xref: /openbmc/linux/security/selinux/avc.c (revision fd589a8f)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) {	.tclass = c,\
57 			.common_pts = common_##i##_perm_to_string,\
58 			.common_base =  b },
59 #include "av_inherit.h"
60 #undef S_
61 };
62 
63 const struct selinux_class_perm selinux_class_perm = {
64 	.av_perm_to_string = av_perm_to_string,
65 	.av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 	.class_to_string = class_to_string,
67 	.cts_len = ARRAY_SIZE(class_to_string),
68 	.av_inherit = av_inherit,
69 	.av_inherit_len = ARRAY_SIZE(av_inherit)
70 };
71 
72 #define AVC_CACHE_SLOTS			512
73 #define AVC_DEF_CACHE_THRESHOLD		512
74 #define AVC_CACHE_RECLAIM		16
75 
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 #define avc_cache_stats_incr(field)				\
78 do {								\
79 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
80 	put_cpu();						\
81 } while (0)
82 #else
83 #define avc_cache_stats_incr(field)	do {} while (0)
84 #endif
85 
86 struct avc_entry {
87 	u32			ssid;
88 	u32			tsid;
89 	u16			tclass;
90 	struct av_decision	avd;
91 };
92 
93 struct avc_node {
94 	struct avc_entry	ae;
95 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
96 	struct rcu_head		rhead;
97 };
98 
99 struct avc_cache {
100 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
101 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
102 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
103 	atomic_t		active_nodes;
104 	u32			latest_notif;	/* latest revocation notification */
105 };
106 
107 struct avc_callback_node {
108 	int (*callback) (u32 event, u32 ssid, u32 tsid,
109 			 u16 tclass, u32 perms,
110 			 u32 *out_retained);
111 	u32 events;
112 	u32 ssid;
113 	u32 tsid;
114 	u16 tclass;
115 	u32 perms;
116 	struct avc_callback_node *next;
117 };
118 
119 /* Exported via selinufs */
120 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121 
122 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
124 #endif
125 
126 static struct avc_cache avc_cache;
127 static struct avc_callback_node *avc_callbacks;
128 static struct kmem_cache *avc_node_cachep;
129 
130 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131 {
132 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
133 }
134 
135 /**
136  * avc_dump_av - Display an access vector in human-readable form.
137  * @tclass: target security class
138  * @av: access vector
139  */
140 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
141 {
142 	const char **common_pts = NULL;
143 	u32 common_base = 0;
144 	int i, i2, perm;
145 
146 	if (av == 0) {
147 		audit_log_format(ab, " null");
148 		return;
149 	}
150 
151 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
152 		if (av_inherit[i].tclass == tclass) {
153 			common_pts = av_inherit[i].common_pts;
154 			common_base = av_inherit[i].common_base;
155 			break;
156 		}
157 	}
158 
159 	audit_log_format(ab, " {");
160 	i = 0;
161 	perm = 1;
162 	while (perm < common_base) {
163 		if (perm & av) {
164 			audit_log_format(ab, " %s", common_pts[i]);
165 			av &= ~perm;
166 		}
167 		i++;
168 		perm <<= 1;
169 	}
170 
171 	while (i < sizeof(av) * 8) {
172 		if (perm & av) {
173 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
174 				if ((av_perm_to_string[i2].tclass == tclass) &&
175 				    (av_perm_to_string[i2].value == perm))
176 					break;
177 			}
178 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
179 				audit_log_format(ab, " %s",
180 						 av_perm_to_string[i2].name);
181 				av &= ~perm;
182 			}
183 		}
184 		i++;
185 		perm <<= 1;
186 	}
187 
188 	if (av)
189 		audit_log_format(ab, " 0x%x", av);
190 
191 	audit_log_format(ab, " }");
192 }
193 
194 /**
195  * avc_dump_query - Display a SID pair and a class in human-readable form.
