> 8; 3573 u8 xperm = cmd & 0xff; 3574 3575 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3576 ad.u.op = &ioctl; 3577 ad.u.op->cmd = cmd; 3578 ad.u.op->path = file->f_path; 3579 3580 if (ssid != fsec->sid) { 3581 rc = avc_has_perm(&selinux_state, 3582 ssid, fsec->sid, 3583 SECCLASS_FD, 3584 FD__USE, 3585 &ad); 3586 if (rc) 3587 goto out; 3588 } 3589 3590 if (unlikely(IS_PRIVATE(inode))) 3591 return 0; 3592 3593 isec = inode_security(inode); 3594 rc = avc_has_extended_perms(&selinux_state, 3595 ssid, isec->sid, isec->sclass, 3596 requested, driver, xperm, &ad); 3597 out: 3598 return rc; 3599 } 3600 3601 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3602 unsigned long arg) 3603 { 3604 const struct cred *cred = current_cred(); 3605 int error = 0; 3606 3607 switch (cmd) { 3608 case FIONREAD: 3609 /* fall through */ 3610 case FIBMAP: 3611 /* fall through */ 3612 case FIGETBSZ: 3613 /* fall through */ 3614 case FS_IOC_GETFLAGS: 3615 /* fall through */ 3616 case FS_IOC_GETVERSION: 3617 error = file_has_perm(cred, file, FILE__GETATTR); 3618 break; 3619 3620 case FS_IOC_SETFLAGS: 3621 /* fall through */ 3622 case FS_IOC_SETVERSION: 3623 error = file_has_perm(cred, file, FILE__SETATTR); 3624 break; 3625 3626 /* sys_ioctl() checks */ 3627 case FIONBIO: 3628 /* fall through */ 3629 case FIOASYNC: 3630 error = file_has_perm(cred, file, 0); 3631 break; 3632 3633 case KDSKBENT: 3634 case KDSKBSENT: 3635 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3636 CAP_OPT_NONE, true); 3637 break; 3638 3639 /* default case assumes that the command will go 3640 * to the file's ioctl() function. 3641 */ 3642 default: 3643 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3644 } 3645 return error; 3646 } 3647 3648 static int default_noexec __ro_after_init; 3649 3650 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3651 { 3652 const struct cred *cred = current_cred(); 3653 u32 sid = cred_sid(cred); 3654 int rc = 0; 3655 3656 if (default_noexec && 3657 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3658 (!shared && (prot & PROT_WRITE)))) { 3659 /* 3660 * We are making executable an anonymous mapping or a 3661 * private file mapping that will also be writable. 3662 * This has an additional check. 3663 */ 3664 rc = avc_has_perm(&selinux_state, 3665 sid, sid, SECCLASS_PROCESS, 3666 PROCESS__EXECMEM, NULL); 3667 if (rc) 3668 goto error; 3669 } 3670 3671 if (file) { 3672 /* read access is always possible with a mapping */ 3673 u32 av = FILE__READ; 3674 3675 /* write access only matters if the mapping is shared */ 3676 if (shared && (prot & PROT_WRITE)) 3677 av |= FILE__WRITE; 3678 3679 if (prot & PROT_EXEC) 3680 av |= FILE__EXECUTE; 3681 3682 return file_has_perm(cred, file, av); 3683 } 3684 3685 error: 3686 return rc; 3687 } 3688 3689 static int selinux_mmap_addr(unsigned long addr) 3690 { 3691 int rc = 0; 3692 3693 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3694 u32 sid = current_sid(); 3695 rc = avc_has_perm(&selinux_state, 3696 sid, sid, SECCLASS_MEMPROTECT, 3697 MEMPROTECT__MMAP_ZERO, NULL); 3698 } 3699 3700 return rc; 3701 } 3702 3703 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3704 unsigned long prot, unsigned long flags) 3705 { 3706 struct common_audit_data ad; 3707 int rc; 3708 3709 if (file) { 3710 ad.type = LSM_AUDIT_DATA_FILE; 3711 ad.u.file = file; 3712 rc = inode_has_perm(current_cred(), file_inode(file), 3713 FILE__MAP, &ad); 3714 if (rc) 3715 return rc; 3716 } 3717 3718 if (selinux_state.checkreqprot) 3719 prot = reqprot; 3720 3721 return file_map_prot_check(file, prot, 3722 (flags & MAP_TYPE) == MAP_SHARED); 3723 } 3724 3725 static int selinux_file_mprotect(struct vm_area_struct *vma, 3726 unsigned long reqprot, 3727 unsigned long prot) 3728 { 3729 const struct cred *cred = current_cred(); 3730 u32 sid = cred_sid(cred); 3731 3732 if (selinux_state.checkreqprot) 3733 prot = reqprot; 3734 3735 if (default_noexec && 3736 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3737 int rc = 0; 3738 if (vma->vm_start >= vma->vm_mm->start_brk && 3739 vma->vm_end <= vma->vm_mm->brk) { 3740 rc = avc_has_perm(&selinux_state, 3741 sid, sid, SECCLASS_PROCESS, 3742 PROCESS__EXECHEAP, NULL); 3743 } else if (!vma->vm_file && 3744 ((vma->vm_start <= vma->vm_mm->start_stack && 3745 vma->vm_end >= vma->vm_mm->start_stack) || 3746 vma_is_stack_for_current(vma))) { 3747 rc = avc_has_perm(&selinux_state, 3748 sid, sid, SECCLASS_PROCESS, 3749 PROCESS__EXECSTACK, NULL); 3750 } else if (vma->vm_file && vma->anon_vma) { 3751 /* 3752 * We are making executable a file mapping that has 3753 * had some COW done. Since pages might have been 3754 * written, check ability to execute the possibly 3755 * modified content. This typically should only 3756 * occur for text relocations. 3757 */ 3758 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3759 } 3760 if (rc) 3761 return rc; 3762 } 3763 3764 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3765 } 3766 3767 static int selinux_file_lock(struct file *file, unsigned int cmd) 3768 { 3769 const struct cred *cred = current_cred(); 3770 3771 return file_has_perm(cred, file, FILE__LOCK); 3772 } 3773 3774 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3775 unsigned long arg) 3776 { 3777 const struct cred *cred = current_cred(); 3778 int err = 0; 3779 3780 switch (cmd) { 3781 case F_SETFL: 3782 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3783 err = file_has_perm(cred, file, FILE__WRITE); 3784 break; 3785 } 3786 /* fall through */ 3787 case F_SETOWN: 3788 case F_SETSIG: 3789 case F_GETFL: 3790 case F_GETOWN: 3791 case F_GETSIG: 3792 case F_GETOWNER_UIDS: 3793 /* Just check FD__USE permission */ 3794 err = file_has_perm(cred, file, 0); 3795 break; 3796 case F_GETLK: 3797 case F_SETLK: 3798 case F_SETLKW: 3799 case F_OFD_GETLK: 3800 case F_OFD_SETLK: 3801 case F_OFD_SETLKW: 3802 #if BITS_PER_LONG == 32 3803 case F_GETLK64: 3804 case F_SETLK64: 3805 case F_SETLKW64: 3806 #endif 3807 err = file_has_perm(cred, file, FILE__LOCK); 3808 break; 3809 } 3810 3811 return err; 3812 } 3813 3814 static void selinux_file_set_fowner(struct file *file) 3815 { 3816 struct file_security_struct *fsec; 3817 3818 fsec = selinux_file(file); 3819 fsec->fown_sid = current_sid(); 3820 } 3821 3822 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3823 struct fown_struct *fown, int signum) 3824 { 3825 struct file *file; 3826 u32 sid = task_sid(tsk); 3827 u32 perm; 3828 struct file_security_struct *fsec; 3829 3830 /* struct fown_struct is never outside the context of a struct file */ 3831 file = container_of(fown, struct file, f_owner); 3832 3833 fsec = selinux_file(file); 3834 3835 if (!signum) 3836 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3837 else 3838 perm = signal_to_av(signum); 3839 3840 return avc_has_perm(&selinux_state, 3841 fsec->fown_sid, sid, 3842 SECCLASS_PROCESS, perm, NULL); 3843 } 3844 3845 static int selinux_file_receive(struct file *file) 3846 { 3847 const struct cred *cred = current_cred(); 3848 3849 return file_has_perm(cred, file, file_to_av(file)); 3850 } 3851 3852 static int selinux_file_open(struct file *file) 3853 { 3854 struct file_security_struct *fsec; 3855 struct inode_security_struct *isec; 3856 3857 fsec = selinux_file(file); 3858 isec = inode_security(file_inode(file)); 3859 /* 3860 * Save inode label and policy sequence number 3861 * at open-time so that selinux_file_permission 3862 * can determine whether revalidation is necessary. 3863 * Task label is already saved in the file security 3864 * struct as its SID. 3865 */ 3866 fsec->isid = isec->sid; 3867 fsec->pseqno = avc_policy_seqno(&selinux_state); 3868 /* 3869 * Since the inode label or policy seqno may have changed 3870 * between the selinux_inode_permission check and the saving 3871 * of state above, recheck that access is still permitted. 3872 * Otherwise, access might never be revalidated against the 3873 * new inode label or new policy. 3874 * This check is not redundant - do not remove. 3875 */ 3876 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3877 } 3878 3879 /* task security operations */ 3880 3881 static int selinux_task_alloc(struct task_struct *task, 3882 unsigned long clone_flags) 3883 { 3884 u32 sid = current_sid(); 3885 3886 return avc_has_perm(&selinux_state, 3887 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3888 } 3889 3890 /* 3891 * prepare a new set of credentials for modification 3892 */ 3893 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3894 gfp_t gfp) 3895 { 3896 const struct task_security_struct *old_tsec = selinux_cred(old); 3897 struct task_security_struct *tsec = selinux_cred(new); 3898 3899 *tsec = *old_tsec; 3900 return 0; 3901 } 3902 3903 /* 3904 * transfer the SELinux data to a blank set of creds 3905 */ 3906 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3907 { 3908 const struct task_security_struct *old_tsec = selinux_cred(old); 3909 struct task_security_struct *tsec = selinux_cred(new); 3910 3911 *tsec = *old_tsec; 3912 } 3913 3914 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 3915 { 3916 *secid = cred_sid(c); 3917 } 3918 3919 /* 3920 * set the security data for a kernel service 3921 * - all the creation contexts are set to unlabelled 3922 */ 3923 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3924 { 3925 struct task_security_struct *tsec = selinux_cred(new); 3926 u32 sid = current_sid(); 3927 int ret; 3928 3929 ret = avc_has_perm(&selinux_state, 3930 sid, secid, 3931 SECCLASS_KERNEL_SERVICE, 3932 KERNEL_SERVICE__USE_AS_OVERRIDE, 3933 NULL); 3934 if (ret == 0) { 3935 tsec->sid = secid; 3936 tsec->create_sid = 0; 3937 tsec->keycreate_sid = 0; 3938 tsec->sockcreate_sid = 0; 3939 } 3940 return ret; 3941 } 3942 3943 /* 3944 * set the file creation context in a security record to the same as the 3945 * objective context of the specified inode 3946 */ 3947 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3948 { 3949 struct inode_security_struct *isec = inode_security(inode); 3950 struct task_security_struct *tsec = selinux_cred(new); 3951 u32 sid = current_sid(); 3952 int ret; 3953 3954 ret = avc_has_perm(&selinux_state, 3955 sid, isec->sid, 3956 SECCLASS_KERNEL_SERVICE, 3957 KERNEL_SERVICE__CREATE_FILES_AS, 3958 NULL); 3959 3960 if (ret == 0) 3961 tsec->create_sid = isec->sid; 3962 return ret; 3963 } 3964 3965 static int selinux_kernel_module_request(char *kmod_name) 3966 { 3967 struct common_audit_data ad; 3968 3969 ad.type = LSM_AUDIT_DATA_KMOD; 3970 ad.u.kmod_name = kmod_name; 3971 3972 return avc_has_perm(&selinux_state, 3973 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3974 SYSTEM__MODULE_REQUEST, &ad); 3975 } 3976 3977 static int selinux_kernel_module_from_file(struct file *file) 3978 { 3979 struct common_audit_data ad; 3980 struct inode_security_struct *isec; 3981 struct file_security_struct *fsec; 3982 u32 sid = current_sid(); 3983 int rc; 3984 3985 /* init_module */ 3986 if (file == NULL) 3987 return avc_has_perm(&selinux_state, 3988 sid, sid, SECCLASS_SYSTEM, 3989 SYSTEM__MODULE_LOAD, NULL); 3990 3991 /* finit_module */ 3992 3993 ad.type = LSM_AUDIT_DATA_FILE; 3994 ad.u.file = file; 3995 3996 fsec = selinux_file(file); 3997 if (sid != fsec->sid) { 3998 rc = avc_has_perm(&selinux_state, 3999 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4000 if (rc) 4001 return rc; 4002 } 4003 4004 isec = inode_security(file_inode(file)); 4005 return avc_has_perm(&selinux_state, 4006 sid, isec->sid, SECCLASS_SYSTEM, 4007 SYSTEM__MODULE_LOAD, &ad); 4008 } 4009 4010 static int selinux_kernel_read_file(struct file *file, 4011 enum kernel_read_file_id id) 4012 { 4013 int rc = 0; 4014 4015 switch (id) { 4016 case READING_MODULE: 4017 rc = selinux_kernel_module_from_file(file); 4018 break; 4019 default: 4020 break; 4021 } 4022 4023 return rc; 4024 } 4025 4026 static int selinux_kernel_load_data(enum kernel_load_data_id id) 4027 { 4028 int rc = 0; 4029 4030 switch (id) { 4031 case LOADING_MODULE: 4032 rc = selinux_kernel_module_from_file(NULL); 4033 default: 4034 break; 4035 } 4036 4037 return rc; 4038 } 4039 4040 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4041 { 4042 return avc_has_perm(&selinux_state, 4043 current_sid(), task_sid(p), SECCLASS_PROCESS, 4044 PROCESS__SETPGID, NULL); 4045 } 4046 4047 static int selinux_task_getpgid(struct task_struct *p) 4048 { 4049 return avc_has_perm(&selinux_state, 4050 current_sid(), task_sid(p), SECCLASS_PROCESS, 4051 PROCESS__GETPGID, NULL); 4052 } 4053 4054 static int selinux_task_getsid(struct task_struct *p) 4055 { 4056 return avc_has_perm(&selinux_state, 4057 current_sid(), task_sid(p), SECCLASS_PROCESS, 4058 PROCESS__GETSESSION, NULL); 4059 } 4060 4061 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 4062 { 4063 *secid = task_sid(p); 4064 } 4065 4066 static int selinux_task_setnice(struct task_struct *p, int nice) 4067 { 4068 return avc_has_perm(&selinux_state, 4069 current_sid(), task_sid(p), SECCLASS_PROCESS, 4070 PROCESS__SETSCHED, NULL); 4071 } 4072 4073 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4074 { 4075 return avc_has_perm(&selinux_state, 4076 current_sid(), task_sid(p), SECCLASS_PROCESS, 4077 PROCESS__SETSCHED, NULL); 4078 } 4079 4080 static int selinux_task_getioprio(struct task_struct *p) 4081 { 4082 return avc_has_perm(&selinux_state, 4083 current_sid(), task_sid(p), SECCLASS_PROCESS, 4084 PROCESS__GETSCHED, NULL); 4085 } 4086 4087 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4088 unsigned int flags) 4089 { 4090 u32 av = 0; 4091 4092 if (!flags) 4093 return 0; 4094 if (flags & LSM_PRLIMIT_WRITE) 4095 av |= PROCESS__SETRLIMIT; 4096 if (flags & LSM_PRLIMIT_READ) 4097 av |= PROCESS__GETRLIMIT; 4098 return avc_has_perm(&selinux_state, 4099 cred_sid(cred), cred_sid(tcred), 4100 SECCLASS_PROCESS, av, NULL); 4101 } 4102 4103 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4104 