1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/tracehook.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 95 #include "avc.h" 96 #include "objsec.h" 97 #include "netif.h" 98 #include "netnode.h" 99 #include "netport.h" 100 #include "ibpkey.h" 101 #include "xfrm.h" 102 #include "netlabel.h" 103 #include "audit.h" 104 #include "avc_ss.h" 105 106 struct selinux_state selinux_state; 107 108 /* SECMARK reference count */ 109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 110 111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 112 static int selinux_enforcing_boot; 113 114 static int __init enforcing_setup(char *str) 115 { 116 unsigned long enforcing; 117 if (!kstrtoul(str, 0, &enforcing)) 118 selinux_enforcing_boot = enforcing ? 1 : 0; 119 return 1; 120 } 121 __setup("enforcing=", enforcing_setup); 122 #else 123 #define selinux_enforcing_boot 1 124 #endif 125 126 int selinux_enabled __lsm_ro_after_init = 1; 127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 128 static int __init selinux_enabled_setup(char *str) 129 { 130 unsigned long enabled; 131 if (!kstrtoul(str, 0, &enabled)) 132 selinux_enabled = enabled ? 1 : 0; 133 return 1; 134 } 135 __setup("selinux=", selinux_enabled_setup); 136 #endif 137 138 static unsigned int selinux_checkreqprot_boot = 139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) 146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 147 return 1; 148 } 149 __setup("checkreqprot=", checkreqprot_setup); 150 151 /** 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 153 * 154 * Description: 155 * This function checks the SECMARK reference counter to see if any SECMARK 156 * targets are currently configured, if the reference counter is greater than 157 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 158 * enabled, false (0) if SECMARK is disabled. If the always_check_network 159 * policy capability is enabled, SECMARK is always considered enabled. 160 * 161 */ 162 static int selinux_secmark_enabled(void) 163 { 164 return (selinux_policycap_alwaysnetwork() || 165 atomic_read(&selinux_secmark_refcount)); 166 } 167 168 /** 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 170 * 171 * Description: 172 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 173 * (1) if any are enabled or false (0) if neither are enabled. If the 174 * always_check_network policy capability is enabled, peer labeling 175 * is always considered enabled. 176 * 177 */ 178 static int selinux_peerlbl_enabled(void) 179 { 180 return (selinux_policycap_alwaysnetwork() || 181 netlbl_enabled() || selinux_xfrm_enabled()); 182 } 183 184 static int selinux_netcache_avc_callback(u32 event) 185 { 186 if (event == AVC_CALLBACK_RESET) { 187 sel_netif_flush(); 188 sel_netnode_flush(); 189 sel_netport_flush(); 190 synchronize_net(); 191 } 192 return 0; 193 } 194 195 static int selinux_lsm_notifier_avc_callback(u32 event) 196 { 197 if (event == AVC_CALLBACK_RESET) { 198 sel_ib_pkey_flush(); 199 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 200 } 201 202 return 0; 203 } 204 205 /* 206 * initialise the security for the init task 207 */ 208 static void cred_init_security(void) 209 { 210 struct cred *cred = (struct cred *) current->real_cred; 211 struct task_security_struct *tsec; 212 213 tsec = selinux_cred(cred); 214 tsec->osid = tsec->sid = SECINITSID_KERNEL; 215 } 216 217 /* 218 * get the security ID of a set of credentials 219 */ 220 static inline u32 cred_sid(const struct cred *cred) 221 { 222 const struct task_security_struct *tsec; 223 224 tsec = selinux_cred(cred); 225 return tsec->sid; 226 } 227 228 /* 229 * get the objective security ID of a task 230 */ 231 static inline u32 task_sid(const struct task_struct *task) 232 { 233 u32 sid; 234 235 rcu_read_lock(); 236 sid = cred_sid(__task_cred(task)); 237 rcu_read_unlock(); 238 return sid; 239 } 240 241 /* Allocate and free functions for each kind of security blob. */ 242 243 static int inode_alloc_security(struct inode *inode) 244 { 245 struct inode_security_struct *isec = selinux_inode(inode); 246 u32 sid = current_sid(); 247 248 spin_lock_init(&isec->lock); 249 INIT_LIST_HEAD(&isec->list); 250 isec->inode = inode; 251 isec->sid = SECINITSID_UNLABELED; 252 isec->sclass = SECCLASS_FILE; 253 isec->task_sid = sid; 254 isec->initialized = LABEL_INVALID; 255 256 return 0; 257 } 258 259 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 260 261 /* 262 * Try reloading inode security labels that have been marked as invalid. The 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is 264 * allowed; when set to false, returns -ECHILD when the label is 265 * invalid. The @dentry parameter should be set to a dentry of the inode. 266 */ 267 static int __inode_security_revalidate(struct inode *inode, 268 struct dentry *dentry, 269 bool may_sleep) 270 { 271 struct inode_security_struct *isec = selinux_inode(inode); 272 273 might_sleep_if(may_sleep); 274 275 if (selinux_state.initialized && 276 isec->initialized != LABEL_INITIALIZED) { 277 if (!may_sleep) 278 return -ECHILD; 279 280 /* 281 * Try reloading the inode security label. This will fail if 282 * @opt_dentry is NULL and no dentry for this inode can be 283 * found; in that case, continue using the old label. 284 */ 285 inode_doinit_with_dentry(inode, dentry); 286 } 287 return 0; 288 } 289 290 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 291 { 292 return selinux_inode(inode); 293 } 294 295 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 296 { 297 int error; 298 299 error = __inode_security_revalidate(inode, NULL, !rcu); 300 if (error) 301 return ERR_PTR(error); 302 return selinux_inode(inode); 303 } 304 305 /* 306 * Get the security label of an inode. 307 */ 308 static struct inode_security_struct *inode_security(struct inode *inode) 309 { 310 __inode_security_revalidate(inode, NULL, true); 311 return selinux_inode(inode); 312 } 313 314 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 315 { 316 struct inode *inode = d_backing_inode(dentry); 317 318 return selinux_inode(inode); 319 } 320 321 /* 322 * Get the security label of a dentry's backing inode. 323 */ 324 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 325 { 326 struct inode *inode = d_backing_inode(dentry); 327 328 __inode_security_revalidate(inode, dentry, true); 329 return selinux_inode(inode); 330 } 331 332 static void inode_free_security(struct inode *inode) 333 { 334 struct inode_security_struct *isec = selinux_inode(inode); 335 struct superblock_security_struct *sbsec; 336 337 if (!isec) 338 return; 339 sbsec = inode->i_sb->s_security; 340 /* 341 * As not all inode security structures are in a list, we check for 342 * empty list outside of the lock to make sure that we won't waste 343 * time taking a lock doing nothing. 344 * 345 * The list_del_init() function can be safely called more than once. 346 * It should not be possible for this function to be called with 347 * concurrent list_add(), but for better safety against future changes 348 * in the code, we use list_empty_careful() here. 349 */ 350 if (!list_empty_careful(&isec->list)) { 351 spin_lock(&sbsec->isec_lock); 352 list_del_init(&isec->list); 353 spin_unlock(&sbsec->isec_lock); 354 } 355 } 356 357 static int file_alloc_security(struct file *file) 358 { 359 struct file_security_struct *fsec = selinux_file(file); 360 u32 sid = current_sid(); 361 362 fsec->sid = sid; 363 fsec->fown_sid = sid; 364 365 return 0; 366 } 367 368 static int superblock_alloc_security(struct super_block *sb) 369 { 370 struct superblock_security_struct *sbsec; 371 372 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 373 if (!sbsec) 374 return -ENOMEM; 375 376 mutex_init(&sbsec->lock); 377 INIT_LIST_HEAD(&sbsec->isec_head); 378 spin_lock_init(&sbsec->isec_lock); 379 sbsec->sb = sb; 380 sbsec->sid = SECINITSID_UNLABELED; 381 sbsec->def_sid = SECINITSID_FILE; 382 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 383 sb->s_security = sbsec; 384 385 return 0; 386 } 387 388 static void superblock_free_security(struct super_block *sb) 389 { 390 struct superblock_security_struct *sbsec = sb->s_security; 391 sb->s_security = NULL; 392 kfree(sbsec); 393 } 394 395 struct selinux_mnt_opts { 396 const char *fscontext, *context, *rootcontext, *defcontext; 397 }; 398 399 static void selinux_free_mnt_opts(void *mnt_opts) 400 { 401 struct selinux_mnt_opts *opts = mnt_opts; 402 kfree(opts->fscontext); 403 kfree(opts->context); 404 kfree(opts->rootcontext); 405 kfree(opts->defcontext); 406 kfree(opts); 407 } 408 409 static inline int inode_doinit(struct inode *inode) 410 { 411 return inode_doinit_with_dentry(inode, NULL); 412 } 413 414 enum { 415 Opt_error = -1, 416 Opt_context = 0, 417 Opt_defcontext = 1, 418 Opt_fscontext = 2, 419 Opt_rootcontext = 3, 420 Opt_seclabel = 4, 421 }; 422 423 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 424 static struct { 425 const char *name; 426 int len; 427 int opt; 428 bool has_arg; 429 } tokens[] = { 430 A(context, true), 431 A(fscontext, true), 432 A(defcontext, true), 433 A(rootcontext, true), 434 A(seclabel, false), 435 }; 436 #undef A 437 438 static int match_opt_prefix(char *s, int l, char **arg) 439 { 440 int i; 441 442 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 443 size_t len = tokens[i].len; 444 if (len > l || memcmp(s, tokens[i].name, len)) 445 continue; 446 if (tokens[i].has_arg) { 447 if (len == l || s[len] != '=') 448 continue; 449 *arg = s + len + 1; 450 } else if (len != l) 451 continue; 452 return tokens[i].opt; 453 } 454 return Opt_error; 455 } 456 457 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 458 459 static int may_context_mount_sb_relabel(u32 sid, 460 struct superblock_security_struct *sbsec, 461 const struct cred *cred) 462 { 463 const struct task_security_struct *tsec = selinux_cred(cred); 464 int rc; 465 466 rc = avc_has_perm(&selinux_state, 467 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 468 FILESYSTEM__RELABELFROM, NULL); 469 if (rc) 470 return rc; 471 472 rc = avc_has_perm(&selinux_state, 473 tsec->sid, sid, SECCLASS_FILESYSTEM, 474 FILESYSTEM__RELABELTO, NULL); 475 return rc; 476 } 477 478 static int may_context_mount_inode_relabel(u32 sid, 479 struct superblock_security_struct *sbsec, 480 const struct cred *cred) 481 { 482 const struct task_security_struct *tsec = selinux_cred(cred); 483 int rc; 484 rc = avc_has_perm(&selinux_state, 485 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 486 FILESYSTEM__RELABELFROM, NULL); 487 if (rc) 488 return rc; 489 490 rc = avc_has_perm(&selinux_state, 491 sid, sbsec->sid, SECCLASS_FILESYSTEM, 492 FILESYSTEM__ASSOCIATE, NULL); 493 return rc; 494 } 495 496 static int selinux_is_genfs_special_handling(struct super_block *sb) 497 { 498 /* Special handling. Genfs but also in-core setxattr handler */ 499 return !strcmp(sb->s_type->name, "sysfs") || 500 !strcmp(sb->s_type->name, "pstore") || 501 !strcmp(sb->s_type->name, "debugfs") || 502 !strcmp(sb->s_type->name, "tracefs") || 503 !strcmp(sb->s_type->name, "rootfs") || 504 (selinux_policycap_cgroupseclabel() && 505 (!strcmp(sb->s_type->name, "cgroup") || 506 !strcmp(sb->s_type->name, "cgroup2"))); 507 } 508 509 static int selinux_is_sblabel_mnt(struct super_block *sb) 510 { 511 struct superblock_security_struct *sbsec = sb->s_security; 512 513 /* 514 * IMPORTANT: Double-check logic in this function when adding a new 515 * SECURITY_FS_USE_* definition! 516 */ 517 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 518 519 switch (sbsec->behavior) { 520 case SECURITY_FS_USE_XATTR: 521 case SECURITY_FS_USE_TRANS: 522 case SECURITY_FS_USE_TASK: 523 case SECURITY_FS_USE_NATIVE: 524 return 1; 525 526 case SECURITY_FS_USE_GENFS: 527 return selinux_is_genfs_special_handling(sb); 528 529 /* Never allow relabeling on context mounts */ 530 case SECURITY_FS_USE_MNTPOINT: 531 case SECURITY_FS_USE_NONE: 532 default: 533 return 0; 534 } 535 } 536 537 static int sb_finish_set_opts(struct super_block *sb) 538 { 539 struct superblock_security_struct *sbsec = sb->s_security; 540 struct dentry *root = sb->s_root; 541 struct inode *root_inode = d_backing_inode(root); 542 int rc = 0; 543 544 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 545 /* Make sure that the xattr handler exists and that no 546 error other than -ENODATA is returned by getxattr on 547 the root directory. -ENODATA is ok, as this may be 548 the first boot of the SELinux kernel before we have 549 assigned xattr values to the filesystem. */ 550 if (!(root_inode->i_opflags & IOP_XATTR)) { 551 pr_warn("SELinux: (dev %s, type %s) has no " 552 "xattr support\n", sb->s_id, sb->s_type->name); 553 rc = -EOPNOTSUPP; 554 goto out; 555 } 556 557 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 558 if (rc < 0 && rc != -ENODATA) { 559 if (rc == -EOPNOTSUPP) 560 pr_warn("SELinux: (dev %s, type " 561 "%s) has no security xattr handler\n", 562 sb->s_id, sb->s_type->name); 563 else 564 pr_warn("SELinux: (dev %s, type " 565 "%s) getxattr errno %d\n", sb->s_id, 566 sb->s_type->name, -rc); 567 goto out; 568 } 569 } 570 571 sbsec->flags |= SE_SBINITIALIZED; 572 573 /* 574 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 575 * leave the flag untouched because sb_clone_mnt_opts might be handing 576 * us a superblock that needs the flag to be cleared. 577 */ 578 if (selinux_is_sblabel_mnt(sb)) 579 sbsec->flags |= SBLABEL_MNT; 580 else 581 sbsec->flags &= ~SBLABEL_MNT; 582 583 /* Initialize the root inode. */ 584 rc = inode_doinit_with_dentry(root_inode, root); 585 586 /* Initialize any other inodes associated with the superblock, e.g. 587 inodes created prior to initial policy load or inodes created 588 during get_sb by a pseudo filesystem that directly 589 populates itself. */ 590 spin_lock(&sbsec->isec_lock); 591 while (!list_empty(&sbsec->isec_head)) { 592 struct inode_security_struct *isec = 593 list_first_entry(&sbsec->isec_head, 594 struct inode_security_struct, list); 595 struct inode *inode = isec->inode; 596 list_del_init(&isec->list); 597 spin_unlock(&sbsec->isec_lock); 598 inode = igrab(inode); 599 if (inode) { 600 if (!IS_PRIVATE(inode)) 601 inode_doinit(inode); 602 iput(inode); 603 } 604 spin_lock(&sbsec->isec_lock); 605 } 606 spin_unlock(&sbsec->isec_lock); 607 out: 608 return rc; 609 } 610 611 static int bad_option(struct superblock_security_struct *sbsec, char flag, 612 u32 old_sid, u32 new_sid) 613 { 614 char mnt_flags = sbsec->flags & SE_MNTMASK; 615 616 /* check if the old mount command had the same options */ 617 if (sbsec->flags & SE_SBINITIALIZED) 618 if (!(sbsec->flags & flag) || 619 (old_sid != new_sid)) 620 return 1; 621 622 /* check if we were passed the same options twice, 623 * aka someone passed context=a,context=b 624 */ 625 if (!(sbsec->flags & SE_SBINITIALIZED)) 626 if (mnt_flags & flag) 627 return 1; 628 return 0; 629 } 630 631 static int parse_sid(struct super_block *sb, const char *s, u32 *sid) 632 { 633 int rc = security_context_str_to_sid(&selinux_state, s, 634 sid, GFP_KERNEL); 635 if (rc) 636 pr_warn("SELinux: security_context_str_to_sid" 637 "(%s) failed for (dev %s, type %s) errno=%d\n", 638 s, sb->s_id, sb->s_type->name, rc); 639 return rc; 640 } 641 642 /* 643 * Allow filesystems with binary mount data to explicitly set mount point 644 * labeling information. 645 */ 646 static int selinux_set_mnt_opts(struct super_block *sb, 647 void *mnt_opts, 648 unsigned long kern_flags, 649 unsigned long *set_kern_flags) 650 { 651 const struct cred *cred = current_cred(); 652 struct superblock_security_struct *sbsec = sb->s_security; 653 struct dentry *root = sbsec->sb->s_root; 654 struct selinux_mnt_opts *opts = mnt_opts; 655 struct inode_security_struct *root_isec; 656 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 657 u32 defcontext_sid = 0; 658 int rc = 0; 659 660 mutex_lock(&sbsec->lock); 661 662 if (!selinux_state.initialized) { 663 if (!opts) { 664 /* Defer initialization until selinux_complete_init, 665 after the initial policy is loaded and the security 666 server is ready to handle calls. */ 667 goto out; 668 } 669 rc = -EINVAL; 670 pr_warn("SELinux: Unable to set superblock options " 671 "before the security server is initialized\n"); 672 goto out; 673 } 674 if (kern_flags && !set_kern_flags) { 675 /* Specifying internal flags without providing a place to 676 * place the results is not allowed */ 677 rc = -EINVAL; 678 goto out; 679 } 680 681 /* 682 * Binary mount data FS will come through this function twice. Once 683 * from an explicit call and once from the generic calls from the vfs. 684 * Since the generic VFS calls will not contain any security mount data 685 * we need to skip the double mount verification. 686 * 687 * This does open a hole in which we will not notice if the first 688 * mount using this sb set explict options and a second mount using 689 * this sb does not set any security options. (The first options 690 * will be used for both mounts) 691 */ 692 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 693 && !opts) 694 goto out; 695 696 root_isec = backing_inode_security_novalidate(root); 697 698 /* 699 * parse the mount options, check if they are valid sids. 700 * also check if someone is trying to mount the same sb more 701 * than once with different security options. 702 */ 703 if (opts) { 704 if (opts->fscontext) { 705 rc = parse_sid(sb, opts->fscontext, &fscontext_sid); 706 if (rc) 707 goto out; 708 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 709 fscontext_sid)) 710 goto out_double_mount; 711 sbsec->flags |= FSCONTEXT_MNT; 712 } 713 if (opts->context) { 714 rc = parse_sid(sb, opts->context, &context_sid); 715 if (rc) 716 goto out; 717 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 718 context_sid)) 719 goto out_double_mount; 720 sbsec->flags |= CONTEXT_MNT; 721 } 722 if (opts->rootcontext) { 723 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); 724 if (rc) 725 goto out; 726 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 727 rootcontext_sid)) 728 goto out_double_mount; 729 sbsec->flags |= ROOTCONTEXT_MNT; 730 } 731 if (opts->defcontext) { 732 rc = parse_sid(sb, opts->defcontext, &defcontext_sid); 733 if (rc) 734 goto out; 735 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 736 defcontext_sid)) 737 goto out_double_mount; 738 sbsec->flags |= DEFCONTEXT_MNT; 739 } 740 } 741 742 if (sbsec->flags & SE_SBINITIALIZED) { 743 /* previously mounted with options, but not on this attempt? */ 744 if ((sbsec->flags & SE_MNTMASK) && !opts) 745 goto out_double_mount; 746 rc = 0; 747 goto out; 748 } 749 750 if (strcmp(sb->s_type->name, "proc") == 0) 751 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 752 753 if (!strcmp(sb->s_type->name, "debugfs") || 754 !strcmp(sb->s_type->name, "tracefs") || 755 !strcmp(sb->s_type->name, "pstore")) 756 sbsec->flags |= SE_SBGENFS; 757 758 if (!strcmp(sb->s_type->name, "sysfs") || 759 !strcmp(sb->s_type->name, "cgroup") || 760 !strcmp(sb->s_type->name, "cgroup2")) 761 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 762 763 if (!sbsec->behavior) { 764 /* 765 * Determine the labeling behavior to use for this 766 * filesystem type. 767 */ 768 rc = security_fs_use(&selinux_state, sb); 769 if (rc) { 770 pr_warn("%s: security_fs_use(%s) returned %d\n", 771 __func__, sb->s_type->name, rc); 772 goto out; 773 } 774 } 775 776 /* 777 * If this is a user namespace mount and the filesystem type is not 778 * explicitly whitelisted, then no contexts are allowed on the command 779 * line and security labels must be ignored. 780 */ 781 if (sb->s_user_ns != &init_user_ns && 782 strcmp(sb->s_type->name, "tmpfs") && 783 strcmp(sb->s_type->name, "ramfs") && 784 strcmp(sb->s_type->name, "devpts")) { 785 if (context_sid || fscontext_sid || rootcontext_sid || 786 defcontext_sid) { 787 rc = -EACCES; 788 goto out; 789 } 790 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 792 rc = security_transition_sid(&selinux_state, 793 current_sid(), 794 current_sid(), 795 SECCLASS_FILE, NULL, 796 &sbsec->mntpoint_sid); 797 if (rc) 798 goto out; 799 } 800 goto out_set_opts; 801 } 802 803 /* sets the context of the superblock for the fs being mounted. */ 804 if (fscontext_sid) { 805 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 806 if (rc) 807 goto out; 808 809 sbsec->sid = fscontext_sid; 810 } 811 812 /* 813 * Switch to using mount point labeling behavior. 814 * sets the label used on all file below the mountpoint, and will set 815 * the superblock context if not already set. 816 */ 817 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 818 sbsec->behavior = SECURITY_FS_USE_NATIVE; 819 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 820 } 821 822 if (context_sid) { 823 if (!fscontext_sid) { 824 rc = may_context_mount_sb_relabel(context_sid, sbsec, 825 cred); 826 if (rc) 827 goto out; 828 sbsec->sid = context_sid; 829 } else { 830 rc = may_context_mount_inode_relabel(context_sid, sbsec, 831 cred); 832 if (rc) 833 goto out; 834 } 835 if (!rootcontext_sid) 836 rootcontext_sid = context_sid; 837 838 sbsec->mntpoint_sid = context_sid; 839 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 840 } 841 842 if (rootcontext_sid) { 843 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 844 cred); 845 if (rc) 846 goto out; 847 848 root_isec->sid = rootcontext_sid; 849 root_isec->initialized = LABEL_INITIALIZED; 850 } 851 852 if (defcontext_sid) { 853 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 854 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 855 rc = -EINVAL; 856 pr_warn("SELinux: defcontext option is " 857 "invalid for this filesystem type\n"); 858 goto out; 859 } 860 861 if (defcontext_sid != sbsec->def_sid) { 862 rc = may_context_mount_inode_relabel(defcontext_sid, 863 sbsec, cred); 864 if (rc) 865 goto out; 866 } 867 868 sbsec->def_sid = defcontext_sid; 869 } 870 871 out_set_opts: 872 rc = sb_finish_set_opts(sb); 873 out: 874 mutex_unlock(&sbsec->lock); 875 return rc; 876 out_double_mount: 877 rc = -EINVAL; 878 pr_warn("SELinux: mount invalid. Same superblock, different " 879 "security settings for (dev %s, type %s)\n", sb->s_id, 880 sb->s_type->name); 881 goto out; 882 } 883 884 static int selinux_cmp_sb_context(const struct super_block *oldsb, 885 const struct super_block *newsb) 886 { 887 struct superblock_security_struct *old = oldsb->s_security; 888 struct superblock_security_struct *new = newsb->s_security; 889 char oldflags = old->flags & SE_MNTMASK; 890 char newflags = new->flags & SE_MNTMASK; 891 892 if (oldflags != newflags) 893 goto mismatch; 894 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 895 goto mismatch; 896 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 897 goto mismatch; 898 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 899 goto mismatch; 900 if (oldflags & ROOTCONTEXT_MNT) { 901 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 902 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 903 if (oldroot->sid != newroot->sid) 904 goto mismatch; 905 } 906 return 0; 907 mismatch: 908 pr_warn("SELinux: mount invalid. Same superblock, " 909 "different security settings for (dev %s, " 910 "type %s)\n", newsb->s_id, newsb->s_type->name); 911 return -EBUSY; 912 } 913 914 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 915 struct super_block *newsb, 916 unsigned long kern_flags, 917 unsigned long *set_kern_flags) 918 { 919 int rc = 0; 920 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 921 struct superblock_security_struct *newsbsec = newsb->s_security; 922 923 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 924 int set_context = (oldsbsec->flags & CONTEXT_MNT); 925 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 926 927 /* 928 * if the parent was able to be mounted it clearly had no special lsm 929 * mount options. thus we can safely deal with this superblock later 930 */ 931 if (!selinux_state.initialized) 932 return 0; 933 934 /* 935 * Specifying internal flags without providing a place to 936 * place the results is not allowed. 