xref: /openbmc/linux/security/selinux/avc.c (revision ddc141e5)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 /* Exported via selinufs */
86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
87 
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91 
92 static struct avc_cache avc_cache;
93 static struct avc_callback_node *avc_callbacks;
94 static struct kmem_cache *avc_node_cachep;
95 static struct kmem_cache *avc_xperms_data_cachep;
96 static struct kmem_cache *avc_xperms_decision_cachep;
97 static struct kmem_cache *avc_xperms_cachep;
98 
99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
100 {
101 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
102 }
103 
104 /**
105  * avc_dump_av - Display an access vector in human-readable form.
106  * @tclass: target security class
107  * @av: access vector
108  */
109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
110 {
111 	const char **perms;
112 	int i, perm;
113 
114 	if (av == 0) {
115 		audit_log_format(ab, " null");
116 		return;
117 	}
118 
119 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
120 	perms = secclass_map[tclass-1].perms;
121 
122 	audit_log_format(ab, " {");
123 	i = 0;
124 	perm = 1;
125 	while (i < (sizeof(av) * 8)) {
126 		if ((perm & av) && perms[i]) {
127 			audit_log_format(ab, " %s", perms[i]);
128 			av &= ~perm;
129 		}
130 		i++;
131 		perm <<= 1;
132 	}
133 
134 	if (av)
135 		audit_log_format(ab, " 0x%x", av);
136 
137 	audit_log_format(ab, " }");
138 }
139 
140 /**
141  * avc_dump_query - Display a SID pair and a class in human-readable form.
142  * @ssid: source security identifier
143  * @tsid: target security identifier
144  * @tclass: target security class
145  */
146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
147 {
148 	int rc;
149 	char *scontext;
150 	u32 scontext_len;
151 
152 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
153 	if (rc)
154 		audit_log_format(ab, "ssid=%d", ssid);
155 	else {
156 		audit_log_format(ab, "scontext=%s", scontext);
157 		kfree(scontext);
158 	}
159 
160 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
161 	if (rc)
162 		audit_log_format(ab, " tsid=%d", tsid);
163 	else {
164 		audit_log_format(ab, " tcontext=%s", scontext);
165 		kfree(scontext);
166 	}
167 
168 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
169 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
170 }
171 
172 /**
173  * avc_init - Initialize the AVC.
174  *
175  * Initialize the access vector cache.
176  */
177 void __init avc_init(void)
178 {
179 	int i;
180 
181 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
182 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
183 		spin_lock_init(&avc_cache.slots_lock[i]);
184 	}
185 	atomic_set(&avc_cache.active_nodes, 0);
186 	atomic_set(&avc_cache.lru_hint, 0);
187 
188 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
189 					0, SLAB_PANIC, NULL);
190 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
191 					sizeof(struct avc_xperms_node),
192 					0, SLAB_PANIC, NULL);
193 	avc_xperms_decision_cachep = kmem_cache_create(
194 					"avc_xperms_decision_node",
195 					sizeof(struct avc_xperms_decision_node),
196 					0, SLAB_PANIC, NULL);
197 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
198 					sizeof(struct extended_perms_data),
199 					0, SLAB_PANIC, NULL);
200 }
201 
202 int avc_get_hash_stats(char *page)
203 {
204 	int i, chain_len, max_chain_len, slots_used;
205 	struct avc_node *node;
206 	struct hlist_head *head;
207 
208 	rcu_read_lock();
209 
210 	slots_used = 0;
211 	max_chain_len = 0;
212 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
213 		head = &avc_cache.slots[i];
214 		if (!hlist_empty(head)) {
215 			slots_used++;
216 			chain_len = 0;
217 			hlist_for_each_entry_rcu(node, head, list)
218 				chain_len++;
219 			if (chain_len > max_chain_len)
220 				max_chain_len = chain_len;
221 		}
222 	}
223 
224 	rcu_read_unlock();