struct rlimit *new_rlim) 4105 { 4106 struct rlimit *old_rlim = p->signal->rlim + resource; 4107 4108 /* Control the ability to change the hard limit (whether 4109 lowering or raising it), so that the hard limit can 4110 later be used as a safe reset point for the soft limit 4111 upon context transitions. See selinux_bprm_committing_creds. */ 4112 if (old_rlim->rlim_max != new_rlim->rlim_max) 4113 return avc_has_perm(&selinux_state, 4114 current_sid(), task_sid(p), 4115 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4116 4117 return 0; 4118 } 4119 4120 static int selinux_task_setscheduler(struct task_struct *p) 4121 { 4122 return avc_has_perm(&selinux_state, 4123 current_sid(), task_sid(p), SECCLASS_PROCESS, 4124 PROCESS__SETSCHED, NULL); 4125 } 4126 4127 static int selinux_task_getscheduler(struct task_struct *p) 4128 { 4129 return avc_has_perm(&selinux_state, 4130 current_sid(), task_sid(p), SECCLASS_PROCESS, 4131 PROCESS__GETSCHED, NULL); 4132 } 4133 4134 static int selinux_task_movememory(struct task_struct *p) 4135 { 4136 return avc_has_perm(&selinux_state, 4137 current_sid(), task_sid(p), SECCLASS_PROCESS, 4138 PROCESS__SETSCHED, NULL); 4139 } 4140 4141 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4142 int sig, const struct cred *cred) 4143 { 4144 u32 secid; 4145 u32 perm; 4146 4147 if (!sig) 4148 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4149 else 4150 perm = signal_to_av(sig); 4151 if (!cred) 4152 secid = current_sid(); 4153 else 4154 secid = cred_sid(cred); 4155 return avc_has_perm(&selinux_state, 4156 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 4157 } 4158 4159 static void selinux_task_to_inode(struct task_struct *p, 4160 struct inode *inode) 4161 { 4162 struct inode_security_struct *isec = selinux_inode(inode); 4163 u32 sid = task_sid(p); 4164 4165 spin_lock(&isec->lock); 4166 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4167 isec->sid = sid; 4168 isec->initialized = LABEL_INITIALIZED; 4169 spin_unlock(&isec->lock); 4170 } 4171 4172 /* Returns error only if unable to parse addresses */ 4173 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4174 struct common_audit_data *ad, u8 *proto) 4175 { 4176 int offset, ihlen, ret = -EINVAL; 4177 struct iphdr _iph, *ih; 4178 4179 offset = skb_network_offset(skb); 4180 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4181 if (ih == NULL) 4182 goto out; 4183 4184 ihlen = ih->ihl * 4; 4185 if (ihlen < sizeof(_iph)) 4186 goto out; 4187 4188 ad->u.net->v4info.saddr = ih->saddr; 4189 ad->u.net->v4info.daddr = ih->daddr; 4190 ret = 0; 4191 4192 if (proto) 4193 *proto = ih->protocol; 4194 4195 switch (ih->protocol) { 4196 case IPPROTO_TCP: { 4197 struct tcphdr _tcph, *th; 4198 4199 if (ntohs(ih->frag_off) & IP_OFFSET) 4200 break; 4201 4202 offset += ihlen; 4203 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4204 if (th == NULL) 4205 break; 4206 4207 ad->u.net->sport = th->source; 4208 ad->u.net->dport = th->dest; 4209 break; 4210 } 4211 4212 case IPPROTO_UDP: { 4213 struct udphdr _udph, *uh; 4214 4215 if (ntohs(ih->frag_off) & IP_OFFSET) 4216 break; 4217 4218 offset += ihlen; 4219 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4220 if (uh == NULL) 4221 break; 4222 4223 ad->u.net->sport = uh->source; 4224 ad->u.net->dport = uh->dest; 4225 break; 4226 } 4227 4228 case IPPROTO_DCCP: { 4229 struct dccp_hdr _dccph, *dh; 4230 4231 if (ntohs(ih->frag_off) & IP_OFFSET) 4232 break; 4233 4234 offset += ihlen; 4235 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4236 if (dh == NULL) 4237 break; 4238 4239 ad->u.net->sport = dh->dccph_sport; 4240 ad->u.net->dport = dh->dccph_dport; 4241 break; 4242 } 4243 4244 #if IS_ENABLED(CONFIG_IP_SCTP) 4245 case IPPROTO_SCTP: { 4246 struct sctphdr _sctph, *sh; 4247 4248 if (ntohs(ih->frag_off) & IP_OFFSET) 4249 break; 4250 4251 offset += ihlen; 4252 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4253 if (sh == NULL) 4254 break; 4255 4256 ad->u.net->sport = sh->source; 4257 ad->u.net->dport = sh->dest; 4258 break; 4259 } 4260 #endif 4261 default: 4262 break; 4263 } 4264 out: 4265 return ret; 4266 } 4267 4268 #if IS_ENABLED(CONFIG_IPV6) 4269 4270 /* Returns error only if unable to parse addresses */ 4271 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4272 struct common_audit_data *ad, u8 *proto) 4273 { 4274 u8 nexthdr; 4275 int ret = -EINVAL, offset; 4276 struct ipv6hdr _ipv6h, *ip6; 4277 __be16 frag_off; 4278 4279 offset = skb_network_offset(skb); 4280 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4281 if (ip6 == NULL) 4282 goto out; 4283 4284 ad->u.net->v6info.saddr = ip6->saddr; 4285 ad->u.net->v6info.daddr = ip6->daddr; 4286 ret = 0; 4287 4288 nexthdr = ip6->nexthdr; 4289 offset += sizeof(_ipv6h); 4290 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4291 if (offset < 0) 4292 goto out; 4293 4294 if (proto) 4295 *proto = nexthdr; 4296 4297 switch (nexthdr) { 4298 case IPPROTO_TCP: { 4299 struct tcphdr _tcph, *th; 4300 4301 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4302 if (th == NULL) 4303 break; 4304 4305 ad->u.net->sport = th->source; 4306 ad->u.net->dport = th->dest; 4307 break; 4308 } 4309 4310 case IPPROTO_UDP: { 4311 struct udphdr _udph, *uh; 4312 4313 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4314 if (uh == NULL) 4315 break; 4316 4317 ad->u.net->sport = uh->source; 4318 ad->u.net->dport = uh->dest; 4319 break; 4320 } 4321 4322 case IPPROTO_DCCP: { 4323 struct dccp_hdr _dccph, *dh; 4324 4325 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4326 if (dh == NULL) 4327 break; 4328 4329 ad->u.net->sport = dh->dccph_sport; 4330 ad->u.net->dport = dh->dccph_dport; 4331 break; 4332 } 4333 4334 #if IS_ENABLED(CONFIG_IP_SCTP) 4335 case IPPROTO_SCTP: { 4336 struct sctphdr _sctph, *sh; 4337 4338 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4339 if (sh == NULL) 4340 break; 4341 4342 ad->u.net->sport = sh->source; 4343 ad->u.net->dport = sh->dest; 4344 break; 4345 } 4346 #endif 4347 /* includes fragments */ 4348 default: 4349 break; 4350 } 4351 out: 4352 return ret; 4353 } 4354 4355 #endif /* IPV6 */ 4356 4357 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4358 char **_addrp, int src, u8 *proto) 4359 { 4360 char *addrp; 4361 int ret; 4362 4363 switch (ad->u.net->family) { 4364 case PF_INET: 4365 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4366 if (ret) 4367 goto parse_error; 4368 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4369 &ad->u.net->v4info.daddr); 4370 goto okay; 4371 4372 #if IS_ENABLED(CONFIG_IPV6) 4373 case PF_INET6: 4374 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4375 if (ret) 4376 goto parse_error; 4377 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4378 &ad->u.net->v6info.daddr); 4379 goto okay; 4380 #endif /* IPV6 */ 4381 default: 4382 addrp = NULL; 4383 goto okay; 4384 } 4385 4386 parse_error: 4387 pr_warn( 4388 "SELinux: failure in selinux_parse_skb()," 4389 " unable to parse packet\n"); 4390 return ret; 4391 4392 okay: 4393 if (_addrp) 4394 *_addrp = addrp; 4395 return 0; 4396 } 4397 4398 /** 4399 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4400 * @skb: the packet 4401 * @family: protocol family 4402 * @sid: the packet's peer label SID 4403 * 4404 * Description: 4405 * Check the various different forms of network peer labeling and determine 4406 * the peer label/SID for the packet; most of the magic actually occurs in 4407 * the security server function security_net_peersid_cmp(). The function 4408 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4409 * or -EACCES if @sid is invalid due to inconsistencies with the different 4410 * peer labels. 4411 * 4412 */ 4413 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4414 { 4415 int err; 4416 u32 xfrm_sid; 4417 u32 nlbl_sid; 4418 u32 nlbl_type; 4419 4420 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4421 if (unlikely(err)) 4422 return -EACCES; 4423 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4424 if (unlikely(err)) 4425 return -EACCES; 4426 4427 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4428 nlbl_type, xfrm_sid, sid); 4429 if (unlikely(err)) { 4430 pr_warn( 4431 "SELinux: failure in selinux_skb_peerlbl_sid()," 4432 " unable to determine packet's peer label\n"); 4433 return -EACCES; 4434 } 4435 4436 return 0; 4437 } 4438 4439 /** 4440 * selinux_conn_sid - Determine the child socket label for a connection 4441 * @sk_sid: the parent socket's SID 4442 * @skb_sid: the packet's SID 4443 * @conn_sid: the resulting connection SID 4444 * 4445 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4446 * combined with the MLS information from @skb_sid in order to create 4447 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4448 * of @sk_sid. Returns zero on success, negative values on failure. 4449 * 4450 */ 4451 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4452 { 4453 int err = 0; 4454 4455 if (skb_sid != SECSID_NULL) 4456 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4457 conn_sid); 4458 else 4459 *conn_sid = sk_sid; 4460 4461 return err; 4462 } 4463 4464 /* socket security operations */ 4465 4466 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4467 u16 secclass, u32 *socksid) 4468 { 4469 if (tsec->sockcreate_sid > SECSID_NULL) { 4470 *socksid = tsec->sockcreate_sid; 4471 return 0; 4472 } 4473 4474 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4475 secclass, NULL, socksid); 4476 } 4477 4478 static int sock_has_perm(struct sock *sk, u32 perms) 4479 { 4480 struct sk_security_struct *sksec = sk->sk_security; 4481 struct common_audit_data ad; 4482 struct lsm_network_audit net = {0,}; 4483 4484 if (sksec->sid == SECINITSID_KERNEL) 4485 return 0; 4486 4487 ad.type = LSM_AUDIT_DATA_NET; 4488 ad.u.net = &net; 4489 ad.u.net->sk = sk; 4490 4491 return avc_has_perm(&selinux_state, 4492 current_sid(), sksec->sid, sksec->sclass, perms, 4493 &ad); 4494 } 4495 4496 static int selinux_socket_create(int family, int type, 4497 int protocol, int kern) 4498 { 4499 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4500 u32 newsid; 4501 u16 secclass; 4502 int rc; 4503 4504 if (kern) 4505 return 0; 4506 4507 secclass = socket_type_to_security_class(family, type, protocol); 4508 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4509 if (rc) 4510 return rc; 4511 4512 return avc_has_perm(&selinux_state, 4513 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4514 } 4515 4516 static int selinux_socket_post_create(struct socket *sock, int family, 4517 int type, int protocol, int kern) 4518 { 4519 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4520 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4521 struct sk_security_struct *sksec; 4522 u16 sclass = socket_type_to_security_class(family, type, protocol); 4523 u32 sid = SECINITSID_KERNEL; 4524 int err = 0; 4525 4526 if (!kern) { 4527 err = socket_sockcreate_sid(tsec, sclass, &sid); 4528 if (err) 4529 return err; 4530 } 4531 4532 isec->sclass = sclass; 4533 isec->sid = sid; 4534 isec->initialized = LABEL_INITIALIZED; 4535 4536 if (sock->sk) { 4537 sksec = sock->sk->sk_security; 4538 sksec->sclass = sclass; 4539 sksec->sid = sid; 4540 /* Allows detection of the first association on this socket */ 4541 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4542 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4543 4544 err = selinux_netlbl_socket_post_create(sock->sk, family); 4545 } 4546 4547 return err; 4548 } 4549 4550 static int selinux_socket_socketpair(struct socket *socka, 4551 struct socket *sockb) 4552 { 4553 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4554 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4555 4556 sksec_a->peer_sid = sksec_b->sid; 4557 sksec_b->peer_sid = sksec_a->sid; 4558 4559 return 0; 4560 } 4561 4562 /* Range of port numbers used to automatically bind. 4563 Need to determine whether we should perform a name_bind 4564 permission check between the socket and the port number. */ 4565 4566 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4567 { 4568 struct sock *sk = sock->sk; 4569 struct sk_security_struct *sksec = sk->sk_security; 4570 u16 family; 4571 int err; 4572 4573 err = sock_has_perm(sk, SOCKET__BIND); 4574 if (err) 4575 goto out; 4576 4577 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4578 family = sk->sk_family; 4579 if (family == PF_INET || family == PF_INET6) { 4580 char *addrp; 4581 struct common_audit_data ad; 4582 struct lsm_network_audit net = {0,}; 4583 struct sockaddr_in *addr4 = NULL; 4584 struct sockaddr_in6 *addr6 = NULL; 4585 u16 family_sa; 4586 unsigned short snum; 4587 u32 sid, node_perm; 4588 4589 /* 4590 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4591 * that validates multiple binding addresses. Because of this 4592 * need to check address->sa_family as it is possible to have 4593 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4594 */ 4595 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4596 return -EINVAL; 4597 family_sa = address->sa_family; 4598 switch (family_sa) { 4599 case AF_UNSPEC: 4600 case AF_INET: 4601 if (addrlen < sizeof(struct sockaddr_in)) 4602 return -EINVAL; 4603 addr4 = (struct sockaddr_in *)address; 4604 if (family_sa == AF_UNSPEC) { 4605 /* see __inet_bind(), we only want to allow 4606 * AF_UNSPEC if the address is INADDR_ANY 4607 */ 4608 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4609 goto err_af; 4610 family_sa = AF_INET; 4611 } 4612 snum = ntohs(addr4->sin_port); 4613 addrp = (char *)&addr4->sin_addr.s_addr; 4614 break; 4615 case AF_INET6: 4616 if (addrlen < SIN6_LEN_RFC2133) 4617 return -EINVAL; 4618 addr6 = (struct sockaddr_in6 *)address; 4619 snum = ntohs(addr6->sin6_port); 4620 addrp = (char *)&addr6->sin6_addr.s6_addr; 4621 break; 4622 default: 4623 goto err_af; 4624 } 4625 4626 ad.type = LSM_AUDIT_DATA_NET; 4627 