xref: /openbmc/linux/security/selinux/hooks.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>	/* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105 
106 struct selinux_state selinux_state;
107 
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110 
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot __initdata;
113 
114 static int __init enforcing_setup(char *str)
115 {
116 	unsigned long enforcing;
117 	if (!kstrtoul(str, 0, &enforcing))
118 		selinux_enforcing_boot = enforcing ? 1 : 0;
119 	return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125 
126 int selinux_enabled_boot __initdata = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130 	unsigned long enabled;
131 	if (!kstrtoul(str, 0, &enabled))
132 		selinux_enabled_boot = enabled ? 1 : 0;
133 	return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot)) {
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 		if (checkreqprot)
148 			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
149 	}
150 	return 1;
151 }
152 __setup("checkreqprot=", checkreqprot_setup);
153 
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167 	return (selinux_policycap_alwaysnetwork() ||
168 		atomic_read(&selinux_secmark_refcount));
169 }
170 
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183 	return (selinux_policycap_alwaysnetwork() ||
184 		netlbl_enabled() || selinux_xfrm_enabled());
185 }
186 
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189 	if (event == AVC_CALLBACK_RESET) {
190 		sel_netif_flush();
191 		sel_netnode_flush();
192 		sel_netport_flush();
193 		synchronize_net();
194 	}
195 	return 0;
196 }
197 
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200 	if (event == AVC_CALLBACK_RESET) {
201 		sel_ib_pkey_flush();
202 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 	}
204 
205 	return 0;
206 }
207 
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213 	struct cred *cred = (struct cred *) current->real_cred;
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(cred);
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 /*
232  * get the objective security ID of a task
233  */
234 static inline u32 task_sid(const struct task_struct *task)
235 {
236 	u32 sid;
237 
238 	rcu_read_lock();
239 	sid = cred_sid(__task_cred(task));
240 	rcu_read_unlock();
241 	return sid;
242 }
243 
244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245 
246 /*
247  * Try reloading inode security labels that have been marked as invalid.  The
248  * @may_sleep parameter indicates when sleeping and thus reloading labels is
249  * allowed; when set to false, returns -ECHILD when the label is
250  * invalid.  The @dentry parameter should be set to a dentry of the inode.
251  */
252 static int __inode_security_revalidate(struct inode *inode,
253 				       struct dentry *dentry,
254 				       bool may_sleep)
255 {
256 	struct inode_security_struct *isec = selinux_inode(inode);
257 
258 	might_sleep_if(may_sleep);
259 
260 	if (selinux_initialized(&selinux_state) &&
261 	    isec->initialized != LABEL_INITIALIZED) {
262 		if (!may_sleep)
263 			return -ECHILD;
264 
265 		/*
266 		 * Try reloading the inode security label.  This will fail if
267 		 * @opt_dentry is NULL and no dentry for this inode can be
268 		 * found; in that case, continue using the old label.
269 		 */
270 		inode_doinit_with_dentry(inode, dentry);
271 	}
272 	return 0;
273 }
274 
275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276 {
277 	return selinux_inode(inode);
278 }
279 
280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281 {
282 	int error;
283 
284 	error = __inode_security_revalidate(inode, NULL, !rcu);
285 	if (error)
286 		return ERR_PTR(error);
287 	return selinux_inode(inode);
288 }
289 
290 /*
291  * Get the security label of an inode.
292  */
293 static struct inode_security_struct *inode_security(struct inode *inode)
294 {
295 	__inode_security_revalidate(inode, NULL, true);
296 	return selinux_inode(inode);
297 }
298 
299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300 {
301 	struct inode *inode = d_backing_inode(dentry);
302 
303 	return selinux_inode(inode);
304 }
305 
306 /*
307  * Get the security label of a dentry's backing inode.
308  */
309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310 {
311 	struct inode *inode = d_backing_inode(dentry);
312 
313 	__inode_security_revalidate(inode, dentry, true);
314 	return selinux_inode(inode);
315 }
316 
317 static void inode_free_security(struct inode *inode)
318 {
319 	struct inode_security_struct *isec = selinux_inode(inode);
320 	struct superblock_security_struct *sbsec;
321 
322 	if (!isec)
323 		return;
324 	sbsec = inode->i_sb->s_security;
325 	/*
326 	 * As not all inode security structures are in a list, we check for
327 	 * empty list outside of the lock to make sure that we won't waste
328 	 * time taking a lock doing nothing.
329 	 *
330 	 * The list_del_init() function can be safely called more than once.
331 	 * It should not be possible for this function to be called with
332 	 * concurrent list_add(), but for better safety against future changes
333 	 * in the code, we use list_empty_careful() here.
334 	 */
335 	if (!list_empty_careful(&isec->list)) {
336 		spin_lock(&sbsec->isec_lock);
337 		list_del_init(&isec->list);
338 		spin_unlock(&sbsec->isec_lock);
339 	}
340 }
341 
342 static void superblock_free_security(struct super_block *sb)
343 {
344 	struct superblock_security_struct *sbsec = sb->s_security;
345 	sb->s_security = NULL;
346 	kfree(sbsec);
347 }
348 
349 struct selinux_mnt_opts {
350 	const char *fscontext, *context, *rootcontext, *defcontext;
351 };
352 
353 static void selinux_free_mnt_opts(void *mnt_opts)
354 {
355 	struct selinux_mnt_opts *opts = mnt_opts;
356 	kfree(opts->fscontext);
357 	kfree(opts->context);
358 	kfree(opts->rootcontext);
359 	kfree(opts->defcontext);
360 	kfree(opts);
361 }
362 
363 enum {
364 	Opt_error = -1,
365 	Opt_context = 0,
366 	Opt_defcontext = 1,
367 	Opt_fscontext = 2,
368 	Opt_rootcontext = 3,
369 	Opt_seclabel = 4,
370 };
371 
372 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
373 static struct {
374 	const char *name;
375 	int len;
376 	int opt;
377 	bool has_arg;
378 } tokens[] = {
379 	A(context, true),
380 	A(fscontext, true),
381 	A(defcontext, true),
382 	A(rootcontext, true),
383 	A(seclabel, false),
384 };
385 #undef A
386 
387 static int match_opt_prefix(char *s, int l, char **arg)
388 {
389 	int i;
390 
391 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
392 		size_t len = tokens[i].len;
393 		if (len > l || memcmp(s, tokens[i].name, len))
394 			continue;
395 		if (tokens[i].has_arg) {
396 			if (len == l || s[len] != '=')
397 				continue;
398 			*arg = s + len + 1;
399 		} else if (len != l)
400 			continue;
401 		return tokens[i].opt;
402 	}
403 	return Opt_error;
404 }
405 
406 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
407 
408 static int may_context_mount_sb_relabel(u32 sid,
409 			struct superblock_security_struct *sbsec,
410 			const struct cred *cred)
411 {
412 	const struct task_security_struct *tsec = selinux_cred(cred);
413 	int rc;
414 
415 	rc = avc_has_perm(&selinux_state,
416 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
417 			  FILESYSTEM__RELABELFROM, NULL);
418 	if (rc)
419 		return rc;
420 
421 	rc = avc_has_perm(&selinux_state,
422 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
423 			  FILESYSTEM__RELABELTO, NULL);
424 	return rc;
425 }
426 
427 static int may_context_mount_inode_relabel(u32 sid,
428 			struct superblock_security_struct *sbsec,
429 			const struct cred *cred)
430 {
431 	const struct task_security_struct *tsec = selinux_cred(cred);
432 	int rc;
433 	rc = avc_has_perm(&selinux_state,
434 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
435 			  FILESYSTEM__RELABELFROM, NULL);
436 	if (rc)
437 		return rc;
438 
439 	rc = avc_has_perm(&selinux_state,
440 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
441 			  FILESYSTEM__ASSOCIATE, NULL);
442 	return rc;
443 }
444 
445 static int selinux_is_genfs_special_handling(struct super_block *sb)
446 {
447 	/* Special handling. Genfs but also in-core setxattr handler */
448 	return	!strcmp(sb->s_type->name, "sysfs") ||
449 		!strcmp(sb->s_type->name, "pstore") ||
450 		!strcmp(sb->s_type->name, "debugfs") ||
451 		!strcmp(sb->s_type->name, "tracefs") ||
452 		!strcmp(sb->s_type->name, "rootfs") ||
453 		(selinux_policycap_cgroupseclabel() &&
454 		 (!strcmp(sb->s_type->name, "cgroup") ||
455 		  !strcmp(sb->s_type->name, "cgroup2")));
456 }
457 
458 static int selinux_is_sblabel_mnt(struct super_block *sb)
459 {
460 	struct superblock_security_struct *sbsec = sb->s_security;
461 
462 	/*
463 	 * IMPORTANT: Double-check logic in this function when adding a new
464 	 * SECURITY_FS_USE_* definition!
465 	 */
466 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
467 
468 	switch (sbsec->behavior) {
469 	case SECURITY_FS_USE_XATTR:
470 	case SECURITY_FS_USE_TRANS:
471 	case SECURITY_FS_USE_TASK:
472 	case SECURITY_FS_USE_NATIVE:
473 		return 1;
474 
475 	case SECURITY_FS_USE_GENFS:
476 		return selinux_is_genfs_special_handling(sb);
477 
478 	/* Never allow relabeling on context mounts */
479 	case SECURITY_FS_USE_MNTPOINT:
480 	case SECURITY_FS_USE_NONE:
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static int sb_finish_set_opts(struct super_block *sb)
487 {
488 	struct superblock_security_struct *sbsec = sb->s_security;
489 	struct dentry *root = sb->s_root;
490 	struct inode *root_inode = d_backing_inode(root);
491 	int rc = 0;
492 
493 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
494 		/* Make sure that the xattr handler exists and that no
495 		   error other than -ENODATA is returned by getxattr on
496 		   the root directory.  -ENODATA is ok, as this may be
497 		   the first boot of the SELinux kernel before we have
498 		   assigned xattr values to the filesystem. */
499 		if (!(root_inode->i_opflags & IOP_XATTR)) {
500 			pr_warn("SELinux: (dev %s, type %s) has no "
501 			       "xattr support\n", sb->s_id, sb->s_type->name);
502 			rc = -EOPNOTSUPP;
503 			goto out;
504 		}
505 
506 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
507 		if (rc < 0 && rc != -ENODATA) {
508 			if (rc == -EOPNOTSUPP)
509 				pr_warn("SELinux: (dev %s, type "
510 				       "%s) has no security xattr handler\n",
511 				       sb->s_id, sb->s_type->name);
512 			else
513 				pr_warn("SELinux: (dev %s, type "
514 				       "%s) getxattr errno %d\n", sb->s_id,
515 				       sb->s_type->name, -rc);
516 			goto out;
517 		}
518 	}
519 
520 	sbsec->flags |= SE_SBINITIALIZED;
521 
522 	/*
523 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
524 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
525 	 * us a superblock that needs the flag to be cleared.
526 	 */
527 	if (selinux_is_sblabel_mnt(sb))
528 		sbsec->flags |= SBLABEL_MNT;
529 	else
530 		sbsec->flags &= ~SBLABEL_MNT;
531 
532 	/* Initialize the root inode. */
533 	rc = inode_doinit_with_dentry(root_inode, root);
534 
535 	/* Initialize any other inodes associated with the superblock, e.g.
536 	   inodes created prior to initial policy load or inodes created
537 	   during get_sb by a pseudo filesystem that directly
538 	   populates itself. */
539 	spin_lock(&sbsec->isec_lock);
540 	while (!list_empty(&sbsec->isec_head)) {
541 		struct inode_security_struct *isec =
542 				list_first_entry(&sbsec->isec_head,
543 					   struct inode_security_struct, list);
544 		struct inode *inode = isec->inode;
545 		list_del_init(&isec->list);
546 		spin_unlock(&sbsec->isec_lock);
547 		inode = igrab(inode);
548 		if (inode) {
549 			if (!IS_PRIVATE(inode))
550 				inode_doinit_with_dentry(inode, NULL);
551 			iput(inode);
552 		}
553 		spin_lock(&sbsec->isec_lock);
554 	}
555 	spin_unlock(&sbsec->isec_lock);
556 out:
557 	return rc;
558 }
559 
560 static int bad_option(struct superblock_security_struct *sbsec, char flag,
561 		      u32 old_sid, u32 new_sid)
562 {
563 	char mnt_flags = sbsec->flags & SE_MNTMASK;
564 
565 	/* check if the old mount command had the same options */
566 	if (sbsec->flags & SE_SBINITIALIZED)
567 		if (!(sbsec->flags & flag) ||
568 		    (old_sid != new_sid))
569 			return 1;
570 
571 	/* check if we were passed the same options twice,
572 	 * aka someone passed context=a,context=b
573 	 */
574 	if (!(sbsec->flags & SE_SBINITIALIZED))
575 		if (mnt_flags & flag)
576 			return 1;
577 	return 0;
578 }
579 
580 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
581 {
582 	int rc = security_context_str_to_sid(&selinux_state, s,
583 					     sid, GFP_KERNEL);
584 	if (rc)
585 		pr_warn("SELinux: security_context_str_to_sid"
586 		       "(%s) failed for (dev %s, type %s) errno=%d\n",
587 		       s, sb->s_id, sb->s_type->name, rc);
588 	return rc;
589 }
590 
591 /*
592  * Allow filesystems with binary mount data to explicitly set mount point
593  * labeling information.
594  */
595 static int selinux_set_mnt_opts(struct super_block *sb,
596 				void *mnt_opts,
597 				unsigned long kern_flags,
598 				unsigned long *set_kern_flags)
599 {
600 	const struct cred *cred = current_cred();
601 	struct superblock_security_struct *sbsec = sb->s_security;
602 	struct dentry *root = sbsec->sb->s_root;
603 	struct selinux_mnt_opts *opts = mnt_opts;
604 	struct inode_security_struct *root_isec;
605 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 	u32 defcontext_sid = 0;
607 	int rc = 0;
608 
609 	mutex_lock(&sbsec->lock);
610 
611 	if (!selinux_initialized(&selinux_state)) {
612 		if (!opts) {
613 			/* Defer initialization until selinux_complete_init,
614 			   after the initial policy is loaded and the security
615 			   server is ready to handle calls. */
616 			goto out;
617 		}
618 		rc = -EINVAL;
619 		pr_warn("SELinux: Unable to set superblock options "
620 			"before the security server is initialized\n");
621 		goto out;
622 	}
623 	if (kern_flags && !set_kern_flags) {
624 		/* Specifying internal flags without providing a place to
625 		 * place the results is not allowed */
626 		rc = -EINVAL;
627 		goto out;
628 	}
629 
630 	/*
631 	 * Binary mount data FS will come through this function twice.  Once
632 	 * from an explicit call and once from the generic calls from the vfs.
633 	 * Since the generic VFS calls will not contain any security mount data
634 	 * we need to skip the double mount verification.
635 	 *
636 	 * This does open a hole in which we will not notice if the first
637 	 * mount using this sb set explict options and a second mount using
638 	 * this sb does not set any security options.  (The first options
639 	 * will be used for both mounts)
640 	 */
641 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 	    && !opts)
643 		goto out;
644 
645 	root_isec = backing_inode_security_novalidate(root);
646 
647 	/*
648 	 * parse the mount options, check if they are valid sids.
649 	 * also check if someone is trying to mount the same sb more
650 	 * than once with different security options.
651 	 */
652 	if (opts) {
653 		if (opts->fscontext) {
654 			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
655 			if (rc)
656 				goto out;
657 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
658 					fscontext_sid))
659 				goto out_double_mount;
660 			sbsec->flags |= FSCONTEXT_MNT;
661 		}
662 		if (opts->context) {
663 			rc = parse_sid(sb, opts->context, &context_sid);
664 			if (rc)
665 				goto out;
666 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667 					context_sid))
668 				goto out_double_mount;
669 			sbsec->flags |= CONTEXT_MNT;
670 		}
671 		if (opts->rootcontext) {
672 			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
673 			if (rc)
674 				goto out;
675 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
676 					rootcontext_sid))
677 				goto out_double_mount;
678 			sbsec->flags |= ROOTCONTEXT_MNT;
679 		}
680 		if (opts->defcontext) {
681 			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
682 			if (rc)
683 				goto out;
684 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
685 					defcontext_sid))
686 				goto out_double_mount;
687 			sbsec->flags |= DEFCONTEXT_MNT;
688 		}
689 	}
690 
691 	if (sbsec->flags & SE_SBINITIALIZED) {
692 		/* previously mounted with options, but not on this attempt? */
693 		if ((sbsec->flags & SE_MNTMASK) && !opts)
694 			goto out_double_mount;
695 		rc = 0;
696 		goto out;
697 	}
698 
699 	if (strcmp(sb->s_type->name, "proc") == 0)
700 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
701 
702 	if (!strcmp(sb->s_type->name, "debugfs") ||
703 	    !strcmp(sb->s_type->name, "tracefs") ||
704 	    !strcmp(sb->s_type->name, "binder") ||
705 	    !strcmp(sb->s_type->name, "bpf") ||
706 	    !strcmp(sb->s_type->name, "pstore"))
707 		sbsec->flags |= SE_SBGENFS;
708 
709 	if (!strcmp(sb->s_type->name, "sysfs") ||
710 	    !strcmp(sb->s_type->name, "cgroup") ||
711 	    !strcmp(sb->s_type->name, "cgroup2"))
712 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713 
714 	if (!sbsec->behavior) {
715 		/*
716 		 * Determine the labeling behavior to use for this
717 		 * filesystem type.
718 		 */
719 		rc = security_fs_use(&selinux_state, sb);
720 		if (rc) {
721 			pr_warn("%s: security_fs_use(%s) returned %d\n",
722 					__func__, sb->s_type->name, rc);
723 			goto out;
724 		}
725 	}
726 
727 	/*
728 	 * If this is a user namespace mount and the filesystem type is not
729 	 * explicitly whitelisted, then no contexts are allowed on the command
730 	 * line and security labels must be ignored.
731 	 */
732 	if (sb->s_user_ns != &init_user_ns &&
733 	    strcmp(sb->s_type->name, "tmpfs") &&
734 	    strcmp(sb->s_type->name, "ramfs") &&
735 	    strcmp(sb->s_type->name, "devpts")) {
736 		if (context_sid || fscontext_sid || rootcontext_sid ||
737 		    defcontext_sid) {
738 			rc = -EACCES;
739 			goto out;
740 		}
741 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
742 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
743 			rc = security_transition_sid(&selinux_state,
744 						     current_sid(),
745 						     current_sid(),
746 						     SECCLASS_FILE, NULL,
747 						     &sbsec->mntpoint_sid);
748 			if (rc)
749 				goto out;
750 		}
751 		goto out_set_opts;
752 	}
753 
754 	/* sets the context of the superblock for the fs being mounted. */
755 	if (fscontext_sid) {
756 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
757 		if (rc)
758 			goto out;
759 
760 		sbsec->sid = fscontext_sid;
761 	}
762 
763 	/*
764 	 * Switch to using mount point labeling behavior.
765 	 * sets the label used on all file below the mountpoint, and will set
766 	 * the superblock context if not already set.
767 	 */
768 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
769 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
770 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
771 	}
772 
773 	if (context_sid) {
774 		if (!fscontext_sid) {
775 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
776 							  cred);
777 			if (rc)
778 				goto out;
779 			sbsec->sid = context_sid;
780 		} else {
781 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
782 							     cred);
783 			if (rc)
784 				goto out;
785 		}
786 		if (!rootcontext_sid)
787 			rootcontext_sid = context_sid;
788 
789 		sbsec->mntpoint_sid = context_sid;
790 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
791 	}
792 
793 	if (rootcontext_sid) {
794 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
795 						     cred);
796 		if (rc)
797 			goto out;
798 
799 		root_isec->sid = rootcontext_sid;
800 		root_isec->initialized = LABEL_INITIALIZED;
801 	}
802 
803 	if (defcontext_sid) {
804 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
805 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
806 			rc = -EINVAL;
807 			pr_warn("SELinux: defcontext option is "
808 			       "invalid for this filesystem type\n");
809 			goto out;
810 		}
811 
812 		if (defcontext_sid != sbsec->def_sid) {
813 			rc = may_context_mount_inode_relabel(defcontext_sid,
814 							     sbsec, cred);
815 			if (rc)
816 				goto out;
817 		}
818 
819 		sbsec->def_sid = defcontext_sid;
820 	}
821 
822 out_set_opts:
823 	rc = sb_finish_set_opts(sb);
824 out:
825 	mutex_unlock(&sbsec->lock);
826 	return rc;
827 out_double_mount:
828 	rc = -EINVAL;
829 	pr_warn("SELinux: mount invalid.  Same superblock, different "
830 	       "security settings for (dev %s, type %s)\n", sb->s_id,
831 	       sb->s_type->name);
832 	goto out;
833 }
834 
835 static int selinux_cmp_sb_context(const struct super_block *oldsb,
836 				    const struct super_block *newsb)
837 {
838 	struct superblock_security_struct *old = oldsb->s_security;
839 	struct superblock_security_struct *new = newsb->s_security;
840 	char oldflags = old->flags & SE_MNTMASK;
841 	char newflags = new->flags & SE_MNTMASK;
842 
843 	if (oldflags != newflags)
844 		goto mismatch;
845 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
846 		goto mismatch;
847 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
848 		goto mismatch;
849 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
850 		goto mismatch;
851 	if (oldflags & ROOTCONTEXT_MNT) {
852 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
853 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
854 		if (oldroot->sid != newroot->sid)
855 			goto mismatch;
856 	}
857 	return 0;
858 mismatch:
859 	pr_warn("SELinux: mount invalid.  Same superblock, "
860 			    "different security settings for (dev %s, "
861 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
862 	return -EBUSY;
863 }
864 
865 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
866 					struct super_block *newsb,
867 					unsigned long kern_flags,
868 					unsigned long *set_kern_flags)
869 {
870 	int rc = 0;
871 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872 	struct superblock_security_struct *newsbsec = newsb->s_security;
873 
874 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
875 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
876 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
877 
878 	/*
879 	 * if the parent was able to be mounted it clearly had no special lsm
880 	 * mount options.  thus we can safely deal with this superblock later
881 	 */
882 	if (!selinux_initialized(&selinux_state))
883 		return 0;
884 
885 	/*
886 	 * Specifying internal flags without providing a place to
887 	 * place the results is not allowed.