196  * @ssid: source security identifier
197  * @tsid: target security identifier
198  * @tclass: target security class
199  */
200 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
201 {
202 	int rc;
203 	char *scontext;
204 	u32 scontext_len;
205 
206 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
207 	if (rc)
208 		audit_log_format(ab, "ssid=%d", ssid);
209 	else {
210 		audit_log_format(ab, "scontext=%s", scontext);
211 		kfree(scontext);
212 	}
213 
214 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215 	if (rc)
216 		audit_log_format(ab, " tsid=%d", tsid);
217 	else {
218 		audit_log_format(ab, " tcontext=%s", scontext);
219 		kfree(scontext);
220 	}
221 
222 	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
223 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224 }
225 
226 /**
227  * avc_init - Initialize the AVC.
228  *
229  * Initialize the access vector cache.
230  */
231 void __init avc_init(void)
232 {
233 	int i;
234 
235 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
237 		spin_lock_init(&avc_cache.slots_lock[i]);
238 	}
239 	atomic_set(&avc_cache.active_nodes, 0);
240 	atomic_set(&avc_cache.lru_hint, 0);
241 
242 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243 					     0, SLAB_PANIC, NULL);
244 
245 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
246 }
247 
248 int avc_get_hash_stats(char *page)
249 {
250 	int i, chain_len, max_chain_len, slots_used;
251 	struct avc_node *node;
252 	struct hlist_head *head;
253 
254 	rcu_read_lock();
255 
256 	slots_used = 0;
257 	max_chain_len = 0;
258 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
259 		head = &avc_cache.slots[i];
260 		if (!hlist_empty(head)) {
261 			struct hlist_node *next;
262 
263 			slots_used++;
264 			chain_len = 0;
265 			hlist_for_each_entry_rcu(node, next, head, list)
266 				chain_len++;
267 			if (chain_len > max_chain_len)
268 				max_chain_len = chain_len;
269 		}
270 	}
271 
272 	rcu_read_unlock();
273 
274 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
275 			 "longest chain: %d\n",
276 			 atomic_read(&avc_cache.active_nodes),
277 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
278 }
279 
280 static void avc_node_free(struct rcu_head *rhead)
281 {
282 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
283 	kmem_cache_free(avc_node_cachep, node);
284 	avc_cache_stats_incr(frees);
285 }
286 
287 static void avc_node_delete(struct avc_node *node)
288 {
289 	hlist_del_rcu(&node->list);
290 	call_rcu(&node->rhead, avc_node_free);
291 	atomic_dec(&avc_cache.active_nodes);
292 }
293 
294 static void avc_node_kill(struct avc_node *node)
295 {
296 	kmem_cache_free(avc_node_cachep, node);
297 	avc_cache_stats_incr(frees);
298 	atomic_dec(&avc_cache.active_nodes);
299 }
300 
301 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
302 {
303 	hlist_replace_rcu(&old->list, &new->list);
304 	call_rcu(&old->rhead, avc_node_free);
305 	atomic_dec(&avc_cache.active_nodes);
306 }
307 
308 static inline int avc_reclaim_node(void)
309 {
310 	struct avc_node *node;
311 	int hvalue, try, ecx;
312 	unsigned long flags;
313 	struct hlist_head *head;
314 	struct hlist_node *next;
315 	spinlock_t *lock;
316 
317 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
318 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
319 		head = &avc_cache.slots[hvalue];
320 		lock = &avc_cache.slots_lock[hvalue];
321 
322 		if (!spin_trylock_irqsave(lock, flags))
323 			continue;
324 
325 		rcu_read_lock();
326 		hlist_for_each_entry(node, next, head, list) {
327 			avc_node_delete(node);
328 			avc_cache_stats_incr(reclaims);
329 			ecx++;
330 			if (ecx >= AVC_CACHE_RECLAIM) {
331 				rcu_read_unlock();
332 				spin_unlock_irqrestore(lock, flags);
333 				goto out;
334 			}
335 		}
336 		rcu_read_unlock();
337 		spin_unlock_irqrestore(lock, flags);
338 	}
339 out:
340 	return ecx;
341 }
342 
343 static struct avc_node *avc_alloc_node(void)
344 {
345 	struct avc_node *node;
346 
347 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
348 	if (!node)
349 		goto out;
350 
351 	INIT_RCU_HEAD(&node->rhead);
352 	INIT_HLIST_NODE(&node->list);
353 	avc_cache_stats_incr(allocations);
354 
355 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
356 		avc_reclaim_node();
357 
358 out:
359 	return node;
360 }
361 
362 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
363 {
364 	node->ae.ssid = ssid;
365 	node->ae.tsid = tsid;
366 	node->ae.tclass = tclass;
367 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
368 }
369 
370 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
371 {
372 	struct avc_node *node, *ret = NULL;
373 	int hvalue;
374 	struct hlist_head *head;
375 	struct hlist_node *next;
376 
377 	hvalue = avc_hash(ssid, tsid, tclass);
378 	head = &avc_cache.slots[hvalue];
379 	hlist_for_each_entry_rcu(node, next, head, list) {
380 		if (ssid == node->ae.ssid &&
381 		    tclass == node->ae.tclass &&
382 		    tsid == node->ae.tsid) {
383 			ret = node;
384 			break;
385 		}
386 	}
387 
388 	return ret;
389 }
390 
391 /**
392  * avc_lookup - Look up an AVC entry.