937 */ 938 if (kern_flags && !set_kern_flags) 939 return -EINVAL; 940 941 /* how can we clone if the old one wasn't set up?? */ 942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 943 944 /* if fs is reusing a sb, make sure that the contexts match */ 945 if (newsbsec->flags & SE_SBINITIALIZED) { 946 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 947 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 948 return selinux_cmp_sb_context(oldsb, newsb); 949 } 950 951 mutex_lock(&newsbsec->lock); 952 953 newsbsec->flags = oldsbsec->flags; 954 955 newsbsec->sid = oldsbsec->sid; 956 newsbsec->def_sid = oldsbsec->def_sid; 957 newsbsec->behavior = oldsbsec->behavior; 958 959 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 960 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 961 rc = security_fs_use(&selinux_state, newsb); 962 if (rc) 963 goto out; 964 } 965 966 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 967 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 968 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 969 } 970 971 if (set_context) { 972 u32 sid = oldsbsec->mntpoint_sid; 973 974 if (!set_fscontext) 975 newsbsec->sid = sid; 976 if (!set_rootcontext) { 977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 978 newisec->sid = sid; 979 } 980 newsbsec->mntpoint_sid = sid; 981 } 982 if (set_rootcontext) { 983 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 984 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 985 986 newisec->sid = oldisec->sid; 987 } 988 989 sb_finish_set_opts(newsb); 990 out: 991 mutex_unlock(&newsbsec->lock); 992 return rc; 993 } 994 995 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 996 { 997 struct selinux_mnt_opts *opts = *mnt_opts; 998 999 if (token == Opt_seclabel) /* eaten and completely ignored */ 1000 return 0; 1001 1002 if (!opts) { 1003 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 1004 if (!opts) 1005 return -ENOMEM; 1006 *mnt_opts = opts; 1007 } 1008 if (!s) 1009 return -ENOMEM; 1010 switch (token) { 1011 case Opt_context: 1012 if (opts->context || opts->defcontext) 1013 goto Einval; 1014 opts->context = s; 1015 break; 1016 case Opt_fscontext: 1017 if (opts->fscontext) 1018 goto Einval; 1019 opts->fscontext = s; 1020 break; 1021 case Opt_rootcontext: 1022 if (opts->rootcontext) 1023 goto Einval; 1024 opts->rootcontext = s; 1025 break; 1026 case Opt_defcontext: 1027 if (opts->context || opts->defcontext) 1028 goto Einval; 1029 opts->defcontext = s; 1030 break; 1031 } 1032 return 0; 1033 Einval: 1034 pr_warn(SEL_MOUNT_FAIL_MSG); 1035 return -EINVAL; 1036 } 1037 1038 static int selinux_add_mnt_opt(const char *option, const char *val, int len, 1039 void **mnt_opts) 1040 { 1041 int token = Opt_error; 1042 int rc, i; 1043 1044 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 1045 if (strcmp(option, tokens[i].name) == 0) { 1046 token = tokens[i].opt; 1047 break; 1048 } 1049 } 1050 1051 if (token == Opt_error) 1052 return -EINVAL; 1053 1054 if (token != Opt_seclabel) { 1055 val = kmemdup_nul(val, len, GFP_KERNEL); 1056 if (!val) { 1057 rc = -ENOMEM; 1058 goto free_opt; 1059 } 1060 } 1061 rc = selinux_add_opt(token, val, mnt_opts); 1062 if (unlikely(rc)) { 1063 kfree(val); 1064 goto free_opt; 1065 } 1066 return rc; 1067 1068 free_opt: 1069 if (*mnt_opts) { 1070 selinux_free_mnt_opts(*mnt_opts); 1071 *mnt_opts = NULL; 1072 } 1073 return rc; 1074 } 1075 1076 static int show_sid(struct seq_file *m, u32 sid) 1077 { 1078 char *context = NULL; 1079 u32 len; 1080 int rc; 1081 1082 rc = security_sid_to_context(&selinux_state, sid, 1083 &context, &len); 1084 if (!rc) { 1085 bool has_comma = context && strchr(context, ','); 1086 1087 seq_putc(m, '='); 1088 if (has_comma) 1089 seq_putc(m, '\"'); 1090 seq_escape(m, context, "\"\n\\"); 1091 if (has_comma) 1092 seq_putc(m, '\"'); 1093 } 1094 kfree(context); 1095 return rc; 1096 } 1097 1098 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1099 { 1100 struct superblock_security_struct *sbsec = sb->s_security; 1101 int rc; 1102 1103 if (!(sbsec->flags & SE_SBINITIALIZED)) 1104 return 0; 1105 1106 if (!selinux_state.initialized) 1107 return 0; 1108 1109 if (sbsec->flags & FSCONTEXT_MNT) { 1110 seq_putc(m, ','); 1111 seq_puts(m, FSCONTEXT_STR); 1112 rc = show_sid(m, sbsec->sid); 1113 if (rc) 1114 return rc; 1115 } 1116 if (sbsec->flags & CONTEXT_MNT) { 1117 seq_putc(m, ','); 1118 seq_puts(m, CONTEXT_STR); 1119 rc = show_sid(m, sbsec->mntpoint_sid); 1120 if (rc) 1121 return rc; 1122 } 1123 if (sbsec->flags & DEFCONTEXT_MNT) { 1124 seq_putc(m, ','); 1125 seq_puts(m, DEFCONTEXT_STR); 1126 rc = show_sid(m, sbsec->def_sid); 1127 if (rc) 1128 return rc; 1129 } 1130 if (sbsec->flags & ROOTCONTEXT_MNT) { 1131 struct dentry *root = sbsec->sb->s_root; 1132 struct inode_security_struct *isec = backing_inode_security(root); 1133 seq_putc(m, ','); 1134 seq_puts(m, ROOTCONTEXT_STR); 1135 rc = show_sid(m, isec->sid); 1136 if (rc) 1137 return rc; 1138 } 1139 if (sbsec->flags & SBLABEL_MNT) { 1140 seq_putc(m, ','); 1141 seq_puts(m, SECLABEL_STR); 1142 } 1143 return 0; 1144 } 1145 1146 static inline u16 inode_mode_to_security_class(umode_t mode) 1147 { 1148 switch (mode & S_IFMT) { 1149 case S_IFSOCK: 1150 return SECCLASS_SOCK_FILE; 1151 case S_IFLNK: 1152 return SECCLASS_LNK_FILE; 1153 case S_IFREG: 1154 return SECCLASS_FILE; 1155 case S_IFBLK: 1156 return SECCLASS_BLK_FILE; 1157 case S_IFDIR: 1158 return SECCLASS_DIR; 1159 case S_IFCHR: 1160 return SECCLASS_CHR_FILE; 1161 case S_IFIFO: 1162 return SECCLASS_FIFO_FILE; 1163 1164 } 1165 1166 return SECCLASS_FILE; 1167 } 1168 1169 static inline int default_protocol_stream(int protocol) 1170 { 1171 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1172 } 1173 1174 static inline int default_protocol_dgram(int protocol) 1175 { 1176 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1177 } 1178 1179 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1180 { 1181 int extsockclass = selinux_policycap_extsockclass(); 1182 1183 switch (family) { 1184 case PF_UNIX: 1185 switch (type) { 1186 case SOCK_STREAM: 1187 case SOCK_SEQPACKET: 1188 return SECCLASS_UNIX_STREAM_SOCKET; 1189 case SOCK_DGRAM: 1190 case SOCK_RAW: 1191 return SECCLASS_UNIX_DGRAM_SOCKET; 1192 } 1193 break; 1194 case PF_INET: 1195 case PF_INET6: 1196 switch (type) { 1197 case SOCK_STREAM: 1198 case SOCK_SEQPACKET: 1199 if (default_protocol_stream(protocol)) 1200 return SECCLASS_TCP_SOCKET; 1201 else if (extsockclass && protocol == IPPROTO_SCTP) 1202 return SECCLASS_SCTP_SOCKET; 1203 else 1204 return SECCLASS_RAWIP_SOCKET; 1205 case SOCK_DGRAM: 1206 if (default_protocol_dgram(protocol)) 1207 return SECCLASS_UDP_SOCKET; 1208 else if (extsockclass && (protocol == IPPROTO_ICMP || 1209 protocol == IPPROTO_ICMPV6)) 1210 return SECCLASS_ICMP_SOCKET; 1211 else 1212 return SECCLASS_RAWIP_SOCKET; 1213 case SOCK_DCCP: 1214 return SECCLASS_DCCP_SOCKET; 1215 default: 1216 return SECCLASS_RAWIP_SOCKET; 1217 } 1218 break; 1219 case PF_NETLINK: 1220 switch (protocol) { 1221 case NETLINK_ROUTE: 1222 return SECCLASS_NETLINK_ROUTE_SOCKET; 1223 case NETLINK_SOCK_DIAG: 1224 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1225 case NETLINK_NFLOG: 1226 return SECCLASS_NETLINK_NFLOG_SOCKET; 1227 case NETLINK_XFRM: 1228 return SECCLASS_NETLINK_XFRM_SOCKET; 1229 case NETLINK_SELINUX: 1230 return SECCLASS_NETLINK_SELINUX_SOCKET; 1231 case NETLINK_ISCSI: 1232 return SECCLASS_NETLINK_ISCSI_SOCKET; 1233 case NETLINK_AUDIT: 1234 return SECCLASS_NETLINK_AUDIT_SOCKET; 1235 case NETLINK_FIB_LOOKUP: 1236 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1237 case NETLINK_CONNECTOR: 1238 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1239 case NETLINK_NETFILTER: 1240 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1241 case NETLINK_DNRTMSG: 1242 return SECCLASS_NETLINK_DNRT_SOCKET; 1243 case NETLINK_KOBJECT_UEVENT: 1244 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1245 case NETLINK_GENERIC: 1246 return SECCLASS_NETLINK_GENERIC_SOCKET; 1247 case NETLINK_SCSITRANSPORT: 1248 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1249 case NETLINK_RDMA: 1250 return SECCLASS_NETLINK_RDMA_SOCKET; 1251 case NETLINK_CRYPTO: 1252 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1253 default: 1254 return SECCLASS_NETLINK_SOCKET; 1255 } 1256 case PF_PACKET: 1257 return SECCLASS_PACKET_SOCKET; 1258 case PF_KEY: 1259 return SECCLASS_KEY_SOCKET; 1260 case PF_APPLETALK: 1261 return SECCLASS_APPLETALK_SOCKET; 1262 } 1263 1264 if (extsockclass) { 1265 switch (family) { 1266 case PF_AX25: 1267 return SECCLASS_AX25_SOCKET; 1268 case PF_IPX: 1269 return SECCLASS_IPX_SOCKET; 1270 case PF_NETROM: 1271 return SECCLASS_NETROM_SOCKET; 1272 case PF_ATMPVC: 1273 return SECCLASS_ATMPVC_SOCKET; 1274 case PF_X25: 1275 return SECCLASS_X25_SOCKET; 1276 case PF_ROSE: 1277 return SECCLASS_ROSE_SOCKET; 1278 case PF_DECnet: 1279 return SECCLASS_DECNET_SOCKET; 1280 case PF_ATMSVC: 1281 return SECCLASS_ATMSVC_SOCKET; 1282 case PF_RDS: 1283 return SECCLASS_RDS_SOCKET; 1284 case PF_IRDA: 1285 return SECCLASS_IRDA_SOCKET; 1286 case PF_PPPOX: 1287 return SECCLASS_PPPOX_SOCKET; 1288 case PF_LLC: 1289 return SECCLASS_LLC_SOCKET; 1290 case PF_CAN: 1291 return SECCLASS_CAN_SOCKET; 1292 case PF_TIPC: 1293 return SECCLASS_TIPC_SOCKET; 1294 case PF_BLUETOOTH: 1295 return SECCLASS_BLUETOOTH_SOCKET; 1296 case PF_IUCV: 1297 return SECCLASS_IUCV_SOCKET; 1298 case PF_RXRPC: 1299 return SECCLASS_RXRPC_SOCKET; 1300 case PF_ISDN: 1301 return SECCLASS_ISDN_SOCKET; 1302 case PF_PHONET: 1303 return SECCLASS_PHONET_SOCKET; 1304 case PF_IEEE802154: 1305 return SECCLASS_IEEE802154_SOCKET; 1306 case PF_CAIF: 1307 return SECCLASS_CAIF_SOCKET; 1308 case PF_ALG: 1309 return SECCLASS_ALG_SOCKET; 1310 case PF_NFC: 1311 return SECCLASS_NFC_SOCKET; 1312 case PF_VSOCK: 1313 return SECCLASS_VSOCK_SOCKET; 1314 case PF_KCM: 1315 return SECCLASS_KCM_SOCKET; 1316 case PF_QIPCRTR: 1317 return SECCLASS_QIPCRTR_SOCKET; 1318 case PF_SMC: 1319 return SECCLASS_SMC_SOCKET; 1320 case PF_XDP: 1321 return SECCLASS_XDP_SOCKET; 1322 #if PF_MAX > 45 1323 #error New address family defined, please update this function. 1324 #endif 1325 } 1326 } 1327 1328 return SECCLASS_SOCKET; 1329 } 1330 1331 static int selinux_genfs_get_sid(struct dentry *dentry, 1332 u16 tclass, 1333 u16 flags, 1334 u32 *sid) 1335 { 1336 int rc; 1337 struct super_block *sb = dentry->d_sb; 1338 char *buffer, *path; 1339 1340 buffer = (char *)__get_free_page(GFP_KERNEL); 1341 if (!buffer) 1342 return -ENOMEM; 1343 1344 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1345 if (IS_ERR(path)) 1346 rc = PTR_ERR(path); 1347 else { 1348 if (flags & SE_SBPROC) { 1349 /* each process gets a /proc/PID/ entry. Strip off the 1350 * PID part to get a valid selinux labeling. 1351 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1352 while (path[1] >= '0' && path[1] <= '9') { 1353 path[1] = '/'; 1354 path++; 1355 } 1356 } 1357 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1358 path, tclass, sid); 1359 if (rc == -ENOENT) { 1360 /* No match in policy, mark as unlabeled. */ 1361 *sid = SECINITSID_UNLABELED; 1362 rc = 0; 1363 } 1364 } 1365 free_page((unsigned long)buffer); 1366 return rc; 1367 } 1368 1369 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1370 u32 def_sid, u32 *sid) 1371 { 1372 #define INITCONTEXTLEN 255 1373 char *context; 1374 unsigned int len; 1375 int rc; 1376 1377 len = INITCONTEXTLEN; 1378 context = kmalloc(len + 1, GFP_NOFS); 1379 if (!context) 1380 return -ENOMEM; 1381 1382 context[len] = '\0'; 1383 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1384 if (rc == -ERANGE) { 1385 kfree(context); 1386 1387 /* Need a larger buffer. Query for the right size. */ 1388 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1389 if (rc < 0) 1390 return rc; 1391 1392 len = rc; 1393 context = kmalloc(len + 1, GFP_NOFS); 1394 if (!context) 1395 return -ENOMEM; 1396 1397 context[len] = '\0'; 1398 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1399 context, len); 1400 } 1401 if (rc < 0) { 1402 kfree(context); 1403 if (rc != -ENODATA) { 1404 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1405 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1406 return rc; 1407 } 1408 *sid = def_sid; 1409 return 0; 1410 } 1411 1412 rc = security_context_to_sid_default(&selinux_state, context, rc, sid, 1413 def_sid, GFP_NOFS); 1414 if (rc) { 1415 char *dev = inode->i_sb->s_id; 1416 unsigned long ino = inode->i_ino; 1417 1418 if (rc == -EINVAL) { 1419 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1420 ino, dev, context); 1421 } else { 1422 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1423 __func__, context, -rc, dev, ino); 1424 } 1425 } 1426 kfree(context); 1427 return 0; 1428 } 1429 1430 /* The inode's security attributes must be initialized before first use. */ 1431 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1432 { 1433 struct superblock_security_struct *sbsec = NULL; 1434 struct inode_security_struct *isec = selinux_inode(inode); 1435 u32 task_sid, sid = 0; 1436 u16 sclass; 1437 struct dentry *dentry; 1438 int rc = 0; 1439 1440 if (isec->initialized == LABEL_INITIALIZED) 1441 return 0; 1442 1443 spin_lock(&isec->lock); 1444 if (isec->initialized == LABEL_INITIALIZED) 1445 goto out_unlock; 1446 1447 if (isec->sclass == SECCLASS_FILE) 1448 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1449 1450 sbsec = inode->i_sb->s_security; 1451 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1452 /* Defer initialization until selinux_complete_init, 1453 after the initial policy is loaded and the security 1454 server is ready to handle calls. */ 1455 spin_lock(&sbsec->isec_lock); 1456 if (list_empty(&isec->list)) 1457 list_add(&isec->list, &sbsec->isec_head); 1458 spin_unlock(&sbsec->isec_lock); 1459 goto out_unlock; 1460 } 1461 1462 sclass = isec->sclass; 1463 task_sid = isec->task_sid; 1464 sid = isec->sid; 1465 isec->initialized = LABEL_PENDING; 1466 spin_unlock(&isec->lock); 1467 1468 switch (sbsec->behavior) { 1469 case SECURITY_FS_USE_NATIVE: 1470 break; 1471 case SECURITY_FS_USE_XATTR: 1472 if (!(inode->i_opflags & IOP_XATTR)) { 1473 sid = sbsec->def_sid; 1474 break; 1475 } 1476 /* Need a dentry, since the xattr API requires one. 1477 Life would be simpler if we could just pass the inode. */ 1478 if (opt_dentry) { 1479 /* Called from d_instantiate or d_splice_alias. */ 1480 dentry = dget(opt_dentry); 1481 } else { 1482 /* 1483 * Called from selinux_complete_init, try to find a dentry. 1484 * Some filesystems really want a connected one, so try 1485 * that first. We could split SECURITY_FS_USE_XATTR in 1486 * two, depending upon that... 1487 */ 1488 dentry = d_find_alias(inode); 1489 if (!dentry) 1490 dentry = d_find_any_alias(inode); 1491 } 1492 if (!dentry) { 1493 /* 1494 * this is can be hit on boot when a file is accessed 1495 * before the policy is loaded. When we load policy we 1496 * may find inodes that have no dentry on the 1497 * sbsec->isec_head list. No reason to complain as these 1498 * will get fixed up the next time we go through 1499 * inode_doinit with a dentry, before these inodes could 1500 * be used again by userspace. 1501 */ 1502 goto out; 1503 } 1504 1505 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1506 &sid); 1507 dput(dentry); 1508 if (rc) 1509 goto out; 1510 break; 1511 case SECURITY_FS_USE_TASK: 1512 sid = task_sid; 1513 break; 1514 case SECURITY_FS_USE_TRANS: 1515 /* Default to the fs SID. */ 1516 sid = sbsec->sid; 1517 1518 /* Try to obtain a transition SID. */ 1519 rc = security_transition_sid(&selinux_state, task_sid, sid, 1520 sclass, NULL, &sid); 1521 if (rc) 1522 goto out; 1523 break; 1524 case SECURITY_FS_USE_MNTPOINT: 1525 sid = sbsec->mntpoint_sid; 1526 break; 1527 default: 1528 /* Default to the fs superblock SID. */ 1529 sid = sbsec->sid; 1530 1531 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1532 /* We must have a dentry to determine the label on 1533 * procfs inodes */ 1534 if (opt_dentry) { 1535 /* Called from d_instantiate or 1536 * d_splice_alias. */ 1537 dentry = dget(opt_dentry); 1538 } else { 1539 /* Called from selinux_complete_init, try to 1540 * find a dentry. Some filesystems really want 1541 * a connected one, so try that first. 1542 */ 1543 dentry = d_find_alias(inode); 1544 if (!dentry) 1545 dentry = d_find_any_alias(inode); 1546 } 1547 /* 1548 * This can be hit on boot when a file is accessed 1549 * before the policy is loaded. When we load policy we 1550 * may find inodes that have no dentry on the 1551 * sbsec->isec_head list. No reason to complain as 1552 * these will get fixed up the next time we go through 1553 * inode_doinit() with a dentry, before these inodes 1554 * could be used again by userspace. 1555 */ 1556 if (!dentry) 1557 goto out; 1558 rc = selinux_genfs_get_sid(dentry, sclass, 1559 sbsec->flags, &sid); 1560 if (rc) { 1561 dput(dentry); 1562 goto out; 1563 } 1564 1565 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1566 (inode->i_opflags & IOP_XATTR)) { 1567 rc = inode_doinit_use_xattr(inode, dentry, 1568 sid, &sid); 1569 if (rc) { 1570 dput(dentry); 1571 goto out; 1572 } 1573 } 1574 dput(dentry); 1575 } 1576 break; 1577 } 1578 1579 out: 1580 spin_lock(&isec->lock); 1581 if (isec->initialized == LABEL_PENDING) { 1582 if (!sid || rc) { 1583 isec->initialized = LABEL_INVALID; 1584 goto out_unlock; 1585 } 1586 1587 isec->initialized = LABEL_INITIALIZED; 1588 isec->sid = sid; 1589 } 1590 1591 out_unlock: 1592 spin_unlock(&isec->lock); 1593 return rc; 1594 } 1595 1596 /* Convert a Linux signal to an access vector. */ 1597 static inline u32 signal_to_av(int sig) 1598 { 1599 u32 perm = 0; 1600 1601 switch (sig) { 1602 case SIGCHLD: 1603 /* Commonly granted from child to parent. */ 1604 perm = PROCESS__SIGCHLD; 1605 break; 1606 case SIGKILL: 1607 /* Cannot be caught or ignored */ 1608 perm = PROCESS__SIGKILL; 1609 break; 1610 case SIGSTOP: 1611 /* Cannot be caught or ignored */ 1612 perm = PROCESS__SIGSTOP; 1613 break; 1614 default: 1615 /* All other signals. */ 1616 perm = PROCESS__SIGNAL; 1617 break; 1618 } 1619 1620 return perm; 1621 } 1622 1623 #if CAP_LAST_CAP > 63 1624 #error Fix SELinux to handle capabilities > 63. 1625 #endif 1626 1627 /* Check whether a task is allowed to use a capability. */ 1628 static int cred_has_capability(const struct cred *cred, 1629 int cap, unsigned int opts, bool initns) 1630 { 1631 struct common_audit_data ad; 1632 struct av_decision avd; 1633 u16 sclass; 1634 u32 sid = cred_sid(cred); 1635 u32 av = CAP_TO_MASK(cap); 1636 int rc; 1637 1638 ad.type = LSM_AUDIT_DATA_CAP; 1639 ad.u.cap = cap; 1640 1641 switch (CAP_TO_INDEX(cap)) { 1642 case 0: 1643 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1644 break; 1645 case 1: 1646 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1647 break; 1648 default: 1649 pr_err("SELinux: out of range capability %d\n", cap); 1650 BUG(); 1651 return -EINVAL; 1652 } 1653 1654 rc = avc_has_perm_noaudit(&selinux_state, 1655 sid, sid, sclass, av, 0, &avd); 1656 if (!(opts & CAP_OPT_NOAUDIT)) { 1657 int rc2 = avc_audit(&selinux_state, 1658 sid, sid, sclass, av, &avd, rc, &ad, 0); 1659 if (rc2) 1660 return rc2; 1661 } 1662 return rc; 1663 } 1664 1665 /* Check whether a task has a particular permission to an inode. 1666 The 'adp' parameter is optional and allows other audit 1667 data to be passed (e.g. the dentry). */ 1668 static int inode_has_perm(const struct cred *cred, 1669 struct inode *inode, 1670 u32 perms, 1671 struct common_audit_data *adp) 1672 { 1673 struct inode_security_struct *isec; 1674 u32 sid; 1675 1676 validate_creds(cred); 1677 1678 if (unlikely(IS_PRIVATE(inode))) 1679 return 0; 1680 1681 sid = cred_sid(cred); 1682 isec = selinux_inode(inode); 1683 1684 return avc_has_perm(&selinux_state, 1685 sid, isec->sid, isec->sclass, perms, adp); 1686 } 1687 1688 /* Same as inode_has_perm, but pass explicit audit data containing 1689 the dentry to help the auditing code to more easily generate the 1690 pathname if needed. */ 1691 static inline int dentry_has_perm(const struct cred *cred, 1692 struct dentry *dentry, 1693 u32 av) 1694 { 1695 struct inode *inode = d_backing_inode(dentry); 1696 struct common_audit_data ad; 1697 1698 ad.type = LSM_AUDIT_DATA_DENTRY; 1699 ad.u.dentry = dentry; 1700 __inode_security_revalidate(inode, dentry, true); 1701 return inode_has_perm(cred, inode, av, &ad); 1702 } 1703 1704 /* Same as inode_has_perm, but pass explicit audit data containing 1705 the path to help the auditing code to more easily generate the 1706 pathname if needed. */ 1707 static inline int path_has_perm(const struct cred *cred, 1708 const struct path *path, 1709 u32 av) 1710 { 1711 struct inode *inode = d_backing_inode(path->dentry); 1712 struct common_audit_data ad; 1713 1714 ad.type = LSM_AUDIT_DATA_PATH; 1715 ad.u.path = *path; 1716 __inode_security_revalidate(inode, path->dentry, true); 1717 return inode_has_perm(cred, inode, av, &ad); 1718 } 1719 1720 /* Same as path_has_perm, but uses the inode from the file struct. */ 1721 static inline int file_path_has_perm(const struct cred *cred, 1722 struct file *file, 1723 u32 av) 1724 { 1725 struct common_audit_data ad; 1726 1727 ad.type = LSM_AUDIT_DATA_FILE; 1728 ad.u.file = file; 1729 return inode_has_perm(cred, file_inode(file), av, &ad); 1730 } 1731 1732 #ifdef CONFIG_BPF_SYSCALL 1733 static int bpf_fd_pass(struct file *file, u32 sid); 1734 #endif 1735 1736 /* Check whether a task can use an open file descriptor to 1737 access an inode in a given way. Check access to the 1738 descriptor itself, and then use dentry_has_perm to 1739 check a particular permission to the file. 1740 Access to the descriptor is implicitly granted if it 1741 has the same SID as the process. If av is zero, then 1742 access to the file is not checked, e.g. for cases 1743 where only the descriptor is affected like seek. */ 1744 static int file_has_perm(const struct cred *cred, 1745 struct file *file, 1746 u32 av) 1747 { 1748 struct file_security_struct *fsec = selinux_file(file); 1749 struct inode *inode = file_inode(file); 1750 struct common_audit_data ad; 1751 u32 sid = cred_sid(cred); 1752 int rc; 1753 1754 ad.type = LSM_AUDIT_DATA_FILE; 1755 ad.u.file = file; 1756 1757 if (sid != fsec->sid) { 1758 rc = avc_has_perm(&selinux_state, 1759 sid, fsec->sid, 1760 SECCLASS_FD, 1761 FD__USE, 1762 &ad); 1763 if (rc) 1764 goto out; 1765 } 1766 1767 #ifdef CONFIG_BPF_SYSCALL 1768 rc = bpf_fd_pass(file, cred_sid(cred)); 1769 if (rc) 1770 return rc; 1771 #endif 1772 1773 /* av is zero if only checking access to the descriptor. */ 1774 rc = 0; 1775 if (av) 1776 rc = inode_has_perm(cred, inode, av, &ad); 1777 1778 out: 1779 return rc; 1780 } 1781 1782 /* 1783 * Determine the label for an inode that might be unioned. 1784 */ 1785 static int 1786 selinux_determine_inode_label(const struct task_security_struct *tsec, 1787 struct inode *dir, 1788 const struct qstr *name, u16 tclass, 1789 u32 *_new_isid) 1790 { 1791 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1792 1793 if ((sbsec->flags & SE_SBINITIALIZED) && 1794 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1795 *_new_isid = sbsec->mntpoint_sid; 1796 } else if ((sbsec->flags & SBLABEL_MNT) && 1797 tsec->create_sid) { 1798 *_new_isid = tsec->create_sid; 1799 } else { 1800 const struct inode_security_struct *dsec = inode_security(dir); 1801 return security_transition_sid(&selinux_state, tsec->sid, 1802 dsec->sid, tclass, 1803 name, _new_isid); 1804 } 1805 1806 return 0; 1807 } 1808 1809 /* Check whether a task can create a file. */ 1810 static int may_create(struct inode *dir, 1811 struct dentry *dentry, 1812 u16 tclass) 1813 { 1814 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1815 struct inode_security_struct *dsec; 1816 struct superblock_security_struct *sbsec; 1817 u32 sid, newsid; 1818 struct common_audit_data ad; 1819 int rc; 1820 1821 dsec = inode_security(dir); 1822 sbsec = dir->i_sb->s_security; 1823 1824 sid = tsec->sid; 1825 1826 ad.type = LSM_AUDIT_DATA_DENTRY; 1827 ad.u.dentry = dentry; 1828 1829 rc = avc_has_perm(&selinux_state, 1830 sid, dsec->sid, SECCLASS_DIR, 1831 DIR__ADD_NAME | DIR__SEARCH, 1832 &ad); 1833 if (rc) 1834 return rc; 1835 1836 rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir, 1837 &dentry->d_name, tclass, &newsid); 1838 if (rc) 1839 return rc; 1840 1841 rc = avc_has_perm(&selinux_state, 1842 sid, newsid, tclass, FILE__CREATE, &ad); 1843 if (rc) 1844 return rc; 1845 1846 return avc_has_perm(&selinux_state, 1847 newsid, sbsec->sid, 1848 SECCLASS_FILESYSTEM, 1849 FILESYSTEM__ASSOCIATE, &ad); 1850 } 1851 1852 #define MAY_LINK 0 1853 #define MAY_UNLINK 1 1854 #define MAY_RMDIR 2 1855 1856 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1857 static int may_link(struct inode *dir, 1858 struct dentry *dentry, 1859 int kind) 1860 1861 { 1862 struct inode_security_struct *dsec, *isec; 1863 struct common_audit_data ad; 1864 u32 sid = current_sid(); 1865 u32 av; 1866 int rc; 1867 1868 dsec = inode_security(dir); 1869 isec = backing_inode_security(dentry); 1870 1871 ad.type = LSM_AUDIT_DATA_DENTRY; 1872 ad.u.dentry = dentry; 1873 1874 av = DIR__SEARCH; 1875 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1876 rc = avc_has_perm(&selinux_state, 1877 sid, dsec->sid, SECCLASS_DIR, av, &ad); 1878 if (rc) 1879 return rc; 1880 1881 switch (kind) { 1882 case MAY_LINK: 1883 av = FILE__LINK; 1884 break; 1885 case MAY_UNLINK: 1886 av = FILE__UNLINK; 1887 break; 1888 case MAY_RMDIR: 1889 av = DIR__RMDIR; 1890 break; 1891 default: 1892 pr_warn("SELinux: %s: unrecognized kind %d\n", 1893 __func__, kind); 1894 return 0; 1895 } 1896 1897 rc = avc_has_perm(&selinux_state, 1898 sid, isec->sid, isec->sclass, av, &ad); 1899 return rc; 1900 } 1901 1902 static inline int may_rename(struct inode *old_dir, 1903 struct dentry *old_dentry, 1904 struct inode *new_dir, 1905 struct dentry *new_dentry) 1906 { 1907 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1908 struct common_audit_data ad; 1909 u32 sid = current_sid(); 1910 u32 av; 1911 int old_is_dir, new_is_dir; 1912 int rc; 1913 1914 old_dsec = inode_security(old_dir); 1915 old_isec = backing_inode_security(old_dentry); 1916 old_is_dir = d_is_dir(old_dentry); 1917 new_dsec = inode_security(new_dir); 1918 1919 ad.type = LSM_AUDIT_DATA_DENTRY; 1920 1921 ad.u.dentry = old_dentry; 1922 rc = avc_has_perm(&selinux_state, 1923 sid, old_dsec->sid, SECCLASS_DIR, 1924 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1925 if (rc) 1926 return rc; 1927 rc = avc_has_perm(&selinux_state, 1928 sid, old_isec->sid, 1929 old_isec->sclass, FILE__RENAME, &ad); 1930 if (rc) 1931 return rc; 1932 if (old_is_dir && new_dir != old_dir) { 1933 rc = avc_has_perm(&selinux_state, 1934 sid, old_isec->sid, 1935 old_isec->sclass, DIR__REPARENT, &ad); 1936 if (rc) 1937 return rc; 1938 } 1939 1940 ad.u.dentry = new_dentry; 1941 av = DIR__ADD_NAME | DIR__SEARCH; 1942 if (d_is_positive(new_dentry)) 1943 av |= DIR__REMOVE_NAME; 1944 rc = avc_has_perm(&selinux_state, 1945 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1946 if (rc) 1947 return rc; 1948 if (d_is_positive(new_dentry)) { 1949 new_isec = backing_inode_security(new_dentry); 1950 new_is_dir = d_is_dir(new_dentry); 1951 rc = avc_has_perm(&selinux_state, 1952 sid, new_isec->sid, 1953 new_isec->sclass, 1954 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1955 if (rc) 1956 return rc; 1957 } 1958 1959 return 0; 1960 } 1961 1962 /* Check whether a task can perform a filesystem operation. */ 1963 static int superblock_has_perm(const struct cred *cred, 1964 struct super_block *sb, 1965 u32 perms, 1966 struct common_audit_data *ad) 1967 { 1968 struct superblock_security_struct *sbsec; 1969 u32 sid = cred_sid(cred); 1970 1971 sbsec = sb->s_security; 1972 return avc_has_perm(&selinux_state, 1973 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1974 } 1975 1976 /* Convert a Linux mode and permission mask to an access vector. */ 1977 static inline u32 file_mask_to_av(int mode, int mask) 1978 { 1979 u32 av = 0; 1980 1981 if (!S_ISDIR(mode)) { 1982 if (mask & MAY_EXEC) 1983 av |= FILE__EXECUTE; 1984 if (mask & MAY_READ) 1985 av |= FILE__READ; 1986 1987 if (mask & MAY_APPEND) 1988 av |= FILE__APPEND; 1989 else if (mask & MAY_WRITE) 1990 av |= FILE__WRITE; 1991 1992 } else { 1993 if (mask & MAY_EXEC) 1994 av |= DIR__SEARCH; 1995 if (mask & MAY_WRITE) 1996 av |= DIR__WRITE; 1997 if (mask & MAY_READ) 1998 av |= DIR__READ; 1999 } 2000 2001 return av; 2002 } 2003 2004 /* Convert a Linux file to an access vector. */ 2005 static inline u32 file_to_av(struct file *file) 2006 { 2007 u32 av = 0; 2008 2009 if (file->f_mode & FMODE_READ) 2010 av |= FILE__READ; 2011 if (file->f_mode & FMODE_WRITE) { 2012 if (file->f_flags & O_APPEND) 2013 av |= FILE__APPEND; 2014 else 2015 av |= FILE__WRITE; 2016 } 2017 if (!av) { 2018 /* 2019 * Special file opened with flags 3 for ioctl-only use. 2020 */ 2021 av = FILE__IOCTL; 2022 } 2023 2024 return av; 2025 } 2026 2027 /* 2028 * Convert a file to an access vector and include the correct open 2029 * open permission. 