888 	 */
889 	if (kern_flags && !set_kern_flags)
890 		return -EINVAL;
891 
892 	/* how can we clone if the old one wasn't set up?? */
893 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
894 
895 	/* if fs is reusing a sb, make sure that the contexts match */
896 	if (newsbsec->flags & SE_SBINITIALIZED) {
897 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
898 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
899 		return selinux_cmp_sb_context(oldsb, newsb);
900 	}
901 
902 	mutex_lock(&newsbsec->lock);
903 
904 	newsbsec->flags = oldsbsec->flags;
905 
906 	newsbsec->sid = oldsbsec->sid;
907 	newsbsec->def_sid = oldsbsec->def_sid;
908 	newsbsec->behavior = oldsbsec->behavior;
909 
910 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
911 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
912 		rc = security_fs_use(&selinux_state, newsb);
913 		if (rc)
914 			goto out;
915 	}
916 
917 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
918 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
919 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
920 	}
921 
922 	if (set_context) {
923 		u32 sid = oldsbsec->mntpoint_sid;
924 
925 		if (!set_fscontext)
926 			newsbsec->sid = sid;
927 		if (!set_rootcontext) {
928 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
929 			newisec->sid = sid;
930 		}
931 		newsbsec->mntpoint_sid = sid;
932 	}
933 	if (set_rootcontext) {
934 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
935 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
936 
937 		newisec->sid = oldisec->sid;
938 	}
939 
940 	sb_finish_set_opts(newsb);
941 out:
942 	mutex_unlock(&newsbsec->lock);
943 	return rc;
944 }
945 
946 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
947 {
948 	struct selinux_mnt_opts *opts = *mnt_opts;
949 
950 	if (token == Opt_seclabel)	/* eaten and completely ignored */
951 		return 0;
952 
953 	if (!opts) {
954 		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
955 		if (!opts)
956 			return -ENOMEM;
957 		*mnt_opts = opts;
958 	}
959 	if (!s)
960 		return -ENOMEM;
961 	switch (token) {
962 	case Opt_context:
963 		if (opts->context || opts->defcontext)
964 			goto Einval;
965 		opts->context = s;
966 		break;
967 	case Opt_fscontext:
968 		if (opts->fscontext)
969 			goto Einval;
970 		opts->fscontext = s;
971 		break;
972 	case Opt_rootcontext:
973 		if (opts->rootcontext)
974 			goto Einval;
975 		opts->rootcontext = s;
976 		break;
977 	case Opt_defcontext:
978 		if (opts->context || opts->defcontext)
979 			goto Einval;
980 		opts->defcontext = s;
981 		break;
982 	}
983 	return 0;
984 Einval:
985 	pr_warn(SEL_MOUNT_FAIL_MSG);
986 	return -EINVAL;
987 }
988 
989 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
990 			       void **mnt_opts)
991 {
992 	int token = Opt_error;
993 	int rc, i;
994 
995 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
996 		if (strcmp(option, tokens[i].name) == 0) {
997 			token = tokens[i].opt;
998 			break;
999 		}
1000 	}
1001 
1002 	if (token == Opt_error)
1003 		return -EINVAL;
1004 
1005 	if (token != Opt_seclabel) {
1006 		val = kmemdup_nul(val, len, GFP_KERNEL);
1007 		if (!val) {
1008 			rc = -ENOMEM;
1009 			goto free_opt;
1010 		}
1011 	}
1012 	rc = selinux_add_opt(token, val, mnt_opts);
1013 	if (unlikely(rc)) {
1014 		kfree(val);
1015 		goto free_opt;
1016 	}
1017 	return rc;
1018 
1019 free_opt:
1020 	if (*mnt_opts) {
1021 		selinux_free_mnt_opts(*mnt_opts);
1022 		*mnt_opts = NULL;
1023 	}
1024 	return rc;
1025 }
1026 
1027 static int show_sid(struct seq_file *m, u32 sid)
1028 {
1029 	char *context = NULL;
1030 	u32 len;
1031 	int rc;
1032 
1033 	rc = security_sid_to_context(&selinux_state, sid,
1034 					     &context, &len);
1035 	if (!rc) {
1036 		bool has_comma = context && strchr(context, ',');
1037 
1038 		seq_putc(m, '=');
1039 		if (has_comma)
1040 			seq_putc(m, '\"');
1041 		seq_escape(m, context, "\"\n\\");
1042 		if (has_comma)
1043 			seq_putc(m, '\"');
1044 	}
1045 	kfree(context);
1046 	return rc;
1047 }
1048 
1049 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050 {
1051 	struct superblock_security_struct *sbsec = sb->s_security;
1052 	int rc;
1053 
1054 	if (!(sbsec->flags & SE_SBINITIALIZED))
1055 		return 0;
1056 
1057 	if (!selinux_initialized(&selinux_state))
1058 		return 0;
1059 
1060 	if (sbsec->flags & FSCONTEXT_MNT) {
1061 		seq_putc(m, ',');
1062 		seq_puts(m, FSCONTEXT_STR);
1063 		rc = show_sid(m, sbsec->sid);
1064 		if (rc)
1065 			return rc;
1066 	}
1067 	if (sbsec->flags & CONTEXT_MNT) {
1068 		seq_putc(m, ',');
1069 		seq_puts(m, CONTEXT_STR);
1070 		rc = show_sid(m, sbsec->mntpoint_sid);
1071 		if (rc)
1072 			return rc;
1073 	}
1074 	if (sbsec->flags & DEFCONTEXT_MNT) {
1075 		seq_putc(m, ',');
1076 		seq_puts(m, DEFCONTEXT_STR);
1077 		rc = show_sid(m, sbsec->def_sid);
1078 		if (rc)
1079 			return rc;
1080 	}
1081 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1082 		struct dentry *root = sbsec->sb->s_root;
1083 		struct inode_security_struct *isec = backing_inode_security(root);
1084 		seq_putc(m, ',');
1085 		seq_puts(m, ROOTCONTEXT_STR);
1086 		rc = show_sid(m, isec->sid);
1087 		if (rc)
1088 			return rc;
1089 	}
1090 	if (sbsec->flags & SBLABEL_MNT) {
1091 		seq_putc(m, ',');
1092 		seq_puts(m, SECLABEL_STR);
1093 	}
1094 	return 0;
1095 }
1096 
1097 static inline u16 inode_mode_to_security_class(umode_t mode)
1098 {
1099 	switch (mode & S_IFMT) {
1100 	case S_IFSOCK:
1101 		return SECCLASS_SOCK_FILE;
1102 	case S_IFLNK:
1103 		return SECCLASS_LNK_FILE;
1104 	case S_IFREG:
1105 		return SECCLASS_FILE;
1106 	case S_IFBLK:
1107 		return SECCLASS_BLK_FILE;
1108 	case S_IFDIR:
1109 		return SECCLASS_DIR;
1110 	case S_IFCHR:
1111 		return SECCLASS_CHR_FILE;
1112 	case S_IFIFO:
1113 		return SECCLASS_FIFO_FILE;
1114 
1115 	}
1116 
1117 	return SECCLASS_FILE;
1118 }
1119 
1120 static inline int default_protocol_stream(int protocol)
1121 {
1122 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123 }
1124 
1125 static inline int default_protocol_dgram(int protocol)
1126 {
1127 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128 }
1129 
1130 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131 {
1132 	int extsockclass = selinux_policycap_extsockclass();
1133 
1134 	switch (family) {
1135 	case PF_UNIX:
1136 		switch (type) {
1137 		case SOCK_STREAM:
1138 		case SOCK_SEQPACKET:
1139 			return SECCLASS_UNIX_STREAM_SOCKET;
1140 		case SOCK_DGRAM:
1141 		case SOCK_RAW:
1142 			return SECCLASS_UNIX_DGRAM_SOCKET;
1143 		}
1144 		break;
1145 	case PF_INET:
1146 	case PF_INET6:
1147 		switch (type) {
1148 		case SOCK_STREAM:
1149 		case SOCK_SEQPACKET:
1150 			if (default_protocol_stream(protocol))
1151 				return SECCLASS_TCP_SOCKET;
1152 			else if (extsockclass && protocol == IPPROTO_SCTP)
1153 				return SECCLASS_SCTP_SOCKET;
1154 			else
1155 				return SECCLASS_RAWIP_SOCKET;
1156 		case SOCK_DGRAM:
1157 			if (default_protocol_dgram(protocol))
1158 				return SECCLASS_UDP_SOCKET;
1159 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160 						  protocol == IPPROTO_ICMPV6))
1161 				return SECCLASS_ICMP_SOCKET;
1162 			else
1163 				return SECCLASS_RAWIP_SOCKET;
1164 		case SOCK_DCCP:
1165 			return SECCLASS_DCCP_SOCKET;
1166 		default:
1167 			return SECCLASS_RAWIP_SOCKET;
1168 		}
1169 		break;
1170 	case PF_NETLINK:
1171 		switch (protocol) {
1172 		case NETLINK_ROUTE:
1173 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1174 		case NETLINK_SOCK_DIAG:
1175 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176 		case NETLINK_NFLOG:
1177 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1178 		case NETLINK_XFRM:
1179 			return SECCLASS_NETLINK_XFRM_SOCKET;
1180 		case NETLINK_SELINUX:
1181 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1182 		case NETLINK_ISCSI:
1183 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1184 		case NETLINK_AUDIT:
1185 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1186 		case NETLINK_FIB_LOOKUP:
1187 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188 		case NETLINK_CONNECTOR:
1189 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190 		case NETLINK_NETFILTER:
1191 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192 		case NETLINK_DNRTMSG:
1193 			return SECCLASS_NETLINK_DNRT_SOCKET;
1194 		case NETLINK_KOBJECT_UEVENT:
1195 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196 		case NETLINK_GENERIC:
1197 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1198 		case NETLINK_SCSITRANSPORT:
1199 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200 		case NETLINK_RDMA:
1201 			return SECCLASS_NETLINK_RDMA_SOCKET;
1202 		case NETLINK_CRYPTO:
1203 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204 		default:
1205 			return SECCLASS_NETLINK_SOCKET;
1206 		}
1207 	case PF_PACKET:
1208 		return SECCLASS_PACKET_SOCKET;
1209 	case PF_KEY:
1210 		return SECCLASS_KEY_SOCKET;
1211 	case PF_APPLETALK:
1212 		return SECCLASS_APPLETALK_SOCKET;
1213 	}
1214 
1215 	if (extsockclass) {
1216 		switch (family) {
1217 		case PF_AX25:
1218 			return SECCLASS_AX25_SOCKET;
1219 		case PF_IPX:
1220 			return SECCLASS_IPX_SOCKET;
1221 		case PF_NETROM:
1222 			return SECCLASS_NETROM_SOCKET;
1223 		case PF_ATMPVC:
1224 			return SECCLASS_ATMPVC_SOCKET;
1225 		case PF_X25:
1226 			return SECCLASS_X25_SOCKET;
1227 		case PF_ROSE:
1228 			return SECCLASS_ROSE_SOCKET;
1229 		case PF_DECnet:
1230 			return SECCLASS_DECNET_SOCKET;
1231 		case PF_ATMSVC:
1232 			return SECCLASS_ATMSVC_SOCKET;
1233 		case PF_RDS:
1234 			return SECCLASS_RDS_SOCKET;
1235 		case PF_IRDA:
1236 			return SECCLASS_IRDA_SOCKET;
1237 		case PF_PPPOX:
1238 			return SECCLASS_PPPOX_SOCKET;
1239 		case PF_LLC:
1240 			return SECCLASS_LLC_SOCKET;
1241 		case PF_CAN:
1242 			return SECCLASS_CAN_SOCKET;
1243 		case PF_TIPC:
1244 			return SECCLASS_TIPC_SOCKET;
1245 		case PF_BLUETOOTH:
1246 			return SECCLASS_BLUETOOTH_SOCKET;
1247 		case PF_IUCV:
1248 			return SECCLASS_IUCV_SOCKET;
1249 		case PF_RXRPC:
1250 			return SECCLASS_RXRPC_SOCKET;
1251 		case PF_ISDN:
1252 			return SECCLASS_ISDN_SOCKET;
1253 		case PF_PHONET:
1254 			return SECCLASS_PHONET_SOCKET;
1255 		case PF_IEEE802154:
1256 			return SECCLASS_IEEE802154_SOCKET;
1257 		case PF_CAIF:
1258 			return SECCLASS_CAIF_SOCKET;
1259 		case PF_ALG:
1260 			return SECCLASS_ALG_SOCKET;
1261 		case PF_NFC:
1262 			return SECCLASS_NFC_SOCKET;
1263 		case PF_VSOCK:
1264 			return SECCLASS_VSOCK_SOCKET;
1265 		case PF_KCM:
1266 			return SECCLASS_KCM_SOCKET;
1267 		case PF_QIPCRTR:
1268 			return SECCLASS_QIPCRTR_SOCKET;
1269 		case PF_SMC:
1270 			return SECCLASS_SMC_SOCKET;
1271 		case PF_XDP:
1272 			return SECCLASS_XDP_SOCKET;
1273 #if PF_MAX > 45
1274 #error New address family defined, please update this function.
1275 #endif
1276 		}
1277 	}
1278 
1279 	return SECCLASS_SOCKET;
1280 }
1281 
1282 static int selinux_genfs_get_sid(struct dentry *dentry,
1283 				 u16 tclass,
1284 				 u16 flags,
1285 				 u32 *sid)
1286 {
1287 	int rc;
1288 	struct super_block *sb = dentry->d_sb;
1289 	char *buffer, *path;
1290 
1291 	buffer = (char *)__get_free_page(GFP_KERNEL);
1292 	if (!buffer)
1293 		return -ENOMEM;
1294 
1295 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296 	if (IS_ERR(path))
1297 		rc = PTR_ERR(path);
1298 	else {
1299 		if (flags & SE_SBPROC) {
1300 			/* each process gets a /proc/PID/ entry. Strip off the
1301 			 * PID part to get a valid selinux labeling.
1302 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303 			while (path[1] >= '0' && path[1] <= '9') {
1304 				path[1] = '/';
1305 				path++;
1306 			}
1307 		}
1308 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309 					path, tclass, sid);
1310 		if (rc == -ENOENT) {
1311 			/* No match in policy, mark as unlabeled. */
1312 			*sid = SECINITSID_UNLABELED;
1313 			rc = 0;
1314 		}
1315 	}
1316 	free_page((unsigned long)buffer);
1317 	return rc;
1318 }
1319 
1320 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321 				  u32 def_sid, u32 *sid)
1322 {
1323 #define INITCONTEXTLEN 255
1324 	char *context;
1325 	unsigned int len;
1326 	int rc;
1327 
1328 	len = INITCONTEXTLEN;
1329 	context = kmalloc(len + 1, GFP_NOFS);
1330 	if (!context)
1331 		return -ENOMEM;
1332 
1333 	context[len] = '\0';
1334 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335 	if (rc == -ERANGE) {
1336 		kfree(context);
1337 
1338 		/* Need a larger buffer.  Query for the right size. */
1339 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340 		if (rc < 0)
1341 			return rc;
1342 
1343 		len = rc;
1344 		context = kmalloc(len + 1, GFP_NOFS);
1345 		if (!context)
1346 			return -ENOMEM;
1347 
1348 		context[len] = '\0';
1349 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350 				    context, len);
1351 	}
1352 	if (rc < 0) {
1353 		kfree(context);
1354 		if (rc != -ENODATA) {
1355 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1356 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357 			return rc;
1358 		}
1359 		*sid = def_sid;
1360 		return 0;
1361 	}
1362 
1363 	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364 					     def_sid, GFP_NOFS);
1365 	if (rc) {
1366 		char *dev = inode->i_sb->s_id;
1367 		unsigned long ino = inode->i_ino;
1368 
1369 		if (rc == -EINVAL) {
1370 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1371 					      ino, dev, context);
1372 		} else {
1373 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374 				__func__, context, -rc, dev, ino);
1375 		}
1376 	}
1377 	kfree(context);
1378 	return 0;
1379 }
1380 
1381 /* The inode's security attributes must be initialized before first use. */
1382 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383 {
1384 	struct superblock_security_struct *sbsec = NULL;
1385 	struct inode_security_struct *isec = selinux_inode(inode);
1386 	u32 task_sid, sid = 0;
1387 	u16 sclass;
1388 	struct dentry *dentry;
1389 	int rc = 0;
1390 
1391 	if (isec->initialized == LABEL_INITIALIZED)
1392 		return 0;
1393 
1394 	spin_lock(&isec->lock);
1395 	if (isec->initialized == LABEL_INITIALIZED)
1396 		goto out_unlock;
1397 
1398 	if (isec->sclass == SECCLASS_FILE)
1399 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400 
1401 	sbsec = inode->i_sb->s_security;
1402 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403 		/* Defer initialization until selinux_complete_init,
1404 		   after the initial policy is loaded and the security
1405 		   server is ready to handle calls. */
1406 		spin_lock(&sbsec->isec_lock);
1407 		if (list_empty(&isec->list))
1408 			list_add(&isec->list, &sbsec->isec_head);
1409 		spin_unlock(&sbsec->isec_lock);
1410 		goto out_unlock;
1411 	}
1412 
1413 	sclass = isec->sclass;
1414 	task_sid = isec->task_sid;
1415 	sid = isec->sid;
1416 	isec->initialized = LABEL_PENDING;
1417 	spin_unlock(&isec->lock);
1418 
1419 	switch (sbsec->behavior) {
1420 	case SECURITY_FS_USE_NATIVE:
1421 		break;
1422 	case SECURITY_FS_USE_XATTR:
1423 		if (!(inode->i_opflags & IOP_XATTR)) {
1424 			sid = sbsec->def_sid;
1425 			break;
1426 		}
1427 		/* Need a dentry, since the xattr API requires one.
1428 		   Life would be simpler if we could just pass the inode. */
1429 		if (opt_dentry) {
1430 			/* Called from d_instantiate or d_splice_alias. */
1431 			dentry = dget(opt_dentry);
1432 		} else {
1433 			/*
1434 			 * Called from selinux_complete_init, try to find a dentry.
1435 			 * Some filesystems really want a connected one, so try
1436 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1437 			 * two, depending upon that...
1438 			 */
1439 			dentry = d_find_alias(inode);
1440 			if (!dentry)
1441 				dentry = d_find_any_alias(inode);
1442 		}
1443 		if (!dentry) {
1444 			/*
1445 			 * this is can be hit on boot when a file is accessed
1446 			 * before the policy is loaded.  When we load policy we
1447 			 * may find inodes that have no dentry on the
1448 			 * sbsec->isec_head list.  No reason to complain as these
1449 			 * will get fixed up the next time we go through
1450 			 * inode_doinit with a dentry, before these inodes could
1451 			 * be used again by userspace.
1452 			 */
1453 			goto out;
1454 		}
1455 
1456 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457 					    &sid);
1458 		dput(dentry);
1459 		if (rc)
1460 			goto out;
1461 		break;
1462 	case SECURITY_FS_USE_TASK:
1463 		sid = task_sid;
1464 		break;
1465 	case SECURITY_FS_USE_TRANS:
1466 		/* Default to the fs SID. */
1467 		sid = sbsec->sid;
1468 
1469 		/* Try to obtain a transition SID. */
1470 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1471 					     sclass, NULL, &sid);
1472 		if (rc)
1473 			goto out;
1474 		break;
1475 	case SECURITY_FS_USE_MNTPOINT:
1476 		sid = sbsec->mntpoint_sid;
1477 		break;
1478 	default:
1479 		/* Default to the fs superblock SID. */
1480 		sid = sbsec->sid;
1481 
1482 		if ((sbsec->flags & SE_SBGENFS) &&
1483 		     (!S_ISLNK(inode->i_mode) ||
1484 		      selinux_policycap_genfs_seclabel_symlinks())) {
1485 			/* We must have a dentry to determine the label on
1486 			 * procfs inodes */
1487 			if (opt_dentry) {
1488 				/* Called from d_instantiate or
1489 				 * d_splice_alias. */
1490 				dentry = dget(opt_dentry);
1491 			} else {
1492 				/* Called from selinux_complete_init, try to
1493 				 * find a dentry.  Some filesystems really want
1494 				 * a connected one, so try that first.
1495 				 */
1496 				dentry = d_find_alias(inode);
1497 				if (!dentry)
1498 					dentry = d_find_any_alias(inode);
1499 			}
1500 			/*
1501 			 * This can be hit on boot when a file is accessed
1502 			 * before the policy is loaded.  When we load policy we
1503 			 * may find inodes that have no dentry on the
1504 			 * sbsec->isec_head list.  No reason to complain as
1505 			 * these will get fixed up the next time we go through
1506 			 * inode_doinit() with a dentry, before these inodes
1507 			 * could be used again by userspace.
1508 			 */
1509 			if (!dentry)
1510 				goto out;
1511 			rc = selinux_genfs_get_sid(dentry, sclass,
1512 						   sbsec->flags, &sid);
1513 			if (rc) {
1514 				dput(dentry);
1515 				goto out;
1516 			}
1517 
1518 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519 			    (inode->i_opflags & IOP_XATTR)) {
1520 				rc = inode_doinit_use_xattr(inode, dentry,
1521 							    sid, &sid);
1522 				if (rc) {
1523 					dput(dentry);
1524 					goto out;
1525 				}
1526 			}
1527 			dput(dentry);
1528 		}
1529 		break;
1530 	}
1531 
1532 out:
1533 	spin_lock(&isec->lock);
1534 	if (isec->initialized == LABEL_PENDING) {
1535 		if (!sid || rc) {
1536 			isec->initialized = LABEL_INVALID;
1537 			goto out_unlock;
1538 		}
1539 
1540 		isec->initialized = LABEL_INITIALIZED;
1541 		isec->sid = sid;
1542 	}
1543 
1544 out_unlock:
1545 	spin_unlock(&isec->lock);
1546 	return rc;
1547 }
1548 
1549 /* Convert a Linux signal to an access vector. */
1550 static inline u32 signal_to_av(int sig)
1551 {
1552 	u32 perm = 0;
1553 
1554 	switch (sig) {
1555 	case SIGCHLD:
1556 		/* Commonly granted from child to parent. */
1557 		perm = PROCESS__SIGCHLD;
1558 		break;
1559 	case SIGKILL:
1560 		/* Cannot be caught or ignored */
1561 		perm = PROCESS__SIGKILL;
1562 		break;
1563 	case SIGSTOP:
1564 		/* Cannot be caught or ignored */
1565 		perm = PROCESS__SIGSTOP;
1566 		break;
1567 	default:
1568 		/* All other signals. */
1569 		perm = PROCESS__SIGNAL;
1570 		break;
1571 	}
1572 
1573 	return perm;
1574 }
1575 
1576 #if CAP_LAST_CAP > 63
1577 #error Fix SELinux to handle capabilities > 63.
1578 #endif
1579 
1580 /* Check whether a task is allowed to use a capability. */
1581 static int cred_has_capability(const struct cred *cred,
1582 			       int cap, unsigned int opts, bool initns)
1583 {
1584 	struct common_audit_data ad;
1585 	struct av_decision avd;
1586 	u16 sclass;
1587 	u32 sid = cred_sid(cred);
1588 	u32 av = CAP_TO_MASK(cap);
1589 	int rc;
1590 
1591 	ad.type = LSM_AUDIT_DATA_CAP;
1592 	ad.u.cap = cap;
1593 
1594 	switch (CAP_TO_INDEX(cap)) {
1595 	case 0:
1596 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597 		break;
1598 	case 1:
1599 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600 		break;
1601 	default:
1602 		pr_err("SELinux:  out of range capability %d\n", cap);
1603 		BUG();
1604 		return -EINVAL;
1605 	}
1606 
1607 	rc = avc_has_perm_noaudit(&selinux_state,
1608 				  sid, sid, sclass, av, 0, &avd);
1609 	if (!(opts & CAP_OPT_NOAUDIT)) {
1610 		int rc2 = avc_audit(&selinux_state,
1611 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1612 		if (rc2)
1613 			return rc2;
1614 	}
1615 	return rc;
1616 }
1617 
1618 /* Check whether a task has a particular permission to an inode.
1619    The 'adp' parameter is optional and allows other audit
1620    data to be passed (e.g. the dentry). */
1621 static int inode_has_perm(const struct cred *cred,
1622 			  struct inode *inode,
1623 			  u32 perms,
1624 			  struct common_audit_data *adp)
1625 {
1626 	struct inode_security_struct *isec;
1627 	u32 sid;
1628 
1629 	validate_creds(cred);
1630 
1631 	if (unlikely(IS_PRIVATE(inode)))
1632 		return 0;
1633 
1634 	sid = cred_sid(cred);
1635 	isec = selinux_inode(inode);
1636 
1637 	return avc_has_perm(&selinux_state,
1638 			    sid, isec->sid, isec->sclass, perms, adp);
1639 }
1640 
1641 /* Same as inode_has_perm, but pass explicit audit data containing
1642    the dentry to help the auditing code to more easily generate the
1643    pathname if needed. */
1644 static inline int dentry_has_perm(const struct cred *cred,
1645 				  struct dentry *dentry,
1646 				  u32 av)
1647 {
1648 	struct inode *inode = d_backing_inode(dentry);
1649 	struct common_audit_data ad;
1650 
1651 	ad.type = LSM_AUDIT_DATA_DENTRY;
1652 	ad.u.dentry = dentry;
1653 	__inode_security_revalidate(inode, dentry, true);
1654 	return inode_has_perm(cred, inode, av, &ad);
1655 }
1656 
1657 /* Same as inode_has_perm, but pass explicit audit data containing
1658    the path to help the auditing code to more easily generate the
1659    pathname if needed. */
1660 static inline int path_has_perm(const struct cred *cred,
1661 				const struct path *path,
1662 				u32 av)
1663 {
1664 	struct inode *inode = d_backing_inode(path->dentry);
1665 	struct common_audit_data ad;
1666 
1667 	ad.type = LSM_AUDIT_DATA_PATH;
1668 	ad.u.path = *path;
1669 	__inode_security_revalidate(inode, path->dentry, true);
1670 	return inode_has_perm(cred, inode, av, &ad);
1671 }
1672 
1673 /* Same as path_has_perm, but uses the inode from the file struct. */
1674 static inline int file_path_has_perm(const struct cred *cred,
1675 				     struct file *file,
1676 				     u32 av)
1677 {
1678 	struct common_audit_data ad;
1679 
1680 	ad.type = LSM_AUDIT_DATA_FILE;
1681 	ad.u.file = file;
1682 	return inode_has_perm(cred, file_inode(file), av, &ad);
1683 }
1684 
1685 #ifdef CONFIG_BPF_SYSCALL
1686 static int bpf_fd_pass(struct file *file, u32 sid);
1687 #endif
1688 
1689 /* Check whether a task can use an open file descriptor to
1690    access an inode in a given way.  Check access to the
1691    descriptor itself, and then use dentry_has_perm to
1692    check a particular permission to the file.
1693    Access to the descriptor is implicitly granted if it
1694    has the same SID as the process.  If av is zero, then
1695    access to the file is not checked, e.g. for cases
1696    where only the descriptor is affected like seek. */
1697 static int file_has_perm(const struct cred *cred,
1698 			 struct file *file,
1699 			 u32 av)
1700 {
1701 	struct file_security_struct *fsec = selinux_file(file);
1702 	struct inode *inode = file_inode(file);
1703 	struct common_audit_data ad;
1704 	u32 sid = cred_sid(cred);
1705 	int rc;
1706 
1707 	ad.type = LSM_AUDIT_DATA_FILE;
1708 	ad.u.file = file;
1709 
1710 	if (sid != fsec->sid) {
1711 		rc = avc_has_perm(&selinux_state,
1712 				  sid, fsec->sid,
1713 				  SECCLASS_FD,
1714 				  FD__USE,
1715 				  &ad);
1716 		if (rc)
1717 			goto out;
1718 	}
1719 
1720 #ifdef CONFIG_BPF_SYSCALL
1721 	rc = bpf_fd_pass(file, cred_sid(cred));
1722 	if (rc)
1723 		return rc;
1724 #endif
1725 
1726 	/* av is zero if only checking access to the descriptor. */
1727 	rc = 0;
1728 	if (av)
1729 		rc = inode_has_perm(cred, inode, av, &ad);
1730 
1731 out:
1732 	return rc;
1733 }
1734 
1735 /*
1736  * Determine the label for an inode that might be unioned.
1737  */
1738 static int
1739 selinux_determine_inode_label(const struct task_security_struct *tsec,
1740 				 struct inode *dir,
1741 				 const struct qstr *name, u16 tclass,
1742 				 u32 *_new_isid)
1743 {
1744 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745 
1746 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1747 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748 		*_new_isid = sbsec->mntpoint_sid;
1749 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1750 		   tsec->create_sid) {
1751 		*_new_isid = tsec->create_sid;
1752 	} else {
1753 		const struct inode_security_struct *dsec = inode_security(dir);
1754 		return security_transition_sid(&selinux_state, tsec->sid,
1755 					       dsec->sid, tclass,
1756 					       name, _new_isid);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /* Check whether a task can create a file. */
1763 static int may_create(struct inode *dir,
1764 		      struct dentry *dentry,
1765 		      u16 tclass)
1766 {
1767 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1768 	struct inode_security_struct *dsec;
1769 	struct superblock_security_struct *sbsec;
1770 	u32 sid, newsid;
1771 	struct common_audit_data ad;
1772 	int rc;
1773 
1774 	dsec = inode_security(dir);
1775 	sbsec = dir->i_sb->s_security;
1776 
1777 	sid = tsec->sid;
1778 
1779 	ad.type = LSM_AUDIT_DATA_DENTRY;
1780 	ad.u.dentry = dentry;
1781 
1782 	rc = avc_has_perm(&selinux_state,
1783 			  sid, dsec->sid, SECCLASS_DIR,
1784 			  DIR__ADD_NAME | DIR__SEARCH,
1785 			  &ad);
1786 	if (rc)
1787 		return rc;
1788 
1789 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790 					   &newsid);
1791 	if (rc)
1792 		return rc;
1793 
1794 	rc = avc_has_perm(&selinux_state,
1795 			  sid, newsid, tclass, FILE__CREATE, &ad);
1796 	if (rc)
1797 		return rc;
1798 
1799 	return avc_has_perm(&selinux_state,
1800 			    newsid, sbsec->sid,
1801 			    SECCLASS_FILESYSTEM,
1802 			    FILESYSTEM__ASSOCIATE, &ad);
1803 }
1804 
1805 #define MAY_LINK	0
1806 #define MAY_UNLINK	1
1807 #define MAY_RMDIR	2
1808 
1809 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1810 static int may_link(struct inode *dir,
1811 		    struct dentry *dentry,
1812 		    int kind)
1813 
1814 {
1815 	struct inode_security_struct *dsec, *isec;
1816 	struct common_audit_data ad;
1817 	u32 sid = current_sid();
1818 	u32 av;
1819 	int rc;
1820 
1821 	dsec = inode_security(dir);
1822 	isec = backing_inode_security(dentry);
1823 
1824 	ad.type = LSM_AUDIT_DATA_DENTRY;
1825 	ad.u.dentry = dentry;
1826 
1827 	av = DIR__SEARCH;
1828 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829 	rc = avc_has_perm(&selinux_state,
1830 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831 	if (rc)
1832 		return rc;
1833 
1834 	switch (kind) {
1835 	case MAY_LINK:
1836 		av = FILE__LINK;
1837 		break;
1838 	case MAY_UNLINK:
1839 		av = FILE__UNLINK;
1840 		break;
1841 	case MAY_RMDIR:
1842 		av = DIR__RMDIR;
1843 		break;
1844 	default:
1845 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1846 			__func__, kind);
1847 		return 0;
1848 	}
1849 
1850 	rc = avc_has_perm(&selinux_state,
1851 			  sid, isec->sid, isec->sclass, av, &ad);
1852 	return rc;
1853 }
1854 
1855 static inline int may_rename(struct inode *old_dir,
1856 			     struct dentry *old_dentry,
1857 			     struct inode *new_dir,
1858 			     struct dentry *new_dentry)
1859 {
1860 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861 	struct common_audit_data ad;
1862 	u32 sid = current_sid();
1863 	u32 av;
1864 	int old_is_dir, new_is_dir;
1865 	int rc;
1866 
1867 	old_dsec = inode_security(old_dir);
1868 	old_isec = backing_inode_security(old_dentry);
1869 	old_is_dir = d_is_dir(old_dentry);
1870 	new_dsec = inode_security(new_dir);
1871 
1872 	ad.type = LSM_AUDIT_DATA_DENTRY;
1873 
1874 	ad.u.dentry = old_dentry;
1875 	rc = avc_has_perm(&selinux_state,
1876 			  sid, old_dsec->sid, SECCLASS_DIR,
1877 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878 	if (rc)
1879 		return rc;
1880 	rc = avc_has_perm(&selinux_state,
1881 			  sid, old_isec->sid,
1882 			  old_isec->sclass, FILE__RENAME, &ad);
1883 	if (rc)
1884 		return rc;
1885 	if (old_is_dir && new_dir != old_dir) {
1886 		rc = avc_has_perm(&selinux_state,
1887 				  sid, old_isec->sid,
1888 				  old_isec->sclass, DIR__REPARENT, &ad);
1889 		if (rc)
1890 			return rc;
1891 	}
1892 
1893 	ad.u.dentry = new_dentry;
1894 	av = DIR__ADD_NAME | DIR__SEARCH;
1895 	if (d_is_positive(new_dentry))
1896 		av |= DIR__REMOVE_NAME;
1897 	rc = avc_has_perm(&selinux_state,
1898 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899 	if (rc)
1900 		return rc;
1901 	if (d_is_positive(new_dentry)) {
1902 		new_isec = backing_inode_security(new_dentry);
1903 		new_is_dir = d_is_dir(new_dentry);
1904 		rc = avc_has_perm(&selinux_state,
1905 				  sid, new_isec->sid,
1906 				  new_isec->sclass,
1907 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908 		if (rc)
1909 			return rc;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 /* Check whether a task can perform a filesystem operation. */
1916 static int superblock_has_perm(const struct cred *cred,
1917 			       struct super_block *sb,
1918 			       u32 perms,
1919 			       struct common_audit_data *ad)
1920 {
1921 	struct superblock_security_struct *sbsec;
1922 	u32 sid = cred_sid(cred);
1923 
1924 	sbsec = sb->s_security;
1925 	return avc_has_perm(&selinux_state,
1926 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927 }
1928 
1929 /* Convert a Linux mode and permission mask to an access vector. */
1930 static inline u32 file_mask_to_av(int mode, int mask)
1931 {
1932 	u32 av = 0;
1933 
1934 	if (!S_ISDIR(mode)) {
1935 		if (mask & MAY_EXEC)
1936 			av |= FILE__EXECUTE;
1937 		if (mask & MAY_READ)
1938 			av |= FILE__READ;
1939 
1940 		if (mask & MAY_APPEND)
1941 			av |= FILE__APPEND;
1942 		else if (mask & MAY_WRITE)
1943 			av |= FILE__WRITE;
1944 
1945 	} else {
1946 		if (mask & MAY_EXEC)
1947 			av |= DIR__SEARCH;
1948 		if (mask & MAY_WRITE)
1949 			av |= DIR__WRITE;
1950 		if (mask & MAY_READ)
1951 			av |= DIR__READ;
1952 	}
1953 
1954 	return av;
1955 }
1956 
1957 /* Convert a Linux file to an access vector. */
1958 static inline u32 file_to_av(struct file *file)
1959 {
1960 	u32 av = 0;
1961 
1962 	if (file->f_mode & FMODE_READ)
1963 		av |= FILE__READ;
1964 	if (file->f_mode & FMODE_WRITE) {
1965 		if (file->f_flags & O_APPEND)
1966 			av |= FILE__APPEND;
1967 		else
1968 			av |= FILE__WRITE;
1969 	}
1970 	if (!av) {
1971 		/*
1972 		 * Special file opened with flags 3 for ioctl-only use.
