xref: /openbmc/linux/security/selinux/hooks.c (revision 089a49b6)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>	/* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>		/* for Unix socket types */
70 #include <net/af_unix.h>	/* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/security.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87 
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97 
98 #define NUM_SEL_MNT_OPTS 5
99 
100 extern struct security_operations *security_ops;
101 
102 /* SECMARK reference count */
103 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
104 
105 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
106 int selinux_enforcing;
107 
108 static int __init enforcing_setup(char *str)
109 {
110 	unsigned long enforcing;
111 	if (!strict_strtoul(str, 0, &enforcing))
112 		selinux_enforcing = enforcing ? 1 : 0;
113 	return 1;
114 }
115 __setup("enforcing=", enforcing_setup);
116 #endif
117 
118 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
119 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
120 
121 static int __init selinux_enabled_setup(char *str)
122 {
123 	unsigned long enabled;
124 	if (!strict_strtoul(str, 0, &enabled))
125 		selinux_enabled = enabled ? 1 : 0;
126 	return 1;
127 }
128 __setup("selinux=", selinux_enabled_setup);
129 #else
130 int selinux_enabled = 1;
131 #endif
132 
133 static struct kmem_cache *sel_inode_cache;
134 
135 /**
136  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137  *
138  * Description:
139  * This function checks the SECMARK reference counter to see if any SECMARK
140  * targets are currently configured, if the reference counter is greater than
141  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
142  * enabled, false (0) if SECMARK is disabled.
143  *
144  */
145 static int selinux_secmark_enabled(void)
146 {
147 	return (atomic_read(&selinux_secmark_refcount) > 0);
148 }
149 
150 /*
151  * initialise the security for the init task
152  */
153 static void cred_init_security(void)
154 {
155 	struct cred *cred = (struct cred *) current->real_cred;
156 	struct task_security_struct *tsec;
157 
158 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
159 	if (!tsec)
160 		panic("SELinux:  Failed to initialize initial task.\n");
161 
162 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
163 	cred->security = tsec;
164 }
165 
166 /*
167  * get the security ID of a set of credentials
168  */
169 static inline u32 cred_sid(const struct cred *cred)
170 {
171 	const struct task_security_struct *tsec;
172 
173 	tsec = cred->security;
174 	return tsec->sid;
175 }
176 
177 /*
178  * get the objective security ID of a task
179  */
180 static inline u32 task_sid(const struct task_struct *task)
181 {
182 	u32 sid;
183 
184 	rcu_read_lock();
185 	sid = cred_sid(__task_cred(task));
186 	rcu_read_unlock();
187 	return sid;
188 }
189 
190 /*
191  * get the subjective security ID of the current task
192  */
193 static inline u32 current_sid(void)
194 {
195 	const struct task_security_struct *tsec = current_security();
196 
197 	return tsec->sid;
198 }
199 
200 /* Allocate and free functions for each kind of security blob. */
201 
202 static int inode_alloc_security(struct inode *inode)
203 {
204 	struct inode_security_struct *isec;
205 	u32 sid = current_sid();
206 
207 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
208 	if (!isec)
209 		return -ENOMEM;
210 
211 	mutex_init(&isec->lock);
212 	INIT_LIST_HEAD(&isec->list);
213 	isec->inode = inode;
214 	isec->sid = SECINITSID_UNLABELED;
215 	isec->sclass = SECCLASS_FILE;
216 	isec->task_sid = sid;
217 	inode->i_security = isec;
218 
219 	return 0;
220 }
221 
222 static void inode_free_security(struct inode *inode)
223 {
224 	struct inode_security_struct *isec = inode->i_security;
225 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
226 
227 	spin_lock(&sbsec->isec_lock);
228 	if (!list_empty(&isec->list))
229 		list_del_init(&isec->list);
230 	spin_unlock(&sbsec->isec_lock);
231 
232 	inode->i_security = NULL;
233 	kmem_cache_free(sel_inode_cache, isec);
234 }
235 
236 static int file_alloc_security(struct file *file)
237 {
238 	struct file_security_struct *fsec;
239 	u32 sid = current_sid();
240 
241 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
242 	if (!fsec)
243 		return -ENOMEM;
244 
245 	fsec->sid = sid;
246 	fsec->fown_sid = sid;
247 	file->f_security = fsec;
248 
249 	return 0;
250 }
251 
252 static void file_free_security(struct file *file)
253 {
254 	struct file_security_struct *fsec = file->f_security;
255 	file->f_security = NULL;
256 	kfree(fsec);
257 }
258 
259 static int superblock_alloc_security(struct super_block *sb)
260 {
261 	struct superblock_security_struct *sbsec;
262 
263 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
264 	if (!sbsec)
265 		return -ENOMEM;
266 
267 	mutex_init(&sbsec->lock);
268 	INIT_LIST_HEAD(&sbsec->isec_head);
269 	spin_lock_init(&sbsec->isec_lock);
270 	sbsec->sb = sb;
271 	sbsec->sid = SECINITSID_UNLABELED;
272 	sbsec->def_sid = SECINITSID_FILE;
273 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
274 	sb->s_security = sbsec;
275 
276 	return 0;
277 }
278 
279 static void superblock_free_security(struct super_block *sb)
280 {
281 	struct superblock_security_struct *sbsec = sb->s_security;
282 	sb->s_security = NULL;
283 	kfree(sbsec);
284 }
285 
286 /* The file system's label must be initialized prior to use. */
287 
288 static const char *labeling_behaviors[7] = {
289 	"uses xattr",
290 	"uses transition SIDs",
291 	"uses task SIDs",
292 	"uses genfs_contexts",
293 	"not configured for labeling",
294 	"uses mountpoint labeling",
295 	"uses native labeling",
296 };
297 
298 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
299 
300 static inline int inode_doinit(struct inode *inode)
301 {
302 	return inode_doinit_with_dentry(inode, NULL);
303 }
304 
305 enum {
306 	Opt_error = -1,
307 	Opt_context = 1,
308 	Opt_fscontext = 2,
309 	Opt_defcontext = 3,
310 	Opt_rootcontext = 4,
311 	Opt_labelsupport = 5,
312 };
313 
314 static const match_table_t tokens = {
315 	{Opt_context, CONTEXT_STR "%s"},
316 	{Opt_fscontext, FSCONTEXT_STR "%s"},
317 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
318 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
319 	{Opt_labelsupport, LABELSUPP_STR},
320 	{Opt_error, NULL},
321 };
322 
323 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
324 
325 static int may_context_mount_sb_relabel(u32 sid,
326 			struct superblock_security_struct *sbsec,
327 			const struct cred *cred)
328 {
329 	const struct task_security_struct *tsec = cred->security;
330 	int rc;
331 
332 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
333 			  FILESYSTEM__RELABELFROM, NULL);
334 	if (rc)
335 		return rc;
336 
337 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
338 			  FILESYSTEM__RELABELTO, NULL);
339 	return rc;
340 }
341 
342 static int may_context_mount_inode_relabel(u32 sid,
343 			struct superblock_security_struct *sbsec,
344 			const struct cred *cred)
345 {
346 	const struct task_security_struct *tsec = cred->security;
347 	int rc;
348 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
349 			  FILESYSTEM__RELABELFROM, NULL);
350 	if (rc)
351 		return rc;
352 
353 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
354 			  FILESYSTEM__ASSOCIATE, NULL);
355 	return rc;
356 }
357 
358 static int sb_finish_set_opts(struct super_block *sb)
359 {
360 	struct superblock_security_struct *sbsec = sb->s_security;
361 	struct dentry *root = sb->s_root;
362 	struct inode *root_inode = root->d_inode;
363 	int rc = 0;
364 
365 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
366 		/* Make sure that the xattr handler exists and that no
367 		   error other than -ENODATA is returned by getxattr on
368 		   the root directory.  -ENODATA is ok, as this may be
369 		   the first boot of the SELinux kernel before we have
370 		   assigned xattr values to the filesystem. */
371 		if (!root_inode->i_op->getxattr) {
372 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
373 			       "xattr support\n", sb->s_id, sb->s_type->name);
374 			rc = -EOPNOTSUPP;
375 			goto out;
376 		}
377 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
378 		if (rc < 0 && rc != -ENODATA) {
379 			if (rc == -EOPNOTSUPP)
380 				printk(KERN_WARNING "SELinux: (dev %s, type "
381 				       "%s) has no security xattr handler\n",
382 				       sb->s_id, sb->s_type->name);
383 			else
384 				printk(KERN_WARNING "SELinux: (dev %s, type "
385 				       "%s) getxattr errno %d\n", sb->s_id,
386 				       sb->s_type->name, -rc);
387 			goto out;
388 		}
389 	}
390 
391 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
392 
393 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
394 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
395 		       sb->s_id, sb->s_type->name);
396 	else
397 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
398 		       sb->s_id, sb->s_type->name,
399 		       labeling_behaviors[sbsec->behavior-1]);
400 
401 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
402 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
403 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
404 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405 		sbsec->flags &= ~SE_SBLABELSUPP;
406 
407 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
408 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
409 		sbsec->flags |= SE_SBLABELSUPP;
410 
411 	/* Initialize the root inode. */
412 	rc = inode_doinit_with_dentry(root_inode, root);
413 
414 	/* Initialize any other inodes associated with the superblock, e.g.
415 	   inodes created prior to initial policy load or inodes created
416 	   during get_sb by a pseudo filesystem that directly
417 	   populates itself. */
418 	spin_lock(&sbsec->isec_lock);
419 next_inode:
420 	if (!list_empty(&sbsec->isec_head)) {
421 		struct inode_security_struct *isec =
422 				list_entry(sbsec->isec_head.next,
423 					   struct inode_security_struct, list);
424 		struct inode *inode = isec->inode;
425 		spin_unlock(&sbsec->isec_lock);
426 		inode = igrab(inode);
427 		if (inode) {
428 			if (!IS_PRIVATE(inode))
429 				inode_doinit(inode);
430 			iput(inode);
431 		}
432 		spin_lock(&sbsec->isec_lock);
433 		list_del_init(&isec->list);
434 		goto next_inode;
435 	}
436 	spin_unlock(&sbsec->isec_lock);
437 out:
438 	return rc;
439 }
440 
441 /*
442  * This function should allow an FS to ask what it's mount security
443  * options were so it can use those later for submounts, displaying
444  * mount options, or whatever.
445  */
446 static int selinux_get_mnt_opts(const struct super_block *sb,
447 				struct security_mnt_opts *opts)
448 {
449 	int rc = 0, i;
450 	struct superblock_security_struct *sbsec = sb->s_security;
451 	char *context = NULL;
452 	u32 len;
453 	char tmp;
454 
455 	security_init_mnt_opts(opts);
456 
457 	if (!(sbsec->flags & SE_SBINITIALIZED))
458 		return -EINVAL;
459 
460 	if (!ss_initialized)
461 		return -EINVAL;
462 
463 	tmp = sbsec->flags & SE_MNTMASK;
464 	/* count the number of mount options for this sb */
465 	for (i = 0; i < 8; i++) {
466 		if (tmp & 0x01)
467 			opts->num_mnt_opts++;
468 		tmp >>= 1;
469 	}
470 	/* Check if the Label support flag is set */
471 	if (sbsec->flags & SE_SBLABELSUPP)
472 		opts->num_mnt_opts++;
473 
474 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
475 	if (!opts->mnt_opts) {
476 		rc = -ENOMEM;
477 		goto out_free;
478 	}
479 
480 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
481 	if (!opts->mnt_opts_flags) {
482 		rc = -ENOMEM;
483 		goto out_free;
484 	}
485 
486 	i = 0;
487 	if (sbsec->flags & FSCONTEXT_MNT) {
488 		rc = security_sid_to_context(sbsec->sid, &context, &len);
489 		if (rc)
490 			goto out_free;
491 		opts->mnt_opts[i] = context;
492 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
493 	}
494 	if (sbsec->flags & CONTEXT_MNT) {
495 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
496 		if (rc)
497 			goto out_free;
498 		opts->mnt_opts[i] = context;
499 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
500 	}
501 	if (sbsec->flags & DEFCONTEXT_MNT) {
502 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
503 		if (rc)
504 			goto out_free;
505 		opts->mnt_opts[i] = context;
506 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
507 	}
508 	if (sbsec->flags & ROOTCONTEXT_MNT) {
509 		struct inode *root = sbsec->sb->s_root->d_inode;
510 		struct inode_security_struct *isec = root->i_security;
511 
512 		rc = security_sid_to_context(isec->sid, &context, &len);
513 		if (rc)
514 			goto out_free;
515 		opts->mnt_opts[i] = context;
516 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
517 	}
518 	if (sbsec->flags & SE_SBLABELSUPP) {
519 		opts->mnt_opts[i] = NULL;
520 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
521 	}
522 
523 	BUG_ON(i != opts->num_mnt_opts);
524 
525 	return 0;
526 
527 out_free:
528 	security_free_mnt_opts(opts);
529 	return rc;
530 }
531 
532 static int bad_option(struct superblock_security_struct *sbsec, char flag,
533 		      u32 old_sid, u32 new_sid)
534 {
535 	char mnt_flags = sbsec->flags & SE_MNTMASK;
536 
537 	/* check if the old mount command had the same options */
538 	if (sbsec->flags & SE_SBINITIALIZED)
539 		if (!(sbsec->flags & flag) ||
540 		    (old_sid != new_sid))
541 			return 1;
542 
543 	/* check if we were passed the same options twice,
544 	 * aka someone passed context=a,context=b
545 	 */
546 	if (!(sbsec->flags & SE_SBINITIALIZED))
547 		if (mnt_flags & flag)
548 			return 1;
549 	return 0;
550 }
551 
552 /*
553  * Allow filesystems with binary mount data to explicitly set mount point
554  * labeling information.
555  */
556 static int selinux_set_mnt_opts(struct super_block *sb,
557 				struct security_mnt_opts *opts,
558 				unsigned long kern_flags,
559 				unsigned long *set_kern_flags)
560 {
561 	const struct cred *cred = current_cred();
562 	int rc = 0, i;
563 	struct superblock_security_struct *sbsec = sb->s_security;
564 	const char *name = sb->s_type->name;
565 	struct inode *inode = sbsec->sb->s_root->d_inode;
566 	struct inode_security_struct *root_isec = inode->i_security;
567 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
568 	u32 defcontext_sid = 0;
569 	char **mount_options = opts->mnt_opts;
570 	int *flags = opts->mnt_opts_flags;
571 	int num_opts = opts->num_mnt_opts;
572 
573 	mutex_lock(&sbsec->lock);
574 
575 	if (!ss_initialized) {
576 		if (!num_opts) {
577 			/* Defer initialization until selinux_complete_init,
578 			   after the initial policy is loaded and the security
579 			   server is ready to handle calls. */
580 			goto out;
581 		}
582 		rc = -EINVAL;
583 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
584 			"before the security server is initialized\n");
585 		goto out;
586 	}
587 	if (kern_flags && !set_kern_flags) {
588 		/* Specifying internal flags without providing a place to
589 		 * place the results is not allowed */
590 		rc = -EINVAL;
591 		goto out;
592 	}
593 
594 	/*
595 	 * Binary mount data FS will come through this function twice.  Once
596 	 * from an explicit call and once from the generic calls from the vfs.
597 	 * Since the generic VFS calls will not contain any security mount data
598 	 * we need to skip the double mount verification.
599 	 *
600 	 * This does open a hole in which we will not notice if the first
601 	 * mount using this sb set explict options and a second mount using
602 	 * this sb does not set any security options.  (The first options
603 	 * will be used for both mounts)
604 	 */
605 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
606 	    && (num_opts == 0))
607 		goto out;
608 
609 	/*
610 	 * parse the mount options, check if they are valid sids.
611 	 * also check if someone is trying to mount the same sb more
612 	 * than once with different security options.
613 	 */
614 	for (i = 0; i < num_opts; i++) {
615 		u32 sid;
616 
617 		if (flags[i] == SE_SBLABELSUPP)
618 			continue;
619 		rc = security_context_to_sid(mount_options[i],
620 					     strlen(mount_options[i]), &sid);
621 		if (rc) {
622 			printk(KERN_WARNING "SELinux: security_context_to_sid"
623 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
624 			       mount_options[i], sb->s_id, name, rc);
625 			goto out;
626 		}
627 		switch (flags[i]) {
628 		case FSCONTEXT_MNT:
629 			fscontext_sid = sid;
630 
631 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
632 					fscontext_sid))
633 				goto out_double_mount;
634 
635 			sbsec->flags |= FSCONTEXT_MNT;
636 			break;
637 		case CONTEXT_MNT:
638 			context_sid = sid;
639 
640 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
641 					context_sid))
642 				goto out_double_mount;
643 
644 			sbsec->flags |= CONTEXT_MNT;
645 			break;
646 		case ROOTCONTEXT_MNT:
647 			rootcontext_sid = sid;
648 
649 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
650 					rootcontext_sid))
651 				goto out_double_mount;
652 
653 			sbsec->flags |= ROOTCONTEXT_MNT;
654 
655 			break;
656 		case DEFCONTEXT_MNT:
657 			defcontext_sid = sid;
658 
659 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
660 					defcontext_sid))
661 				goto out_double_mount;
662 
663 			sbsec->flags |= DEFCONTEXT_MNT;
664 
665 			break;
666 		default:
667 			rc = -EINVAL;
668 			goto out;
669 		}
670 	}
671 
672 	if (sbsec->flags & SE_SBINITIALIZED) {
673 		/* previously mounted with options, but not on this attempt? */
674 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
675 			goto out_double_mount;
676 		rc = 0;
677 		goto out;
678 	}
679 
680 	if (strcmp(sb->s_type->name, "proc") == 0)
681 		sbsec->flags |= SE_SBPROC;
682 
683 	if (!sbsec->behavior) {
684 		/*
685 		 * Determine the labeling behavior to use for this
686 		 * filesystem type.
687 		 */
688 		rc = security_fs_use((sbsec->flags & SE_SBPROC) ?
689 					"proc" : sb->s_type->name,
690 					&sbsec->behavior, &sbsec->sid);
691 		if (rc) {
692 			printk(KERN_WARNING
693 				"%s: security_fs_use(%s) returned %d\n",
694 					__func__, sb->s_type->name, rc);
695 			goto out;
696 		}
697 	}
698 	/* sets the context of the superblock for the fs being mounted. */
699 	if (fscontext_sid) {
700 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
701 		if (rc)
702 			goto out;
703 
704 		sbsec->sid = fscontext_sid;
705 	}
706 
707 	/*
708 	 * Switch to using mount point labeling behavior.
709 	 * sets the label used on all file below the mountpoint, and will set
710 	 * the superblock context if not already set.