ad.u.net = &net; 4628 ad.u.net->sport = htons(snum); 4629 ad.u.net->family = family_sa; 4630 4631 if (snum) { 4632 int low, high; 4633 4634 inet_get_local_port_range(sock_net(sk), &low, &high); 4635 4636 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4637 snum < low || snum > high) { 4638 err = sel_netport_sid(sk->sk_protocol, 4639 snum, &sid); 4640 if (err) 4641 goto out; 4642 err = avc_has_perm(&selinux_state, 4643 sksec->sid, sid, 4644 sksec->sclass, 4645 SOCKET__NAME_BIND, &ad); 4646 if (err) 4647 goto out; 4648 } 4649 } 4650 4651 switch (sksec->sclass) { 4652 case SECCLASS_TCP_SOCKET: 4653 node_perm = TCP_SOCKET__NODE_BIND; 4654 break; 4655 4656 case SECCLASS_UDP_SOCKET: 4657 node_perm = UDP_SOCKET__NODE_BIND; 4658 break; 4659 4660 case SECCLASS_DCCP_SOCKET: 4661 node_perm = DCCP_SOCKET__NODE_BIND; 4662 break; 4663 4664 case SECCLASS_SCTP_SOCKET: 4665 node_perm = SCTP_SOCKET__NODE_BIND; 4666 break; 4667 4668 default: 4669 node_perm = RAWIP_SOCKET__NODE_BIND; 4670 break; 4671 } 4672 4673 err = sel_netnode_sid(addrp, family_sa, &sid); 4674 if (err) 4675 goto out; 4676 4677 if (family_sa == AF_INET) 4678 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4679 else 4680 ad.u.net->v6info.saddr = addr6->sin6_addr; 4681 4682 err = avc_has_perm(&selinux_state, 4683 sksec->sid, sid, 4684 sksec->sclass, node_perm, &ad); 4685 if (err) 4686 goto out; 4687 } 4688 out: 4689 return err; 4690 err_af: 4691 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4692 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4693 return -EINVAL; 4694 return -EAFNOSUPPORT; 4695 } 4696 4697 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4698 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4699 */ 4700 static int selinux_socket_connect_helper(struct socket *sock, 4701 struct sockaddr *address, int addrlen) 4702 { 4703 struct sock *sk = sock->sk; 4704 struct sk_security_struct *sksec = sk->sk_security; 4705 int err; 4706 4707 err = sock_has_perm(sk, SOCKET__CONNECT); 4708 if (err) 4709 return err; 4710 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4711 return -EINVAL; 4712 4713 /* connect(AF_UNSPEC) has special handling, as it is a documented 4714 * way to disconnect the socket 4715 */ 4716 if (address->sa_family == AF_UNSPEC) 4717 return 0; 4718 4719 /* 4720 * If a TCP, DCCP or SCTP socket, check name_connect permission 4721 * for the port. 4722 */ 4723 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4724 sksec->sclass == SECCLASS_DCCP_SOCKET || 4725 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4726 struct common_audit_data ad; 4727 struct lsm_network_audit net = {0,}; 4728 struct sockaddr_in *addr4 = NULL; 4729 struct sockaddr_in6 *addr6 = NULL; 4730 unsigned short snum; 4731 u32 sid, perm; 4732 4733 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4734 * that validates multiple connect addresses. Because of this 4735 * need to check address->sa_family as it is possible to have 4736 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4737 */ 4738 switch (address->sa_family) { 4739 case AF_INET: 4740 addr4 = (struct sockaddr_in *)address; 4741 if (addrlen < sizeof(struct sockaddr_in)) 4742 return -EINVAL; 4743 snum = ntohs(addr4->sin_port); 4744 break; 4745 case AF_INET6: 4746 addr6 = (struct sockaddr_in6 *)address; 4747 if (addrlen < SIN6_LEN_RFC2133) 4748 return -EINVAL; 4749 snum = ntohs(addr6->sin6_port); 4750 break; 4751 default: 4752 /* Note that SCTP services expect -EINVAL, whereas 4753 * others expect -EAFNOSUPPORT. 4754 */ 4755 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4756 return -EINVAL; 4757 else 4758 return -EAFNOSUPPORT; 4759 } 4760 4761 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4762 if (err) 4763 return err; 4764 4765 switch (sksec->sclass) { 4766 case SECCLASS_TCP_SOCKET: 4767 perm = TCP_SOCKET__NAME_CONNECT; 4768 break; 4769 case SECCLASS_DCCP_SOCKET: 4770 perm = DCCP_SOCKET__NAME_CONNECT; 4771 break; 4772 case SECCLASS_SCTP_SOCKET: 4773 perm = SCTP_SOCKET__NAME_CONNECT; 4774 break; 4775 } 4776 4777 ad.type = LSM_AUDIT_DATA_NET; 4778 ad.u.net = &net; 4779 ad.u.net->dport = htons(snum); 4780 ad.u.net->family = address->sa_family; 4781 err = avc_has_perm(&selinux_state, 4782 sksec->sid, sid, sksec->sclass, perm, &ad); 4783 if (err) 4784 return err; 4785 } 4786 4787 return 0; 4788 } 4789 4790 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4791 static int selinux_socket_connect(struct socket *sock, 4792 struct sockaddr *address, int addrlen) 4793 { 4794 int err; 4795 struct sock *sk = sock->sk; 4796 4797 err = selinux_socket_connect_helper(sock, address, addrlen); 4798 if (err) 4799 return err; 4800 4801 return selinux_netlbl_socket_connect(sk, address); 4802 } 4803 4804 static int selinux_socket_listen(struct socket *sock, int backlog) 4805 { 4806 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4807 } 4808 4809 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4810 { 4811 int err; 4812 struct inode_security_struct *isec; 4813 struct inode_security_struct *newisec; 4814 u16 sclass; 4815 u32 sid; 4816 4817 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4818 if (err) 4819 return err; 4820 4821 isec = inode_security_novalidate(SOCK_INODE(sock)); 4822 spin_lock(&isec->lock); 4823 sclass = isec->sclass; 4824 sid = isec->sid; 4825 spin_unlock(&isec->lock); 4826 4827 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4828 newisec->sclass = sclass; 4829 newisec->sid = sid; 4830 newisec->initialized = LABEL_INITIALIZED; 4831 4832 return 0; 4833 } 4834 4835 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4836 int size) 4837 { 4838 return sock_has_perm(sock->sk, SOCKET__WRITE); 4839 } 4840 4841 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4842 int size, int flags) 4843 { 4844 return sock_has_perm(sock->sk, SOCKET__READ); 4845 } 4846 4847 static int selinux_socket_getsockname(struct socket *sock) 4848 { 4849 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4850 } 4851 4852 static int selinux_socket_getpeername(struct socket *sock) 4853 { 4854 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4855 } 4856 4857 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4858 { 4859 int err; 4860 4861 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4862 if (err) 4863 return err; 4864 4865 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4866 } 4867 4868 static int selinux_socket_getsockopt(struct socket *sock, int level, 4869 int optname) 4870 { 4871 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4872 } 4873 4874 static int selinux_socket_shutdown(struct socket *sock, int how) 4875 { 4876 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4877 } 4878 4879 static int selinux_socket_unix_stream_connect(struct sock *sock, 4880 struct sock *other, 4881 struct sock *newsk) 4882 { 4883 struct sk_security_struct *sksec_sock = sock->sk_security; 4884 struct sk_security_struct *sksec_other = other->sk_security; 4885 struct sk_security_struct *sksec_new = newsk->sk_security; 4886 struct common_audit_data ad; 4887 struct lsm_network_audit net = {0,}; 4888 int err; 4889 4890 ad.type = LSM_AUDIT_DATA_NET; 4891 ad.u.net = &net; 4892 ad.u.net->sk = other; 4893 4894 err = avc_has_perm(&selinux_state, 4895 sksec_sock->sid, sksec_other->sid, 4896 sksec_other->sclass, 4897 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4898 if (err) 4899 return err; 4900 4901 /* server child socket */ 4902 sksec_new->peer_sid = sksec_sock->sid; 4903 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 4904 sksec_sock->sid, &sksec_new->sid); 4905 if (err) 4906 return err; 4907 4908 /* connecting socket */ 4909 sksec_sock->peer_sid = sksec_new->sid; 4910 4911 return 0; 4912 } 4913 4914 static int selinux_socket_unix_may_send(struct socket *sock, 4915 struct socket *other) 4916 { 4917 struct sk_security_struct *ssec = sock->sk->sk_security; 4918 struct sk_security_struct *osec = other->sk->sk_security; 4919 struct common_audit_data ad; 4920 struct lsm_network_audit net = {0,}; 4921 4922 ad.type = LSM_AUDIT_DATA_NET; 4923 ad.u.net = &net; 4924 ad.u.net->sk = other->sk; 4925 4926 return avc_has_perm(&selinux_state, 4927 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4928 &ad); 4929 } 4930 4931 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4932 char *addrp, u16 family, u32 peer_sid, 4933 struct common_audit_data *ad) 4934 { 4935 int err; 4936 u32 if_sid; 4937 u32 node_sid; 4938 4939 err = sel_netif_sid(ns, ifindex, &if_sid); 4940 if (err) 4941 return err; 4942 err = avc_has_perm(&selinux_state, 4943 peer_sid, if_sid, 4944 SECCLASS_NETIF, NETIF__INGRESS, ad); 4945 if (err) 4946 return err; 4947 4948 err = sel_netnode_sid(addrp, family, &node_sid); 4949 if (err) 4950 return err; 4951 return avc_has_perm(&selinux_state, 4952 peer_sid, node_sid, 4953 SECCLASS_NODE, NODE__RECVFROM, ad); 4954 } 4955 4956 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4957 u16 family) 4958 { 4959 int err = 0; 4960 struct sk_security_struct *sksec = sk->sk_security; 4961 u32 sk_sid = sksec->sid; 4962 struct common_audit_data ad; 4963 struct lsm_network_audit net = {0,}; 4964 char *addrp; 4965 4966 ad.type = LSM_AUDIT_DATA_NET; 4967 ad.u.net = &net; 4968 ad.u.net->netif = skb->skb_iif; 4969 ad.u.net->family = family; 4970 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4971 if (err) 4972 return err; 4973 4974 if (selinux_secmark_enabled()) { 4975 err = avc_has_perm(&selinux_state, 4976 sk_sid, skb->secmark, SECCLASS_PACKET, 4977 PACKET__RECV, &ad); 4978 if (err) 4979 return err; 4980 } 4981 4982 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4983 if (err) 4984 return err; 4985 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4986 4987 return err; 4988 } 4989 4990 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4991 { 4992 int err; 4993 struct sk_security_struct *sksec = sk->sk_security; 4994 u16 family = sk->sk_family; 4995 u32 sk_sid = sksec->sid; 4996 struct common_audit_data ad; 4997 struct lsm_network_audit net = {0,}; 4998 char *addrp; 4999 u8 secmark_active; 5000 u8 peerlbl_active; 5001 5002 if (family != PF_INET && family != PF_INET6) 5003 return 0; 5004 5005 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5006 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5007 family = PF_INET; 5008 5009 /* If any sort of compatibility mode is enabled then handoff processing 5010 * to the selinux_sock_rcv_skb_compat() function to deal with the 5011 * special handling. We do this in an attempt to keep this function 5012 * as fast and as clean as possible. */ 5013 if (!selinux_policycap_netpeer()) 5014 return selinux_sock_rcv_skb_compat(sk, skb, family); 5015 5016 secmark_active = selinux_secmark_enabled(); 5017 peerlbl_active = selinux_peerlbl_enabled(); 5018 if (!secmark_active && !peerlbl_active) 5019 return 0; 5020 5021 ad.type = LSM_AUDIT_DATA_NET; 5022 ad.u.net = &net; 5023 ad.u.net->netif = skb->skb_iif; 5024 ad.u.net->family = family; 5025 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5026 if (err) 5027 return err; 5028 5029 if (peerlbl_active) { 5030 u32 peer_sid; 5031 5032 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5033 if (err) 5034 return err; 5035 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5036 addrp, family, peer_sid, &ad); 5037 if (err) { 5038 selinux_netlbl_err(skb, family, err, 0); 5039 return err; 5040 } 5041 err = avc_has_perm(&selinux_state, 5042 sk_sid, peer_sid, SECCLASS_PEER, 5043 PEER__RECV, &ad); 5044 if (err) { 5045 selinux_netlbl_err(skb, family, err, 0); 5046 return err; 5047 } 5048 } 5049 5050 if (secmark_active) { 5051 err = avc_has_perm(&selinux_state, 5052 sk_sid, skb->secmark, SECCLASS_PACKET, 5053 PACKET__RECV, &ad); 5054 if (err) 5055 return err; 5056 } 5057 5058 return err; 5059 } 5060 5061 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5062 int __user *optlen, unsigned len) 5063 { 5064 int err = 0; 5065 char *scontext; 5066 u32 scontext_len; 5067 struct sk_security_struct *sksec = sock->sk->sk_security; 5068 u32 peer_sid = SECSID_NULL; 5069 5070 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5071 sksec->sclass == SECCLASS_TCP_SOCKET || 5072 sksec->sclass == SECCLASS_SCTP_SOCKET) 5073 peer_sid = sksec->peer_sid; 5074 if (peer_sid == SECSID_NULL) 5075 return -ENOPROTOOPT; 5076 5077 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5078 &scontext_len); 5079 if (err) 5080 return err; 5081 5082 if (scontext_len > len) { 5083 err = -ERANGE; 5084 goto out_len; 5085 } 5086 5087 if (copy_to_user(optval, scontext, scontext_len)) 5088 err = -EFAULT; 5089 5090 out_len: 5091 if (put_user(scontext_len, optlen)) 5092 err = -EFAULT; 5093 kfree(scontext); 5094 return err; 5095 } 5096 5097 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5098 { 5099 u32 peer_secid = SECSID_NULL; 5100 u16 family; 5101 struct inode_security_struct *isec; 5102 5103 if (skb && skb->protocol == htons(ETH_P_IP)) 5104 family = PF_INET; 5105 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5106 family = PF_INET6; 5107 else if (sock) 5108 family = sock->sk->sk_family; 5109 else 5110 goto out; 5111 5112 if (sock && family == PF_UNIX) { 5113 isec = inode_security_novalidate(SOCK_INODE(sock)); 5114 peer_secid = isec->sid; 5115 } else if (skb) 5116 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5117 5118 out: 5119 *secid = peer_secid; 5120 if (peer_secid == SECSID_NULL) 5121 return -EINVAL; 5122 return 0; 5123 } 5124 5125 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5126 { 5127 struct sk_security_struct *sksec; 5128 5129 sksec = kzalloc(sizeof(*sksec), priority); 5130 if (!sksec) 5131 return -ENOMEM; 5132 5133 sksec->peer_sid = SECINITSID_UNLABELED; 5134 sksec->sid = SECINITSID_UNLABELED; 5135 sksec->sclass = SECCLASS_SOCKET; 5136 selinux_netlbl_sk_security_reset(sksec); 5137 sk->sk_security = sksec; 5138 5139 return 0; 5140 } 5141 5142 static void selinux_sk_free_security(struct sock *sk) 5143 { 5144 struct sk_security_struct *sksec = sk->sk_security; 5145 5146 sk->sk_security = NULL; 5147 selinux_netlbl_sk_security_free(sksec); 5148 kfree(sksec); 5149 } 5150 5151 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5152 { 5153 struct sk_security_struct *sksec = sk->sk_security; 5154 struct sk_security_struct *newsksec = newsk->sk_security; 5155 5156 newsksec->sid = sksec->sid; 5157 newsksec->peer_sid = sksec->peer_sid; 5158 newsksec->sclass = sksec->sclass; 5159 5160 selinux_netlbl_sk_security_reset(newsksec); 5161 } 5162 5163 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5164 { 5165 if (!sk) 5166 *secid = SECINITSID_ANY_SOCKET; 5167 else { 5168 struct sk_security_struct *sksec = sk->sk_security; 5169 5170 *secid = sksec->sid; 5171 } 5172 } 5173 5174 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5175 { 5176 struct inode_security_struct *isec = 5177 inode_security_novalidate(SOCK_INODE(parent)); 5178 struct sk_security_struct *sksec = sk->sk_security; 5179 5180 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5181 sk->sk_family == PF_UNIX) 5182 isec->sid = sksec->sid; 5183 sksec->sclass = isec->sclass; 5184 } 5185 5186 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5187 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5188 * already present). 