1973 		 */
1974 		av = FILE__IOCTL;
1975 	}
1976 
1977 	return av;
1978 }
1979 
1980 /*
1981  * Convert a file to an access vector and include the correct open
1982  * open permission.
1983  */
1984 static inline u32 open_file_to_av(struct file *file)
1985 {
1986 	u32 av = file_to_av(file);
1987 	struct inode *inode = file_inode(file);
1988 
1989 	if (selinux_policycap_openperm() &&
1990 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1991 		av |= FILE__OPEN;
1992 
1993 	return av;
1994 }
1995 
1996 /* Hook functions begin here. */
1997 
1998 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999 {
2000 	u32 mysid = current_sid();
2001 	u32 mgrsid = task_sid(mgr);
2002 
2003 	return avc_has_perm(&selinux_state,
2004 			    mysid, mgrsid, SECCLASS_BINDER,
2005 			    BINDER__SET_CONTEXT_MGR, NULL);
2006 }
2007 
2008 static int selinux_binder_transaction(struct task_struct *from,
2009 				      struct task_struct *to)
2010 {
2011 	u32 mysid = current_sid();
2012 	u32 fromsid = task_sid(from);
2013 	u32 tosid = task_sid(to);
2014 	int rc;
2015 
2016 	if (mysid != fromsid) {
2017 		rc = avc_has_perm(&selinux_state,
2018 				  mysid, fromsid, SECCLASS_BINDER,
2019 				  BINDER__IMPERSONATE, NULL);
2020 		if (rc)
2021 			return rc;
2022 	}
2023 
2024 	return avc_has_perm(&selinux_state,
2025 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026 			    NULL);
2027 }
2028 
2029 static int selinux_binder_transfer_binder(struct task_struct *from,
2030 					  struct task_struct *to)
2031 {
2032 	u32 fromsid = task_sid(from);
2033 	u32 tosid = task_sid(to);
2034 
2035 	return avc_has_perm(&selinux_state,
2036 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037 			    NULL);
2038 }
2039 
2040 static int selinux_binder_transfer_file(struct task_struct *from,
2041 					struct task_struct *to,
2042 					struct file *file)
2043 {
2044 	u32 sid = task_sid(to);
2045 	struct file_security_struct *fsec = selinux_file(file);
2046 	struct dentry *dentry = file->f_path.dentry;
2047 	struct inode_security_struct *isec;
2048 	struct common_audit_data ad;
2049 	int rc;
2050 
2051 	ad.type = LSM_AUDIT_DATA_PATH;
2052 	ad.u.path = file->f_path;
2053 
2054 	if (sid != fsec->sid) {
2055 		rc = avc_has_perm(&selinux_state,
2056 				  sid, fsec->sid,
2057 				  SECCLASS_FD,
2058 				  FD__USE,
2059 				  &ad);
2060 		if (rc)
2061 			return rc;
2062 	}
2063 
2064 #ifdef CONFIG_BPF_SYSCALL
2065 	rc = bpf_fd_pass(file, sid);
2066 	if (rc)
2067 		return rc;
2068 #endif
2069 
2070 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071 		return 0;
2072 
2073 	isec = backing_inode_security(dentry);
2074 	return avc_has_perm(&selinux_state,
2075 			    sid, isec->sid, isec->sclass, file_to_av(file),
2076 			    &ad);
2077 }
2078 
2079 static int selinux_ptrace_access_check(struct task_struct *child,
2080 				     unsigned int mode)
2081 {
2082 	u32 sid = current_sid();
2083 	u32 csid = task_sid(child);
2084 
2085 	if (mode & PTRACE_MODE_READ)
2086 		return avc_has_perm(&selinux_state,
2087 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088 
2089 	return avc_has_perm(&selinux_state,
2090 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091 }
2092 
2093 static int selinux_ptrace_traceme(struct task_struct *parent)
2094 {
2095 	return avc_has_perm(&selinux_state,
2096 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097 			    PROCESS__PTRACE, NULL);
2098 }
2099 
2100 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102 {
2103 	return avc_has_perm(&selinux_state,
2104 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2105 			    PROCESS__GETCAP, NULL);
2106 }
2107 
2108 static int selinux_capset(struct cred *new, const struct cred *old,
2109 			  const kernel_cap_t *effective,
2110 			  const kernel_cap_t *inheritable,
2111 			  const kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(&selinux_state,
2114 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115 			    PROCESS__SETCAP, NULL);
2116 }
2117 
2118 /*
2119  * (This comment used to live with the selinux_task_setuid hook,
2120  * which was removed).
2121  *
2122  * Since setuid only affects the current process, and since the SELinux
2123  * controls are not based on the Linux identity attributes, SELinux does not
2124  * need to control this operation.  However, SELinux does control the use of
2125  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126  */
2127 
2128 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129 			   int cap, unsigned int opts)
2130 {
2131 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132 }
2133 
2134 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135 {
2136 	const struct cred *cred = current_cred();
2137 	int rc = 0;
2138 
2139 	if (!sb)
2140 		return 0;
2141 
2142 	switch (cmds) {
2143 	case Q_SYNC:
2144 	case Q_QUOTAON:
2145 	case Q_QUOTAOFF:
2146 	case Q_SETINFO:
2147 	case Q_SETQUOTA:
2148 	case Q_XQUOTAOFF:
2149 	case Q_XQUOTAON:
2150 	case Q_XSETQLIM:
2151 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152 		break;
2153 	case Q_GETFMT:
2154 	case Q_GETINFO:
2155 	case Q_GETQUOTA:
2156 	case Q_XGETQUOTA:
2157 	case Q_XGETQSTAT:
2158 	case Q_XGETQSTATV:
2159 	case Q_XGETNEXTQUOTA:
2160 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161 		break;
2162 	default:
2163 		rc = 0;  /* let the kernel handle invalid cmds */
2164 		break;
2165 	}
2166 	return rc;
2167 }
2168 
2169 static int selinux_quota_on(struct dentry *dentry)
2170 {
2171 	const struct cred *cred = current_cred();
2172 
2173 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174 }
2175 
2176 static int selinux_syslog(int type)
2177 {
2178 	switch (type) {
2179 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2180 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2181 		return avc_has_perm(&selinux_state,
2182 				    current_sid(), SECINITSID_KERNEL,
2183 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2185 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2186 	/* Set level of messages printed to console */
2187 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2188 		return avc_has_perm(&selinux_state,
2189 				    current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191 				    NULL);
2192 	}
2193 	/* All other syslog types */
2194 	return avc_has_perm(&selinux_state,
2195 			    current_sid(), SECINITSID_KERNEL,
2196 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2197 }
2198 
2199 /*
2200  * Check that a process has enough memory to allocate a new virtual
2201  * mapping. 0 means there is enough memory for the allocation to
2202  * succeed and -ENOMEM implies there is not.
2203  *
2204  * Do not audit the selinux permission check, as this is applied to all
2205  * processes that allocate mappings.
2206  */
2207 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208 {
2209 	int rc, cap_sys_admin = 0;
2210 
2211 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212 				 CAP_OPT_NOAUDIT, true);
2213 	if (rc == 0)
2214 		cap_sys_admin = 1;
2215 
2216 	return cap_sys_admin;
2217 }
2218 
2219 /* binprm security operations */
2220 
2221 static u32 ptrace_parent_sid(void)
2222 {
2223 	u32 sid = 0;
2224 	struct task_struct *tracer;
2225 
2226 	rcu_read_lock();
2227 	tracer = ptrace_parent(current);
2228 	if (tracer)
2229 		sid = task_sid(tracer);
2230 	rcu_read_unlock();
2231 
2232 	return sid;
2233 }
2234 
2235 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236 			    const struct task_security_struct *old_tsec,
2237 			    const struct task_security_struct *new_tsec)
2238 {
2239 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241 	int rc;
2242 	u32 av;
2243 
2244 	if (!nnp && !nosuid)
2245 		return 0; /* neither NNP nor nosuid */
2246 
2247 	if (new_tsec->sid == old_tsec->sid)
2248 		return 0; /* No change in credentials */
2249 
2250 	/*
2251 	 * If the policy enables the nnp_nosuid_transition policy capability,
2252 	 * then we permit transitions under NNP or nosuid if the
2253 	 * policy allows the corresponding permission between
2254 	 * the old and new contexts.
2255 	 */
2256 	if (selinux_policycap_nnp_nosuid_transition()) {
2257 		av = 0;
2258 		if (nnp)
2259 			av |= PROCESS2__NNP_TRANSITION;
2260 		if (nosuid)
2261 			av |= PROCESS2__NOSUID_TRANSITION;
2262 		rc = avc_has_perm(&selinux_state,
2263 				  old_tsec->sid, new_tsec->sid,
2264 				  SECCLASS_PROCESS2, av, NULL);
2265 		if (!rc)
2266 			return 0;
2267 	}
2268 
2269 	/*
2270 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2271 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2272 	 * of the permissions of the current SID.
2273 	 */
2274 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275 					 new_tsec->sid);
2276 	if (!rc)
2277 		return 0;
2278 
2279 	/*
2280 	 * On failure, preserve the errno values for NNP vs nosuid.
2281 	 * NNP:  Operation not permitted for caller.
2282 	 * nosuid:  Permission denied to file.
2283 	 */
2284 	if (nnp)
2285 		return -EPERM;
2286 	return -EACCES;
2287 }
2288 
2289 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290 {
2291 	const struct task_security_struct *old_tsec;
2292 	struct task_security_struct *new_tsec;
2293 	struct inode_security_struct *isec;
2294 	struct common_audit_data ad;
2295 	struct inode *inode = file_inode(bprm->file);
2296 	int rc;
2297 
2298 	/* SELinux context only depends on initial program or script and not
2299 	 * the script interpreter */
2300 
2301 	old_tsec = selinux_cred(current_cred());
2302 	new_tsec = selinux_cred(bprm->cred);
2303 	isec = inode_security(inode);
2304 
2305 	/* Default to the current task SID. */
2306 	new_tsec->sid = old_tsec->sid;
2307 	new_tsec->osid = old_tsec->sid;
2308 
2309 	/* Reset fs, key, and sock SIDs on execve. */
2310 	new_tsec->create_sid = 0;
2311 	new_tsec->keycreate_sid = 0;
2312 	new_tsec->sockcreate_sid = 0;
2313 
2314 	if (old_tsec->exec_sid) {
2315 		new_tsec->sid = old_tsec->exec_sid;
2316 		/* Reset exec SID on execve. */
2317 		new_tsec->exec_sid = 0;
2318 
2319 		/* Fail on NNP or nosuid if not an allowed transition. */
2320 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321 		if (rc)
2322 			return rc;
2323 	} else {
2324 		/* Check for a default transition on this program. */
2325 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326 					     isec->sid, SECCLASS_PROCESS, NULL,
2327 					     &new_tsec->sid);
2328 		if (rc)
2329 			return rc;
2330 
2331 		/*
2332 		 * Fallback to old SID on NNP or nosuid if not an allowed
2333 		 * transition.
2334 		 */
2335 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 		if (rc)
2337 			new_tsec->sid = old_tsec->sid;
2338 	}
2339 
2340 	ad.type = LSM_AUDIT_DATA_FILE;
2341 	ad.u.file = bprm->file;
2342 
2343 	if (new_tsec->sid == old_tsec->sid) {
2344 		rc = avc_has_perm(&selinux_state,
2345 				  old_tsec->sid, isec->sid,
2346 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347 		if (rc)
2348 			return rc;
2349 	} else {
2350 		/* Check permissions for the transition. */
2351 		rc = avc_has_perm(&selinux_state,
2352 				  old_tsec->sid, new_tsec->sid,
2353 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354 		if (rc)
2355 			return rc;
2356 
2357 		rc = avc_has_perm(&selinux_state,
2358 				  new_tsec->sid, isec->sid,
2359 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360 		if (rc)
2361 			return rc;
2362 
2363 		/* Check for shared state */
2364 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365 			rc = avc_has_perm(&selinux_state,
2366 					  old_tsec->sid, new_tsec->sid,
2367 					  SECCLASS_PROCESS, PROCESS__SHARE,
2368 					  NULL);
2369 			if (rc)
2370 				return -EPERM;
2371 		}
2372 
2373 		/* Make sure that anyone attempting to ptrace over a task that
2374 		 * changes its SID has the appropriate permit */
2375 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376 			u32 ptsid = ptrace_parent_sid();
2377 			if (ptsid != 0) {
2378 				rc = avc_has_perm(&selinux_state,
2379 						  ptsid, new_tsec->sid,
2380 						  SECCLASS_PROCESS,
2381 						  PROCESS__PTRACE, NULL);
2382 				if (rc)
2383 					return -EPERM;
2384 			}
2385 		}
2386 
2387 		/* Clear any possibly unsafe personality bits on exec: */
2388 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2389 
2390 		/* Enable secure mode for SIDs transitions unless
2391 		   the noatsecure permission is granted between
2392 		   the two SIDs, i.e. ahp returns 0. */
2393 		rc = avc_has_perm(&selinux_state,
2394 				  old_tsec->sid, new_tsec->sid,
2395 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396 				  NULL);
2397 		bprm->secureexec |= !!rc;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 static int match_file(const void *p, struct file *file, unsigned fd)
2404 {
2405 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406 }
2407 
2408 /* Derived from fs/exec.c:flush_old_files. */
2409 static inline void flush_unauthorized_files(const struct cred *cred,
2410 					    struct files_struct *files)
2411 {
2412 	struct file *file, *devnull = NULL;
2413 	struct tty_struct *tty;
2414 	int drop_tty = 0;
2415 	unsigned n;
2416 
2417 	tty = get_current_tty();
2418 	if (tty) {
2419 		spin_lock(&tty->files_lock);
2420 		if (!list_empty(&tty->tty_files)) {
2421 			struct tty_file_private *file_priv;
2422 
2423 			/* Revalidate access to controlling tty.
2424 			   Use file_path_has_perm on the tty path directly
2425 			   rather than using file_has_perm, as this particular
2426 			   open file may belong to another process and we are
2427 			   only interested in the inode-based check here. */
2428 			file_priv = list_first_entry(&tty->tty_files,
2429 						struct tty_file_private, list);
2430 			file = file_priv->file;
2431 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432 				drop_tty = 1;
2433 		}
2434 		spin_unlock(&tty->files_lock);
2435 		tty_kref_put(tty);
2436 	}
2437 	/* Reset controlling tty. */
2438 	if (drop_tty)
2439 		no_tty();
2440 
2441 	/* Revalidate access to inherited open files. */
2442 	n = iterate_fd(files, 0, match_file, cred);
2443 	if (!n) /* none found? */
2444 		return;
2445 
2446 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447 	if (IS_ERR(devnull))
2448 		devnull = NULL;
2449 	/* replace all the matching ones with this */
2450 	do {
2451 		replace_fd(n - 1, devnull, 0);
2452 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453 	if (devnull)
2454 		fput(devnull);
2455 }
2456 
2457 /*
2458  * Prepare a process for imminent new credential changes due to exec
2459  */
2460 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461 {
2462 	struct task_security_struct *new_tsec;
2463 	struct rlimit *rlim, *initrlim;
2464 	int rc, i;
2465 
2466 	new_tsec = selinux_cred(bprm->cred);
2467 	if (new_tsec->sid == new_tsec->osid)
2468 		return;
2469 
2470 	/* Close files for which the new task SID is not authorized. */
2471 	flush_unauthorized_files(bprm->cred, current->files);
2472 
2473 	/* Always clear parent death signal on SID transitions. */
2474 	current->pdeath_signal = 0;
2475 
2476 	/* Check whether the new SID can inherit resource limits from the old
2477 	 * SID.  If not, reset all soft limits to the lower of the current
2478 	 * task's hard limit and the init task's soft limit.
2479 	 *
2480 	 * Note that the setting of hard limits (even to lower them) can be
2481 	 * controlled by the setrlimit check.  The inclusion of the init task's
2482 	 * soft limit into the computation is to avoid resetting soft limits
2483 	 * higher than the default soft limit for cases where the default is
2484 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485 	 */
2486 	rc = avc_has_perm(&selinux_state,
2487 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488 			  PROCESS__RLIMITINH, NULL);
2489 	if (rc) {
2490 		/* protect against do_prlimit() */
2491 		task_lock(current);
2492 		for (i = 0; i < RLIM_NLIMITS; i++) {
2493 			rlim = current->signal->rlim + i;
2494 			initrlim = init_task.signal->rlim + i;
2495 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496 		}
2497 		task_unlock(current);
2498 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500 	}
2501 }
2502 
2503 /*
2504  * Clean up the process immediately after the installation of new credentials
2505  * due to exec
2506  */
2507 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508 {
2509 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2510 	u32 osid, sid;
2511 	int rc;
2512 
2513 	osid = tsec->osid;
2514 	sid = tsec->sid;
2515 
2516 	if (sid == osid)
2517 		return;
2518 
2519 	/* Check whether the new SID can inherit signal state from the old SID.
2520 	 * If not, clear itimers to avoid subsequent signal generation and
2521 	 * flush and unblock signals.
2522 	 *
2523 	 * This must occur _after_ the task SID has been updated so that any
2524 	 * kill done after the flush will be checked against the new SID.