711 	 */
712 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
713 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
714 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
715 	}
716 
717 	if (context_sid) {
718 		if (!fscontext_sid) {
719 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
720 							  cred);
721 			if (rc)
722 				goto out;
723 			sbsec->sid = context_sid;
724 		} else {
725 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
726 							     cred);
727 			if (rc)
728 				goto out;
729 		}
730 		if (!rootcontext_sid)
731 			rootcontext_sid = context_sid;
732 
733 		sbsec->mntpoint_sid = context_sid;
734 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
735 	}
736 
737 	if (rootcontext_sid) {
738 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
739 						     cred);
740 		if (rc)
741 			goto out;
742 
743 		root_isec->sid = rootcontext_sid;
744 		root_isec->initialized = 1;
745 	}
746 
747 	if (defcontext_sid) {
748 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
749 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
750 			rc = -EINVAL;
751 			printk(KERN_WARNING "SELinux: defcontext option is "
752 			       "invalid for this filesystem type\n");
753 			goto out;
754 		}
755 
756 		if (defcontext_sid != sbsec->def_sid) {
757 			rc = may_context_mount_inode_relabel(defcontext_sid,
758 							     sbsec, cred);
759 			if (rc)
760 				goto out;
761 		}
762 
763 		sbsec->def_sid = defcontext_sid;
764 	}
765 
766 	rc = sb_finish_set_opts(sb);
767 out:
768 	mutex_unlock(&sbsec->lock);
769 	return rc;
770 out_double_mount:
771 	rc = -EINVAL;
772 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
773 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
774 	goto out;
775 }
776 
777 static int selinux_cmp_sb_context(const struct super_block *oldsb,
778 				    const struct super_block *newsb)
779 {
780 	struct superblock_security_struct *old = oldsb->s_security;
781 	struct superblock_security_struct *new = newsb->s_security;
782 	char oldflags = old->flags & SE_MNTMASK;
783 	char newflags = new->flags & SE_MNTMASK;
784 
785 	if (oldflags != newflags)
786 		goto mismatch;
787 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
788 		goto mismatch;
789 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
790 		goto mismatch;
791 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
792 		goto mismatch;
793 	if (oldflags & ROOTCONTEXT_MNT) {
794 		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
795 		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
796 		if (oldroot->sid != newroot->sid)
797 			goto mismatch;
798 	}
799 	return 0;
800 mismatch:
801 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
802 			    "different security settings for (dev %s, "
803 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
804 	return -EBUSY;
805 }
806 
807 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
808 					struct super_block *newsb)
809 {
810 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
811 	struct superblock_security_struct *newsbsec = newsb->s_security;
812 
813 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
814 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
815 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
816 
817 	/*
818 	 * if the parent was able to be mounted it clearly had no special lsm
819 	 * mount options.  thus we can safely deal with this superblock later
820 	 */
821 	if (!ss_initialized)
822 		return 0;
823 
824 	/* how can we clone if the old one wasn't set up?? */
825 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826 
827 	/* if fs is reusing a sb, make sure that the contexts match */
828 	if (newsbsec->flags & SE_SBINITIALIZED)
829 		return selinux_cmp_sb_context(oldsb, newsb);
830 
831 	mutex_lock(&newsbsec->lock);
832 
833 	newsbsec->flags = oldsbsec->flags;
834 
835 	newsbsec->sid = oldsbsec->sid;
836 	newsbsec->def_sid = oldsbsec->def_sid;
837 	newsbsec->behavior = oldsbsec->behavior;
838 
839 	if (set_context) {
840 		u32 sid = oldsbsec->mntpoint_sid;
841 
842 		if (!set_fscontext)
843 			newsbsec->sid = sid;
844 		if (!set_rootcontext) {
845 			struct inode *newinode = newsb->s_root->d_inode;
846 			struct inode_security_struct *newisec = newinode->i_security;
847 			newisec->sid = sid;
848 		}
849 		newsbsec->mntpoint_sid = sid;
850 	}
851 	if (set_rootcontext) {
852 		const struct inode *oldinode = oldsb->s_root->d_inode;
853 		const struct inode_security_struct *oldisec = oldinode->i_security;
854 		struct inode *newinode = newsb->s_root->d_inode;
855 		struct inode_security_struct *newisec = newinode->i_security;
856 
857 		newisec->sid = oldisec->sid;
858 	}
859 
860 	sb_finish_set_opts(newsb);
861 	mutex_unlock(&newsbsec->lock);
862 	return 0;
863 }
864 
865 static int selinux_parse_opts_str(char *options,
866 				  struct security_mnt_opts *opts)
867 {
868 	char *p;
869 	char *context = NULL, *defcontext = NULL;
870 	char *fscontext = NULL, *rootcontext = NULL;
871 	int rc, num_mnt_opts = 0;
872 
873 	opts->num_mnt_opts = 0;
874 
875 	/* Standard string-based options. */
876 	while ((p = strsep(&options, "|")) != NULL) {
877 		int token;
878 		substring_t args[MAX_OPT_ARGS];
879 
880 		if (!*p)
881 			continue;
882 
883 		token = match_token(p, tokens, args);
884 
885 		switch (token) {
886 		case Opt_context:
887 			if (context || defcontext) {
888 				rc = -EINVAL;
889 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
890 				goto out_err;
891 			}
892 			context = match_strdup(&args[0]);
893 			if (!context) {
894 				rc = -ENOMEM;
895 				goto out_err;
896 			}
897 			break;
898 
899 		case Opt_fscontext:
900 			if (fscontext) {
901 				rc = -EINVAL;
902 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
903 				goto out_err;
904 			}
905 			fscontext = match_strdup(&args[0]);
906 			if (!fscontext) {
907 				rc = -ENOMEM;
908 				goto out_err;
909 			}
910 			break;
911 
912 		case Opt_rootcontext:
913 			if (rootcontext) {
914 				rc = -EINVAL;
915 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
916 				goto out_err;
917 			}
918 			rootcontext = match_strdup(&args[0]);
919 			if (!rootcontext) {
920 				rc = -ENOMEM;
921 				goto out_err;
922 			}
923 			break;
924 
925 		case Opt_defcontext:
926 			if (context || defcontext) {
927 				rc = -EINVAL;
928 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
929 				goto out_err;
930 			}
931 			defcontext = match_strdup(&args[0]);
932 			if (!defcontext) {
933 				rc = -ENOMEM;
934 				goto out_err;
935 			}
936 			break;
937 		case Opt_labelsupport:
938 			break;
939 		default:
940 			rc = -EINVAL;
941 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
942 			goto out_err;
943 
944 		}
945 	}
946 
947 	rc = -ENOMEM;
948 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
949 	if (!opts->mnt_opts)
950 		goto out_err;
951 
952 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
953 	if (!opts->mnt_opts_flags) {
954 		kfree(opts->mnt_opts);
955 		goto out_err;
956 	}
957 
958 	if (fscontext) {
959 		opts->mnt_opts[num_mnt_opts] = fscontext;
960 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
961 	}
962 	if (context) {
963 		opts->mnt_opts[num_mnt_opts] = context;
964 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
965 	}
966 	if (rootcontext) {
967 		opts->mnt_opts[num_mnt_opts] = rootcontext;
968 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
969 	}
970 	if (defcontext) {
971 		opts->mnt_opts[num_mnt_opts] = defcontext;
972 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
973 	}
974 
975 	opts->num_mnt_opts = num_mnt_opts;
976 	return 0;
977 
978 out_err:
979 	kfree(context);
980 	kfree(defcontext);
981 	kfree(fscontext);
982 	kfree(rootcontext);
983 	return rc;
984 }
985 /*
986  * string mount options parsing and call set the sbsec
987  */
988 static int superblock_doinit(struct super_block *sb, void *data)
989 {
990 	int rc = 0;
991 	char *options = data;
992 	struct security_mnt_opts opts;
993 
994 	security_init_mnt_opts(&opts);
995 
996 	if (!data)
997 		goto out;
998 
999 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1000 
1001 	rc = selinux_parse_opts_str(options, &opts);
1002 	if (rc)
1003 		goto out_err;
1004 
1005 out:
1006 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1007 
1008 out_err:
1009 	security_free_mnt_opts(&opts);
1010 	return rc;
1011 }
1012 
1013 static void selinux_write_opts(struct seq_file *m,
1014 			       struct security_mnt_opts *opts)
1015 {
1016 	int i;
1017 	char *prefix;
1018 
1019 	for (i = 0; i < opts->num_mnt_opts; i++) {
1020 		char *has_comma;
1021 
1022 		if (opts->mnt_opts[i])
1023 			has_comma = strchr(opts->mnt_opts[i], ',');
1024 		else
1025 			has_comma = NULL;
1026 
1027 		switch (opts->mnt_opts_flags[i]) {
1028 		case CONTEXT_MNT:
1029 			prefix = CONTEXT_STR;
1030 			break;
1031 		case FSCONTEXT_MNT:
1032 			prefix = FSCONTEXT_STR;
1033 			break;
1034 		case ROOTCONTEXT_MNT:
1035 			prefix = ROOTCONTEXT_STR;
1036 			break;
1037 		case DEFCONTEXT_MNT:
1038 			prefix = DEFCONTEXT_STR;
1039 			break;
1040 		case SE_SBLABELSUPP:
1041 			seq_putc(m, ',');
1042 			seq_puts(m, LABELSUPP_STR);
1043 			continue;
1044 		default:
1045 			BUG();
1046 			return;
1047 		};
1048 		/* we need a comma before each option */
1049 		seq_putc(m, ',');
1050 		seq_puts(m, prefix);
1051 		if (has_comma)
1052 			seq_putc(m, '\"');
1053 		seq_puts(m, opts->mnt_opts[i]);
1054 		if (has_comma)
1055 			seq_putc(m, '\"');
1056 	}
1057 }
1058 
1059 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1060 {
1061 	struct security_mnt_opts opts;
1062 	int rc;
1063 
1064 	rc = selinux_get_mnt_opts(sb, &opts);
1065 	if (rc) {
1066 		/* before policy load we may get EINVAL, don't show anything */
1067 		if (rc == -EINVAL)
1068 			rc = 0;
1069 		return rc;
1070 	}
1071 
1072 	selinux_write_opts(m, &opts);
1073 
1074 	security_free_mnt_opts(&opts);
1075 
1076 	return rc;
1077 }
1078 
1079 static inline u16 inode_mode_to_security_class(umode_t mode)
1080 {
1081 	switch (mode & S_IFMT) {
1082 	case S_IFSOCK:
1083 		return SECCLASS_SOCK_FILE;
1084 	case S_IFLNK:
1085 		return SECCLASS_LNK_FILE;
1086 	case S_IFREG:
1087 		return SECCLASS_FILE;
1088 	case S_IFBLK:
1089 		return SECCLASS_BLK_FILE;
1090 	case S_IFDIR:
1091 		return SECCLASS_DIR;
1092 	case S_IFCHR:
1093 		return SECCLASS_CHR_FILE;
1094 	case S_IFIFO:
1095 		return SECCLASS_FIFO_FILE;
1096 
1097 	}
1098 
1099 	return SECCLASS_FILE;
1100 }
1101 
1102 static inline int default_protocol_stream(int protocol)
1103 {
1104 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1105 }
1106 
1107 static inline int default_protocol_dgram(int protocol)
1108 {
1109 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1110 }
1111 
1112 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1113 {
1114 	switch (family) {
1115 	case PF_UNIX:
1116 		switch (type) {
1117 		case SOCK_STREAM:
1118 		case SOCK_SEQPACKET:
1119 			return SECCLASS_UNIX_STREAM_SOCKET;
1120 		case SOCK_DGRAM:
1121 			return SECCLASS_UNIX_DGRAM_SOCKET;
1122 		}
1123 		break;
1124 	case PF_INET:
1125 	case PF_INET6:
1126 		switch (type) {
1127 		case SOCK_STREAM:
1128 			if (default_protocol_stream(protocol))
1129 				return SECCLASS_TCP_SOCKET;
1130 			else
1131 				return SECCLASS_RAWIP_SOCKET;
1132 		case SOCK_DGRAM:
1133 			if (default_protocol_dgram(protocol))
1134 				return SECCLASS_UDP_SOCKET;
1135 			else
1136 				return SECCLASS_RAWIP_SOCKET;
1137 		case SOCK_DCCP:
1138 			return SECCLASS_DCCP_SOCKET;
1139 		default:
1140 			return SECCLASS_RAWIP_SOCKET;
1141 		}
1142 		break;
1143 	case PF_NETLINK:
1144 		switch (protocol) {
1145 		case NETLINK_ROUTE:
1146 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1147 		case NETLINK_FIREWALL:
1148 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1149 		case NETLINK_SOCK_DIAG:
1150 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1151 		case NETLINK_NFLOG:
1152 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1153 		case NETLINK_XFRM:
1154 			return SECCLASS_NETLINK_XFRM_SOCKET;
1155 		case NETLINK_SELINUX:
1156 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1157 		case NETLINK_AUDIT:
1158 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1159 		case NETLINK_IP6_FW:
1160 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1161 		case NETLINK_DNRTMSG:
1162 			return SECCLASS_NETLINK_DNRT_SOCKET;
1163 		case NETLINK_KOBJECT_UEVENT:
1164 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1165 		default:
1166 			return SECCLASS_NETLINK_SOCKET;
1167 		}
1168 	case PF_PACKET:
1169 		return SECCLASS_PACKET_SOCKET;
1170 	case PF_KEY:
1171 		return SECCLASS_KEY_SOCKET;
1172 	case PF_APPLETALK:
1173 		return SECCLASS_APPLETALK_SOCKET;
1174 	}
1175 
1176 	return SECCLASS_SOCKET;
1177 }
1178 
1179 #ifdef CONFIG_PROC_FS
1180 static int selinux_proc_get_sid(struct dentry *dentry,
1181 				u16 tclass,
1182 				u32 *sid)
1183 {
1184 	int rc;
1185 	char *buffer, *path;
1186 
1187 	buffer = (char *)__get_free_page(GFP_KERNEL);
1188 	if (!buffer)
1189 		return -ENOMEM;
1190 
1191 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1192 	if (IS_ERR(path))
1193 		rc = PTR_ERR(path);
1194 	else {
1195 		/* each process gets a /proc/PID/ entry. Strip off the
1196 		 * PID part to get a valid selinux labeling.
1197 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1198 		while (path[1] >= '0' && path[1] <= '9') {
1199 			path[1] = '/';
1200 			path++;
1201 		}
1202 		rc = security_genfs_sid("proc", path, tclass, sid);
1203 	}
1204 	free_page((unsigned long)buffer);
1205 	return rc;
1206 }
1207 #else
1208 static int selinux_proc_get_sid(struct dentry *dentry,
1209 				u16 tclass,
1210 				u32 *sid)
1211 {
1212 	return -EINVAL;
1213 }
1214 #endif
1215 
1216 /* The inode's security attributes must be initialized before first use. */
1217 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1218 {
1219 	struct superblock_security_struct *sbsec = NULL;
1220 	struct inode_security_struct *isec = inode->i_security;
1221 	u32 sid;
1222 	struct dentry *dentry;
1223 #define INITCONTEXTLEN 255
1224 	char *context = NULL;
1225 	unsigned len = 0;
1226 	int rc = 0;
1227 
1228 	if (isec->initialized)
1229 		goto out;
1230 
1231 	mutex_lock(&isec->lock);
1232 	if (isec->initialized)
1233 		goto out_unlock;
1234 
1235 	sbsec = inode->i_sb->s_security;
1236 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1237 		/* Defer initialization until selinux_complete_init,
1238 		   after the initial policy is loaded and the security
1239 		   server is ready to handle calls. */
1240 		spin_lock(&sbsec->isec_lock);
1241 		if (list_empty(&isec->list))
1242 			list_add(&isec->list, &sbsec->isec_head);
1243 		spin_unlock(&sbsec->isec_lock);
1244 		goto out_unlock;
1245 	}
1246 
1247 	switch (sbsec->behavior) {
1248 	case SECURITY_FS_USE_NATIVE:
1249 		break;
1250 	case SECURITY_FS_USE_XATTR:
1251 		if (!inode->i_op->getxattr) {
1252 			isec->sid = sbsec->def_sid;
1253 			break;
1254 		}
1255 
1256 		/* Need a dentry, since the xattr API requires one.
1257 		   Life would be simpler if we could just pass the inode. */
1258 		if (opt_dentry) {
1259 			/* Called from d_instantiate or d_splice_alias. */
1260 			dentry = dget(opt_dentry);
1261 		} else {
1262 			/* Called from selinux_complete_init, try to find a dentry. */
1263 			dentry = d_find_alias(inode);
1264 		}
1265 		if (!dentry) {
1266 			/*
1267 			 * this is can be hit on boot when a file is accessed
1268 			 * before the policy is loaded.  When we load policy we
1269 			 * may find inodes that have no dentry on the
1270 			 * sbsec->isec_head list.  No reason to complain as these
1271 			 * will get fixed up the next time we go through
1272 			 * inode_doinit with a dentry, before these inodes could
1273 			 * be used again by userspace.
1274 			 */
1275 			goto out_unlock;
1276 		}
1277 
1278 		len = INITCONTEXTLEN;
1279 		context = kmalloc(len+1, GFP_NOFS);
1280 		if (!context) {
1281 			rc = -ENOMEM;
1282 			dput(dentry);
1283 			goto out_unlock;
1284 		}
1285 		context[len] = '\0';
1286 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1287 					   context, len);
1288 		if (rc == -ERANGE) {
1289 			kfree(context);
1290 
1291 			/* Need a larger buffer.  Query for the right size. */
1292 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1293 						   NULL, 0);
1294 			if (rc < 0) {
1295 				dput(dentry);
1296 				goto out_unlock;
1297 			}
1298 			len = rc;
1299 			context = kmalloc(len+1, GFP_NOFS);
1300 			if (!context) {
1301 				rc = -ENOMEM;
1302 				dput(dentry);
1303 				goto out_unlock;
1304 			}
1305 			context[len] = '\0';
1306 			rc = inode->i_op->getxattr(dentry,
1307 						   XATTR_NAME_SELINUX,
1308 						   context, len);
1309 		}
1310 		dput(dentry);
1311 		if (rc < 0) {
1312 			if (rc != -ENODATA) {
1313 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1314 				       "%d for dev=%s ino=%ld\n", __func__,
1315 				       -rc, inode->i_sb->s_id, inode->i_ino);
1316 				kfree(context);
1317 				goto out_unlock;
1318 			}
1319 			/* Map ENODATA to the default file SID */
1320 			sid = sbsec->def_sid;
1321 			rc = 0;
1322 		} else {
1323 			rc = security_context_to_sid_default(context, rc, &sid,
1324 							     sbsec->def_sid,
1325 							     GFP_NOFS);
1326 			if (rc) {
1327 				char *dev = inode->i_sb->s_id;
1328 				unsigned long ino = inode->i_ino;
1329 
1330 				if (rc == -EINVAL) {
1331 					if (printk_ratelimit())
1332 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1333 							"context=%s.  This indicates you may need to relabel the inode or the "
1334 							"filesystem in question.\n", ino, dev, context);
1335 				} else {
1336 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1337 					       "returned %d for dev=%s ino=%ld\n",
1338 					       __func__, context, -rc, dev, ino);
1339 				}
1340 				kfree(context);
1341 				/* Leave with the unlabeled SID */
1342 				rc = 0;
1343 				break;
1344 			}
1345 		}
1346 		kfree(context);
1347 		isec->sid = sid;
1348 		break;
1349 	case SECURITY_FS_USE_TASK:
1350 		isec->sid = isec->task_sid;
1351 		break;
1352 	case SECURITY_FS_USE_TRANS:
1353 		/* Default to the fs SID. */
1354 		isec->sid = sbsec->sid;
1355 
1356 		/* Try to obtain a transition SID. */
1357 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1358 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1359 					     isec->sclass, NULL, &sid);
1360 		if (rc)
1361 			goto out_unlock;
1362 		isec->sid = sid;
1363 		break;
1364 	case SECURITY_FS_USE_MNTPOINT:
1365 		isec->sid = sbsec->mntpoint_sid;
1366 		break;
1367 	default:
1368 		/* Default to the fs superblock SID. */
1369 		isec->sid = sbsec->sid;
1370 
1371 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372 			if (opt_dentry) {
1373 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1374 				rc = selinux_proc_get_sid(opt_dentry,
1375 							  isec->sclass,
1376 							  &sid);
1377 				if (rc)
1378 					goto out_unlock;
1379 				isec->sid = sid;
1380 			}
1381 		}
1382 		break;
1383 	}
1384 
1385 	isec->initialized = 1;
1386 
1387 out_unlock:
1388 	mutex_unlock(&isec->lock);
1389 out:
1390 	if (isec->sclass == SECCLASS_FILE)
1391 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1392 	return rc;
1393 }
1394 
1395 /* Convert a Linux signal to an access vector. */
1396 static inline u32 signal_to_av(int sig)
1397 {
1398 	u32 perm = 0;
1399 
1400 	switch (sig) {
1401 	case SIGCHLD:
1402 		/* Commonly granted from child to parent. */
1403 		perm = PROCESS__SIGCHLD;
1404 		break;
1405 	case SIGKILL:
1406 		/* Cannot be caught or ignored */
1407 		perm = PROCESS__SIGKILL;
1408 		break;
1409 	case SIGSTOP:
1410 		/* Cannot be caught or ignored */
1411 		perm = PROCESS__SIGSTOP;
1412 		break;
1413 	default:
1414 		/* All other signals. */
1415 		perm = PROCESS__SIGNAL;
1416 		break;
1417 	}
1418 
1419 	return perm;
1420 }
1421 
1422 /*
1423  * Check permission between a pair of credentials
1424  * fork check, ptrace check, etc.
1425  */
1426 static int cred_has_perm(const struct cred *actor,
1427 			 const struct cred *target,
1428 			 u32 perms)
1429 {
1430 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1431 
1432 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1433 }
1434 
1435 /*
1436  * Check permission between a pair of tasks, e.g. signal checks,
1437  * fork check, ptrace check, etc.
1438  * tsk1 is the actor and tsk2 is the target
1439  * - this uses the default subjective creds of tsk1
1440  */
1441 static int task_has_perm(const struct task_struct *tsk1,
1442 			 const struct task_struct *tsk2,
1443 			 u32 perms)
1444 {
1445 	const struct task_security_struct *__tsec1, *__tsec2;
1446 	u32 sid1, sid2;
1447 
1448 	rcu_read_lock();
1449 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1450 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1451 	rcu_read_unlock();
1452 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1453 }
1454 
1455 /*
1456  * Check permission between current and another task, e.g. signal checks,
1457  * fork check, ptrace check, etc.
1458  * current is the actor and tsk2 is the target
1459  * - this uses current's subjective creds
1460  */
1461 static int current_has_perm(const struct task_struct *tsk,
1462 			    u32 perms)
1463 {
1464 	u32 sid, tsid;
1465 
1466 	sid = current_sid();
1467 	tsid = task_sid(tsk);
1468 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1469 }
1470 
1471 #if CAP_LAST_CAP > 63
1472 #error Fix SELinux to handle capabilities > 63.
1473 #endif
1474 
1475 /* Check whether a task is allowed to use a capability. */
1476 static int cred_has_capability(const struct cred *cred,
1477 			       int cap, int audit)
1478 {
1479 	struct common_audit_data ad;
1480 	struct av_decision avd;
1481 	u16 sclass;
1482 	u32 sid = cred_sid(cred);
1483 	u32 av = CAP_TO_MASK(cap);
1484 	int rc;
1485 
1486 	ad.type = LSM_AUDIT_DATA_CAP;
1487 	ad.u.cap = cap;
1488 
1489 	switch (CAP_TO_INDEX(cap)) {
1490 	case 0:
1491 		sclass = SECCLASS_CAPABILITY;
1492 		break;
1493 	case 1:
1494 		sclass = SECCLASS_CAPABILITY2;
1495 		break;
1496 	default:
1497 		printk(KERN_ERR
1498 		       "SELinux:  out of range capability %d\n", cap);
1499 		BUG();
1500 		return -EINVAL;
1501 	}
1502 
1503 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1504 	if (audit == SECURITY_CAP_AUDIT) {
1505 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1506 		if (rc2)
1507 			return rc2;
1508 	}
1509 	return rc;
1510 }
1511 
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514 			   u32 perms)
1515 {
1516 	u32 sid = task_sid(tsk);
1517 
1518 	return avc_has_perm(sid, SECINITSID_KERNEL,
1519 			    SECCLASS_SYSTEM, perms, NULL);
1520 }
1521 
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526 			  struct inode *inode,
1527 			  u32 perms,
1528 			  struct common_audit_data *adp,
1529 			  unsigned flags)
1530 {
1531 	struct inode_security_struct *isec;
1532 	u32 sid;
1533 
1534 	validate_creds(cred);
1535 
1536 	if (unlikely(IS_PRIVATE(inode)))
1537 		return 0;
1538 
1539 	sid = cred_sid(cred);
1540 	isec = inode->i_security;
1541 
1542 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1543 }
1544 
1545 /* Same as inode_has_perm, but pass explicit audit data containing
1546    the dentry to help the auditing code to more easily generate the
1547    pathname if needed. */
1548 static inline int dentry_has_perm(const struct cred *cred,
1549 				  struct dentry *dentry,
1550 				  u32 av)
1551 {
1552 	struct inode *inode = dentry->d_inode;
1553 	struct common_audit_data ad;
1554 
1555 	ad.type = LSM_AUDIT_DATA_DENTRY;
1556 	ad.u.dentry = dentry;
1557 	return inode_has_perm(cred, inode, av, &ad, 0);
1558 }
1559 
1560 /* Same as inode_has_perm, but pass explicit audit data containing
1561    the path to help the auditing code to more easily generate the
1562    pathname if needed. */
1563 static inline int path_has_perm(const struct cred *cred,
1564 				struct path *path,
1565 				u32 av)
1566 {
1567 	struct inode *inode = path->dentry->d_inode;
1568 	struct common_audit_data ad;
1569 
1570 	ad.type = LSM_AUDIT_DATA_PATH;
1571 	ad.u.path = *path;
1572 	return inode_has_perm(cred, inode, av, &ad, 0);
1573 }
1574 
1575 /* Same as path_has_perm, but uses the inode from the file struct. */
1576 static inline int file_path_has_perm(const struct cred *cred,
1577 				     struct file *file,
1578 				     u32 av)
1579 {
1580 	struct common_audit_data ad;
1581 
1582 	ad.type = LSM_AUDIT_DATA_PATH;
1583 	ad.u.path = file->f_path;
1584 	return inode_has_perm(cred, file_inode(file), av, &ad, 0);
1585 }
1586 
1587 /* Check whether a task can use an open file descriptor to
1588    access an inode in a given way.  Check access to the
1589    descriptor itself, and then use dentry_has_perm to
1590    check a particular permission to the file.