225 
226 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
227 			 "longest chain: %d\n",
228 			 atomic_read(&avc_cache.active_nodes),
229 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
230 }
231 
232 /*
233  * using a linked list for extended_perms_decision lookup because the list is
234  * always small. i.e. less than 5, typically 1
235  */
236 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
237 					struct avc_xperms_node *xp_node)
238 {
239 	struct avc_xperms_decision_node *xpd_node;
240 
241 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
242 		if (xpd_node->xpd.driver == driver)
243 			return &xpd_node->xpd;
244 	}
245 	return NULL;
246 }
247 
248 static inline unsigned int
249 avc_xperms_has_perm(struct extended_perms_decision *xpd,
250 					u8 perm, u8 which)
251 {
252 	unsigned int rc = 0;
253 
254 	if ((which == XPERMS_ALLOWED) &&
255 			(xpd->used & XPERMS_ALLOWED))
256 		rc = security_xperm_test(xpd->allowed->p, perm);
257 	else if ((which == XPERMS_AUDITALLOW) &&
258 			(xpd->used & XPERMS_AUDITALLOW))
259 		rc = security_xperm_test(xpd->auditallow->p, perm);
260 	else if ((which == XPERMS_DONTAUDIT) &&
261 			(xpd->used & XPERMS_DONTAUDIT))
262 		rc = security_xperm_test(xpd->dontaudit->p, perm);
263 	return rc;
264 }
265 
266 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
267 				u8 driver, u8 perm)
268 {
269 	struct extended_perms_decision *xpd;
270 	security_xperm_set(xp_node->xp.drivers.p, driver);
271 	xpd = avc_xperms_decision_lookup(driver, xp_node);
272 	if (xpd && xpd->allowed)
273 		security_xperm_set(xpd->allowed->p, perm);
274 }
275 
276 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
277 {
278 	struct extended_perms_decision *xpd;
279 
280 	xpd = &xpd_node->xpd;
281 	if (xpd->allowed)
282 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
283 	if (xpd->auditallow)
284 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
285 	if (xpd->dontaudit)
286 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
287 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
288 }
289 
290 static void avc_xperms_free(struct avc_xperms_node *xp_node)
291 {
292 	struct avc_xperms_decision_node *xpd_node, *tmp;
293 
294 	if (!xp_node)
295 		return;
296 
297 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
298 		list_del(&xpd_node->xpd_list);
299 		avc_xperms_decision_free(xpd_node);
300 	}
301 	kmem_cache_free(avc_xperms_cachep, xp_node);
302 }
303 
304 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
305 					struct extended_perms_decision *src)
306 {
307 	dest->driver = src->driver;
308 	dest->used = src->used;
309 	if (dest->used & XPERMS_ALLOWED)
310 		memcpy(dest->allowed->p, src->allowed->p,
311 				sizeof(src->allowed->p));
312 	if (dest->used & XPERMS_AUDITALLOW)
313 		memcpy(dest->auditallow->p, src->auditallow->p,
314 				sizeof(src->auditallow->p));
315 	if (dest->used & XPERMS_DONTAUDIT)
316 		memcpy(dest->dontaudit->p, src->dontaudit->p,
317 				sizeof(src->dontaudit->p));
318 }
319 
320 /*
321  * similar to avc_copy_xperms_decision, but only copy decision
322  * information relevant to this perm
323  */
324 static inline void avc_quick_copy_xperms_decision(u8 perm,
325 			struct extended_perms_decision *dest,
326 			struct extended_perms_decision *src)
327 {
328 	/*
329 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
330 	 * command permission
331 	 */
332 	u8 i = perm >> 5;
333 
334 	dest->used = src->used;
335 	if (dest->used & XPERMS_ALLOWED)
336 		dest->allowed->p[i] = src->allowed->p[i];
337 	if (dest->used & XPERMS_AUDITALLOW)
338 		dest->auditallow->p[i] = src->auditallow->p[i];
339 	if (dest->used & XPERMS_DONTAUDIT)
340 		dest->dontaudit->p[i] = src->dontaudit->p[i];
341 }
342 
343 static struct avc_xperms_decision_node
344 		*avc_xperms_decision_alloc(u8 which)
345 {
346 	struct avc_xperms_decision_node *xpd_node;
347 	struct extended_perms_decision *xpd;