2525 	 */
2526 	rc = avc_has_perm(&selinux_state,
2527 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528 	if (rc) {
2529 		clear_itimer();
2530 
2531 		spin_lock_irq(&current->sighand->siglock);
2532 		if (!fatal_signal_pending(current)) {
2533 			flush_sigqueue(&current->pending);
2534 			flush_sigqueue(&current->signal->shared_pending);
2535 			flush_signal_handlers(current, 1);
2536 			sigemptyset(&current->blocked);
2537 			recalc_sigpending();
2538 		}
2539 		spin_unlock_irq(&current->sighand->siglock);
2540 	}
2541 
2542 	/* Wake up the parent if it is waiting so that it can recheck
2543 	 * wait permission to the new task SID. */
2544 	read_lock(&tasklist_lock);
2545 	__wake_up_parent(current, current->real_parent);
2546 	read_unlock(&tasklist_lock);
2547 }
2548 
2549 /* superblock security operations */
2550 
2551 static int selinux_sb_alloc_security(struct super_block *sb)
2552 {
2553 	struct superblock_security_struct *sbsec;
2554 
2555 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556 	if (!sbsec)
2557 		return -ENOMEM;
2558 
2559 	mutex_init(&sbsec->lock);
2560 	INIT_LIST_HEAD(&sbsec->isec_head);
2561 	spin_lock_init(&sbsec->isec_lock);
2562 	sbsec->sb = sb;
2563 	sbsec->sid = SECINITSID_UNLABELED;
2564 	sbsec->def_sid = SECINITSID_FILE;
2565 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566 	sb->s_security = sbsec;
2567 
2568 	return 0;
2569 }
2570 
2571 static void selinux_sb_free_security(struct super_block *sb)
2572 {
2573 	superblock_free_security(sb);
2574 }
2575 
2576 static inline int opt_len(const char *s)
2577 {
2578 	bool open_quote = false;
2579 	int len;
2580 	char c;
2581 
2582 	for (len = 0; (c = s[len]) != '\0'; len++) {
2583 		if (c == '"')
2584 			open_quote = !open_quote;
2585 		if (c == ',' && !open_quote)
2586 			break;
2587 	}
2588 	return len;
2589 }
2590 
2591 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592 {
2593 	char *from = options;
2594 	char *to = options;
2595 	bool first = true;
2596 	int rc;
2597 
2598 	while (1) {
2599 		int len = opt_len(from);
2600 		int token;
2601 		char *arg = NULL;
2602 
2603 		token = match_opt_prefix(from, len, &arg);
2604 
2605 		if (token != Opt_error) {
2606 			char *p, *q;
2607 
2608 			/* strip quotes */
2609 			if (arg) {
2610 				for (p = q = arg; p < from + len; p++) {
2611 					char c = *p;
2612 					if (c != '"')
2613 						*q++ = c;
2614 				}
2615 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616 				if (!arg) {
2617 					rc = -ENOMEM;
2618 					goto free_opt;
2619 				}
2620 			}
2621 			rc = selinux_add_opt(token, arg, mnt_opts);
2622 			if (unlikely(rc)) {
2623 				kfree(arg);
2624 				goto free_opt;
2625 			}
2626 		} else {
2627 			if (!first) {	// copy with preceding comma
2628 				from--;
2629 				len++;
2630 			}
2631 			if (to != from)
2632 				memmove(to, from, len);
2633 			to += len;
2634 			first = false;
2635 		}
2636 		if (!from[len])
2637 			break;
2638 		from += len + 1;
2639 	}
2640 	*to = '\0';
2641 	return 0;
2642 
2643 free_opt:
2644 	if (*mnt_opts) {
2645 		selinux_free_mnt_opts(*mnt_opts);
2646 		*mnt_opts = NULL;
2647 	}
2648 	return rc;
2649 }
2650 
2651 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652 {
2653 	struct selinux_mnt_opts *opts = mnt_opts;
2654 	struct superblock_security_struct *sbsec = sb->s_security;
2655 	u32 sid;
2656 	int rc;
2657 
2658 	if (!(sbsec->flags & SE_SBINITIALIZED))
2659 		return 0;
2660 
2661 	if (!opts)
2662 		return 0;
2663 
2664 	if (opts->fscontext) {
2665 		rc = parse_sid(sb, opts->fscontext, &sid);
2666 		if (rc)
2667 			return rc;
2668 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669 			goto out_bad_option;
2670 	}
2671 	if (opts->context) {
2672 		rc = parse_sid(sb, opts->context, &sid);
2673 		if (rc)
2674 			return rc;
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676 			goto out_bad_option;
2677 	}
2678 	if (opts->rootcontext) {
2679 		struct inode_security_struct *root_isec;
2680 		root_isec = backing_inode_security(sb->s_root);
2681 		rc = parse_sid(sb, opts->rootcontext, &sid);
2682 		if (rc)
2683 			return rc;
2684 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685 			goto out_bad_option;
2686 	}
2687 	if (opts->defcontext) {
2688 		rc = parse_sid(sb, opts->defcontext, &sid);
2689 		if (rc)
2690 			return rc;
2691 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692 			goto out_bad_option;
2693 	}
2694 	return 0;
2695 
2696 out_bad_option:
2697 	pr_warn("SELinux: unable to change security options "
2698 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2699 	       sb->s_type->name);
2700 	return -EINVAL;
2701 }
2702 
2703 static int selinux_sb_kern_mount(struct super_block *sb)
2704 {
2705 	const struct cred *cred = current_cred();
2706 	struct common_audit_data ad;
2707 
2708 	ad.type = LSM_AUDIT_DATA_DENTRY;
2709 	ad.u.dentry = sb->s_root;
2710 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711 }
2712 
2713 static int selinux_sb_statfs(struct dentry *dentry)
2714 {
2715 	const struct cred *cred = current_cred();
2716 	struct common_audit_data ad;
2717 
2718 	ad.type = LSM_AUDIT_DATA_DENTRY;
2719 	ad.u.dentry = dentry->d_sb->s_root;
2720 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721 }
2722 
2723 static int selinux_mount(const char *dev_name,
2724 			 const struct path *path,
2725 			 const char *type,
2726 			 unsigned long flags,
2727 			 void *data)
2728 {
2729 	const struct cred *cred = current_cred();
2730 
2731 	if (flags & MS_REMOUNT)
2732 		return superblock_has_perm(cred, path->dentry->d_sb,
2733 					   FILESYSTEM__REMOUNT, NULL);
2734 	else
2735 		return path_has_perm(cred, path, FILE__MOUNTON);
2736 }
2737 
2738 static int selinux_move_mount(const struct path *from_path,
2739 			      const struct path *to_path)
2740 {
2741 	const struct cred *cred = current_cred();
2742 
2743 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2744 }
2745 
2746 static int selinux_umount(struct vfsmount *mnt, int flags)
2747 {
2748 	const struct cred *cred = current_cred();
2749 
2750 	return superblock_has_perm(cred, mnt->mnt_sb,
2751 				   FILESYSTEM__UNMOUNT, NULL);
2752 }
2753 
2754 static int selinux_fs_context_dup(struct fs_context *fc,
2755 				  struct fs_context *src_fc)
2756 {
2757 	const struct selinux_mnt_opts *src = src_fc->security;
2758 	struct selinux_mnt_opts *opts;
2759 
2760 	if (!src)
2761 		return 0;
2762 
2763 	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764 	if (!fc->security)
2765 		return -ENOMEM;
2766 
2767 	opts = fc->security;
2768 
2769 	if (src->fscontext) {
2770 		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771 		if (!opts->fscontext)
2772 			return -ENOMEM;
2773 	}
2774 	if (src->context) {
2775 		opts->context = kstrdup(src->context, GFP_KERNEL);
2776 		if (!opts->context)
2777 			return -ENOMEM;
2778 	}
2779 	if (src->rootcontext) {
2780 		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781 		if (!opts->rootcontext)
2782 			return -ENOMEM;
2783 	}
2784 	if (src->defcontext) {
2785 		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786 		if (!opts->defcontext)
2787 			return -ENOMEM;
2788 	}
2789 	return 0;
2790 }
2791 
2792 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793 	fsparam_string(CONTEXT_STR,	Opt_context),
2794 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2795 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2796 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2797 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2798 	{}
2799 };
2800 
2801 static int selinux_fs_context_parse_param(struct fs_context *fc,
2802 					  struct fs_parameter *param)
2803 {
2804 	struct fs_parse_result result;
2805 	int opt, rc;
2806 
2807 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808 	if (opt < 0)
2809 		return opt;
2810 
2811 	rc = selinux_add_opt(opt, param->string, &fc->security);
2812 	if (!rc) {
2813 		param->string = NULL;
2814 		rc = 1;
2815 	}
2816 	return rc;
2817 }
2818 
2819 /* inode security operations */
2820 
2821 static int selinux_inode_alloc_security(struct inode *inode)
2822 {
2823 	struct inode_security_struct *isec = selinux_inode(inode);
2824 	u32 sid = current_sid();
2825 
2826 	spin_lock_init(&isec->lock);
2827 	INIT_LIST_HEAD(&isec->list);
2828 	isec->inode = inode;
2829 	isec->sid = SECINITSID_UNLABELED;
2830 	isec->sclass = SECCLASS_FILE;
2831 	isec->task_sid = sid;
2832 	isec->initialized = LABEL_INVALID;
2833 
2834 	return 0;
2835 }
2836 
2837 static void selinux_inode_free_security(struct inode *inode)
2838 {
2839 	inode_free_security(inode);
2840 }
2841 
2842 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843 					const struct qstr *name, void **ctx,
2844 					u32 *ctxlen)
2845 {
2846 	u32 newsid;
2847 	int rc;
2848 
2849 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850 					   d_inode(dentry->d_parent), name,
2851 					   inode_mode_to_security_class(mode),
2852 					   &newsid);
2853 	if (rc)
2854 		return rc;
2855 
2856 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857 				       ctxlen);
2858 }
2859 
2860 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861 					  struct qstr *name,
2862 					  const struct cred *old,
2863 					  struct cred *new)
2864 {
2865 	u32 newsid;
2866 	int rc;
2867 	struct task_security_struct *tsec;
2868 
2869 	rc = selinux_determine_inode_label(selinux_cred(old),
2870 					   d_inode(dentry->d_parent), name,
2871 					   inode_mode_to_security_class(mode),
2872 					   &newsid);
2873 	if (rc)
2874 		return rc;
2875 
2876 	tsec = selinux_cred(new);
2877 	tsec->create_sid = newsid;
2878 	return 0;
2879 }
2880 
2881 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882 				       const struct qstr *qstr,
2883 				       const char **name,
2884 				       void **value, size_t *len)
2885 {
2886 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2887 	struct superblock_security_struct *sbsec;
2888 	u32 newsid, clen;
2889 	int rc;
2890 	char *context;
2891 
2892 	sbsec = dir->i_sb->s_security;
2893 
2894 	newsid = tsec->create_sid;
2895 
2896 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2897 		inode_mode_to_security_class(inode->i_mode),
2898 		&newsid);
2899 	if (rc)
2900 		return rc;
2901 
2902 	/* Possibly defer initialization to selinux_complete_init. */
2903 	if (sbsec->flags & SE_SBINITIALIZED) {
2904 		struct inode_security_struct *isec = selinux_inode(inode);
2905 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906 		isec->sid = newsid;
2907 		isec->initialized = LABEL_INITIALIZED;
2908 	}
2909 
2910 	if (!selinux_initialized(&selinux_state) ||
2911 	    !(sbsec->flags & SBLABEL_MNT))
2912 		return -EOPNOTSUPP;
2913 
2914 	if (name)
2915 		*name = XATTR_SELINUX_SUFFIX;
2916 
2917 	if (value && len) {
2918 		rc = security_sid_to_context_force(&selinux_state, newsid,
2919 						   &context, &clen);
2920 		if (rc)
2921 			return rc;
2922 		*value = context;
2923 		*len = clen;
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930 {
2931 	return may_create(dir, dentry, SECCLASS_FILE);
2932 }
2933 
2934 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935 {
2936 	return may_link(dir, old_dentry, MAY_LINK);
2937 }
2938 
2939 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940 {
2941 	return may_link(dir, dentry, MAY_UNLINK);
2942 }
2943 
2944 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945 {
2946 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947 }
2948 
2949 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950 {
2951 	return may_create(dir, dentry, SECCLASS_DIR);
2952 }
2953 
2954 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955 {
2956 	return may_link(dir, dentry, MAY_RMDIR);
2957 }
2958 
2959 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960 {
2961 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962 }
2963 
2964 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965 				struct inode *new_inode, struct dentry *new_dentry)
2966 {
2967 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968 }
2969 
2970 static int selinux_inode_readlink(struct dentry *dentry)
2971 {
2972 	const struct cred *cred = current_cred();
2973 
2974 	return dentry_has_perm(cred, dentry, FILE__READ);
2975 }
2976 
2977 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978 				     bool rcu)
2979 {
2980 	const struct cred *cred = current_cred();
2981 	struct common_audit_data ad;
2982 	struct inode_security_struct *isec;
2983 	u32 sid;
2984 
2985 	validate_creds(cred);
2986 
2987 	ad.type = LSM_AUDIT_DATA_DENTRY;
2988 	ad.u.dentry = dentry;
2989 	sid = cred_sid(cred);
2990 	isec = inode_security_rcu(inode, rcu);
2991 	if (IS_ERR(isec))
2992 		return PTR_ERR(isec);
2993 
2994 	return avc_has_perm_flags(&selinux_state,
2995 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996 				  rcu ? MAY_NOT_BLOCK : 0);
2997 }
2998 
2999 static noinline int audit_inode_permission(struct inode *inode,
3000 					   u32 perms, u32 audited, u32 denied,
3001 					   int result)
3002 {
3003 	struct common_audit_data ad;
3004 	struct inode_security_struct *isec = selinux_inode(inode);
3005 	int rc;
3006 
3007 	ad.type = LSM_AUDIT_DATA_INODE;
3008 	ad.u.inode = inode;
3009 
3010 	rc = slow_avc_audit(&selinux_state,
3011 			    current_sid(), isec->sid, isec->sclass, perms,
3012 			    audited, denied, result, &ad);
3013 	if (rc)
3014 		return rc;
3015 	return 0;
3016 }
3017 
3018 static int selinux_inode_permission(struct inode *inode, int mask)
3019 {
3020 	const struct cred *cred = current_cred();
3021 	u32 perms;
3022 	bool from_access;
3023 	bool no_block = mask & MAY_NOT_BLOCK;
3024 	struct inode_security_struct *isec;
3025 	u32 sid;
3026 	struct av_decision avd;
3027 	int rc, rc2;
3028 	u32 audited, denied;
3029 
3030 	from_access = mask & MAY_ACCESS;
3031 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032 
3033 	/* No permission to check.  Existence test. */
3034 	if (!mask)
3035 		return 0;
3036 
3037 	validate_creds(cred);
3038 
3039 	if (unlikely(IS_PRIVATE(inode)))
3040 		return 0;
3041 
3042 	perms = file_mask_to_av(inode->i_mode, mask);
3043 
3044 	sid = cred_sid(cred);
3045 	isec = inode_security_rcu(inode, no_block);
3046 	if (IS_ERR(isec))
3047 		return PTR_ERR(isec);
3048 
3049 	rc = avc_has_perm_noaudit(&selinux_state,
3050 				  sid, isec->sid, isec->sclass, perms,
3051 				  no_block ? AVC_NONBLOCKING : 0,
3052 				  &avd);
3053 	audited = avc_audit_required(perms, &avd, rc,
3054 				     from_access ? FILE__AUDIT_ACCESS : 0,
3055 				     &denied);
3056 	if (likely(!audited))
3057 		return rc;
3058 
3059 	/* fall back to ref-walk if we have to generate audit */
3060 	if (no_block)
3061 		return -ECHILD;
3062 
3063 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064 	if (rc2)
3065 		return rc2;
3066 	return rc;
3067 }
3068 
3069 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070 {
3071 	const struct cred *cred = current_cred();
3072 	struct inode *inode = d_backing_inode(dentry);
3073 	unsigned int ia_valid = iattr->ia_valid;
3074 	__u32 av = FILE__WRITE;
3075 
3076 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077 	if (ia_valid & ATTR_FORCE) {
3078 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079 			      ATTR_FORCE);
3080 		if (!ia_valid)
3081 			return 0;
3082 	}
3083 
3084 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087 
3088 	if (selinux_policycap_openperm() &&
3089 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090 	    (ia_valid & ATTR_SIZE) &&
3091 	    !(ia_valid & ATTR_FILE))
3092 		av |= FILE__OPEN;
3093 
3094 	return dentry_has_perm(cred, dentry, av);
3095 }
3096 
3097 static int selinux_inode_getattr(const struct path *path)
3098 {
3099 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3100 }
3101 
3102 static bool has_cap_mac_admin(bool audit)
3103 {
3104 	const struct cred *cred = current_cred();
3105 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106 
3107 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108 		return false;
3109 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110 		return false;
3111 	return true;
3112 }
3113 
3114 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 				  const void *value, size_t size, int flags)
3116 {
3117 	struct inode *inode = d_backing_inode(dentry);
3118 	struct inode_security_struct *isec;
3119 	struct superblock_security_struct *sbsec;
3120 	struct common_audit_data ad;
3121 	u32 newsid, sid = current_sid();
3122 	int rc = 0;
3123 
3124 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3125 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126 		if (rc)
3127 			return rc;
3128 
3129 		/* Not an attribute we recognize, so just check the
3130 		   ordinary setattr permission. */
3131 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132 	}
3133 
3134 	if (!selinux_initialized(&selinux_state))
3135 		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136 
3137 	sbsec = inode->i_sb->s_security;
3138 	if (!(sbsec->flags & SBLABEL_MNT))
3139 		return -EOPNOTSUPP;
3140 
3141 	if (!inode_owner_or_capable(inode))
3142 		return -EPERM;
3143 
3144 	ad.type = LSM_AUDIT_DATA_DENTRY;
3145 	ad.u.dentry = dentry;
3146 
3147 	isec = backing_inode_security(dentry);
3148 	rc = avc_has_perm(&selinux_state,
3149 			  sid, isec->sid, isec->sclass,
3150 			  FILE__RELABELFROM, &ad);
3151 	if (rc)
3152 		return rc;
3153 
3154 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155 				     GFP_KERNEL);
3156 	if (rc == -EINVAL) {
3157 		if (!has_cap_mac_admin(true)) {
3158 			struct audit_buffer *ab;
3159 			size_t audit_size;
3160 
3161 			/* We strip a nul only if it is at the end, otherwise the
3162 			 * context contains a nul and we should audit that */
3163 			if (value) {
3164 				const char *str = value;
3165 
3166 				if (str[size - 1] == '\0')
3167 					audit_size = size - 1;
3168 				else
3169 					audit_size = size;
3170 			} else {
3171 				audit_size = 0;
3172 			}
3173 			ab = audit_log_start(audit_context(),
3174 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175 			audit_log_format(ab, "op=setxattr invalid_context=");
3176 			audit_log_n_untrustedstring(ab, value, audit_size);
3177 			audit_log_end(ab);
3178 
3179 			return rc;
3180 		}
3181 		rc = security_context_to_sid_force(&selinux_state, value,
3182 						   size, &newsid);
3183 	}
3184 	if (rc)
3185 		return rc;
3186 
3187 	rc = avc_has_perm(&selinux_state,
3188 			  sid, newsid, isec->sclass,
3189 			  FILE__RELABELTO, &ad);
3190 	if (rc)
3191 		return rc;
3192 
3193 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194 					  sid, isec->sclass);
3195 	if (rc)
3196 		return rc;
3197 
3198 	return avc_has_perm(&selinux_state,
3199 			    newsid,
3200 			    sbsec->sid,
3201 			    SECCLASS_FILESYSTEM,
3202 			    FILESYSTEM__ASSOCIATE,
3203 			    &ad);
3204 }
3205 
3206 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207 					const void *value, size_t size,
3208 					int flags)
3209 {
3210 	struct inode *inode = d_backing_inode(dentry);
3211 	struct inode_security_struct *isec;
3212 	u32 newsid;
3213 	int rc;
3214 
3215 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3216 		/* Not an attribute we recognize, so nothing to do. */
3217 		return;
3218 	}
3219 
3220 	if (!selinux_initialized(&selinux_state)) {
3221 		/* If we haven't even been initialized, then we can't validate
3222 		 * against a policy, so leave the label as invalid. It may
3223 		 * resolve to a valid label on the next revalidation try if
3224 		 * we've since initialized.
3225 		 */
3226 		return;
3227 	}
3228 
3229 	rc = security_context_to_sid_force(&selinux_state, value, size,
3230 					   &newsid);
3231 	if (rc) {
3232 		pr_err("SELinux:  unable to map context to SID"
3233 		       "for (%s, %lu), rc=%d\n",
3234 		       inode->i_sb->s_id, inode->i_ino, -rc);
3235 		return;
3236 	}
3237 
3238 	isec = backing_inode_security(dentry);
3239 	spin_lock(&isec->lock);
3240 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241 	isec->sid = newsid;
3242 	isec->initialized = LABEL_INITIALIZED;
3243 	spin_unlock(&isec->lock);
3244 
3245 	return;
3246 }
3247 
3248 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249 {
3250 	const struct cred *cred = current_cred();
3251 
3252 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253 }
3254 
3255 static int selinux_inode_listxattr(struct dentry *dentry)
3256 {
3257 	const struct cred *cred = current_cred();
3258 
3259 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260 }
3261 
3262 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263 {
3264 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3265 		int rc = cap_inode_removexattr(dentry, name);
3266 		if (rc)
3267 			return rc;
3268 
3269 		/* Not an attribute we recognize, so just check the
3270 		   ordinary setattr permission. */
3271 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272 	}
3273 
3274 	/* No one is allowed to remove a SELinux security label.
3275 	   You can change the label, but all data must be labeled. */
3276 	return -EACCES;
3277 }
3278 
3279 static int selinux_path_notify(const struct path *path, u64 mask,
3280 						unsigned int obj_type)
3281 {
3282 	int ret;
3283 	u32 perm;
3284 
3285 	struct common_audit_data ad;
3286 
3287 	ad.type = LSM_AUDIT_DATA_PATH;
3288 	ad.u.path = *path;
3289 
3290 	/*
3291 	 * Set permission needed based on the type of mark being set.
3292 	 * Performs an additional check for sb watches.
3293 	 */
3294 	switch (obj_type) {
3295 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3296 		perm = FILE__WATCH_MOUNT;
3297 		break;
3298 	case FSNOTIFY_OBJ_TYPE_SB:
3299 		perm = FILE__WATCH_SB;
3300 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3301 						FILESYSTEM__WATCH, &ad);
3302 		if (ret)
3303 			return ret;
3304 		break;
3305 	case FSNOTIFY_OBJ_TYPE_INODE:
3306 		perm = FILE__WATCH;
3307 		break;
3308 	default:
3309 		return -EINVAL;
3310 	}
3311 
3312 	/* blocking watches require the file:watch_with_perm permission */
3313 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3314 		perm |= FILE__WATCH_WITH_PERM;
3315 
3316 	/* watches on read-like events need the file:watch_reads permission */
3317 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3318 		perm |= FILE__WATCH_READS;
3319 
3320 	return path_has_perm(current_cred(), path, perm);
3321 }
3322 
3323 /*
3324  * Copy the inode security context value to the user.
3325  *
3326  * Permission check is handled by selinux_inode_getxattr hook.
3327  */
3328 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3329 {
3330 	u32 size;
3331 	int error;
3332 	char *context = NULL;
3333 	struct inode_security_struct *isec;
3334 
3335 	/*
3336 	 * If we're not initialized yet, then we can't validate contexts, so
3337 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3338 	 */
3339 	if (!selinux_initialized(&selinux_state) ||
3340 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3341 		return -EOPNOTSUPP;
3342 
3343 	/*
3344 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3345 	 * value even if it is not defined by current policy; otherwise,
3346 	 * use the in-core value under current policy.
3347 	 * Use the non-auditing forms of the permission checks since
3348 	 * getxattr may be called by unprivileged processes commonly
3349 	 * and lack of permission just means that we fall back to the
3350 	 * in-core context value, not a denial.
3351 	 */
3352 	isec = inode_security(inode);
3353 	if (has_cap_mac_admin(false))
3354 		error = security_sid_to_context_force(&selinux_state,
3355 						      isec->sid, &context,
3356 						      &size);
3357 	else
3358 		error = security_sid_to_context(&selinux_state, isec->sid,
3359 						&context, &size);
3360 	if (error)
3361 		return error;
3362 	error = size;
3363 	if (alloc) {
3364 		*buffer = context;
3365 		goto out_nofree;
3366 	}
3367 	kfree(context);
3368 out_nofree:
3369 	return error;
3370 }
3371 
3372 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3373 				     const void *value, size_t size, int flags)
3374 {
3375 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3376 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3377 	u32 newsid;
3378 	int rc;
3379 
3380 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3381 		return -EOPNOTSUPP;
3382 
3383 	if (!(sbsec->flags & SBLABEL_MNT))
3384 		return -EOPNOTSUPP;
3385 
3386 	if (!value || !size)
3387 		return -EACCES;
3388 
3389 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3390 				     GFP_KERNEL);
3391 	if (rc)
3392 		return rc;
3393 
3394 	spin_lock(&isec->lock);
3395 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3396 	isec->sid = newsid;
3397 	isec->initialized = LABEL_INITIALIZED;
3398 	spin_unlock(&isec->lock);
3399 	return 0;
3400 }
3401 
3402 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3403 {
3404 	const int len = sizeof(XATTR_NAME_SELINUX);
3405 	if (buffer && len <= buffer_size)
3406 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3407 	return len;
3408 }
3409 
3410 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3411 {
3412 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3413 	*secid = isec->sid;
3414 }
3415 
3416 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3417 {
3418 	u32 sid;
3419 	struct task_security_struct *tsec;
3420 	struct cred *new_creds = *new;
3421 
3422 	if (new_creds == NULL) {
3423 		new_creds = prepare_creds();
3424 		if (!new_creds)
3425 			return -ENOMEM;
3426 	}
3427 
3428 	tsec = selinux_cred(new_creds);
3429 	/* Get label from overlay inode and set it in create_sid */
3430 	selinux_inode_getsecid(d_inode(src), &sid);
3431 	tsec->create_sid = sid;
3432 	*new = new_creds;
3433 	return 0;
3434 }
3435 
3436 static int selinux_inode_copy_up_xattr(const char *name)
3437 {
3438 	/* The copy_up hook above sets the initial context on an inode, but we
3439 	 * don't then want to overwrite it by blindly copying all the lower
3440 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3441 	 */
3442 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3443 		return 1; /* Discard */
3444 	/*
3445 	 * Any other attribute apart from SELINUX is not claimed, supported
3446 	 * by selinux.
3447 	 */
3448 	return -EOPNOTSUPP;
3449 }
3450 
3451 /* kernfs node operations */
3452 
3453 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3454 					struct kernfs_node *kn)
3455 {
3456 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3457 	u32 parent_sid, newsid, clen;
3458 	int rc;
3459 	char *context;
3460 
3461 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3462 	if (rc == -ENODATA)
3463 		return 0;
3464 	else if (rc < 0)
3465 		return rc;
3466 
3467 	clen = (u32)rc;
3468 	context = kmalloc(clen, GFP_KERNEL);
3469 	if (!context)
3470 		return -ENOMEM;
3471 
3472 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3473 	if (rc < 0) {
3474 		kfree(context);
3475 		return rc;
3476 	}
3477 
3478 	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3479 				     GFP_KERNEL);
3480 	kfree(context);
3481 	if (rc)
3482 		return rc;
3483 
3484 	if (tsec->create_sid) {
3485 		newsid = tsec->create_sid;
3486 	} else {
3487 		u16 secclass = inode_mode_to_security_class(kn->mode);
3488 		struct qstr q;
3489 
3490 		q.name = kn->name;
3491 		q.hash_len = hashlen_string(kn_dir, kn->name);
3492 
3493 		rc = security_transition_sid(&selinux_state, tsec->sid,
3494 					     parent_sid, secclass, &q,
3495 					     &newsid);
3496 		if (rc)
3497 			return rc;
3498 	}
3499 
3500 	rc = security_sid_to_context_force(&selinux_state, newsid,
3501 					   &context, &clen);
3502 	if (rc)
3503 		return rc;
3504 
3505 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3506 			      XATTR_CREATE);
3507 	kfree(context);
3508 	return rc;
3509 }
3510 
3511 
3512 /* file security operations */
3513 
3514 static int selinux_revalidate_file_permission(struct file *file, int mask)
3515 {
3516 	const struct cred *cred = current_cred();
3517 	struct inode *inode = file_inode(file);
3518 
3519 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521 		mask |= MAY_APPEND;
3522 
3523 	return file_has_perm(cred, file,
3524 			     file_mask_to_av(inode->i_mode, mask));
3525 }
3526 
3527 static int selinux_file_permission(struct file *file, int mask)
3528 {
3529 	struct inode *inode = file_inode(file);
3530 	struct file_security_struct *fsec = selinux_file(file);
3531 	struct inode_security_struct *isec;
3532 	u32 sid = current_sid();
3533 
3534 	if (!mask)
3535 		/* No permission to check.  Existence test. */
3536 		return 0;
3537 
3538 	isec = inode_security(inode);
3539 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3540 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3541 		/* No change since file_open check. */
3542 		return 0;
3543 
3544 	return selinux_revalidate_file_permission(file, mask);
3545 }
3546 
3547 static int selinux_file_alloc_security(struct file *file)
3548 {
3549 	struct file_security_struct *fsec = selinux_file(file);
3550 	u32 sid = current_sid();
3551 
3552 	fsec->sid = sid;
3553 	fsec->fown_sid = sid;
3554 
3555 	return 0;
3556 }
3557 
3558 /*
3559  * Check whether a task has the ioctl permission and cmd
3560  * operation to an inode.
3561  */
3562 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3563 		u32 requested, u16 cmd)
3564 {
3565 	struct common_audit_data ad;
3566 	struct file_security_struct *fsec = selinux_file(file);
3567 	struct inode *inode = file_inode(file);
3568 	struct inode_security_struct *isec;
3569 	struct lsm_ioctlop_audit ioctl;
3570 	u32 ssid = cred_sid(cred);
3571 	int rc;
3572 	u8 driver = cmd >> 8;
3573 	u8 xperm = cmd & 0xff;
3574 
3575 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3576 	ad.u.op = &ioctl;
3577 	ad.u.op->cmd = cmd;
3578 	ad.u.op->path = file->f_path;
3579 
3580 	if (ssid != fsec->sid) {
3581 		rc = avc_has_perm(&selinux_state,
3582 				  ssid, fsec->sid,
3583 				SECCLASS_FD,
3584 				FD__USE,
3585 				&ad);
3586 		if (rc)
3587 			goto out;
3588 	}
3589 
3590 	if (unlikely(IS_PRIVATE(inode)))
3591 		return 0;
3592 
3593 	isec = inode_security(inode);
3594 	rc = avc_has_extended_perms(&selinux_state,
3595 				    ssid, isec->sid, isec->sclass,
3596 				    requested, driver, xperm, &ad);
3597 out:
3598 	return rc;
3599 }
3600 
3601 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3602 			      unsigned long arg)
3603 {
3604 	const struct cred *cred = current_cred();
3605 	int error = 0;
3606 
3607 	switch (cmd) {
3608 	case FIONREAD:
3609 	/* fall through */
3610 	case FIBMAP:
3611 	/* fall through */
3612 	case FIGETBSZ:
3613 	/* fall through */
3614 	case FS_IOC_GETFLAGS:
3615 	/* fall through */
3616 	case FS_IOC_GETVERSION:
3617 		error = file_has_perm(cred, file, FILE__GETATTR);
3618 		break;
3619 
3620 	case FS_IOC_SETFLAGS:
3621 	/* fall through */
3622 	case FS_IOC_SETVERSION:
3623 		error = file_has_perm(cred, file, FILE__SETATTR);
3624 		break;
3625 
3626 	/* sys_ioctl() checks */
3627 	case FIONBIO:
3628 	/* fall through */
3629 	case FIOASYNC:
3630 		error = file_has_perm(cred, file, 0);
3631 		break;
3632 
3633 	case KDSKBENT:
3634 	case KDSKBSENT:
3635 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3636 					    CAP_OPT_NONE, true);
3637 		break;
3638 
3639 	/* default case assumes that the command will go
3640 	 * to the file's ioctl() function.
3641 	 */
3642 	default:
3643 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3644 	}
3645 	return error;
3646 }
3647 
3648 static int default_noexec __ro_after_init;
3649 
3650 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3651 {
3652 	const struct cred *cred = current_cred();
3653 	u32 sid = cred_sid(cred);
3654 	int rc = 0;
3655 
3656 	if (default_noexec &&
3657 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3658 				   (!shared && (prot & PROT_WRITE)))) {
3659 		/*
3660 		 * We are making executable an anonymous mapping or a
3661 		 * private file mapping that will also be writable.
3662 		 * This has an additional check.
3663 		 */
3664 		rc = avc_has_perm(&selinux_state,
3665 				  sid, sid, SECCLASS_PROCESS,
3666 				  PROCESS__EXECMEM, NULL);
3667 		if (rc)
3668 			goto error;
3669 	}
3670 
3671 	if (file) {
3672 		/* read access is always possible with a mapping */
3673 		u32 av = FILE__READ;
3674 
3675 		/* write access only matters if the mapping is shared */
3676 		if (shared && (prot & PROT_WRITE))
3677 			av |= FILE__WRITE;
3678 
3679 		if (prot & PROT_EXEC)
3680 			av |= FILE__EXECUTE;
3681 
3682 		return file_has_perm(cred, file, av);
3683 	}
3684 
3685 error:
3686 	return rc;
3687 }
3688 
3689 static int selinux_mmap_addr(unsigned long addr)
3690 {
3691 	int rc = 0;
3692 
3693 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3694 		u32 sid = current_sid();
3695 		rc = avc_has_perm(&selinux_state,
3696 				  sid, sid, SECCLASS_MEMPROTECT,
3697 				  MEMPROTECT__MMAP_ZERO, NULL);
3698 	}
3699 
3700 	return rc;
3701 }
3702 
3703 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3704 			     unsigned long prot, unsigned long flags)
3705 {
3706 	struct common_audit_data ad;
3707 	int rc;
3708 
3709 	if (file) {
3710 		ad.type = LSM_AUDIT_DATA_FILE;
3711 		ad.u.file = file;
3712 		rc = inode_has_perm(current_cred(), file_inode(file),
3713 				    FILE__MAP, &ad);
3714 		if (rc)
3715 			return rc;
3716 	}
3717 
3718 	if (selinux_state.checkreqprot)
3719 		prot = reqprot;
3720 
3721 	return file_map_prot_check(file, prot,
3722 				   (flags & MAP_TYPE) == MAP_SHARED);
3723 }
3724 
3725 static int selinux_file_mprotect(struct vm_area_struct *vma,
3726 				 unsigned long reqprot,
3727 				 unsigned long prot)
3728 {
3729 	const struct cred *cred = current_cred();
3730 	u32 sid = cred_sid(cred);
3731 
3732 	if (selinux_state.checkreqprot)
3733 		prot = reqprot;
3734 
3735 	if (default_noexec &&
3736 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3737 		int rc = 0;
3738 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3739 		    vma->vm_end <= vma->vm_mm->brk) {
3740 			rc = avc_has_perm(&selinux_state,
3741 					  sid, sid, SECCLASS_PROCESS,
3742 					  PROCESS__EXECHEAP, NULL);
3743 		} else if (!vma->vm_file &&
3744 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3745 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3746 			    vma_is_stack_for_current(vma))) {
3747 			rc = avc_has_perm(&selinux_state,
3748 					  sid, sid, SECCLASS_PROCESS,
3749 					  PROCESS__EXECSTACK, NULL);
3750 		} else if (vma->vm_file && vma->anon_vma) {
3751 			/*
3752 			 * We are making executable a file mapping that has
3753 			 * had some COW done. Since pages might have been
3754 			 * written, check ability to execute the possibly
3755 			 * modified content.  This typically should only
3756 			 * occur for text relocations.