1591    Access to the descriptor is implicitly granted if it
1592    has the same SID as the process.  If av is zero, then
1593    access to the file is not checked, e.g. for cases
1594    where only the descriptor is affected like seek. */
1595 static int file_has_perm(const struct cred *cred,
1596 			 struct file *file,
1597 			 u32 av)
1598 {
1599 	struct file_security_struct *fsec = file->f_security;
1600 	struct inode *inode = file_inode(file);
1601 	struct common_audit_data ad;
1602 	u32 sid = cred_sid(cred);
1603 	int rc;
1604 
1605 	ad.type = LSM_AUDIT_DATA_PATH;
1606 	ad.u.path = file->f_path;
1607 
1608 	if (sid != fsec->sid) {
1609 		rc = avc_has_perm(sid, fsec->sid,
1610 				  SECCLASS_FD,
1611 				  FD__USE,
1612 				  &ad);
1613 		if (rc)
1614 			goto out;
1615 	}
1616 
1617 	/* av is zero if only checking access to the descriptor. */
1618 	rc = 0;
1619 	if (av)
1620 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1621 
1622 out:
1623 	return rc;
1624 }
1625 
1626 /* Check whether a task can create a file. */
1627 static int may_create(struct inode *dir,
1628 		      struct dentry *dentry,
1629 		      u16 tclass)
1630 {
1631 	const struct task_security_struct *tsec = current_security();
1632 	struct inode_security_struct *dsec;
1633 	struct superblock_security_struct *sbsec;
1634 	u32 sid, newsid;
1635 	struct common_audit_data ad;
1636 	int rc;
1637 
1638 	dsec = dir->i_security;
1639 	sbsec = dir->i_sb->s_security;
1640 
1641 	sid = tsec->sid;
1642 	newsid = tsec->create_sid;
1643 
1644 	ad.type = LSM_AUDIT_DATA_DENTRY;
1645 	ad.u.dentry = dentry;
1646 
1647 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1648 			  DIR__ADD_NAME | DIR__SEARCH,
1649 			  &ad);
1650 	if (rc)
1651 		return rc;
1652 
1653 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1654 		rc = security_transition_sid(sid, dsec->sid, tclass,
1655 					     &dentry->d_name, &newsid);
1656 		if (rc)
1657 			return rc;
1658 	}
1659 
1660 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1661 	if (rc)
1662 		return rc;
1663 
1664 	return avc_has_perm(newsid, sbsec->sid,
1665 			    SECCLASS_FILESYSTEM,
1666 			    FILESYSTEM__ASSOCIATE, &ad);
1667 }
1668 
1669 /* Check whether a task can create a key. */
1670 static int may_create_key(u32 ksid,
1671 			  struct task_struct *ctx)
1672 {
1673 	u32 sid = task_sid(ctx);
1674 
1675 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1676 }
1677 
1678 #define MAY_LINK	0
1679 #define MAY_UNLINK	1
1680 #define MAY_RMDIR	2
1681 
1682 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1683 static int may_link(struct inode *dir,
1684 		    struct dentry *dentry,
1685 		    int kind)
1686 
1687 {
1688 	struct inode_security_struct *dsec, *isec;
1689 	struct common_audit_data ad;
1690 	u32 sid = current_sid();
1691 	u32 av;
1692 	int rc;
1693 
1694 	dsec = dir->i_security;
1695 	isec = dentry->d_inode->i_security;
1696 
1697 	ad.type = LSM_AUDIT_DATA_DENTRY;
1698 	ad.u.dentry = dentry;
1699 
1700 	av = DIR__SEARCH;
1701 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1702 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1703 	if (rc)
1704 		return rc;
1705 
1706 	switch (kind) {
1707 	case MAY_LINK:
1708 		av = FILE__LINK;
1709 		break;
1710 	case MAY_UNLINK:
1711 		av = FILE__UNLINK;
1712 		break;
1713 	case MAY_RMDIR:
1714 		av = DIR__RMDIR;
1715 		break;
1716 	default:
1717 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1718 			__func__, kind);
1719 		return 0;
1720 	}
1721 
1722 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1723 	return rc;
1724 }
1725 
1726 static inline int may_rename(struct inode *old_dir,
1727 			     struct dentry *old_dentry,
1728 			     struct inode *new_dir,
1729 			     struct dentry *new_dentry)
1730 {
1731 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1732 	struct common_audit_data ad;
1733 	u32 sid = current_sid();
1734 	u32 av;
1735 	int old_is_dir, new_is_dir;
1736 	int rc;
1737 
1738 	old_dsec = old_dir->i_security;
1739 	old_isec = old_dentry->d_inode->i_security;
1740 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1741 	new_dsec = new_dir->i_security;
1742 
1743 	ad.type = LSM_AUDIT_DATA_DENTRY;
1744 
1745 	ad.u.dentry = old_dentry;
1746 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1747 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1748 	if (rc)
1749 		return rc;
1750 	rc = avc_has_perm(sid, old_isec->sid,
1751 			  old_isec->sclass, FILE__RENAME, &ad);
1752 	if (rc)
1753 		return rc;
1754 	if (old_is_dir && new_dir != old_dir) {
1755 		rc = avc_has_perm(sid, old_isec->sid,
1756 				  old_isec->sclass, DIR__REPARENT, &ad);
1757 		if (rc)
1758 			return rc;
1759 	}
1760 
1761 	ad.u.dentry = new_dentry;
1762 	av = DIR__ADD_NAME | DIR__SEARCH;
1763 	if (new_dentry->d_inode)
1764 		av |= DIR__REMOVE_NAME;
1765 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1766 	if (rc)
1767 		return rc;
1768 	if (new_dentry->d_inode) {
1769 		new_isec = new_dentry->d_inode->i_security;
1770 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1771 		rc = avc_has_perm(sid, new_isec->sid,
1772 				  new_isec->sclass,
1773 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1774 		if (rc)
1775 			return rc;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 /* Check whether a task can perform a filesystem operation. */
1782 static int superblock_has_perm(const struct cred *cred,
1783 			       struct super_block *sb,
1784 			       u32 perms,
1785 			       struct common_audit_data *ad)
1786 {
1787 	struct superblock_security_struct *sbsec;
1788 	u32 sid = cred_sid(cred);
1789 
1790 	sbsec = sb->s_security;
1791 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1792 }
1793 
1794 /* Convert a Linux mode and permission mask to an access vector. */
1795 static inline u32 file_mask_to_av(int mode, int mask)
1796 {
1797 	u32 av = 0;
1798 
1799 	if (!S_ISDIR(mode)) {
1800 		if (mask & MAY_EXEC)
1801 			av |= FILE__EXECUTE;
1802 		if (mask & MAY_READ)
1803 			av |= FILE__READ;
1804 
1805 		if (mask & MAY_APPEND)
1806 			av |= FILE__APPEND;
1807 		else if (mask & MAY_WRITE)
1808 			av |= FILE__WRITE;
1809 
1810 	} else {
1811 		if (mask & MAY_EXEC)
1812 			av |= DIR__SEARCH;
1813 		if (mask & MAY_WRITE)
1814 			av |= DIR__WRITE;
1815 		if (mask & MAY_READ)
1816 			av |= DIR__READ;
1817 	}
1818 
1819 	return av;
1820 }
1821 
1822 /* Convert a Linux file to an access vector. */
1823 static inline u32 file_to_av(struct file *file)
1824 {
1825 	u32 av = 0;
1826 
1827 	if (file->f_mode & FMODE_READ)
1828 		av |= FILE__READ;
1829 	if (file->f_mode & FMODE_WRITE) {
1830 		if (file->f_flags & O_APPEND)
1831 			av |= FILE__APPEND;
1832 		else
1833 			av |= FILE__WRITE;
1834 	}
1835 	if (!av) {
1836 		/*
1837 		 * Special file opened with flags 3 for ioctl-only use.
1838 		 */
1839 		av = FILE__IOCTL;
1840 	}
1841 
1842 	return av;
1843 }
1844 
1845 /*
1846  * Convert a file to an access vector and include the correct open
1847  * open permission.
1848  */
1849 static inline u32 open_file_to_av(struct file *file)
1850 {
1851 	u32 av = file_to_av(file);
1852 
1853 	if (selinux_policycap_openperm)
1854 		av |= FILE__OPEN;
1855 
1856 	return av;
1857 }
1858 
1859 /* Hook functions begin here. */
1860 
1861 static int selinux_ptrace_access_check(struct task_struct *child,
1862 				     unsigned int mode)
1863 {
1864 	int rc;
1865 
1866 	rc = cap_ptrace_access_check(child, mode);
1867 	if (rc)
1868 		return rc;
1869 
1870 	if (mode & PTRACE_MODE_READ) {
1871 		u32 sid = current_sid();
1872 		u32 csid = task_sid(child);
1873 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1874 	}
1875 
1876 	return current_has_perm(child, PROCESS__PTRACE);
1877 }
1878 
1879 static int selinux_ptrace_traceme(struct task_struct *parent)
1880 {
1881 	int rc;
1882 
1883 	rc = cap_ptrace_traceme(parent);
1884 	if (rc)
1885 		return rc;
1886 
1887 	return task_has_perm(parent, current, PROCESS__PTRACE);
1888 }
1889 
1890 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1891 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1892 {
1893 	int error;
1894 
1895 	error = current_has_perm(target, PROCESS__GETCAP);
1896 	if (error)
1897 		return error;
1898 
1899 	return cap_capget(target, effective, inheritable, permitted);
1900 }
1901 
1902 static int selinux_capset(struct cred *new, const struct cred *old,
1903 			  const kernel_cap_t *effective,
1904 			  const kernel_cap_t *inheritable,
1905 			  const kernel_cap_t *permitted)
1906 {
1907 	int error;
1908 
1909 	error = cap_capset(new, old,
1910 				      effective, inheritable, permitted);
1911 	if (error)
1912 		return error;
1913 
1914 	return cred_has_perm(old, new, PROCESS__SETCAP);
1915 }
1916 
1917 /*
1918  * (This comment used to live with the selinux_task_setuid hook,
1919  * which was removed).
1920  *
1921  * Since setuid only affects the current process, and since the SELinux
1922  * controls are not based on the Linux identity attributes, SELinux does not
1923  * need to control this operation.  However, SELinux does control the use of
1924  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1925  */
1926 
1927 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1928 			   int cap, int audit)
1929 {
1930 	int rc;
1931 
1932 	rc = cap_capable(cred, ns, cap, audit);
1933 	if (rc)
1934 		return rc;
1935 
1936 	return cred_has_capability(cred, cap, audit);
1937 }
1938 
1939 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1940 {
1941 	const struct cred *cred = current_cred();
1942 	int rc = 0;
1943 
1944 	if (!sb)
1945 		return 0;
1946 
1947 	switch (cmds) {
1948 	case Q_SYNC:
1949 	case Q_QUOTAON:
1950 	case Q_QUOTAOFF:
1951 	case Q_SETINFO:
1952 	case Q_SETQUOTA:
1953 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1954 		break;
1955 	case Q_GETFMT:
1956 	case Q_GETINFO:
1957 	case Q_GETQUOTA:
1958 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1959 		break;
1960 	default:
1961 		rc = 0;  /* let the kernel handle invalid cmds */
1962 		break;
1963 	}
1964 	return rc;
1965 }
1966 
1967 static int selinux_quota_on(struct dentry *dentry)
1968 {
1969 	const struct cred *cred = current_cred();
1970 
1971 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1972 }
1973 
1974 static int selinux_syslog(int type)
1975 {
1976 	int rc;
1977 
1978 	switch (type) {
1979 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1980 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1981 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1982 		break;
1983 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1984 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1985 	/* Set level of messages printed to console */
1986 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1987 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1988 		break;
1989 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1990 	case SYSLOG_ACTION_OPEN:	/* Open log */
1991 	case SYSLOG_ACTION_READ:	/* Read from log */
1992 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1993 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1994 	default:
1995 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1996 		break;
1997 	}
1998 	return rc;
1999 }
2000 
2001 /*
2002  * Check that a process has enough memory to allocate a new virtual
2003  * mapping. 0 means there is enough memory for the allocation to
2004  * succeed and -ENOMEM implies there is not.
2005  *
2006  * Do not audit the selinux permission check, as this is applied to all
2007  * processes that allocate mappings.
2008  */
2009 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2010 {
2011 	int rc, cap_sys_admin = 0;
2012 
2013 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2014 			     SECURITY_CAP_NOAUDIT);
2015 	if (rc == 0)
2016 		cap_sys_admin = 1;
2017 
2018 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2019 }
2020 
2021 /* binprm security operations */
2022 
2023 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2024 {
2025 	const struct task_security_struct *old_tsec;
2026 	struct task_security_struct *new_tsec;
2027 	struct inode_security_struct *isec;
2028 	struct common_audit_data ad;
2029 	struct inode *inode = file_inode(bprm->file);
2030 	int rc;
2031 
2032 	rc = cap_bprm_set_creds(bprm);
2033 	if (rc)
2034 		return rc;
2035 
2036 	/* SELinux context only depends on initial program or script and not
2037 	 * the script interpreter */
2038 	if (bprm->cred_prepared)
2039 		return 0;
2040 
2041 	old_tsec = current_security();
2042 	new_tsec = bprm->cred->security;
2043 	isec = inode->i_security;
2044 
2045 	/* Default to the current task SID. */
2046 	new_tsec->sid = old_tsec->sid;
2047 	new_tsec->osid = old_tsec->sid;
2048 
2049 	/* Reset fs, key, and sock SIDs on execve. */
2050 	new_tsec->create_sid = 0;
2051 	new_tsec->keycreate_sid = 0;
2052 	new_tsec->sockcreate_sid = 0;
2053 
2054 	if (old_tsec->exec_sid) {
2055 		new_tsec->sid = old_tsec->exec_sid;
2056 		/* Reset exec SID on execve. */
2057 		new_tsec->exec_sid = 0;
2058 
2059 		/*
2060 		 * Minimize confusion: if no_new_privs and a transition is
2061 		 * explicitly requested, then fail the exec.
2062 		 */
2063 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2064 			return -EPERM;
2065 	} else {
2066 		/* Check for a default transition on this program. */
2067 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2068 					     SECCLASS_PROCESS, NULL,
2069 					     &new_tsec->sid);
2070 		if (rc)
2071 			return rc;
2072 	}
2073 
2074 	ad.type = LSM_AUDIT_DATA_PATH;
2075 	ad.u.path = bprm->file->f_path;
2076 
2077 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2078 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2079 		new_tsec->sid = old_tsec->sid;
2080 
2081 	if (new_tsec->sid == old_tsec->sid) {
2082 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2083 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2084 		if (rc)
2085 			return rc;
2086 	} else {
2087 		/* Check permissions for the transition. */
2088 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2089 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2090 		if (rc)
2091 			return rc;
2092 
2093 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2094 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2095 		if (rc)
2096 			return rc;
2097 
2098 		/* Check for shared state */
2099 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2100 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2101 					  SECCLASS_PROCESS, PROCESS__SHARE,
2102 					  NULL);
2103 			if (rc)
2104 				return -EPERM;
2105 		}
2106 
2107 		/* Make sure that anyone attempting to ptrace over a task that
2108 		 * changes its SID has the appropriate permit */
2109 		if (bprm->unsafe &
2110 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2111 			struct task_struct *tracer;
2112 			struct task_security_struct *sec;
2113 			u32 ptsid = 0;
2114 
2115 			rcu_read_lock();
2116 			tracer = ptrace_parent(current);
2117 			if (likely(tracer != NULL)) {
2118 				sec = __task_cred(tracer)->security;
2119 				ptsid = sec->sid;
2120 			}
2121 			rcu_read_unlock();
2122 
2123 			if (ptsid != 0) {
2124 				rc = avc_has_perm(ptsid, new_tsec->sid,
2125 						  SECCLASS_PROCESS,
2126 						  PROCESS__PTRACE, NULL);
2127 				if (rc)
2128 					return -EPERM;
2129 			}
2130 		}
2131 
2132 		/* Clear any possibly unsafe personality bits on exec: */
2133 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2140 {
2141 	const struct task_security_struct *tsec = current_security();
2142 	u32 sid, osid;
2143 	int atsecure = 0;
2144 
2145 	sid = tsec->sid;
2146 	osid = tsec->osid;
2147 
2148 	if (osid != sid) {
2149 		/* Enable secure mode for SIDs transitions unless
2150 		   the noatsecure permission is granted between
2151 		   the two SIDs, i.e. ahp returns 0. */
2152 		atsecure = avc_has_perm(osid, sid,
2153 					SECCLASS_PROCESS,
2154 					PROCESS__NOATSECURE, NULL);
2155 	}
2156 
2157 	return (atsecure || cap_bprm_secureexec(bprm));
2158 }
2159 
2160 static int match_file(const void *p, struct file *file, unsigned fd)
2161 {
2162 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2163 }
2164 
2165 /* Derived from fs/exec.c:flush_old_files. */
2166 static inline void flush_unauthorized_files(const struct cred *cred,
2167 					    struct files_struct *files)
2168 {
2169 	struct file *file, *devnull = NULL;
2170 	struct tty_struct *tty;
2171 	int drop_tty = 0;
2172 	unsigned n;
2173 
2174 	tty = get_current_tty();
2175 	if (tty) {
2176 		spin_lock(&tty_files_lock);
2177 		if (!list_empty(&tty->tty_files)) {
2178 			struct tty_file_private *file_priv;
2179 
2180 			/* Revalidate access to controlling tty.
2181 			   Use file_path_has_perm on the tty path directly
2182 			   rather than using file_has_perm, as this particular
2183 			   open file may belong to another process and we are
2184 			   only interested in the inode-based check here. */
2185 			file_priv = list_first_entry(&tty->tty_files,
2186 						struct tty_file_private, list);
2187 			file = file_priv->file;
2188 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2189 				drop_tty = 1;
2190 		}
2191 		spin_unlock(&tty_files_lock);
2192 		tty_kref_put(tty);
2193 	}
2194 	/* Reset controlling tty. */
2195 	if (drop_tty)
2196 		no_tty();
2197 
2198 	/* Revalidate access to inherited open files. */
2199 	n = iterate_fd(files, 0, match_file, cred);
2200 	if (!n) /* none found? */
2201 		return;
2202 
2203 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2204 	if (IS_ERR(devnull))
2205 		devnull = NULL;
2206 	/* replace all the matching ones with this */
2207 	do {
2208 		replace_fd(n - 1, devnull, 0);
2209 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2210 	if (devnull)
2211 		fput(devnull);
2212 }
2213 
2214 /*
2215  * Prepare a process for imminent new credential changes due to exec
2216  */
2217 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2218 {
2219 	struct task_security_struct *new_tsec;
2220 	struct rlimit *rlim, *initrlim;
2221 	int rc, i;
2222 
2223 	new_tsec = bprm->cred->security;
2224 	if (new_tsec->sid == new_tsec->osid)
2225 		return;
2226 
2227 	/* Close files for which the new task SID is not authorized. */
2228 	flush_unauthorized_files(bprm->cred, current->files);
2229 
2230 	/* Always clear parent death signal on SID transitions. */
2231 	current->pdeath_signal = 0;
2232 
2233 	/* Check whether the new SID can inherit resource limits from the old
2234 	 * SID.  If not, reset all soft limits to the lower of the current
2235 	 * task's hard limit and the init task's soft limit.
2236 	 *
2237 	 * Note that the setting of hard limits (even to lower them) can be
2238 	 * controlled by the setrlimit check.  The inclusion of the init task's
2239 	 * soft limit into the computation is to avoid resetting soft limits
2240 	 * higher than the default soft limit for cases where the default is
2241 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2242 	 */
2243 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2244 			  PROCESS__RLIMITINH, NULL);
2245 	if (rc) {
2246 		/* protect against do_prlimit() */
2247 		task_lock(current);
2248 		for (i = 0; i < RLIM_NLIMITS; i++) {
2249 			rlim = current->signal->rlim + i;
2250 			initrlim = init_task.signal->rlim + i;
2251 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2252 		}
2253 		task_unlock(current);
2254 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2255 	}
2256 }
2257 
2258 /*
2259  * Clean up the process immediately after the installation of new credentials
2260  * due to exec
2261  */
2262 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2263 {
2264 	const struct task_security_struct *tsec = current_security();
2265 	struct itimerval itimer;
2266 	u32 osid, sid;
2267 	int rc, i;
2268 
2269 	osid = tsec->osid;
2270 	sid = tsec->sid;
2271 
2272 	if (sid == osid)
2273 		return;
2274 
2275 	/* Check whether the new SID can inherit signal state from the old SID.
2276 	 * If not, clear itimers to avoid subsequent signal generation and
2277 	 * flush and unblock signals.