5189 */ 5190 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5191 struct sk_buff *skb) 5192 { 5193 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5194 struct common_audit_data ad; 5195 struct lsm_network_audit net = {0,}; 5196 u8 peerlbl_active; 5197 u32 peer_sid = SECINITSID_UNLABELED; 5198 u32 conn_sid; 5199 int err = 0; 5200 5201 if (!selinux_policycap_extsockclass()) 5202 return 0; 5203 5204 peerlbl_active = selinux_peerlbl_enabled(); 5205 5206 if (peerlbl_active) { 5207 /* This will return peer_sid = SECSID_NULL if there are 5208 * no peer labels, see security_net_peersid_resolve(). 5209 */ 5210 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5211 &peer_sid); 5212 if (err) 5213 return err; 5214 5215 if (peer_sid == SECSID_NULL) 5216 peer_sid = SECINITSID_UNLABELED; 5217 } 5218 5219 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5220 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5221 5222 /* Here as first association on socket. As the peer SID 5223 * was allowed by peer recv (and the netif/node checks), 5224 * then it is approved by policy and used as the primary 5225 * peer SID for getpeercon(3). 5226 */ 5227 sksec->peer_sid = peer_sid; 5228 } else if (sksec->peer_sid != peer_sid) { 5229 /* Other association peer SIDs are checked to enforce 5230 * consistency among the peer SIDs. 5231 */ 5232 ad.type = LSM_AUDIT_DATA_NET; 5233 ad.u.net = &net; 5234 ad.u.net->sk = ep->base.sk; 5235 err = avc_has_perm(&selinux_state, 5236 sksec->peer_sid, peer_sid, sksec->sclass, 5237 SCTP_SOCKET__ASSOCIATION, &ad); 5238 if (err) 5239 return err; 5240 } 5241 5242 /* Compute the MLS component for the connection and store 5243 * the information in ep. This will be used by SCTP TCP type 5244 * sockets and peeled off connections as they cause a new 5245 * socket to be generated. selinux_sctp_sk_clone() will then 5246 * plug this into the new socket. 5247 */ 5248 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5249 if (err) 5250 return err; 5251 5252 ep->secid = conn_sid; 5253 ep->peer_secid = peer_sid; 5254 5255 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5256 return selinux_netlbl_sctp_assoc_request(ep, skb); 5257 } 5258 5259 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5260 * based on their @optname. 5261 */ 5262 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5263 struct sockaddr *address, 5264 int addrlen) 5265 { 5266 int len, err = 0, walk_size = 0; 5267 void *addr_buf; 5268 struct sockaddr *addr; 5269 struct socket *sock; 5270 5271 if (!selinux_policycap_extsockclass()) 5272 return 0; 5273 5274 /* Process one or more addresses that may be IPv4 or IPv6 */ 5275 sock = sk->sk_socket; 5276 addr_buf = address; 5277 5278 while (walk_size < addrlen) { 5279 if (walk_size + sizeof(sa_family_t) > addrlen) 5280 return -EINVAL; 5281 5282 addr = addr_buf; 5283 switch (addr->sa_family) { 5284 case AF_UNSPEC: 5285 case AF_INET: 5286 len = sizeof(struct sockaddr_in); 5287 break; 5288 case AF_INET6: 5289 len = sizeof(struct sockaddr_in6); 5290 break; 5291 default: 5292 return -EINVAL; 5293 } 5294 5295 if (walk_size + len > addrlen) 5296 return -EINVAL; 5297 5298 err = -EINVAL; 5299 switch (optname) { 5300 /* Bind checks */ 5301 case SCTP_PRIMARY_ADDR: 5302 case SCTP_SET_PEER_PRIMARY_ADDR: 5303 case SCTP_SOCKOPT_BINDX_ADD: 5304 err = selinux_socket_bind(sock, addr, len); 5305 break; 5306 /* Connect checks */ 5307 case SCTP_SOCKOPT_CONNECTX: 5308 case SCTP_PARAM_SET_PRIMARY: 5309 case SCTP_PARAM_ADD_IP: 5310 case SCTP_SENDMSG_CONNECT: 5311 err = selinux_socket_connect_helper(sock, addr, len); 5312 if (err) 5313 return err; 5314 5315 /* As selinux_sctp_bind_connect() is called by the 5316 * SCTP protocol layer, the socket is already locked, 5317 * therefore selinux_netlbl_socket_connect_locked() is 5318 * is called here. The situations handled are: 5319 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5320 * whenever a new IP address is added or when a new 5321 * primary address is selected. 5322 * Note that an SCTP connect(2) call happens before 5323 * the SCTP protocol layer and is handled via 5324 * selinux_socket_connect(). 5325 */ 5326 err = selinux_netlbl_socket_connect_locked(sk, addr); 5327 break; 5328 } 5329 5330 if (err) 5331 return err; 5332 5333 addr_buf += len; 5334 walk_size += len; 5335 } 5336 5337 return 0; 5338 } 5339 5340 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5341 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5342 struct sock *newsk) 5343 { 5344 struct sk_security_struct *sksec = sk->sk_security; 5345 struct sk_security_struct *newsksec = newsk->sk_security; 5346 5347 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5348 * the non-sctp clone version. 5349 */ 5350 if (!selinux_policycap_extsockclass()) 5351 return selinux_sk_clone_security(sk, newsk); 5352 5353 newsksec->sid = ep->secid; 5354 newsksec->peer_sid = ep->peer_secid; 5355 newsksec->sclass = sksec->sclass; 5356 selinux_netlbl_sctp_sk_clone(sk, newsk); 5357 } 5358 5359 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 5360 struct request_sock *req) 5361 { 5362 struct sk_security_struct *sksec = sk->sk_security; 5363 int err; 5364 u16 family = req->rsk_ops->family; 5365 u32 connsid; 5366 u32 peersid; 5367 5368 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5369 if (err) 5370 return err; 5371 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5372 if (err) 5373 return err; 5374 req->secid = connsid; 5375 req->peer_secid = peersid; 5376 5377 return selinux_netlbl_inet_conn_request(req, family); 5378 } 5379 5380 static void selinux_inet_csk_clone(struct sock *newsk, 5381 const struct request_sock *req) 5382 { 5383 struct sk_security_struct *newsksec = newsk->sk_security; 5384 5385 newsksec->sid = req->secid; 5386 newsksec->peer_sid = req->peer_secid; 5387 /* NOTE: Ideally, we should also get the isec->sid for the 5388 new socket in sync, but we don't have the isec available yet. 5389 So we will wait until sock_graft to do it, by which 5390 time it will have been created and available. */ 5391 5392 /* We don't need to take any sort of lock here as we are the only 5393 * thread with access to newsksec */ 5394 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5395 } 5396 5397 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5398 { 5399 u16 family = sk->sk_family; 5400 struct sk_security_struct *sksec = sk->sk_security; 5401 5402 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5403 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5404 family = PF_INET; 5405 5406 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5407 } 5408 5409 static int selinux_secmark_relabel_packet(u32 sid) 5410 { 5411 const struct task_security_struct *__tsec; 5412 u32 tsid; 5413 5414 __tsec = selinux_cred(current_cred()); 5415 tsid = __tsec->sid; 5416 5417 return avc_has_perm(&selinux_state, 5418 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5419 NULL); 5420 } 5421 5422 static void selinux_secmark_refcount_inc(void) 5423 { 5424 atomic_inc(&selinux_secmark_refcount); 5425 } 5426 5427 static void selinux_secmark_refcount_dec(void) 5428 { 5429 atomic_dec(&selinux_secmark_refcount); 5430 } 5431 5432 static void selinux_req_classify_flow(const struct request_sock *req, 5433 struct flowi *fl) 5434 { 5435 fl->flowi_secid = req->secid; 5436 } 5437 5438 static int selinux_tun_dev_alloc_security(void **security) 5439 { 5440 struct tun_security_struct *tunsec; 5441 5442 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5443 if (!tunsec) 5444 return -ENOMEM; 5445 tunsec->sid = current_sid(); 5446 5447 *security = tunsec; 5448 return 0; 5449 } 5450 5451 static void selinux_tun_dev_free_security(void *security) 5452 { 5453 kfree(security); 5454 } 5455 5456 static int selinux_tun_dev_create(void) 5457 { 5458 u32 sid = current_sid(); 5459 5460 /* we aren't taking into account the "sockcreate" SID since the socket 5461 * that is being created here is not a socket in the traditional sense, 5462 * instead it is a private sock, accessible only to the kernel, and 5463 * representing a wide range of network traffic spanning multiple 5464 * connections unlike traditional sockets - check the TUN driver to 5465 * get a better understanding of why this socket is special */ 5466 5467 return avc_has_perm(&selinux_state, 5468 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5469 NULL); 5470 } 5471 5472 static int selinux_tun_dev_attach_queue(void *security) 5473 { 5474 struct tun_security_struct *tunsec = security; 5475 5476 return avc_has_perm(&selinux_state, 5477 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5478 TUN_SOCKET__ATTACH_QUEUE, NULL); 5479 } 5480 5481 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5482 { 5483 struct tun_security_struct *tunsec = security; 5484 struct sk_security_struct *sksec = sk->sk_security; 5485 5486 /* we don't currently perform any NetLabel based labeling here and it 5487 * isn't clear that we would want to do so anyway; while we could apply 5488 * labeling without the support of the TUN user the resulting labeled 5489 * traffic from the other end of the connection would almost certainly 5490 * cause confusion to the TUN user that had no idea network labeling 5491 * protocols were being used */ 5492 5493 sksec->sid = tunsec->sid; 5494 sksec->sclass = SECCLASS_TUN_SOCKET; 5495 5496 return 0; 5497 } 5498 5499 static int selinux_tun_dev_open(void *security) 5500 { 5501 struct tun_security_struct *tunsec = security; 5502 u32 sid = current_sid(); 5503 int err; 5504 5505 err = avc_has_perm(&selinux_state, 5506 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5507 TUN_SOCKET__RELABELFROM, NULL); 5508 if (err) 5509 return err; 5510 err = avc_has_perm(&selinux_state, 5511 sid, sid, SECCLASS_TUN_SOCKET, 5512 TUN_SOCKET__RELABELTO, NULL); 5513 if (err) 5514 return err; 5515 tunsec->sid = sid; 5516 5517 return 0; 5518 } 5519 5520 #ifdef CONFIG_NETFILTER 5521 5522 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5523 const struct net_device *indev, 5524 u16 family) 5525 { 5526 int err; 5527 char *addrp; 5528 u32 peer_sid; 5529 struct common_audit_data ad; 5530 struct lsm_network_audit net = {0,}; 5531 u8 secmark_active; 5532 u8 netlbl_active; 5533 u8 peerlbl_active; 5534 5535 if (!selinux_policycap_netpeer()) 5536 return NF_ACCEPT; 5537 5538 secmark_active = selinux_secmark_enabled(); 5539 netlbl_active = netlbl_enabled(); 5540 peerlbl_active = selinux_peerlbl_enabled(); 5541 if (!secmark_active && !peerlbl_active) 5542 return NF_ACCEPT; 5543 5544 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5545 return NF_DROP; 5546 5547 ad.type = LSM_AUDIT_DATA_NET; 5548 ad.u.net = &net; 5549 ad.u.net->netif = indev->ifindex; 5550 ad.u.net->family = family; 5551 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5552 return NF_DROP; 5553 5554 if (peerlbl_active) { 5555 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5556 addrp, family, peer_sid, &ad); 5557 if (err) { 5558 selinux_netlbl_err(skb, family, err, 1); 5559 return NF_DROP; 5560 } 5561 } 5562 5563 if (secmark_active) 5564 if (avc_has_perm(&selinux_state, 5565 peer_sid, skb->secmark, 5566 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5567 return NF_DROP; 5568 5569 if (netlbl_active) 5570 /* we do this in the FORWARD path and not the POST_ROUTING 5571 * path because we want to make sure we apply the necessary 5572 * labeling before IPsec is applied so we can leverage AH 5573 * protection */ 5574 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5575 return NF_DROP; 5576 5577 return NF_ACCEPT; 5578 } 5579 5580 static unsigned int selinux_ipv4_forward(void *priv, 5581 struct sk_buff *skb, 5582 const struct nf_hook_state *state) 5583 { 5584 return selinux_ip_forward(skb, state->in, PF_INET); 5585 } 5586 5587 #if IS_ENABLED(CONFIG_IPV6) 5588 static unsigned int selinux_ipv6_forward(void *priv, 5589 struct sk_buff *skb, 5590 const struct nf_hook_state *state) 5591 { 5592 return selinux_ip_forward(skb, state->in, PF_INET6); 5593 } 5594 #endif /* IPV6 */ 5595 5596 static unsigned int selinux_ip_output(struct sk_buff *skb, 5597 u16 family) 5598 { 5599 struct sock *sk; 5600 u32 sid; 5601 5602 if (!netlbl_enabled()) 5603 return NF_ACCEPT; 5604 5605 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5606 * because we want to make sure we apply the necessary labeling 5607 * before IPsec is applied so we can leverage AH protection */ 5608 sk = skb->sk; 5609 if (sk) { 5610 struct sk_security_struct *sksec; 5611 5612 if (sk_listener(sk)) 5613 /* if the socket is the listening state then this 5614 * packet is a SYN-ACK packet which means it needs to 5615 * be labeled based on the connection/request_sock and 5616 * not the parent socket. unfortunately, we can't 5617 * lookup the request_sock yet as it isn't queued on 5618 * the parent socket until after the SYN-ACK is sent. 5619 * the "solution" is to simply pass the packet as-is 5620 * as any IP option based labeling should be copied 5621 * from the initial connection request (in the IP 5622 * layer). it is far from ideal, but until we get a 5623 * security label in the packet itself this is the 5624 * best we can do. */ 5625 return NF_ACCEPT; 5626 5627 /* standard practice, label using the parent socket */ 5628 sksec = sk->sk_security; 5629 sid = sksec->sid; 5630 } else 5631 sid = SECINITSID_KERNEL; 5632 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5633 return NF_DROP; 5634 5635 return NF_ACCEPT; 5636 } 5637 5638 static unsigned int selinux_ipv4_output(void *priv, 5639 struct sk_buff *skb, 5640 const struct nf_hook_state *state) 5641 { 5642 return selinux_ip_output(skb, PF_INET); 5643 } 5644 5645 #if IS_ENABLED(CONFIG_IPV6) 5646 static unsigned int selinux_ipv6_output(void *priv, 5647 struct sk_buff *skb, 5648 const struct nf_hook_state *state) 5649 { 5650 return selinux_ip_output(skb, PF_INET6); 5651 } 5652 #endif /* IPV6 */ 5653 5654 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5655 int ifindex, 5656 u16 family) 5657 { 5658 struct sock *sk = skb_to_full_sk(skb); 5659 struct sk_security_struct *sksec; 5660 struct common_audit_data ad; 5661 struct lsm_network_audit net = {0,}; 5662 char *addrp; 5663 u8 proto; 5664 5665 if (sk == NULL) 5666 return NF_ACCEPT; 5667 sksec = sk->sk_security; 5668 5669 ad.type = LSM_AUDIT_DATA_NET; 5670 ad.u.net = &net; 5671 ad.u.net->netif = ifindex; 5672 ad.u.net->family = family; 5673 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5674 return NF_DROP; 5675 5676 if (selinux_secmark_enabled()) 5677 if (avc_has_perm(&selinux_state, 5678 sksec->sid, skb->secmark, 5679 SECCLASS_PACKET, PACKET__SEND, &ad)) 5680 return NF_DROP_ERR(-ECONNREFUSED); 5681 5682 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5683 return NF_DROP_ERR(-ECONNREFUSED); 5684 5685 return NF_ACCEPT; 5686 } 5687 5688 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5689 const struct net_device *outdev, 5690 u16 family) 5691 { 5692 u32 secmark_perm; 5693 u32 peer_sid; 5694 int ifindex = outdev->ifindex; 5695 struct sock *sk; 5696 struct common_audit_data ad; 5697 struct lsm_network_audit net = {0,}; 5698 char *addrp; 5699 u8 secmark_active; 5700 u8 peerlbl_active; 5701 5702 /* If any sort of compatibility mode is enabled then handoff processing 5703 * to the selinux_ip_postroute_compat() function to deal with the 5704 * special handling. We do this in an attempt to keep this function 5705 * as fast and as clean as possible. */ 5706 if (!selinux_policycap_netpeer()) 5707 return selinux_ip_postroute_compat(skb, ifindex, family); 5708 5709 secmark_active = selinux_secmark_enabled(); 5710 peerlbl_active = selinux_peerlbl_enabled(); 5711 if (!secmark_active && !peerlbl_active) 5712 return NF_ACCEPT; 5713 5714 sk = skb_to_full_sk(skb); 5715 5716 #ifdef CONFIG_XFRM 5717 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5718 * packet transformation so allow the packet to pass without any checks 5719 * since we'll have another chance to perform access control checks 5720 * when the packet is on it's final way out. 5721 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5722 * is NULL, in this case go ahead and apply access control. 5723 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5724 * TCP listening state we cannot wait until the XFRM processing 5725 * is done as we will miss out on the SA label if we do; 5726 * unfortunately, this means more work, but it is only once per 5727 * connection. */ 5728 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5729 !(sk && sk_listener(sk))) 5730 return NF_ACCEPT; 5731 #endif 5732 5733 if (sk == NULL) { 5734 /* Without an associated socket the packet is either coming 5735 * from the kernel or it is being forwarded; check the packet 5736 * to determine which and if the packet is being forwarded 5737 * query the packet directly to determine the security label. */ 5738 if (skb->skb_iif) { 5739 secmark_perm = PACKET__FORWARD_OUT; 5740 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5741 return NF_DROP; 5742 } else { 5743 secmark_perm = PACKET__SEND; 5744 peer_sid = SECINITSID_KERNEL; 5745 } 5746 } else if (sk_listener(sk)) { 5747 /* Locally generated packet but the associated socket is in the 5748 * listening state which means this is a SYN-ACK packet. In 5749 * this particular case the correct security label is assigned 5750 * to the connection/request_sock but unfortunately we can't 5751 * query the request_sock as it isn't queued on the parent 5752 * socket until after the SYN-ACK packet is sent; the only 5753 * viable choice is to regenerate the label like we do in 5754 * selinux_inet_conn_request(). See also selinux_ip_output() 5755 * for similar problems. */ 5756 u32 skb_sid; 5757 struct sk_security_struct *sksec; 5758 5759 sksec = sk->sk_security; 5760 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5761 return NF_DROP; 5762 /* At this point, if the returned skb peerlbl is SECSID_NULL 5763 * and the packet has been through at least one XFRM 5764 * transformation then we must be dealing with the "final" 5765 * form of labeled IPsec packet; since we've already applied 5766 * all of our access controls on this packet we can safely 5767 * pass the packet. */ 5768 if (skb_sid == SECSID_NULL) { 5769 switch (family) { 5770 case PF_INET: 5771 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5772 return NF_ACCEPT; 5773 break; 5774 case PF_INET6: 5775 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5776 return NF_ACCEPT; 5777 break; 5778 default: 5779 return NF_DROP_ERR(-ECONNREFUSED); 5780 } 5781 } 5782 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5783 return NF_DROP; 5784 secmark_perm = PACKET__SEND; 5785 } else { 5786 /* Locally generated packet, fetch the security label from the 5787 * associated socket. */ 5788 struct sk_security_struct *sksec = sk->sk_security; 5789 peer_sid = sksec->sid; 5790 secmark_perm = PACKET__SEND; 5791 } 5792 5793 ad.type = LSM_AUDIT_DATA_NET; 5794 ad.u.net = &net; 5795 ad.u.net->netif = ifindex; 5796 ad.u.net->family = family; 5797 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5798 return NF_DROP; 5799 5800 if (secmark_active) 5801 if (avc_has_perm(&selinux_state, 5802 peer_sid, skb->secmark, 5803 SECCLASS_PACKET, secmark_perm, &ad)) 5804 return NF_DROP_ERR(-ECONNREFUSED); 5805 5806 if (peerlbl_active) { 5807 u32 if_sid; 5808 u32 node_sid; 5809 5810 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5811 return NF_DROP; 5812 if (avc_has_perm(&selinux_state, 5813 peer_sid, if_sid, 5814 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5815 return NF_DROP_ERR(-ECONNREFUSED); 5816 5817 if (sel_netnode_sid(addrp, family, &node_sid)) 5818 return NF_DROP; 5819 if (avc_has_perm(&selinux_state, 5820 peer_sid, node_sid, 5821 SECCLASS_NODE, NODE__SENDTO, &ad)) 5822 return NF_DROP_ERR(-ECONNREFUSED); 5823 } 5824 5825 return NF_ACCEPT; 5826 } 5827 5828 static unsigned int selinux_ipv4_postroute(void *priv, 5829 struct sk_buff *skb, 5830 const struct nf_hook_state *state) 5831 { 5832 return selinux_ip_postroute(skb, state->out, PF_INET); 5833 } 5834 5835 #if IS_ENABLED(CONFIG_IPV6) 5836 static unsigned int selinux_ipv6_postroute(void *priv, 5837 struct sk_buff *skb, 5838 const struct nf_hook_state *state) 5839 { 5840 return selinux_ip_postroute(skb, state->out, PF_INET6); 5841 } 5842 #endif /* IPV6 */ 5843 5844 #endif /* CONFIG_NETFILTER */ 5845 5846 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5847 { 5848 int rc = 0; 5849 unsigned int msg_len; 5850 unsigned int data_len = skb->len; 5851 unsigned char *data = skb->data; 5852 struct nlmsghdr *nlh; 5853 struct sk_security_struct *sksec = sk->sk_security; 5854 u16 sclass = sksec->sclass; 5855 u32 perm; 5856 5857 while (data_len >= nlmsg_total_size(0)) { 5858 nlh = (struct nlmsghdr *)data; 5859 5860 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5861 * users which means we can't reject skb's with bogus 5862 * length fields; our solution is to follow what 5863 * netlink_rcv_skb() does and simply skip processing at 5864 * messages with length fields that are clearly junk 5865 */ 5866 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5867 return 0; 5868 5869 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5870 if (rc == 0) { 5871 rc = sock_has_perm(sk, perm); 5872 if (rc) 5873 return rc; 5874 } else if (rc == -EINVAL) { 5875 /* -EINVAL is a missing msg/perm mapping */ 5876 pr_warn_ratelimited("SELinux: unrecognized netlink" 5877 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5878 " pid=%d comm=%s\n", 5879 sk->sk_protocol, nlh->nlmsg_type, 5880 secclass_map[sclass - 1].name, 5881 task_pid_nr(current), current->comm); 5882 if (enforcing_enabled(&selinux_state) && 5883 !security_get_allow_unknown(&selinux_state)) 5884 return rc; 5885 rc = 0; 5886 } else if (rc == -ENOENT) { 5887 /* -ENOENT is a missing socket/class mapping, ignore */ 5888 rc = 0; 5889 } else { 5890 return rc; 5891 } 5892 5893 /* move to the next message after applying netlink padding */ 5894 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5895 if (msg_len >= data_len) 5896 return 0; 5897 data_len -= msg_len; 5898 data += msg_len; 5899 } 5900 5901 return rc; 5902 } 5903 5904 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5905 { 5906 isec->sclass = sclass; 5907 isec->sid = current_sid(); 5908 } 5909 5910 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5911 u32 perms) 5912 { 5913 struct ipc_security_struct *isec; 5914 struct common_audit_data ad; 5915 u32 sid = current_sid(); 5916 5917 isec = selinux_ipc(ipc_perms); 5918 5919 ad.type = LSM_AUDIT_DATA_IPC; 5920 ad.u.ipc_id = ipc_perms->key; 5921 5922 return avc_has_perm(&selinux_state, 5923 sid, isec->sid, isec->sclass, perms, &ad); 5924 } 5925 5926 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5927 { 5928 struct msg_security_struct *msec; 5929 5930 msec = selinux_msg_msg(msg); 5931 msec->sid = SECINITSID_UNLABELED; 5932 5933 return 0; 5934 } 5935 5936 /* message queue security operations */ 5937 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5938 { 5939 struct ipc_security_struct *isec; 5940 struct common_audit_data ad; 5941 u32 sid = current_sid(); 5942 int rc; 5943 5944 isec = selinux_ipc(msq); 5945 ipc_init_security(isec, SECCLASS_MSGQ); 5946 5947 ad.type = LSM_AUDIT_DATA_IPC; 5948 ad.u.ipc_id = msq->key; 5949 5950 rc = avc_has_perm(&selinux_state, 5951 sid, isec->sid, SECCLASS_MSGQ, 5952 MSGQ__CREATE, &ad); 5953 return rc; 5954 } 5955 5956 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5957 { 5958 struct ipc_security_struct *isec; 5959 struct common_audit_data ad; 5960 u32 sid = current_sid(); 5961 5962 isec = selinux_ipc(msq); 5963 5964 ad.type = LSM_AUDIT_DATA_IPC; 5965 ad.u.ipc_id = msq->key; 5966 5967 return avc_has_perm(&selinux_state, 5968 sid, isec->sid, SECCLASS_MSGQ, 5969 MSGQ__ASSOCIATE, &ad); 5970 } 5971 5972 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5973 { 5974 int err; 5975 int perms; 5976 5977 switch (cmd) { 5978 case IPC_INFO: 5979 case MSG_INFO: 5980 /* No specific object, just general system-wide information. */ 5981 return avc_has_perm(&selinux_state, 5982 current_sid(), SECINITSID_KERNEL, 5983 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5984 case IPC_STAT: 5985 case MSG_STAT: 5986 case MSG_STAT_ANY: 5987 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5988 break; 5989 case IPC_SET: 5990 perms = MSGQ__SETATTR; 5991 break; 5992 case IPC_RMID: 5993 perms = MSGQ__DESTROY; 5994 break; 5995 default: 5996 return 0; 5997 } 5998 5999 err = ipc_has_perm(msq, perms); 6000 return err; 6001 } 6002 6003 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6004 { 6005 struct ipc_security_struct *isec; 6006 struct msg_security_struct *msec; 6007 struct common_audit_data ad; 6008 u32 sid = current_sid(); 6009 int rc; 6010 6011 isec = selinux_ipc(msq); 6012 msec = selinux_msg_msg(msg); 6013 6014 /* 6015 * First time through, need to assign label to the message 6016 */ 6017 if (msec->sid == SECINITSID_UNLABELED) { 6018 /* 6019 * Compute new sid based on current process and 6020 * message queue this message will be stored in 6021 */ 6022 rc = security_transition_sid(&selinux_state, sid, isec->sid, 6023 SECCLASS_MSG, NULL, &msec->sid); 6024 if (rc) 6025 return rc; 6026 } 6027 6028 ad.type = LSM_AUDIT_DATA_IPC; 6029 ad.u.ipc_id = msq->key; 6030 6031 /* Can this process write to the queue? */ 6032 rc = avc_has_perm(&selinux_state, 6033 sid, isec->sid, SECCLASS_MSGQ, 6034 MSGQ__WRITE, &ad); 6035 if (!rc) 6036 /* Can this process send the message */ 6037 rc = avc_has_perm(&selinux_state, 6038 sid, msec->sid, SECCLASS_MSG, 6039 MSG__SEND, &ad); 6040 if (!rc) 6041 /* Can the message be put in the queue? */ 6042 rc = avc_has_perm(&selinux_state, 6043 msec->sid, isec->sid, SECCLASS_MSGQ, 6044 MSGQ__ENQUEUE, &ad); 6045 6046 return rc; 6047 } 6048 6049 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6050 struct task_struct *target, 6051 long type, int mode) 6052 { 6053 struct ipc_security_struct *isec; 6054 struct msg_security_struct *msec; 6055 struct common_audit_data ad; 6056 u32 sid = task_sid(target); 6057 int rc; 6058 6059 isec = selinux_ipc(msq); 6060 msec = selinux_msg_msg(msg); 6061 6062 ad.type = LSM_AUDIT_DATA_IPC; 6063 ad.u.ipc_id = msq->key; 6064 6065 rc = avc_has_perm(&selinux_state, 6066 sid, isec->sid, 6067 SECCLASS_MSGQ, MSGQ__READ, &ad); 