3757 			 */
3758 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3759 		}
3760 		if (rc)
3761 			return rc;
3762 	}
3763 
3764 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3765 }
3766 
3767 static int selinux_file_lock(struct file *file, unsigned int cmd)
3768 {
3769 	const struct cred *cred = current_cred();
3770 
3771 	return file_has_perm(cred, file, FILE__LOCK);
3772 }
3773 
3774 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3775 			      unsigned long arg)
3776 {
3777 	const struct cred *cred = current_cred();
3778 	int err = 0;
3779 
3780 	switch (cmd) {
3781 	case F_SETFL:
3782 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3783 			err = file_has_perm(cred, file, FILE__WRITE);
3784 			break;
3785 		}
3786 		/* fall through */
3787 	case F_SETOWN:
3788 	case F_SETSIG:
3789 	case F_GETFL:
3790 	case F_GETOWN:
3791 	case F_GETSIG:
3792 	case F_GETOWNER_UIDS:
3793 		/* Just check FD__USE permission */
3794 		err = file_has_perm(cred, file, 0);
3795 		break;
3796 	case F_GETLK:
3797 	case F_SETLK:
3798 	case F_SETLKW:
3799 	case F_OFD_GETLK:
3800 	case F_OFD_SETLK:
3801 	case F_OFD_SETLKW:
3802 #if BITS_PER_LONG == 32
3803 	case F_GETLK64:
3804 	case F_SETLK64:
3805 	case F_SETLKW64:
3806 #endif
3807 		err = file_has_perm(cred, file, FILE__LOCK);
3808 		break;
3809 	}
3810 
3811 	return err;
3812 }
3813 
3814 static void selinux_file_set_fowner(struct file *file)
3815 {
3816 	struct file_security_struct *fsec;
3817 
3818 	fsec = selinux_file(file);
3819 	fsec->fown_sid = current_sid();
3820 }
3821 
3822 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3823 				       struct fown_struct *fown, int signum)
3824 {
3825 	struct file *file;
3826 	u32 sid = task_sid(tsk);
3827 	u32 perm;
3828 	struct file_security_struct *fsec;
3829 
3830 	/* struct fown_struct is never outside the context of a struct file */
3831 	file = container_of(fown, struct file, f_owner);
3832 
3833 	fsec = selinux_file(file);
3834 
3835 	if (!signum)
3836 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3837 	else
3838 		perm = signal_to_av(signum);
3839 
3840 	return avc_has_perm(&selinux_state,
3841 			    fsec->fown_sid, sid,
3842 			    SECCLASS_PROCESS, perm, NULL);
3843 }
3844 
3845 static int selinux_file_receive(struct file *file)
3846 {
3847 	const struct cred *cred = current_cred();
3848 
3849 	return file_has_perm(cred, file, file_to_av(file));
3850 }
3851 
3852 static int selinux_file_open(struct file *file)
3853 {
3854 	struct file_security_struct *fsec;
3855 	struct inode_security_struct *isec;
3856 
3857 	fsec = selinux_file(file);
3858 	isec = inode_security(file_inode(file));
3859 	/*
3860 	 * Save inode label and policy sequence number
3861 	 * at open-time so that selinux_file_permission
3862 	 * can determine whether revalidation is necessary.
3863 	 * Task label is already saved in the file security
3864 	 * struct as its SID.
3865 	 */
3866 	fsec->isid = isec->sid;
3867 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3868 	/*
3869 	 * Since the inode label or policy seqno may have changed
3870 	 * between the selinux_inode_permission check and the saving
3871 	 * of state above, recheck that access is still permitted.
3872 	 * Otherwise, access might never be revalidated against the
3873 	 * new inode label or new policy.
3874 	 * This check is not redundant - do not remove.
3875 	 */
3876 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3877 }
3878 
3879 /* task security operations */
3880 
3881 static int selinux_task_alloc(struct task_struct *task,
3882 			      unsigned long clone_flags)
3883 {
3884 	u32 sid = current_sid();
3885 
3886 	return avc_has_perm(&selinux_state,
3887 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3888 }
3889 
3890 /*
3891  * prepare a new set of credentials for modification
3892  */
3893 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3894 				gfp_t gfp)
3895 {
3896 	const struct task_security_struct *old_tsec = selinux_cred(old);
3897 	struct task_security_struct *tsec = selinux_cred(new);
3898 
3899 	*tsec = *old_tsec;
3900 	return 0;
3901 }
3902 
3903 /*
3904  * transfer the SELinux data to a blank set of creds
3905  */
3906 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3907 {
3908 	const struct task_security_struct *old_tsec = selinux_cred(old);
3909 	struct task_security_struct *tsec = selinux_cred(new);
3910 
3911 	*tsec = *old_tsec;
3912 }
3913 
3914 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3915 {
3916 	*secid = cred_sid(c);
3917 }
3918 
3919 /*
3920  * set the security data for a kernel service
3921  * - all the creation contexts are set to unlabelled
3922  */
3923 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3924 {
3925 	struct task_security_struct *tsec = selinux_cred(new);
3926 	u32 sid = current_sid();
3927 	int ret;
3928 
3929 	ret = avc_has_perm(&selinux_state,
3930 			   sid, secid,
3931 			   SECCLASS_KERNEL_SERVICE,
3932 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3933 			   NULL);
3934 	if (ret == 0) {
3935 		tsec->sid = secid;
3936 		tsec->create_sid = 0;
3937 		tsec->keycreate_sid = 0;
3938 		tsec->sockcreate_sid = 0;
3939 	}
3940 	return ret;
3941 }
3942 
3943 /*
3944  * set the file creation context in a security record to the same as the
3945  * objective context of the specified inode
3946  */
3947 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3948 {
3949 	struct inode_security_struct *isec = inode_security(inode);
3950 	struct task_security_struct *tsec = selinux_cred(new);
3951 	u32 sid = current_sid();
3952 	int ret;
3953 
3954 	ret = avc_has_perm(&selinux_state,
3955 			   sid, isec->sid,
3956 			   SECCLASS_KERNEL_SERVICE,
3957 			   KERNEL_SERVICE__CREATE_FILES_AS,
3958 			   NULL);
3959 
3960 	if (ret == 0)
3961 		tsec->create_sid = isec->sid;
3962 	return ret;
3963 }
3964 
3965 static int selinux_kernel_module_request(char *kmod_name)
3966 {
3967 	struct common_audit_data ad;
3968 
3969 	ad.type = LSM_AUDIT_DATA_KMOD;
3970 	ad.u.kmod_name = kmod_name;
3971 
3972 	return avc_has_perm(&selinux_state,
3973 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3974 			    SYSTEM__MODULE_REQUEST, &ad);
3975 }
3976 
3977 static int selinux_kernel_module_from_file(struct file *file)
3978 {
3979 	struct common_audit_data ad;
3980 	struct inode_security_struct *isec;
3981 	struct file_security_struct *fsec;
3982 	u32 sid = current_sid();
3983 	int rc;
3984 
3985 	/* init_module */
3986 	if (file == NULL)
3987 		return avc_has_perm(&selinux_state,
3988 				    sid, sid, SECCLASS_SYSTEM,
3989 					SYSTEM__MODULE_LOAD, NULL);
3990 
3991 	/* finit_module */
3992 
3993 	ad.type = LSM_AUDIT_DATA_FILE;
3994 	ad.u.file = file;
3995 
3996 	fsec = selinux_file(file);
3997 	if (sid != fsec->sid) {
3998 		rc = avc_has_perm(&selinux_state,
3999 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4000 		if (rc)
4001 			return rc;
4002 	}
4003 
4004 	isec = inode_security(file_inode(file));
4005 	return avc_has_perm(&selinux_state,
4006 			    sid, isec->sid, SECCLASS_SYSTEM,
4007 				SYSTEM__MODULE_LOAD, &ad);
4008 }
4009 
4010 static int selinux_kernel_read_file(struct file *file,
4011 				    enum kernel_read_file_id id)
4012 {
4013 	int rc = 0;
4014 
4015 	switch (id) {
4016 	case READING_MODULE:
4017 		rc = selinux_kernel_module_from_file(file);
4018 		break;
4019 	default:
4020 		break;
4021 	}
4022 
4023 	return rc;
4024 }
4025 
4026 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4027 {
4028 	int rc = 0;
4029 
4030 	switch (id) {
4031 	case LOADING_MODULE:
4032 		rc = selinux_kernel_module_from_file(NULL);
4033 	default:
4034 		break;
4035 	}
4036 
4037 	return rc;
4038 }
4039 
4040 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4041 {
4042 	return avc_has_perm(&selinux_state,
4043 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4044 			    PROCESS__SETPGID, NULL);
4045 }
4046 
4047 static int selinux_task_getpgid(struct task_struct *p)
4048 {
4049 	return avc_has_perm(&selinux_state,
4050 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4051 			    PROCESS__GETPGID, NULL);
4052 }
4053 
4054 static int selinux_task_getsid(struct task_struct *p)
4055 {
4056 	return avc_has_perm(&selinux_state,
4057 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4058 			    PROCESS__GETSESSION, NULL);
4059 }
4060 
4061 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4062 {
4063 	*secid = task_sid(p);
4064 }
4065 
4066 static int selinux_task_setnice(struct task_struct *p, int nice)
4067 {
4068 	return avc_has_perm(&selinux_state,
4069 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4070 			    PROCESS__SETSCHED, NULL);
4071 }
4072 
4073 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4074 {
4075 	return avc_has_perm(&selinux_state,
4076 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4077 			    PROCESS__SETSCHED, NULL);
4078 }
4079 
4080 static int selinux_task_getioprio(struct task_struct *p)
4081 {
4082 	return avc_has_perm(&selinux_state,
4083 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4084 			    PROCESS__GETSCHED, NULL);
4085 }
4086 
4087 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4088 				unsigned int flags)
4089 {
4090 	u32 av = 0;
4091 
4092 	if (!flags)
4093 		return 0;
4094 	if (flags & LSM_PRLIMIT_WRITE)
4095 		av |= PROCESS__SETRLIMIT;
4096 	if (flags & LSM_PRLIMIT_READ)
4097 		av |= PROCESS__GETRLIMIT;
4098 	return avc_has_perm(&selinux_state,
4099 			    cred_sid(cred), cred_sid(tcred),
4100 			    SECCLASS_PROCESS, av, NULL);
4101 }
4102 
4103 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4104 		struct rlimit *new_rlim)
4105 {
4106 	struct rlimit *old_rlim = p->signal->rlim + resource;
4107 
4108 	/* Control the ability to change the hard limit (whether
4109 	   lowering or raising it), so that the hard limit can
4110 	   later be used as a safe reset point for the soft limit
4111 	   upon context transitions.  See selinux_bprm_committing_creds. */
4112 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4113 		return avc_has_perm(&selinux_state,
4114 				    current_sid(), task_sid(p),
4115 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4116 
4117 	return 0;
4118 }
4119 
4120 static int selinux_task_setscheduler(struct task_struct *p)
4121 {
4122 	return avc_has_perm(&selinux_state,
4123 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4124 			    PROCESS__SETSCHED, NULL);
4125 }
4126 
4127 static int selinux_task_getscheduler(struct task_struct *p)
4128 {
4129 	return avc_has_perm(&selinux_state,
4130 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4131 			    PROCESS__GETSCHED, NULL);
4132 }
4133 
4134 static int selinux_task_movememory(struct task_struct *p)
4135 {
4136 	return avc_has_perm(&selinux_state,
4137 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4138 			    PROCESS__SETSCHED, NULL);
4139 }
4140 
4141 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4142 				int sig, const struct cred *cred)
4143 {
4144 	u32 secid;
4145 	u32 perm;
4146 
4147 	if (!sig)
4148 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4149 	else
4150 		perm = signal_to_av(sig);
4151 	if (!cred)
4152 		secid = current_sid();
4153 	else
4154 		secid = cred_sid(cred);
4155 	return avc_has_perm(&selinux_state,
4156 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4157 }
4158 
4159 static void selinux_task_to_inode(struct task_struct *p,
4160 				  struct inode *inode)
4161 {
4162 	struct inode_security_struct *isec = selinux_inode(inode);
4163 	u32 sid = task_sid(p);
4164 
4165 	spin_lock(&isec->lock);
4166 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4167 	isec->sid = sid;
4168 	isec->initialized = LABEL_INITIALIZED;
4169 	spin_unlock(&isec->lock);
4170 }
4171 
4172 /* Returns error only if unable to parse addresses */
4173 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4174 			struct common_audit_data *ad, u8 *proto)
4175 {
4176 	int offset, ihlen, ret = -EINVAL;
4177 	struct iphdr _iph, *ih;
4178 
4179 	offset = skb_network_offset(skb);
4180 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4181 	if (ih == NULL)
4182 		goto out;
4183 
4184 	ihlen = ih->ihl * 4;
4185 	if (ihlen < sizeof(_iph))
4186 		goto out;
4187 
4188 	ad->u.net->v4info.saddr = ih->saddr;
4189 	ad->u.net->v4info.daddr = ih->daddr;
4190 	ret = 0;
4191 
4192 	if (proto)
4193 		*proto = ih->protocol;
4194 
4195 	switch (ih->protocol) {
4196 	case IPPROTO_TCP: {
4197 		struct tcphdr _tcph, *th;
4198 
4199 		if (ntohs(ih->frag_off) & IP_OFFSET)
4200 			break;
4201 
4202 		offset += ihlen;
4203 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4204 		if (th == NULL)
4205 			break;
4206 
4207 		ad->u.net->sport = th->source;
4208 		ad->u.net->dport = th->dest;
4209 		break;
4210 	}
4211 
4212 	case IPPROTO_UDP: {
4213 		struct udphdr _udph, *uh;
4214 
4215 		if (ntohs(ih->frag_off) & IP_OFFSET)
4216 			break;
4217 
4218 		offset += ihlen;
4219 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4220 		if (uh == NULL)
4221 			break;
4222 
4223 		ad->u.net->sport = uh->source;
4224 		ad->u.net->dport = uh->dest;
4225 		break;
4226 	}
4227 
4228 	case IPPROTO_DCCP: {
4229 		struct dccp_hdr _dccph, *dh;
4230 
4231 		if (ntohs(ih->frag_off) & IP_OFFSET)
4232 			break;
4233 
4234 		offset += ihlen;
4235 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4236 		if (dh == NULL)
4237 			break;
4238 
4239 		ad->u.net->sport = dh->dccph_sport;
4240 		ad->u.net->dport = dh->dccph_dport;
4241 		break;
4242 	}
4243 
4244 #if IS_ENABLED(CONFIG_IP_SCTP)
4245 	case IPPROTO_SCTP: {
4246 		struct sctphdr _sctph, *sh;
4247 
4248 		if (ntohs(ih->frag_off) & IP_OFFSET)
4249 			break;
4250 
4251 		offset += ihlen;
4252 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4253 		if (sh == NULL)
4254 			break;
4255 
4256 		ad->u.net->sport = sh->source;
4257 		ad->u.net->dport = sh->dest;
4258 		break;
4259 	}
4260 #endif
4261 	default:
4262 		break;
4263 	}
4264 out:
4265 	return ret;
4266 }
4267 
4268 #if IS_ENABLED(CONFIG_IPV6)
4269 
4270 /* Returns error only if unable to parse addresses */
4271 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4272 			struct common_audit_data *ad, u8 *proto)
4273 {
4274 	u8 nexthdr;
4275 	int ret = -EINVAL, offset;
4276 	struct ipv6hdr _ipv6h, *ip6;
4277 	__be16 frag_off;
4278 
4279 	offset = skb_network_offset(skb);
4280 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4281 	if (ip6 == NULL)
4282 		goto out;
4283 
4284 	ad->u.net->v6info.saddr = ip6->saddr;
4285 	ad->u.net->v6info.daddr = ip6->daddr;
4286 	ret = 0;
4287 
4288 	nexthdr = ip6->nexthdr;
4289 	offset += sizeof(_ipv6h);
4290 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4291 	if (offset < 0)
4292 		goto out;
4293 
4294 	if (proto)
4295 		*proto = nexthdr;
4296 
4297 	switch (nexthdr) {
4298 	case IPPROTO_TCP: {
4299 		struct tcphdr _tcph, *th;
4300 
4301 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4302 		if (th == NULL)
4303 			break;
4304 
4305 		ad->u.net->sport = th->source;
4306 		ad->u.net->dport = th->dest;
4307 		break;
4308 	}
4309 
4310 	case IPPROTO_UDP: {
4311 		struct udphdr _udph, *uh;
4312 
4313 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4314 		if (uh == NULL)
4315 			break;
4316 
4317 		ad->u.net->sport = uh->source;
4318 		ad->u.net->dport = uh->dest;
4319 		break;
4320 	}
4321 
4322 	case IPPROTO_DCCP: {
4323 		struct dccp_hdr _dccph, *dh;
4324 
4325 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4326 		if (dh == NULL)
4327 			break;
4328 
4329 		ad->u.net->sport = dh->dccph_sport;
4330 		ad->u.net->dport = dh->dccph_dport;
4331 		break;
4332 	}
4333 
4334 #if IS_ENABLED(CONFIG_IP_SCTP)
4335 	case IPPROTO_SCTP: {
4336 		struct sctphdr _sctph, *sh;
4337 
4338 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4339 		if (sh == NULL)
4340 			break;
4341 
4342 		ad->u.net->sport = sh->source;
4343 		ad->u.net->dport = sh->dest;
4344 		break;
4345 	}
4346 #endif
4347 	/* includes fragments */
4348 	default:
4349 		break;
4350 	}
4351 out:
4352 	return ret;
4353 }
4354 
4355 #endif /* IPV6 */
4356 
4357 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4358 			     char **_addrp, int src, u8 *proto)
4359 {
4360 	char *addrp;
4361 	int ret;
4362 
4363 	switch (ad->u.net->family) {
4364 	case PF_INET:
4365 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4366 		if (ret)
4367 			goto parse_error;
4368 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4369 				       &ad->u.net->v4info.daddr);
4370 		goto okay;
4371 
4372 #if IS_ENABLED(CONFIG_IPV6)
4373 	case PF_INET6:
4374 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4375 		if (ret)
4376 			goto parse_error;
4377 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4378 				       &ad->u.net->v6info.daddr);
4379 		goto okay;
4380 #endif	/* IPV6 */
4381 	default:
4382 		addrp = NULL;
4383 		goto okay;
4384 	}
4385 
4386 parse_error:
4387 	pr_warn(
4388 	       "SELinux: failure in selinux_parse_skb(),"
4389 	       " unable to parse packet\n");
4390 	return ret;
4391 
4392 okay:
4393 	if (_addrp)
4394 		*_addrp = addrp;
4395 	return 0;
4396 }
4397 
4398 /**
4399  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4400  * @skb: the packet
4401  * @family: protocol family
4402  * @sid: the packet's peer label SID
4403  *
4404  * Description:
4405  * Check the various different forms of network peer labeling and determine
4406  * the peer label/SID for the packet; most of the magic actually occurs in
4407  * the security server function security_net_peersid_cmp().  The function
4408  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4409  * or -EACCES if @sid is invalid due to inconsistencies with the different
4410  * peer labels.
4411  *
4412  */
4413 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4414 {
4415 	int err;
4416 	u32 xfrm_sid;
4417 	u32 nlbl_sid;
4418 	u32 nlbl_type;
4419 
4420 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4421 	if (unlikely(err))
4422 		return -EACCES;
4423 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4424 	if (unlikely(err))
4425 		return -EACCES;
4426 
4427 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4428 					   nlbl_type, xfrm_sid, sid);
4429 	if (unlikely(err)) {
4430 		pr_warn(
4431 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4432 		       " unable to determine packet's peer label\n");
4433 		return -EACCES;
4434 	}
4435 
4436 	return 0;
4437 }
4438 
4439 /**
4440  * selinux_conn_sid - Determine the child socket label for a connection
4441  * @sk_sid: the parent socket's SID
4442  * @skb_sid: the packet's SID
4443  * @conn_sid: the resulting connection SID
4444  *
4445  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4446  * combined with the MLS information from @skb_sid in order to create
4447  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4448  * of @sk_sid.  Returns zero on success, negative values on failure.
4449  *
4450  */
4451 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4452 {
4453 	int err = 0;
4454 
4455 	if (skb_sid != SECSID_NULL)
4456 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4457 					    conn_sid);
4458 	else
4459 		*conn_sid = sk_sid;
4460 
4461 	return err;
4462 }
4463 
4464 /* socket security operations */
4465 
4466 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4467 				 u16 secclass, u32 *socksid)
4468 {
4469 	if (tsec->sockcreate_sid > SECSID_NULL) {
4470 		*socksid = tsec->sockcreate_sid;
4471 		return 0;
4472 	}
4473 
4474 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4475 				       secclass, NULL, socksid);
4476 }
4477 
4478 static int sock_has_perm(struct sock *sk, u32 perms)
4479 {
4480 	struct sk_security_struct *sksec = sk->sk_security;
4481 	struct common_audit_data ad;
4482 	struct lsm_network_audit net = {0,};
4483 
4484 	if (sksec->sid == SECINITSID_KERNEL)
4485 		return 0;
4486 
4487 	ad.type = LSM_AUDIT_DATA_NET;
4488 	ad.u.net = &net;
4489 	ad.u.net->sk = sk;
4490 
4491 	return avc_has_perm(&selinux_state,
4492 			    current_sid(), sksec->sid, sksec->sclass, perms,
4493 			    &ad);
4494 }
4495 
4496 static int selinux_socket_create(int family, int type,
4497 				 int protocol, int kern)
4498 {
4499 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4500 	u32 newsid;
4501 	u16 secclass;
4502 	int rc;
4503 
4504 	if (kern)
4505 		return 0;
4506 
4507 	secclass = socket_type_to_security_class(family, type, protocol);
4508 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4509 	if (rc)
4510 		return rc;
4511 
4512 	return avc_has_perm(&selinux_state,
4513 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4514 }
4515 
4516 static int selinux_socket_post_create(struct socket *sock, int family,
4517 				      int type, int protocol, int kern)
4518 {
4519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4520 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4521 	struct sk_security_struct *sksec;
4522 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4523 	u32 sid = SECINITSID_KERNEL;
4524 	int err = 0;
4525 
4526 	if (!kern) {
4527 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4528 		if (err)
4529 			return err;
4530 	}
4531 
4532 	isec->sclass = sclass;
4533 	isec->sid = sid;
4534 	isec->initialized = LABEL_INITIALIZED;
4535 
4536 	if (sock->sk) {
4537 		sksec = sock->sk->sk_security;
4538 		sksec->sclass = sclass;
4539 		sksec->sid = sid;
4540 		/* Allows detection of the first association on this socket */
4541 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4542 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4543 
4544 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4545 	}
4546 
4547 	return err;
4548 }
4549 
4550 static int selinux_socket_socketpair(struct socket *socka,
4551 				     struct socket *sockb)
4552 {
4553 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4554 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4555 
4556 	sksec_a->peer_sid = sksec_b->sid;
4557 	sksec_b->peer_sid = sksec_a->sid;
4558 
4559 	return 0;
4560 }
4561 
4562 /* Range of port numbers used to automatically bind.
4563    Need to determine whether we should perform a name_bind
4564    permission check between the socket and the port number. */
4565 
4566 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4567 {
4568 	struct sock *sk = sock->sk;
4569 	struct sk_security_struct *sksec = sk->sk_security;
4570 	u16 family;
4571 	int err;
4572 
4573 	err = sock_has_perm(sk, SOCKET__BIND);
4574 	if (err)
4575 		goto out;
4576 
4577 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4578 	family = sk->sk_family;
4579 	if (family == PF_INET || family == PF_INET6) {
4580 		char *addrp;
4581 		struct common_audit_data ad;
4582 		struct lsm_network_audit net = {0,};
4583 		struct sockaddr_in *addr4 = NULL;
4584 		struct sockaddr_in6 *addr6 = NULL;
4585 		u16 family_sa;
4586 		unsigned short snum;
4587 		u32 sid, node_perm;
4588 
4589 		/*
4590 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4591 		 * that validates multiple binding addresses. Because of this
4592 		 * need to check address->sa_family as it is possible to have
4593 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4594 		 */
4595 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4596 			return -EINVAL;
4597 		family_sa = address->sa_family;
4598 		switch (family_sa) {
4599 		case AF_UNSPEC:
4600 		case AF_INET:
4601 			if (addrlen < sizeof(struct sockaddr_in))
4602 				return -EINVAL;
4603 			addr4 = (struct sockaddr_in *)address;
4604 			if (family_sa == AF_UNSPEC) {
4605 				/* see __inet_bind(), we only want to allow
4606 				 * AF_UNSPEC if the address is INADDR_ANY
4607 				 */
4608 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4609 					goto err_af;
4610 				family_sa = AF_INET;
4611 			}
4612 			snum = ntohs(addr4->sin_port);
4613 			addrp = (char *)&addr4->sin_addr.s_addr;
4614 			break;
4615 		case AF_INET6:
4616 			if (addrlen < SIN6_LEN_RFC2133)
4617 				return -EINVAL;
4618 			addr6 = (struct sockaddr_in6 *)address;
4619 			snum = ntohs(addr6->sin6_port);
4620 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4621 			break;
4622 		default:
4623 			goto err_af;
4624 		}
4625 
4626 		ad.type = LSM_AUDIT_DATA_NET;
4627 		ad.u.net = &net;
4628 		ad.u.net->sport = htons(snum);
4629 		ad.u.net->family = family_sa;
4630 
4631 		if (snum) {
4632 			int low, high;
4633 
4634 			inet_get_local_port_range(sock_net(sk), &low, &high);
4635 
4636 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4637 			    snum < low || snum > high) {
4638 				err = sel_netport_sid(sk->sk_protocol,
4639 						      snum, &sid);
4640 				if (err)
4641 					goto out;
4642 				err = avc_has_perm(&selinux_state,
4643 						   sksec->sid, sid,
4644 						   sksec->sclass,
4645 						   SOCKET__NAME_BIND, &ad);
4646 				if (err)
4647 					goto out;
4648 			}
4649 		}
4650 
4651 		switch (sksec->sclass) {
4652 		case SECCLASS_TCP_SOCKET:
4653 			node_perm = TCP_SOCKET__NODE_BIND;
4654 			break;
4655 
4656 		case SECCLASS_UDP_SOCKET:
4657 			node_perm = UDP_SOCKET__NODE_BIND;
4658 			break;
4659 
4660 		case SECCLASS_DCCP_SOCKET:
4661 			node_perm = DCCP_SOCKET__NODE_BIND;
4662 			break;
4663 
4664 		case SECCLASS_SCTP_SOCKET:
4665 			node_perm = SCTP_SOCKET__NODE_BIND;
4666 			break;
4667 
4668 		default:
4669 			node_perm = RAWIP_SOCKET__NODE_BIND;
4670 			break;
4671 		}
4672 
4673 		err = sel_netnode_sid(addrp, family_sa, &sid);
4674 		if (err)
4675 			goto out;
4676 
4677 		if (family_sa == AF_INET)
4678 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4679 		else
4680 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4681 
4682 		err = avc_has_perm(&selinux_state,
4683 				   sksec->sid, sid,
4684 				   sksec->sclass, node_perm, &ad);
4685 		if (err)
4686 			goto out;
4687 	}
4688 out:
4689 	return err;
4690 err_af:
4691 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4692 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4693 		return -EINVAL;
4694 	return -EAFNOSUPPORT;
4695 }
4696 
4697 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4698  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4699  */
4700 static int selinux_socket_connect_helper(struct socket *sock,
4701 					 struct sockaddr *address, int addrlen)
4702 {
4703 	struct sock *sk = sock->sk;
4704 	struct sk_security_struct *sksec = sk->sk_security;
4705 	int err;
4706 
4707 	err = sock_has_perm(sk, SOCKET__CONNECT);
4708 	if (err)
4709 		return err;
4710 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4711 		return -EINVAL;
4712 
4713 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4714 	 * way to disconnect the socket
4715 	 */
4716 	if (address->sa_family == AF_UNSPEC)
4717 		return 0;
4718 
4719 	/*
4720 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4721 	 * for the port.