2278 	 *
2279 	 * This must occur _after_ the task SID has been updated so that any
2280 	 * kill done after the flush will be checked against the new SID.
2281 	 */
2282 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2283 	if (rc) {
2284 		memset(&itimer, 0, sizeof itimer);
2285 		for (i = 0; i < 3; i++)
2286 			do_setitimer(i, &itimer, NULL);
2287 		spin_lock_irq(&current->sighand->siglock);
2288 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2289 			__flush_signals(current);
2290 			flush_signal_handlers(current, 1);
2291 			sigemptyset(&current->blocked);
2292 		}
2293 		spin_unlock_irq(&current->sighand->siglock);
2294 	}
2295 
2296 	/* Wake up the parent if it is waiting so that it can recheck
2297 	 * wait permission to the new task SID. */
2298 	read_lock(&tasklist_lock);
2299 	__wake_up_parent(current, current->real_parent);
2300 	read_unlock(&tasklist_lock);
2301 }
2302 
2303 /* superblock security operations */
2304 
2305 static int selinux_sb_alloc_security(struct super_block *sb)
2306 {
2307 	return superblock_alloc_security(sb);
2308 }
2309 
2310 static void selinux_sb_free_security(struct super_block *sb)
2311 {
2312 	superblock_free_security(sb);
2313 }
2314 
2315 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2316 {
2317 	if (plen > olen)
2318 		return 0;
2319 
2320 	return !memcmp(prefix, option, plen);
2321 }
2322 
2323 static inline int selinux_option(char *option, int len)
2324 {
2325 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2326 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2327 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2328 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2329 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2330 }
2331 
2332 static inline void take_option(char **to, char *from, int *first, int len)
2333 {
2334 	if (!*first) {
2335 		**to = ',';
2336 		*to += 1;
2337 	} else
2338 		*first = 0;
2339 	memcpy(*to, from, len);
2340 	*to += len;
2341 }
2342 
2343 static inline void take_selinux_option(char **to, char *from, int *first,
2344 				       int len)
2345 {
2346 	int current_size = 0;
2347 
2348 	if (!*first) {
2349 		**to = '|';
2350 		*to += 1;
2351 	} else
2352 		*first = 0;
2353 
2354 	while (current_size < len) {
2355 		if (*from != '"') {
2356 			**to = *from;
2357 			*to += 1;
2358 		}
2359 		from += 1;
2360 		current_size += 1;
2361 	}
2362 }
2363 
2364 static int selinux_sb_copy_data(char *orig, char *copy)
2365 {
2366 	int fnosec, fsec, rc = 0;
2367 	char *in_save, *in_curr, *in_end;
2368 	char *sec_curr, *nosec_save, *nosec;
2369 	int open_quote = 0;
2370 
2371 	in_curr = orig;
2372 	sec_curr = copy;
2373 
2374 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2375 	if (!nosec) {
2376 		rc = -ENOMEM;
2377 		goto out;
2378 	}
2379 
2380 	nosec_save = nosec;
2381 	fnosec = fsec = 1;
2382 	in_save = in_end = orig;
2383 
2384 	do {
2385 		if (*in_end == '"')
2386 			open_quote = !open_quote;
2387 		if ((*in_end == ',' && open_quote == 0) ||
2388 				*in_end == '\0') {
2389 			int len = in_end - in_curr;
2390 
2391 			if (selinux_option(in_curr, len))
2392 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2393 			else
2394 				take_option(&nosec, in_curr, &fnosec, len);
2395 
2396 			in_curr = in_end + 1;
2397 		}
2398 	} while (*in_end++);
2399 
2400 	strcpy(in_save, nosec_save);
2401 	free_page((unsigned long)nosec_save);
2402 out:
2403 	return rc;
2404 }
2405 
2406 static int selinux_sb_remount(struct super_block *sb, void *data)
2407 {
2408 	int rc, i, *flags;
2409 	struct security_mnt_opts opts;
2410 	char *secdata, **mount_options;
2411 	struct superblock_security_struct *sbsec = sb->s_security;
2412 
2413 	if (!(sbsec->flags & SE_SBINITIALIZED))
2414 		return 0;
2415 
2416 	if (!data)
2417 		return 0;
2418 
2419 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2420 		return 0;
2421 
2422 	security_init_mnt_opts(&opts);
2423 	secdata = alloc_secdata();
2424 	if (!secdata)
2425 		return -ENOMEM;
2426 	rc = selinux_sb_copy_data(data, secdata);
2427 	if (rc)
2428 		goto out_free_secdata;
2429 
2430 	rc = selinux_parse_opts_str(secdata, &opts);
2431 	if (rc)
2432 		goto out_free_secdata;
2433 
2434 	mount_options = opts.mnt_opts;
2435 	flags = opts.mnt_opts_flags;
2436 
2437 	for (i = 0; i < opts.num_mnt_opts; i++) {
2438 		u32 sid;
2439 		size_t len;
2440 
2441 		if (flags[i] == SE_SBLABELSUPP)
2442 			continue;
2443 		len = strlen(mount_options[i]);
2444 		rc = security_context_to_sid(mount_options[i], len, &sid);
2445 		if (rc) {
2446 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2447 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2448 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2449 			goto out_free_opts;
2450 		}
2451 		rc = -EINVAL;
2452 		switch (flags[i]) {
2453 		case FSCONTEXT_MNT:
2454 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2455 				goto out_bad_option;
2456 			break;
2457 		case CONTEXT_MNT:
2458 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2459 				goto out_bad_option;
2460 			break;
2461 		case ROOTCONTEXT_MNT: {
2462 			struct inode_security_struct *root_isec;
2463 			root_isec = sb->s_root->d_inode->i_security;
2464 
2465 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2466 				goto out_bad_option;
2467 			break;
2468 		}
2469 		case DEFCONTEXT_MNT:
2470 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2471 				goto out_bad_option;
2472 			break;
2473 		default:
2474 			goto out_free_opts;
2475 		}
2476 	}
2477 
2478 	rc = 0;
2479 out_free_opts:
2480 	security_free_mnt_opts(&opts);
2481 out_free_secdata:
2482 	free_secdata(secdata);
2483 	return rc;
2484 out_bad_option:
2485 	printk(KERN_WARNING "SELinux: unable to change security options "
2486 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2487 	       sb->s_type->name);
2488 	goto out_free_opts;
2489 }
2490 
2491 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2492 {
2493 	const struct cred *cred = current_cred();
2494 	struct common_audit_data ad;
2495 	int rc;
2496 
2497 	rc = superblock_doinit(sb, data);
2498 	if (rc)
2499 		return rc;
2500 
2501 	/* Allow all mounts performed by the kernel */
2502 	if (flags & MS_KERNMOUNT)
2503 		return 0;
2504 
2505 	ad.type = LSM_AUDIT_DATA_DENTRY;
2506 	ad.u.dentry = sb->s_root;
2507 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2508 }
2509 
2510 static int selinux_sb_statfs(struct dentry *dentry)
2511 {
2512 	const struct cred *cred = current_cred();
2513 	struct common_audit_data ad;
2514 
2515 	ad.type = LSM_AUDIT_DATA_DENTRY;
2516 	ad.u.dentry = dentry->d_sb->s_root;
2517 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2518 }
2519 
2520 static int selinux_mount(const char *dev_name,
2521 			 struct path *path,
2522 			 const char *type,
2523 			 unsigned long flags,
2524 			 void *data)
2525 {
2526 	const struct cred *cred = current_cred();
2527 
2528 	if (flags & MS_REMOUNT)
2529 		return superblock_has_perm(cred, path->dentry->d_sb,
2530 					   FILESYSTEM__REMOUNT, NULL);
2531 	else
2532 		return path_has_perm(cred, path, FILE__MOUNTON);
2533 }
2534 
2535 static int selinux_umount(struct vfsmount *mnt, int flags)
2536 {
2537 	const struct cred *cred = current_cred();
2538 
2539 	return superblock_has_perm(cred, mnt->mnt_sb,
2540 				   FILESYSTEM__UNMOUNT, NULL);
2541 }
2542 
2543 /* inode security operations */
2544 
2545 static int selinux_inode_alloc_security(struct inode *inode)
2546 {
2547 	return inode_alloc_security(inode);
2548 }
2549 
2550 static void selinux_inode_free_security(struct inode *inode)
2551 {
2552 	inode_free_security(inode);
2553 }
2554 
2555 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2556 					struct qstr *name, void **ctx,
2557 					u32 *ctxlen)
2558 {
2559 	const struct cred *cred = current_cred();
2560 	struct task_security_struct *tsec;
2561 	struct inode_security_struct *dsec;
2562 	struct superblock_security_struct *sbsec;
2563 	struct inode *dir = dentry->d_parent->d_inode;
2564 	u32 newsid;
2565 	int rc;
2566 
2567 	tsec = cred->security;
2568 	dsec = dir->i_security;
2569 	sbsec = dir->i_sb->s_security;
2570 
2571 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2572 		newsid = tsec->create_sid;
2573 	} else {
2574 		rc = security_transition_sid(tsec->sid, dsec->sid,
2575 					     inode_mode_to_security_class(mode),
2576 					     name,
2577 					     &newsid);
2578 		if (rc) {
2579 			printk(KERN_WARNING
2580 				"%s: security_transition_sid failed, rc=%d\n",
2581 			       __func__, -rc);
2582 			return rc;
2583 		}
2584 	}
2585 
2586 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2587 }
2588 
2589 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2590 				       const struct qstr *qstr,
2591 				       const char **name,
2592 				       void **value, size_t *len)
2593 {
2594 	const struct task_security_struct *tsec = current_security();
2595 	struct inode_security_struct *dsec;
2596 	struct superblock_security_struct *sbsec;
2597 	u32 sid, newsid, clen;
2598 	int rc;
2599 	char *context;
2600 
2601 	dsec = dir->i_security;
2602 	sbsec = dir->i_sb->s_security;
2603 
2604 	sid = tsec->sid;
2605 	newsid = tsec->create_sid;
2606 
2607 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2608 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2609 		newsid = sbsec->mntpoint_sid;
2610 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2611 		rc = security_transition_sid(sid, dsec->sid,
2612 					     inode_mode_to_security_class(inode->i_mode),
2613 					     qstr, &newsid);
2614 		if (rc) {
2615 			printk(KERN_WARNING "%s:  "
2616 			       "security_transition_sid failed, rc=%d (dev=%s "
2617 			       "ino=%ld)\n",
2618 			       __func__,
2619 			       -rc, inode->i_sb->s_id, inode->i_ino);
2620 			return rc;
2621 		}
2622 	}
2623 
2624 	/* Possibly defer initialization to selinux_complete_init. */
2625 	if (sbsec->flags & SE_SBINITIALIZED) {
2626 		struct inode_security_struct *isec = inode->i_security;
2627 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2628 		isec->sid = newsid;
2629 		isec->initialized = 1;
2630 	}
2631 
2632 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2633 		return -EOPNOTSUPP;
2634 
2635 	if (name)
2636 		*name = XATTR_SELINUX_SUFFIX;
2637 
2638 	if (value && len) {
2639 		rc = security_sid_to_context_force(newsid, &context, &clen);
2640 		if (rc)
2641 			return rc;
2642 		*value = context;
2643 		*len = clen;
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2650 {
2651 	return may_create(dir, dentry, SECCLASS_FILE);
2652 }
2653 
2654 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2655 {
2656 	return may_link(dir, old_dentry, MAY_LINK);
2657 }
2658 
2659 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2660 {
2661 	return may_link(dir, dentry, MAY_UNLINK);
2662 }
2663 
2664 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2665 {
2666 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2667 }
2668 
2669 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2670 {
2671 	return may_create(dir, dentry, SECCLASS_DIR);
2672 }
2673 
2674 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2675 {
2676 	return may_link(dir, dentry, MAY_RMDIR);
2677 }
2678 
2679 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2680 {
2681 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2682 }
2683 
2684 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2685 				struct inode *new_inode, struct dentry *new_dentry)
2686 {
2687 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2688 }
2689 
2690 static int selinux_inode_readlink(struct dentry *dentry)
2691 {
2692 	const struct cred *cred = current_cred();
2693 
2694 	return dentry_has_perm(cred, dentry, FILE__READ);
2695 }
2696 
2697 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2698 {
2699 	const struct cred *cred = current_cred();
2700 
2701 	return dentry_has_perm(cred, dentry, FILE__READ);
2702 }
2703 
2704 static noinline int audit_inode_permission(struct inode *inode,
2705 					   u32 perms, u32 audited, u32 denied,
2706 					   unsigned flags)
2707 {
2708 	struct common_audit_data ad;
2709 	struct inode_security_struct *isec = inode->i_security;
2710 	int rc;
2711 
2712 	ad.type = LSM_AUDIT_DATA_INODE;
2713 	ad.u.inode = inode;
2714 
2715 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2716 			    audited, denied, &ad, flags);
2717 	if (rc)
2718 		return rc;
2719 	return 0;
2720 }
2721 
2722 static int selinux_inode_permission(struct inode *inode, int mask)
2723 {
2724 	const struct cred *cred = current_cred();
2725 	u32 perms;
2726 	bool from_access;
2727 	unsigned flags = mask & MAY_NOT_BLOCK;
2728 	struct inode_security_struct *isec;
2729 	u32 sid;
2730 	struct av_decision avd;
2731 	int rc, rc2;
2732 	u32 audited, denied;
2733 
2734 	from_access = mask & MAY_ACCESS;
2735 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2736 
2737 	/* No permission to check.  Existence test. */
2738 	if (!mask)
2739 		return 0;
2740 
2741 	validate_creds(cred);
2742 
2743 	if (unlikely(IS_PRIVATE(inode)))
2744 		return 0;
2745 
2746 	perms = file_mask_to_av(inode->i_mode, mask);
2747 
2748 	sid = cred_sid(cred);
2749 	isec = inode->i_security;
2750 
2751 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2752 	audited = avc_audit_required(perms, &avd, rc,
2753 				     from_access ? FILE__AUDIT_ACCESS : 0,
2754 				     &denied);
2755 	if (likely(!audited))
2756 		return rc;
2757 
2758 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2759 	if (rc2)
2760 		return rc2;
2761 	return rc;
2762 }
2763 
2764 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2765 {
2766 	const struct cred *cred = current_cred();
2767 	unsigned int ia_valid = iattr->ia_valid;
2768 	__u32 av = FILE__WRITE;
2769 
2770 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2771 	if (ia_valid & ATTR_FORCE) {
2772 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2773 			      ATTR_FORCE);
2774 		if (!ia_valid)
2775 			return 0;
2776 	}
2777 
2778 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2779 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2780 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2781 
2782 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2783 		av |= FILE__OPEN;
2784 
2785 	return dentry_has_perm(cred, dentry, av);
2786 }
2787 
2788 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2789 {
2790 	const struct cred *cred = current_cred();
2791 	struct path path;
2792 
2793 	path.dentry = dentry;
2794 	path.mnt = mnt;
2795 
2796 	return path_has_perm(cred, &path, FILE__GETATTR);
2797 }
2798 
2799 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2800 {
2801 	const struct cred *cred = current_cred();
2802 
2803 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2804 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2805 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2806 			if (!capable(CAP_SETFCAP))
2807 				return -EPERM;
2808 		} else if (!capable(CAP_SYS_ADMIN)) {
2809 			/* A different attribute in the security namespace.
2810 			   Restrict to administrator. */
2811 			return -EPERM;
2812 		}
2813 	}
2814 
2815 	/* Not an attribute we recognize, so just check the
2816 	   ordinary setattr permission. */
2817 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2818 }
2819 
2820 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2821 				  const void *value, size_t size, int flags)
2822 {
2823 	struct inode *inode = dentry->d_inode;
2824 	struct inode_security_struct *isec = inode->i_security;
2825 	struct superblock_security_struct *sbsec;
2826 	struct common_audit_data ad;
2827 	u32 newsid, sid = current_sid();
2828 	int rc = 0;
2829 
2830 	if (strcmp(name, XATTR_NAME_SELINUX))
2831 		return selinux_inode_setotherxattr(dentry, name);
2832 
2833 	sbsec = inode->i_sb->s_security;
2834 	if (!(sbsec->flags & SE_SBLABELSUPP))
2835 		return -EOPNOTSUPP;
2836 
2837 	if (!inode_owner_or_capable(inode))
2838 		return -EPERM;
2839 
2840 	ad.type = LSM_AUDIT_DATA_DENTRY;
2841 	ad.u.dentry = dentry;
2842 
2843 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2844 			  FILE__RELABELFROM, &ad);
2845 	if (rc)
2846 		return rc;
2847 
2848 	rc = security_context_to_sid(value, size, &newsid);
2849 	if (rc == -EINVAL) {
2850 		if (!capable(CAP_MAC_ADMIN)) {
2851 			struct audit_buffer *ab;
2852 			size_t audit_size;
2853 			const char *str;
2854 
2855 			/* We strip a nul only if it is at the end, otherwise the
2856 			 * context contains a nul and we should audit that */
2857 			if (value) {
2858 				str = value;
2859 				if (str[size - 1] == '\0')
2860 					audit_size = size - 1;
2861 				else
2862 					audit_size = size;
2863 			} else {
2864 				str = "";
2865 				audit_size = 0;
2866 			}
2867 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2868 			audit_log_format(ab, "op=setxattr invalid_context=");
2869 			audit_log_n_untrustedstring(ab, value, audit_size);
2870 			audit_log_end(ab);
2871 
2872 			return rc;
2873 		}
2874 		rc = security_context_to_sid_force(value, size, &newsid);
2875 	}
2876 	if (rc)
2877 		return rc;
2878 
2879 	rc = avc_has_perm(sid, newsid, isec->sclass,
2880 			  FILE__RELABELTO, &ad);
2881 	if (rc)
2882 		return rc;
2883 
2884 	rc = security_validate_transition(isec->sid, newsid, sid,
2885 					  isec->sclass);
2886 	if (rc)
2887 		return rc;
2888 
2889 	return avc_has_perm(newsid,
2890 			    sbsec->sid,
2891 			    SECCLASS_FILESYSTEM,
2892 			    FILESYSTEM__ASSOCIATE,
2893 			    &ad);
2894 }
2895 
2896 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2897 					const void *value, size_t size,
2898 					int flags)
2899 {
2900 	struct inode *inode = dentry->d_inode;
2901 	struct inode_security_struct *isec = inode->i_security;
2902 	u32 newsid;
2903 	int rc;
2904 
2905 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2906 		/* Not an attribute we recognize, so nothing to do. */
2907 		return;
2908 	}
2909 
2910 	rc = security_context_to_sid_force(value, size, &newsid);
2911 	if (rc) {
2912 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2913 		       "for (%s, %lu), rc=%d\n",
2914 		       inode->i_sb->s_id, inode->i_ino, -rc);
2915 		return;
2916 	}
2917 
2918 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
2919 	isec->sid = newsid;
2920 	isec->initialized = 1;
2921 
2922 	return;
2923 }
2924 
2925 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2926 {
2927 	const struct cred *cred = current_cred();
2928 
2929 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2930 }
2931 
2932 static int selinux_inode_listxattr(struct dentry *dentry)
2933 {
2934 	const struct cred *cred = current_cred();
2935 
2936 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2937 }
2938 
2939 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2940 {
2941 	if (strcmp(name, XATTR_NAME_SELINUX))
2942 		return selinux_inode_setotherxattr(dentry, name);
2943 
2944 	/* No one is allowed to remove a SELinux security label.
2945 	   You can change the label, but all data must be labeled. */
2946 	return -EACCES;
2947 }
2948 
2949 /*
2950  * Copy the inode security context value to the user.
2951  *
2952  * Permission check is handled by selinux_inode_getxattr hook.
2953  */
2954 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2955 {
2956 	u32 size;
2957 	int error;
2958 	char *context = NULL;
2959 	struct inode_security_struct *isec = inode->i_security;
2960 
2961 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2962 		return -EOPNOTSUPP;
2963 
2964 	/*
2965 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2966 	 * value even if it is not defined by current policy; otherwise,
2967 	 * use the in-core value under current policy.
2968 	 * Use the non-auditing forms of the permission checks since
2969 	 * getxattr may be called by unprivileged processes commonly
2970 	 * and lack of permission just means that we fall back to the
2971 	 * in-core context value, not a denial.