6068 if (!rc) 6069 rc = avc_has_perm(&selinux_state, 6070 sid, msec->sid, 6071 SECCLASS_MSG, MSG__RECEIVE, &ad); 6072 return rc; 6073 } 6074 6075 /* Shared Memory security operations */ 6076 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6077 { 6078 struct ipc_security_struct *isec; 6079 struct common_audit_data ad; 6080 u32 sid = current_sid(); 6081 int rc; 6082 6083 isec = selinux_ipc(shp); 6084 ipc_init_security(isec, SECCLASS_SHM); 6085 6086 ad.type = LSM_AUDIT_DATA_IPC; 6087 ad.u.ipc_id = shp->key; 6088 6089 rc = avc_has_perm(&selinux_state, 6090 sid, isec->sid, SECCLASS_SHM, 6091 SHM__CREATE, &ad); 6092 return rc; 6093 } 6094 6095 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6096 { 6097 struct ipc_security_struct *isec; 6098 struct common_audit_data ad; 6099 u32 sid = current_sid(); 6100 6101 isec = selinux_ipc(shp); 6102 6103 ad.type = LSM_AUDIT_DATA_IPC; 6104 ad.u.ipc_id = shp->key; 6105 6106 return avc_has_perm(&selinux_state, 6107 sid, isec->sid, SECCLASS_SHM, 6108 SHM__ASSOCIATE, &ad); 6109 } 6110 6111 /* Note, at this point, shp is locked down */ 6112 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6113 { 6114 int perms; 6115 int err; 6116 6117 switch (cmd) { 6118 case IPC_INFO: 6119 case SHM_INFO: 6120 /* No specific object, just general system-wide information. */ 6121 return avc_has_perm(&selinux_state, 6122 current_sid(), SECINITSID_KERNEL, 6123 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6124 case IPC_STAT: 6125 case SHM_STAT: 6126 case SHM_STAT_ANY: 6127 perms = SHM__GETATTR | SHM__ASSOCIATE; 6128 break; 6129 case IPC_SET: 6130 perms = SHM__SETATTR; 6131 break; 6132 case SHM_LOCK: 6133 case SHM_UNLOCK: 6134 perms = SHM__LOCK; 6135 break; 6136 case IPC_RMID: 6137 perms = SHM__DESTROY; 6138 break; 6139 default: 6140 return 0; 6141 } 6142 6143 err = ipc_has_perm(shp, perms); 6144 return err; 6145 } 6146 6147 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6148 char __user *shmaddr, int shmflg) 6149 { 6150 u32 perms; 6151 6152 if (shmflg & SHM_RDONLY) 6153 perms = SHM__READ; 6154 else 6155 perms = SHM__READ | SHM__WRITE; 6156 6157 return ipc_has_perm(shp, perms); 6158 } 6159 6160 /* Semaphore security operations */ 6161 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6162 { 6163 struct ipc_security_struct *isec; 6164 struct common_audit_data ad; 6165 u32 sid = current_sid(); 6166 int rc; 6167 6168 isec = selinux_ipc(sma); 6169 ipc_init_security(isec, SECCLASS_SEM); 6170 6171 ad.type = LSM_AUDIT_DATA_IPC; 6172 ad.u.ipc_id = sma->key; 6173 6174 rc = avc_has_perm(&selinux_state, 6175 sid, isec->sid, SECCLASS_SEM, 6176 SEM__CREATE, &ad); 6177 return rc; 6178 } 6179 6180 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6181 { 6182 struct ipc_security_struct *isec; 6183 struct common_audit_data ad; 6184 u32 sid = current_sid(); 6185 6186 isec = selinux_ipc(sma); 6187 6188 ad.type = LSM_AUDIT_DATA_IPC; 6189 ad.u.ipc_id = sma->key; 6190 6191 return avc_has_perm(&selinux_state, 6192 sid, isec->sid, SECCLASS_SEM, 6193 SEM__ASSOCIATE, &ad); 6194 } 6195 6196 /* Note, at this point, sma is locked down */ 6197 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6198 { 6199 int err; 6200 u32 perms; 6201 6202 switch (cmd) { 6203 case IPC_INFO: 6204 case SEM_INFO: 6205 /* No specific object, just general system-wide information. */ 6206 return avc_has_perm(&selinux_state, 6207 current_sid(), SECINITSID_KERNEL, 6208 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6209 case GETPID: 6210 case GETNCNT: 6211 case GETZCNT: 6212 perms = SEM__GETATTR; 6213 break; 6214 case GETVAL: 6215 case GETALL: 6216 perms = SEM__READ; 6217 break; 6218 case SETVAL: 6219 case SETALL: 6220 perms = SEM__WRITE; 6221 break; 6222 case IPC_RMID: 6223 perms = SEM__DESTROY; 6224 break; 6225 case IPC_SET: 6226 perms = SEM__SETATTR; 6227 break; 6228 case IPC_STAT: 6229 case SEM_STAT: 6230 case SEM_STAT_ANY: 6231 perms = SEM__GETATTR | SEM__ASSOCIATE; 6232 break; 6233 default: 6234 return 0; 6235 } 6236 6237 err = ipc_has_perm(sma, perms); 6238 return err; 6239 } 6240 6241 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6242 struct sembuf *sops, unsigned nsops, int alter) 6243 { 6244 u32 perms; 6245 6246 if (alter) 6247 perms = SEM__READ | SEM__WRITE; 6248 else 6249 perms = SEM__READ; 6250 6251 return ipc_has_perm(sma, perms); 6252 } 6253 6254 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6255 { 6256 u32 av = 0; 6257 6258 av = 0; 6259 if (flag & S_IRUGO) 6260 av |= IPC__UNIX_READ; 6261 if (flag & S_IWUGO) 6262 av |= IPC__UNIX_WRITE; 6263 6264 if (av == 0) 6265 return 0; 6266 6267 return ipc_has_perm(ipcp, av); 6268 } 6269 6270 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6271 { 6272 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6273 *secid = isec->sid; 6274 } 6275 6276 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6277 { 6278 if (inode) 6279 inode_doinit_with_dentry(inode, dentry); 6280 } 6281 6282 static int selinux_getprocattr(struct task_struct *p, 6283 char *name, char **value) 6284 { 6285 const struct task_security_struct *__tsec; 6286 u32 sid; 6287 int error; 6288 unsigned len; 6289 6290 rcu_read_lock(); 6291 __tsec = selinux_cred(__task_cred(p)); 6292 6293 if (current != p) { 6294 error = avc_has_perm(&selinux_state, 6295 current_sid(), __tsec->sid, 6296 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6297 if (error) 6298 goto bad; 6299 } 6300 6301 if (!strcmp(name, "current")) 6302 sid = __tsec->sid; 6303 else if (!strcmp(name, "prev")) 6304 sid = __tsec->osid; 6305 else if (!strcmp(name, "exec")) 6306 sid = __tsec->exec_sid; 6307 else if (!strcmp(name, "fscreate")) 6308 sid = __tsec->create_sid; 6309 else if (!strcmp(name, "keycreate")) 6310 sid = __tsec->keycreate_sid; 6311 else if (!strcmp(name, "sockcreate")) 6312 sid = __tsec->sockcreate_sid; 6313 else { 6314 error = -EINVAL; 6315 goto bad; 6316 } 6317 rcu_read_unlock(); 6318 6319 if (!sid) 6320 return 0; 6321 6322 error = security_sid_to_context(&selinux_state, sid, value, &len); 6323 if (error) 6324 return error; 6325 return len; 6326 6327 bad: 6328 rcu_read_unlock(); 6329 return error; 6330 } 6331 6332 static int selinux_setprocattr(const char *name, void *value, size_t size) 6333 { 6334 struct task_security_struct *tsec; 6335 struct cred *new; 6336 u32 mysid = current_sid(), sid = 0, ptsid; 6337 int error; 6338 char *str = value; 6339 6340 /* 6341 * Basic control over ability to set these attributes at all. 6342 */ 6343 if (!strcmp(name, "exec")) 6344 error = avc_has_perm(&selinux_state, 6345 mysid, mysid, SECCLASS_PROCESS, 6346 PROCESS__SETEXEC, NULL); 6347 else if (!strcmp(name, "fscreate")) 6348 error = avc_has_perm(&selinux_state, 6349 mysid, mysid, SECCLASS_PROCESS, 6350 PROCESS__SETFSCREATE, NULL); 6351 else if (!strcmp(name, "keycreate")) 6352 error = avc_has_perm(&selinux_state, 6353 mysid, mysid, SECCLASS_PROCESS, 6354 PROCESS__SETKEYCREATE, NULL); 6355 else if (!strcmp(name, "sockcreate")) 6356 error = avc_has_perm(&selinux_state, 6357 mysid, mysid, SECCLASS_PROCESS, 6358 PROCESS__SETSOCKCREATE, NULL); 6359 else if (!strcmp(name, "current")) 6360 error = avc_has_perm(&selinux_state, 6361 mysid, mysid, SECCLASS_PROCESS, 6362 PROCESS__SETCURRENT, NULL); 6363 else 6364 error = -EINVAL; 6365 if (error) 6366 return error; 6367 6368 /* Obtain a SID for the context, if one was specified. */ 6369 if (size && str[0] && str[0] != '\n') { 6370 if (str[size-1] == '\n') { 6371 str[size-1] = 0; 6372 size--; 6373 } 6374 error = security_context_to_sid(&selinux_state, value, size, 6375 &sid, GFP_KERNEL); 6376 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6377 if (!has_cap_mac_admin(true)) { 6378 struct audit_buffer *ab; 6379 size_t audit_size; 6380 6381 /* We strip a nul only if it is at the end, otherwise the 6382 * context contains a nul and we should audit that */ 6383 if (str[size - 1] == '\0') 6384 audit_size = size - 1; 6385 else 6386 audit_size = size; 6387 ab = audit_log_start(audit_context(), 6388 GFP_ATOMIC, 6389 AUDIT_SELINUX_ERR); 6390 audit_log_format(ab, "op=fscreate invalid_context="); 6391 audit_log_n_untrustedstring(ab, value, audit_size); 6392 audit_log_end(ab); 6393 6394 return error; 6395 } 6396 error = security_context_to_sid_force( 6397 &selinux_state, 6398 value, size, &sid); 6399 } 6400 if (error) 6401 return error; 6402 } 6403 6404 new = prepare_creds(); 6405 if (!new) 6406 return -ENOMEM; 6407 6408 /* Permission checking based on the specified context is 6409 performed during the actual operation (execve, 6410 open/mkdir/...), when we know the full context of the 6411 operation. See selinux_bprm_creds_for_exec for the execve 6412 checks and may_create for the file creation checks. The 6413 operation will then fail if the context is not permitted. */ 6414 tsec = selinux_cred(new); 6415 if (!strcmp(name, "exec")) { 6416 tsec->exec_sid = sid; 6417 } else if (!strcmp(name, "fscreate")) { 6418 tsec->create_sid = sid; 6419 } else if (!strcmp(name, "keycreate")) { 6420 if (sid) { 6421 error = avc_has_perm(&selinux_state, mysid, sid, 6422 SECCLASS_KEY, KEY__CREATE, NULL); 6423 if (error) 6424 goto abort_change; 6425 } 6426 tsec->keycreate_sid = sid; 6427 } else if (!strcmp(name, "sockcreate")) { 6428 tsec->sockcreate_sid = sid; 6429 } else if (!strcmp(name, "current")) { 6430 error = -EINVAL; 6431 if (sid == 0) 6432 goto abort_change; 6433 6434 /* Only allow single threaded processes to change context */ 6435 error = -EPERM; 6436 if (!current_is_single_threaded()) { 6437 error = security_bounded_transition(&selinux_state, 6438 tsec->sid, sid); 6439 if (error) 6440 goto abort_change; 6441 } 6442 6443 /* Check permissions for the transition. */ 6444 error = avc_has_perm(&selinux_state, 6445 tsec->sid, sid, SECCLASS_PROCESS, 6446 PROCESS__DYNTRANSITION, NULL); 6447 if (error) 6448 goto abort_change; 6449 6450 /* Check for ptracing, and update the task SID if ok. 6451 Otherwise, leave SID unchanged and fail. */ 6452 ptsid = ptrace_parent_sid(); 6453 if (ptsid != 0) { 6454 error = avc_has_perm(&selinux_state, 6455 ptsid, sid, SECCLASS_PROCESS, 6456 PROCESS__PTRACE, NULL); 6457 if (error) 6458 goto abort_change; 6459 } 6460 6461 tsec->sid = sid; 6462 } else { 6463 error = -EINVAL; 6464 goto abort_change; 6465 } 6466 6467 commit_creds(new); 6468 return size; 6469 6470 abort_change: 6471 abort_creds(new); 6472 return error; 6473 } 6474 6475 static int selinux_ismaclabel(const char *name) 6476 { 6477 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6478 } 6479 6480 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6481 { 6482 return security_sid_to_context(&selinux_state, secid, 6483 secdata, seclen); 6484 } 6485 6486 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6487 { 6488 return security_context_to_sid(&selinux_state, secdata, seclen, 6489 secid, GFP_KERNEL); 6490 } 6491 6492 static void selinux_release_secctx(char *secdata, u32 seclen) 6493 { 6494 kfree(secdata); 6495 } 6496 6497 static void selinux_inode_invalidate_secctx(struct inode *inode) 6498 { 6499 struct inode_security_struct *isec = selinux_inode(inode); 6500 6501 spin_lock(&isec->lock); 6502 isec->initialized = LABEL_INVALID; 6503 spin_unlock(&isec->lock); 6504 } 6505 6506 /* 6507 * called with inode->i_mutex locked 6508 */ 6509 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6510 { 6511 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6512 ctx, ctxlen, 0); 6513 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6514 return rc == -EOPNOTSUPP ? 0 : rc; 6515 } 6516 6517 /* 6518 * called with inode->i_mutex locked 6519 */ 6520 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6521 { 6522 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6523 } 6524 6525 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6526 { 6527 int len = 0; 6528 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6529 ctx, true); 6530 if (len < 0) 6531 return len; 6532 *ctxlen = len; 6533 return 0; 6534 } 6535 #ifdef CONFIG_KEYS 6536 6537 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6538 unsigned long flags) 6539 { 6540 const struct task_security_struct *tsec; 6541 struct key_security_struct *ksec; 6542 6543 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6544 if (!ksec) 6545 return -ENOMEM; 6546 6547 tsec = selinux_cred(cred); 6548 if (tsec->keycreate_sid) 6549 ksec->sid = tsec->keycreate_sid; 6550 else 6551 ksec->sid = tsec->sid; 6552 6553 k->security = ksec; 6554 return 0; 6555 } 6556 6557 static void selinux_key_free(struct key *k) 6558 { 6559 struct key_security_struct *ksec = k->security; 6560 6561 k->security = NULL; 6562 kfree(ksec); 6563 } 6564 6565 static int selinux_key_permission(key_ref_t key_ref, 6566 const struct cred *cred, 6567 enum key_need_perm need_perm) 6568 { 6569 struct key *key; 6570 struct key_security_struct *ksec; 6571 u32 perm, sid; 6572 6573 switch (need_perm) { 6574 case KEY_NEED_VIEW: 6575 perm = KEY__VIEW; 6576 break; 6577 case KEY_NEED_READ: 6578 perm = KEY__READ; 6579 break; 6580 case KEY_NEED_WRITE: 6581 perm = KEY__WRITE; 6582 break; 6583 case KEY_NEED_SEARCH: 6584 perm = KEY__SEARCH; 6585 break; 6586 case KEY_NEED_LINK: 6587 perm = KEY__LINK; 6588 break; 6589 case KEY_NEED_SETATTR: 6590 perm = KEY__SETATTR; 6591 break; 6592 case KEY_NEED_UNLINK: 6593 case KEY_SYSADMIN_OVERRIDE: 6594 case KEY_AUTHTOKEN_OVERRIDE: 6595 case KEY_DEFER_PERM_CHECK: 6596 return 0; 6597 default: 6598 WARN_ON(1); 6599 return -EPERM; 6600 6601 } 6602 6603 sid = cred_sid(cred); 6604 key = key_ref_to_ptr(key_ref); 6605 ksec = key->security; 6606 6607 return avc_has_perm(&selinux_state, 6608 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6609 } 6610 6611 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6612 { 6613 struct key_security_struct *ksec = key->security; 6614 char *context = NULL; 6615 unsigned len; 6616 int