4722 	 */
4723 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4724 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4725 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4726 		struct common_audit_data ad;
4727 		struct lsm_network_audit net = {0,};
4728 		struct sockaddr_in *addr4 = NULL;
4729 		struct sockaddr_in6 *addr6 = NULL;
4730 		unsigned short snum;
4731 		u32 sid, perm;
4732 
4733 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4734 		 * that validates multiple connect addresses. Because of this
4735 		 * need to check address->sa_family as it is possible to have
4736 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4737 		 */
4738 		switch (address->sa_family) {
4739 		case AF_INET:
4740 			addr4 = (struct sockaddr_in *)address;
4741 			if (addrlen < sizeof(struct sockaddr_in))
4742 				return -EINVAL;
4743 			snum = ntohs(addr4->sin_port);
4744 			break;
4745 		case AF_INET6:
4746 			addr6 = (struct sockaddr_in6 *)address;
4747 			if (addrlen < SIN6_LEN_RFC2133)
4748 				return -EINVAL;
4749 			snum = ntohs(addr6->sin6_port);
4750 			break;
4751 		default:
4752 			/* Note that SCTP services expect -EINVAL, whereas
4753 			 * others expect -EAFNOSUPPORT.
4754 			 */
4755 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4756 				return -EINVAL;
4757 			else
4758 				return -EAFNOSUPPORT;
4759 		}
4760 
4761 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4762 		if (err)
4763 			return err;
4764 
4765 		switch (sksec->sclass) {
4766 		case SECCLASS_TCP_SOCKET:
4767 			perm = TCP_SOCKET__NAME_CONNECT;
4768 			break;
4769 		case SECCLASS_DCCP_SOCKET:
4770 			perm = DCCP_SOCKET__NAME_CONNECT;
4771 			break;
4772 		case SECCLASS_SCTP_SOCKET:
4773 			perm = SCTP_SOCKET__NAME_CONNECT;
4774 			break;
4775 		}
4776 
4777 		ad.type = LSM_AUDIT_DATA_NET;
4778 		ad.u.net = &net;
4779 		ad.u.net->dport = htons(snum);
4780 		ad.u.net->family = address->sa_family;
4781 		err = avc_has_perm(&selinux_state,
4782 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4783 		if (err)
4784 			return err;
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4791 static int selinux_socket_connect(struct socket *sock,
4792 				  struct sockaddr *address, int addrlen)
4793 {
4794 	int err;
4795 	struct sock *sk = sock->sk;
4796 
4797 	err = selinux_socket_connect_helper(sock, address, addrlen);
4798 	if (err)
4799 		return err;
4800 
4801 	return selinux_netlbl_socket_connect(sk, address);
4802 }
4803 
4804 static int selinux_socket_listen(struct socket *sock, int backlog)
4805 {
4806 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4807 }
4808 
4809 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4810 {
4811 	int err;
4812 	struct inode_security_struct *isec;
4813 	struct inode_security_struct *newisec;
4814 	u16 sclass;
4815 	u32 sid;
4816 
4817 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4818 	if (err)
4819 		return err;
4820 
4821 	isec = inode_security_novalidate(SOCK_INODE(sock));
4822 	spin_lock(&isec->lock);
4823 	sclass = isec->sclass;
4824 	sid = isec->sid;
4825 	spin_unlock(&isec->lock);
4826 
4827 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4828 	newisec->sclass = sclass;
4829 	newisec->sid = sid;
4830 	newisec->initialized = LABEL_INITIALIZED;
4831 
4832 	return 0;
4833 }
4834 
4835 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4836 				  int size)
4837 {
4838 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4839 }
4840 
4841 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4842 				  int size, int flags)
4843 {
4844 	return sock_has_perm(sock->sk, SOCKET__READ);
4845 }
4846 
4847 static int selinux_socket_getsockname(struct socket *sock)
4848 {
4849 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4850 }
4851 
4852 static int selinux_socket_getpeername(struct socket *sock)
4853 {
4854 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4855 }
4856 
4857 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4858 {
4859 	int err;
4860 
4861 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4862 	if (err)
4863 		return err;
4864 
4865 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4866 }
4867 
4868 static int selinux_socket_getsockopt(struct socket *sock, int level,
4869 				     int optname)
4870 {
4871 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4872 }
4873 
4874 static int selinux_socket_shutdown(struct socket *sock, int how)
4875 {
4876 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4877 }
4878 
4879 static int selinux_socket_unix_stream_connect(struct sock *sock,
4880 					      struct sock *other,
4881 					      struct sock *newsk)
4882 {
4883 	struct sk_security_struct *sksec_sock = sock->sk_security;
4884 	struct sk_security_struct *sksec_other = other->sk_security;
4885 	struct sk_security_struct *sksec_new = newsk->sk_security;
4886 	struct common_audit_data ad;
4887 	struct lsm_network_audit net = {0,};
4888 	int err;
4889 
4890 	ad.type = LSM_AUDIT_DATA_NET;
4891 	ad.u.net = &net;
4892 	ad.u.net->sk = other;
4893 
4894 	err = avc_has_perm(&selinux_state,
4895 			   sksec_sock->sid, sksec_other->sid,
4896 			   sksec_other->sclass,
4897 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4898 	if (err)
4899 		return err;
4900 
4901 	/* server child socket */
4902 	sksec_new->peer_sid = sksec_sock->sid;
4903 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4904 				    sksec_sock->sid, &sksec_new->sid);
4905 	if (err)
4906 		return err;
4907 
4908 	/* connecting socket */
4909 	sksec_sock->peer_sid = sksec_new->sid;
4910 
4911 	return 0;
4912 }
4913 
4914 static int selinux_socket_unix_may_send(struct socket *sock,
4915 					struct socket *other)
4916 {
4917 	struct sk_security_struct *ssec = sock->sk->sk_security;
4918 	struct sk_security_struct *osec = other->sk->sk_security;
4919 	struct common_audit_data ad;
4920 	struct lsm_network_audit net = {0,};
4921 
4922 	ad.type = LSM_AUDIT_DATA_NET;
4923 	ad.u.net = &net;
4924 	ad.u.net->sk = other->sk;
4925 
4926 	return avc_has_perm(&selinux_state,
4927 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4928 			    &ad);
4929 }
4930 
4931 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4932 				    char *addrp, u16 family, u32 peer_sid,
4933 				    struct common_audit_data *ad)
4934 {
4935 	int err;
4936 	u32 if_sid;
4937 	u32 node_sid;
4938 
4939 	err = sel_netif_sid(ns, ifindex, &if_sid);
4940 	if (err)
4941 		return err;
4942 	err = avc_has_perm(&selinux_state,
4943 			   peer_sid, if_sid,
4944 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4945 	if (err)
4946 		return err;
4947 
4948 	err = sel_netnode_sid(addrp, family, &node_sid);
4949 	if (err)
4950 		return err;
4951 	return avc_has_perm(&selinux_state,
4952 			    peer_sid, node_sid,
4953 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4954 }
4955 
4956 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4957 				       u16 family)
4958 {
4959 	int err = 0;
4960 	struct sk_security_struct *sksec = sk->sk_security;
4961 	u32 sk_sid = sksec->sid;
4962 	struct common_audit_data ad;
4963 	struct lsm_network_audit net = {0,};
4964 	char *addrp;
4965 
4966 	ad.type = LSM_AUDIT_DATA_NET;
4967 	ad.u.net = &net;
4968 	ad.u.net->netif = skb->skb_iif;
4969 	ad.u.net->family = family;
4970 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4971 	if (err)
4972 		return err;
4973 
4974 	if (selinux_secmark_enabled()) {
4975 		err = avc_has_perm(&selinux_state,
4976 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4977 				   PACKET__RECV, &ad);
4978 		if (err)
4979 			return err;
4980 	}
4981 
4982 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4983 	if (err)
4984 		return err;
4985 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4986 
4987 	return err;
4988 }
4989 
4990 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4991 {
4992 	int err;
4993 	struct sk_security_struct *sksec = sk->sk_security;
4994 	u16 family = sk->sk_family;
4995 	u32 sk_sid = sksec->sid;
4996 	struct common_audit_data ad;
4997 	struct lsm_network_audit net = {0,};
4998 	char *addrp;
4999 	u8 secmark_active;
5000 	u8 peerlbl_active;
5001 
5002 	if (family != PF_INET && family != PF_INET6)
5003 		return 0;
5004 
5005 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5006 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5007 		family = PF_INET;
5008 
5009 	/* If any sort of compatibility mode is enabled then handoff processing
5010 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5011 	 * special handling.  We do this in an attempt to keep this function
5012 	 * as fast and as clean as possible. */
5013 	if (!selinux_policycap_netpeer())
5014 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5015 
5016 	secmark_active = selinux_secmark_enabled();
5017 	peerlbl_active = selinux_peerlbl_enabled();
5018 	if (!secmark_active && !peerlbl_active)
5019 		return 0;
5020 
5021 	ad.type = LSM_AUDIT_DATA_NET;
5022 	ad.u.net = &net;
5023 	ad.u.net->netif = skb->skb_iif;
5024 	ad.u.net->family = family;
5025 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5026 	if (err)
5027 		return err;
5028 
5029 	if (peerlbl_active) {
5030 		u32 peer_sid;
5031 
5032 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5033 		if (err)
5034 			return err;
5035 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5036 					       addrp, family, peer_sid, &ad);
5037 		if (err) {
5038 			selinux_netlbl_err(skb, family, err, 0);
5039 			return err;
5040 		}
5041 		err = avc_has_perm(&selinux_state,
5042 				   sk_sid, peer_sid, SECCLASS_PEER,
5043 				   PEER__RECV, &ad);
5044 		if (err) {
5045 			selinux_netlbl_err(skb, family, err, 0);
5046 			return err;
5047 		}
5048 	}
5049 
5050 	if (secmark_active) {
5051 		err = avc_has_perm(&selinux_state,
5052 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5053 				   PACKET__RECV, &ad);
5054 		if (err)
5055 			return err;
5056 	}
5057 
5058 	return err;
5059 }
5060 
5061 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5062 					    int __user *optlen, unsigned len)
5063 {
5064 	int err = 0;
5065 	char *scontext;
5066 	u32 scontext_len;
5067 	struct sk_security_struct *sksec = sock->sk->sk_security;
5068 	u32 peer_sid = SECSID_NULL;
5069 
5070 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5071 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5072 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5073 		peer_sid = sksec->peer_sid;
5074 	if (peer_sid == SECSID_NULL)
5075 		return -ENOPROTOOPT;
5076 
5077 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5078 				      &scontext_len);
5079 	if (err)
5080 		return err;
5081 
5082 	if (scontext_len > len) {
5083 		err = -ERANGE;
5084 		goto out_len;
5085 	}
5086 
5087 	if (copy_to_user(optval, scontext, scontext_len))
5088 		err = -EFAULT;
5089 
5090 out_len:
5091 	if (put_user(scontext_len, optlen))
5092 		err = -EFAULT;
5093 	kfree(scontext);
5094 	return err;
5095 }
5096 
5097 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5098 {
5099 	u32 peer_secid = SECSID_NULL;
5100 	u16 family;
5101 	struct inode_security_struct *isec;
5102 
5103 	if (skb && skb->protocol == htons(ETH_P_IP))
5104 		family = PF_INET;
5105 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5106 		family = PF_INET6;
5107 	else if (sock)
5108 		family = sock->sk->sk_family;
5109 	else
5110 		goto out;
5111 
5112 	if (sock && family == PF_UNIX) {
5113 		isec = inode_security_novalidate(SOCK_INODE(sock));
5114 		peer_secid = isec->sid;
5115 	} else if (skb)
5116 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5117 
5118 out:
5119 	*secid = peer_secid;
5120 	if (peer_secid == SECSID_NULL)
5121 		return -EINVAL;
5122 	return 0;
5123 }
5124 
5125 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5126 {
5127 	struct sk_security_struct *sksec;
5128 
5129 	sksec = kzalloc(sizeof(*sksec), priority);
5130 	if (!sksec)
5131 		return -ENOMEM;
5132 
5133 	sksec->peer_sid = SECINITSID_UNLABELED;
5134 	sksec->sid = SECINITSID_UNLABELED;
5135 	sksec->sclass = SECCLASS_SOCKET;
5136 	selinux_netlbl_sk_security_reset(sksec);
5137 	sk->sk_security = sksec;
5138 
5139 	return 0;
5140 }
5141 
5142 static void selinux_sk_free_security(struct sock *sk)
5143 {
5144 	struct sk_security_struct *sksec = sk->sk_security;
5145 
5146 	sk->sk_security = NULL;
5147 	selinux_netlbl_sk_security_free(sksec);
5148 	kfree(sksec);
5149 }
5150 
5151 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5152 {
5153 	struct sk_security_struct *sksec = sk->sk_security;
5154 	struct sk_security_struct *newsksec = newsk->sk_security;
5155 
5156 	newsksec->sid = sksec->sid;
5157 	newsksec->peer_sid = sksec->peer_sid;
5158 	newsksec->sclass = sksec->sclass;
5159 
5160 	selinux_netlbl_sk_security_reset(newsksec);
5161 }
5162 
5163 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5164 {
5165 	if (!sk)
5166 		*secid = SECINITSID_ANY_SOCKET;
5167 	else {
5168 		struct sk_security_struct *sksec = sk->sk_security;
5169 
5170 		*secid = sksec->sid;
5171 	}
5172 }
5173 
5174 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5175 {
5176 	struct inode_security_struct *isec =
5177 		inode_security_novalidate(SOCK_INODE(parent));
5178 	struct sk_security_struct *sksec = sk->sk_security;
5179 
5180 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5181 	    sk->sk_family == PF_UNIX)
5182 		isec->sid = sksec->sid;
5183 	sksec->sclass = isec->sclass;
5184 }
5185 
5186 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5187  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5188  * already present).
5189  */
5190 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5191 				      struct sk_buff *skb)
5192 {
5193 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5194 	struct common_audit_data ad;
5195 	struct lsm_network_audit net = {0,};
5196 	u8 peerlbl_active;
5197 	u32 peer_sid = SECINITSID_UNLABELED;
5198 	u32 conn_sid;
5199 	int err = 0;
5200 
5201 	if (!selinux_policycap_extsockclass())
5202 		return 0;
5203 
5204 	peerlbl_active = selinux_peerlbl_enabled();
5205 
5206 	if (peerlbl_active) {
5207 		/* This will return peer_sid = SECSID_NULL if there are
5208 		 * no peer labels, see security_net_peersid_resolve().
5209 		 */
5210 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5211 					      &peer_sid);
5212 		if (err)
5213 			return err;
5214 
5215 		if (peer_sid == SECSID_NULL)
5216 			peer_sid = SECINITSID_UNLABELED;
5217 	}
5218 
5219 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5220 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5221 
5222 		/* Here as first association on socket. As the peer SID
5223 		 * was allowed by peer recv (and the netif/node checks),
5224 		 * then it is approved by policy and used as the primary
5225 		 * peer SID for getpeercon(3).
5226 		 */
5227 		sksec->peer_sid = peer_sid;
5228 	} else if  (sksec->peer_sid != peer_sid) {
5229 		/* Other association peer SIDs are checked to enforce
5230 		 * consistency among the peer SIDs.
5231 		 */
5232 		ad.type = LSM_AUDIT_DATA_NET;
5233 		ad.u.net = &net;
5234 		ad.u.net->sk = ep->base.sk;
5235 		err = avc_has_perm(&selinux_state,
5236 				   sksec->peer_sid, peer_sid, sksec->sclass,
5237 				   SCTP_SOCKET__ASSOCIATION, &ad);
5238 		if (err)
5239 			return err;
5240 	}
5241 
5242 	/* Compute the MLS component for the connection and store
5243 	 * the information in ep. This will be used by SCTP TCP type
5244 	 * sockets and peeled off connections as they cause a new
5245 	 * socket to be generated. selinux_sctp_sk_clone() will then
5246 	 * plug this into the new socket.
5247 	 */
5248 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5249 	if (err)
5250 		return err;
5251 
5252 	ep->secid = conn_sid;
5253 	ep->peer_secid = peer_sid;
5254 
5255 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5256 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5257 }
5258 
5259 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5260  * based on their @optname.
5261  */
5262 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5263 				     struct sockaddr *address,
5264 				     int addrlen)
5265 {
5266 	int len, err = 0, walk_size = 0;
5267 	void *addr_buf;
5268 	struct sockaddr *addr;
5269 	struct socket *sock;
5270 
5271 	if (!selinux_policycap_extsockclass())
5272 		return 0;
5273 
5274 	/* Process one or more addresses that may be IPv4 or IPv6 */
5275 	sock = sk->sk_socket;
5276 	addr_buf = address;
5277 
5278 	while (walk_size < addrlen) {
5279 		if (walk_size + sizeof(sa_family_t) > addrlen)
5280 			return -EINVAL;
5281 
5282 		addr = addr_buf;
5283 		switch (addr->sa_family) {
5284 		case AF_UNSPEC:
5285 		case AF_INET:
5286 			len = sizeof(struct sockaddr_in);
5287 			break;
5288 		case AF_INET6:
5289 			len = sizeof(struct sockaddr_in6);
5290 			break;
5291 		default:
5292 			return -EINVAL;
5293 		}
5294 
5295 		if (walk_size + len > addrlen)
5296 			return -EINVAL;
5297 
5298 		err = -EINVAL;
5299 		switch (optname) {
5300 		/* Bind checks */
5301 		case SCTP_PRIMARY_ADDR:
5302 		case SCTP_SET_PEER_PRIMARY_ADDR:
5303 		case SCTP_SOCKOPT_BINDX_ADD:
5304 			err = selinux_socket_bind(sock, addr, len);
5305 			break;
5306 		/* Connect checks */
5307 		case SCTP_SOCKOPT_CONNECTX:
5308 		case SCTP_PARAM_SET_PRIMARY:
5309 		case SCTP_PARAM_ADD_IP:
5310 		case SCTP_SENDMSG_CONNECT:
5311 			err = selinux_socket_connect_helper(sock, addr, len);
5312 			if (err)
5313 				return err;
5314 
5315 			/* As selinux_sctp_bind_connect() is called by the
5316 			 * SCTP protocol layer, the socket is already locked,
5317 			 * therefore selinux_netlbl_socket_connect_locked() is
5318 			 * is called here. The situations handled are:
5319 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5320 			 * whenever a new IP address is added or when a new
5321 			 * primary address is selected.
5322 			 * Note that an SCTP connect(2) call happens before
5323 			 * the SCTP protocol layer and is handled via
5324 			 * selinux_socket_connect().
5325 			 */
5326 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5327 			break;
5328 		}
5329 
5330 		if (err)
5331 			return err;
5332 
5333 		addr_buf += len;
5334 		walk_size += len;
5335 	}
5336 
5337 	return 0;
5338 }
5339 
5340 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5341 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5342 				  struct sock *newsk)
5343 {
5344 	struct sk_security_struct *sksec = sk->sk_security;
5345 	struct sk_security_struct *newsksec = newsk->sk_security;
5346 
5347 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5348 	 * the non-sctp clone version.
5349 	 */
5350 	if (!selinux_policycap_extsockclass())
5351 		return selinux_sk_clone_security(sk, newsk);
5352 
5353 	newsksec->sid = ep->secid;
5354 	newsksec->peer_sid = ep->peer_secid;
5355 	newsksec->sclass = sksec->sclass;
5356 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5357 }
5358 
5359 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5360 				     struct request_sock *req)
5361 {
5362 	struct sk_security_struct *sksec = sk->sk_security;
5363 	int err;
5364 	u16 family = req->rsk_ops->family;
5365 	u32 connsid;
5366 	u32 peersid;
5367 
5368 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5369 	if (err)
5370 		return err;
5371 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5372 	if (err)
5373 		return err;
5374 	req->secid = connsid;
5375 	req->peer_secid = peersid;
5376 
5377 	return selinux_netlbl_inet_conn_request(req, family);
5378 }
5379 
5380 static void selinux_inet_csk_clone(struct sock *newsk,
5381 				   const struct request_sock *req)
5382 {
5383 	struct sk_security_struct *newsksec = newsk->sk_security;
5384 
5385 	newsksec->sid = req->secid;
5386 	newsksec->peer_sid = req->peer_secid;
5387 	/* NOTE: Ideally, we should also get the isec->sid for the
5388 	   new socket in sync, but we don't have the isec available yet.
5389 	   So we will wait until sock_graft to do it, by which
5390 	   time it will have been created and available. */
5391 
5392 	/* We don't need to take any sort of lock here as we are the only
5393 	 * thread with access to newsksec */
5394 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5395 }
5396 
5397 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5398 {
5399 	u16 family = sk->sk_family;
5400 	struct sk_security_struct *sksec = sk->sk_security;
5401 
5402 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5403 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5404 		family = PF_INET;
5405 
5406 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5407 }
5408 
5409 static int selinux_secmark_relabel_packet(u32 sid)
5410 {
5411 	const struct task_security_struct *__tsec;
5412 	u32 tsid;
5413 
5414 	__tsec = selinux_cred(current_cred());
5415 	tsid = __tsec->sid;
5416 
5417 	return avc_has_perm(&selinux_state,
5418 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5419 			    NULL);
5420 }
5421 
5422 static void selinux_secmark_refcount_inc(void)
5423 {
5424 	atomic_inc(&selinux_secmark_refcount);
5425 }
5426 
5427 static void selinux_secmark_refcount_dec(void)
5428 {
5429 	atomic_dec(&selinux_secmark_refcount);
5430 }
5431 
5432 static void selinux_req_classify_flow(const struct request_sock *req,
5433 				      struct flowi *fl)
5434 {
5435 	fl->flowi_secid = req->secid;
5436 }
5437 
5438 static int selinux_tun_dev_alloc_security(void **security)
5439 {
5440 	struct tun_security_struct *tunsec;
5441 
5442 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5443 	if (!tunsec)
5444 		return -ENOMEM;
5445 	tunsec->sid = current_sid();
5446 
5447 	*security = tunsec;
5448 	return 0;
5449 }
5450 
5451 static void selinux_tun_dev_free_security(void *security)
5452 {
5453 	kfree(security);
5454 }
5455 
5456 static int selinux_tun_dev_create(void)
5457 {
5458 	u32 sid = current_sid();
5459 
5460 	/* we aren't taking into account the "sockcreate" SID since the socket
5461 	 * that is being created here is not a socket in the traditional sense,
5462 	 * instead it is a private sock, accessible only to the kernel, and
5463 	 * representing a wide range of network traffic spanning multiple
5464 	 * connections unlike traditional sockets - check the TUN driver to
5465 	 * get a better understanding of why this socket is special */
5466 
5467 	return avc_has_perm(&selinux_state,
5468 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5469 			    NULL);
5470 }
5471 
5472 static int selinux_tun_dev_attach_queue(void *security)
5473 {
5474 	struct tun_security_struct *tunsec = security;
5475 
5476 	return avc_has_perm(&selinux_state,
5477 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5478 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5479 }
5480 
5481 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5482 {
5483 	struct tun_security_struct *tunsec = security;
5484 	struct sk_security_struct *sksec = sk->sk_security;
5485 
5486 	/* we don't currently perform any NetLabel based labeling here and it
5487 	 * isn't clear that we would want to do so anyway; while we could apply
5488 	 * labeling without the support of the TUN user the resulting labeled
5489 	 * traffic from the other end of the connection would almost certainly
5490 	 * cause confusion to the TUN user that had no idea network labeling
5491 	 * protocols were being used */
5492 
5493 	sksec->sid = tunsec->sid;
5494 	sksec->sclass = SECCLASS_TUN_SOCKET;
5495 
5496 	return 0;
5497 }
5498 
5499 static int selinux_tun_dev_open(void *security)
5500 {
5501 	struct tun_security_struct *tunsec = security;
5502 	u32 sid = current_sid();
5503 	int err;
5504 
5505 	err = avc_has_perm(&selinux_state,
5506 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5507 			   TUN_SOCKET__RELABELFROM, NULL);
5508 	if (err)
5509 		return err;
5510 	err = avc_has_perm(&selinux_state,
5511 			   sid, sid, SECCLASS_TUN_SOCKET,
5512 			   TUN_SOCKET__RELABELTO, NULL);
5513 	if (err)
5514 		return err;
5515 	tunsec->sid = sid;
5516 
5517 	return 0;
5518 }
5519 
5520 #ifdef CONFIG_NETFILTER
5521 
5522 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5523 				       const struct net_device *indev,
5524 				       u16 family)
5525 {
5526 	int err;
5527 	char *addrp;
5528 	u32 peer_sid;
5529 	struct common_audit_data ad;
5530 	struct lsm_network_audit net = {0,};
5531 	u8 secmark_active;
5532 	u8 netlbl_active;
5533 	u8 peerlbl_active;
5534 
5535 	if (!selinux_policycap_netpeer())
5536 		return NF_ACCEPT;
5537 
5538 	secmark_active = selinux_secmark_enabled();
5539 	netlbl_active = netlbl_enabled();
5540 	peerlbl_active = selinux_peerlbl_enabled();
5541 	if (!secmark_active && !peerlbl_active)
5542 		return NF_ACCEPT;
5543 
5544 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5545 		return NF_DROP;
5546 
5547 	ad.type = LSM_AUDIT_DATA_NET;
5548 	ad.u.net = &net;
5549 	ad.u.net->netif = indev->ifindex;
5550 	ad.u.net->family = family;
5551 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5552 		return NF_DROP;
5553 
5554 	if (peerlbl_active) {
5555 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5556 					       addrp, family, peer_sid, &ad);
5557 		if (err) {
5558 			selinux_netlbl_err(skb, family, err, 1);
5559 			return NF_DROP;
5560 		}
5561 	}
5562 
5563 	if (secmark_active)
5564 		if (avc_has_perm(&selinux_state,
5565 				 peer_sid, skb->secmark,
5566 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5567 			return NF_DROP;
5568 
5569 	if (netlbl_active)
5570 		/* we do this in the FORWARD path and not the POST_ROUTING
5571 		 * path because we want to make sure we apply the necessary
5572 		 * labeling before IPsec is applied so we can leverage AH
5573 		 * protection */
5574 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5575 			return NF_DROP;
5576 
5577 	return NF_ACCEPT;
5578 }
5579 
5580 static unsigned int selinux_ipv4_forward(void *priv,
5581 					 struct sk_buff *skb,
5582 					 const struct nf_hook_state *state)
5583 {
5584 	return selinux_ip_forward(skb, state->in, PF_INET);
5585 }
5586 
5587 #if IS_ENABLED(CONFIG_IPV6)
5588 static unsigned int selinux_ipv6_forward(void *priv,
5589 					 struct sk_buff *skb,
5590 					 const struct nf_hook_state *state)
5591 {
5592 	return selinux_ip_forward(skb, state->in, PF_INET6);
5593 }
5594 #endif	/* IPV6 */
5595 
5596 static unsigned int selinux_ip_output(struct sk_buff *skb,
5597 				      u16 family)
5598 {
5599 	struct sock *sk;
5600 	u32 sid;
5601 
5602 	if (!netlbl_enabled())
5603 		return NF_ACCEPT;
5604 
5605 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5606 	 * because we want to make sure we apply the necessary labeling
5607 	 * before IPsec is applied so we can leverage AH protection */
5608 	sk = skb->sk;
5609 	if (sk) {
5610 		struct sk_security_struct *sksec;
5611 
5612 		if (sk_listener(sk))
5613 			/* if the socket is the listening state then this
5614 			 * packet is a SYN-ACK packet which means it needs to
5615 			 * be labeled based on the connection/request_sock and
5616 			 * not the parent socket.  unfortunately, we can't
5617 			 * lookup the request_sock yet as it isn't queued on
5618 			 * the parent socket until after the SYN-ACK is sent.