2972 	 */
2973 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2974 				SECURITY_CAP_NOAUDIT);
2975 	if (!error)
2976 		error = security_sid_to_context_force(isec->sid, &context,
2977 						      &size);
2978 	else
2979 		error = security_sid_to_context(isec->sid, &context, &size);
2980 	if (error)
2981 		return error;
2982 	error = size;
2983 	if (alloc) {
2984 		*buffer = context;
2985 		goto out_nofree;
2986 	}
2987 	kfree(context);
2988 out_nofree:
2989 	return error;
2990 }
2991 
2992 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2993 				     const void *value, size_t size, int flags)
2994 {
2995 	struct inode_security_struct *isec = inode->i_security;
2996 	u32 newsid;
2997 	int rc;
2998 
2999 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3000 		return -EOPNOTSUPP;
3001 
3002 	if (!value || !size)
3003 		return -EACCES;
3004 
3005 	rc = security_context_to_sid((void *)value, size, &newsid);
3006 	if (rc)
3007 		return rc;
3008 
3009 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3010 	isec->sid = newsid;
3011 	isec->initialized = 1;
3012 	return 0;
3013 }
3014 
3015 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3016 {
3017 	const int len = sizeof(XATTR_NAME_SELINUX);
3018 	if (buffer && len <= buffer_size)
3019 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3020 	return len;
3021 }
3022 
3023 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3024 {
3025 	struct inode_security_struct *isec = inode->i_security;
3026 	*secid = isec->sid;
3027 }
3028 
3029 /* file security operations */
3030 
3031 static int selinux_revalidate_file_permission(struct file *file, int mask)
3032 {
3033 	const struct cred *cred = current_cred();
3034 	struct inode *inode = file_inode(file);
3035 
3036 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3037 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3038 		mask |= MAY_APPEND;
3039 
3040 	return file_has_perm(cred, file,
3041 			     file_mask_to_av(inode->i_mode, mask));
3042 }
3043 
3044 static int selinux_file_permission(struct file *file, int mask)
3045 {
3046 	struct inode *inode = file_inode(file);
3047 	struct file_security_struct *fsec = file->f_security;
3048 	struct inode_security_struct *isec = inode->i_security;
3049 	u32 sid = current_sid();
3050 
3051 	if (!mask)
3052 		/* No permission to check.  Existence test. */
3053 		return 0;
3054 
3055 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3056 	    fsec->pseqno == avc_policy_seqno())
3057 		/* No change since file_open check. */
3058 		return 0;
3059 
3060 	return selinux_revalidate_file_permission(file, mask);
3061 }
3062 
3063 static int selinux_file_alloc_security(struct file *file)
3064 {
3065 	return file_alloc_security(file);
3066 }
3067 
3068 static void selinux_file_free_security(struct file *file)
3069 {
3070 	file_free_security(file);
3071 }
3072 
3073 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3074 			      unsigned long arg)
3075 {
3076 	const struct cred *cred = current_cred();
3077 	int error = 0;
3078 
3079 	switch (cmd) {
3080 	case FIONREAD:
3081 	/* fall through */
3082 	case FIBMAP:
3083 	/* fall through */
3084 	case FIGETBSZ:
3085 	/* fall through */
3086 	case FS_IOC_GETFLAGS:
3087 	/* fall through */
3088 	case FS_IOC_GETVERSION:
3089 		error = file_has_perm(cred, file, FILE__GETATTR);
3090 		break;
3091 
3092 	case FS_IOC_SETFLAGS:
3093 	/* fall through */
3094 	case FS_IOC_SETVERSION:
3095 		error = file_has_perm(cred, file, FILE__SETATTR);
3096 		break;
3097 
3098 	/* sys_ioctl() checks */
3099 	case FIONBIO:
3100 	/* fall through */
3101 	case FIOASYNC:
3102 		error = file_has_perm(cred, file, 0);
3103 		break;
3104 
3105 	case KDSKBENT:
3106 	case KDSKBSENT:
3107 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3108 					    SECURITY_CAP_AUDIT);
3109 		break;
3110 
3111 	/* default case assumes that the command will go
3112 	 * to the file's ioctl() function.
3113 	 */
3114 	default:
3115 		error = file_has_perm(cred, file, FILE__IOCTL);
3116 	}
3117 	return error;
3118 }
3119 
3120 static int default_noexec;
3121 
3122 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3123 {
3124 	const struct cred *cred = current_cred();
3125 	int rc = 0;
3126 
3127 	if (default_noexec &&
3128 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3129 		/*
3130 		 * We are making executable an anonymous mapping or a
3131 		 * private file mapping that will also be writable.
3132 		 * This has an additional check.
3133 		 */
3134 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3135 		if (rc)
3136 			goto error;
3137 	}
3138 
3139 	if (file) {
3140 		/* read access is always possible with a mapping */
3141 		u32 av = FILE__READ;
3142 
3143 		/* write access only matters if the mapping is shared */
3144 		if (shared && (prot & PROT_WRITE))
3145 			av |= FILE__WRITE;
3146 
3147 		if (prot & PROT_EXEC)
3148 			av |= FILE__EXECUTE;
3149 
3150 		return file_has_perm(cred, file, av);
3151 	}
3152 
3153 error:
3154 	return rc;
3155 }
3156 
3157 static int selinux_mmap_addr(unsigned long addr)
3158 {
3159 	int rc = 0;
3160 	u32 sid = current_sid();
3161 
3162 	/*
3163 	 * notice that we are intentionally putting the SELinux check before
3164 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3165 	 * at bad behaviour/exploit that we always want to get the AVC, even
3166 	 * if DAC would have also denied the operation.
3167 	 */
3168 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3169 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3170 				  MEMPROTECT__MMAP_ZERO, NULL);
3171 		if (rc)
3172 			return rc;
3173 	}
3174 
3175 	/* do DAC check on address space usage */
3176 	return cap_mmap_addr(addr);
3177 }
3178 
3179 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3180 			     unsigned long prot, unsigned long flags)
3181 {
3182 	if (selinux_checkreqprot)
3183 		prot = reqprot;
3184 
3185 	return file_map_prot_check(file, prot,
3186 				   (flags & MAP_TYPE) == MAP_SHARED);
3187 }
3188 
3189 static int selinux_file_mprotect(struct vm_area_struct *vma,
3190 				 unsigned long reqprot,
3191 				 unsigned long prot)
3192 {
3193 	const struct cred *cred = current_cred();
3194 
3195 	if (selinux_checkreqprot)
3196 		prot = reqprot;
3197 
3198 	if (default_noexec &&
3199 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3200 		int rc = 0;
3201 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3202 		    vma->vm_end <= vma->vm_mm->brk) {
3203 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3204 		} else if (!vma->vm_file &&
3205 			   vma->vm_start <= vma->vm_mm->start_stack &&
3206 			   vma->vm_end >= vma->vm_mm->start_stack) {
3207 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3208 		} else if (vma->vm_file && vma->anon_vma) {
3209 			/*
3210 			 * We are making executable a file mapping that has
3211 			 * had some COW done. Since pages might have been
3212 			 * written, check ability to execute the possibly
3213 			 * modified content.  This typically should only
3214 			 * occur for text relocations.
3215 			 */
3216 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3217 		}
3218 		if (rc)
3219 			return rc;
3220 	}
3221 
3222 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3223 }
3224 
3225 static int selinux_file_lock(struct file *file, unsigned int cmd)
3226 {
3227 	const struct cred *cred = current_cred();
3228 
3229 	return file_has_perm(cred, file, FILE__LOCK);
3230 }
3231 
3232 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3233 			      unsigned long arg)
3234 {
3235 	const struct cred *cred = current_cred();
3236 	int err = 0;
3237 
3238 	switch (cmd) {
3239 	case F_SETFL:
3240 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3241 			err = file_has_perm(cred, file, FILE__WRITE);
3242 			break;
3243 		}
3244 		/* fall through */
3245 	case F_SETOWN:
3246 	case F_SETSIG:
3247 	case F_GETFL:
3248 	case F_GETOWN:
3249 	case F_GETSIG:
3250 	case F_GETOWNER_UIDS:
3251 		/* Just check FD__USE permission */
3252 		err = file_has_perm(cred, file, 0);
3253 		break;
3254 	case F_GETLK:
3255 	case F_SETLK:
3256 	case F_SETLKW:
3257 #if BITS_PER_LONG == 32
3258 	case F_GETLK64:
3259 	case F_SETLK64:
3260 	case F_SETLKW64:
3261 #endif
3262 		err = file_has_perm(cred, file, FILE__LOCK);
3263 		break;
3264 	}
3265 
3266 	return err;
3267 }
3268 
3269 static int selinux_file_set_fowner(struct file *file)
3270 {
3271 	struct file_security_struct *fsec;
3272 
3273 	fsec = file->f_security;
3274 	fsec->fown_sid = current_sid();
3275 
3276 	return 0;
3277 }
3278 
3279 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3280 				       struct fown_struct *fown, int signum)
3281 {
3282 	struct file *file;
3283 	u32 sid = task_sid(tsk);
3284 	u32 perm;
3285 	struct file_security_struct *fsec;
3286 
3287 	/* struct fown_struct is never outside the context of a struct file */
3288 	file = container_of(fown, struct file, f_owner);
3289 
3290 	fsec = file->f_security;
3291 
3292 	if (!signum)
3293 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3294 	else
3295 		perm = signal_to_av(signum);
3296 
3297 	return avc_has_perm(fsec->fown_sid, sid,
3298 			    SECCLASS_PROCESS, perm, NULL);
3299 }
3300 
3301 static int selinux_file_receive(struct file *file)
3302 {
3303 	const struct cred *cred = current_cred();
3304 
3305 	return file_has_perm(cred, file, file_to_av(file));
3306 }
3307 
3308 static int selinux_file_open(struct file *file, const struct cred *cred)
3309 {
3310 	struct file_security_struct *fsec;
3311 	struct inode_security_struct *isec;
3312 
3313 	fsec = file->f_security;
3314 	isec = file_inode(file)->i_security;
3315 	/*
3316 	 * Save inode label and policy sequence number
3317 	 * at open-time so that selinux_file_permission
3318 	 * can determine whether revalidation is necessary.
3319 	 * Task label is already saved in the file security
3320 	 * struct as its SID.
3321 	 */
3322 	fsec->isid = isec->sid;
3323 	fsec->pseqno = avc_policy_seqno();
3324 	/*
3325 	 * Since the inode label or policy seqno may have changed
3326 	 * between the selinux_inode_permission check and the saving
3327 	 * of state above, recheck that access is still permitted.
3328 	 * Otherwise, access might never be revalidated against the
3329 	 * new inode label or new policy.
3330 	 * This check is not redundant - do not remove.
3331 	 */
3332 	return file_path_has_perm(cred, file, open_file_to_av(file));
3333 }
3334 
3335 /* task security operations */
3336 
3337 static int selinux_task_create(unsigned long clone_flags)
3338 {
3339 	return current_has_perm(current, PROCESS__FORK);
3340 }
3341 
3342 /*
3343  * allocate the SELinux part of blank credentials
3344  */
3345 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3346 {
3347 	struct task_security_struct *tsec;
3348 
3349 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3350 	if (!tsec)
3351 		return -ENOMEM;
3352 
3353 	cred->security = tsec;
3354 	return 0;
3355 }
3356 
3357 /*
3358  * detach and free the LSM part of a set of credentials
3359  */
3360 static void selinux_cred_free(struct cred *cred)
3361 {
3362 	struct task_security_struct *tsec = cred->security;
3363 
3364 	/*
3365 	 * cred->security == NULL if security_cred_alloc_blank() or
3366 	 * security_prepare_creds() returned an error.
3367 	 */
3368 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3369 	cred->security = (void *) 0x7UL;
3370 	kfree(tsec);
3371 }
3372 
3373 /*
3374  * prepare a new set of credentials for modification
3375  */
3376 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3377 				gfp_t gfp)
3378 {
3379 	const struct task_security_struct *old_tsec;
3380 	struct task_security_struct *tsec;
3381 
3382 	old_tsec = old->security;
3383 
3384 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3385 	if (!tsec)
3386 		return -ENOMEM;
3387 
3388 	new->security = tsec;
3389 	return 0;
3390 }
3391 
3392 /*
3393  * transfer the SELinux data to a blank set of creds
3394  */
3395 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3396 {
3397 	const struct task_security_struct *old_tsec = old->security;
3398 	struct task_security_struct *tsec = new->security;
3399 
3400 	*tsec = *old_tsec;
3401 }
3402 
3403 /*
3404  * set the security data for a kernel service
3405  * - all the creation contexts are set to unlabelled
3406  */
3407 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3408 {
3409 	struct task_security_struct *tsec = new->security;
3410 	u32 sid = current_sid();
3411 	int ret;
3412 
3413 	ret = avc_has_perm(sid, secid,
3414 			   SECCLASS_KERNEL_SERVICE,
3415 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3416 			   NULL);
3417 	if (ret == 0) {
3418 		tsec->sid = secid;
3419 		tsec->create_sid = 0;
3420 		tsec->keycreate_sid = 0;
3421 		tsec->sockcreate_sid = 0;
3422 	}
3423 	return ret;
3424 }
3425 
3426 /*
3427  * set the file creation context in a security record to the same as the
3428  * objective context of the specified inode
3429  */
3430 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3431 {
3432 	struct inode_security_struct *isec = inode->i_security;
3433 	struct task_security_struct *tsec = new->security;
3434 	u32 sid = current_sid();
3435 	int ret;
3436 
3437 	ret = avc_has_perm(sid, isec->sid,
3438 			   SECCLASS_KERNEL_SERVICE,
3439 			   KERNEL_SERVICE__CREATE_FILES_AS,
3440 			   NULL);
3441 
3442 	if (ret == 0)
3443 		tsec->create_sid = isec->sid;
3444 	return ret;
3445 }
3446 
3447 static int selinux_kernel_module_request(char *kmod_name)
3448 {
3449 	u32 sid;
3450 	struct common_audit_data ad;
3451 
3452 	sid = task_sid(current);
3453 
3454 	ad.type = LSM_AUDIT_DATA_KMOD;
3455 	ad.u.kmod_name = kmod_name;
3456 
3457 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3458 			    SYSTEM__MODULE_REQUEST, &ad);
3459 }
3460 
3461 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3462 {
3463 	return current_has_perm(p, PROCESS__SETPGID);
3464 }
3465 
3466 static int selinux_task_getpgid(struct task_struct *p)
3467 {
3468 	return current_has_perm(p, PROCESS__GETPGID);
3469 }
3470 
3471 static int selinux_task_getsid(struct task_struct *p)
3472 {
3473 	return current_has_perm(p, PROCESS__GETSESSION);
3474 }
3475 
3476 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3477 {
3478 	*secid = task_sid(p);
3479 }
3480 
3481 static int selinux_task_setnice(struct task_struct *p, int nice)
3482 {
3483 	int rc;
3484 
3485 	rc = cap_task_setnice(p, nice);
3486 	if (rc)
3487 		return rc;
3488 
3489 	return current_has_perm(p, PROCESS__SETSCHED);
3490 }
3491 
3492 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3493 {
3494 	int rc;
3495 
3496 	rc = cap_task_setioprio(p, ioprio);
3497 	if (rc)
3498 		return rc;
3499 
3500 	return current_has_perm(p, PROCESS__SETSCHED);
3501 }
3502 
3503 static int selinux_task_getioprio(struct task_struct *p)
3504 {
3505 	return current_has_perm(p, PROCESS__GETSCHED);
3506 }
3507 
3508 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3509 		struct rlimit *new_rlim)
3510 {
3511 	struct rlimit *old_rlim = p->signal->rlim + resource;
3512 
3513 	/* Control the ability to change the hard limit (whether
3514 	   lowering or raising it), so that the hard limit can
3515 	   later be used as a safe reset point for the soft limit
3516 	   upon context transitions.  See selinux_bprm_committing_creds. */
3517 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3518 		return current_has_perm(p, PROCESS__SETRLIMIT);
3519 
3520 	return 0;
3521 }
3522 
3523 static int selinux_task_setscheduler(struct task_struct *p)
3524 {
3525 	int rc;
3526 
3527 	rc = cap_task_setscheduler(p);
3528 	if (rc)
3529 		return rc;
3530 
3531 	return current_has_perm(p, PROCESS__SETSCHED);
3532 }
3533 
3534 static int selinux_task_getscheduler(struct task_struct *p)
3535 {
3536 	return current_has_perm(p, PROCESS__GETSCHED);
3537 }
3538 
3539 static int selinux_task_movememory(struct task_struct *p)
3540 {
3541 	return current_has_perm(p, PROCESS__SETSCHED);
3542 }
3543 
3544 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3545 				int sig, u32 secid)
3546 {
3547 	u32 perm;
3548 	int rc;
3549 
3550 	if (!sig)
3551 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3552 	else
3553 		perm = signal_to_av(sig);
3554 	if (secid)
3555 		rc = avc_has_perm(secid, task_sid(p),
3556 				  SECCLASS_PROCESS, perm, NULL);
3557 	else
3558 		rc = current_has_perm(p, perm);
3559 	return rc;
3560 }
3561 
3562 static int selinux_task_wait(struct task_struct *p)
3563 {
3564 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3565 }
3566 
3567 static void selinux_task_to_inode(struct task_struct *p,
3568 				  struct inode *inode)
3569 {
3570 	struct inode_security_struct *isec = inode->i_security;
3571 	u32 sid = task_sid(p);
3572 
3573 	isec->sid = sid;
3574 	isec->initialized = 1;
3575 }
3576 
3577 /* Returns error only if unable to parse addresses */
3578 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3579 			struct common_audit_data *ad, u8 *proto)
3580 {
3581 	int offset, ihlen, ret = -EINVAL;
3582 	struct iphdr _iph, *ih;
3583 
3584 	offset = skb_network_offset(skb);
3585 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3586 	if (ih == NULL)
3587 		goto out;
3588 
3589 	ihlen = ih->ihl * 4;
3590 	if (ihlen < sizeof(_iph))
3591 		goto out;
3592 
3593 	ad->u.net->v4info.saddr = ih->saddr;
3594 	ad->u.net->v4info.daddr = ih->daddr;
3595 	ret = 0;
3596 
3597 	if (proto)
3598 		*proto = ih->protocol;
3599 
3600 	switch (ih->protocol) {
3601 	case IPPROTO_TCP: {
3602 		struct tcphdr _tcph, *th;
3603 
3604 		if (ntohs(ih->frag_off) & IP_OFFSET)
3605 			break;
3606 
3607 		offset += ihlen;
3608 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3609 		if (th == NULL)
3610 			break;
3611 
3612 		ad->u.net->sport = th->source;
3613 		ad->u.net->dport = th->dest;
3614 		break;
3615 	}
3616 
3617 	case IPPROTO_UDP: {
3618 		struct udphdr _udph, *uh;
3619 
3620 		if (ntohs(ih->frag_off) & IP_OFFSET)
3621 			break;
3622 
3623 		offset += ihlen;
3624 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3625 		if (uh == NULL)
3626 			break;
3627 
3628 		ad->u.net->sport = uh->source;
3629 		ad->u.net->dport = uh->dest;
3630 		break;
3631 	}
3632 
3633 	case IPPROTO_DCCP: {
3634 		struct dccp_hdr _dccph, *dh;
3635 
3636 		if (ntohs(ih->frag_off) & IP_OFFSET)
3637 			break;
3638 
3639 		offset += ihlen;
3640 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3641 		if (dh == NULL)
3642 			break;
3643 
3644 		ad->u.net->sport = dh->dccph_sport;
3645 		ad->u.net->dport = dh->dccph_dport;
3646 		break;
3647 	}
3648 
3649 	default:
3650 		break;
3651 	}
3652 out:
3653 	return ret;
3654 }
3655 
3656 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3657 
3658 /* Returns error only if unable to parse addresses */
3659 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3660 			struct common_audit_data *ad, u8 *proto)
3661 {
3662 	u8 nexthdr;
3663 	int ret = -EINVAL, offset;
3664 	struct ipv6hdr _ipv6h, *ip6;
3665 	__be16 frag_off;
3666 
3667 	offset = skb_network_offset(skb);
3668 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3669 	if (ip6 == NULL)
3670 		goto out;
3671 
3672 	ad->u.net->v6info.saddr = ip6->saddr;
3673 	ad->u.net->v6info.daddr = ip6->daddr;
3674 	ret = 0;
3675 
3676 	nexthdr = ip6->nexthdr;
3677 	offset += sizeof(_ipv6h);
3678 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3679 	if (offset < 0)
3680 		goto out;
3681 
3682 	if (proto)
3683 		*proto = nexthdr;
3684 
3685 	switch (nexthdr) {
3686 	case IPPROTO_TCP: {
3687 		struct tcphdr _tcph, *th;
3688 
3689 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3690 		if (th == NULL)
3691 			break;
3692 
3693 		ad->u.net->sport = th->source;
3694 		ad->u.net->dport = th->dest;
3695 		break;
3696 	}
3697 
3698 	case IPPROTO_UDP: {
3699 		struct udphdr _udph, *uh;
3700 
3701 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3702 		if (uh == NULL)
3703 			break;
3704 
3705 		ad->u.net->sport = uh->source;
3706 		ad->u.net->dport = uh->dest;
3707 		break;
3708 	}
3709 
3710 	case IPPROTO_DCCP: {
3711 		struct dccp_hdr _dccph, *dh;
3712 
3713 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3714 		if (dh == NULL)
3715 			break;
3716 
3717 		ad->u.net->sport = dh->dccph_sport;
3718 		ad->u.net->dport = dh->dccph_dport;
3719 		break;
3720 	}
3721 
3722 	/* includes fragments */
3723 	default:
3724 		break;
3725 	}
3726 out:
3727 	return ret;
3728 }
3729 
3730 #endif /* IPV6 */
3731 
3732 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3733 			     char **_addrp, int src, u8 *proto)
3734 {
3735 	char *addrp;
3736 	int ret;
3737 
3738 	switch (ad->u.net->family) {
3739 	case PF_INET:
3740 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3741 		if (ret)
3742 			goto parse_error;
3743 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3744 				       &ad->u.net->v4info.daddr);
3745 		goto okay;
3746 
3747 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3748 	case PF_INET6:
3749 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3750 		if (ret)
3751 			goto parse_error;
3752 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3753 				       &ad->u.net->v6info.daddr);
3754 		goto okay;
3755 #endif	/* IPV6 */
3756 	default:
3757 		addrp = NULL;
3758 		goto okay;
3759 	}
3760 
3761 parse_error:
3762 	printk(KERN_WARNING
3763 	       "SELinux: failure in selinux_parse_skb(),"
3764 	       " unable to parse packet\n");
3765 	return ret;
3766 
3767 okay:
3768 	if (_addrp)
3769 		*_addrp = addrp;
3770 	return 0;
3771 }
3772 
3773 /**
3774  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3775  * @skb: the packet
3776  * @family: protocol family
3777  * @sid: the packet's peer label SID
3778  *
3779  * Description:
3780  * Check the various different forms of network peer labeling and determine
3781  * the peer label/SID for the packet; most of the magic actually occurs in
3782  * the security server function security_net_peersid_cmp().  The function
3783  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3784  * or -EACCES if @sid is invalid due to inconsistencies with the different
3785  * peer labels.