393  * @ssid: source security identifier
394  * @tsid: target security identifier
395  * @tclass: target security class
396  *
397  * Look up an AVC entry that is valid for the
398  * (@ssid, @tsid), interpreting the permissions
399  * based on @tclass.  If a valid AVC entry exists,
400  * then this function return the avc_node.
401  * Otherwise, this function returns NULL.
402  */
403 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
404 {
405 	struct avc_node *node;
406 
407 	avc_cache_stats_incr(lookups);
408 	node = avc_search_node(ssid, tsid, tclass);
409 
410 	if (node)
411 		avc_cache_stats_incr(hits);
412 	else
413 		avc_cache_stats_incr(misses);
414 
415 	return node;
416 }
417 
418 static int avc_latest_notif_update(int seqno, int is_insert)
419 {
420 	int ret = 0;
421 	static DEFINE_SPINLOCK(notif_lock);
422 	unsigned long flag;
423 
424 	spin_lock_irqsave(&notif_lock, flag);
425 	if (is_insert) {
426 		if (seqno < avc_cache.latest_notif) {
427 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
428 			       seqno, avc_cache.latest_notif);
429 			ret = -EAGAIN;
430 		}
431 	} else {
432 		if (seqno > avc_cache.latest_notif)
433 			avc_cache.latest_notif = seqno;
434 	}
435 	spin_unlock_irqrestore(&notif_lock, flag);
436 
437 	return ret;
438 }
439 
440 /**
441  * avc_insert - Insert an AVC entry.
442  * @ssid: source security identifier
443  * @tsid: target security identifier
444  * @tclass: target security class
445  * @avd: resulting av decision
446  *
447  * Insert an AVC entry for the SID pair
448  * (@ssid, @tsid) and class @tclass.
449  * The access vectors and the sequence number are
450  * normally provided by the security server in
451  * response to a security_compute_av() call.  If the
452  * sequence number @avd->seqno is not less than the latest
453  * revocation notification, then the function copies
454  * the access vectors into a cache entry, returns
455  * avc_node inserted. Otherwise, this function returns NULL.