rc; 6617 6618 rc = security_sid_to_context(&selinux_state, ksec->sid, 6619 &context, &len); 6620 if (!rc) 6621 rc = len; 6622 *_buffer = context; 6623 return rc; 6624 } 6625 6626 #ifdef CONFIG_KEY_NOTIFICATIONS 6627 static int selinux_watch_key(struct key *key) 6628 { 6629 struct key_security_struct *ksec = key->security; 6630 u32 sid = current_sid(); 6631 6632 return avc_has_perm(&selinux_state, 6633 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6634 } 6635 #endif 6636 #endif 6637 6638 #ifdef CONFIG_SECURITY_INFINIBAND 6639 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6640 { 6641 struct common_audit_data ad; 6642 int err; 6643 u32 sid = 0; 6644 struct ib_security_struct *sec = ib_sec; 6645 struct lsm_ibpkey_audit ibpkey; 6646 6647 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6648 if (err) 6649 return err; 6650 6651 ad.type = LSM_AUDIT_DATA_IBPKEY; 6652 ibpkey.subnet_prefix = subnet_prefix; 6653 ibpkey.pkey = pkey_val; 6654 ad.u.ibpkey = &ibpkey; 6655 return avc_has_perm(&selinux_state, 6656 sec->sid, sid, 6657 SECCLASS_INFINIBAND_PKEY, 6658 INFINIBAND_PKEY__ACCESS, &ad); 6659 } 6660 6661 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6662 u8 port_num) 6663 { 6664 struct common_audit_data ad; 6665 int err; 6666 u32 sid = 0; 6667 struct ib_security_struct *sec = ib_sec; 6668 struct lsm_ibendport_audit ibendport; 6669 6670 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6671 &sid); 6672 6673 if (err) 6674 return err; 6675 6676 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6677 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); 6678 ibendport.port = port_num; 6679 ad.u.ibendport = &ibendport; 6680 return avc_has_perm(&selinux_state, 6681 sec->sid, sid, 6682 SECCLASS_INFINIBAND_ENDPORT, 6683 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6684 } 6685 6686 static int selinux_ib_alloc_security(void **ib_sec) 6687 { 6688 struct ib_security_struct *sec; 6689 6690 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6691 if (!sec) 6692 return -ENOMEM; 6693 sec->sid = current_sid(); 6694 6695 *ib_sec = sec; 6696 return 0; 6697 } 6698 6699 static void selinux_ib_free_security(void *ib_sec) 6700 { 6701 kfree(ib_sec); 6702 } 6703 #endif 6704 6705 #ifdef CONFIG_BPF_SYSCALL 6706 static int selinux_bpf(int cmd, union bpf_attr *attr, 6707 unsigned int size) 6708 { 6709 u32 sid = current_sid(); 6710 int ret; 6711 6712 switch (cmd) { 6713 case BPF_MAP_CREATE: 6714 ret = avc_has_perm(&selinux_state, 6715 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6716 NULL); 6717 break; 6718 case BPF_PROG_LOAD: 6719 ret = avc_has_perm(&selinux_state, 6720 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6721 NULL); 6722 break; 6723 default: 6724 ret = 0; 6725 break; 6726 } 6727 6728 return ret; 6729 } 6730 6731 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6732 { 6733 u32 av = 0; 6734 6735 if (fmode & FMODE_READ) 6736 av |= BPF__MAP_READ; 6737 if (fmode & FMODE_WRITE) 6738 av |= BPF__MAP_WRITE; 6739 return av; 6740 } 6741 6742 /* This function will check the file pass through unix socket or binder to see 6743 * if it is a bpf related object. And apply correspinding checks on the bpf 6744 * object based on the type. The bpf maps and programs, not like other files and 6745 * socket, are using a shared anonymous inode inside the kernel as their inode. 6746 * So checking that inode cannot identify if the process have privilege to 6747 * access the bpf object and that's why we have to add this additional check in 6748 * selinux_file_receive and selinux_binder_transfer_files. 6749 */ 6750 static int bpf_fd_pass(struct file *file, u32 sid) 6751 { 6752 struct bpf_security_struct *bpfsec; 6753 struct bpf_prog *prog; 6754 struct bpf_map *map; 6755 int ret; 6756 6757 if (file->f_op == &bpf_map_fops) { 6758 map = file->private_data; 6759 bpfsec = map->security; 6760 ret = avc_has_perm(&selinux_state, 6761 sid, bpfsec->sid, SECCLASS_BPF, 6762 bpf_map_fmode_to_av(file->f_mode), NULL); 6763 if (ret) 6764 return ret; 6765 } else if (file->f_op == &bpf_prog_fops) { 6766 prog = file->private_data; 6767 bpfsec = prog->aux->security; 6768 ret = avc_has_perm(&selinux_state, 6769 sid, bpfsec->sid, SECCLASS_BPF, 6770 BPF__PROG_RUN, NULL); 6771 if (ret) 6772 return ret; 6773 } 6774 return 0; 6775 } 6776 6777 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6778 { 6779 u32 sid = current_sid(); 6780 struct bpf_security_struct *bpfsec; 6781 6782 bpfsec = map->security; 6783 return avc_has_perm(&selinux_state, 6784 sid, bpfsec->sid, SECCLASS_BPF, 6785 bpf_map_fmode_to_av(fmode), NULL); 6786 } 6787 6788 static int selinux_bpf_prog(struct bpf_prog *prog) 6789 { 6790 u32 sid = current_sid(); 6791 struct bpf_security_struct *bpfsec; 6792 6793 bpfsec = prog->aux->security; 6794 return avc_has_perm(&selinux_state, 6795 sid, bpfsec->sid, SECCLASS_BPF, 6796 BPF__PROG_RUN, NULL); 6797 } 6798 6799 static int selinux_bpf_map_alloc(struct bpf_map *map) 6800 { 6801 struct bpf_security_struct *bpfsec; 6802 6803 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6804 if (!bpfsec) 6805 return -ENOMEM; 6806 6807 bpfsec->sid = current_sid(); 6808 map->security = bpfsec; 6809 6810 return 0; 6811 } 6812 6813 static void selinux_bpf_map_free(struct bpf_map *map) 6814 { 6815 struct bpf_security_struct *bpfsec = map->security; 6816 6817 map->security = NULL; 6818 kfree(bpfsec); 6819 } 6820 6821 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6822 { 6823 struct bpf_security_struct *bpfsec; 6824 6825 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6826 if (!bpfsec) 6827 return -ENOMEM; 6828 6829 bpfsec->sid = current_sid(); 6830 aux->security = bpfsec; 6831 6832 return 0; 6833 } 6834 6835 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6836 { 6837 struct bpf_security_struct *bpfsec = aux->security; 6838 6839 aux->security = NULL; 6840 kfree(bpfsec); 6841 } 6842 #endif 6843 6844 static int selinux_lockdown(enum lockdown_reason what) 6845 { 6846 struct common_audit_data ad; 6847 u32 sid = current_sid(); 6848 int invalid_reason = (what <= LOCKDOWN_NONE) || 6849 (what == LOCKDOWN_INTEGRITY_MAX) || 6850 (what >= LOCKDOWN_CONFIDENTIALITY_MAX); 6851 6852 if (WARN(invalid_reason, "Invalid lockdown reason")) { 6853 audit_log(audit_context(), 6854 GFP_ATOMIC, AUDIT_SELINUX_ERR, 6855 "lockdown_reason=invalid"); 6856 return -EINVAL; 6857 } 6858 6859 ad.type = LSM_AUDIT_DATA_LOCKDOWN; 6860 ad.u.reason = what; 6861 6862 if (what <= LOCKDOWN_INTEGRITY_MAX) 6863 return avc_has_perm(&selinux_state, 6864 sid, sid, SECCLASS_LOCKDOWN, 6865 LOCKDOWN__INTEGRITY, &ad); 6866 else 6867 return avc_has_perm(&selinux_state, 6868 sid, sid, SECCLASS_LOCKDOWN, 6869 LOCKDOWN__CONFIDENTIALITY, &ad); 6870 } 6871 6872 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { 6873 .lbs_cred = sizeof(struct task_security_struct), 6874 .lbs_file = sizeof(struct file_security_struct), 6875 .lbs_inode = sizeof(struct inode_security_struct), 6876 .lbs_ipc = sizeof(struct ipc_security_struct), 6877 .lbs_msg_msg = sizeof(struct msg_security_struct), 6878 }; 6879 6880 #ifdef CONFIG_PERF_EVENTS 6881 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6882 { 6883 u32 requested, sid = current_sid(); 6884 6885 if (type == PERF_SECURITY_OPEN) 6886 requested = PERF_EVENT__OPEN; 6887 else if (type == PERF_SECURITY_CPU) 6888 requested = PERF_EVENT__CPU; 6889 else if (type == PERF_SECURITY_KERNEL) 6890 requested = PERF_EVENT__KERNEL; 6891 else if (type == PERF_SECURITY_TRACEPOINT) 6892 requested = PERF_EVENT__TRACEPOINT; 6893 else 6894 return -EINVAL; 6895 6896 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, 6897 requested, NULL); 6898 } 6899 6900 static int selinux_perf_event_alloc(struct perf_event *event) 6901 { 6902 struct perf_event_security_struct *perfsec; 6903 6904 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 6905 if (!perfsec) 6906 return -ENOMEM; 6907 6908 perfsec->sid = current_sid(); 6909 event->security = perfsec; 6910 6911 return 0; 6912 } 6913 6914 static void selinux_perf_event_free(struct perf_event *event) 6915 { 6916 struct perf_event_security_struct *perfsec = event->security; 6917 6918 event->security = NULL; 6919 kfree(perfsec); 6920 } 6921 6922 static int selinux_perf_event_read(struct perf_event *event) 6923 { 6924 struct perf_event_security_struct *perfsec = event->security; 6925 u32 sid = current_sid(); 6926 6927 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6928 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 6929 } 6930 6931 static int selinux_perf_event_write(struct perf_event *event) 6932 { 6933 struct perf_event_security_struct *perfsec = event->security; 6934 u32 sid = current_sid(); 6935 6936 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6937 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 6938 } 6939 #endif 6940 6941 /* 6942 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 6943 * 1. any hooks that don't belong to (2.) or (3.) below, 6944 * 2. hooks that both access structures allocated by other hooks, and allocate 6945 * structures that can be later accessed by other hooks (mostly "cloning" 6946 * hooks), 6947 * 3. hooks that only allocate structures that can be later accessed by other 6948 * hooks ("allocating" hooks). 6949 * 6950 * Please follow block comment delimiters in the list to keep this order. 6951 * 6952 * This ordering is needed for SELinux runtime disable to work at least somewhat 6953 * safely. Breaking the ordering rules above might lead to NULL pointer derefs 6954 * when disabling SELinux at runtime. 6955 */ 6956 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 6957 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6958 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6959 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6960 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6961 6962 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6963 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6964 LSM_HOOK_INIT(capget, selinux_capget), 6965 LSM_HOOK_INIT(capset, selinux_capset), 6966 LSM_HOOK_INIT(capable, selinux_capable), 6967 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6968 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6969 LSM_HOOK_INIT(syslog, selinux_syslog), 6970 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6971 6972 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6973 6974 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 6975 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6976 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6977 6978 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6979 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 6980 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6981 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6982 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6983 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6984 LSM_HOOK_INIT(sb_mount, selinux_mount), 6985 LSM_HOOK_INIT(sb_umount, selinux_umount), 6986 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6987 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6988 6989 LSM_HOOK_INIT(move_mount, selinux_move_mount), 6990 6991 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6992 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6993 6994 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6995 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6996 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6997 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6998 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6999 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7000 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7001 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7002 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7003 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7004 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7005 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7006 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7007 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7008 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7009 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7010 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7011 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7012 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7013 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7014 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7015 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7016 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7017 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7018 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7019 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7020 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7021 7022 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7023 7024 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7025 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7026 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7027 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7028 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7029 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7030 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7031 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7032 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7033 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7034 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7035 7036 LSM_HOOK_INIT(file_open, selinux_file_open), 7037 7038 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7039 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7040 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7041 