3786  *
3787  */
3788 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3789 {
3790 	int err;
3791 	u32 xfrm_sid;
3792 	u32 nlbl_sid;
3793 	u32 nlbl_type;
3794 
3795 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3796 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3797 
3798 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3799 	if (unlikely(err)) {
3800 		printk(KERN_WARNING
3801 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3802 		       " unable to determine packet's peer label\n");
3803 		return -EACCES;
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 /* socket security operations */
3810 
3811 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3812 				 u16 secclass, u32 *socksid)
3813 {
3814 	if (tsec->sockcreate_sid > SECSID_NULL) {
3815 		*socksid = tsec->sockcreate_sid;
3816 		return 0;
3817 	}
3818 
3819 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3820 				       socksid);
3821 }
3822 
3823 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3824 {
3825 	struct sk_security_struct *sksec = sk->sk_security;
3826 	struct common_audit_data ad;
3827 	struct lsm_network_audit net = {0,};
3828 	u32 tsid = task_sid(task);
3829 
3830 	if (sksec->sid == SECINITSID_KERNEL)
3831 		return 0;
3832 
3833 	ad.type = LSM_AUDIT_DATA_NET;
3834 	ad.u.net = &net;
3835 	ad.u.net->sk = sk;
3836 
3837 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3838 }
3839 
3840 static int selinux_socket_create(int family, int type,
3841 				 int protocol, int kern)
3842 {
3843 	const struct task_security_struct *tsec = current_security();
3844 	u32 newsid;
3845 	u16 secclass;
3846 	int rc;
3847 
3848 	if (kern)
3849 		return 0;
3850 
3851 	secclass = socket_type_to_security_class(family, type, protocol);
3852 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3853 	if (rc)
3854 		return rc;
3855 
3856 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3857 }
3858 
3859 static int selinux_socket_post_create(struct socket *sock, int family,
3860 				      int type, int protocol, int kern)
3861 {
3862 	const struct task_security_struct *tsec = current_security();
3863 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3864 	struct sk_security_struct *sksec;
3865 	int err = 0;
3866 
3867 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3868 
3869 	if (kern)
3870 		isec->sid = SECINITSID_KERNEL;
3871 	else {
3872 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3873 		if (err)
3874 			return err;
3875 	}
3876 
3877 	isec->initialized = 1;
3878 
3879 	if (sock->sk) {
3880 		sksec = sock->sk->sk_security;
3881 		sksec->sid = isec->sid;
3882 		sksec->sclass = isec->sclass;
3883 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3884 	}
3885 
3886 	return err;
3887 }
3888 
3889 /* Range of port numbers used to automatically bind.
3890    Need to determine whether we should perform a name_bind
3891    permission check between the socket and the port number. */
3892 
3893 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3894 {
3895 	struct sock *sk = sock->sk;
3896 	u16 family;
3897 	int err;
3898 
3899 	err = sock_has_perm(current, sk, SOCKET__BIND);
3900 	if (err)
3901 		goto out;
3902 
3903 	/*
3904 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3905 	 * Multiple address binding for SCTP is not supported yet: we just
3906 	 * check the first address now.
3907 	 */
3908 	family = sk->sk_family;
3909 	if (family == PF_INET || family == PF_INET6) {
3910 		char *addrp;
3911 		struct sk_security_struct *sksec = sk->sk_security;
3912 		struct common_audit_data ad;
3913 		struct lsm_network_audit net = {0,};
3914 		struct sockaddr_in *addr4 = NULL;
3915 		struct sockaddr_in6 *addr6 = NULL;
3916 		unsigned short snum;
3917 		u32 sid, node_perm;
3918 
3919 		if (family == PF_INET) {
3920 			addr4 = (struct sockaddr_in *)address;
3921 			snum = ntohs(addr4->sin_port);
3922 			addrp = (char *)&addr4->sin_addr.s_addr;
3923 		} else {
3924 			addr6 = (struct sockaddr_in6 *)address;
3925 			snum = ntohs(addr6->sin6_port);
3926 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3927 		}
3928 
3929 		if (snum) {
3930 			int low, high;
3931 
3932 			inet_get_local_port_range(&low, &high);
3933 
3934 			if (snum < max(PROT_SOCK, low) || snum > high) {
3935 				err = sel_netport_sid(sk->sk_protocol,
3936 						      snum, &sid);
3937 				if (err)
3938 					goto out;
3939 				ad.type = LSM_AUDIT_DATA_NET;
3940 				ad.u.net = &net;
3941 				ad.u.net->sport = htons(snum);
3942 				ad.u.net->family = family;
3943 				err = avc_has_perm(sksec->sid, sid,
3944 						   sksec->sclass,
3945 						   SOCKET__NAME_BIND, &ad);
3946 				if (err)
3947 					goto out;
3948 			}
3949 		}
3950 
3951 		switch (sksec->sclass) {
3952 		case SECCLASS_TCP_SOCKET:
3953 			node_perm = TCP_SOCKET__NODE_BIND;
3954 			break;
3955 
3956 		case SECCLASS_UDP_SOCKET:
3957 			node_perm = UDP_SOCKET__NODE_BIND;
3958 			break;
3959 
3960 		case SECCLASS_DCCP_SOCKET:
3961 			node_perm = DCCP_SOCKET__NODE_BIND;
3962 			break;
3963 
3964 		default:
3965 			node_perm = RAWIP_SOCKET__NODE_BIND;
3966 			break;
3967 		}
3968 
3969 		err = sel_netnode_sid(addrp, family, &sid);
3970 		if (err)
3971 			goto out;
3972 
3973 		ad.type = LSM_AUDIT_DATA_NET;
3974 		ad.u.net = &net;
3975 		ad.u.net->sport = htons(snum);
3976 		ad.u.net->family = family;
3977 
3978 		if (family == PF_INET)
3979 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3980 		else
3981 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3982 
3983 		err = avc_has_perm(sksec->sid, sid,
3984 				   sksec->sclass, node_perm, &ad);
3985 		if (err)
3986 			goto out;
3987 	}
3988 out:
3989 	return err;
3990 }
3991 
3992 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3993 {
3994 	struct sock *sk = sock->sk;
3995 	struct sk_security_struct *sksec = sk->sk_security;
3996 	int err;
3997 
3998 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3999 	if (err)
4000 		return err;
4001 
4002 	/*
4003 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4004 	 */
4005 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4006 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4007 		struct common_audit_data ad;
4008 		struct lsm_network_audit net = {0,};
4009 		struct sockaddr_in *addr4 = NULL;
4010 		struct sockaddr_in6 *addr6 = NULL;
4011 		unsigned short snum;
4012 		u32 sid, perm;
4013 
4014 		if (sk->sk_family == PF_INET) {
4015 			addr4 = (struct sockaddr_in *)address;
4016 			if (addrlen < sizeof(struct sockaddr_in))
4017 				return -EINVAL;
4018 			snum = ntohs(addr4->sin_port);
4019 		} else {
4020 			addr6 = (struct sockaddr_in6 *)address;
4021 			if (addrlen < SIN6_LEN_RFC2133)
4022 				return -EINVAL;
4023 			snum = ntohs(addr6->sin6_port);
4024 		}
4025 
4026 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4027 		if (err)
4028 			goto out;
4029 
4030 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4031 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4032 
4033 		ad.type = LSM_AUDIT_DATA_NET;
4034 		ad.u.net = &net;
4035 		ad.u.net->dport = htons(snum);
4036 		ad.u.net->family = sk->sk_family;
4037 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4038 		if (err)
4039 			goto out;
4040 	}
4041 
4042 	err = selinux_netlbl_socket_connect(sk, address);
4043 
4044 out:
4045 	return err;
4046 }
4047 
4048 static int selinux_socket_listen(struct socket *sock, int backlog)
4049 {
4050 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4051 }
4052 
4053 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4054 {
4055 	int err;
4056 	struct inode_security_struct *isec;
4057 	struct inode_security_struct *newisec;
4058 
4059 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4060 	if (err)
4061 		return err;
4062 
4063 	newisec = SOCK_INODE(newsock)->i_security;
4064 
4065 	isec = SOCK_INODE(sock)->i_security;
4066 	newisec->sclass = isec->sclass;
4067 	newisec->sid = isec->sid;
4068 	newisec->initialized = 1;
4069 
4070 	return 0;
4071 }
4072 
4073 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4074 				  int size)
4075 {
4076 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4077 }
4078 
4079 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4080 				  int size, int flags)
4081 {
4082 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4083 }
4084 
4085 static int selinux_socket_getsockname(struct socket *sock)
4086 {
4087 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4088 }
4089 
4090 static int selinux_socket_getpeername(struct socket *sock)
4091 {
4092 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4093 }
4094 
4095 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4096 {
4097 	int err;
4098 
4099 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4100 	if (err)
4101 		return err;
4102 
4103 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4104 }
4105 
4106 static int selinux_socket_getsockopt(struct socket *sock, int level,
4107 				     int optname)
4108 {
4109 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4110 }
4111 
4112 static int selinux_socket_shutdown(struct socket *sock, int how)
4113 {
4114 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4115 }
4116 
4117 static int selinux_socket_unix_stream_connect(struct sock *sock,
4118 					      struct sock *other,
4119 					      struct sock *newsk)
4120 {
4121 	struct sk_security_struct *sksec_sock = sock->sk_security;
4122 	struct sk_security_struct *sksec_other = other->sk_security;
4123 	struct sk_security_struct *sksec_new = newsk->sk_security;
4124 	struct common_audit_data ad;
4125 	struct lsm_network_audit net = {0,};
4126 	int err;
4127 
4128 	ad.type = LSM_AUDIT_DATA_NET;
4129 	ad.u.net = &net;
4130 	ad.u.net->sk = other;
4131 
4132 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4133 			   sksec_other->sclass,
4134 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4135 	if (err)
4136 		return err;
4137 
4138 	/* server child socket */
4139 	sksec_new->peer_sid = sksec_sock->sid;
4140 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4141 				    &sksec_new->sid);
4142 	if (err)
4143 		return err;
4144 
4145 	/* connecting socket */
4146 	sksec_sock->peer_sid = sksec_new->sid;
4147 
4148 	return 0;
4149 }
4150 
4151 static int selinux_socket_unix_may_send(struct socket *sock,
4152 					struct socket *other)
4153 {
4154 	struct sk_security_struct *ssec = sock->sk->sk_security;
4155 	struct sk_security_struct *osec = other->sk->sk_security;
4156 	struct common_audit_data ad;
4157 	struct lsm_network_audit net = {0,};
4158 
4159 	ad.type = LSM_AUDIT_DATA_NET;
4160 	ad.u.net = &net;
4161 	ad.u.net->sk = other->sk;
4162 
4163 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4164 			    &ad);
4165 }
4166 
4167 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4168 				    u32 peer_sid,
4169 				    struct common_audit_data *ad)
4170 {
4171 	int err;
4172 	u32 if_sid;
4173 	u32 node_sid;
4174 
4175 	err = sel_netif_sid(ifindex, &if_sid);
4176 	if (err)
4177 		return err;
4178 	err = avc_has_perm(peer_sid, if_sid,
4179 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4180 	if (err)
4181 		return err;
4182 
4183 	err = sel_netnode_sid(addrp, family, &node_sid);
4184 	if (err)
4185 		return err;
4186 	return avc_has_perm(peer_sid, node_sid,
4187 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4188 }
4189 
4190 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4191 				       u16 family)
4192 {
4193 	int err = 0;
4194 	struct sk_security_struct *sksec = sk->sk_security;
4195 	u32 sk_sid = sksec->sid;
4196 	struct common_audit_data ad;
4197 	struct lsm_network_audit net = {0,};
4198 	char *addrp;
4199 
4200 	ad.type = LSM_AUDIT_DATA_NET;
4201 	ad.u.net = &net;
4202 	ad.u.net->netif = skb->skb_iif;
4203 	ad.u.net->family = family;
4204 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4205 	if (err)
4206 		return err;
4207 
4208 	if (selinux_secmark_enabled()) {
4209 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4210 				   PACKET__RECV, &ad);
4211 		if (err)
4212 			return err;
4213 	}
4214 
4215 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4216 	if (err)
4217 		return err;
4218 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4219 
4220 	return err;
4221 }
4222 
4223 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4224 {
4225 	int err;
4226 	struct sk_security_struct *sksec = sk->sk_security;
4227 	u16 family = sk->sk_family;
4228 	u32 sk_sid = sksec->sid;
4229 	struct common_audit_data ad;
4230 	struct lsm_network_audit net = {0,};
4231 	char *addrp;
4232 	u8 secmark_active;
4233 	u8 peerlbl_active;
4234 
4235 	if (family != PF_INET && family != PF_INET6)
4236 		return 0;
4237 
4238 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4239 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4240 		family = PF_INET;
4241 
4242 	/* If any sort of compatibility mode is enabled then handoff processing
4243 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4244 	 * special handling.  We do this in an attempt to keep this function
4245 	 * as fast and as clean as possible. */
4246 	if (!selinux_policycap_netpeer)
4247 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4248 
4249 	secmark_active = selinux_secmark_enabled();
4250 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4251 	if (!secmark_active && !peerlbl_active)
4252 		return 0;
4253 
4254 	ad.type = LSM_AUDIT_DATA_NET;
4255 	ad.u.net = &net;
4256 	ad.u.net->netif = skb->skb_iif;
4257 	ad.u.net->family = family;
4258 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4259 	if (err)
4260 		return err;
4261 
4262 	if (peerlbl_active) {
4263 		u32 peer_sid;
4264 
4265 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4266 		if (err)
4267 			return err;
4268 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4269 					       peer_sid, &ad);
4270 		if (err) {
4271 			selinux_netlbl_err(skb, err, 0);
4272 			return err;
4273 		}
4274 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4275 				   PEER__RECV, &ad);
4276 		if (err)
4277 			selinux_netlbl_err(skb, err, 0);
4278 	}
4279 
4280 	if (secmark_active) {
4281 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4282 				   PACKET__RECV, &ad);
4283 		if (err)
4284 			return err;
4285 	}
4286 
4287 	return err;
4288 }
4289 
4290 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4291 					    int __user *optlen, unsigned len)
4292 {
4293 	int err = 0;
4294 	char *scontext;
4295 	u32 scontext_len;
4296 	struct sk_security_struct *sksec = sock->sk->sk_security;
4297 	u32 peer_sid = SECSID_NULL;
4298 
4299 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4300 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4301 		peer_sid = sksec->peer_sid;
4302 	if (peer_sid == SECSID_NULL)
4303 		return -ENOPROTOOPT;
4304 
4305 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4306 	if (err)
4307 		return err;
4308 
4309 	if (scontext_len > len) {
4310 		err = -ERANGE;
4311 		goto out_len;
4312 	}
4313 
4314 	if (copy_to_user(optval, scontext, scontext_len))
4315 		err = -EFAULT;
4316 
4317 out_len:
4318 	if (put_user(scontext_len, optlen))
4319 		err = -EFAULT;
4320 	kfree(scontext);
4321 	return err;
4322 }
4323 
4324 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4325 {
4326 	u32 peer_secid = SECSID_NULL;
4327 	u16 family;
4328 
4329 	if (skb && skb->protocol == htons(ETH_P_IP))
4330 		family = PF_INET;
4331 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4332 		family = PF_INET6;
4333 	else if (sock)
4334 		family = sock->sk->sk_family;
4335 	else
4336 		goto out;
4337 
4338 	if (sock && family == PF_UNIX)
4339 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4340 	else if (skb)
4341 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4342 
4343 out:
4344 	*secid = peer_secid;
4345 	if (peer_secid == SECSID_NULL)
4346 		return -EINVAL;
4347 	return 0;
4348 }
4349 
4350 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4351 {
4352 	struct sk_security_struct *sksec;
4353 
4354 	sksec = kzalloc(sizeof(*sksec), priority);
4355 	if (!sksec)
4356 		return -ENOMEM;
4357 
4358 	sksec->peer_sid = SECINITSID_UNLABELED;
4359 	sksec->sid = SECINITSID_UNLABELED;
4360 	selinux_netlbl_sk_security_reset(sksec);
4361 	sk->sk_security = sksec;
4362 
4363 	return 0;
4364 }
4365 
4366 static void selinux_sk_free_security(struct sock *sk)
4367 {
4368 	struct sk_security_struct *sksec = sk->sk_security;
4369 
4370 	sk->sk_security = NULL;
4371 	selinux_netlbl_sk_security_free(sksec);
4372 	kfree(sksec);
4373 }
4374 
4375 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4376 {
4377 	struct sk_security_struct *sksec = sk->sk_security;
4378 	struct sk_security_struct *newsksec = newsk->sk_security;
4379 
4380 	newsksec->sid = sksec->sid;
4381 	newsksec->peer_sid = sksec->peer_sid;
4382 	newsksec->sclass = sksec->sclass;
4383 
4384 	selinux_netlbl_sk_security_reset(newsksec);
4385 }
4386 
4387 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4388 {
4389 	if (!sk)
4390 		*secid = SECINITSID_ANY_SOCKET;
4391 	else {
4392 		struct sk_security_struct *sksec = sk->sk_security;
4393 
4394 		*secid = sksec->sid;
4395 	}
4396 }
4397 
4398 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4399 {
4400 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4401 	struct sk_security_struct *sksec = sk->sk_security;
4402 
4403 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4404 	    sk->sk_family == PF_UNIX)
4405 		isec->sid = sksec->sid;
4406 	sksec->sclass = isec->sclass;
4407 }
4408 
4409 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4410 				     struct request_sock *req)
4411 {
4412 	struct sk_security_struct *sksec = sk->sk_security;
4413 	int err;
4414 	u16 family = sk->sk_family;
4415 	u32 newsid;
4416 	u32 peersid;
4417 
4418 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4419 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4420 		family = PF_INET;
4421 
4422 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4423 	if (err)
4424 		return err;
4425 	if (peersid == SECSID_NULL) {
4426 		req->secid = sksec->sid;
4427 		req->peer_secid = SECSID_NULL;
4428 	} else {
4429 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4430 		if (err)
4431 			return err;
4432 		req->secid = newsid;
4433 		req->peer_secid = peersid;
4434 	}
4435 
4436 	return selinux_netlbl_inet_conn_request(req, family);
4437 }
4438 
4439 static void selinux_inet_csk_clone(struct sock *newsk,
4440 				   const struct request_sock *req)
4441 {
4442 	struct sk_security_struct *newsksec = newsk->sk_security;
4443 
4444 	newsksec->sid = req->secid;
4445 	newsksec->peer_sid = req->peer_secid;
4446 	/* NOTE: Ideally, we should also get the isec->sid for the
4447 	   new socket in sync, but we don't have the isec available yet.