5619 			 * the "solution" is to simply pass the packet as-is
5620 			 * as any IP option based labeling should be copied
5621 			 * from the initial connection request (in the IP
5622 			 * layer).  it is far from ideal, but until we get a
5623 			 * security label in the packet itself this is the
5624 			 * best we can do. */
5625 			return NF_ACCEPT;
5626 
5627 		/* standard practice, label using the parent socket */
5628 		sksec = sk->sk_security;
5629 		sid = sksec->sid;
5630 	} else
5631 		sid = SECINITSID_KERNEL;
5632 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5633 		return NF_DROP;
5634 
5635 	return NF_ACCEPT;
5636 }
5637 
5638 static unsigned int selinux_ipv4_output(void *priv,
5639 					struct sk_buff *skb,
5640 					const struct nf_hook_state *state)
5641 {
5642 	return selinux_ip_output(skb, PF_INET);
5643 }
5644 
5645 #if IS_ENABLED(CONFIG_IPV6)
5646 static unsigned int selinux_ipv6_output(void *priv,
5647 					struct sk_buff *skb,
5648 					const struct nf_hook_state *state)
5649 {
5650 	return selinux_ip_output(skb, PF_INET6);
5651 }
5652 #endif	/* IPV6 */
5653 
5654 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5655 						int ifindex,
5656 						u16 family)
5657 {
5658 	struct sock *sk = skb_to_full_sk(skb);
5659 	struct sk_security_struct *sksec;
5660 	struct common_audit_data ad;
5661 	struct lsm_network_audit net = {0,};
5662 	char *addrp;
5663 	u8 proto;
5664 
5665 	if (sk == NULL)
5666 		return NF_ACCEPT;
5667 	sksec = sk->sk_security;
5668 
5669 	ad.type = LSM_AUDIT_DATA_NET;
5670 	ad.u.net = &net;
5671 	ad.u.net->netif = ifindex;
5672 	ad.u.net->family = family;
5673 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5674 		return NF_DROP;
5675 
5676 	if (selinux_secmark_enabled())
5677 		if (avc_has_perm(&selinux_state,
5678 				 sksec->sid, skb->secmark,
5679 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5680 			return NF_DROP_ERR(-ECONNREFUSED);
5681 
5682 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5683 		return NF_DROP_ERR(-ECONNREFUSED);
5684 
5685 	return NF_ACCEPT;
5686 }
5687 
5688 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5689 					 const struct net_device *outdev,
5690 					 u16 family)
5691 {
5692 	u32 secmark_perm;
5693 	u32 peer_sid;
5694 	int ifindex = outdev->ifindex;
5695 	struct sock *sk;
5696 	struct common_audit_data ad;
5697 	struct lsm_network_audit net = {0,};
5698 	char *addrp;
5699 	u8 secmark_active;
5700 	u8 peerlbl_active;
5701 
5702 	/* If any sort of compatibility mode is enabled then handoff processing
5703 	 * to the selinux_ip_postroute_compat() function to deal with the
5704 	 * special handling.  We do this in an attempt to keep this function
5705 	 * as fast and as clean as possible. */
5706 	if (!selinux_policycap_netpeer())
5707 		return selinux_ip_postroute_compat(skb, ifindex, family);
5708 
5709 	secmark_active = selinux_secmark_enabled();
5710 	peerlbl_active = selinux_peerlbl_enabled();
5711 	if (!secmark_active && !peerlbl_active)
5712 		return NF_ACCEPT;
5713 
5714 	sk = skb_to_full_sk(skb);
5715 
5716 #ifdef CONFIG_XFRM
5717 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5718 	 * packet transformation so allow the packet to pass without any checks
5719 	 * since we'll have another chance to perform access control checks
5720 	 * when the packet is on it's final way out.
5721 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5722 	 *       is NULL, in this case go ahead and apply access control.
5723 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5724 	 *       TCP listening state we cannot wait until the XFRM processing
5725 	 *       is done as we will miss out on the SA label if we do;
5726 	 *       unfortunately, this means more work, but it is only once per
5727 	 *       connection. */
5728 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5729 	    !(sk && sk_listener(sk)))
5730 		return NF_ACCEPT;
5731 #endif
5732 
5733 	if (sk == NULL) {
5734 		/* Without an associated socket the packet is either coming
5735 		 * from the kernel or it is being forwarded; check the packet
5736 		 * to determine which and if the packet is being forwarded
5737 		 * query the packet directly to determine the security label. */
5738 		if (skb->skb_iif) {
5739 			secmark_perm = PACKET__FORWARD_OUT;
5740 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5741 				return NF_DROP;
5742 		} else {
5743 			secmark_perm = PACKET__SEND;
5744 			peer_sid = SECINITSID_KERNEL;
5745 		}
5746 	} else if (sk_listener(sk)) {
5747 		/* Locally generated packet but the associated socket is in the
5748 		 * listening state which means this is a SYN-ACK packet.  In
5749 		 * this particular case the correct security label is assigned
5750 		 * to the connection/request_sock but unfortunately we can't
5751 		 * query the request_sock as it isn't queued on the parent
5752 		 * socket until after the SYN-ACK packet is sent; the only
5753 		 * viable choice is to regenerate the label like we do in
5754 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5755 		 * for similar problems. */
5756 		u32 skb_sid;
5757 		struct sk_security_struct *sksec;
5758 
5759 		sksec = sk->sk_security;
5760 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5761 			return NF_DROP;
5762 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5763 		 * and the packet has been through at least one XFRM
5764 		 * transformation then we must be dealing with the "final"
5765 		 * form of labeled IPsec packet; since we've already applied
5766 		 * all of our access controls on this packet we can safely
5767 		 * pass the packet. */
5768 		if (skb_sid == SECSID_NULL) {
5769 			switch (family) {
5770 			case PF_INET:
5771 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5772 					return NF_ACCEPT;
5773 				break;
5774 			case PF_INET6:
5775 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5776 					return NF_ACCEPT;
5777 				break;
5778 			default:
5779 				return NF_DROP_ERR(-ECONNREFUSED);
5780 			}
5781 		}
5782 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5783 			return NF_DROP;
5784 		secmark_perm = PACKET__SEND;
5785 	} else {
5786 		/* Locally generated packet, fetch the security label from the
5787 		 * associated socket. */
5788 		struct sk_security_struct *sksec = sk->sk_security;
5789 		peer_sid = sksec->sid;
5790 		secmark_perm = PACKET__SEND;
5791 	}
5792 
5793 	ad.type = LSM_AUDIT_DATA_NET;
5794 	ad.u.net = &net;
5795 	ad.u.net->netif = ifindex;
5796 	ad.u.net->family = family;
5797 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5798 		return NF_DROP;
5799 
5800 	if (secmark_active)
5801 		if (avc_has_perm(&selinux_state,
5802 				 peer_sid, skb->secmark,
5803 				 SECCLASS_PACKET, secmark_perm, &ad))
5804 			return NF_DROP_ERR(-ECONNREFUSED);
5805 
5806 	if (peerlbl_active) {
5807 		u32 if_sid;
5808 		u32 node_sid;
5809 
5810 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5811 			return NF_DROP;
5812 		if (avc_has_perm(&selinux_state,
5813 				 peer_sid, if_sid,
5814 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5815 			return NF_DROP_ERR(-ECONNREFUSED);
5816 
5817 		if (sel_netnode_sid(addrp, family, &node_sid))
5818 			return NF_DROP;
5819 		if (avc_has_perm(&selinux_state,
5820 				 peer_sid, node_sid,
5821 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5822 			return NF_DROP_ERR(-ECONNREFUSED);
5823 	}
5824 
5825 	return NF_ACCEPT;
5826 }
5827 
5828 static unsigned int selinux_ipv4_postroute(void *priv,
5829 					   struct sk_buff *skb,
5830 					   const struct nf_hook_state *state)
5831 {
5832 	return selinux_ip_postroute(skb, state->out, PF_INET);
5833 }
5834 
5835 #if IS_ENABLED(CONFIG_IPV6)
5836 static unsigned int selinux_ipv6_postroute(void *priv,
5837 					   struct sk_buff *skb,
5838 					   const struct nf_hook_state *state)
5839 {
5840 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5841 }
5842 #endif	/* IPV6 */
5843 
5844 #endif	/* CONFIG_NETFILTER */
5845 
5846 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5847 {
5848 	int rc = 0;
5849 	unsigned int msg_len;
5850 	unsigned int data_len = skb->len;
5851 	unsigned char *data = skb->data;
5852 	struct nlmsghdr *nlh;
5853 	struct sk_security_struct *sksec = sk->sk_security;
5854 	u16 sclass = sksec->sclass;
5855 	u32 perm;
5856 
5857 	while (data_len >= nlmsg_total_size(0)) {
5858 		nlh = (struct nlmsghdr *)data;
5859 
5860 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5861 		 *       users which means we can't reject skb's with bogus
5862 		 *       length fields; our solution is to follow what
5863 		 *       netlink_rcv_skb() does and simply skip processing at
5864 		 *       messages with length fields that are clearly junk
5865 		 */
5866 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5867 			return 0;
5868 
5869 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5870 		if (rc == 0) {
5871 			rc = sock_has_perm(sk, perm);
5872 			if (rc)
5873 				return rc;
5874 		} else if (rc == -EINVAL) {
5875 			/* -EINVAL is a missing msg/perm mapping */
5876 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5877 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5878 				" pid=%d comm=%s\n",
5879 				sk->sk_protocol, nlh->nlmsg_type,
5880 				secclass_map[sclass - 1].name,
5881 				task_pid_nr(current), current->comm);
5882 			if (enforcing_enabled(&selinux_state) &&
5883 			    !security_get_allow_unknown(&selinux_state))
5884 				return rc;
5885 			rc = 0;
5886 		} else if (rc == -ENOENT) {
5887 			/* -ENOENT is a missing socket/class mapping, ignore */
5888 			rc = 0;
5889 		} else {
5890 			return rc;
5891 		}
5892 
5893 		/* move to the next message after applying netlink padding */
5894 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5895 		if (msg_len >= data_len)
5896 			return 0;
5897 		data_len -= msg_len;
5898 		data += msg_len;
5899 	}
5900 
5901 	return rc;
5902 }
5903 
5904 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5905 {
5906 	isec->sclass = sclass;
5907 	isec->sid = current_sid();
5908 }
5909 
5910 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5911 			u32 perms)
5912 {
5913 	struct ipc_security_struct *isec;
5914 	struct common_audit_data ad;
5915 	u32 sid = current_sid();
5916 
5917 	isec = selinux_ipc(ipc_perms);
5918 
5919 	ad.type = LSM_AUDIT_DATA_IPC;
5920 	ad.u.ipc_id = ipc_perms->key;
5921 
5922 	return avc_has_perm(&selinux_state,
5923 			    sid, isec->sid, isec->sclass, perms, &ad);
5924 }
5925 
5926 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5927 {
5928 	struct msg_security_struct *msec;
5929 
5930 	msec = selinux_msg_msg(msg);
5931 	msec->sid = SECINITSID_UNLABELED;
5932 
5933 	return 0;
5934 }
5935 
5936 /* message queue security operations */
5937 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5938 {
5939 	struct ipc_security_struct *isec;
5940 	struct common_audit_data ad;
5941 	u32 sid = current_sid();
5942 	int rc;
5943 
5944 	isec = selinux_ipc(msq);
5945 	ipc_init_security(isec, SECCLASS_MSGQ);
5946 
5947 	ad.type = LSM_AUDIT_DATA_IPC;
5948 	ad.u.ipc_id = msq->key;
5949 
5950 	rc = avc_has_perm(&selinux_state,
5951 			  sid, isec->sid, SECCLASS_MSGQ,
5952 			  MSGQ__CREATE, &ad);
5953 	return rc;
5954 }
5955 
5956 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5957 {
5958 	struct ipc_security_struct *isec;
5959 	struct common_audit_data ad;
5960 	u32 sid = current_sid();
5961 
5962 	isec = selinux_ipc(msq);
5963 
5964 	ad.type = LSM_AUDIT_DATA_IPC;
5965 	ad.u.ipc_id = msq->key;
5966 
5967 	return avc_has_perm(&selinux_state,
5968 			    sid, isec->sid, SECCLASS_MSGQ,
5969 			    MSGQ__ASSOCIATE, &ad);
5970 }
5971 
5972 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5973 {
5974 	int err;
5975 	int perms;
5976 
5977 	switch (cmd) {
5978 	case IPC_INFO:
5979 	case MSG_INFO:
5980 		/* No specific object, just general system-wide information. */
5981 		return avc_has_perm(&selinux_state,
5982 				    current_sid(), SECINITSID_KERNEL,
5983 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5984 	case IPC_STAT:
5985 	case MSG_STAT:
5986 	case MSG_STAT_ANY:
5987 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5988 		break;
5989 	case IPC_SET:
5990 		perms = MSGQ__SETATTR;
5991 		break;
5992 	case IPC_RMID:
5993 		perms = MSGQ__DESTROY;
5994 		break;
5995 	default:
5996 		return 0;
5997 	}
5998 
5999 	err = ipc_has_perm(msq, perms);
6000 	return err;
6001 }
6002 
6003 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6004 {
6005 	struct ipc_security_struct *isec;
6006 	struct msg_security_struct *msec;
6007 	struct common_audit_data ad;
6008 	u32 sid = current_sid();
6009 	int rc;
6010 
6011 	isec = selinux_ipc(msq);
6012 	msec = selinux_msg_msg(msg);
6013 
6014 	/*
6015 	 * First time through, need to assign label to the message
6016 	 */
6017 	if (msec->sid == SECINITSID_UNLABELED) {
6018 		/*
6019 		 * Compute new sid based on current process and
6020 		 * message queue this message will be stored in
6021 		 */
6022 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6023 					     SECCLASS_MSG, NULL, &msec->sid);
6024 		if (rc)
6025 			return rc;
6026 	}
6027 
6028 	ad.type = LSM_AUDIT_DATA_IPC;
6029 	ad.u.ipc_id = msq->key;
6030 
6031 	/* Can this process write to the queue? */
6032 	rc = avc_has_perm(&selinux_state,
6033 			  sid, isec->sid, SECCLASS_MSGQ,
6034 			  MSGQ__WRITE, &ad);
6035 	if (!rc)
6036 		/* Can this process send the message */
6037 		rc = avc_has_perm(&selinux_state,
6038 				  sid, msec->sid, SECCLASS_MSG,
6039 				  MSG__SEND, &ad);
6040 	if (!rc)
6041 		/* Can the message be put in the queue? */
6042 		rc = avc_has_perm(&selinux_state,
6043 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6044 				  MSGQ__ENQUEUE, &ad);
6045 
6046 	return rc;
6047 }
6048 
6049 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6050 				    struct task_struct *target,
6051 				    long type, int mode)
6052 {
6053 	struct ipc_security_struct *isec;
6054 	struct msg_security_struct *msec;
6055 	struct common_audit_data ad;
6056 	u32 sid = task_sid(target);
6057 	int rc;
6058 
6059 	isec = selinux_ipc(msq);
6060 	msec = selinux_msg_msg(msg);
6061 
6062 	ad.type = LSM_AUDIT_DATA_IPC;
6063 	ad.u.ipc_id = msq->key;
6064 
6065 	rc = avc_has_perm(&selinux_state,
6066 			  sid, isec->sid,
6067 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6068 	if (!rc)
6069 		rc = avc_has_perm(&selinux_state,
6070 				  sid, msec->sid,
6071 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6072 	return rc;
6073 }
6074 
6075 /* Shared Memory security operations */
6076 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6077 {
6078 	struct ipc_security_struct *isec;
6079 	struct common_audit_data ad;
6080 	u32 sid = current_sid();
6081 	int rc;
6082 
6083 	isec = selinux_ipc(shp);
6084 	ipc_init_security(isec, SECCLASS_SHM);
6085 
6086 	ad.type = LSM_AUDIT_DATA_IPC;
6087 	ad.u.ipc_id = shp->key;
6088 
6089 	rc = avc_has_perm(&selinux_state,
6090 			  sid, isec->sid, SECCLASS_SHM,
6091 			  SHM__CREATE, &ad);
6092 	return rc;
6093 }
6094 
6095 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6096 {
6097 	struct ipc_security_struct *isec;
6098 	struct common_audit_data ad;
6099 	u32 sid = current_sid();
6100 
6101 	isec = selinux_ipc(shp);
6102 
6103 	ad.type = LSM_AUDIT_DATA_IPC;
6104 	ad.u.ipc_id = shp->key;
6105 
6106 	return avc_has_perm(&selinux_state,
6107 			    sid, isec->sid, SECCLASS_SHM,
6108 			    SHM__ASSOCIATE, &ad);
6109 }
6110 
6111 /* Note, at this point, shp is locked down */
6112 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6113 {
6114 	int perms;
6115 	int err;
6116 
6117 	switch (cmd) {
6118 	case IPC_INFO:
6119 	case SHM_INFO:
6120 		/* No specific object, just general system-wide information. */
6121 		return avc_has_perm(&selinux_state,
6122 				    current_sid(), SECINITSID_KERNEL,
6123 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6124 	case IPC_STAT:
6125 	case SHM_STAT:
6126 	case SHM_STAT_ANY:
6127 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6128 		break;
6129 	case IPC_SET:
6130 		perms = SHM__SETATTR;
6131 		break;
6132 	case SHM_LOCK:
6133 	case SHM_UNLOCK:
6134 		perms = SHM__LOCK;
6135 		break;
6136 	case IPC_RMID:
6137 		perms = SHM__DESTROY;
6138 		break;
6139 	default:
6140 		return 0;
6141 	}
6142 
6143 	err = ipc_has_perm(shp, perms);
6144 	return err;
6145 }
6146 
6147 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6148 			     char __user *shmaddr, int shmflg)
6149 {
6150 	u32 perms;
6151 
6152 	if (shmflg & SHM_RDONLY)
6153 		perms = SHM__READ;
6154 	else
6155 		perms = SHM__READ | SHM__WRITE;
6156 
6157 	return ipc_has_perm(shp, perms);
6158 }
6159 
6160 /* Semaphore security operations */
6161 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6162 {
6163 	struct ipc_security_struct *isec;
6164 	struct common_audit_data ad;
6165 	u32 sid = current_sid();
6166 	int rc;
6167 
6168 	isec = selinux_ipc(sma);
6169 	ipc_init_security(isec, SECCLASS_SEM);
6170 
6171 	ad.type = LSM_AUDIT_DATA_IPC;
6172 	ad.u.ipc_id = sma->key;
6173 
6174 	rc = avc_has_perm(&selinux_state,
6175 			  sid, isec->sid, SECCLASS_SEM,
6176 			  SEM__CREATE, &ad);
6177 	return rc;
6178 }
6179 
6180 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6181 {
6182 	struct ipc_security_struct *isec;
6183 	struct common_audit_data ad;
6184 	u32 sid = current_sid();
6185 
6186 	isec = selinux_ipc(sma);
6187 
6188 	ad.type = LSM_AUDIT_DATA_IPC;
6189 	ad.u.ipc_id = sma->key;
6190 
6191 	return avc_has_perm(&selinux_state,
6192 			    sid, isec->sid, SECCLASS_SEM,
6193 			    SEM__ASSOCIATE, &ad);
6194 }
6195 
6196 /* Note, at this point, sma is locked down */
6197 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6198 {
6199 	int err;
6200 	u32 perms;
6201 
6202 	switch (cmd) {
6203 	case IPC_INFO:
6204 	case SEM_INFO:
6205 		/* No specific object, just general system-wide information. */
6206 		return avc_has_perm(&selinux_state,
6207 				    current_sid(), SECINITSID_KERNEL,
6208 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6209 	case GETPID:
6210 	case GETNCNT:
6211 	case GETZCNT:
6212 		perms = SEM__GETATTR;
6213 		break;
6214 	case GETVAL:
6215 	case GETALL:
6216 		perms = SEM__READ;
6217 		break;
6218 	case SETVAL:
6219 	case SETALL:
6220 		perms = SEM__WRITE;
6221 		break;
6222 	case IPC_RMID:
6223 		perms = SEM__DESTROY;
6224 		break;
6225 	case IPC_SET:
6226 		perms = SEM__SETATTR;
6227 		break;
6228 	case IPC_STAT:
6229 	case SEM_STAT:
6230 	case SEM_STAT_ANY:
6231 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6232 		break;
6233 	default:
6234 		return 0;
6235 	}
6236 
6237 	err = ipc_has_perm(sma, perms);
6238 	return err;
6239 }
6240 
6241 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6242 			     struct sembuf *sops, unsigned nsops, int alter)
6243 {
6244 	u32 perms;
6245 
6246 	if (alter)
6247 		perms = SEM__READ | SEM__WRITE;
6248 	else
6249 		perms = SEM__READ;
6250 
6251 	return ipc_has_perm(sma, perms);
6252 }
6253 
6254 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6255 {
6256 	u32 av = 0;
6257 
6258 	av = 0;
6259 	if (flag & S_IRUGO)
6260 		av |= IPC__UNIX_READ;
6261 	if (flag & S_IWUGO)
6262 		av |= IPC__UNIX_WRITE;
6263 
6264 	if (av == 0)
6265 		return 0;
6266 
6267 	return ipc_has_perm(ipcp, av);
6268 }
6269 
6270 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6271 {
6272 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6273 	*secid = isec->sid;
6274 }
6275 
6276 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6277 {
6278 	if (inode)
6279 		inode_doinit_with_dentry(inode, dentry);
6280 }
6281 
6282 static int selinux_getprocattr(struct task_struct *p,
6283 			       char *name, char **value)
6284 {
6285 	const struct task_security_struct *__tsec;
6286 	u32 sid;
6287 	int error;
6288 	unsigned len;
6289 
6290 	rcu_read_lock();
6291 	__tsec = selinux_cred(__task_cred(p));
6292 
6293 	if (current != p) {
6294 		error = avc_has_perm(&selinux_state,
6295 				     current_sid(), __tsec->sid,
6296 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6297 		if (error)
6298 			goto bad;
6299 	}
6300 
6301 	if (!strcmp(name, "current"))
6302 		sid = __tsec->sid;
6303 	else if (!strcmp(name, "prev"))
6304 		sid = __tsec->osid;
6305 	else if (!strcmp(name, "exec"))
6306 		sid = __tsec->exec_sid;
6307 	else if (!strcmp(name, "fscreate"))
6308 		sid = __tsec->create_sid;
6309 	else if (!strcmp(name, "keycreate"))
6310 		sid = __tsec->keycreate_sid;
6311 	else if (!strcmp(name, "sockcreate"))
6312 		sid = __tsec->sockcreate_sid;
6313 	else {
6314 		error = -EINVAL;
6315 		goto bad;
6316 	}
6317 	rcu_read_unlock();
6318 
6319 	if (!sid)
6320 		return 0;
6321 
6322 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6323 	if (error)
6324 		return error;
6325 	return len;
6326 
6327 bad:
6328 	rcu_read_unlock();
6329 	return error;
6330 }
6331 
6332 static int selinux_setprocattr(const char *name, void *value, size_t size)
6333 {
6334 	struct task_security_struct *tsec;
6335 	struct cred *new;
6336 	u32 mysid = current_sid(), sid = 0, ptsid;
6337 	int error;
6338 	char *str = value;
6339 
6340 	/*
6341 	 * Basic control over ability to set these attributes at all.
6342 	 */
6343 	if (!strcmp(name, "exec"))
6344 		error = avc_has_perm(&selinux_state,
6345 				     mysid, mysid, SECCLASS_PROCESS,
6346 				     PROCESS__SETEXEC, NULL);
6347 	else if (!strcmp(name, "fscreate"))
6348 		error = avc_has_perm(&selinux_state,
6349 				     mysid, mysid, SECCLASS_PROCESS,
6350 				     PROCESS__SETFSCREATE, NULL);
6351 	else if (!strcmp(name, "keycreate"))
6352 		error = avc_has_perm(&selinux_state,
6353 				     mysid, mysid, SECCLASS_PROCESS,
6354 				     PROCESS__SETKEYCREATE, NULL);
6355 	else if (!strcmp(name, "sockcreate"))
6356 		error = avc_has_perm(&selinux_state,
6357 				     mysid, mysid, SECCLASS_PROCESS,
6358 				     PROCESS__SETSOCKCREATE, NULL);
6359 	else if (!strcmp(name, "current"))
6360 		error = avc_has_perm(&selinux_state,
6361 				     mysid, mysid, SECCLASS_PROCESS,
6362 				     PROCESS__SETCURRENT, NULL);
6363 	else
6364 		error = -EINVAL;
6365 	if (error)
6366 		return error;
6367 
6368 	/* Obtain a SID for the context, if one was specified. */
6369 	if (size && str[0] && str[0] != '\n') {
6370 		if (str[size-1] == '\n') {
6371 			str[size-1] = 0;
6372 			size--;
6373 		}
6374 		error = security_context_to_sid(&selinux_state, value, size,
6375 						&sid, GFP_KERNEL);
6376 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6377 			if (!has_cap_mac_admin(true)) {
6378 				struct audit_buffer *ab;
6379 				size_t audit_size;
6380 
6381 				/* We strip a nul only if it is at the end, otherwise the
6382 				 * context contains a nul and we should audit that */
6383 				if (str[size - 1] == '\0')
6384 					audit_size = size - 1;
6385 				else
6386 					audit_size = size;
6387 				ab = audit_log_start(audit_context(),
6388 						     GFP_ATOMIC,
6389 						     AUDIT_SELINUX_ERR);
6390 				audit_log_format(ab, "op=fscreate invalid_context=");
6391 				audit_log_n_untrustedstring(ab, value, audit_size);
6392 				audit_log_end(ab);
6393 
6394 				return error;
6395 			}
6396 			error = security_context_to_sid_force(
6397 						      &selinux_state,
6398 						      value, size, &sid);
6399 		}
6400 		if (error)
6401 			return error;
6402 	}
6403 
6404 	new = prepare_creds();
6405 	if (!new)
6406 		return -ENOMEM;
6407 
6408 	/* Permission checking based on the specified context is
6409 	   performed during the actual operation (execve,
6410 	   open/mkdir/...), when we know the full context of the
6411 	   operation.  See selinux_bprm_creds_for_exec for the execve
6412 	   checks and may_create for the file creation checks. The
6413 	   operation will then fail if the context is not permitted. */
6414 	tsec = selinux_cred(new);
6415 	if (!strcmp(name, "exec")) {
6416 		tsec->exec_sid = sid;
6417 	} else if (!strcmp(name, "fscreate")) {
6418 		tsec->create_sid = sid;
6419 	} else if (!strcmp(name, "keycreate")) {
6420 		if (sid) {
6421 			error = avc_has_perm(&selinux_state, mysid, sid,
6422 					     SECCLASS_KEY, KEY__CREATE, NULL);
6423 			if (error)
6424 				goto abort_change;
6425 		}
6426 		tsec->keycreate_sid = sid;
6427 	} else if (!strcmp(name, "sockcreate")) {
6428 		tsec->sockcreate_sid = sid;
6429 	} else if (!strcmp(name, "current")) {
6430 		error = -EINVAL;
6431 		if (sid == 0)
6432 			goto abort_change;
6433 
6434 		/* Only allow single threaded processes to change context */
6435 		error = -EPERM;
6436 		if (!current_is_single_threaded()) {
6437 			error = security_bounded_transition(&selinux_state,
6438 							    tsec->sid, sid);
6439 			if (error)
6440 				goto abort_change;
6441 		}
6442 
6443 		/* Check permissions for the transition. */
6444 		error = avc_has_perm(&selinux_state,
6445 				     tsec->sid, sid, SECCLASS_PROCESS,
6446 				     PROCESS__DYNTRANSITION, NULL);
6447 		if (error)
6448 			goto abort_change;
6449 
6450 		/* Check for ptracing, and update the task SID if ok.