456  */
457 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
458 {
459 	struct avc_node *pos, *node = NULL;
460 	int hvalue;
461 	unsigned long flag;
462 
463 	if (avc_latest_notif_update(avd->seqno, 1))
464 		goto out;
465 
466 	node = avc_alloc_node();
467 	if (node) {
468 		struct hlist_head *head;
469 		struct hlist_node *next;
470 		spinlock_t *lock;
471 
472 		hvalue = avc_hash(ssid, tsid, tclass);
473 		avc_node_populate(node, ssid, tsid, tclass, avd);
474 
475 		head = &avc_cache.slots[hvalue];
476 		lock = &avc_cache.slots_lock[hvalue];
477 
478 		spin_lock_irqsave(lock, flag);
479 		hlist_for_each_entry(pos, next, head, list) {
480 			if (pos->ae.ssid == ssid &&
481 			    pos->ae.tsid == tsid &&
482 			    pos->ae.tclass == tclass) {
483 				avc_node_replace(node, pos);
484 				goto found;
485 			}
486 		}
487 		hlist_add_head_rcu(&node->list, head);
488 found:
489 		spin_unlock_irqrestore(lock, flag);
490 	}
491 out:
492 	return node;
493 }
494 
495 /**
496  * avc_audit_pre_callback - SELinux specific information
497  * will be called by generic audit code
498  * @ab: the audit buffer
499  * @a: audit_data
500  */
501 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
502 {
503 	struct common_audit_data *ad = a;
504 	audit_log_format(ab, "avc:  %s ",
505 			 ad->selinux_audit_data.denied ? "denied" : "granted");
506 	avc_dump_av(ab, ad->selinux_audit_data.tclass,
507 			ad->selinux_audit_data.audited);
508 	audit_log_format(ab, " for ");
509 }
510 
511 /**
512  * avc_audit_post_callback - SELinux specific information
513  * will be called by generic audit code
514  * @ab: the audit buffer
515  * @a: audit_data
516  */
517 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
518 {
519 	struct common_audit_data *ad = a;
520 	audit_log_format(ab, " ");
521 	avc_dump_query(ab, ad->selinux_audit_data.ssid,
522 			   ad->selinux_audit_data.tsid,
523 			   ad->selinux_audit_data.tclass);
524 }
525 
526 /**
527  * avc_audit - Audit the granting or denial of permissions.
528  * @ssid: source security identifier
529  * @tsid: target security identifier
530  * @tclass: target security class
531  * @requested: requested permissions
532  * @avd: access vector decisions
533  * @result: result from avc_has_perm_noaudit
534  * @a:  auxiliary audit data
535  *
536  * Audit the granting or denial of permissions in accordance
537  * with the policy.  This function is typically called by
538  * avc_has_perm() after a permission check, but can also be
539  * called directly by callers who use avc_has_perm_noaudit()
540  * in order to separate the permission check from the auditing.
541  * For example, this separation is useful when the permission check must
542  * be performed under a lock, to allow the lock to be released
543  * before calling the auditing code.
544  */
545 void avc_audit(u32 ssid, u32 tsid,
546 	       u16 tclass, u32 requested,
547 	       struct av_decision *avd, int result, struct common_audit_data *a)
548 {
549 	struct common_audit_data stack_data;
550 	u32 denied, audited;
551 	denied = requested & ~avd->allowed;
552 	if (denied) {
553 		audited = denied;
554 		if (!(audited & avd->auditdeny))
555 			return;
556 	} else if (result) {
557 		audited = denied = requested;
558 	} else {
559 		audited = requested;
560 		if (!(audited & avd->auditallow))
561 			return;
562 	}
563 	if (!a) {
564 		a = &stack_data;
565 		memset(a, 0, sizeof(*a));
566 		a->type = LSM_AUDIT_NO_AUDIT;
567 	}
568 	a->selinux_audit_data.tclass = tclass;
569 	a->selinux_audit_data.requested = requested;
570 	a->selinux_audit_data.ssid = ssid;
571 	a->selinux_audit_data.tsid = tsid;
572 	a->selinux_audit_data.audited = audited;
573 	a->selinux_audit_data.denied = denied;
574 	a->lsm_pre_audit = avc_audit_pre_callback;
575 	a->lsm_post_audit = avc_audit_post_callback;
576 	common_lsm_audit(a);
577 }
578 
579 /**
580  * avc_add_callback - Register a callback for security events.
581  * @callback: callback function
582  * @events: security events
583  * @ssid: source security identifier or %SECSID_WILD
584  * @tsid: target security identifier or %SECSID_WILD
585  * @tclass: target security class
586  * @perms: permissions
587  *
588  * Register a callback function for events in the set @events
589  * related to the SID pair (@ssid, @tsid) and
590  * and the permissions @perms, interpreting
591  * @perms based on @tclass.  Returns %0 on success or
592  * -%ENOMEM if insufficient memory exists to add the callback.