4448 	   So we will wait until sock_graft to do it, by which
4449 	   time it will have been created and available. */
4450 
4451 	/* We don't need to take any sort of lock here as we are the only
4452 	 * thread with access to newsksec */
4453 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4454 }
4455 
4456 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4457 {
4458 	u16 family = sk->sk_family;
4459 	struct sk_security_struct *sksec = sk->sk_security;
4460 
4461 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4462 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4463 		family = PF_INET;
4464 
4465 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4466 }
4467 
4468 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4469 {
4470 	skb_set_owner_w(skb, sk);
4471 }
4472 
4473 static int selinux_secmark_relabel_packet(u32 sid)
4474 {
4475 	const struct task_security_struct *__tsec;
4476 	u32 tsid;
4477 
4478 	__tsec = current_security();
4479 	tsid = __tsec->sid;
4480 
4481 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4482 }
4483 
4484 static void selinux_secmark_refcount_inc(void)
4485 {
4486 	atomic_inc(&selinux_secmark_refcount);
4487 }
4488 
4489 static void selinux_secmark_refcount_dec(void)
4490 {
4491 	atomic_dec(&selinux_secmark_refcount);
4492 }
4493 
4494 static void selinux_req_classify_flow(const struct request_sock *req,
4495 				      struct flowi *fl)
4496 {
4497 	fl->flowi_secid = req->secid;
4498 }
4499 
4500 static int selinux_tun_dev_alloc_security(void **security)
4501 {
4502 	struct tun_security_struct *tunsec;
4503 
4504 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4505 	if (!tunsec)
4506 		return -ENOMEM;
4507 	tunsec->sid = current_sid();
4508 
4509 	*security = tunsec;
4510 	return 0;
4511 }
4512 
4513 static void selinux_tun_dev_free_security(void *security)
4514 {
4515 	kfree(security);
4516 }
4517 
4518 static int selinux_tun_dev_create(void)
4519 {
4520 	u32 sid = current_sid();
4521 
4522 	/* we aren't taking into account the "sockcreate" SID since the socket
4523 	 * that is being created here is not a socket in the traditional sense,
4524 	 * instead it is a private sock, accessible only to the kernel, and
4525 	 * representing a wide range of network traffic spanning multiple
4526 	 * connections unlike traditional sockets - check the TUN driver to
4527 	 * get a better understanding of why this socket is special */
4528 
4529 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4530 			    NULL);
4531 }
4532 
4533 static int selinux_tun_dev_attach_queue(void *security)
4534 {
4535 	struct tun_security_struct *tunsec = security;
4536 
4537 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4538 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4539 }
4540 
4541 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4542 {
4543 	struct tun_security_struct *tunsec = security;
4544 	struct sk_security_struct *sksec = sk->sk_security;
4545 
4546 	/* we don't currently perform any NetLabel based labeling here and it
4547 	 * isn't clear that we would want to do so anyway; while we could apply
4548 	 * labeling without the support of the TUN user the resulting labeled
4549 	 * traffic from the other end of the connection would almost certainly
4550 	 * cause confusion to the TUN user that had no idea network labeling
4551 	 * protocols were being used */
4552 
4553 	sksec->sid = tunsec->sid;
4554 	sksec->sclass = SECCLASS_TUN_SOCKET;
4555 
4556 	return 0;
4557 }
4558 
4559 static int selinux_tun_dev_open(void *security)
4560 {
4561 	struct tun_security_struct *tunsec = security;
4562 	u32 sid = current_sid();
4563 	int err;
4564 
4565 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4566 			   TUN_SOCKET__RELABELFROM, NULL);
4567 	if (err)
4568 		return err;
4569 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4570 			   TUN_SOCKET__RELABELTO, NULL);
4571 	if (err)
4572 		return err;
4573 	tunsec->sid = sid;
4574 
4575 	return 0;
4576 }
4577 
4578 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4579 {
4580 	int err = 0;
4581 	u32 perm;
4582 	struct nlmsghdr *nlh;
4583 	struct sk_security_struct *sksec = sk->sk_security;
4584 
4585 	if (skb->len < NLMSG_HDRLEN) {
4586 		err = -EINVAL;
4587 		goto out;
4588 	}
4589 	nlh = nlmsg_hdr(skb);
4590 
4591 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4592 	if (err) {
4593 		if (err == -EINVAL) {
4594 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4595 				  "SELinux:  unrecognized netlink message"
4596 				  " type=%hu for sclass=%hu\n",
4597 				  nlh->nlmsg_type, sksec->sclass);
4598 			if (!selinux_enforcing || security_get_allow_unknown())
4599 				err = 0;
4600 		}
4601 
4602 		/* Ignore */
4603 		if (err == -ENOENT)
4604 			err = 0;
4605 		goto out;
4606 	}
4607 
4608 	err = sock_has_perm(current, sk, perm);
4609 out:
4610 	return err;
4611 }
4612 
4613 #ifdef CONFIG_NETFILTER
4614 
4615 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4616 				       u16 family)
4617 {
4618 	int err;
4619 	char *addrp;
4620 	u32 peer_sid;
4621 	struct common_audit_data ad;
4622 	struct lsm_network_audit net = {0,};
4623 	u8 secmark_active;
4624 	u8 netlbl_active;
4625 	u8 peerlbl_active;
4626 
4627 	if (!selinux_policycap_netpeer)
4628 		return NF_ACCEPT;
4629 
4630 	secmark_active = selinux_secmark_enabled();
4631 	netlbl_active = netlbl_enabled();
4632 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4633 	if (!secmark_active && !peerlbl_active)
4634 		return NF_ACCEPT;
4635 
4636 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4637 		return NF_DROP;
4638 
4639 	ad.type = LSM_AUDIT_DATA_NET;
4640 	ad.u.net = &net;
4641 	ad.u.net->netif = ifindex;
4642 	ad.u.net->family = family;
4643 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4644 		return NF_DROP;
4645 
4646 	if (peerlbl_active) {
4647 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4648 					       peer_sid, &ad);
4649 		if (err) {
4650 			selinux_netlbl_err(skb, err, 1);
4651 			return NF_DROP;
4652 		}
4653 	}
4654 
4655 	if (secmark_active)
4656 		if (avc_has_perm(peer_sid, skb->secmark,
4657 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4658 			return NF_DROP;
4659 
4660 	if (netlbl_active)
4661 		/* we do this in the FORWARD path and not the POST_ROUTING
4662 		 * path because we want to make sure we apply the necessary
4663 		 * labeling before IPsec is applied so we can leverage AH
4664 		 * protection */
4665 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4666 			return NF_DROP;
4667 
4668 	return NF_ACCEPT;
4669 }
4670 
4671 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4672 					 struct sk_buff *skb,
4673 					 const struct net_device *in,
4674 					 const struct net_device *out,
4675 					 int (*okfn)(struct sk_buff *))
4676 {
4677 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4678 }
4679 
4680 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4681 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4682 					 struct sk_buff *skb,
4683 					 const struct net_device *in,
4684 					 const struct net_device *out,
4685 					 int (*okfn)(struct sk_buff *))
4686 {
4687 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4688 }
4689 #endif	/* IPV6 */
4690 
4691 static unsigned int selinux_ip_output(struct sk_buff *skb,
4692 				      u16 family)
4693 {
4694 	u32 sid;
4695 
4696 	if (!netlbl_enabled())
4697 		return NF_ACCEPT;
4698 
4699 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4700 	 * because we want to make sure we apply the necessary labeling
4701 	 * before IPsec is applied so we can leverage AH protection */
4702 	if (skb->sk) {
4703 		struct sk_security_struct *sksec = skb->sk->sk_security;
4704 		sid = sksec->sid;
4705 	} else
4706 		sid = SECINITSID_KERNEL;
4707 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4708 		return NF_DROP;
4709 
4710 	return NF_ACCEPT;
4711 }
4712 
4713 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4714 					struct sk_buff *skb,
4715 					const struct net_device *in,
4716 					const struct net_device *out,
4717 					int (*okfn)(struct sk_buff *))
4718 {
4719 	return selinux_ip_output(skb, PF_INET);
4720 }
4721 
4722 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4723 						int ifindex,
4724 						u16 family)
4725 {
4726 	struct sock *sk = skb->sk;
4727 	struct sk_security_struct *sksec;
4728 	struct common_audit_data ad;
4729 	struct lsm_network_audit net = {0,};
4730 	char *addrp;
4731 	u8 proto;
4732 
4733 	if (sk == NULL)
4734 		return NF_ACCEPT;
4735 	sksec = sk->sk_security;
4736 
4737 	ad.type = LSM_AUDIT_DATA_NET;
4738 	ad.u.net = &net;
4739 	ad.u.net->netif = ifindex;
4740 	ad.u.net->family = family;
4741 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4742 		return NF_DROP;
4743 
4744 	if (selinux_secmark_enabled())
4745 		if (avc_has_perm(sksec->sid, skb->secmark,
4746 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4747 			return NF_DROP_ERR(-ECONNREFUSED);
4748 
4749 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4750 		return NF_DROP_ERR(-ECONNREFUSED);
4751 
4752 	return NF_ACCEPT;
4753 }
4754 
4755 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4756 					 u16 family)
4757 {
4758 	u32 secmark_perm;
4759 	u32 peer_sid;
4760 	struct sock *sk;
4761 	struct common_audit_data ad;
4762 	struct lsm_network_audit net = {0,};
4763 	char *addrp;
4764 	u8 secmark_active;
4765 	u8 peerlbl_active;
4766 
4767 	/* If any sort of compatibility mode is enabled then handoff processing
4768 	 * to the selinux_ip_postroute_compat() function to deal with the
4769 	 * special handling.  We do this in an attempt to keep this function
4770 	 * as fast and as clean as possible. */
4771 	if (!selinux_policycap_netpeer)
4772 		return selinux_ip_postroute_compat(skb, ifindex, family);
4773 #ifdef CONFIG_XFRM
4774 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4775 	 * packet transformation so allow the packet to pass without any checks
4776 	 * since we'll have another chance to perform access control checks
4777 	 * when the packet is on it's final way out.
4778 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4779 	 *       is NULL, in this case go ahead and apply access control. */
4780 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4781 		return NF_ACCEPT;
4782 #endif
4783 	secmark_active = selinux_secmark_enabled();
4784 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4785 	if (!secmark_active && !peerlbl_active)
4786 		return NF_ACCEPT;
4787 
4788 	/* if the packet is being forwarded then get the peer label from the
4789 	 * packet itself; otherwise check to see if it is from a local
4790 	 * application or the kernel, if from an application get the peer label
4791 	 * from the sending socket, otherwise use the kernel's sid */
4792 	sk = skb->sk;
4793 	if (sk == NULL) {
4794 		if (skb->skb_iif) {
4795 			secmark_perm = PACKET__FORWARD_OUT;
4796 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4797 				return NF_DROP;
4798 		} else {
4799 			secmark_perm = PACKET__SEND;
4800 			peer_sid = SECINITSID_KERNEL;
4801 		}
4802 	} else {
4803 		struct sk_security_struct *sksec = sk->sk_security;
4804 		peer_sid = sksec->sid;
4805 		secmark_perm = PACKET__SEND;
4806 	}
4807 
4808 	ad.type = LSM_AUDIT_DATA_NET;
4809 	ad.u.net = &net;
4810 	ad.u.net->netif = ifindex;
4811 	ad.u.net->family = family;
4812 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4813 		return NF_DROP;
4814 
4815 	if (secmark_active)
4816 		if (avc_has_perm(peer_sid, skb->secmark,
4817 				 SECCLASS_PACKET, secmark_perm, &ad))
4818 			return NF_DROP_ERR(-ECONNREFUSED);
4819 
4820 	if (peerlbl_active) {
4821 		u32 if_sid;
4822 		u32 node_sid;
4823 
4824 		if (sel_netif_sid(ifindex, &if_sid))
4825 			return NF_DROP;
4826 		if (avc_has_perm(peer_sid, if_sid,
4827 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4828 			return NF_DROP_ERR(-ECONNREFUSED);
4829 
4830 		if (sel_netnode_sid(addrp, family, &node_sid))
4831 			return NF_DROP;
4832 		if (avc_has_perm(peer_sid, node_sid,
4833 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4834 			return NF_DROP_ERR(-ECONNREFUSED);
4835 	}
4836 
4837 	return NF_ACCEPT;
4838 }
4839 
4840 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4841 					   struct sk_buff *skb,
4842 					   const struct net_device *in,
4843 					   const struct net_device *out,
4844 					   int (*okfn)(struct sk_buff *))
4845 {
4846 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4847 }
4848 
4849 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4850 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4851 					   struct sk_buff *skb,
4852 					   const struct net_device *in,
4853 					   const struct net_device *out,
4854 					   int (*okfn)(struct sk_buff *))
4855 {
4856 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4857 }
4858 #endif	/* IPV6 */
4859 
4860 #endif	/* CONFIG_NETFILTER */
4861 
4862 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4863 {
4864 	int err;
4865 
4866 	err = cap_netlink_send(sk, skb);
4867 	if (err)
4868 		return err;
4869 
4870 	return selinux_nlmsg_perm(sk, skb);
4871 }
4872 
4873 static int ipc_alloc_security(struct task_struct *task,
4874 			      struct kern_ipc_perm *perm,
4875 			      u16 sclass)
4876 {
4877 	struct ipc_security_struct *isec;
4878 	u32 sid;
4879 
4880 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4881 	if (!isec)
4882 		return -ENOMEM;
4883 
4884 	sid = task_sid(task);
4885 	isec->sclass = sclass;
4886 	isec->sid = sid;
4887 	perm->security = isec;
4888 
4889 	return 0;
4890 }
4891 
4892 static void ipc_free_security(struct kern_ipc_perm *perm)
4893 {
4894 	struct ipc_security_struct *isec = perm->security;
4895 	perm->security = NULL;
4896 	kfree(isec);
4897 }
4898 
4899 static int msg_msg_alloc_security(struct msg_msg *msg)
4900 {
4901 	struct msg_security_struct *msec;
4902 
4903 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4904 	if (!msec)
4905 		return -ENOMEM;
4906 
4907 	msec->sid = SECINITSID_UNLABELED;
4908 	msg->security = msec;
4909 
4910 	return 0;
4911 }
4912 
4913 static void msg_msg_free_security(struct msg_msg *msg)
4914 {
4915 	struct msg_security_struct *msec = msg->security;
4916 
4917 	msg->security = NULL;
4918 	kfree(msec);
4919 }
4920 
4921 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4922 			u32 perms)
4923 {
4924 	struct ipc_security_struct *isec;
4925 	struct common_audit_data ad;
4926 	u32 sid = current_sid();
4927 
4928 	isec = ipc_perms->security;
4929 
4930 	ad.type = LSM_AUDIT_DATA_IPC;
4931 	ad.u.ipc_id = ipc_perms->key;
4932 
4933 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4934 }
4935 
4936 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4937 {
4938 	return msg_msg_alloc_security(msg);
4939 }
4940 
4941 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4942 {
4943 	msg_msg_free_security(msg);
4944 }
4945 
4946 /* message queue security operations */
4947 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4948 {
4949 	struct ipc_security_struct *isec;
4950 	struct common_audit_data ad;
4951 	u32 sid = current_sid();
4952 	int rc;
4953 
4954 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4955 	if (rc)
4956 		return rc;
4957 
4958 	isec = msq->q_perm.security;
4959 
4960 	ad.type = LSM_AUDIT_DATA_IPC;
4961 	ad.u.ipc_id = msq->q_perm.key;
4962 
4963 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4964 			  MSGQ__CREATE, &ad);
4965 	if (rc) {
4966 		ipc_free_security(&msq->q_perm);
4967 		return rc;
4968 	}
4969 	return 0;
4970 }
4971 
4972 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4973 {
4974 	ipc_free_security(&msq->q_perm);
4975 }
4976 
4977 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4978 {
4979 	struct ipc_security_struct *isec;
4980 	struct common_audit_data ad;
4981 	u32 sid = current_sid();
4982 
4983 	isec = msq->q_perm.security;
4984 
4985 	ad.type = LSM_AUDIT_DATA_IPC;
4986 	ad.u.ipc_id = msq->q_perm.key;
4987 
4988 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4989 			    MSGQ__ASSOCIATE, &ad);
4990 }
4991 
4992 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4993 {
4994 	int err;
4995 	int perms;
4996 
4997 	switch (cmd) {
4998 	case IPC_INFO:
4999 	case MSG_INFO:
5000 		/* No specific object, just general system-wide information. */
5001 		return task_has_system(current, SYSTEM__IPC_INFO);
5002 	case IPC_STAT:
5003 	case MSG_STAT:
5004 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5005 		break;
5006 	case IPC_SET:
5007 		perms = MSGQ__SETATTR;
5008 		break;
5009 	case IPC_RMID:
5010 		perms = MSGQ__DESTROY;
5011 		break;
5012 	default:
5013 		return 0;
5014 	}
5015 
5016 	err = ipc_has_perm(&msq->q_perm, perms);
5017 	return err;
5018 }
5019 
5020 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5021 {
5022 	struct ipc_security_struct *isec;
5023 	struct msg_security_struct *msec;
5024 	struct common_audit_data ad;
5025 	u32 sid = current_sid();
5026 	int rc;
5027 
5028 	isec = msq->q_perm.security;
5029 	msec = msg->security;
5030 
5031 	/*
5032 	 * First time through, need to assign label to the message
5033 	 */
5034 	if (msec->sid == SECINITSID_UNLABELED) {
5035 		/*
5036 		 * Compute new sid based on current process and
5037 		 * message queue this message will be stored in
5038 		 */
5039 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5040 					     NULL, &msec->sid);
5041 		if (rc)
5042 			return rc;
5043 	}
5044 
5045 	ad.type = LSM_AUDIT_DATA_IPC;
5046 	ad.u.ipc_id = msq->q_perm.key;
5047 
5048 	/* Can this process write to the queue? */
5049 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5050 			  MSGQ__WRITE, &ad);
5051 	if (!rc)
5052 		/* Can this process send the message */
5053 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5054 				  MSG__SEND, &ad);
5055 	if (!rc)
5056 		/* Can the message be put in the queue? */
5057 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5058 				  MSGQ__ENQUEUE, &ad);
5059 
5060 	return rc;
5061 }
5062 
5063 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5064 				    struct task_struct *target,
5065 				    long type, int mode)
5066 {
5067 	struct ipc_security_struct *isec;
5068 	struct msg_security_struct *msec;
5069 	struct common_audit_data ad;
5070 	u32 sid = task_sid(target);
5071 	int rc;
5072 
5073 	isec = msq->q_perm.security;
5074 	msec = msg->security;
5075 
5076 	ad.type = LSM_AUDIT_DATA_IPC;
5077 	ad.u.ipc_id = msq->q_perm.key;
5078 
5079 	rc = avc_has_perm(sid, isec->sid,
5080 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5081 	if (!rc)
5082 		rc = avc_has_perm(sid, msec->sid,
5083 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5084 	return rc;
5085 }
5086 
5087 /* Shared Memory security operations */
5088 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5089 {
5090 	struct ipc_security_struct *isec;
5091 	struct common_audit_data ad;
5092 	u32 sid = current_sid();
5093 	int rc;
5094 
5095 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5096 	if (rc)
5097 		return rc;
5098 
5099 	isec = shp->shm_perm.security;
5100 
5101 	ad.type = LSM_AUDIT_DATA_IPC;
5102 	ad.u.ipc_id = shp->shm_perm.key;
5103 
5104 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5105 			  SHM__CREATE, &ad);
5106 	if (rc) {
5107 		ipc_free_security(&shp->shm_perm);
5108 		return rc;
5109 	}
5110 	return 0;
5111 }
5112 
5113 static void selinux_shm_free_security(struct shmid_kernel *shp)
5114 {
5115 	ipc_free_security(&shp->shm_perm);
5116 }
5117 
5118 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5119 {
5120 	struct ipc_security_struct *isec;
5121 	struct common_audit_data ad;
5122 	u32 sid = current_sid();
5123 
5124 	isec = shp->shm_perm.security;
5125 
5126 	ad.type = LSM_AUDIT_DATA_IPC;
5127 	ad.u.ipc_id = shp->shm_perm.key;
5128 
5129 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5130 			    SHM__ASSOCIATE, &ad);
5131 }
5132 
5133 /* Note, at this point, shp is locked down */
5134 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5135 {
5136 	int perms;
5137 	int err;
5138 
5139 	switch (cmd) {
5140 	case IPC_INFO:
5141 	case SHM_INFO:
5142 		/* No specific object, just general system-wide information. */
5143 		return task_has_system(current, SYSTEM__IPC_INFO);
5144 	case IPC_STAT:
5145 	case SHM_STAT:
5146 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5147 		break;
5148 	case IPC_SET:
5149 		perms = SHM__SETATTR;
5150 		break;
5151 	case SHM_LOCK:
5152 	case SHM_UNLOCK:
5153 		perms = SHM__LOCK;
5154 		break;
5155 	case IPC_RMID:
5156 		perms = SHM__DESTROY;
5157 		break;
5158 	default:
5159 		return 0;
5160 	}
5161 
5162 	err = ipc_has_perm(&shp->shm_perm, perms);
5163 	return err;
5164 }
5165 
5166 static int selinux_shm_shmat(struct shmid_kernel *shp,
5167 			     char __user *shmaddr, int shmflg)
5168 {
5169 	u32 perms;
5170 
5171 	if (shmflg & SHM_RDONLY)
5172 		perms = SHM__READ;
5173 	else
5174 		perms = SHM__READ | SHM__WRITE;
5175 
5176 	return ipc_has_perm(&shp->shm_perm, perms);
5177 }
5178 
5179 /* Semaphore security operations */
5180 static int selinux_sem_alloc_security(struct sem_array *sma)
5181 {
5182 	struct ipc_security_struct *isec;
5183 	struct common_audit_data ad;
5184 	u32 sid = current_sid();
5185 	int rc;
5186 
5187 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5188 	if (rc)
5189 		return rc;
5190 
5191 	isec = sma->sem_perm.security;
5192 
5193 	ad.type = LSM_AUDIT_DATA_IPC;
5194 	ad.u.ipc_id = sma->sem_perm.key;
5195 
5196 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5197 			  SEM__CREATE, &ad);
5198 	if (rc) {
5199 		ipc_free_security(&sma->sem_perm);
5200 		return rc;
5201 	}
5202 	return 0;
5203 }
5204 
5205 static void selinux_sem_free_security(struct sem_array *sma)
5206 {
5207 	ipc_free_security(&sma->sem_perm);
5208 }
5209 
5210 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5211 {
5212 	struct ipc_security_struct *isec;
5213 	struct common_audit_data ad;
5214 	u32 sid = current_sid();
5215 
5216 	isec = sma->sem_perm.security;
5217 
5218 	ad.type = LSM_AUDIT_DATA_IPC;
5219 	ad.u.ipc_id = sma->sem_perm.key;
5220 
5221 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5222 			    SEM__ASSOCIATE, &ad);
5223 }
5224 
5225 /* Note, at this point, sma is locked down */
5226 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5227 {
5228 	int err;
5229 	u32 perms;
5230 
5231 	switch (cmd) {
5232 	case IPC_INFO:
5233 	case SEM_INFO:
5234 		/* No specific object, just general system-wide information. */
5235 		return task_has_system(current, SYSTEM__IPC_INFO);
5236 	case GETPID:
5237 	case GETNCNT:
5238 	case GETZCNT:
5239 		perms = SEM__GETATTR;
5240 		break;
5241 	case GETVAL:
5242 	case GETALL:
5243 		perms = SEM__READ;
5244 		break;
5245 	case SETVAL:
5246 	case SETALL:
5247 		perms = SEM__WRITE;
5248 		break;
5249 	case IPC_RMID:
5250 		perms = SEM__DESTROY;
5251 		break;
5252 	case IPC_SET:
5253 		perms = SEM__SETATTR;
5254 		break;
5255 	case IPC_STAT:
5256 	case SEM_STAT:
5257 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5258 		break;
5259 	default:
5260 		return 0;
5261 	}
5262 
5263 	err = ipc_has_perm(&sma->sem_perm, perms);
5264 	return err;
5265 }
5266 
5267 static int selinux_sem_semop(struct sem_array *sma,
5268 			     struct sembuf *sops, unsigned nsops, int alter)
5269 {
5270 	u32 perms;
5271 
5272 	if (alter)
5273 		perms = SEM__READ | SEM__WRITE;
5274 	else
5275 		perms = SEM__READ;
5276 
5277 	return ipc_has_perm(&sma->sem_perm, perms);
5278 }
5279 
5280 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5281 {
5282 	u32 av = 0;
5283 
5284 	av = 0;
5285 	if (flag & S_IRUGO)
5286 		av |= IPC__UNIX_READ;
5287 	if (flag & S_IWUGO)
5288 		av |= IPC__UNIX_WRITE;
5289 
5290 	if (av == 0)
5291 		return 0;
5292 
5293 	return ipc_has_perm(ipcp, av);
5294 }
5295 
5296 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5297 {
5298 	struct ipc_security_struct *isec = ipcp->security;
5299 	*secid = isec->sid;
5300 }
5301 
5302 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5303 {
5304 	if (inode)
5305 		inode_doinit_with_dentry(inode, dentry);
5306 }
5307 
5308 static int selinux_getprocattr(struct task_struct *p,
5309 			       char *name, char **value)
5310 {
5311 	const struct task_security_struct *__tsec;
5312 	u32 sid;
5313 	int error;
5314 	unsigned len;
5315 
5316 	if (current != p) {
5317 		error = current_has_perm(p, PROCESS__GETATTR);
5318 		if (error)
5319 			return error;
5320 	}
5321 
5322 	rcu_read_lock();
5323 	__tsec = __task_cred(p)->security;
5324 
5325 	if (!strcmp(name, "current"))
5326 		sid = __tsec->sid;
5327 	else if (!strcmp(name, "prev"))
5328 		sid = __tsec->osid;
5329 	else if (!strcmp(name, "exec"))
5330 		sid = __tsec->exec_sid;
5331 	else if (!strcmp(name, "fscreate"))
5332 		sid = __tsec->create_sid;
5333 	else if (!strcmp(name, "keycreate"))
5334 		sid = __tsec->keycreate_sid;
5335 	else if (!strcmp(name, "sockcreate"))
5336 		sid = __tsec->sockcreate_sid;
5337 	else
5338 		goto invalid;
5339 	rcu_read_unlock();
5340 
5341 	if (!sid)
5342 		return 0;
5343 
5344 	error = security_sid_to_context(sid, value, &len);
5345 	if (error)
5346 		return error;
5347 	return len;
5348 
5349 invalid:
5350 	rcu_read_unlock();
5351 	return -EINVAL;
5352 }
5353 
5354 static int selinux_setprocattr(struct task_struct *p,
5355 			       char *name, void *value, size_t size)
5356 {
5357 	struct task_security_struct *tsec;
5358 	struct task_struct *tracer;
5359 	struct cred *new;
5360 	u32 sid = 0, ptsid;
5361 	int error;
5362 	char *str = value;
5363 
5364 	if (current != p) {
5365 		/* SELinux only allows a process to change its own
5366 		   security attributes. */
5367 		return -EACCES;
5368 	}
5369 
5370 	/*
5371 	 * Basic control over ability to set these attributes at all.