2030 */ 2031 static inline u32 open_file_to_av(struct file *file) 2032 { 2033 u32 av = file_to_av(file); 2034 struct inode *inode = file_inode(file); 2035 2036 if (selinux_policycap_openperm() && 2037 inode->i_sb->s_magic != SOCKFS_MAGIC) 2038 av |= FILE__OPEN; 2039 2040 return av; 2041 } 2042 2043 /* Hook functions begin here. */ 2044 2045 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 2046 { 2047 u32 mysid = current_sid(); 2048 u32 mgrsid = task_sid(mgr); 2049 2050 return avc_has_perm(&selinux_state, 2051 mysid, mgrsid, SECCLASS_BINDER, 2052 BINDER__SET_CONTEXT_MGR, NULL); 2053 } 2054 2055 static int selinux_binder_transaction(struct task_struct *from, 2056 struct task_struct *to) 2057 { 2058 u32 mysid = current_sid(); 2059 u32 fromsid = task_sid(from); 2060 u32 tosid = task_sid(to); 2061 int rc; 2062 2063 if (mysid != fromsid) { 2064 rc = avc_has_perm(&selinux_state, 2065 mysid, fromsid, SECCLASS_BINDER, 2066 BINDER__IMPERSONATE, NULL); 2067 if (rc) 2068 return rc; 2069 } 2070 2071 return avc_has_perm(&selinux_state, 2072 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2073 NULL); 2074 } 2075 2076 static int selinux_binder_transfer_binder(struct task_struct *from, 2077 struct task_struct *to) 2078 { 2079 u32 fromsid = task_sid(from); 2080 u32 tosid = task_sid(to); 2081 2082 return avc_has_perm(&selinux_state, 2083 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2084 NULL); 2085 } 2086 2087 static int selinux_binder_transfer_file(struct task_struct *from, 2088 struct task_struct *to, 2089 struct file *file) 2090 { 2091 u32 sid = task_sid(to); 2092 struct file_security_struct *fsec = selinux_file(file); 2093 struct dentry *dentry = file->f_path.dentry; 2094 struct inode_security_struct *isec; 2095 struct common_audit_data ad; 2096 int rc; 2097 2098 ad.type = LSM_AUDIT_DATA_PATH; 2099 ad.u.path = file->f_path; 2100 2101 if (sid != fsec->sid) { 2102 rc = avc_has_perm(&selinux_state, 2103 sid, fsec->sid, 2104 SECCLASS_FD, 2105 FD__USE, 2106 &ad); 2107 if (rc) 2108 return rc; 2109 } 2110 2111 #ifdef CONFIG_BPF_SYSCALL 2112 rc = bpf_fd_pass(file, sid); 2113 if (rc) 2114 return rc; 2115 #endif 2116 2117 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2118 return 0; 2119 2120 isec = backing_inode_security(dentry); 2121 return avc_has_perm(&selinux_state, 2122 sid, isec->sid, isec->sclass, file_to_av(file), 2123 &ad); 2124 } 2125 2126 static int selinux_ptrace_access_check(struct task_struct *child, 2127 unsigned int mode) 2128 { 2129 u32 sid = current_sid(); 2130 u32 csid = task_sid(child); 2131 2132 if (mode & PTRACE_MODE_READ) 2133 return avc_has_perm(&selinux_state, 2134 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2135 2136 return avc_has_perm(&selinux_state, 2137 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2138 } 2139 2140 static int selinux_ptrace_traceme(struct task_struct *parent) 2141 { 2142 return avc_has_perm(&selinux_state, 2143 task_sid(parent), current_sid(), SECCLASS_PROCESS, 2144 PROCESS__PTRACE, NULL); 2145 } 2146 2147 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2148 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2149 { 2150 return avc_has_perm(&selinux_state, 2151 current_sid(), task_sid(target), SECCLASS_PROCESS, 2152 PROCESS__GETCAP, NULL); 2153 } 2154 2155 static int selinux_capset(struct cred *new, const struct cred *old, 2156 const kernel_cap_t *effective, 2157 const kernel_cap_t *inheritable, 2158 const kernel_cap_t *permitted) 2159 { 2160 return avc_has_perm(&selinux_state, 2161 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2162 PROCESS__SETCAP, NULL); 2163 } 2164 2165 /* 2166 * (This comment used to live with the selinux_task_setuid hook, 2167 * which was removed). 2168 * 2169 * Since setuid only affects the current process, and since the SELinux 2170 * controls are not based on the Linux identity attributes, SELinux does not 2171 * need to control this operation. However, SELinux does control the use of 2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2173 */ 2174 2175 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2176 int cap, unsigned int opts) 2177 { 2178 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2179 } 2180 2181 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2182 { 2183 const struct cred *cred = current_cred(); 2184 int rc = 0; 2185 2186 if (!sb) 2187 return 0; 2188 2189 switch (cmds) { 2190 case Q_SYNC: 2191 case Q_QUOTAON: 2192 case Q_QUOTAOFF: 2193 case Q_SETINFO: 2194 case Q_SETQUOTA: 2195 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2196 break; 2197 case Q_GETFMT: 2198 case Q_GETINFO: 2199 case Q_GETQUOTA: 2200 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2201 break; 2202 default: 2203 rc = 0; /* let the kernel handle invalid cmds */ 2204 break; 2205 } 2206 return rc; 2207 } 2208 2209 static int selinux_quota_on(struct dentry *dentry) 2210 { 2211 const struct cred *cred = current_cred(); 2212 2213 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2214 } 2215 2216 static int selinux_syslog(int type) 2217 { 2218 switch (type) { 2219 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2220 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2221 return avc_has_perm(&selinux_state, 2222 current_sid(), SECINITSID_KERNEL, 2223 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2224 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2225 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2226 /* Set level of messages printed to console */ 2227 case SYSLOG_ACTION_CONSOLE_LEVEL: 2228 return avc_has_perm(&selinux_state, 2229 current_sid(), SECINITSID_KERNEL, 2230 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2231 NULL); 2232 } 2233 /* All other syslog types */ 2234 return avc_has_perm(&selinux_state, 2235 current_sid(), SECINITSID_KERNEL, 2236 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2237 } 2238 2239 /* 2240 * Check that a process has enough memory to allocate a new virtual 2241 * mapping. 0 means there is enough memory for the allocation to 2242 * succeed and -ENOMEM implies there is not. 2243 * 2244 * Do not audit the selinux permission check, as this is applied to all 2245 * processes that allocate mappings. 2246 */ 2247 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2248 { 2249 int rc, cap_sys_admin = 0; 2250 2251 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2252 CAP_OPT_NOAUDIT, true); 2253 if (rc == 0) 2254 cap_sys_admin = 1; 2255 2256 return cap_sys_admin; 2257 } 2258 2259 /* binprm security operations */ 2260 2261 static u32 ptrace_parent_sid(void) 2262 { 2263 u32 sid = 0; 2264 struct task_struct *tracer; 2265 2266 rcu_read_lock(); 2267 tracer = ptrace_parent(current); 2268 if (tracer) 2269 sid = task_sid(tracer); 2270 rcu_read_unlock(); 2271 2272 return sid; 2273 } 2274 2275 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2276 const struct task_security_struct *old_tsec, 2277 const struct task_security_struct *new_tsec) 2278 { 2279 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2280 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2281 int rc; 2282 u32 av; 2283 2284 if (!nnp && !nosuid) 2285 return 0; /* neither NNP nor nosuid */ 2286 2287 if (new_tsec->sid == old_tsec->sid) 2288 return 0; /* No change in credentials */ 2289 2290 /* 2291 * If the policy enables the nnp_nosuid_transition policy capability, 2292 * then we permit transitions under NNP or nosuid if the 2293 * policy allows the corresponding permission between 2294 * the old and new contexts. 2295 */ 2296 if (selinux_policycap_nnp_nosuid_transition()) { 2297 av = 0; 2298 if (nnp) 2299 av |= PROCESS2__NNP_TRANSITION; 2300 if (nosuid) 2301 av |= PROCESS2__NOSUID_TRANSITION; 2302 rc = avc_has_perm(&selinux_state, 2303 old_tsec->sid, new_tsec->sid, 2304 SECCLASS_PROCESS2, av, NULL); 2305 if (!rc) 2306 return 0; 2307 } 2308 2309 /* 2310 * We also permit NNP or nosuid transitions to bounded SIDs, 2311 * i.e. SIDs that are guaranteed to only be allowed a subset 2312 * of the permissions of the current SID. 2313 */ 2314 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2315 new_tsec->sid); 2316 if (!rc) 2317 return 0; 2318 2319 /* 2320 * On failure, preserve the errno values for NNP vs nosuid. 2321 * NNP: Operation not permitted for caller. 2322 * nosuid: Permission denied to file. 2323 */ 2324 if (nnp) 2325 return -EPERM; 2326 return -EACCES; 2327 } 2328 2329 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2330 { 2331 const struct task_security_struct *old_tsec; 2332 struct task_security_struct *new_tsec; 2333 struct inode_security_struct *isec; 2334 struct common_audit_data ad; 2335 struct inode *inode = file_inode(bprm->file); 2336 int rc; 2337 2338 /* SELinux context only depends on initial program or script and not 2339 * the script interpreter */ 2340 if (bprm->called_set_creds) 2341 return 0; 2342 2343 old_tsec = selinux_cred(current_cred()); 2344 new_tsec = selinux_cred(bprm->cred); 2345 isec = inode_security(inode); 2346 2347 /* Default to the current task SID. */ 2348 new_tsec->sid = old_tsec->sid; 2349 new_tsec->osid = old_tsec->sid; 2350 2351 /* Reset fs, key, and sock SIDs on execve. */ 2352 new_tsec->create_sid = 0; 2353 new_tsec->keycreate_sid = 0; 2354 new_tsec->sockcreate_sid = 0; 2355 2356 if (old_tsec->exec_sid) { 2357 new_tsec->sid = old_tsec->exec_sid; 2358 /* Reset exec SID on execve. */ 2359 new_tsec->exec_sid = 0; 2360 2361 /* Fail on NNP or nosuid if not an allowed transition. */ 2362 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2363 if (rc) 2364 return rc; 2365 } else { 2366 /* Check for a default transition on this program. */ 2367 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2368 isec->sid, SECCLASS_PROCESS, NULL, 2369 &new_tsec->sid); 2370 if (rc) 2371 return rc; 2372 2373 /* 2374 * Fallback to old SID on NNP or nosuid if not an allowed 2375 * transition. 2376 */ 2377 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2378 if (rc) 2379 new_tsec->sid = old_tsec->sid; 2380 } 2381 2382 ad.type = LSM_AUDIT_DATA_FILE; 2383 ad.u.file = bprm->file; 2384 2385 if (new_tsec->sid == old_tsec->sid) { 2386 rc = avc_has_perm(&selinux_state, 2387 old_tsec->sid, isec->sid, 2388 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2389 if (rc) 2390 return rc; 2391 } else { 2392 /* Check permissions for the transition. */ 2393 rc = avc_has_perm(&selinux_state, 2394 old_tsec->sid, new_tsec->sid, 2395 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2396 if (rc) 2397 return rc; 2398 2399 rc = avc_has_perm(&selinux_state, 2400 new_tsec->sid, isec->sid, 2401 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2402 if (rc) 2403 return rc; 2404 2405 /* Check for shared state */ 2406 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2407 rc = avc_has_perm(&selinux_state, 2408 old_tsec->sid, new_tsec->sid, 2409 SECCLASS_PROCESS, PROCESS__SHARE, 2410 NULL); 2411 if (rc) 2412 return -EPERM; 2413 } 2414 2415 /* Make sure that anyone attempting to ptrace over a task that 2416 * changes its SID has the appropriate permit */ 2417 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2418 u32 ptsid = ptrace_parent_sid(); 2419 if (ptsid != 0) { 2420 rc = avc_has_perm(&selinux_state, 2421 ptsid, new_tsec->sid, 2422 SECCLASS_PROCESS, 2423 PROCESS__PTRACE, NULL); 2424 if (rc) 2425 return -EPERM; 2426 } 2427 } 2428 2429 /* Clear any possibly unsafe personality bits on exec: */ 2430 bprm->per_clear |= PER_CLEAR_ON_SETID; 2431 2432 /* Enable secure mode for SIDs transitions unless 2433 the noatsecure permission is granted between 2434 the two SIDs, i.e. ahp returns 0. */ 2435 rc = avc_has_perm(&selinux_state, 2436 old_tsec->sid, new_tsec->sid, 2437 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2438 NULL); 2439 bprm->secureexec |= !!rc; 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int match_file(const void *p, struct file *file, unsigned fd) 2446 { 2447 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2448 } 2449 2450 /* Derived from fs/exec.c:flush_old_files. */ 2451 static inline void flush_unauthorized_files(const struct cred *cred, 2452 struct files_struct *files) 2453 { 2454 struct file *file, *devnull = NULL; 2455 struct tty_struct *tty; 2456 int drop_tty = 0; 2457 unsigned n; 2458 2459 tty = get_current_tty(); 2460 if (tty) { 2461 spin_lock(&tty->files_lock); 2462 if (!list_empty(&tty->tty_files)) { 2463 struct tty_file_private *file_priv; 2464 2465 /* Revalidate access to controlling tty. 2466 Use file_path_has_perm on the tty path directly 2467 rather than using file_has_perm, as this particular 2468 open file may belong to another process and we are 2469 only interested in the inode-based check here. */ 2470 file_priv = list_first_entry(&tty->tty_files, 2471 struct tty_file_private, list); 2472 file = file_priv->file; 2473 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2474 drop_tty = 1; 2475 } 2476 spin_unlock(&tty->files_lock); 2477 tty_kref_put(tty); 2478 } 2479 /* Reset controlling tty. */ 2480 if (drop_tty) 2481 no_tty(); 2482 2483 /* Revalidate access to inherited open files. */ 2484 n = iterate_fd(files, 0, match_file, cred); 2485 if (!n) /* none found? */ 2486 return; 2487 2488 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2489 if (IS_ERR(devnull)) 2490 devnull = NULL; 2491 /* replace all the matching ones with this */ 2492 do { 2493 replace_fd(n - 1, devnull, 0); 2494 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2495 if (devnull) 2496 fput(devnull); 2497 } 2498 2499 /* 2500 * Prepare a process for imminent new credential changes due to exec 2501 */ 2502 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2503 { 2504 struct task_security_struct *new_tsec; 2505 struct rlimit *rlim, *initrlim; 2506 int rc, i; 2507 2508 new_tsec = selinux_cred(bprm->cred); 2509 if (new_tsec->sid == new_tsec->osid) 2510 return; 2511 2512 /* Close files for which the new task SID is not authorized. */ 2513 flush_unauthorized_files(bprm->cred, current->files); 2514 2515 /* Always clear parent death signal on SID transitions. */ 2516 current->pdeath_signal = 0; 2517 2518 /* Check whether the new SID can inherit resource limits from the old 2519 * SID. If not, reset all soft limits to the lower of the current 2520 * task's hard limit and the init task's soft limit. 2521 * 2522 * Note that the setting of hard limits (even to lower them) can be 2523 * controlled by the setrlimit check. The inclusion of the init task's 2524 * soft limit into the computation is to avoid resetting soft limits 2525 * higher than the default soft limit for cases where the default is 2526 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2527 */ 2528 rc = avc_has_perm(&selinux_state, 2529 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2530 PROCESS__RLIMITINH, NULL); 2531 if (rc) { 2532 /* protect against do_prlimit() */ 2533 task_lock(current); 2534 for (i = 0; i < RLIM_NLIMITS; i++) { 2535 rlim = current->signal->rlim + i; 2536 initrlim = init_task.signal->rlim + i; 2537 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2538 } 2539 task_unlock(current); 2540 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2541 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2542 } 2543 } 2544 2545 /* 2546 * Clean up the process immediately after the installation of new credentials 2547 * due to exec 2548 */ 2549 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2550 { 2551 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2552 struct itimerval itimer; 2553 u32 osid, sid; 2554 int rc, i; 2555 2556 osid = tsec->osid; 2557 sid = tsec->sid; 2558 2559 if (sid == osid) 2560 return; 2561 2562 /* Check whether the new SID can inherit signal state from the old SID. 2563 * If not, clear itimers to avoid subsequent signal generation and 2564 * flush and unblock signals. 2565 * 2566 * This must occur _after_ the task SID has been updated so that any 2567 * kill done after the flush will be checked against the new SID. 2568 */ 2569 rc = avc_has_perm(&selinux_state, 2570 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2571 if (rc) { 2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) { 2573 memset(&itimer, 0, sizeof itimer); 2574 for (i = 0; i < 3; i++) 2575 do_setitimer(i, &itimer, NULL); 2576 } 2577 spin_lock_irq(¤t->sighand->siglock); 2578 if (!fatal_signal_pending(current)) { 2579 flush_sigqueue(¤t->pending); 2580 flush_sigqueue(¤t->signal->shared_pending); 2581 flush_signal_handlers(current, 1); 2582 sigemptyset(¤t->blocked); 2583 recalc_sigpending(); 2584 } 2585 spin_unlock_irq(¤t->sighand->siglock); 2586 } 2587 2588 /* Wake up the parent if it is waiting so that it can recheck 2589 * wait permission to the new task SID. */ 2590 read_lock(&tasklist_lock); 2591 __wake_up_parent(current, current->real_parent); 2592 read_unlock(&tasklist_lock); 2593 } 2594 2595 /* superblock security operations */ 2596 2597 static int selinux_sb_alloc_security(struct super_block *sb) 2598 { 2599 return superblock_alloc_security(sb); 2600 } 2601 2602 static void selinux_sb_free_security(struct super_block *sb) 2603 { 2604 superblock_free_security(sb); 2605 } 2606 2607 static inline int opt_len(const char *s) 2608 { 2609 bool open_quote = false; 2610 int len; 2611 char c; 2612 2613 for (len = 0; (c = s[len]) != '\0'; len++) { 2614 if (c == '"') 2615 open_quote = !open_quote; 2616 if (c == ',' && !open_quote) 2617 break; 2618 } 2619 return len; 2620 } 2621 2622 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2623 { 2624 char *from = options; 2625 char *to = options; 2626 bool first = true; 2627 int rc; 2628 2629 while (1) { 2630 int len = opt_len(from); 2631 int token; 2632 char *arg = NULL; 2633 2634 token = match_opt_prefix(from, len, &arg); 2635 2636 if (token != Opt_error) { 2637 char *p, *q; 2638 2639 /* strip quotes */ 2640 if (arg) { 2641 for (p = q = arg; p < from + len; p++) { 2642 char c = *p; 2643 if (c != '"') 2644 *q++ = c; 2645 } 2646 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2647 if (!arg) { 2648 rc = -ENOMEM; 2649 goto free_opt; 2650 } 2651 } 2652 rc = selinux_add_opt(token, arg, mnt_opts); 2653 if (unlikely(rc)) { 2654 kfree(arg); 2655 goto free_opt; 2656 } 2657 } else { 2658 if (!first) { // copy with preceding comma 2659 from--; 2660 len++; 2661 } 2662 if (to != from) 2663 memmove(to, from, len); 2664 to += len; 2665 first = false; 2666 } 2667 if (!from[len]) 2668 break; 2669 from += len + 1; 2670 } 2671 *to = '\0'; 2672 return 0; 2673 2674 free_opt: 2675 if (*mnt_opts) { 2676 selinux_free_mnt_opts(*mnt_opts); 2677 *mnt_opts = NULL; 2678 } 2679 return rc; 2680 } 2681 2682 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2683 { 2684 struct selinux_mnt_opts *opts = mnt_opts; 2685 struct superblock_security_struct *sbsec = sb->s_security; 2686 u32 sid; 2687 int rc; 2688 2689 if (!