593  */
594 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
595 				     u16 tclass, u32 perms,
596 				     u32 *out_retained),
597 		     u32 events, u32 ssid, u32 tsid,
598 		     u16 tclass, u32 perms)
599 {
600 	struct avc_callback_node *c;
601 	int rc = 0;
602 
603 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
604 	if (!c) {
605 		rc = -ENOMEM;
606 		goto out;
607 	}
608 
609 	c->callback = callback;
610 	c->events = events;
611 	c->ssid = ssid;
612 	c->tsid = tsid;
613 	c->perms = perms;
614 	c->next = avc_callbacks;
615 	avc_callbacks = c;
616 out:
617 	return rc;
618 }
619 
620 static inline int avc_sidcmp(u32 x, u32 y)
621 {
622 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
623 }
624 
625 /**
626  * avc_update_node Update an AVC entry
627  * @event : Updating event
628  * @perms : Permission mask bits
629  * @ssid,@tsid,@tclass : identifier of an AVC entry
630  * @seqno : sequence number when decision was made
631  *
632  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
633  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
634  * otherwise, this function update the AVC entry. The original AVC-entry object
635  * will release later by RCU.
636  */
637 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
638 			   u32 seqno)
639 {
640 	int hvalue, rc = 0;
641 	unsigned long flag;
642 	struct avc_node *pos, *node, *orig = NULL;
643 	struct hlist_head *head;
644 	struct hlist_node *next;
645 	spinlock_t *lock;
646 
647 	node = avc_alloc_node();
648 	if (!node) {
649 		rc = -ENOMEM;
650 		goto out;
651 	}
652 
653 	/* Lock the target slot */
654 	hvalue = avc_hash(ssid, tsid, tclass);
655 
656 	head = &avc_cache.slots[hvalue];
657 	lock = &avc_cache.slots_lock[hvalue];
658 
659 	spin_lock_irqsave(lock, flag);
660 
661 	hlist_for_each_entry(pos, next, head, list) {
662 		if (ssid == pos->ae.ssid &&
663 		    tsid == pos->ae.tsid &&
664 		    tclass == pos->ae.tclass &&
665 		    seqno == pos->ae.avd.seqno){
666 			orig = pos;
667 			break;
668 		}
669 	}
670 
671 	if (!orig) {
672 		rc = -ENOENT;
673 		avc_node_kill(node);
674 		goto out_unlock;
675 	}
676 
677 	/*
678 	 * Copy and replace original node.
679 	 */
680 
681 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
682 
683 	switch (event) {
684 	case AVC_CALLBACK_GRANT:
685 		node->ae.avd.allowed |= perms;
686 		break;
687 	case AVC_CALLBACK_TRY_REVOKE:
688 	case AVC_CALLBACK_REVOKE:
689 		node->ae.avd.allowed &= ~perms;
690 		break;
691 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
692 		node->ae.avd.auditallow |= perms;
693 		break;
694 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
695 		node->ae.avd.auditallow &= ~perms;
696 		break;
697 	case AVC_CALLBACK_AUDITDENY_ENABLE:
698 		node->ae.avd.auditdeny |= perms;
699 		break;
700 	case AVC_CALLBACK_AUDITDENY_DISABLE:
701 		node->ae.avd.auditdeny &= ~perms;
702 		break;
703 	}
704 	avc_node_replace(node, orig);
705 out_unlock:
706 	spin_unlock_irqrestore(lock, flag);
707 out:
708 	return rc;
709 }
710 
711 /**
712  * avc_flush - Flush the cache
713  */
714 static void avc_flush(void)
715 {
716 	struct hlist_head *head;
717 	struct hlist_node *next;
718 	struct avc_node *node;
719 	spinlock_t *lock;
720 	unsigned long flag;
721 	int i;
722 
723 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
724 		head = &avc_cache.slots[i];
725 		lock = &avc_cache.slots_lock[i];
726 
727 		spin_lock_irqsave(lock, flag);
728 		/*
729 		 * With preemptable RCU, the outer spinlock does not
730 		 * prevent RCU grace periods from ending.