5372 	 * current == p, but we'll pass them separately in case the
5373 	 * above restriction is ever removed.
5374 	 */
5375 	if (!strcmp(name, "exec"))
5376 		error = current_has_perm(p, PROCESS__SETEXEC);
5377 	else if (!strcmp(name, "fscreate"))
5378 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5379 	else if (!strcmp(name, "keycreate"))
5380 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5381 	else if (!strcmp(name, "sockcreate"))
5382 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5383 	else if (!strcmp(name, "current"))
5384 		error = current_has_perm(p, PROCESS__SETCURRENT);
5385 	else
5386 		error = -EINVAL;
5387 	if (error)
5388 		return error;
5389 
5390 	/* Obtain a SID for the context, if one was specified. */
5391 	if (size && str[1] && str[1] != '\n') {
5392 		if (str[size-1] == '\n') {
5393 			str[size-1] = 0;
5394 			size--;
5395 		}
5396 		error = security_context_to_sid(value, size, &sid);
5397 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5398 			if (!capable(CAP_MAC_ADMIN)) {
5399 				struct audit_buffer *ab;
5400 				size_t audit_size;
5401 
5402 				/* We strip a nul only if it is at the end, otherwise the
5403 				 * context contains a nul and we should audit that */
5404 				if (str[size - 1] == '\0')
5405 					audit_size = size - 1;
5406 				else
5407 					audit_size = size;
5408 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5409 				audit_log_format(ab, "op=fscreate invalid_context=");
5410 				audit_log_n_untrustedstring(ab, value, audit_size);
5411 				audit_log_end(ab);
5412 
5413 				return error;
5414 			}
5415 			error = security_context_to_sid_force(value, size,
5416 							      &sid);
5417 		}
5418 		if (error)
5419 			return error;
5420 	}
5421 
5422 	new = prepare_creds();
5423 	if (!new)
5424 		return -ENOMEM;
5425 
5426 	/* Permission checking based on the specified context is
5427 	   performed during the actual operation (execve,
5428 	   open/mkdir/...), when we know the full context of the
5429 	   operation.  See selinux_bprm_set_creds for the execve
5430 	   checks and may_create for the file creation checks. The
5431 	   operation will then fail if the context is not permitted. */
5432 	tsec = new->security;
5433 	if (!strcmp(name, "exec")) {
5434 		tsec->exec_sid = sid;
5435 	} else if (!strcmp(name, "fscreate")) {
5436 		tsec->create_sid = sid;
5437 	} else if (!strcmp(name, "keycreate")) {
5438 		error = may_create_key(sid, p);
5439 		if (error)
5440 			goto abort_change;
5441 		tsec->keycreate_sid = sid;
5442 	} else if (!strcmp(name, "sockcreate")) {
5443 		tsec->sockcreate_sid = sid;
5444 	} else if (!strcmp(name, "current")) {
5445 		error = -EINVAL;
5446 		if (sid == 0)
5447 			goto abort_change;
5448 
5449 		/* Only allow single threaded processes to change context */
5450 		error = -EPERM;
5451 		if (!current_is_single_threaded()) {
5452 			error = security_bounded_transition(tsec->sid, sid);
5453 			if (error)
5454 				goto abort_change;
5455 		}
5456 
5457 		/* Check permissions for the transition. */
5458 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5459 				     PROCESS__DYNTRANSITION, NULL);
5460 		if (error)
5461 			goto abort_change;
5462 
5463 		/* Check for ptracing, and update the task SID if ok.
5464 		   Otherwise, leave SID unchanged and fail. */
5465 		ptsid = 0;
5466 		task_lock(p);
5467 		tracer = ptrace_parent(p);
5468 		if (tracer)
5469 			ptsid = task_sid(tracer);
5470 		task_unlock(p);
5471 
5472 		if (tracer) {
5473 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5474 					     PROCESS__PTRACE, NULL);
5475 			if (error)
5476 				goto abort_change;
5477 		}
5478 
5479 		tsec->sid = sid;
5480 	} else {
5481 		error = -EINVAL;
5482 		goto abort_change;
5483 	}
5484 
5485 	commit_creds(new);
5486 	return size;
5487 
5488 abort_change:
5489 	abort_creds(new);
5490 	return error;
5491 }
5492 
5493 static int selinux_ismaclabel(const char *name)
5494 {
5495 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5496 }
5497 
5498 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5499 {
5500 	return security_sid_to_context(secid, secdata, seclen);
5501 }
5502 
5503 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5504 {
5505 	return security_context_to_sid(secdata, seclen, secid);
5506 }
5507 
5508 static void selinux_release_secctx(char *secdata, u32 seclen)
5509 {
5510 	kfree(secdata);
5511 }
5512 
5513 /*
5514  *	called with inode->i_mutex locked
5515  */
5516 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5517 {
5518 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5519 }
5520 
5521 /*
5522  *	called with inode->i_mutex locked
5523  */
5524 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5525 {
5526 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5527 }
5528 
5529 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5530 {
5531 	int len = 0;
5532 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5533 						ctx, true);
5534 	if (len < 0)
5535 		return len;
5536 	*ctxlen = len;
5537 	return 0;
5538 }
5539 #ifdef CONFIG_KEYS
5540 
5541 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5542 			     unsigned long flags)
5543 {
5544 	const struct task_security_struct *tsec;
5545 	struct key_security_struct *ksec;
5546 
5547 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5548 	if (!ksec)
5549 		return -ENOMEM;
5550 
5551 	tsec = cred->security;
5552 	if (tsec->keycreate_sid)
5553 		ksec->sid = tsec->keycreate_sid;
5554 	else
5555 		ksec->sid = tsec->sid;
5556 
5557 	k->security = ksec;
5558 	return 0;
5559 }
5560 
5561 static void selinux_key_free(struct key *k)
5562 {
5563 	struct key_security_struct *ksec = k->security;
5564 
5565 	k->security = NULL;
5566 	kfree(ksec);
5567 }
5568 
5569 static int selinux_key_permission(key_ref_t key_ref,
5570 				  const struct cred *cred,
5571 				  key_perm_t perm)
5572 {
5573 	struct key *key;
5574 	struct key_security_struct *ksec;
5575 	u32 sid;
5576 
5577 	/* if no specific permissions are requested, we skip the
5578 	   permission check. No serious, additional covert channels
5579 	   appear to be created. */
5580 	if (perm == 0)
5581 		return 0;
5582 
5583 	sid = cred_sid(cred);
5584 
5585 	key = key_ref_to_ptr(key_ref);
5586 	ksec = key->security;
5587 
5588 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5589 }
5590 
5591 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5592 {
5593 	struct key_security_struct *ksec = key->security;
5594 	char *context = NULL;
5595 	unsigned len;
5596 	int rc;
5597 
5598 	rc = security_sid_to_context(ksec->sid, &context, &len);
5599 	if (!rc)
5600 		rc = len;
5601 	*_buffer = context;
5602 	return rc;
5603 }
5604 
5605 #endif
5606 
5607 static struct security_operations selinux_ops = {
5608 	.name =				"selinux",
5609 
5610 	.ptrace_access_check =		selinux_ptrace_access_check,
5611 	.ptrace_traceme =		selinux_ptrace_traceme,
5612 	.capget =			selinux_capget,
5613 	.capset =			selinux_capset,
5614 	.capable =			selinux_capable,
5615 	.quotactl =			selinux_quotactl,
5616 	.quota_on =			selinux_quota_on,
5617 	.syslog =			selinux_syslog,
5618 	.vm_enough_memory =		selinux_vm_enough_memory,
5619 
5620 	.netlink_send =			selinux_netlink_send,
5621 
5622 	.bprm_set_creds =		selinux_bprm_set_creds,
5623 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5624 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5625 	.bprm_secureexec =		selinux_bprm_secureexec,
5626 
5627 	.sb_alloc_security =		selinux_sb_alloc_security,
5628 	.sb_free_security =		selinux_sb_free_security,
5629 	.sb_copy_data =			selinux_sb_copy_data,
5630 	.sb_remount =			selinux_sb_remount,
5631 	.sb_kern_mount =		selinux_sb_kern_mount,
5632 	.sb_show_options =		selinux_sb_show_options,
5633 	.sb_statfs =			selinux_sb_statfs,
5634 	.sb_mount =			selinux_mount,
5635 	.sb_umount =			selinux_umount,
5636 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5637 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5638 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5639 
5640 	.dentry_init_security =		selinux_dentry_init_security,
5641 
5642 	.inode_alloc_security =		selinux_inode_alloc_security,
5643 	.inode_free_security =		selinux_inode_free_security,
5644 	.inode_init_security =		selinux_inode_init_security,
5645 	.inode_create =			selinux_inode_create,
5646 	.inode_link =			selinux_inode_link,
5647 	.inode_unlink =			selinux_inode_unlink,
5648 	.inode_symlink =		selinux_inode_symlink,
5649 	.inode_mkdir =			selinux_inode_mkdir,
5650 	.inode_rmdir =			selinux_inode_rmdir,
5651 	.inode_mknod =			selinux_inode_mknod,
5652 	.inode_rename =			selinux_inode_rename,
5653 	.inode_readlink =		selinux_inode_readlink,
5654 	.inode_follow_link =		selinux_inode_follow_link,
5655 	.inode_permission =		selinux_inode_permission,
5656 	.inode_setattr =		selinux_inode_setattr,
5657 	.inode_getattr =		selinux_inode_getattr,
5658 	.inode_setxattr =		selinux_inode_setxattr,
5659 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5660 	.inode_getxattr =		selinux_inode_getxattr,
5661 	.inode_listxattr =		selinux_inode_listxattr,
5662 	.inode_removexattr =		selinux_inode_removexattr,
5663 	.inode_getsecurity =		selinux_inode_getsecurity,
5664 	.inode_setsecurity =		selinux_inode_setsecurity,
5665 	.inode_listsecurity =		selinux_inode_listsecurity,
5666 	.inode_getsecid =		selinux_inode_getsecid,
5667 
5668 	.file_permission =		selinux_file_permission,
5669 	.file_alloc_security =		selinux_file_alloc_security,
5670 	.file_free_security =		selinux_file_free_security,
5671 	.file_ioctl =			selinux_file_ioctl,
5672 	.mmap_file =			selinux_mmap_file,
5673 	.mmap_addr =			selinux_mmap_addr,
5674 	.file_mprotect =		selinux_file_mprotect,
5675 	.file_lock =			selinux_file_lock,
5676 	.file_fcntl =			selinux_file_fcntl,
5677 	.file_set_fowner =		selinux_file_set_fowner,
5678 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5679 	.file_receive =			selinux_file_receive,
5680 
5681 	.file_open =			selinux_file_open,
5682 
5683 	.task_create =			selinux_task_create,
5684 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5685 	.cred_free =			selinux_cred_free,
5686 	.cred_prepare =			selinux_cred_prepare,
5687 	.cred_transfer =		selinux_cred_transfer,
5688 	.kernel_act_as =		selinux_kernel_act_as,
5689 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5690 	.kernel_module_request =	selinux_kernel_module_request,
5691 	.task_setpgid =			selinux_task_setpgid,
5692 	.task_getpgid =			selinux_task_getpgid,
5693 	.task_getsid =			selinux_task_getsid,
5694 	.task_getsecid =		selinux_task_getsecid,
5695 	.task_setnice =			selinux_task_setnice,
5696 	.task_setioprio =		selinux_task_setioprio,
5697 	.task_getioprio =		selinux_task_getioprio,
5698 	.task_setrlimit =		selinux_task_setrlimit,
5699 	.task_setscheduler =		selinux_task_setscheduler,
5700 	.task_getscheduler =		selinux_task_getscheduler,
5701 	.task_movememory =		selinux_task_movememory,
5702 	.task_kill =			selinux_task_kill,
5703 	.task_wait =			selinux_task_wait,
5704 	.task_to_inode =		selinux_task_to_inode,
5705 
5706 	.ipc_permission =		selinux_ipc_permission,
5707 	.ipc_getsecid =			selinux_ipc_getsecid,
5708 
5709 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5710 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5711 
5712 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5713 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5714 	.msg_queue_associate =		selinux_msg_queue_associate,
5715 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5716 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5717 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5718 
5719 	.shm_alloc_security =		selinux_shm_alloc_security,
5720 	.shm_free_security =		selinux_shm_free_security,
5721 	.shm_associate =		selinux_shm_associate,
5722 	.shm_shmctl =			selinux_shm_shmctl,
5723 	.shm_shmat =			selinux_shm_shmat,
5724 
5725 	.sem_alloc_security =		selinux_sem_alloc_security,
5726 	.sem_free_security =		selinux_sem_free_security,
5727 	.sem_associate =		selinux_sem_associate,
5728 	.sem_semctl =			selinux_sem_semctl,
5729 	.sem_semop =			selinux_sem_semop,
5730 
5731 	.d_instantiate =		selinux_d_instantiate,
5732 
5733 	.getprocattr =			selinux_getprocattr,
5734 	.setprocattr =			selinux_setprocattr,
5735 
5736 	.ismaclabel =			selinux_ismaclabel,
5737 	.secid_to_secctx =		selinux_secid_to_secctx,
5738 	.secctx_to_secid =		selinux_secctx_to_secid,
5739 	.release_secctx =		selinux_release_secctx,
5740 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5741 	.inode_setsecctx =		selinux_inode_setsecctx,
5742 	.inode_getsecctx =		selinux_inode_getsecctx,
5743 
5744 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5745 	.unix_may_send =		selinux_socket_unix_may_send,
5746 
5747 	.socket_create =		selinux_socket_create,
5748 	.socket_post_create =		selinux_socket_post_create,
5749 	.socket_bind =			selinux_socket_bind,
5750 	.socket_connect =		selinux_socket_connect,
5751 	.socket_listen =		selinux_socket_listen,
5752 	.socket_accept =		selinux_socket_accept,
5753 	.socket_sendmsg =		selinux_socket_sendmsg,
5754 	.socket_recvmsg =		selinux_socket_recvmsg,
5755 	.socket_getsockname =		selinux_socket_getsockname,
5756 	.socket_getpeername =		selinux_socket_getpeername,
5757 	.socket_getsockopt =		selinux_socket_getsockopt,
5758 	.socket_setsockopt =		selinux_socket_setsockopt,
5759 	.socket_shutdown =		selinux_socket_shutdown,
5760 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5761 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5762 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5763 	.sk_alloc_security =		selinux_sk_alloc_security,
5764 	.sk_free_security =		selinux_sk_free_security,
5765 	.sk_clone_security =		selinux_sk_clone_security,
5766 	.sk_getsecid =			selinux_sk_getsecid,
5767 	.sock_graft =			selinux_sock_graft,
5768 	.inet_conn_request =		selinux_inet_conn_request,
5769 	.inet_csk_clone =		selinux_inet_csk_clone,
5770 	.inet_conn_established =	selinux_inet_conn_established,
5771 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5772 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5773 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5774 	.req_classify_flow =		selinux_req_classify_flow,
5775 	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5776 	.tun_dev_free_security =	selinux_tun_dev_free_security,
5777 	.tun_dev_create =		selinux_tun_dev_create,
5778 	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5779 	.tun_dev_attach =		selinux_tun_dev_attach,
5780 	.tun_dev_open =			selinux_tun_dev_open,
5781 	.skb_owned_by =			selinux_skb_owned_by,
5782 
5783 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5784 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5785 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5786 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5787 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5788 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5789 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5790 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5791 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5792 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5793 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5794 #endif
5795 
5796 #ifdef CONFIG_KEYS
5797 	.key_alloc =			selinux_key_alloc,
5798 	.key_free =			selinux_key_free,
5799 	.key_permission =		selinux_key_permission,
5800 	.key_getsecurity =		selinux_key_getsecurity,
5801 #endif
5802 
5803 #ifdef CONFIG_AUDIT
5804 	.audit_rule_init =		selinux_audit_rule_init,
5805 	.audit_rule_known =		selinux_audit_rule_known,
5806 	.audit_rule_match =		selinux_audit_rule_match,
5807 	.audit_rule_free =		selinux_audit_rule_free,
5808 #endif
5809 };
5810 
5811 static __init int selinux_init(void)
5812 {
5813 	if (!security_module_enable(&selinux_ops)) {
5814 		selinux_enabled = 0;
5815 		return 0;
5816 	}
5817 
5818 	if (!selinux_enabled) {
5819 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5820 		return 0;
5821 	}
5822 
5823 	printk(KERN_INFO "SELinux:  Initializing.\n");
5824 
5825 	/* Set the security state for the initial task. */
5826 	cred_init_security();
5827 
5828 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5829 
5830 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5831 					    sizeof(struct inode_security_struct),
5832 					    0, SLAB_PANIC, NULL);
5833 	avc_init();
5834 
5835 	if (register_security(&selinux_ops))
5836 		panic("SELinux: Unable to register with kernel.\n");
5837 
5838 	if (selinux_enforcing)
5839 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5840 	else
5841 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5842 
5843 	return 0;
5844 }
5845 
5846 static void delayed_superblock_init(struct super_block *sb, void *unused)
5847 {
5848 	superblock_doinit(sb, NULL);
5849 }
5850 
5851 void selinux_complete_init(void)
5852 {
5853 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5854 
5855 	/* Set up any superblocks initialized prior to the policy load. */
5856 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5857 	iterate_supers(delayed_superblock_init, NULL);
5858 }
5859 
5860 /* SELinux requires early initialization in order to label
5861    all processes and objects when they are created. */
5862 security_initcall(selinux_init);
5863 
5864 #if defined(CONFIG_NETFILTER)
5865 
5866 static struct nf_hook_ops selinux_ipv4_ops[] = {
5867 	{
5868 		.hook =		selinux_ipv4_postroute,
5869 		.owner =	THIS_MODULE,
5870 		.pf =		NFPROTO_IPV4,
5871 		.hooknum =	NF_INET_POST_ROUTING,
5872 		.priority =	NF_IP_PRI_SELINUX_LAST,
5873 	},
5874 	{
5875 		.hook =		selinux_ipv4_forward,
5876 		.owner =	THIS_MODULE,
5877 		.pf =		NFPROTO_IPV4,
5878 		.hooknum =	NF_INET_FORWARD,
5879 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5880 	},
5881 	{
5882 		.hook =		selinux_ipv4_output,
5883 		.owner =	THIS_MODULE,
5884 		.pf =		NFPROTO_IPV4,
5885 		.hooknum =	NF_INET_LOCAL_OUT,
5886 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5887 	}
5888 };
5889 
5890 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5891 
5892 static struct nf_hook_ops selinux_ipv6_ops[] = {
5893 	{
5894 		.hook =		selinux_ipv6_postroute,
5895 		.owner =	THIS_MODULE,
5896 		.pf =		NFPROTO_IPV6,
5897 		.hooknum =	NF_INET_POST_ROUTING,
5898 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5899 	},
5900 	{
5901 		.hook =		selinux_ipv6_forward,
5902 		.owner =	THIS_MODULE,
5903 		.pf =		NFPROTO_IPV6,
5904 		.hooknum =	NF_INET_FORWARD,
5905 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5906 	}
5907 };
5908 
5909 #endif	/* IPV6 */
5910 
5911 static int __init selinux_nf_ip_init(void)
5912 {
5913 	int err = 0;
5914 
5915 	if (!selinux_enabled)
5916 		goto out;
5917 
5918 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5919 
5920 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5921 	if (err)
5922 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5923 
5924 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5925 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5926 	if (err)
5927 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5928 #endif	/* IPV6 */
5929 
5930 out:
5931 	return err;
5932 }
5933 
5934 __initcall(selinux_nf_ip_init);
5935 
5936 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5937 static void selinux_nf_ip_exit(void)
5938 {
5939 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5940 
5941 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5942 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5943 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5944 #endif	/* IPV6 */
5945 }
5946 #endif
5947 
5948 #else /* CONFIG_NETFILTER */
5949 
5950 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5951 #define selinux_nf_ip_exit()
5952 #endif
5953 
5954 #endif /* CONFIG_NETFILTER */
5955 
5956 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5957 static int selinux_disabled;
5958 
5959 int selinux_disable(void)
5960 {
5961 	if (ss_initialized) {
5962 		/* Not permitted after initial policy load. */
5963 		return -EINVAL;
5964 	}
5965 
5966 	if (selinux_disabled) {
5967 		/* Only do this once. */
5968 		return -EINVAL;
5969 	}
5970 
5971 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5972 
5973 	selinux_disabled = 1;
5974 	selinux_enabled = 0;
5975 
5976 	reset_security_ops();
5977 
5978 	/* Try to destroy the avc node cache */
5979 	avc_disable();
5980 
5981 	/* Unregister netfilter hooks. */
5982 	selinux_nf_ip_exit();
5983 
5984 	/* Unregister selinuxfs. */
5985 	exit_sel_fs();
5986 
5987 	return 0;
5988 }
5989 #endif
5990