(sbsec->flags & SE_SBINITIALIZED)) 2690 return 0; 2691 2692 if (!opts) 2693 return 0; 2694 2695 if (opts->fscontext) { 2696 rc = parse_sid(sb, opts->fscontext, &sid); 2697 if (rc) 2698 return rc; 2699 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2700 goto out_bad_option; 2701 } 2702 if (opts->context) { 2703 rc = parse_sid(sb, opts->context, &sid); 2704 if (rc) 2705 return rc; 2706 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2707 goto out_bad_option; 2708 } 2709 if (opts->rootcontext) { 2710 struct inode_security_struct *root_isec; 2711 root_isec = backing_inode_security(sb->s_root); 2712 rc = parse_sid(sb, opts->rootcontext, &sid); 2713 if (rc) 2714 return rc; 2715 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2716 goto out_bad_option; 2717 } 2718 if (opts->defcontext) { 2719 rc = parse_sid(sb, opts->defcontext, &sid); 2720 if (rc) 2721 return rc; 2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2723 goto out_bad_option; 2724 } 2725 return 0; 2726 2727 out_bad_option: 2728 pr_warn("SELinux: unable to change security options " 2729 "during remount (dev %s, type=%s)\n", sb->s_id, 2730 sb->s_type->name); 2731 return -EINVAL; 2732 } 2733 2734 static int selinux_sb_kern_mount(struct super_block *sb) 2735 { 2736 const struct cred *cred = current_cred(); 2737 struct common_audit_data ad; 2738 2739 ad.type = LSM_AUDIT_DATA_DENTRY; 2740 ad.u.dentry = sb->s_root; 2741 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2742 } 2743 2744 static int selinux_sb_statfs(struct dentry *dentry) 2745 { 2746 const struct cred *cred = current_cred(); 2747 struct common_audit_data ad; 2748 2749 ad.type = LSM_AUDIT_DATA_DENTRY; 2750 ad.u.dentry = dentry->d_sb->s_root; 2751 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2752 } 2753 2754 static int selinux_mount(const char *dev_name, 2755 const struct path *path, 2756 const char *type, 2757 unsigned long flags, 2758 void *data) 2759 { 2760 const struct cred *cred = current_cred(); 2761 2762 if (flags & MS_REMOUNT) 2763 return superblock_has_perm(cred, path->dentry->d_sb, 2764 FILESYSTEM__REMOUNT, NULL); 2765 else 2766 return path_has_perm(cred, path, FILE__MOUNTON); 2767 } 2768 2769 static int selinux_umount(struct vfsmount *mnt, int flags) 2770 { 2771 const struct cred *cred = current_cred(); 2772 2773 return superblock_has_perm(cred, mnt->mnt_sb, 2774 FILESYSTEM__UNMOUNT, NULL); 2775 } 2776 2777 static int selinux_fs_context_dup(struct fs_context *fc, 2778 struct fs_context *src_fc) 2779 { 2780 const struct selinux_mnt_opts *src = src_fc->security; 2781 struct selinux_mnt_opts *opts; 2782 2783 if (!src) 2784 return 0; 2785 2786 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 2787 if (!fc->security) 2788 return -ENOMEM; 2789 2790 opts = fc->security; 2791 2792 if (src->fscontext) { 2793 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); 2794 if (!opts->fscontext) 2795 return -ENOMEM; 2796 } 2797 if (src->context) { 2798 opts->context = kstrdup(src->context, GFP_KERNEL); 2799 if (!opts->context) 2800 return -ENOMEM; 2801 } 2802 if (src->rootcontext) { 2803 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); 2804 if (!opts->rootcontext) 2805 return -ENOMEM; 2806 } 2807 if (src->defcontext) { 2808 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); 2809 if (!opts->defcontext) 2810 return -ENOMEM; 2811 } 2812 return 0; 2813 } 2814 2815 static const struct fs_parameter_spec selinux_param_specs[] = { 2816 fsparam_string(CONTEXT_STR, Opt_context), 2817 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2818 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2819 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2820 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2821 {} 2822 }; 2823 2824 static const struct fs_parameter_description selinux_fs_parameters = { 2825 .name = "SELinux", 2826 .specs = selinux_param_specs, 2827 }; 2828 2829 static int selinux_fs_context_parse_param(struct fs_context *fc, 2830 struct fs_parameter *param) 2831 { 2832 struct fs_parse_result result; 2833 int opt, rc; 2834 2835 opt = fs_parse(fc, &selinux_fs_parameters, param, &result); 2836 if (opt < 0) 2837 return opt; 2838 2839 rc = selinux_add_opt(opt, param->string, &fc->security); 2840 if (!rc) { 2841 param->string = NULL; 2842 rc = 1; 2843 } 2844 return rc; 2845 } 2846 2847 /* inode security operations */ 2848 2849 static int selinux_inode_alloc_security(struct inode *inode) 2850 { 2851 return inode_alloc_security(inode); 2852 } 2853 2854 static void selinux_inode_free_security(struct inode *inode) 2855 { 2856 inode_free_security(inode); 2857 } 2858 2859 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2860 const struct qstr *name, void **ctx, 2861 u32 *ctxlen) 2862 { 2863 u32 newsid; 2864 int rc; 2865 2866 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2867 d_inode(dentry->d_parent), name, 2868 inode_mode_to_security_class(mode), 2869 &newsid); 2870 if (rc) 2871 return rc; 2872 2873 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2874 ctxlen); 2875 } 2876 2877 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2878 struct qstr *name, 2879 const struct cred *old, 2880 struct cred *new) 2881 { 2882 u32 newsid; 2883 int rc; 2884 struct task_security_struct *tsec; 2885 2886 rc = selinux_determine_inode_label(selinux_cred(old), 2887 d_inode(dentry->d_parent), name, 2888 inode_mode_to_security_class(mode), 2889 &newsid); 2890 if (rc) 2891 return rc; 2892 2893 tsec = selinux_cred(new); 2894 tsec->create_sid = newsid; 2895 return 0; 2896 } 2897 2898 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2899 const struct qstr *qstr, 2900 const char **name, 2901 void **value, size_t *len) 2902 { 2903 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2904 struct superblock_security_struct *sbsec; 2905 u32 newsid, clen; 2906 int rc; 2907 char *context; 2908 2909 sbsec = dir->i_sb->s_security; 2910 2911 newsid = tsec->create_sid; 2912 2913 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2914 dir, qstr, 2915 inode_mode_to_security_class(inode->i_mode), 2916 &newsid); 2917 if (rc) 2918 return rc; 2919 2920 /* Possibly defer initialization to selinux_complete_init. */ 2921 if (sbsec->flags & SE_SBINITIALIZED) { 2922 struct inode_security_struct *isec = selinux_inode(inode); 2923 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2924 isec->sid = newsid; 2925 isec->initialized = LABEL_INITIALIZED; 2926 } 2927 2928 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT)) 2929 return -EOPNOTSUPP; 2930 2931 if (name) 2932 *name = XATTR_SELINUX_SUFFIX; 2933 2934 if (value && len) { 2935 rc = security_sid_to_context_force(&selinux_state, newsid, 2936 &context, &clen); 2937 if (rc) 2938 return rc; 2939 *value = context; 2940 *len = clen; 2941 } 2942 2943 return 0; 2944 } 2945 2946 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2947 { 2948 return may_create(dir, dentry, SECCLASS_FILE); 2949 } 2950 2951 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2952 { 2953 return may_link(dir, old_dentry, MAY_LINK); 2954 } 2955 2956 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2957 { 2958 return may_link(dir, dentry, MAY_UNLINK); 2959 } 2960 2961 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2962 { 2963 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2964 } 2965 2966 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2967 { 2968 return may_create(dir, dentry, SECCLASS_DIR); 2969 } 2970 2971 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2972 { 2973 return may_link(dir, dentry, MAY_RMDIR); 2974 } 2975 2976 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2977 { 2978 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2979 } 2980 2981 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2982 struct inode *new_inode, struct dentry *new_dentry) 2983 { 2984 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2985 } 2986 2987 static int selinux_inode_readlink(struct dentry *dentry) 2988 { 2989 const struct cred *cred = current_cred(); 2990 2991 return dentry_has_perm(cred, dentry, FILE__READ); 2992 } 2993 2994 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2995 bool rcu) 2996 { 2997 const struct cred *cred = current_cred(); 2998 struct common_audit_data ad; 2999 struct inode_security_struct *isec; 3000 u32 sid; 3001 3002 validate_creds(cred); 3003 3004 ad.type = LSM_AUDIT_DATA_DENTRY; 3005 ad.u.dentry = dentry; 3006 sid = cred_sid(cred); 3007 isec = inode_security_rcu(inode, rcu); 3008 if (IS_ERR(isec)) 3009 return PTR_ERR(isec); 3010 3011 return avc_has_perm(&selinux_state, 3012 sid, isec->sid, isec->sclass, FILE__READ, &ad); 3013 } 3014 3015 static noinline int audit_inode_permission(struct inode *inode, 3016 u32 perms, u32 audited, u32 denied, 3017 int result, 3018 unsigned flags) 3019 { 3020 struct common_audit_data ad; 3021 struct inode_security_struct *isec = selinux_inode(inode); 3022 int rc; 3023 3024 ad.type = LSM_AUDIT_DATA_INODE; 3025 ad.u.inode = inode; 3026 3027 rc = slow_avc_audit(&selinux_state, 3028 current_sid(), isec->sid, isec->sclass, perms, 3029 audited, denied, result, &ad, flags); 3030 if (rc) 3031 return rc; 3032 return 0; 3033 } 3034 3035 static int selinux_inode_permission(struct inode *inode, int mask) 3036 { 3037 const struct cred *cred = current_cred(); 3038 u32 perms; 3039 bool from_access; 3040 unsigned flags = mask & MAY_NOT_BLOCK; 3041 struct inode_security_struct *isec; 3042 u32 sid; 3043 struct av_decision avd; 3044 int rc, rc2; 3045 u32 audited, denied; 3046 3047 from_access = mask & MAY_ACCESS; 3048 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3049 3050 /* No permission to check. Existence test. */ 3051 if (!mask) 3052 return 0; 3053 3054 validate_creds(cred); 3055 3056 if (unlikely(IS_PRIVATE(inode))) 3057 return 0; 3058 3059 perms = file_mask_to_av(inode->i_mode, mask); 3060 3061 sid = cred_sid(cred); 3062 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK); 3063 if (IS_ERR(isec)) 3064 return PTR_ERR(isec); 3065 3066 rc = avc_has_perm_noaudit(&selinux_state, 3067 sid, isec->sid, isec->sclass, perms, 3068 (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0, 3069 &avd); 3070 audited = avc_audit_required(perms, &avd, rc, 3071 from_access ? FILE__AUDIT_ACCESS : 0, 3072 &denied); 3073 if (likely(!audited)) 3074 return rc; 3075 3076 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 3077 if (rc2) 3078 return rc2; 3079 return rc; 3080 } 3081 3082 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3083 { 3084 const struct cred *cred = current_cred(); 3085 struct inode *inode = d_backing_inode(dentry); 3086 unsigned int ia_valid = iattr->ia_valid; 3087 __u32 av = FILE__WRITE; 3088 3089 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3090 if (ia_valid & ATTR_FORCE) { 3091 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3092 ATTR_FORCE); 3093 if (!ia_valid) 3094 return 0; 3095 } 3096 3097 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3098 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3099 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3100 3101 if (selinux_policycap_openperm() && 3102 inode->i_sb->s_magic != SOCKFS_MAGIC && 3103 (ia_valid & ATTR_SIZE) && 3104 !(ia_valid & ATTR_FILE)) 3105 av |= FILE__OPEN; 3106 3107 return dentry_has_perm(cred, dentry, av); 3108 } 3109 3110 static int selinux_inode_getattr(const struct path *path) 3111 { 3112 return path_has_perm(current_cred(), path, FILE__GETATTR); 3113 } 3114 3115 static bool has_cap_mac_admin(bool audit) 3116 { 3117 const struct cred *cred = current_cred(); 3118 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3119 3120 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3121 return false; 3122 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3123 return false; 3124 return true; 3125 } 3126 3127 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3128 const void *value, size_t size, int flags) 3129 { 3130 struct inode *inode = d_backing_inode(dentry); 3131 struct inode_security_struct *isec; 3132 struct superblock_security_struct *sbsec; 3133 struct common_audit_data ad; 3134 u32 newsid, sid = current_sid(); 3135 int rc = 0; 3136 3137 if (strcmp(name, XATTR_NAME_SELINUX)) { 3138 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3139 if (rc) 3140 return rc; 3141 3142 /* Not an attribute we recognize, so just check the 3143 ordinary setattr permission. */ 3144 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3145 } 3146 3147 sbsec = inode->i_sb->s_security; 3148 if (!(sbsec->flags & SBLABEL_MNT)) 3149 return -EOPNOTSUPP; 3150 3151 if (!inode_owner_or_capable(inode)) 3152 return -EPERM; 3153 3154 ad.type = LSM_AUDIT_DATA_DENTRY; 3155 ad.u.dentry = dentry; 3156 3157 isec = backing_inode_security(dentry); 3158 rc = avc_has_perm(&selinux_state, 3159 sid, isec->sid, isec->sclass, 3160 FILE__RELABELFROM, &ad); 3161 if (rc) 3162 return rc; 3163 3164 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3165 GFP_KERNEL); 3166 if (rc == -EINVAL) { 3167 if (!has_cap_mac_admin(true)) { 3168 struct audit_buffer *ab; 3169 size_t audit_size; 3170 3171 /* We strip a nul only if it is at the end, otherwise the 3172 * context contains a nul and we should audit that */ 3173 if (value) { 3174 const char *str = value; 3175 3176 if (str[size - 1] == '\0') 3177 audit_size = size - 1; 3178 else 3179 audit_size = size; 3180 } else { 3181 audit_size = 0; 3182 } 3183 ab = audit_log_start(audit_context(), 3184 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3185 audit_log_format(ab, "op=setxattr invalid_context="); 3186 audit_log_n_untrustedstring(ab, value, audit_size); 3187 audit_log_end(ab); 3188 3189 return rc; 3190 } 3191 rc = security_context_to_sid_force(&selinux_state, value, 3192 size, &newsid); 3193 } 3194 if (rc) 3195 return rc; 3196 3197 rc = avc_has_perm(&selinux_state, 3198 sid, newsid, isec->sclass, 3199 FILE__RELABELTO, &ad); 3200 if (rc) 3201 return rc; 3202 3203 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3204 sid, isec->sclass); 3205 if (rc) 3206 return rc; 3207 3208 return avc_has_perm(&selinux_state, 3209 newsid, 3210 sbsec->sid, 3211 SECCLASS_FILESYSTEM, 3212 FILESYSTEM__ASSOCIATE, 3213 &ad); 3214 } 3215 3216 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3217 const void *value, size_t size, 3218 int flags) 3219 { 3220 struct inode *inode = d_backing_inode(dentry); 3221 struct inode_security_struct *isec; 3222 u32 newsid; 3223 int rc; 3224 3225 if (strcmp(name, XATTR_NAME_SELINUX)) { 3226 /* Not an attribute we recognize, so nothing to do. */ 3227 return; 3228 } 3229 3230 rc = security_context_to_sid_force(&selinux_state, value, size, 3231 &newsid); 3232 if (rc) { 3233 pr_err("SELinux: unable to map context to SID" 3234 "for (%s, %lu), rc=%d\n", 3235 inode->i_sb->s_id, inode->i_ino, -rc); 3236 return; 3237 } 3238 3239 isec = backing_inode_security(dentry); 3240 spin_lock(&isec->lock); 3241 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3242 isec->sid = newsid; 3243 isec->initialized = LABEL_INITIALIZED; 3244 spin_unlock(&isec->lock); 3245 3246 return; 3247 } 3248 3249 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3250 { 3251 const struct cred *cred = current_cred(); 3252 3253 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3254 } 3255 3256 static int selinux_inode_listxattr(struct dentry *dentry) 3257 { 3258 const struct cred *cred = current_cred(); 3259 3260 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3261 } 3262 3263 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3264 { 3265 if (strcmp(name, XATTR_NAME_SELINUX)) { 3266 int rc = cap_inode_removexattr(dentry, name); 3267 if (rc) 3268 return rc; 3269 3270 /* Not an attribute we recognize, so just check the 3271 ordinary setattr permission. */ 3272 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3273 } 3274 3275 /* No one is allowed to remove a SELinux security label. 3276 You can change the label, but all data must be labeled. */ 3277 return -EACCES; 3278 } 3279 3280 static int selinux_path_notify(const struct path *path, u64 mask, 3281 unsigned int obj_type) 3282 { 3283 int ret; 3284 u32 perm; 3285 3286 struct common_audit_data ad; 3287 3288 ad.type = LSM_AUDIT_DATA_PATH; 3289 ad.u.path = *path; 3290 3291 /* 3292 * Set permission needed based on the type of mark being set. 3293 * Performs an additional check for sb watches. 3294 */ 3295 switch (obj_type) { 3296 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3297 perm = FILE__WATCH_MOUNT; 3298 break; 3299 case FSNOTIFY_OBJ_TYPE_SB: 3300 perm = FILE__WATCH_SB; 3301 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3302 FILESYSTEM__WATCH, &ad); 3303 if (ret) 3304 return ret; 3305 break; 3306 case FSNOTIFY_OBJ_TYPE_INODE: 3307 perm = FILE__WATCH; 3308 break; 3309 default: 3310 return -EINVAL; 3311 } 3312 3313 /* blocking watches require the file:watch_with_perm permission */ 3314 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3315 perm |= FILE__WATCH_WITH_PERM; 3316 3317 /* watches on read-like events need the file:watch_reads permission */ 3318 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3319 perm |= FILE__WATCH_READS; 3320 3321 return path_has_perm(current_cred(), path, perm); 3322 } 3323 3324 /* 3325 * Copy the inode security context value to the user. 3326 * 3327 * Permission check is handled by selinux_inode_getxattr hook. 3328 */ 3329 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3330 { 3331 u32 size; 3332 int error; 3333 char *context = NULL; 3334 struct inode_security_struct *isec; 3335 3336 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3337 return -EOPNOTSUPP; 3338 3339 /* 3340 * If the caller has CAP_MAC_ADMIN, then get the raw context 3341 * value even if it is not defined by current policy; otherwise, 3342 * use the in-core value under current policy. 3343 * Use the non-auditing forms of the permission checks since 3344 * getxattr may be called by unprivileged processes commonly 3345 * and lack of permission just means that we fall back to the 3346 * in-core context value, not a denial. 3347 */ 3348 isec = inode_security(inode); 3349 if (has_cap_mac_admin(false)) 3350 error = security_sid_to_context_force(&selinux_state, 3351 isec->sid, &context, 3352 &size); 3353 else 3354 error = security_sid_to_context(&selinux_state, isec->sid, 3355 &context, &size); 3356 if (error) 3357 return error; 3358 error = size; 3359 if (alloc) { 3360 *buffer = context; 3361 goto out_nofree; 3362 } 3363 kfree(context); 3364 out_nofree: 3365 return error; 3366 } 3367 3368 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3369 const void *value, size_t size, int flags) 3370 { 3371 struct inode_security_struct *isec = inode_security_novalidate(inode); 3372 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 3373 u32 newsid; 3374 int rc; 3375 3376 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3377 return -EOPNOTSUPP; 3378 3379 if (!(sbsec->flags & SBLABEL_MNT)) 3380 return -EOPNOTSUPP; 3381 3382 if (!value || !size) 3383 return -EACCES; 3384 3385 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3386 GFP_KERNEL); 3387 if (rc) 3388 return rc; 3389 3390 spin_lock(&isec->lock); 3391 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3392 isec->sid = newsid; 3393 isec->initialized = LABEL_INITIALIZED; 3394 spin_unlock(&isec->lock); 3395 return 0; 3396 } 3397 3398 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3399 { 3400 const int len = sizeof(XATTR_NAME_SELINUX); 3401 if (buffer && len <= buffer_size) 3402 memcpy(buffer, XATTR_NAME_SELINUX, len); 3403 return len; 3404 } 3405 3406 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3407 { 3408 struct inode_security_struct *isec = inode_security_novalidate(inode); 3409 *secid = isec->sid; 3410 } 3411 3412 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3413 { 3414 u32 sid; 3415 struct task_security_struct *tsec; 3416 struct cred *new_creds = *new; 3417 3418 if (new_creds == NULL) { 3419 new_creds = prepare_creds(); 3420 if (!new_creds) 3421 return -ENOMEM; 3422 } 3423 3424 tsec = selinux_cred(new_creds); 3425 /* Get label from overlay inode and set it in create_sid */ 3426 selinux_inode_getsecid(d_inode(src), &sid); 3427 tsec->create_sid = sid; 3428 *new = new_creds; 3429 return 0; 3430 } 3431 3432 static int selinux_inode_copy_up_xattr(const char *name) 3433 { 3434 /* The copy_up hook above sets the initial context on an inode, but we 3435 * don't then want to overwrite it by blindly copying all the lower 3436 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3437 */ 3438 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3439 return 1; /* Discard */ 3440 /* 3441 * Any other attribute apart from SELINUX is not claimed, supported 3442 * by selinux. 3443 */ 3444 return -EOPNOTSUPP; 3445 } 3446 3447 /* kernfs node operations */ 3448 3449 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3450 struct kernfs_node *kn) 3451 { 3452 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3453 u32 parent_sid, newsid, clen; 3454 int rc; 3455 char *context; 3456 3457 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3458 if (rc == -ENODATA) 3459 return 0; 3460 else if (rc < 0) 3461 return rc; 3462 3463 clen = (u32)rc; 3464 context = kmalloc(clen, GFP_KERNEL); 3465 if (!context) 3466 return -ENOMEM; 3467 3468 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3469 if (rc < 0) { 3470 kfree(context); 3471 return rc; 3472 } 3473 3474 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, 3475 GFP_KERNEL); 3476 kfree(context); 3477 if (rc) 3478 return rc; 3479 3480 if (tsec->create_sid) { 3481 newsid = tsec->create_sid; 3482 } else { 3483 u16 secclass = inode_mode_to_security_class(kn->mode); 3484 struct qstr q; 3485 3486 q.name = kn->name; 3487 q.hash_len = hashlen_string(kn_dir, kn->name); 3488 3489 rc = security_transition_sid(&selinux_state, tsec->sid, 3490 parent_sid, secclass, &q, 3491 &newsid); 3492 if (rc) 3493 return rc; 3494 } 3495 3496 rc = security_sid_to_context_force(&selinux_state, newsid, 3497 &context, &clen); 3498 if (rc) 3499 return rc; 3500 3501 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3502 XATTR_CREATE); 3503 kfree(context); 3504 return rc; 3505 } 3506 3507 3508 /* file security operations */ 3509 3510 static int selinux_revalidate_file_permission(struct file *file, int mask) 3511 { 3512 const struct cred *cred = current_cred(); 3513 struct inode *inode = file_inode(file); 3514 3515 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3516 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3517 mask |= MAY_APPEND; 3518 3519 return file_has_perm(cred, file, 3520 file_mask_to_av(inode->i_mode, mask)); 3521 } 3522 3523 static int selinux_file_permission(struct file *file, int mask) 3524 { 3525 struct inode *inode = file_inode(file); 3526 struct file_security_struct *fsec = selinux_file(file); 3527 struct inode_security_struct *isec; 3528 u32 sid = current_sid(); 3529 3530 if (!mask) 3531 /* No permission to check. Existence test. */ 3532 return 0; 3533 3534 isec = inode_security(inode); 3535 if (sid == fsec->sid && fsec->isid == isec->sid && 3536 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3537 /* No change since file_open check. */ 3538 return 0; 3539 3540 return selinux_revalidate_file_permission(file, mask); 3541 } 3542 3543 static int selinux_file_alloc_security(struct file *file) 3544 { 3545 return file_alloc_security(file); 3546 } 3547 3548 /* 3549 * Check whether a task has the ioctl permission and cmd 3550 * operation to an inode. 3551 */ 3552 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3553 u32 requested, u16 cmd) 3554 { 3555 struct common_audit_data ad; 3556 struct file_security_struct *fsec = selinux_file(file); 3557 struct inode *inode = file_inode(file); 3558 struct inode_security_struct *isec; 3559 struct lsm_ioctlop_audit ioctl; 3560 u32 ssid = cred_sid(cred); 3561 int rc; 3562 u8 driver = cmd >> 8; 3563 u8 xperm = cmd & 0xff; 3564 3565 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3566 ad.u.op = &ioctl; 3567 ad.u.op->cmd = cmd; 3568 ad.u.op->path = file->f_path; 3569 3570 if (ssid != fsec->sid) { 3571 rc = avc_has_perm(&selinux_state, 3572 ssid, fsec->sid, 3573 SECCLASS_FD, 3574 FD__USE, 3575 &ad); 3576 if (rc) 3577 goto out; 3578 } 3579 3580 if (unlikely(IS_PRIVATE(inode))) 3581 return 0; 3582 3583 isec = inode_security(inode); 3584 rc = avc_has_extended_perms(&selinux_state, 3585 ssid, isec->sid, isec->sclass, 3586 requested, driver, xperm, &ad); 3587 out: 3588 return rc; 3589 } 3590 3591 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3592 unsigned long arg) 3593 { 3594 const struct cred *cred = current_cred(); 3595 int error = 0; 3596 3597 switch (cmd) { 3598 case FIONREAD: 3599 /* fall through */ 3600 case FIBMAP: 3601 /* fall through */ 3602 case FIGETBSZ: 3603 /* fall through */ 3604 case FS_IOC_GETFLAGS: 3605 /* fall through */ 3606 case FS_IOC_GETVERSION: 3607 error = file_has_perm(cred, file, FILE__GETATTR); 3608 break; 3609 3610 case FS_IOC_SETFLAGS: 3611 /* fall through */ 3612 case FS_IOC_SETVERSION: 3613 error = file_has_perm(cred, file, FILE__SETATTR); 3614 break; 3615 3616 /* sys_ioctl() checks */ 3617 case FIONBIO: 3618 /* fall through */ 3619 case FIOASYNC: 3620 error = file_has_perm(cred, file, 0); 3621 break; 3622 3623 case KDSKBENT: 3624 case KDSKBSENT: 3625 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3626 CAP_OPT_NONE, true); 3627 break; 3628 3629 /* default case assumes that the command will go 3630 * to the file's ioctl() function. 3631 */ 3632 default: 3633 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3634 } 3635 return error; 3636 } 3637 3638 static int default_noexec; 3639 3640 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3641 { 3642 const struct cred *cred = current_cred(); 3643 u32 sid = cred_sid(cred); 3644 int rc = 0; 3645 3646 if (default_noexec && 3647 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3648 (!shared && (prot & PROT_WRITE)))) { 3649 /* 3650 * We are making executable an anonymous mapping or a 3651 * private file mapping that will also be writable. 3652 * This has an additional check. 3653 */ 3654 rc = avc_has_perm(&selinux_state, 3655 sid, sid, SECCLASS_PROCESS, 3656 PROCESS__EXECMEM, NULL); 3657 if (rc) 3658 goto error; 3659 } 3660 3661 if (file) { 3662 /* read access is always possible with a mapping */ 3663 u32 av = FILE__READ; 3664 3665 /* write access only matters if the mapping is shared */ 3666 if (shared && (prot & PROT_WRITE)) 3667 av |= FILE__WRITE; 3668 3669 if (prot & PROT_EXEC) 3670 av |= FILE__EXECUTE; 3671 3672 return file_has_perm(cred, file, av); 3673 } 3674 3675 error: 3676 return rc; 3677 } 3678 3679 static int selinux_mmap_addr(unsigned long addr) 3680 { 3681 int rc = 0; 3682 3683 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3684 u32 sid = current_sid(); 3685 rc = avc_has_perm(&selinux_state, 3686 sid, sid, SECCLASS_MEMPROTECT, 3687 MEMPROTECT__MMAP_ZERO, NULL); 3688 } 3689 3690 return rc; 3691 } 3692 3693 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3694 unsigned long prot, unsigned long flags) 3695 { 3696 struct common_audit_data ad; 3697 int rc; 3698 3699 if (file) { 3700 ad.type = LSM_AUDIT_DATA_FILE; 3701 ad.u.file = file; 3702 rc = inode_has_perm(current_cred(), file_inode(file), 3703 FILE__MAP, &ad); 3704 if (rc) 3705 return rc; 3706 } 3707 3708 if (selinux_state.checkreqprot) 3709 prot = reqprot; 3710 3711 return file_map_prot_check(file, prot, 3712 (flags & MAP_TYPE) == MAP_SHARED); 3713 } 3714 3715 static int selinux_file_mprotect(struct vm_area_struct *vma, 3716 unsigned long reqprot, 3717 unsigned long prot) 3718 { 3719 const struct cred *cred = current_cred(); 3720 u32 sid = cred_sid(cred); 3721 3722 if (selinux_state.checkreqprot) 3723 prot = reqprot; 3724 3725 if (default_noexec && 3726 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3727 int rc = 0; 3728 if (vma->vm_start >= vma->vm_mm->start_brk && 3729 vma->vm_end <= vma->vm_mm->brk) { 3730 rc = avc_has_perm(&selinux_state, 3731 sid, sid, SECCLASS_PROCESS, 3732 PROCESS__EXECHEAP, NULL); 3733 } else if (!vma->vm_file && 3734 ((vma->vm_start <= vma->vm_mm->start_stack && 3735 vma->vm_end >= vma->vm_mm->start_stack) || 3736 vma_is_stack_for_current(vma))) { 3737 rc = avc_has_perm(&selinux_state, 3738 sid, sid, SECCLASS_PROCESS, 3739 PROCESS__EXECSTACK, NULL); 3740 } else if (vma->vm_file && vma->anon_vma) { 3741 /* 3742 * We are making executable a file mapping that has 3743 * had some COW done. Since pages might have been 3744 * written, check ability to execute the possibly 3745 * modified content. This typically should only 3746 * occur for text relocations. 