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7042 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7043 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7044 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7045 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7046 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7047 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7048 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7049 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7050 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 7051 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7052 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7053 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7054 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7055 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7056 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7057 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7058 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7059 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7060 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7061 7062 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7063 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7064 7065 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7066 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7067 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7068 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7069 7070 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7071 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7072 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7073 7074 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7075 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7076 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7077 7078 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7079 7080 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7081 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7082 7083 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7084 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7085 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7086 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7087 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7088 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7089 7090 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7091 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7092 7093 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7094 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7095 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7096 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7097 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7098 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7099 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7100 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7101 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7102 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7103 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7104 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7105 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7106 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7107 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7108 LSM_HOOK_INIT(socket_getpeersec_stream, 7109 selinux_socket_getpeersec_stream), 7110 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7111 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7112 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7113 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7114 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7115 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7116 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7117 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7118 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7119 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7120 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7121 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7122 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7123 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7124 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7125 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7126 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7127 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7128 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7129 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7130 #ifdef CONFIG_SECURITY_INFINIBAND 7131 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7132 LSM_HOOK_INIT(ib_endport_manage_subnet, 7133 selinux_ib_endport_manage_subnet), 7134 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7135 #endif 7136 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7137 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7138 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7139 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7140 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7141 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7142 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7143 selinux_xfrm_state_pol_flow_match), 7144 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7145 #endif 7146 7147 #ifdef CONFIG_KEYS 7148 LSM_HOOK_INIT(key_free, selinux_key_free), 7149 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7150 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7151 #ifdef CONFIG_KEY_NOTIFICATIONS 7152 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7153 #endif 7154 #endif 7155 7156 #ifdef CONFIG_AUDIT 7157 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7158 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7159 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7160 #endif 7161 7162 #ifdef CONFIG_BPF_SYSCALL 7163 LSM_HOOK_INIT(bpf, selinux_bpf), 7164 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7165 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7166 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7167 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7168 #endif 7169 7170 #ifdef CONFIG_PERF_EVENTS 7171 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7172 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7173 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7174 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7175 #endif 7176 7177 LSM_HOOK_INIT(locked_down, selinux_lockdown), 7178 7179 /* 7180 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7181 */ 7182 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7183 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7184 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7185 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), 7186 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7187 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7188 #endif 7189 7190 /* 7191 * PUT "ALLOCATING" HOOKS HERE 7192 */ 7193 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7194 LSM_HOOK_INIT(msg_queue_alloc_security, 7195 selinux_msg_queue_alloc_security), 7196 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7197 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7198 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7199 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7200 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7201 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7202 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7203 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7204 #ifdef CONFIG_SECURITY_INFINIBAND 7205 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7206 #endif 7207 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7208 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7209 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7210 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7211 selinux_xfrm_state_alloc_acquire), 7212 #endif 7213 #ifdef CONFIG_KEYS 7214 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7215 #endif 7216 #ifdef CONFIG_AUDIT 7217 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7218 #endif 7219 #ifdef CONFIG_BPF_SYSCALL 7220 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7221 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7222 #endif 7223 #ifdef CONFIG_PERF_EVENTS 7224 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7225 #endif 7226 }; 7227 7228 static __init int selinux_init(void) 7229 { 7230 pr_info("SELinux: Initializing.\n"); 7231 7232 memset(&selinux_state, 0, sizeof(selinux_state)); 7233 enforcing_set(&selinux_state, selinux_enforcing_boot); 7234 selinux_state.checkreqprot = selinux_checkreqprot_boot; 7235 selinux_ss_init(&selinux_state.ss); 7236 selinux_avc_init(&selinux_state.avc); 7237 mutex_init(&selinux_state.status_lock); 7238 7239 /* Set the security state for the initial task. */ 7240 cred_init_security(); 7241 7242 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7243 7244 avc_init(); 7245 7246 avtab_cache_init(); 7247 7248 ebitmap_cache_init(); 7249 7250 hashtab_cache_init(); 7251 7252 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7253 7254 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7255 panic("SELinux: Unable to register AVC netcache callback\n"); 7256 7257 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7258 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7259 7260 if (selinux_enforcing_boot) 7261 pr_debug("SELinux: Starting in enforcing mode\n"); 7262 else 7263 pr_debug("SELinux: Starting in permissive mode\n"); 7264 7265 fs_validate_description("selinux", selinux_fs_parameters); 7266 7267 return 0; 7268 } 7269 7270 static void delayed_superblock_init(struct super_block *sb, void *unused) 7271 { 7272 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7273 } 7274 7275 void selinux_complete_init(void) 7276 { 7277 pr_debug("SELinux: Completing initialization.\n"); 7278 7279 /* Set up any superblocks initialized prior to the policy load. */ 7280 pr_debug("SELinux: Setting up existing superblocks.\n"); 7281 iterate_supers(delayed_superblock_init, NULL); 7282 } 7283 7284 /* SELinux requires early initialization in order to label 7285 all processes and objects when they are created. */ 7286 DEFINE_LSM(selinux) = { 7287 .name = "selinux", 7288 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7289 .enabled = &selinux_enabled_boot, 7290 .blobs = &selinux_blob_sizes, 7291 .init = selinux_init, 7292 }; 7293 7294 #if defined(CONFIG_NETFILTER) 7295 7296 static const struct nf_hook_ops selinux_nf_ops[] = { 7297 { 7298 .hook = selinux_ipv4_postroute, 7299 .pf = NFPROTO_IPV4, 7300 .hooknum = NF_INET_POST_ROUTING, 7301 .priority = NF_IP_PRI_SELINUX_LAST, 7302 }, 7303 { 7304 .hook = selinux_ipv4_forward, 7305 .pf = NFPROTO_IPV4, 7306 .hooknum = NF_INET_FORWARD, 7307 .priority = NF_IP_PRI_SELINUX_FIRST, 7308 }, 7309 { 7310 .hook = selinux_ipv4_output, 7311 .pf = NFPROTO_IPV4, 7312 .hooknum = NF_INET_LOCAL_OUT, 7313 .priority = NF_IP_PRI_SELINUX_FIRST, 7314 }, 7315 #if IS_ENABLED(CONFIG_IPV6) 7316 { 7317 .hook = selinux_ipv6_postroute, 7318 .pf = NFPROTO_IPV6, 7319 .hooknum = NF_INET_POST_ROUTING, 7320 .priority = NF_IP6_PRI_SELINUX_LAST, 7321 }, 7322 { 7323 .hook = selinux_ipv6_forward, 7324 .pf = NFPROTO_IPV6, 7325 .hooknum = NF_INET_FORWARD, 7326 .priority = NF_IP6_PRI_SELINUX_FIRST, 7327 }, 7328 { 7329 .hook = selinux_ipv6_output, 7330 .pf = NFPROTO_IPV6, 7331 .hooknum = NF_INET_LOCAL_OUT, 7332 .priority = NF_IP6_PRI_SELINUX_FIRST, 7333 }, 7334 #endif /* IPV6 */ 7335 }; 7336 7337 static int __net_init selinux_nf_register(struct net *net) 7338 { 7339 return nf_register_net_hooks(net, selinux_nf_ops, 7340 ARRAY_SIZE(selinux_nf_ops)); 7341 } 7342 7343 static void __net_exit selinux_nf_unregister(struct net *net) 7344 { 7345 nf_unregister_net_hooks(net, selinux_nf_ops, 7346 ARRAY_SIZE(selinux_nf_ops)); 7347 } 7348 7349 static struct pernet_operations selinux_net_ops = { 7350 .init = selinux_nf_register, 7351 .exit = selinux_nf_unregister, 7352 }; 7353 7354 static int __init selinux_nf_ip_init(void) 7355 { 7356 int err; 7357 7358 if (!selinux_enabled_boot) 7359 return 0; 7360 7361 pr_debug("SELinux: Registering netfilter hooks\n"); 7362 7363 err = register_pernet_subsys(&selinux_net_ops); 7364 if (err) 7365 panic("SELinux: register_pernet_subsys: error %d\n", err); 7366 7367 return 0; 7368 } 7369 __initcall(selinux_nf_ip_init); 7370 7371 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7372 static void selinux_nf_ip_exit(void) 7373 { 7374 pr_debug("SELinux: Unregistering netfilter hooks\n"); 7375 7376 unregister_pernet_subsys(&selinux_net_ops); 7377 } 7378 #endif 7379 7380 #else /* CONFIG_NETFILTER */ 7381 7382 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7383 #define selinux_nf_ip_exit() 7384 #endif 7385 7386 #endif /* CONFIG_NETFILTER */ 7387 7388 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7389 int selinux_disable(struct selinux_state *state) 7390 { 7391 if (selinux_initialized(state)) { 7392 /* Not permitted after initial policy load. */ 7393 return -EINVAL; 7394 } 7395 7396 if (selinux_disabled(state)) { 7397 /* Only do this once. */ 7398 return -EINVAL; 7399 } 7400 7401 selinux_mark_disabled(state); 7402 7403 pr_info("SELinux: Disabled at runtime.\n"); 7404 7405 /* 7406 * Unregister netfilter hooks. 7407 * Must be done before security_delete_hooks() to avoid breaking 7408 * runtime disable. 7409 */ 7410 selinux_nf_ip_exit(); 7411 7412 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7413 7414 /* Try to destroy the avc node cache */ 7415 avc_disable(); 7416 7417 /* Unregister selinuxfs. */ 7418 exit_sel_fs(); 7419 7420 return 0; 7421 } 7422 #endif 7423