6451 		   Otherwise, leave SID unchanged and fail. */
6452 		ptsid = ptrace_parent_sid();
6453 		if (ptsid != 0) {
6454 			error = avc_has_perm(&selinux_state,
6455 					     ptsid, sid, SECCLASS_PROCESS,
6456 					     PROCESS__PTRACE, NULL);
6457 			if (error)
6458 				goto abort_change;
6459 		}
6460 
6461 		tsec->sid = sid;
6462 	} else {
6463 		error = -EINVAL;
6464 		goto abort_change;
6465 	}
6466 
6467 	commit_creds(new);
6468 	return size;
6469 
6470 abort_change:
6471 	abort_creds(new);
6472 	return error;
6473 }
6474 
6475 static int selinux_ismaclabel(const char *name)
6476 {
6477 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6478 }
6479 
6480 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6481 {
6482 	return security_sid_to_context(&selinux_state, secid,
6483 				       secdata, seclen);
6484 }
6485 
6486 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6487 {
6488 	return security_context_to_sid(&selinux_state, secdata, seclen,
6489 				       secid, GFP_KERNEL);
6490 }
6491 
6492 static void selinux_release_secctx(char *secdata, u32 seclen)
6493 {
6494 	kfree(secdata);
6495 }
6496 
6497 static void selinux_inode_invalidate_secctx(struct inode *inode)
6498 {
6499 	struct inode_security_struct *isec = selinux_inode(inode);
6500 
6501 	spin_lock(&isec->lock);
6502 	isec->initialized = LABEL_INVALID;
6503 	spin_unlock(&isec->lock);
6504 }
6505 
6506 /*
6507  *	called with inode->i_mutex locked
6508  */
6509 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6510 {
6511 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6512 					   ctx, ctxlen, 0);
6513 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6514 	return rc == -EOPNOTSUPP ? 0 : rc;
6515 }
6516 
6517 /*
6518  *	called with inode->i_mutex locked
6519  */
6520 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6521 {
6522 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6523 }
6524 
6525 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6526 {
6527 	int len = 0;
6528 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6529 						ctx, true);
6530 	if (len < 0)
6531 		return len;
6532 	*ctxlen = len;
6533 	return 0;
6534 }
6535 #ifdef CONFIG_KEYS
6536 
6537 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6538 			     unsigned long flags)
6539 {
6540 	const struct task_security_struct *tsec;
6541 	struct key_security_struct *ksec;
6542 
6543 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6544 	if (!ksec)
6545 		return -ENOMEM;
6546 
6547 	tsec = selinux_cred(cred);
6548 	if (tsec->keycreate_sid)
6549 		ksec->sid = tsec->keycreate_sid;
6550 	else
6551 		ksec->sid = tsec->sid;
6552 
6553 	k->security = ksec;
6554 	return 0;
6555 }
6556 
6557 static void selinux_key_free(struct key *k)
6558 {
6559 	struct key_security_struct *ksec = k->security;
6560 
6561 	k->security = NULL;
6562 	kfree(ksec);
6563 }
6564 
6565 static int selinux_key_permission(key_ref_t key_ref,
6566 				  const struct cred *cred,
6567 				  enum key_need_perm need_perm)
6568 {
6569 	struct key *key;
6570 	struct key_security_struct *ksec;
6571 	u32 perm, sid;
6572 
6573 	switch (need_perm) {
6574 	case KEY_NEED_VIEW:
6575 		perm = KEY__VIEW;
6576 		break;
6577 	case KEY_NEED_READ:
6578 		perm = KEY__READ;
6579 		break;
6580 	case KEY_NEED_WRITE:
6581 		perm = KEY__WRITE;
6582 		break;
6583 	case KEY_NEED_SEARCH:
6584 		perm = KEY__SEARCH;
6585 		break;
6586 	case KEY_NEED_LINK:
6587 		perm = KEY__LINK;
6588 		break;
6589 	case KEY_NEED_SETATTR:
6590 		perm = KEY__SETATTR;
6591 		break;
6592 	case KEY_NEED_UNLINK:
6593 	case KEY_SYSADMIN_OVERRIDE:
6594 	case KEY_AUTHTOKEN_OVERRIDE:
6595 	case KEY_DEFER_PERM_CHECK:
6596 		return 0;
6597 	default:
6598 		WARN_ON(1);
6599 		return -EPERM;
6600 
6601 	}
6602 
6603 	sid = cred_sid(cred);
6604 	key = key_ref_to_ptr(key_ref);
6605 	ksec = key->security;
6606 
6607 	return avc_has_perm(&selinux_state,
6608 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6609 }
6610 
6611 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6612 {
6613 	struct key_security_struct *ksec = key->security;
6614 	char *context = NULL;
6615 	unsigned len;
6616 	int rc;
6617 
6618 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6619 				     &context, &len);
6620 	if (!rc)
6621 		rc = len;
6622 	*_buffer = context;
6623 	return rc;
6624 }
6625 
6626 #ifdef CONFIG_KEY_NOTIFICATIONS
6627 static int selinux_watch_key(struct key *key)
6628 {
6629 	struct key_security_struct *ksec = key->security;
6630 	u32 sid = current_sid();
6631 
6632 	return avc_has_perm(&selinux_state,
6633 			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6634 }
6635 #endif
6636 #endif
6637 
6638 #ifdef CONFIG_SECURITY_INFINIBAND
6639 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6640 {
6641 	struct common_audit_data ad;
6642 	int err;
6643 	u32 sid = 0;
6644 	struct ib_security_struct *sec = ib_sec;
6645 	struct lsm_ibpkey_audit ibpkey;
6646 
6647 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6648 	if (err)
6649 		return err;
6650 
6651 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6652 	ibpkey.subnet_prefix = subnet_prefix;
6653 	ibpkey.pkey = pkey_val;
6654 	ad.u.ibpkey = &ibpkey;
6655 	return avc_has_perm(&selinux_state,
6656 			    sec->sid, sid,
6657 			    SECCLASS_INFINIBAND_PKEY,
6658 			    INFINIBAND_PKEY__ACCESS, &ad);
6659 }
6660 
6661 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6662 					    u8 port_num)
6663 {
6664 	struct common_audit_data ad;
6665 	int err;
6666 	u32 sid = 0;
6667 	struct ib_security_struct *sec = ib_sec;
6668 	struct lsm_ibendport_audit ibendport;
6669 
6670 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6671 				      &sid);
6672 
6673 	if (err)
6674 		return err;
6675 
6676 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6677 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6678 	ibendport.port = port_num;
6679 	ad.u.ibendport = &ibendport;
6680 	return avc_has_perm(&selinux_state,
6681 			    sec->sid, sid,
6682 			    SECCLASS_INFINIBAND_ENDPORT,
6683 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6684 }
6685 
6686 static int selinux_ib_alloc_security(void **ib_sec)
6687 {
6688 	struct ib_security_struct *sec;
6689 
6690 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6691 	if (!sec)
6692 		return -ENOMEM;
6693 	sec->sid = current_sid();
6694 
6695 	*ib_sec = sec;
6696 	return 0;
6697 }
6698 
6699 static void selinux_ib_free_security(void *ib_sec)
6700 {
6701 	kfree(ib_sec);
6702 }
6703 #endif
6704 
6705 #ifdef CONFIG_BPF_SYSCALL
6706 static int selinux_bpf(int cmd, union bpf_attr *attr,
6707 				     unsigned int size)
6708 {
6709 	u32 sid = current_sid();
6710 	int ret;
6711 
6712 	switch (cmd) {
6713 	case BPF_MAP_CREATE:
6714 		ret = avc_has_perm(&selinux_state,
6715 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6716 				   NULL);
6717 		break;
6718 	case BPF_PROG_LOAD:
6719 		ret = avc_has_perm(&selinux_state,
6720 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6721 				   NULL);
6722 		break;
6723 	default:
6724 		ret = 0;
6725 		break;
6726 	}
6727 
6728 	return ret;
6729 }
6730 
6731 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6732 {
6733 	u32 av = 0;
6734 
6735 	if (fmode & FMODE_READ)
6736 		av |= BPF__MAP_READ;
6737 	if (fmode & FMODE_WRITE)
6738 		av |= BPF__MAP_WRITE;
6739 	return av;
6740 }
6741 
6742 /* This function will check the file pass through unix socket or binder to see
6743  * if it is a bpf related object. And apply correspinding checks on the bpf
6744  * object based on the type. The bpf maps and programs, not like other files and
6745  * socket, are using a shared anonymous inode inside the kernel as their inode.
6746  * So checking that inode cannot identify if the process have privilege to
6747  * access the bpf object and that's why we have to add this additional check in
6748  * selinux_file_receive and selinux_binder_transfer_files.
6749  */
6750 static int bpf_fd_pass(struct file *file, u32 sid)
6751 {
6752 	struct bpf_security_struct *bpfsec;
6753 	struct bpf_prog *prog;
6754 	struct bpf_map *map;
6755 	int ret;
6756 
6757 	if (file->f_op == &bpf_map_fops) {
6758 		map = file->private_data;
6759 		bpfsec = map->security;
6760 		ret = avc_has_perm(&selinux_state,
6761 				   sid, bpfsec->sid, SECCLASS_BPF,
6762 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6763 		if (ret)
6764 			return ret;
6765 	} else if (file->f_op == &bpf_prog_fops) {
6766 		prog = file->private_data;
6767 		bpfsec = prog->aux->security;
6768 		ret = avc_has_perm(&selinux_state,
6769 				   sid, bpfsec->sid, SECCLASS_BPF,
6770 				   BPF__PROG_RUN, NULL);
6771 		if (ret)
6772 			return ret;
6773 	}
6774 	return 0;
6775 }
6776 
6777 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6778 {
6779 	u32 sid = current_sid();
6780 	struct bpf_security_struct *bpfsec;
6781 
6782 	bpfsec = map->security;
6783 	return avc_has_perm(&selinux_state,
6784 			    sid, bpfsec->sid, SECCLASS_BPF,
6785 			    bpf_map_fmode_to_av(fmode), NULL);
6786 }
6787 
6788 static int selinux_bpf_prog(struct bpf_prog *prog)
6789 {
6790 	u32 sid = current_sid();
6791 	struct bpf_security_struct *bpfsec;
6792 
6793 	bpfsec = prog->aux->security;
6794 	return avc_has_perm(&selinux_state,
6795 			    sid, bpfsec->sid, SECCLASS_BPF,
6796 			    BPF__PROG_RUN, NULL);
6797 }
6798 
6799 static int selinux_bpf_map_alloc(struct bpf_map *map)
6800 {
6801 	struct bpf_security_struct *bpfsec;
6802 
6803 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6804 	if (!bpfsec)
6805 		return -ENOMEM;
6806 
6807 	bpfsec->sid = current_sid();
6808 	map->security = bpfsec;
6809 
6810 	return 0;
6811 }
6812 
6813 static void selinux_bpf_map_free(struct bpf_map *map)
6814 {
6815 	struct bpf_security_struct *bpfsec = map->security;
6816 
6817 	map->security = NULL;
6818 	kfree(bpfsec);
6819 }
6820 
6821 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6822 {
6823 	struct bpf_security_struct *bpfsec;
6824 
6825 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6826 	if (!bpfsec)
6827 		return -ENOMEM;
6828 
6829 	bpfsec->sid = current_sid();
6830 	aux->security = bpfsec;
6831 
6832 	return 0;
6833 }
6834 
6835 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6836 {
6837 	struct bpf_security_struct *bpfsec = aux->security;
6838 
6839 	aux->security = NULL;
6840 	kfree(bpfsec);
6841 }
6842 #endif
6843 
6844 static int selinux_lockdown(enum lockdown_reason what)
6845 {
6846 	struct common_audit_data ad;
6847 	u32 sid = current_sid();
6848 	int invalid_reason = (what <= LOCKDOWN_NONE) ||
6849 			     (what == LOCKDOWN_INTEGRITY_MAX) ||
6850 			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6851 
6852 	if (WARN(invalid_reason, "Invalid lockdown reason")) {
6853 		audit_log(audit_context(),
6854 			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
6855 			  "lockdown_reason=invalid");
6856 		return -EINVAL;
6857 	}
6858 
6859 	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6860 	ad.u.reason = what;
6861 
6862 	if (what <= LOCKDOWN_INTEGRITY_MAX)
6863 		return avc_has_perm(&selinux_state,
6864 				    sid, sid, SECCLASS_LOCKDOWN,
6865 				    LOCKDOWN__INTEGRITY, &ad);
6866 	else
6867 		return avc_has_perm(&selinux_state,
6868 				    sid, sid, SECCLASS_LOCKDOWN,
6869 				    LOCKDOWN__CONFIDENTIALITY, &ad);
6870 }
6871 
6872 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6873 	.lbs_cred = sizeof(struct task_security_struct),
6874 	.lbs_file = sizeof(struct file_security_struct),
6875 	.lbs_inode = sizeof(struct inode_security_struct),
6876 	.lbs_ipc = sizeof(struct ipc_security_struct),
6877 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6878 };
6879 
6880 #ifdef CONFIG_PERF_EVENTS
6881 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6882 {
6883 	u32 requested, sid = current_sid();
6884 
6885 	if (type == PERF_SECURITY_OPEN)
6886 		requested = PERF_EVENT__OPEN;
6887 	else if (type == PERF_SECURITY_CPU)
6888 		requested = PERF_EVENT__CPU;
6889 	else if (type == PERF_SECURITY_KERNEL)
6890 		requested = PERF_EVENT__KERNEL;
6891 	else if (type == PERF_SECURITY_TRACEPOINT)
6892 		requested = PERF_EVENT__TRACEPOINT;
6893 	else
6894 		return -EINVAL;
6895 
6896 	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6897 			    requested, NULL);
6898 }
6899 
6900 static int selinux_perf_event_alloc(struct perf_event *event)
6901 {
6902 	struct perf_event_security_struct *perfsec;
6903 
6904 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6905 	if (!perfsec)
6906 		return -ENOMEM;
6907 
6908 	perfsec->sid = current_sid();
6909 	event->security = perfsec;
6910 
6911 	return 0;
6912 }
6913 
6914 static void selinux_perf_event_free(struct perf_event *event)
6915 {
6916 	struct perf_event_security_struct *perfsec = event->security;
6917 
6918 	event->security = NULL;
6919 	kfree(perfsec);
6920 }
6921 
6922 static int selinux_perf_event_read(struct perf_event *event)
6923 {
6924 	struct perf_event_security_struct *perfsec = event->security;
6925 	u32 sid = current_sid();
6926 
6927 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6928 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6929 }
6930 
6931 static int selinux_perf_event_write(struct perf_event *event)
6932 {
6933 	struct perf_event_security_struct *perfsec = event->security;
6934 	u32 sid = current_sid();
6935 
6936 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6937 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6938 }
6939 #endif
6940 
6941 /*
6942  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6943  * 1. any hooks that don't belong to (2.) or (3.) below,
6944  * 2. hooks that both access structures allocated by other hooks, and allocate
6945  *    structures that can be later accessed by other hooks (mostly "cloning"
6946  *    hooks),
6947  * 3. hooks that only allocate structures that can be later accessed by other
6948  *    hooks ("allocating" hooks).
6949  *
6950  * Please follow block comment delimiters in the list to keep this order.
6951  *
6952  * This ordering is needed for SELinux runtime disable to work at least somewhat
6953  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6954  * when disabling SELinux at runtime.
6955  */
6956 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6957 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6958 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6959 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6960 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6961 
6962 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6963 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6964 	LSM_HOOK_INIT(capget, selinux_capget),
6965 	LSM_HOOK_INIT(capset, selinux_capset),
6966 	LSM_HOOK_INIT(capable, selinux_capable),
6967 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6968 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6969 	LSM_HOOK_INIT(syslog, selinux_syslog),
6970 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6971 
6972 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6973 
6974 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6975 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6976 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6977 
6978 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6979 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6980 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6981 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6982 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6983 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6984 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6985 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6986 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6987 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6988 
6989 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
6990 
6991 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6992 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6993 
6994 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6995 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6996 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6997 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6998 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6999 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7000 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7001 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7002 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7003 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7004 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7005 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7006 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7007 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7008 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7009 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7010 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7011 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7012 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7013 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7014 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7015 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7016 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7017 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7018 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7019 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7020 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7021 
7022 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7023 
7024 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7025 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7026 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7027 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7028 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7029 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7030 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7031 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7032 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7033 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7034 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7035 
7036 	LSM_HOOK_INIT(file_open, selinux_file_open),
7037 
7038 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7039 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7040 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7041 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7042 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7043 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7044 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7045 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7046 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7047 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7048 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7049 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7050 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7051 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7052 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7053 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7054 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7055 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7056 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7057 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7058 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7059 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7060 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7061 
7062 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7063 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7064 
7065 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7066 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7067 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7068 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7069 
7070 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7071 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7072 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7073 
7074 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7075 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7076 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7077 
7078 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7079 
7080 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7081 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7082 
7083 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7084 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7085 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7086 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7087 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7088 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7089 
7090 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7091 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7092 
7093 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7094 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7095 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7096 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7097 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7098 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7099 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7100 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7101 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7102 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7103 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7104 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7105 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7106 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7107 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7108 	LSM_HOOK_INIT(socket_getpeersec_stream,
7109 			selinux_socket_getpeersec_stream),
7110 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7111 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7112 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7113 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7114 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7115 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7116 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7117 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7118 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7119 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7120 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7121 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7122 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7123 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7124 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7125 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7126 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7127 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7128 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7129 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7130 #ifdef CONFIG_SECURITY_INFINIBAND
7131 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7132 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7133 		      selinux_ib_endport_manage_subnet),
7134 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7135 #endif
7136 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7137 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7138 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7139 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7140 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7141 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7142 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7143 			selinux_xfrm_state_pol_flow_match),
7144 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7145 #endif
7146 
7147 #ifdef CONFIG_KEYS
7148 	LSM_HOOK_INIT(key_free, selinux_key_free),
7149 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7150 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7151 #ifdef CONFIG_KEY_NOTIFICATIONS
7152 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7153 #endif
7154 #endif
7155 
7156 #ifdef CONFIG_AUDIT
7157 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7158 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7159 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7160 #endif
7161 
7162 #ifdef CONFIG_BPF_SYSCALL
7163 	LSM_HOOK_INIT(bpf, selinux_bpf),
7164 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7165 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7166 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7167 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7168 #endif
7169 
7170 #ifdef CONFIG_PERF_EVENTS
7171 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7172 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7173 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7174 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7175 #endif
7176 
7177 	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7178 
7179 	/*
7180 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7181 	 */
7182 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7183 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7184 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7185 	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7186 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7187 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7188 #endif
7189 
7190 	/*
7191 	 * PUT "ALLOCATING" HOOKS HERE
7192 	 */
7193 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7194 	LSM_HOOK_INIT(msg_queue_alloc_security,
7195 		      selinux_msg_queue_alloc_security),
7196 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7197 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7198 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7199 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7200 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7201 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7202 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7203 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7204 #ifdef CONFIG_SECURITY_INFINIBAND
7205 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7206 #endif
7207 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7208 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7209 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7210 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7211 		      selinux_xfrm_state_alloc_acquire),
7212 #endif
7213 #ifdef CONFIG_KEYS
7214 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7215 #endif
7216 #ifdef CONFIG_AUDIT
7217 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7218 #endif
7219 #ifdef CONFIG_BPF_SYSCALL
7220 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7221 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7222 #endif
7223 #ifdef CONFIG_PERF_EVENTS
7224 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7225 #endif
7226 };
7227 
7228 static __init int selinux_init(void)
7229 {
7230 	pr_info("SELinux:  Initializing.\n");
7231 
7232 	memset(&selinux_state, 0, sizeof(selinux_state));
7233 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7234 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7235 	selinux_ss_init(&selinux_state.ss);
7236 	selinux_avc_init(&selinux_state.avc);
7237 	mutex_init(&selinux_state.status_lock);
7238 
7239 	/* Set the security state for the initial task. */
7240 	cred_init_security();
7241 
7242 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7243 
7244 	avc_init();
7245 
7246 	avtab_cache_init();
7247 
7248 	ebitmap_cache_init();
7249 
7250 	hashtab_cache_init();
7251 
7252 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7253 
7254 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7255 		panic("SELinux: Unable to register AVC netcache callback\n");
7256 
7257 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7258 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7259 
7260 	if (selinux_enforcing_boot)
7261 		pr_debug("SELinux:  Starting in enforcing mode\n");
7262 	else
7263 		pr_debug("SELinux:  Starting in permissive mode\n");
7264 
7265 	fs_validate_description("selinux", selinux_fs_parameters);
7266 
7267 	return 0;
7268 }
7269 
7270 static void delayed_superblock_init(struct super_block *sb, void *unused)
7271 {
7272 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7273 }
7274 
7275 void selinux_complete_init(void)
7276 {
7277 	pr_debug("SELinux:  Completing initialization.\n");
7278 
7279 	/* Set up any superblocks initialized prior to the policy load. */
7280 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7281 	iterate_supers(delayed_superblock_init, NULL);
7282 }
7283 
7284 /* SELinux requires early initialization in order to label
7285    all processes and objects when they are created. */
7286 DEFINE_LSM(selinux) = {
7287 	.name = "selinux",
7288 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7289 	.enabled = &selinux_enabled_boot,
7290 	.blobs = &selinux_blob_sizes,
7291 	.init = selinux_init,
7292 };
7293 
7294 #if defined(CONFIG_NETFILTER)
7295 
7296 static const struct nf_hook_ops selinux_nf_ops[] = {
7297 	{
7298 		.hook =		selinux_ipv4_postroute,
7299 		.pf =		NFPROTO_IPV4,
7300 		.hooknum =	NF_INET_POST_ROUTING,
7301 		.priority =	NF_IP_PRI_SELINUX_LAST,
7302 	},
7303 	{
7304 		.hook =		selinux_ipv4_forward,
7305 		.pf =		NFPROTO_IPV4,
7306 		.hooknum =	NF_INET_FORWARD,
7307 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7308 	},
7309 	{
7310 		.hook =		selinux_ipv4_output,
7311 		.pf =		NFPROTO_IPV4,
7312 		.hooknum =	NF_INET_LOCAL_OUT,
7313 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7314 	},
7315 #if IS_ENABLED(CONFIG_IPV6)
7316 	{
7317 		.hook =		selinux_ipv6_postroute,
7318 		.pf =		NFPROTO_IPV6,
7319 		.hooknum =	NF_INET_POST_ROUTING,
7320 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7321 	},
7322 	{
7323 		.hook =		selinux_ipv6_forward,
7324 		.pf =		NFPROTO_IPV6,
7325 		.hooknum =	NF_INET_FORWARD,
7326 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7327 	},
7328 	{
7329 		.hook =		selinux_ipv6_output,
7330 		.pf =		NFPROTO_IPV6,
7331 		.hooknum =	NF_INET_LOCAL_OUT,
7332 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7333 	},
7334 #endif	/* IPV6 */
7335 };
7336 
7337 static int __net_init selinux_nf_register(struct net *net)
7338 {
7339 	return nf_register_net_hooks(net, selinux_nf_ops,
7340 				     ARRAY_SIZE(selinux_nf_ops));
7341 }
7342 
7343 static void __net_exit selinux_nf_unregister(struct net *net)
7344 {
7345 	nf_unregister_net_hooks(net, selinux_nf_ops,
7346 				ARRAY_SIZE(selinux_nf_ops));
7347 }
7348 
7349 static struct pernet_operations selinux_net_ops = {
7350 	.init = selinux_nf_register,
7351 	.exit = selinux_nf_unregister,
7352 };
7353 
7354 static int __init selinux_nf_ip_init(void)
7355 {
7356 	int err;
7357 
7358 	if (!selinux_enabled_boot)
7359 		return 0;
7360 
7361 	pr_debug("SELinux:  Registering netfilter hooks\n");
7362 
7363 	err = register_pernet_subsys(&selinux_net_ops);
7364 	if (err)
7365 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7366 
7367 	return 0;
7368 }
7369 __initcall(selinux_nf_ip_init);
7370 
7371 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7372 static void selinux_nf_ip_exit(void)
7373 {
7374 	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7375 
7376 	unregister_pernet_subsys(&selinux_net_ops);
7377 }
7378 #endif
7379 
7380 #else /* CONFIG_NETFILTER */
7381 
7382 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7383 #define selinux_nf_ip_exit()
7384 #endif
7385 
7386 #endif /* CONFIG_NETFILTER */
7387 
7388 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7389 int selinux_disable(struct selinux_state *state)
7390 {
7391 	if (selinux_initialized(state)) {
7392 		/* Not permitted after initial policy load. */
7393 		return -EINVAL;
7394 	}
7395 
7396 	if (selinux_disabled(state)) {
7397 		/* Only do this once. */
7398 		return -EINVAL;
7399 	}
7400 
7401 	selinux_mark_disabled(state);
7402 
7403 	pr_info("SELinux:  Disabled at runtime.\n");
7404 
7405 	/*
7406 	 * Unregister netfilter hooks.
7407 	 * Must be done before security_delete_hooks() to avoid breaking
7408 	 * runtime disable.
7409 	 */
7410 	selinux_nf_ip_exit();
7411 
7412 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7413 
7414 	/* Try to destroy the avc node cache */
7415 	avc_disable();
7416 
7417 	/* Unregister selinuxfs. */
7418 	exit_sel_fs();
7419 
7420 	return 0;
7421 }
7422 #endif
7423