3747 */ 3748 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3749 } 3750 if (rc) 3751 return rc; 3752 } 3753 3754 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3755 } 3756 3757 static int selinux_file_lock(struct file *file, unsigned int cmd) 3758 { 3759 const struct cred *cred = current_cred(); 3760 3761 return file_has_perm(cred, file, FILE__LOCK); 3762 } 3763 3764 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3765 unsigned long arg) 3766 { 3767 const struct cred *cred = current_cred(); 3768 int err = 0; 3769 3770 switch (cmd) { 3771 case F_SETFL: 3772 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3773 err = file_has_perm(cred, file, FILE__WRITE); 3774 break; 3775 } 3776 /* fall through */ 3777 case F_SETOWN: 3778 case F_SETSIG: 3779 case F_GETFL: 3780 case F_GETOWN: 3781 case F_GETSIG: 3782 case F_GETOWNER_UIDS: 3783 /* Just check FD__USE permission */ 3784 err = file_has_perm(cred, file, 0); 3785 break; 3786 case F_GETLK: 3787 case F_SETLK: 3788 case F_SETLKW: 3789 case F_OFD_GETLK: 3790 case F_OFD_SETLK: 3791 case F_OFD_SETLKW: 3792 #if BITS_PER_LONG == 32 3793 case F_GETLK64: 3794 case F_SETLK64: 3795 case F_SETLKW64: 3796 #endif 3797 err = file_has_perm(cred, file, FILE__LOCK); 3798 break; 3799 } 3800 3801 return err; 3802 } 3803 3804 static void selinux_file_set_fowner(struct file *file) 3805 { 3806 struct file_security_struct *fsec; 3807 3808 fsec = selinux_file(file); 3809 fsec->fown_sid = current_sid(); 3810 } 3811 3812 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3813 struct fown_struct *fown, int signum) 3814 { 3815 struct file *file; 3816 u32 sid = task_sid(tsk); 3817 u32 perm; 3818 struct file_security_struct *fsec; 3819 3820 /* struct fown_struct is never outside the context of a struct file */ 3821 file = container_of(fown, struct file, f_owner); 3822 3823 fsec = selinux_file(file); 3824 3825 if (!signum) 3826 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3827 else 3828 perm = signal_to_av(signum); 3829 3830 return avc_has_perm(&selinux_state, 3831 fsec->fown_sid, sid, 3832 SECCLASS_PROCESS, perm, NULL); 3833 } 3834 3835 static int selinux_file_receive(struct file *file) 3836 { 3837 const struct cred *cred = current_cred(); 3838 3839 return file_has_perm(cred, file, file_to_av(file)); 3840 } 3841 3842 static int selinux_file_open(struct file *file) 3843 { 3844 struct file_security_struct *fsec; 3845 struct inode_security_struct *isec; 3846 3847 fsec = selinux_file(file); 3848 isec = inode_security(file_inode(file)); 3849 /* 3850 * Save inode label and policy sequence number 3851 * at open-time so that selinux_file_permission 3852 * can determine whether revalidation is necessary. 3853 * Task label is already saved in the file security 3854 * struct as its SID. 3855 */ 3856 fsec->isid = isec->sid; 3857 fsec->pseqno = avc_policy_seqno(&selinux_state); 3858 /* 3859 * Since the inode label or policy seqno may have changed 3860 * between the selinux_inode_permission check and the saving 3861 * of state above, recheck that access is still permitted. 3862 * Otherwise, access might never be revalidated against the 3863 * new inode label or new policy. 3864 * This check is not redundant - do not remove. 3865 */ 3866 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3867 } 3868 3869 /* task security operations */ 3870 3871 static int selinux_task_alloc(struct task_struct *task, 3872 unsigned long clone_flags) 3873 { 3874 u32 sid = current_sid(); 3875 3876 return avc_has_perm(&selinux_state, 3877 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3878 } 3879 3880 /* 3881 * prepare a new set of credentials for modification 3882 */ 3883 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3884 gfp_t gfp) 3885 { 3886 const struct task_security_struct *old_tsec = selinux_cred(old); 3887 struct task_security_struct *tsec = selinux_cred(new); 3888 3889 *tsec = *old_tsec; 3890 return 0; 3891 } 3892 3893 /* 3894 * transfer the SELinux data to a blank set of creds 3895 */ 3896 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3897 { 3898 const struct task_security_struct *old_tsec = selinux_cred(old); 3899 struct task_security_struct *tsec = selinux_cred(new); 3900 3901 *tsec = *old_tsec; 3902 } 3903 3904 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 3905 { 3906 *secid = cred_sid(c); 3907 } 3908 3909 /* 3910 * set the security data for a kernel service 3911 * - all the creation contexts are set to unlabelled 3912 */ 3913 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3914 { 3915 struct task_security_struct *tsec = selinux_cred(new); 3916 u32 sid = current_sid(); 3917 int ret; 3918 3919 ret = avc_has_perm(&selinux_state, 3920 sid, secid, 3921 SECCLASS_KERNEL_SERVICE, 3922 KERNEL_SERVICE__USE_AS_OVERRIDE, 3923 NULL); 3924 if (ret == 0) { 3925 tsec->sid = secid; 3926 tsec->create_sid = 0; 3927 tsec->keycreate_sid = 0; 3928 tsec->sockcreate_sid = 0; 3929 } 3930 return ret; 3931 } 3932 3933 /* 3934 * set the file creation context in a security record to the same as the 3935 * objective context of the specified inode 3936 */ 3937 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3938 { 3939 struct inode_security_struct *isec = inode_security(inode); 3940 struct task_security_struct *tsec = selinux_cred(new); 3941 u32 sid = current_sid(); 3942 int ret; 3943 3944 ret = avc_has_perm(&selinux_state, 3945 sid, isec->sid, 3946 SECCLASS_KERNEL_SERVICE, 3947 KERNEL_SERVICE__CREATE_FILES_AS, 3948 NULL); 3949 3950 if (ret == 0) 3951 tsec->create_sid = isec->sid; 3952 return ret; 3953 } 3954 3955 static int selinux_kernel_module_request(char *kmod_name) 3956 { 3957 struct common_audit_data ad; 3958 3959 ad.type = LSM_AUDIT_DATA_KMOD; 3960 ad.u.kmod_name = kmod_name; 3961 3962 return avc_has_perm(&selinux_state, 3963 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3964 SYSTEM__MODULE_REQUEST, &ad); 3965 } 3966 3967 static int selinux_kernel_module_from_file(struct file *file) 3968 { 3969 struct common_audit_data ad; 3970 struct inode_security_struct *isec; 3971 struct file_security_struct *fsec; 3972 u32 sid = current_sid(); 3973 int rc; 3974 3975 /* init_module */ 3976 if (file == NULL) 3977 return avc_has_perm(&selinux_state, 3978 sid, sid, SECCLASS_SYSTEM, 3979 SYSTEM__MODULE_LOAD, NULL); 3980 3981 /* finit_module */ 3982 3983 ad.type = LSM_AUDIT_DATA_FILE; 3984 ad.u.file = file; 3985 3986 fsec = selinux_file(file); 3987 if (sid != fsec->sid) { 3988 rc = avc_has_perm(&selinux_state, 3989 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 3990 if (rc) 3991 return rc; 3992 } 3993 3994 isec = inode_security(file_inode(file)); 3995 return avc_has_perm(&selinux_state, 3996 sid, isec->sid, SECCLASS_SYSTEM, 3997 SYSTEM__MODULE_LOAD, &ad); 3998 } 3999 4000 static int selinux_kernel_read_file(struct file *file, 4001 enum kernel_read_file_id id) 4002 { 4003 int rc = 0; 4004 4005 switch (id) { 4006 case READING_MODULE: 4007 rc = selinux_kernel_module_from_file(file); 4008 break; 4009 default: 4010 break; 4011 } 4012 4013 return rc; 4014 } 4015 4016 static int selinux_kernel_load_data(enum kernel_load_data_id id) 4017 { 4018 int rc = 0; 4019 4020 switch (id) { 4021 case LOADING_MODULE: 4022 rc = selinux_kernel_module_from_file(NULL); 4023 default: 4024 break; 4025 } 4026 4027 return rc; 4028 } 4029 4030 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4031 { 4032 return avc_has_perm(&selinux_state, 4033 current_sid(), task_sid(p), SECCLASS_PROCESS, 4034 PROCESS__SETPGID, NULL); 4035 } 4036 4037 static int selinux_task_getpgid(struct task_struct *p) 4038 { 4039 return avc_has_perm(&selinux_state, 4040 current_sid(), task_sid(p), SECCLASS_PROCESS, 4041 PROCESS__GETPGID, NULL); 4042 } 4043 4044 static int selinux_task_getsid(struct task_struct *p) 4045 { 4046 return avc_has_perm(&selinux_state, 4047 current_sid(), task_sid(p), SECCLASS_PROCESS, 4048 PROCESS__GETSESSION, NULL); 4049 } 4050 4051 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 4052 { 4053 *secid = task_sid(p); 4054 } 4055 4056 static int selinux_task_setnice(struct task_struct *p, int nice) 4057 { 4058 return avc_has_perm(&selinux_state, 4059 current_sid(), task_sid(p), SECCLASS_PROCESS, 4060 PROCESS__SETSCHED, NULL); 4061 } 4062 4063 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4064 { 4065 return avc_has_perm(&selinux_state, 4066 current_sid(), task_sid(p), SECCLASS_PROCESS, 4067 PROCESS__SETSCHED, NULL); 4068 } 4069 4070 static int selinux_task_getioprio(struct task_struct *p) 4071 { 4072 return avc_has_perm(&selinux_state, 4073 current_sid(), task_sid(p), SECCLASS_PROCESS, 4074 PROCESS__GETSCHED, NULL); 4075 } 4076 4077 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4078 unsigned int flags) 4079 { 4080 u32 av = 0; 4081 4082 if (!flags) 4083 return 0; 4084 if (flags & LSM_PRLIMIT_WRITE) 4085 av |= PROCESS__SETRLIMIT; 4086 if (flags & LSM_PRLIMIT_READ) 4087 av |= PROCESS__GETRLIMIT; 4088 return avc_has_perm(&selinux_state, 4089 cred_sid(cred), cred_sid(tcred), 4090 SECCLASS_PROCESS, av, NULL); 4091 } 4092 4093 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4094 struct rlimit *new_rlim) 4095 { 4096 struct rlimit *old_rlim = p->signal->rlim + resource; 4097 4098 /* Control the ability to change the hard limit (whether 4099 lowering or raising it), so that the hard limit can 4100 later be used as a safe reset point for the soft limit 4101 upon context transitions. See selinux_bprm_committing_creds. */ 4102 if (old_rlim->rlim_max != new_rlim->rlim_max) 4103 return avc_has_perm(&selinux_state, 4104 current_sid(), task_sid(p), 4105 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4106 4107 return 0; 4108 } 4109 4110 static int selinux_task_setscheduler(struct task_struct *p) 4111 { 4112 return avc_has_perm(&selinux_state, 4113 current_sid(), task_sid(p), SECCLASS_PROCESS, 4114 PROCESS__SETSCHED, NULL); 4115 } 4116 4117 static int selinux_task_getscheduler(struct task_struct *p) 4118 { 4119 return avc_has_perm(&selinux_state, 4120 current_sid(), task_sid(p), SECCLASS_PROCESS, 4121 PROCESS__GETSCHED, NULL); 4122 } 4123 4124 static int selinux_task_movememory(struct task_struct *p) 4125 { 4126 return avc_has_perm(&selinux_state, 4127 current_sid(), task_sid(p), SECCLASS_PROCESS, 4128 PROCESS__SETSCHED, NULL); 4129 } 4130 4131 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4132 int sig, const struct cred *cred) 4133 { 4134 u32 secid; 4135 u32 perm; 4136 4137 if (!sig) 4138 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4139 else 4140 perm = signal_to_av(sig); 4141 if (!cred) 4142 secid = current_sid(); 4143 else 4144 secid = cred_sid(cred); 4145 return avc_has_perm(&selinux_state, 4146 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 4147 } 4148 4149 static void selinux_task_to_inode(struct task_struct *p, 4150 struct inode *inode) 4151 { 4152 struct inode_security_struct *isec = selinux_inode(inode); 4153 u32 sid = task_sid(p); 4154 4155 spin_lock(&isec->lock); 4156 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4157 isec->sid = sid; 4158 isec->initialized = LABEL_INITIALIZED; 4159 spin_unlock(&isec->lock); 4160 } 4161 4162 /* Returns error only if unable to parse addresses */ 4163 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4164 struct common_audit_data *ad, u8 *proto) 4165 { 4166 int offset, ihlen, ret = -EINVAL; 4167 struct iphdr _iph, *ih; 4168 4169 offset = skb_network_offset(skb); 4170 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4171 if (ih == NULL) 4172 goto out; 4173 4174 ihlen = ih->ihl * 4; 4175 if (ihlen < sizeof(_iph)) 4176 goto out; 4177 4178 ad->u.net->v4info.saddr = ih->saddr; 4179 ad->u.net->v4info.daddr = ih->daddr; 4180 ret = 0; 4181 4182 if (proto) 4183 *proto = ih->protocol; 4184 4185 switch (ih->protocol) { 4186 case IPPROTO_TCP: { 4187 struct tcphdr _tcph, *th; 4188 4189 if (ntohs(ih->frag_off) & IP_OFFSET) 4190 break; 4191 4192 offset += ihlen; 4193 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4194 if (th == NULL) 4195 break; 4196 4197 ad->u.net->sport = th->source; 4198 ad->u.net->dport = th->dest; 4199 break; 4200 } 4201 4202 case IPPROTO_UDP: { 4203 struct udphdr _udph, *uh; 4204 4205 if (ntohs(ih->frag_off) & IP_OFFSET) 4206 break; 4207 4208 offset += ihlen; 4209 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4210 if (uh == NULL) 4211 break; 4212 4213 ad->u.net->sport = uh->source; 4214 ad->u.net->dport = uh->dest; 4215 break; 4216 } 4217 4218 case IPPROTO_DCCP: { 4219 struct dccp_hdr _dccph, *dh; 4220 4221 if (ntohs(ih->frag_off) & IP_OFFSET) 4222 break; 4223 4224 offset += ihlen; 4225 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4226 if (dh == NULL) 4227 break; 4228 4229 ad->u.net->sport = dh->dccph_sport; 4230 ad->u.net->dport = dh->dccph_dport; 4231 break; 4232 } 4233 4234 #if IS_ENABLED(CONFIG_IP_SCTP) 4235 case IPPROTO_SCTP: { 4236 struct sctphdr _sctph, *sh; 4237 4238 if (ntohs(ih->frag_off) & IP_OFFSET) 4239 break; 4240 4241 offset += ihlen; 4242 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4243 if (sh == NULL) 4244 break; 4245 4246 ad->u.net->sport = sh->source; 4247 ad->u.net->dport = sh->dest; 4248 break; 4249 } 4250 #endif 4251 default: 4252 break; 4253 } 4254 out: 4255 return ret; 4256 } 4257 4258 #if IS_ENABLED(CONFIG_IPV6) 4259 4260 /* Returns error only if unable to parse addresses */ 4261 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4262 struct common_audit_data *ad, u8 *proto) 4263 { 4264 u8 nexthdr; 4265 int ret = -EINVAL, offset; 4266 struct ipv6hdr _ipv6h, *ip6; 4267 __be16 frag_off; 4268 4269 offset = skb_network_offset(skb); 4270 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4271 if (ip6 == NULL) 4272 goto out; 4273 4274 ad->u.net->v6info.saddr = ip6->saddr; 4275 ad->u.net->v6info.daddr = ip6->daddr; 4276 ret = 0; 4277 4278 nexthdr = ip6->nexthdr; 4279 offset += sizeof(_ipv6h); 4280 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4281 if (offset < 0) 4282 goto out; 4283 4284 if (proto) 4285 *proto = nexthdr; 4286 4287 switch (nexthdr) { 4288 case IPPROTO_TCP: { 4289 struct tcphdr _tcph, *th; 4290 4291 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4292 if (th == NULL) 4293 break; 4294 4295 ad->u.net->sport = th->source; 4296 ad->u.net->dport = th->dest; 4297 break; 4298 } 4299 4300 case IPPROTO_UDP: { 4301 struct udphdr _udph, *uh; 4302 4303 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4304 if (uh == NULL) 4305 break; 4306 4307 ad->u.net->sport = uh->source; 4308 ad->u.net->dport = uh->dest; 4309 break; 4310 } 4311 4312 case IPPROTO_DCCP: { 4313 struct dccp_hdr _dccph, *dh; 4314 4315 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4316 if (dh == NULL) 4317 break; 4318 4319 ad->u.net->sport = dh->dccph_sport; 4320 ad->u.net->dport = dh->dccph_dport; 4321 break; 4322 } 4323 4324 #if IS_ENABLED(CONFIG_IP_SCTP) 4325 case IPPROTO_SCTP: { 4326 struct sctphdr _sctph, *sh; 4327 4328 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4329 if (sh == NULL) 4330 break; 4331 4332 ad->u.net->sport = sh->source; 4333 ad->u.net->dport = sh->dest; 4334 break; 4335 } 4336 #endif 4337 /* includes fragments */ 4338 default: 4339 break; 4340 } 4341 out: 4342 return ret; 4343 } 4344 4345 #endif /* IPV6 */ 4346 4347 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4348 char **_addrp, int src, u8 *proto) 4349 { 4350 char *addrp; 4351 int ret; 4352 4353 switch (ad->u.net->family) { 4354 case PF_INET: 4355 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4356 if (ret) 4357 goto parse_error; 4358 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4359 &ad->u.net->v4info.daddr); 4360 goto okay; 4361 4362 #if IS_ENABLED(CONFIG_IPV6) 4363 case PF_INET6: 4364 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4365 if (ret) 4366 goto parse_error; 4367 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4368 &ad->u.net->v6info.daddr); 4369 goto okay; 4370 #endif /* IPV6 */ 4371 default: 4372 addrp = NULL; 4373 goto okay; 4374 } 4375 4376 parse_error: 4377 pr_warn( 4378 "SELinux: failure in selinux_parse_skb()," 4379 " unable to parse packet\n"); 4380 return ret; 4381 4382 okay: 4383 if (_addrp) 4384 *_addrp = addrp; 4385 return 0; 4386 } 4387 4388 /** 4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4390 * @skb: the packet 4391 * @family: protocol family 4392 * @sid: the packet's peer label SID 4393 * 4394 * Description: 4395 * Check the various different forms of network peer labeling and determine 4396 * the peer label/SID for the packet; most of the magic actually occurs in 4397 * the security server function security_net_peersid_cmp(). The function 4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4399 * or -EACCES if @sid is invalid due to inconsistencies with the different 4400 * peer labels. 4401 * 4402 */ 4403 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4404 { 4405 int err; 4406 u32 xfrm_sid; 4407 u32 nlbl_sid; 4408 u32 nlbl_type; 4409 4410 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4411 if (unlikely(err)) 4412 return -EACCES; 4413 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4414 if (unlikely(err)) 4415 return -EACCES; 4416 4417 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4418 nlbl_type, xfrm_sid, sid); 4419 if (unlikely(err)) { 4420 pr_warn( 4421 "SELinux: failure in selinux_skb_peerlbl_sid()," 4422 " unable to determine packet's peer label\n"); 4423 return -EACCES; 4424 } 4425 4426 return 0; 4427 } 4428 4429 /** 4430 * selinux_conn_sid - Determine the child socket label for a connection 4431 * @sk_sid: the parent socket's SID 4432 * @skb_sid: the packet's SID 4433 * @conn_sid: the resulting connection SID 4434 * 4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4436 * combined with the MLS information from @skb_sid in order to create 4437 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4438 * of @sk_sid. Returns zero on success, negative values on failure. 4439 * 4440 */ 4441 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4442 { 4443 int err = 0; 4444 4445 if (skb_sid != SECSID_NULL) 4446 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4447 conn_sid); 4448 else 4449 *conn_sid = sk_sid; 4450 4451 return err; 4452 } 4453 4454 /* socket security operations */ 4455 4456 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4457 u16 secclass, u32 *socksid) 4458 { 4459 if (tsec->sockcreate_sid > SECSID_NULL) { 4460 *socksid = tsec->sockcreate_sid; 4461 return 0; 4462 } 4463 4464 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4465 secclass, NULL, socksid); 4466 } 4467 4468 static int sock_has_perm(struct sock *sk, u32 perms) 4469 { 4470 struct sk_security_struct *sksec = sk->sk_security; 4471 struct common_audit_data ad; 4472 struct lsm_network_audit net = {0,}; 4473 4474 if (sksec->sid == SECINITSID_KERNEL) 4475 return 0; 4476 4477 ad.type = LSM_AUDIT_DATA_NET; 4478 ad.u.net = &net; 4479 ad.u.net->sk = sk; 4480 4481 return avc_has_perm(&selinux_state, 4482 current_sid(), sksec->sid, sksec->sclass, perms, 4483 &ad); 4484 } 4485 4486 static int selinux_socket_create(int family, int type, 4487 int protocol, int kern) 4488 { 4489 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4490 u32 newsid; 4491 u16 secclass; 4492 int rc; 4493 4494 if (kern) 4495 return 0; 4496 4497 secclass = socket_type_to_security_class(family, type, protocol); 4498 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4499 if (rc) 4500 return rc; 4501 4502 return avc_has_perm(&selinux_state, 4503 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4504 } 4505 4506 static int selinux_socket_post_create(struct socket *sock, int family, 4507 int type, int protocol, int kern) 4508 { 4509 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4510 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4511 struct sk_security_struct *sksec; 4512 u16 sclass = socket_type_to_security_class(family, type, protocol); 4513 u32 sid = SECINITSID_KERNEL; 4514 int err = 0; 4515 4516 if (!kern) { 4517 err = socket_sockcreate_sid(tsec, sclass, &sid); 4518 if (err) 4519 return err; 4520 } 4521 4522 isec->sclass = sclass; 4523 isec->sid = sid; 4524 isec->initialized = LABEL_INITIALIZED; 4525 4526 if (sock->sk) { 4527 sksec = sock->sk->sk_security; 4528 sksec->sclass = sclass; 4529 sksec->sid = sid; 4530 /* Allows detection of the first association on this socket */ 4531 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4532 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4533 4534 err = selinux_netlbl_socket_post_create(sock->sk, family); 4535 } 4536 4537 return err; 4538 } 4539 4540 static int selinux_socket_socketpair(struct socket *socka, 4541 struct socket *sockb) 4542 { 4543 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4544 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4545 4546 sksec_a->peer_sid = sksec_b->sid; 4547 sksec_b->peer_sid = sksec_a->sid; 4548 4549 return 0; 4550 } 4551 4552 /* Range of port numbers used to automatically bind. 4553 Need to determine whether we should perform a name_bind 4554 permission check between the socket and the port number. */ 4555 4556 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4557 { 4558 struct sock *sk = sock->sk; 4559 struct sk_security_struct *sksec = sk->sk_security; 4560 u16 family; 4561 int err; 4562 4563 err = sock_has_perm(sk, SOCKET__BIND); 4564 if (err) 4565 goto out; 4566 4567 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4568 family = sk->sk_family; 4569 if (family == PF_INET || family == PF_INET6) { 4570 char *addrp; 4571 struct common_audit_data ad; 4572 struct lsm_network_audit net = {0,}; 4573 struct sockaddr_in *addr4 = NULL; 4574 struct sockaddr_in6 *addr6 = NULL; 4575 u16 family_sa; 4576 unsigned short snum; 4577 u32 sid, node_perm; 4578 4579 /* 4580 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4581 * that validates multiple binding addresses. Because of this 4582 * need to check address->sa_family as it is possible to have 4583 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4584 */ 4585 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4586 return -EINVAL; 4587 family_sa = address->sa_family; 4588 switch (family_sa) { 4589 case AF_UNSPEC: 4590 case AF_INET: 4591 if (addrlen < sizeof(struct sockaddr_in)) 4592 return -EINVAL; 4593 addr4 = (struct sockaddr_in *)address; 4594 if (family_sa == AF_UNSPEC) { 4595 /* see __inet_bind(), we only want to allow 4596 * AF_UNSPEC if the address is INADDR_ANY 4597 */ 4598 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4599 goto err_af; 4600 family_sa = AF_INET; 4601 } 4602 snum = ntohs(addr4->sin_port); 4603 addrp = (char *)&addr4->sin_addr.s_addr; 4604 break; 4605 case AF_INET6: 4606 if (addrlen < SIN6_LEN_RFC2133) 4607 return -EINVAL; 4608 addr6 = (struct sockaddr_in6 *)address; 4609 snum = ntohs(addr6->sin6_port); 4610 addrp = (char *)&addr6->sin6_addr.s6_addr; 4611 break; 4612 default: 4613 goto err_af; 4614 } 4615 4616 ad.type = LSM_AUDIT_DATA_NET; 4617 ad.u.net = &net; 4618 ad.u.net->sport = htons(snum); 4619 ad.u.net->family = family_sa; 4620 4621 if (snum) { 4622 int low, high; 4623 4624 inet_get_local_port_range(sock_net(sk), &low, &high); 4625 4626 if (snum < max(inet_prot_sock(sock_net(sk)), low) || 4627 snum > high) { 4628 err = sel_netport_sid(sk->sk_protocol, 4629 snum, &sid); 4630 if (err) 4631 goto out; 4632 err = avc_has_perm(&selinux_state, 4633 sksec->sid, sid, 4634 sksec->sclass, 4635 SOCKET__NAME_BIND, &ad); 4636 if (err) 4637 goto out; 4638 } 4639 } 4640 4641 switch (sksec->sclass) { 4642 case SECCLASS_TCP_SOCKET: 4643 node_perm = TCP_SOCKET__NODE_BIND; 4644 break; 4645 4646 case SECCLASS_UDP_SOCKET: 4647 node_perm = UDP_SOCKET__NODE_BIND; 4648 break; 4649 4650 case SECCLASS_DCCP_SOCKET: 4651 node_perm = DCCP_SOCKET__NODE_BIND; 4652 break; 4653 4654 case SECCLASS_SCTP_SOCKET: 4655 node_perm = SCTP_SOCKET__NODE_BIND; 4656 break; 4657 4658 default: 4659 node_perm = RAWIP_SOCKET__NODE_BIND; 4660 break; 4661 } 4662 4663 err = sel_netnode_sid(addrp, family_sa, &sid); 4664 if (err) 4665 goto out; 4666 4667 if (family_sa == AF_INET) 4668 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4669 else 4670 ad.u.net->v6info.saddr = addr6->sin6_addr; 4671 4672 err = avc_has_perm(&selinux_state, 4673 sksec->sid, sid, 4674 sksec->sclass, node_perm, &ad); 4675 if (err) 4676 goto out; 4677 } 4678 out: 4679 return err; 4680 err_af: 4681 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4683 return -EINVAL; 4684 return -EAFNOSUPPORT; 4685 } 4686 4687 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4689 */ 4690 static int selinux_socket_connect_helper(struct socket *sock, 4691 struct sockaddr *address, int addrlen) 4692 { 4693 struct sock *sk = sock->sk; 4694 struct sk_security_struct *sksec = sk->sk_security; 4695 int err; 4696 4697 err = sock_has_perm(sk, SOCKET__CONNECT); 4698 if (err) 4699 return err; 4700 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4701 return -EINVAL; 4702 4703 /* connect(AF_UNSPEC) has special handling, as it is a documented 4704 * way to disconnect the socket 4705 */ 4706 if (address->sa_family == AF_UNSPEC) 4707 return 0; 4708 4709 /* 4710 * If a TCP, DCCP or SCTP socket, check name_connect permission 4711 * for the port. 4712 */ 4713 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4714 sksec->sclass == SECCLASS_DCCP_SOCKET || 4715 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4716 struct common_audit_data ad; 4717 struct lsm_network_audit net = {0,}; 4718 struct sockaddr_in *addr4 = NULL; 4719 struct sockaddr_in6 *addr6 = NULL; 4720 unsigned short snum; 4721 u32 sid, perm; 4722 4723 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4724 * that validates multiple connect addresses. Because of this 4725 * need to check address->sa_family as it is possible to have 4726 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4727 */ 4728 switch (address->sa_family) { 4729 case AF_INET: 4730 addr4 = (struct sockaddr_in *)address; 4731 if (addrlen < sizeof(struct sockaddr_in)) 4732 return -EINVAL; 4733 snum = ntohs(addr4->sin_port); 4734 break; 4735 case AF_INET6: 4736 addr6 = (struct sockaddr_in6 *)address; 4737 if (addrlen < SIN6_LEN_RFC2133) 4738 return -EINVAL; 4739 snum = ntohs(addr6->sin6_port); 4740 break; 4741 default: 4742 /* Note that SCTP services expect -EINVAL, whereas 4743 * others expect -EAFNOSUPPORT. 