731 		 */
732 		rcu_read_lock();
733 		hlist_for_each_entry(node, next, head, list)
734 			avc_node_delete(node);
735 		rcu_read_unlock();
736 		spin_unlock_irqrestore(lock, flag);
737 	}
738 }
739 
740 /**
741  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
742  * @seqno: policy sequence number
743  */
744 int avc_ss_reset(u32 seqno)
745 {
746 	struct avc_callback_node *c;
747 	int rc = 0, tmprc;
748 
749 	avc_flush();
750 
751 	for (c = avc_callbacks; c; c = c->next) {
752 		if (c->events & AVC_CALLBACK_RESET) {
753 			tmprc = c->callback(AVC_CALLBACK_RESET,
754 					    0, 0, 0, 0, NULL);
755 			/* save the first error encountered for the return
756 			   value and continue processing the callbacks */
757 			if (!rc)
758 				rc = tmprc;
759 		}
760 	}
761 
762 	avc_latest_notif_update(seqno, 0);
763 	return rc;
764 }
765 
766 /**
767  * avc_has_perm_noaudit - Check permissions but perform no auditing.
768  * @ssid: source security identifier
769  * @tsid: target security identifier
770  * @tclass: target security class
771  * @requested: requested permissions, interpreted based on @tclass
772  * @flags:  AVC_STRICT or 0
773  * @avd: access vector decisions
774  *
775  * Check the AVC to determine whether the @requested permissions are granted
776  * for the SID pair (@ssid, @tsid), interpreting the permissions
777  * based on @tclass, and call the security server on a cache miss to obtain
778  * a new decision and add it to the cache.  Return a copy of the decisions
779  * in @avd.  Return %0 if all @requested permissions are granted,
780  * -%EACCES if any permissions are denied, or another -errno upon
781  * other errors.  This function is typically called by avc_has_perm(),
782  * but may also be called directly to separate permission checking from
783  * auditing, e.g. in cases where a lock must be held for the check but
784  * should be released for the auditing.
785  */
786 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
787 			 u16 tclass, u32 requested,
788 			 unsigned flags,
789 			 struct av_decision *in_avd)
790 {
791 	struct avc_node *node;
792 	struct av_decision avd_entry, *avd;
793 	int rc = 0;
794 	u32 denied;
795 
796 	BUG_ON(!requested);
797 
798 	rcu_read_lock();
799 
800 	node = avc_lookup(ssid, tsid, tclass);
801 	if (!node) {
802 		rcu_read_unlock();
803 
804 		if (in_avd)
805 			avd = in_avd;
806 		else
807 			avd = &avd_entry;
808 
809 		rc = security_compute_av(ssid, tsid, tclass, requested, avd);
810 		if (rc)
811 			goto out;
812 		rcu_read_lock();
813 		node = avc_insert(ssid, tsid, tclass, avd);
814 	} else {
815 		if (in_avd)
816 			memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
817 		avd = &node->ae.avd;
818 	}
819 
820 	denied = requested & ~(avd->allowed);
821 
822 	if (denied) {
823 		if (flags & AVC_STRICT)
824 			rc = -EACCES;
825 		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
826 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
827 					tsid, tclass, avd->seqno);
828 		else
829 			rc = -EACCES;
830 	}
831 
832 	rcu_read_unlock();
833 out:
834 	return rc;
835 }
836 
837 /**
838  * avc_has_perm - Check permissions and perform any appropriate auditing.
839  * @ssid: source security identifier
840  * @tsid: target security identifier
841  * @tclass: target security class
842  * @requested: requested permissions, interpreted based on @tclass
843  * @auditdata: auxiliary audit data
844  *
845  * Check the AVC to determine whether the @requested permissions are granted
846  * for the SID pair (@ssid, @tsid), interpreting the permissions
847  * based on @tclass, and call the security server on a cache miss to obtain
848  * a new decision and add it to the cache.  Audit the granting or denial of
849  * permissions in accordance with the policy.  Return %0 if all @requested
850  * permissions are granted, -%EACCES if any permissions are denied, or
851  * another -errno upon other errors.
852  */
853 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
854 		 u32 requested, struct common_audit_data *auditdata)
855 {
856 	struct av_decision avd;
857 	int rc;
858 
859 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
860 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
861 	return rc;
862 }
863 
864 u32 avc_policy_seqno(void)
865 {
866 	return avc_cache.latest_notif;
867 }
868 
869 void avc_disable(void)
870 {
871 	avc_flush();
872 	synchronize_rcu();
873 	if (avc_node_cachep)
874 		kmem_cache_destroy(avc_node_cachep);
875 }
876