4744 */ 4745 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4746 return -EINVAL; 4747 else 4748 return -EAFNOSUPPORT; 4749 } 4750 4751 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4752 if (err) 4753 return err; 4754 4755 switch (sksec->sclass) { 4756 case SECCLASS_TCP_SOCKET: 4757 perm = TCP_SOCKET__NAME_CONNECT; 4758 break; 4759 case SECCLASS_DCCP_SOCKET: 4760 perm = DCCP_SOCKET__NAME_CONNECT; 4761 break; 4762 case SECCLASS_SCTP_SOCKET: 4763 perm = SCTP_SOCKET__NAME_CONNECT; 4764 break; 4765 } 4766 4767 ad.type = LSM_AUDIT_DATA_NET; 4768 ad.u.net = &net; 4769 ad.u.net->dport = htons(snum); 4770 ad.u.net->family = address->sa_family; 4771 err = avc_has_perm(&selinux_state, 4772 sksec->sid, sid, sksec->sclass, perm, &ad); 4773 if (err) 4774 return err; 4775 } 4776 4777 return 0; 4778 } 4779 4780 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4781 static int selinux_socket_connect(struct socket *sock, 4782 struct sockaddr *address, int addrlen) 4783 { 4784 int err; 4785 struct sock *sk = sock->sk; 4786 4787 err = selinux_socket_connect_helper(sock, address, addrlen); 4788 if (err) 4789 return err; 4790 4791 return selinux_netlbl_socket_connect(sk, address); 4792 } 4793 4794 static int selinux_socket_listen(struct socket *sock, int backlog) 4795 { 4796 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4797 } 4798 4799 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4800 { 4801 int err; 4802 struct inode_security_struct *isec; 4803 struct inode_security_struct *newisec; 4804 u16 sclass; 4805 u32 sid; 4806 4807 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4808 if (err) 4809 return err; 4810 4811 isec = inode_security_novalidate(SOCK_INODE(sock)); 4812 spin_lock(&isec->lock); 4813 sclass = isec->sclass; 4814 sid = isec->sid; 4815 spin_unlock(&isec->lock); 4816 4817 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4818 newisec->sclass = sclass; 4819 newisec->sid = sid; 4820 newisec->initialized = LABEL_INITIALIZED; 4821 4822 return 0; 4823 } 4824 4825 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4826 int size) 4827 { 4828 return sock_has_perm(sock->sk, SOCKET__WRITE); 4829 } 4830 4831 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4832 int size, int flags) 4833 { 4834 return sock_has_perm(sock->sk, SOCKET__READ); 4835 } 4836 4837 static int selinux_socket_getsockname(struct socket *sock) 4838 { 4839 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4840 } 4841 4842 static int selinux_socket_getpeername(struct socket *sock) 4843 { 4844 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4845 } 4846 4847 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4848 { 4849 int err; 4850 4851 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4852 if (err) 4853 return err; 4854 4855 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4856 } 4857 4858 static int selinux_socket_getsockopt(struct socket *sock, int level, 4859 int optname) 4860 { 4861 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4862 } 4863 4864 static int selinux_socket_shutdown(struct socket *sock, int how) 4865 { 4866 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4867 } 4868 4869 static int selinux_socket_unix_stream_connect(struct sock *sock, 4870 struct sock *other, 4871 struct sock *newsk) 4872 { 4873 struct sk_security_struct *sksec_sock = sock->sk_security; 4874 struct sk_security_struct *sksec_other = other->sk_security; 4875 struct sk_security_struct *sksec_new = newsk->sk_security; 4876 struct common_audit_data ad; 4877 struct lsm_network_audit net = {0,}; 4878 int err; 4879 4880 ad.type = LSM_AUDIT_DATA_NET; 4881 ad.u.net = &net; 4882 ad.u.net->sk = other; 4883 4884 err = avc_has_perm(&selinux_state, 4885 sksec_sock->sid, sksec_other->sid, 4886 sksec_other->sclass, 4887 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4888 if (err) 4889 return err; 4890 4891 /* server child socket */ 4892 sksec_new->peer_sid = sksec_sock->sid; 4893 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 4894 sksec_sock->sid, &sksec_new->sid); 4895 if (err) 4896 return err; 4897 4898 /* connecting socket */ 4899 sksec_sock->peer_sid = sksec_new->sid; 4900 4901 return 0; 4902 } 4903 4904 static int selinux_socket_unix_may_send(struct socket *sock, 4905 struct socket *other) 4906 { 4907 struct sk_security_struct *ssec = sock->sk->sk_security; 4908 struct sk_security_struct *osec = other->sk->sk_security; 4909 struct common_audit_data ad; 4910 struct lsm_network_audit net = {0,}; 4911 4912 ad.type = LSM_AUDIT_DATA_NET; 4913 ad.u.net = &net; 4914 ad.u.net->sk = other->sk; 4915 4916 return avc_has_perm(&selinux_state, 4917 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4918 &ad); 4919 } 4920 4921 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4922 char *addrp, u16 family, u32 peer_sid, 4923 struct common_audit_data *ad) 4924 { 4925 int err; 4926 u32 if_sid; 4927 u32 node_sid; 4928 4929 err = sel_netif_sid(ns, ifindex, &if_sid); 4930 if (err) 4931 return err; 4932 err = avc_has_perm(&selinux_state, 4933 peer_sid, if_sid, 4934 SECCLASS_NETIF, NETIF__INGRESS, ad); 4935 if (err) 4936 return err; 4937 4938 err = sel_netnode_sid(addrp, family, &node_sid); 4939 if (err) 4940 return err; 4941 return avc_has_perm(&selinux_state, 4942 peer_sid, node_sid, 4943 SECCLASS_NODE, NODE__RECVFROM, ad); 4944 } 4945 4946 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4947 u16 family) 4948 { 4949 int err = 0; 4950 struct sk_security_struct *sksec = sk->sk_security; 4951 u32 sk_sid = sksec->sid; 4952 struct common_audit_data ad; 4953 struct lsm_network_audit net = {0,}; 4954 char *addrp; 4955 4956 ad.type = LSM_AUDIT_DATA_NET; 4957 ad.u.net = &net; 4958 ad.u.net->netif = skb->skb_iif; 4959 ad.u.net->family = family; 4960 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4961 if (err) 4962 return err; 4963 4964 if (selinux_secmark_enabled()) { 4965 err = avc_has_perm(&selinux_state, 4966 sk_sid, skb->secmark, SECCLASS_PACKET, 4967 PACKET__RECV, &ad); 4968 if (err) 4969 return err; 4970 } 4971 4972 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4973 if (err) 4974 return err; 4975 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4976 4977 return err; 4978 } 4979 4980 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4981 { 4982 int err; 4983 struct sk_security_struct *sksec = sk->sk_security; 4984 u16 family = sk->sk_family; 4985 u32 sk_sid = sksec->sid; 4986 struct common_audit_data ad; 4987 struct lsm_network_audit net = {0,}; 4988 char *addrp; 4989 u8 secmark_active; 4990 u8 peerlbl_active; 4991 4992 if (family != PF_INET && family != PF_INET6) 4993 return 0; 4994 4995 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4996 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4997 family = PF_INET; 4998 4999 /* If any sort of compatibility mode is enabled then handoff processing 5000 * to the selinux_sock_rcv_skb_compat() function to deal with the 5001 * special handling. We do this in an attempt to keep this function 5002 * as fast and as clean as possible. */ 5003 if (!selinux_policycap_netpeer()) 5004 return selinux_sock_rcv_skb_compat(sk, skb, family); 5005 5006 secmark_active = selinux_secmark_enabled(); 5007 peerlbl_active = selinux_peerlbl_enabled(); 5008 if (!secmark_active && !peerlbl_active) 5009 return 0; 5010 5011 ad.type = LSM_AUDIT_DATA_NET; 5012 ad.u.net = &net; 5013 ad.u.net->netif = skb->skb_iif; 5014 ad.u.net->family = family; 5015 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5016 if (err) 5017 return err; 5018 5019 if (peerlbl_active) { 5020 u32 peer_sid; 5021 5022 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5023 if (err) 5024 return err; 5025 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5026 addrp, family, peer_sid, &ad); 5027 if (err) { 5028 selinux_netlbl_err(skb, family, err, 0); 5029 return err; 5030 } 5031 err = avc_has_perm(&selinux_state, 5032 sk_sid, peer_sid, SECCLASS_PEER, 5033 PEER__RECV, &ad); 5034 if (err) { 5035 selinux_netlbl_err(skb, family, err, 0); 5036 return err; 5037 } 5038 } 5039 5040 if (secmark_active) { 5041 err = avc_has_perm(&selinux_state, 5042 sk_sid, skb->secmark, SECCLASS_PACKET, 5043 PACKET__RECV, &ad); 5044 if (err) 5045 return err; 5046 } 5047 5048 return err; 5049 } 5050 5051 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5052 int __user *optlen, unsigned len) 5053 { 5054 int err = 0; 5055 char *scontext; 5056 u32 scontext_len; 5057 struct sk_security_struct *sksec = sock->sk->sk_security; 5058 u32 peer_sid = SECSID_NULL; 5059 5060 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5061 sksec->sclass == SECCLASS_TCP_SOCKET || 5062 sksec->sclass == SECCLASS_SCTP_SOCKET) 5063 peer_sid = sksec->peer_sid; 5064 if (peer_sid == SECSID_NULL) 5065 return -ENOPROTOOPT; 5066 5067 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5068 &scontext_len); 5069 if (err) 5070 return err; 5071 5072 if (scontext_len > len) { 5073 err = -ERANGE; 5074 goto out_len; 5075 } 5076 5077 if (copy_to_user(optval, scontext, scontext_len)) 5078 err = -EFAULT; 5079 5080 out_len: 5081 if (put_user(scontext_len, optlen)) 5082 err = -EFAULT; 5083 kfree(scontext); 5084 return err; 5085 } 5086 5087 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5088 { 5089 u32 peer_secid = SECSID_NULL; 5090 u16 family; 5091 struct inode_security_struct *isec; 5092 5093 if (skb && skb->protocol == htons(ETH_P_IP)) 5094 family = PF_INET; 5095 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5096 family = PF_INET6; 5097 else if (sock) 5098 family = sock->sk->sk_family; 5099 else 5100 goto out; 5101 5102 if (sock && family == PF_UNIX) { 5103 isec = inode_security_novalidate(SOCK_INODE(sock)); 5104 peer_secid = isec->sid; 5105 } else if (skb) 5106 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5107 5108 out: 5109 *secid = peer_secid; 5110 if (peer_secid == SECSID_NULL) 5111 return -EINVAL; 5112 return 0; 5113 } 5114 5115 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5116 { 5117 struct sk_security_struct *sksec; 5118 5119 sksec = kzalloc(sizeof(*sksec), priority); 5120 if (!sksec) 5121 return -ENOMEM; 5122 5123 sksec->peer_sid = SECINITSID_UNLABELED; 5124 sksec->sid = SECINITSID_UNLABELED; 5125 sksec->sclass = SECCLASS_SOCKET; 5126 selinux_netlbl_sk_security_reset(sksec); 5127 sk->sk_security = sksec; 5128 5129 return 0; 5130 } 5131 5132 static void selinux_sk_free_security(struct sock *sk) 5133 { 5134 struct sk_security_struct *sksec = sk->sk_security; 5135 5136 sk->sk_security = NULL; 5137 selinux_netlbl_sk_security_free(sksec); 5138 kfree(sksec); 5139 } 5140 5141 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5142 { 5143 struct sk_security_struct *sksec = sk->sk_security; 5144 struct sk_security_struct *newsksec = newsk->sk_security; 5145 5146 newsksec->sid = sksec->sid; 5147 newsksec->peer_sid = sksec->peer_sid; 5148 newsksec->sclass = sksec->sclass; 5149 5150 selinux_netlbl_sk_security_reset(newsksec); 5151 } 5152 5153 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5154 { 5155 if (!sk) 5156 *secid = SECINITSID_ANY_SOCKET; 5157 else { 5158 struct sk_security_struct *sksec = sk->sk_security; 5159 5160 *secid = sksec->sid; 5161 } 5162 } 5163 5164 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5165 { 5166 struct inode_security_struct *isec = 5167 inode_security_novalidate(SOCK_INODE(parent)); 5168 struct sk_security_struct *sksec = sk->sk_security; 5169 5170 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5171 sk->sk_family == PF_UNIX) 5172 isec->sid = sksec->sid; 5173 sksec->sclass = isec->sclass; 5174 } 5175 5176 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5178 * already present). 5179 */ 5180 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5181 struct sk_buff *skb) 5182 { 5183 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5184 struct common_audit_data ad; 5185 struct lsm_network_audit net = {0,}; 5186 u8 peerlbl_active; 5187 u32 peer_sid = SECINITSID_UNLABELED; 5188 u32 conn_sid; 5189 int err = 0; 5190 5191 if (!selinux_policycap_extsockclass()) 5192 return 0; 5193 5194 peerlbl_active = selinux_peerlbl_enabled(); 5195 5196 if (peerlbl_active) { 5197 /* This will return peer_sid = SECSID_NULL if there are 5198 * no peer labels, see security_net_peersid_resolve(). 5199 */ 5200 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5201 &peer_sid); 5202 if (err) 5203 return err; 5204 5205 if (peer_sid == SECSID_NULL) 5206 peer_sid = SECINITSID_UNLABELED; 5207 } 5208 5209 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5210 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5211 5212 /* Here as first association on socket. As the peer SID 5213 * was allowed by peer recv (and the netif/node checks), 5214 * then it is approved by policy and used as the primary 5215 * peer SID for getpeercon(3). 5216 */ 5217 sksec->peer_sid = peer_sid; 5218 } else if (sksec->peer_sid != peer_sid) { 5219 /* Other association peer SIDs are checked to enforce 5220 * consistency among the peer SIDs. 5221 */ 5222 ad.type = LSM_AUDIT_DATA_NET; 5223 ad.u.net = &net; 5224 ad.u.net->sk = ep->base.sk; 5225 err = avc_has_perm(&selinux_state, 5226 sksec->peer_sid, peer_sid, sksec->sclass, 5227 SCTP_SOCKET__ASSOCIATION, &ad); 5228 if (err) 5229 return err; 5230 } 5231 5232 /* Compute the MLS component for the connection and store 5233 * the information in ep. This will be used by SCTP TCP type 5234 * sockets and peeled off connections as they cause a new 5235 * socket to be generated. selinux_sctp_sk_clone() will then 5236 * plug this into the new socket. 5237 */ 5238 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5239 if (err) 5240 return err; 5241 5242 ep->secid = conn_sid; 5243 ep->peer_secid = peer_sid; 5244 5245 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5246 return selinux_netlbl_sctp_assoc_request(ep, skb); 5247 } 5248 5249 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5250 * based on their @optname. 5251 */ 5252 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5253 struct sockaddr *address, 5254 int addrlen) 5255 { 5256 int len, err = 0, walk_size = 0; 5257 void *addr_buf; 5258 struct sockaddr *addr; 5259 struct socket *sock; 5260 5261 if (!selinux_policycap_extsockclass()) 5262 return 0; 5263 5264 /* Process one or more addresses that may be IPv4 or IPv6 */ 5265 sock = sk->sk_socket; 5266 addr_buf = address; 5267 5268 while (walk_size < addrlen) { 5269 if (walk_size + sizeof(sa_family_t) > addrlen) 5270 return -EINVAL; 5271 5272 addr = addr_buf; 5273 switch (addr->sa_family) { 5274 case AF_UNSPEC: 5275 case AF_INET: 5276 len = sizeof(struct sockaddr_in); 5277 break; 5278 case AF_INET6: 5279 len = sizeof(struct sockaddr_in6); 5280 break; 5281 default: 5282 return -EINVAL; 5283 } 5284 5285 if (walk_size + len > addrlen) 5286 return -EINVAL; 5287 5288 err = -EINVAL; 5289 switch (optname) { 5290 /* Bind checks */ 5291 case SCTP_PRIMARY_ADDR: 5292 case SCTP_SET_PEER_PRIMARY_ADDR: 5293 case SCTP_SOCKOPT_BINDX_ADD: 5294 err = selinux_socket_bind(sock, addr, len); 5295 break; 5296 /* Connect checks */ 5297 case SCTP_SOCKOPT_CONNECTX: 5298 case SCTP_PARAM_SET_PRIMARY: 5299 case SCTP_PARAM_ADD_IP: 5300 case SCTP_SENDMSG_CONNECT: 5301 err = selinux_socket_connect_helper(sock, addr, len); 5302 if (err) 5303 return err; 5304 5305 /* As selinux_sctp_bind_connect() is called by the 5306 * SCTP protocol layer, the socket is already locked, 5307 * therefore selinux_netlbl_socket_connect_locked() is 5308 * is called here. The situations handled are: 5309 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5310 * whenever a new IP address is added or when a new 5311 * primary address is selected. 5312 * Note that an SCTP connect(2) call happens before 5313 * the SCTP protocol layer and is handled via 5314 * selinux_socket_connect(). 5315 */ 5316 err = selinux_netlbl_socket_connect_locked(sk, addr); 5317 break; 5318 } 5319 5320 if (err) 5321 return err; 5322 5323 addr_buf += len; 5324 walk_size += len; 5325 } 5326 5327 return 0; 5328 } 5329 5330 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5331 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5332 struct sock *newsk) 5333 { 5334 struct sk_security_struct *sksec = sk->sk_security; 5335 struct sk_security_struct *newsksec = newsk->sk_security; 5336 5337 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5338 * the non-sctp clone version. 5339 */ 5340 if (!selinux_policycap_extsockclass()) 5341 return selinux_sk_clone_security(sk, newsk); 5342 5343 newsksec->sid = ep->secid; 5344 newsksec->peer_sid = ep->peer_secid; 5345 newsksec->sclass = sksec->sclass; 5346 selinux_netlbl_sctp_sk_clone(sk, newsk); 5347 } 5348 5349 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 5350 struct request_sock *req) 5351 { 5352 struct sk_security_struct *sksec = sk->sk_security; 5353 int err; 5354 u16 family = req->rsk_ops->family; 5355 u32 connsid; 5356 u32 peersid; 5357 5358 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5359 if (err) 5360 return err; 5361 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5362 if (err) 5363 return err; 5364 req->secid = connsid; 5365 req->peer_secid = peersid; 5366 5367 return selinux_netlbl_inet_conn_request(req, family); 5368 } 5369 5370 static void selinux_inet_csk_clone(struct sock *newsk, 5371 const struct request_sock *req) 5372 { 5373 struct sk_security_struct *newsksec = newsk->sk_security; 5374 5375 newsksec->sid = req->secid; 5376 newsksec->peer_sid = req->peer_secid; 5377 /* NOTE: Ideally, we should also get the isec->sid for the 5378 new socket in sync, but we don't have the isec available yet. 5379 So we will wait until sock_graft to do it, by which 5380 time it will have been created and available. */ 5381 5382 /* We don't need to take any sort of lock here as we are the only 5383 * thread with access to newsksec */ 5384 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5385 } 5386 5387 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5388 { 5389 u16 family = sk->sk_family; 5390 struct sk_security_struct *sksec = sk->sk_security; 5391 5392 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5393 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5394 family = PF_INET; 5395 5396 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5397 } 5398 5399 static int selinux_secmark_relabel_packet(u32 sid) 5400 { 5401 const struct task_security_struct *__tsec; 5402 u32 tsid; 5403 5404 __tsec = selinux_cred(current_cred()); 5405 tsid = __tsec->sid; 5406 5407 return avc_has_perm(&selinux_state, 5408 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5409 NULL); 5410 } 5411 5412 static void selinux_secmark_refcount_inc(void) 5413 { 5414 atomic_inc(&selinux_secmark_refcount); 5415 } 5416 5417 static void selinux_secmark_refcount_dec(void) 5418 { 5419 atomic_dec(&selinux_secmark_refcount); 5420 } 5421 5422 static void selinux_req_classify_flow(const struct request_sock *req, 5423 struct flowi *fl) 5424 { 5425 fl->flowi_secid = req->secid; 5426 } 5427 5428 static int selinux_tun_dev_alloc_security(void **security) 5429 { 5430 struct tun_security_struct *tunsec; 5431 5432 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5433 if (!tunsec) 5434 return -ENOMEM; 5435 tunsec->sid = current_sid(); 5436 5437 *security = tunsec; 5438 return 0; 5439 } 5440 5441 static void selinux_tun_dev_free_security(void *security) 5442 { 5443 kfree(security); 5444 } 5445 5446 static int selinux_tun_dev_create(void) 5447 { 5448 u32 sid = current_sid(); 5449 5450 /* we aren't taking into account the "sockcreate" SID since the socket 5451 * that is being created here is not a socket in the traditional sense, 5452 * instead it is a private sock, accessible only to the kernel, and 5453 * representing a wide range of network traffic spanning multiple 5454 * connections unlike traditional sockets - check the TUN driver to 5455 * get a better understanding of why this socket is special */ 5456 5457 return avc_has_perm(&selinux_state, 5458 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5459 NULL); 5460 } 5461 5462 static int selinux_tun_dev_attach_queue(void *security) 5463 { 5464 struct tun_security_struct *tunsec = security; 5465 5466 return avc_has_perm(&selinux_state, 5467 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5468 TUN_SOCKET__ATTACH_QUEUE, NULL); 5469 } 5470 5471 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5472 { 5473 struct tun_security_struct *tunsec = security; 5474 struct sk_security_struct *sksec = sk->sk_security; 5475 5476 /* we don't currently perform any NetLabel based labeling here and it 5477 * isn't clear that we would want to do so anyway; while we could apply 5478 * labeling without the support of the TUN user the resulting labeled 5479 * traffic from the other end of the connection would almost certainly 5480 * cause confusion to the TUN user that had no idea network labeling 5481 * protocols were being used */ 5482 5483 sksec->sid = tunsec->sid; 5484 sksec->sclass = SECCLASS_TUN_SOCKET; 5485 5486 return 0; 5487 } 5488 5489 static int selinux_tun_dev_open(void *security) 5490 { 5491 struct tun_security_struct *tunsec = security; 5492 u32 sid = current_sid(); 5493 int err; 5494 5495 err = avc_has_perm(&selinux_state, 5496 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5497 TUN_SOCKET__RELABELFROM, NULL); 5498 if (err) 5499 return err; 5500 err = avc_has_perm(&selinux_state, 5501 sid, sid, SECCLASS_TUN_SOCKET, 5502 TUN_SOCKET__RELABELTO, NULL); 5503 if (err) 5504 return err; 5505 tunsec->sid = sid; 5506 5507 return 0; 5508 } 5509 5510 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 5511 { 5512 int err = 0; 5513 u32 perm; 5514 struct nlmsghdr *nlh; 5515 struct sk_security_struct *sksec = sk->sk_security; 5516 5517 if (skb->len < NLMSG_HDRLEN) { 5518 err = -EINVAL; 5519 goto out; 5520 } 5521 nlh = nlmsg_hdr(skb); 5522 5523 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 5524 if (err) { 5525 if (err == -EINVAL) { 5526 pr_warn_ratelimited("SELinux: unrecognized netlink" 5527 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5528 " pig=%d comm=%s\n", 5529 sk->sk_protocol, nlh->nlmsg_type, 5530 secclass_map[sksec->sclass - 1].name, 5531 task_pid_nr(current), current->comm); 5532 if (!enforcing_enabled(&selinux_state) || 5533 security_get_allow_unknown(&selinux_state)) 5534 err = 0; 5535 } 5536 5537 /* Ignore */ 5538 if (err == -ENOENT) 5539 err = 0; 5540 goto out; 5541 } 5542 5543 err = sock_has_perm(sk, perm); 5544 out: 5545 return err; 5546 } 5547 5548 #ifdef CONFIG_NETFILTER 5549 5550 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5551 const struct net_device *indev, 5552 u16 family) 5553 { 5554 int err; 5555 char *addrp; 5556 u32 peer_sid; 5557 struct common_audit_data ad; 5558 struct lsm_network_audit net = {0,}; 5559 u8 secmark_active; 5560 u8 netlbl_active; 5561 u8 peerlbl_active; 5562 5563 if (!selinux_policycap_netpeer()) 5564 return NF_ACCEPT; 5565 5566 secmark_active = selinux_secmark_enabled(); 5567 netlbl_active = netlbl_enabled(); 5568 peerlbl_active = selinux_peerlbl_enabled(); 5569 if (!secmark_active && !peerlbl_active) 5570 return NF_ACCEPT; 5571 5572 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5573 return NF_DROP; 5574 5575 ad.type = LSM_AUDIT_DATA_NET; 5576 ad.u.net = &net; 5577 ad.u.net->netif = indev->ifindex; 5578 ad.u.net->family = family; 5579 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5580 return NF_DROP; 5581 5582 if (peerlbl_active) { 5583 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5584 addrp, family, peer_sid, &ad); 5585 if (err) { 5586 selinux_netlbl_err(skb, family, err, 1); 5587 return NF_DROP; 5588 } 5589 } 5590 5591 if (secmark_active) 5592 if (avc_has_perm(&selinux_state, 5593 peer_sid, skb->secmark, 5594 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5595 return NF_DROP; 5596 5597 if (netlbl_active) 5598 /* we do this in the FORWARD path and not the POST_ROUTING 5599 * path because we want to make sure we apply the necessary 5600 * labeling before IPsec is applied so we can leverage AH 5601 * protection */ 5602 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5603 return NF_DROP; 5604 5605 return NF_ACCEPT; 5606 } 5607 5608 static unsigned int selinux_ipv4_forward(void *priv, 5609 struct sk_buff *skb, 5610 const struct nf_hook_state *state) 5611 { 5612 return selinux_ip_forward(skb, state->in, PF_INET); 5613 } 5614 5615 #if IS_ENABLED(CONFIG_IPV6) 5616 static unsigned int selinux_ipv6_forward(void *priv, 5617 struct sk_buff *skb, 5618 const struct nf_hook_state *state) 5619 { 5620 return selinux_ip_forward(skb, state->in, PF_INET6); 5621 } 5622 #endif /* IPV6 */ 5623 5624 static unsigned int selinux_ip_output(struct sk_buff *skb, 5625 u16 family) 5626 { 5627 struct sock *sk; 5628 u32 sid; 5629 5630 if (!netlbl_enabled()) 5631 return NF_ACCEPT; 5632 5633 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5634 * because we want to make sure we apply the necessary labeling 5635 * before IPsec is applied so we can leverage AH protection */ 5636 sk = skb->sk; 5637 if (sk) { 5638 struct sk_security_struct *sksec; 5639 5640 if (sk_listener(sk)) 5641 /* if the socket is the listening state then this 5642 * packet is a SYN-ACK packet which means it needs to 5643 * be labeled based on the connection/request_sock and 5644 * not the parent socket. unfortunately, we can't 5645 * lookup the request_sock yet as it isn't queued on 5646 * the parent socket until after the SYN-ACK is sent. 5647 * the "solution" is to simply pass the packet as-is 5648 * as any IP option based labeling should be copied 5649 * from the initial connection request (in the IP 5650 * layer). it is far from ideal, but until we get a 5651 * security label in the packet itself this is the 5652 * best we can do. */ 5653 return NF_ACCEPT; 5654 5655 /* standard practice, label using the parent socket */ 5656 sksec = sk->sk_security; 5657 sid = sksec->sid; 5658 } else 5659 sid = SECINITSID_KERNEL; 5660 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5661 return NF_DROP; 5662 5663 return NF_ACCEPT; 5664 } 5665 5666 static unsigned int selinux_ipv4_output(void *priv, 5667 struct sk_buff *skb, 5668 const struct nf_hook_state *state) 5669 { 5670 return selinux_ip_output(skb, PF_INET); 5671 } 5672 5673 #if IS_ENABLED(CONFIG_IPV6) 5674 static unsigned int selinux_ipv6_output(void *priv, 5675 struct sk_buff *skb, 5676 const struct nf_hook_state *state) 5677 { 5678 return selinux_ip_output(skb, PF_INET6); 5679 } 5680 #endif /* IPV6 */ 5681 5682 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5683 int ifindex, 5684 u16 family) 5685 { 5686 struct sock *sk = skb_to_full_sk(skb); 5687 struct sk_security_struct *sksec; 5688 struct common_audit_data ad; 5689 struct lsm_network_audit net = {0,}; 5690 char *addrp; 5691 u8 proto; 5692 5693 if (sk == NULL) 5694 return NF_ACCEPT; 5695 sksec = sk->sk_security; 5696 5697 ad.type = LSM_AUDIT_DATA_NET; 5698 ad.u.net = &net; 5699 ad.u.net->netif = ifindex; 5700 ad.u.net->family = family; 5701 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5702 return NF_DROP; 5703 5704 if (selinux_secmark_enabled()) 5705 if (avc_has_perm(&selinux_state, 5706 sksec->sid, skb->secmark, 5707 SECCLASS_PACKET, PACKET__SEND, &ad)) 5708 return NF_DROP_ERR(-ECONNREFUSED); 5709 5710 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5711 return NF_DROP_ERR(-ECONNREFUSED); 5712 5713 return NF_ACCEPT; 5714 } 5715 5716 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5717 const struct net_device *outdev, 5718 u16 family) 5719 { 5720 u32 secmark_perm; 5721 u32 peer_sid; 5722 int ifindex = outdev->ifindex; 5723 struct sock *sk; 5724 struct common_audit_data ad; 5725 struct lsm_network_audit net = {0,}; 5726 char *addrp; 5727 u8 secmark_active; 5728 u8 peerlbl_active; 5729 5730 /* If any sort of compatibility mode is enabled then handoff processing 5731 * to the selinux_ip_postroute_compat() function to deal with the 5732 * special handling. We do this in an attempt to keep this function 5733 * as fast and as clean as possible. */ 5734 if (!selinux_policycap_netpeer()) 5735 return selinux_ip_postroute_compat(skb, ifindex, family); 5736 5737 secmark_active = selinux_secmark_enabled(); 5738 peerlbl_active = selinux_peerlbl_enabled(); 5739 if (!secmark_active && !peerlbl_active) 5740 return NF_ACCEPT; 5741 5742 sk = skb_to_full_sk(skb); 5743 5744 #ifdef CONFIG_XFRM 5745 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5746 * packet transformation so allow the packet to pass without any checks 5747 * since we'll have another chance to perform access control checks 5748 * when the packet is on it's final way out. 5749 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5750 * is NULL, in this case go ahead and apply access control. 5751 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5752 * TCP listening state we cannot wait until the XFRM processing 5753 * is done as we will miss out on the SA label if we do; 5754 * unfortunately, this means more work, but it is only once per 5755 * connection. */ 5756 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5757 !(sk && sk_listener(sk))) 5758 return NF_ACCEPT; 5759 #endif 5760 5761 if (sk == NULL) { 5762 /* Without an associated socket the packet is either coming 5763 * from the kernel or it is being forwarded; check the packet 5764 * to determine which and if the packet is being forwarded 5765 * query the packet directly to determine the security label. */ 5766 if (skb->skb_iif) { 5767 secmark_perm = PACKET__FORWARD_OUT; 5768 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5769 return NF_DROP; 5770 } else { 5771 secmark_perm = PACKET__SEND; 5772 peer_sid = SECINITSID_KERNEL; 5773 } 5774 } else if (sk_listener(sk)) { 5775 /* Locally generated packet but the associated socket is in the 5776 * listening state which means this is a SYN-ACK packet. In 5777 * this particular case the correct security label is assigned 5778 * to the connection/request_sock but unfortunately we can't 5779 * query the request_sock as it isn't queued on the parent 5780 * socket until after the SYN-ACK packet is sent; the only 5781 * viable choice is to regenerate the label like we do in 5782 * selinux_inet_conn_request(). See also selinux_ip_output() 5783 * for similar problems. */ 5784 u32 skb_sid; 5785 struct sk_security_struct *sksec; 5786 5787 sksec = sk->sk_security; 5788 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5789 return NF_DROP; 5790 /* At this point, if the returned skb peerlbl is SECSID_NULL 5791 * and the packet has been through at least one XFRM 5792 * transformation then we must be dealing with the "final" 5793 * form of labeled IPsec packet; since we've already applied 5794 * all of our access controls on this packet we can safely 5795 * pass the packet. */ 5796 if (skb_sid == SECSID_NULL) { 5797 switch (family) { 5798 case PF_INET: 5799 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5800 return NF_ACCEPT; 5801 break; 5802 case PF_INET6: 5803 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5804 return NF_ACCEPT; 5805 break; 5806 default: 5807 return NF_DROP_ERR(-ECONNREFUSED); 5808 } 5809 } 5810 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5811 return NF_DROP; 5812 secmark_perm = PACKET__SEND; 5813 } else { 5814 /* Locally generated packet, fetch the security label from the 5815 * associated socket. */ 5816 struct sk_security_struct *sksec = sk->sk_security; 5817 peer_sid = sksec->sid; 5818 secmark_perm = PACKET__SEND; 5819 } 5820 5821 ad.type = LSM_AUDIT_DATA_NET; 5822 ad.u.net = &net; 5823 ad.u.net->netif = ifindex; 5824 ad.u.net->family = family; 5825 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5826 return NF_DROP; 5827 5828 if (secmark_active) 5829 if (avc_has_perm(&selinux_state, 5830 peer_sid, skb->secmark, 5831 SECCLASS_PACKET, secmark_perm, &ad)) 5832 return NF_DROP_ERR(-ECONNREFUSED); 5833 5834 if (peerlbl_active) { 5835 u32 if_sid; 5836 u32 node_sid; 5837 5838 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5839 return NF_DROP; 5840 if (avc_has_perm(&selinux_state, 5841 peer_sid, if_sid, 5842 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5843 return NF_DROP_ERR(-ECONNREFUSED); 5844 5845 if (sel_netnode_sid(addrp, family, &node_sid)) 5846 return NF_DROP; 5847 if (avc_has_perm(&selinux_state, 5848 peer_sid, node_sid, 5849 SECCLASS_NODE, NODE__SENDTO, &ad)) 5850 return NF_DROP_ERR(-ECONNREFUSED); 5851 } 5852 5853 return NF_ACCEPT; 5854 } 5855 5856 static unsigned int selinux_ipv4_postroute(void *priv, 5857 struct sk_buff *skb, 5858 const struct nf_hook_state *state) 5859 { 5860 return selinux_ip_postroute(skb, state->out, PF_INET); 5861 } 5862 5863 #if IS_ENABLED(CONFIG_IPV6) 5864 static unsigned int selinux_ipv6_postroute(void *priv, 5865 struct sk_buff *skb, 5866 const struct nf_hook_state *state) 5867 { 5868 return selinux_ip_postroute(skb, state->out, PF_INET6); 5869 } 5870 #endif /* IPV6 */ 5871 5872 #endif /* CONFIG_NETFILTER */ 5873 5874 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5875 { 5876 return selinux_nlmsg_perm(sk, skb); 5877 } 5878 5879 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5880 { 5881 isec->sclass = sclass; 5882 isec->sid = current_sid(); 5883 } 5884 5885 static int msg_msg_alloc_security(struct msg_msg *msg) 5886 { 5887 struct msg_security_struct *msec; 5888 5889 msec = selinux_msg_msg(msg); 5890 msec->sid = SECINITSID_UNLABELED; 5891 5892 return 0; 5893 } 5894 5895 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5896 u32 perms) 5897 { 5898 struct ipc_security_struct *isec; 5899 struct common_audit_data ad; 5900 u32 sid = current_sid(); 5901 5902 isec = selinux_ipc(ipc_perms); 5903 5904 ad.type = LSM_AUDIT_DATA_IPC; 5905 ad.u.ipc_id = ipc_perms->key; 5906 5907 return avc_has_perm(&selinux_state, 5908 sid, isec->sid, isec->sclass, perms, &ad); 5909 } 5910 5911 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5912 { 5913 return msg_msg_alloc_security(msg); 5914 } 5915 5916 /* message queue security operations */ 5917 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5918 { 5919 struct ipc_security_struct *isec; 5920 struct common_audit_data ad; 5921 u32 sid = current_sid(); 5922 int rc; 5923 5924 isec = selinux_ipc(msq); 5925 ipc_init_security(isec, SECCLASS_MSGQ); 5926 5927 ad.type = LSM_AUDIT_DATA_IPC; 5928 ad.u.ipc_id = msq->key; 5929 5930 rc = avc_has_perm(&selinux_state, 5931 sid, isec->sid, SECCLASS_MSGQ, 5932 MSGQ__CREATE, &ad); 5933 return rc; 5934 } 5935 5936 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5937 { 5938 struct ipc_security_struct *isec; 5939 struct common_audit_data ad; 5940 u32 sid = current_sid(); 5941 5942 isec = selinux_ipc(msq); 5943 5944 ad.type = LSM_AUDIT_DATA_IPC; 5945 ad.u.ipc_id = msq->key; 5946 5947 return avc_has_perm(&selinux_state, 5948 sid, isec->sid, SECCLASS_MSGQ, 5949 MSGQ__ASSOCIATE, &ad); 5950 } 5951 5952 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5953 { 5954 int err; 5955 int perms; 5956 5957 switch (cmd) { 5958 case IPC_INFO: 5959 case MSG_INFO: 5960 /* No specific object, just general system-wide information. */ 5961 return avc_has_perm(&selinux_state, 5962 current_sid(), SECINITSID_KERNEL, 5963 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5964 case IPC_STAT: 5965 case MSG_STAT: 5966 case MSG_STAT_ANY: 5967 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5968 break; 5969 case IPC_SET: 5970 perms = MSGQ__SETATTR; 5971 break; 5972 case IPC_RMID: 5973 perms = MSGQ__DESTROY; 5974 break; 5975 default: 5976 return 0; 5977 } 5978 5979 err = ipc_has_perm(msq, perms); 5980 return err; 5981 } 5982 5983 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 5984 { 5985 struct ipc_security_struct *isec; 5986 struct msg_security_struct *msec; 5987 struct common_audit_data ad; 5988 u32 sid = current_sid(); 5989 int rc; 5990 5991 isec = selinux_ipc(msq); 5992 msec = selinux_msg_msg(msg); 5993 5994 /* 5995 * First time through, need to assign label to the message 5996 */ 5997 if (msec->sid == SECINITSID_UNLABELED) { 5998 /* 5999 * Compute new sid based on current process and 6000 * message queue this message will be stored in 6001 */ 6002 rc = security_transition_sid(&selinux_state, sid, isec->sid, 6003 SECCLASS_MSG, NULL, &msec->sid); 6004 if (rc) 6005 return rc; 6006 } 6007 6008 ad.type = LSM_AUDIT_DATA_IPC; 6009 ad.u.ipc_id = msq->key; 6010 6011 /* Can this process write to the queue? */ 6012 rc = avc_has_perm(&selinux_state, 6013 sid, isec->sid, SECCLASS_MSGQ, 6014 MSGQ__WRITE, &ad); 6015 if (!rc) 6016 /* Can this process send the message */ 6017 rc = avc_has_perm(&selinux_state, 6018 sid, msec->sid, SECCLASS_MSG, 6019 MSG__SEND, &ad); 6020 if (!rc) 6021 /* Can the message be put in the queue? */ 6022 rc = avc_has_perm(&selinux_state, 6023 msec->sid, isec->sid, SECCLASS_MSGQ, 6024 MSGQ__ENQUEUE, &ad); 6025 6026 return rc; 6027 } 6028 6029 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6030 struct task_struct *target, 6031 long type, int mode) 6032 { 6033 struct ipc_security_struct *isec; 6034 struct msg_security_struct *msec; 6035 struct common_audit_data ad; 6036 u32 sid = task_sid(target); 6037 int rc; 6038 6039 isec = selinux_ipc(msq); 6040 msec = selinux_msg_msg(msg); 6041 6042 ad.type = LSM_AUDIT_DATA_IPC; 6043 ad.u.ipc_id = msq->key; 6044 6045 rc = avc_has_perm(&selinux_state, 6046 sid, isec->sid, 6047 SECCLASS_MSGQ, MSGQ__READ, &ad); 6048 if (!rc) 6049 rc = avc_has_perm(&selinux_state, 6050 sid, msec->sid, 6051 SECCLASS_MSG, MSG__RECEIVE, &ad); 6052 return rc; 6053 } 6054 6055 /* Shared Memory security operations */ 6056 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6057 { 6058 struct ipc_security_struct *isec; 6059 struct common_audit_data ad; 6060 u32 sid = current_sid(); 6061 int rc; 6062 6063 isec = selinux_ipc(shp); 6064 ipc_init_security(isec, SECCLASS_SHM); 6065 6066 ad.type = LSM_AUDIT_DATA_IPC; 6067 ad.u.ipc_id = shp->key; 6068 6069 rc = avc_has_perm(&selinux_state, 6070 sid, isec->sid, SECCLASS_SHM, 6071 SHM__CREATE, &ad); 6072 return rc; 6073 } 6074 6075 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6076 { 6077 struct ipc_security_struct *isec; 6078 struct common_audit_data ad; 6079 u32 sid = current_sid(); 6080 6081 isec = selinux_ipc(shp); 6082 6083 ad.type = LSM_AUDIT_DATA_IPC; 6084 ad.u.ipc_id = shp->key; 6085 6086 return avc_has_perm(&selinux_state, 6087 sid, isec->sid, SECCLASS_SHM, 6088 SHM__ASSOCIATE, &ad); 6089 } 6090 6091 /* Note, at this point, shp is locked down */ 6092 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6093 { 6094 int perms; 6095 int err; 6096 6097 switch (cmd) { 6098 case IPC_INFO: 6099 case SHM_INFO: 6100 /* No specific object, just general system-wide information. */ 6101 return avc_has_perm(&selinux_state, 6102 current_sid(), SECINITSID_KERNEL, 6103 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6104 case IPC_STAT: 6105 case SHM_STAT: 6106 case SHM_STAT_ANY: 6107 perms = SHM__GETATTR | SHM__ASSOCIATE; 6108 break; 6109 case IPC_SET: 6110 perms = SHM__SETATTR; 6111 break; 6112 case SHM_LOCK: 6113 case SHM_UNLOCK: 6114 perms = SHM__LOCK; 6115 break; 6116 case IPC_RMID: 6117 perms = SHM__DESTROY; 6118 break; 6119 default: 6120 return 0; 6121 } 6122 6123 err = ipc_has_perm(shp, perms); 6124 return err; 6125 } 6126 6127 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6128 char __user *shmaddr, int shmflg) 6129 { 6130 u32 perms; 6131 6132 if (shmflg & SHM_RDONLY) 6133 perms = SHM__READ; 6134 else 6135 perms = SHM__READ | SHM__WRITE; 6136 6137 return ipc_has_perm(shp, perms); 6138 } 6139 6140 /* Semaphore security operations */ 6141 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6142 { 6143 struct ipc_security_struct *isec; 6144 struct common_audit_data ad; 6145 u32 sid = current_sid(); 6146 int rc; 6147 6148 isec = selinux_ipc(sma); 6149 ipc_init_security(isec, SECCLASS_SEM); 6150 6151 ad.type = LSM_AUDIT_DATA_IPC; 6152 ad.u.ipc_id = sma->key; 6153 6154 rc = avc_has_perm(&selinux_state, 6155 sid, isec->sid, SECCLASS_SEM, 6156 SEM__CREATE, &ad); 6157 return rc; 6158 } 6159 6160 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6161 { 6162 struct ipc_security_struct *isec; 6163 struct common_audit_data ad; 6164 u32 sid = current_sid(); 6165 6166 isec = selinux_ipc(sma); 6167 6168 ad.type = LSM_AUDIT_DATA_IPC; 6169 ad.u.ipc_id = sma->key; 6170 6171 return avc_has_perm(&selinux_state, 6172 sid, isec->sid, SECCLASS_SEM, 6173 SEM__ASSOCIATE, &ad); 6174 } 6175 6176 /* Note, at this point, sma is locked down */ 6177 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6178 { 6179 int err; 6180 u32 perms; 6181 6182 switch (cmd) { 6183 case IPC_INFO: 6184 case SEM_INFO: 6185 /* No specific object, just general system-wide information. */ 6186 return avc_has_perm(&selinux_state, 6187 current_sid(), SECINITSID_KERNEL, 6188 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6189 case GETPID: 6190 case GETNCNT: 6191 case GETZCNT: 6192 perms = SEM__GETATTR; 6193 break; 6194 case GETVAL: 6195 case GETALL: 6196 perms = SEM__READ; 6197 break; 6198 case SETVAL: 6199 case SETALL: 6200 perms = SEM__WRITE; 6201 break; 6202 case IPC_RMID: 6203 perms = SEM__DESTROY; 6204 break; 6205 case IPC_SET: 6206 perms = SEM__SETATTR; 6207 break; 6208 case IPC_STAT: 6209 case SEM_STAT: 6210 case SEM_STAT_ANY: 6211 perms = SEM__GETATTR | SEM__ASSOCIATE; 6212 break; 6213 default: 6214 return 0; 6215 } 6216 6217 err = ipc_has_perm(sma, perms); 6218 return err; 6219 } 6220 6221 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6222 struct sembuf *sops, unsigned nsops, int alter) 6223 { 6224 u32 perms; 6225 6226 if (alter) 6227 perms = SEM__READ | SEM__WRITE; 6228 else 6229 perms = SEM__READ; 6230 6231 return ipc_has_perm(sma, perms); 6232 } 6233 6234 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6235 { 6236 u32 av = 0; 6237 6238 av = 0; 6239 if (flag & S_IRUGO) 6240 av |= IPC__UNIX_READ; 6241 if (flag & S_IWUGO) 6242 av |= IPC__UNIX_WRITE; 6243 6244 if (av == 0) 6245 return 0; 6246 6247 return ipc_has_perm(ipcp, av); 6248 } 6249 6250 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6251 { 6252 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6253 *secid = isec->sid; 6254 } 6255 6256 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6257 { 6258 if (inode) 6259 inode_doinit_with_dentry(inode, dentry); 6260 } 6261 6262 static int selinux_getprocattr(struct task_struct *p, 6263 char *name, char **value) 6264 { 6265 const struct task_security_struct *__tsec; 6266 u32 sid; 6267 int error; 6268 unsigned len; 6269 6270 rcu_read_lock(); 6271 __tsec = selinux_cred(__task_cred(p)); 6272 6273 if (current != p) { 6274 error = avc_has_perm(&selinux_state, 6275 current_sid(), __tsec->sid, 6276 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6277 if (error) 6278 goto bad; 6279 } 6280 6281 if (!strcmp(name, "current")) 6282 sid = __tsec->sid; 6283 else if (!strcmp(name, "prev")) 6284 sid = __tsec->osid; 6285 else if (!strcmp(name, "exec")) 6286 sid = __tsec->exec_sid; 6287 else if (!strcmp(name, "fscreate")) 6288 sid = __tsec->create_sid; 6289 else if (!strcmp(name, "keycreate")) 6290 sid = __tsec->keycreate_sid; 6291 else if (!strcmp(name, "sockcreate")) 6292 sid = __tsec->sockcreate_sid; 6293 else { 6294 error = -EINVAL; 6295 goto bad; 6296 } 6297 rcu_read_unlock(); 6298 6299 if (!sid) 6300 return 0; 6301 6302 error = security_sid_to_context(&selinux_state, sid, value, &len); 6303 if (error) 6304 return error; 6305 return len; 6306 6307 bad: 6308 rcu_read_unlock(); 6309 return error; 6310 } 6311 6312 static int selinux_setprocattr(const char *name, void *value, size_t size) 6313 { 6314 struct task_security_struct *tsec; 6315 struct cred *new; 6316 u32 mysid = current_sid(), sid = 0, ptsid; 6317 int error; 6318 char *str = value; 6319 6320 /* 6321 * Basic control over ability to set these attributes at all. 6322 */ 6323 if (!strcmp(name, "exec")) 6324 error = avc_has_perm(&selinux_state, 6325 mysid, mysid, SECCLASS_PROCESS, 6326 PROCESS__SETEXEC, NULL); 6327 else if (!strcmp(name, "fscreate")) 6328 error = avc_has_perm(&selinux_state, 6329 mysid, mysid, SECCLASS_PROCESS, 6330 PROCESS__SETFSCREATE, NULL); 6331 else if (!strcmp(name, "keycreate")) 6332 error = avc_has_perm(&selinux_state, 6333 mysid, mysid, SECCLASS_PROCESS, 6334 PROCESS__SETKEYCREATE, NULL); 6335 else if (!strcmp(name, "sockcreate")) 6336 error = avc_has_perm(&selinux_state, 6337 mysid, mysid, SECCLASS_PROCESS, 6338 PROCESS__SETSOCKCREATE, NULL); 6339 else if (!strcmp(name, "current")) 6340 error = avc_has_perm(&selinux_state, 6341 mysid, mysid, SECCLASS_PROCESS, 6342 PROCESS__SETCURRENT, NULL); 6343 else 6344 error = -EINVAL; 6345 if (error) 6346 return error; 6347 6348 /* Obtain a SID for the context, if one was specified. */ 6349 if (size && str[0] && str[0] != '\n') { 6350 if (str[size-1] == '\n') { 6351 str[size-1] = 0; 6352 size--; 6353 } 6354 error = security_context_to_sid(&selinux_state, value, size, 6355 &sid, GFP_KERNEL); 6356 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6357 if (!has_cap_mac_admin(true)) { 6358 struct audit_buffer *ab; 6359 size_t audit_size; 6360 6361 /* We strip a nul only if it is at the end, otherwise the 6362 * context contains a nul and we should audit that */ 6363 if (str[size - 1] == '\0') 6364 audit_size = size - 1; 6365 else 6366 audit_size = size; 6367 ab = audit_log_start(audit_context(), 6368 GFP_ATOMIC, 6369 AUDIT_SELINUX_ERR); 6370 audit_log_format(ab, "op=fscreate invalid_context="); 6371 audit_log_n_untrustedstring(ab, value, audit_size); 6372 audit_log_end(ab); 6373 6374 return error; 6375 } 6376 error = security_context_to_sid_force( 6377 &selinux_state, 6378 value, size, &sid); 6379 } 6380 if (error) 6381 return error; 6382 } 6383 6384 new = prepare_creds(); 6385 if (!new) 6386 return -ENOMEM; 6387 6388 /* Permission checking based on the specified context is 6389 performed during the actual operation (execve, 6390 open/mkdir/...), when we know the full context of the 6391 operation. See selinux_bprm_set_creds for the execve 6392 checks and may_create for the file creation checks. The 6393 operation will then fail if the context is not permitted. */ 6394 tsec = selinux_cred(new); 6395 if (!strcmp(name, "exec")) { 6396 tsec->exec_sid = sid; 6397 } else if (!strcmp(name, "fscreate")) { 6398 tsec->create_sid = sid; 6399 } else if (!strcmp(name, "keycreate")) { 6400 if (sid) { 6401 error = avc_has_perm(&selinux_state, mysid, sid, 6402 SECCLASS_KEY, KEY__CREATE, NULL); 6403 if (error) 6404 goto abort_change; 6405 } 6406 tsec->keycreate_sid = sid; 6407 } else if (!strcmp(name, "sockcreate")) { 6408 tsec->sockcreate_sid = sid; 6409 } else if (!strcmp(name, "current")) { 6410 error = -EINVAL; 6411 if (sid == 0) 6412 goto abort_change; 6413 6414 /* Only allow single threaded processes to change context */ 6415 error = -EPERM; 6416 if (!current_is_single_threaded()) { 6417 error = security_bounded_transition(&selinux_state, 6418 tsec->sid, sid); 6419 if (error) 6420 goto abort_change; 6421 } 6422 6423 /* Check permissions for the transition. */ 6424 error = avc_has_perm(&selinux_state, 6425 tsec->sid, sid, SECCLASS_PROCESS, 6426 PROCESS__DYNTRANSITION, NULL); 6427 if (error) 6428 goto abort_change; 6429 6430 /* Check for ptracing, and update the task SID if ok. 6431 Otherwise, leave SID unchanged and fail. */ 6432 ptsid = ptrace_parent_sid(); 6433 if (ptsid != 0) { 6434 error = avc_has_perm(&selinux_state, 6435 ptsid, sid, SECCLASS_PROCESS, 6436 PROCESS__PTRACE, NULL); 6437 if (error) 6438 goto abort_change; 6439 } 6440 6441 tsec->sid = sid; 6442 } else { 6443 error = -EINVAL; 6444 goto abort_change; 6445 } 6446 6447 commit_creds(new); 6448 return size; 6449 6450 abort_change: 6451 abort_creds(new); 6452 return error; 6453 } 6454 6455 static int selinux_ismaclabel(const char *name) 6456 { 6457 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6458 } 6459 6460 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6461 { 6462 return security_sid_to_context(&selinux_state, secid, 6463 secdata, seclen); 6464 } 6465 6466 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6467 { 6468 return security_context_to_sid(&selinux_state, secdata, seclen, 6469 secid, GFP_KERNEL); 6470 } 6471 6472 static void selinux_release_secctx(char *secdata, u32 seclen) 6473 { 6474 kfree(secdata); 6475 } 6476 6477 static void selinux_inode_invalidate_secctx(struct inode *inode) 6478 { 6479 struct inode_security_struct *isec = selinux_inode(inode); 6480 6481 spin_lock(&isec->lock); 6482 isec->initialized = LABEL_INVALID; 6483 spin_unlock(&isec->lock); 6484 } 6485 6486 /* 6487 * called with inode->i_mutex locked 6488 */ 6489 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6490 { 6491 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6492 ctx, ctxlen, 0); 6493 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6494 return rc == -EOPNOTSUPP ? 0 : rc; 6495 } 6496 6497 /* 6498 * called with inode->i_mutex locked 6499 */ 6500 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6501 { 6502 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6503 } 6504 6505 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6506 { 6507 int len = 0; 6508 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6509 ctx, true); 6510 if (len < 0) 6511 return len; 6512 *ctxlen = len; 6513 return 0; 6514 } 6515 #ifdef CONFIG_KEYS 6516 6517 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6518 unsigned long flags) 6519 { 6520 const struct task_security_struct *tsec; 6521 struct key_security_struct *ksec; 6522 6523 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6524 if (!ksec) 6525 return -ENOMEM; 6526 6527 tsec = selinux_cred(cred); 6528 if (tsec->keycreate_sid) 6529 ksec->sid = tsec->keycreate_sid; 6530 else 6531 ksec->sid = tsec->sid; 6532 6533 k->security = ksec; 6534 return 0; 6535 } 6536 6537 static void selinux_key_free(struct key *k) 6538 { 6539 struct key_security_struct *ksec = k->security; 6540 6541 k->security = NULL; 6542 kfree(ksec); 6543 } 6544 6545 static int selinux_key_permission(key_ref_t key_ref, 6546 const struct cred *cred, 6547 unsigned perm) 6548 { 6549 struct key *key; 6550 struct key_security_struct *ksec; 6551 u32 sid; 6552 6553 /* if no specific permissions are requested, we skip the 6554 permission check. No serious, additional covert channels 6555 appear to be created. */ 6556 if (perm == 0) 6557 return 0; 6558 6559 sid = cred_sid(cred); 6560 6561 key = key_ref_to_ptr(key_ref); 6562 ksec = key->security; 6563 6564 return avc_has_perm(&selinux_state, 6565 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6566 } 6567 6568 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6569 { 6570 struct key_security_struct *ksec = key->security; 6571 char *context = NULL; 6572 unsigned len; 6573 int rc; 6574 6575 rc = security_sid_to_context(&selinux_state, ksec->sid, 6576 &context, &len); 6577 if (!rc) 6578 rc = len; 6579 *_buffer = context; 6580 return rc; 6581 } 6582 #endif 6583 6584 #ifdef CONFIG_SECURITY_INFINIBAND 6585 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6586 { 6587 struct common_audit_data ad; 6588 int err; 6589 u32 sid = 0; 6590 struct ib_security_struct *sec = ib_sec; 6591 struct lsm_ibpkey_audit ibpkey; 6592 6593 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6594 if (err) 6595 return err; 6596 6597 ad.type = LSM_AUDIT_DATA_IBPKEY; 6598 ibpkey.subnet_prefix = subnet_prefix; 6599 ibpkey.pkey = pkey_val; 6600 ad.u.ibpkey = &ibpkey; 6601 return avc_has_perm(&selinux_state, 6602 sec->sid, sid, 6603 SECCLASS_INFINIBAND_PKEY, 6604 INFINIBAND_PKEY__ACCESS, &ad); 6605 } 6606 6607 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6608 u8 port_num) 6609 { 6610 struct common_audit_data ad; 6611 int err; 6612 u32 sid = 0; 6613 struct ib_security_struct *sec = ib_sec; 6614 struct lsm_ibendport_audit ibendport; 6615 6616 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6617 &sid); 6618 6619 if (err) 6620 return err; 6621 6622 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6623 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); 6624 ibendport.port = port_num; 6625 ad.u.ibendport = &ibendport; 6626 return avc_has_perm(&selinux_state, 6627 sec->sid, sid, 6628 SECCLASS_INFINIBAND_ENDPORT, 6629 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6630 } 6631 6632 static int selinux_ib_alloc_security(void **ib_sec) 6633 { 6634 struct ib_security_struct *sec; 6635 6636 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6637 if (!sec) 6638 return -ENOMEM; 6639 sec->sid = current_sid(); 6640 6641 *ib_sec = sec; 6642 return 0; 6643 } 6644 6645 static void selinux_ib_free_security(void *ib_sec) 6646 { 6647 kfree(ib_sec); 6648 } 6649 #endif 6650 6651 #ifdef CONFIG_BPF_SYSCALL 6652 static int selinux_bpf(int cmd, union bpf_attr *attr, 6653 unsigned int size) 6654 { 6655 u32 sid = current_sid(); 6656 int ret; 6657 6658 switch (cmd) { 6659 case BPF_MAP_CREATE: 6660 ret = avc_has_perm(&selinux_state, 6661 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6662 NULL); 6663 break; 6664 case BPF_PROG_LOAD: 6665 ret = avc_has_perm(&selinux_state, 6666 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6667 NULL); 6668 break; 6669 default: 6670 ret = 0; 6671 break; 6672 } 6673 6674 return ret; 6675 } 6676 6677 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6678 { 6679 u32 av = 0; 6680 6681 if (fmode & FMODE_READ) 6682 av |= BPF__MAP_READ; 6683 if (fmode & FMODE_WRITE) 6684 av |= BPF__MAP_WRITE; 6685 return av; 6686 } 6687 6688 /* This function will check the file pass through unix socket or binder to see 6689 * if it is a bpf related object. And apply correspinding checks on the bpf 6690 * object based on the type. The bpf maps and programs, not like other files and 6691 * socket, are using a shared anonymous inode inside the kernel as their inode. 6692 * So checking that inode cannot identify if the process have privilege to 6693 * access the bpf object and that's why we have to add this additional check in 6694 * selinux_file_receive and selinux_binder_transfer_files. 6695 */ 6696 static int bpf_fd_pass(struct file *file, u32 sid) 6697 { 6698 struct bpf_security_struct *bpfsec; 6699 struct bpf_prog *prog; 6700 struct bpf_map *map; 6701 int ret; 6702 6703 if (file->f_op == &bpf_map_fops) { 6704 map = file->private_data; 6705 bpfsec = map->security; 6706 ret = avc_has_perm(&selinux_state, 6707 sid, bpfsec->sid, SECCLASS_BPF, 6708 bpf_map_fmode_to_av(file->f_mode), NULL); 6709 if (ret) 6710 return ret; 6711 } else if (file->f_op == &bpf_prog_fops) { 6712 prog = file->private_data; 6713 bpfsec = prog->aux->security; 6714 ret = avc_has_perm(&selinux_state, 6715 sid, bpfsec->sid, SECCLASS_BPF, 6716 BPF__PROG_RUN, NULL); 6717 if (ret) 6718 return ret; 6719 } 6720 return 0; 6721 } 6722 6723 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6724 { 6725 u32 sid = current_sid(); 6726 struct bpf_security_struct *bpfsec; 6727 6728 bpfsec = map->security; 6729 return avc_has_perm(&selinux_state, 6730 sid, bpfsec->sid, SECCLASS_BPF, 6731 bpf_map_fmode_to_av(fmode), NULL); 6732 } 6733 6734 static int selinux_bpf_prog(struct bpf_prog *prog) 6735 { 6736 u32 sid = current_sid(); 6737 struct bpf_security_struct *bpfsec; 6738 6739 bpfsec = prog->aux->security; 6740 return avc_has_perm(&selinux_state, 6741 sid, bpfsec->sid, SECCLASS_BPF, 6742 BPF__PROG_RUN, NULL); 6743 } 6744 6745 static int selinux_bpf_map_alloc(struct bpf_map *map) 6746 { 6747 struct bpf_security_struct *bpfsec; 6748 6749 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6750 if (!bpfsec) 6751 return -ENOMEM; 6752 6753 bpfsec->sid = current_sid(); 6754 map->security = bpfsec; 6755 6756 return 0; 6757 } 6758 6759 static void selinux_bpf_map_free(struct bpf_map *map) 6760 { 6761 struct bpf_security_struct *bpfsec = map->security; 6762 6763 map->security = NULL; 6764 kfree(bpfsec); 6765 } 6766 6767 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6768 { 6769 struct bpf_security_struct *bpfsec; 6770 6771 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6772 if (!bpfsec) 6773 return -ENOMEM; 6774 6775 bpfsec->sid = current_sid(); 6776 aux->security = bpfsec; 6777 6778 return 0; 6779 } 6780 6781 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6782 { 6783 struct bpf_security_struct *bpfsec = aux->security; 6784 6785 aux->security = NULL; 6786 kfree(bpfsec); 6787 } 6788 #endif 6789 6790 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { 6791 .lbs_cred = sizeof(struct task_security_struct), 6792 .lbs_file = sizeof(struct file_security_struct), 6793 .lbs_inode = sizeof(struct inode_security_struct), 6794 .lbs_ipc = sizeof(struct ipc_security_struct), 6795 .lbs_msg_msg = sizeof(struct msg_security_struct), 6796 }; 6797 6798 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 6799 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6800 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6801 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6802 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6803 6804 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6805 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6806 LSM_HOOK_INIT(capget, selinux_capget), 6807 LSM_HOOK_INIT(capset, selinux_capset), 6808 LSM_HOOK_INIT(capable, selinux_capable), 6809 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6810 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6811 LSM_HOOK_INIT(syslog, selinux_syslog), 6812 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6813 6814 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6815 6816 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 6817 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6818 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6819 6820 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 6821 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 6822 6823 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 6824 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6825 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 6826 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 6827 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6828 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6829 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6830 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6831 LSM_HOOK_INIT(sb_mount, selinux_mount), 6832 LSM_HOOK_INIT(sb_umount, selinux_umount), 6833 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6834 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6835 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), 6836 6837 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6838 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6839 6840 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 6841 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6842 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6843 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6844 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6845 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6846 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6847 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6848 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6849 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6850 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6851 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6852 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6853 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6854 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6855 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6856 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6857 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 6858 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 6859 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 6860 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 6861 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 6862 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 6863 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 6864 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 6865 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 6866 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 6867 LSM_HOOK_INIT(path_notify, selinux_path_notify), 6868 6869 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 6870 6871 LSM_HOOK_INIT(file_permission, selinux_file_permission), 6872 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 6873 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 6874 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 6875 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 6876 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 6877 LSM_HOOK_INIT(file_lock, selinux_file_lock), 6878 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 6879 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 6880 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 6881 LSM_HOOK_INIT(file_receive, selinux_file_receive), 6882 6883 LSM_HOOK_INIT(file_open, selinux_file_open), 6884 6885 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 6886 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 6887 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 6888 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 6889 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 6890 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 6891 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 6892 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 6893 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 6894 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 6895 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 6896 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 6897 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 6898 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 6899 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 6900 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 6901 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 6902 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 6903 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 6904 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 6905 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 6906 LSM_HOOK_INIT(task_kill, selinux_task_kill), 6907 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 6908 6909 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 6910 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 6911 6912 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 6913 6914 LSM_HOOK_INIT(msg_queue_alloc_security, 6915 selinux_msg_queue_alloc_security), 6916 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 6917 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 6918 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 6919 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 6920 6921 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 6922 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 6923 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 6924 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 6925 6926 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 6927 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 6928 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 6929 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 6930 6931 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 6932 6933 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 6934 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 6935 6936 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 6937 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 6938 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 6939 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 6940 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 6941 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 6942 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 6943 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 6944 6945 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 6946 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 6947 6948 LSM_HOOK_INIT(socket_create, selinux_socket_create), 6949 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 6950 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 6951 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 6952 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 6953 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 6954 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 6955 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 6956 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 6957 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 6958 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 6959 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 6960 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 6961 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 6962 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 6963 LSM_HOOK_INIT(socket_getpeersec_stream, 6964 selinux_socket_getpeersec_stream), 6965 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 6966 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 6967 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 6968 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 6969 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 6970 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 6971 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 6972 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 6973 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 6974 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 6975 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 6976 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 6977 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 6978 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 6979 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 6980 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 6981 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 6982 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 6983 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 6984 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 6985 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 6986 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 6987 #ifdef CONFIG_SECURITY_INFINIBAND 6988 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 6989 LSM_HOOK_INIT(ib_endport_manage_subnet, 6990 selinux_ib_endport_manage_subnet), 6991 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 6992 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 6993 #endif 6994 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6995 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 6996 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 6997 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 6998 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 6999 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7000 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7001 selinux_xfrm_state_alloc_acquire), 7002 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7003 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7004 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7005 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7006 selinux_xfrm_state_pol_flow_match), 7007 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7008 #endif 7009 7010 #ifdef CONFIG_KEYS 7011 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7012 LSM_HOOK_INIT(key_free, selinux_key_free), 7013 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7014 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7015 #endif 7016 7017 #ifdef CONFIG_AUDIT 7018 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7019 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7020 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7021 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7022 #endif 7023 7024 #ifdef CONFIG_BPF_SYSCALL 7025 LSM_HOOK_INIT(bpf, selinux_bpf), 7026 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7027 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7028 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7029 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7030 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7031 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7032 #endif 7033 }; 7034 7035 static __init int selinux_init(void) 7036 { 7037 pr_info("SELinux: Initializing.\n"); 7038 7039 memset(&selinux_state, 0, sizeof(selinux_state)); 7040 enforcing_set(&selinux_state, selinux_enforcing_boot); 7041 selinux_state.checkreqprot = selinux_checkreqprot_boot; 7042 selinux_ss_init(&selinux_state.ss); 7043 selinux_avc_init(&selinux_state.avc); 7044 7045 /* Set the security state for the initial task. */ 7046 cred_init_security(); 7047 7048 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7049 7050 avc_init(); 7051 7052 avtab_cache_init(); 7053 7054 ebitmap_cache_init(); 7055 7056 hashtab_cache_init(); 7057 7058 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7059 7060 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7061 panic("SELinux: Unable to register AVC netcache callback\n"); 7062 7063 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7064 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7065 7066 if (selinux_enforcing_boot) 7067 pr_debug("SELinux: Starting in enforcing mode\n"); 7068 else 7069 pr_debug("SELinux: Starting in permissive mode\n"); 7070 7071 fs_validate_description(&selinux_fs_parameters); 7072 7073 return 0; 7074 } 7075 7076 static void delayed_superblock_init(struct super_block *sb, void *unused) 7077 { 7078 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7079 } 7080 7081 void selinux_complete_init(void) 7082 { 7083 pr_debug("SELinux: Completing initialization.\n"); 7084 7085 /* Set up any superblocks initialized prior to the policy load. */ 7086 pr_debug("SELinux: Setting up existing superblocks.\n"); 7087 iterate_supers(delayed_superblock_init, NULL); 7088 } 7089 7090 /* SELinux requires early initialization in order to label 7091 all processes and objects when they are created. */ 7092 DEFINE_LSM(selinux) = { 7093 .name = "selinux", 7094 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7095 .enabled = &selinux_enabled, 7096 .blobs = &selinux_blob_sizes, 7097 .init = selinux_init, 7098 }; 7099 7100 #if defined(CONFIG_NETFILTER) 7101 7102 static const struct nf_hook_ops selinux_nf_ops[] = { 7103 { 7104 .hook = selinux_ipv4_postroute, 7105 .pf = NFPROTO_IPV4, 7106 .hooknum = NF_INET_POST_ROUTING, 7107 .priority = NF_IP_PRI_SELINUX_LAST, 7108 }, 7109 { 7110 .hook = selinux_ipv4_forward, 7111 .pf = NFPROTO_IPV4, 7112 .hooknum = NF_INET_FORWARD, 7113 .priority = NF_IP_PRI_SELINUX_FIRST, 7114 }, 7115 { 7116 .hook = selinux_ipv4_output, 7117 .pf = NFPROTO_IPV4, 7118 .hooknum = NF_INET_LOCAL_OUT, 7119 .priority = NF_IP_PRI_SELINUX_FIRST, 7120 }, 7121 #if IS_ENABLED(CONFIG_IPV6) 7122 { 7123 .hook = selinux_ipv6_postroute, 7124 .pf = NFPROTO_IPV6, 7125 .hooknum = NF_INET_POST_ROUTING, 7126 .priority = NF_IP6_PRI_SELINUX_LAST, 7127 }, 7128 { 7129 .hook = selinux_ipv6_forward, 7130 .pf = NFPROTO_IPV6, 7131 .hooknum = NF_INET_FORWARD, 7132 .priority = NF_IP6_PRI_SELINUX_FIRST, 7133 }, 7134 { 7135 .hook = selinux_ipv6_output, 7136 .pf = NFPROTO_IPV6, 7137 .hooknum = NF_INET_LOCAL_OUT, 7138 .priority = NF_IP6_PRI_SELINUX_FIRST, 7139 }, 7140 #endif /* IPV6 */ 7141 }; 7142 7143 static int __net_init selinux_nf_register(struct net *net) 7144 { 7145 return nf_register_net_hooks(net, selinux_nf_ops, 7146 ARRAY_SIZE(selinux_nf_ops)); 7147 } 7148 7149 static void __net_exit selinux_nf_unregister(struct net *net) 7150 { 7151 nf_unregister_net_hooks(net, selinux_nf_ops, 7152 ARRAY_SIZE(selinux_nf_ops)); 7153 } 7154 7155 static struct pernet_operations selinux_net_ops = { 7156 .init = selinux_nf_register, 7157 .exit = selinux_nf_unregister, 7158 }; 7159 7160 static int __init selinux_nf_ip_init(void) 7161 { 7162 int err; 7163 7164 if (!selinux_enabled) 7165 return 0; 7166 7167 pr_debug("SELinux: Registering netfilter hooks\n"); 7168 7169 err = register_pernet_subsys(&selinux_net_ops); 7170 if (err) 7171 panic("SELinux: register_pernet_subsys: error %d\n", err); 7172 7173 return 0; 7174 } 7175 __initcall(selinux_nf_ip_init); 7176 7177 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7178 static void selinux_nf_ip_exit(void) 7179 { 7180 pr_debug("SELinux: Unregistering netfilter hooks\n"); 7181 7182 unregister_pernet_subsys(&selinux_net_ops); 7183 } 7184 #endif 7185 7186 #else /* CONFIG_NETFILTER */ 7187 7188 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7189 #define selinux_nf_ip_exit() 7190 #endif 7191 7192 #endif /* CONFIG_NETFILTER */ 7193 7194 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7195 int selinux_disable(struct selinux_state *state) 7196 { 7197 if (state->initialized) { 7198 /* Not permitted after initial policy load. */ 7199 return -EINVAL; 7200 } 7201 7202 if (state->disabled) { 7203 /* Only do this once. */ 7204 return -EINVAL; 7205 } 7206 7207 state->disabled = 1; 7208 7209 pr_info("SELinux: Disabled at runtime.\n"); 7210 7211 selinux_enabled = 0; 7212 7213 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7214 7215 /* Try to destroy the avc node cache */ 7216 avc_disable(); 7217 7218 /* Unregister netfilter hooks. */ 7219 selinux_nf_ip_exit(); 7220 7221 /* Unregister selinuxfs. */ 7222 exit_sel_fs(); 7223 7224 return 0; 7225 } 7226 #endif 7227