348 
349 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
350 	if (!xpd_node)
351 		return NULL;
352 
353 	xpd = &xpd_node->xpd;
354 	if (which & XPERMS_ALLOWED) {
355 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
356 						GFP_NOWAIT);
357 		if (!xpd->allowed)
358 			goto error;
359 	}
360 	if (which & XPERMS_AUDITALLOW) {
361 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
362 						GFP_NOWAIT);
363 		if (!xpd->auditallow)
364 			goto error;
365 	}
366 	if (which & XPERMS_DONTAUDIT) {
367 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
368 						GFP_NOWAIT);
369 		if (!xpd->dontaudit)
370 			goto error;
371 	}
372 	return xpd_node;
373 error:
374 	avc_xperms_decision_free(xpd_node);
375 	return NULL;
376 }
377 
378 static int avc_add_xperms_decision(struct avc_node *node,
379 			struct extended_perms_decision *src)
380 {
381 	struct avc_xperms_decision_node *dest_xpd;
382 
383 	node->ae.xp_node->xp.len++;
384 	dest_xpd = avc_xperms_decision_alloc(src->used);
385 	if (!dest_xpd)
386 		return -ENOMEM;
387 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
388 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
389 	return 0;
390 }
391 
392 static struct avc_xperms_node *avc_xperms_alloc(void)
393 {
394 	struct avc_xperms_node *xp_node;
395 
396 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
397 	if (!xp_node)
398 		return xp_node;
399 	INIT_LIST_HEAD(&xp_node->xpd_head);
400 	return xp_node;
401 }
402 
403 static int avc_xperms_populate(struct avc_node *node,
404 				struct avc_xperms_node *src)
405 {
406 	struct avc_xperms_node *dest;
407 	struct avc_xperms_decision_node *dest_xpd;
408 	struct avc_xperms_decision_node *src_xpd;
409 
410 	if (src->xp.len == 0)
411 		return 0;
412 	dest = avc_xperms_alloc();
413 	if (!dest)
414 		return -ENOMEM;
415 
416 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
417 	dest->xp.len = src->xp.len;
418 
419 	/* for each source xpd allocate a destination xpd and copy */
420 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
421 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
422 		if (!dest_xpd)
423 			goto error;
424 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
425 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
426 	}
427 	node->ae.xp_node = dest;
428 	return 0;
429 error:
430 	avc_xperms_free(dest);
431 	return -ENOMEM;
432 
433 }
434 
435 static inline u32 avc_xperms_audit_required(u32 requested,
436 					struct av_decision *avd,
437 					struct extended_perms_decision *xpd,
438 					u8 perm,
439 					int result,
440 					u32 *deniedp)
441 {
442 	u32 denied, audited;
443 
444 	denied = requested & ~avd->allowed;
445 	if (unlikely(denied)) {
446 		audited = denied & avd->auditdeny;
447 		if (audited && xpd) {
448 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
449 				audited &= ~requested;
450 		}
451 	} else if (result) {
452 		audited = denied = requested;
453 	} else {
454 		audited = requested & avd->auditallow;
455 		if (audited && xpd) {
456 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
457 				audited &= ~requested;
458 		}
459 	}
460 
461 	*deniedp = denied;
462 	return audited;
463 }
464 
465 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
466 				u32 requested, struct av_decision *avd,
467 				struct extended_perms_decision *xpd,
468 				u8 perm, int result,
469 				struct common_audit_data *ad)
470 {
471 	u32 audited, denied;
472 
473 	audited = avc_xperms_audit_required(
474 			requested, avd, xpd, perm, result, &denied);
475 	if (likely(!audited))
476 		return 0;
477 	return slow_avc_audit(ssid, tsid, tclass, requested,
478 			audited, denied, result, ad, 0);
479 }
480 
481 static void avc_node_free(struct rcu_head *rhead)
482 {
483 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
484 	avc_xperms_free(node->ae.xp_node);
485 	kmem_cache_free(avc_node_cachep, node);
486 	avc_cache_stats_incr(frees);
487 }
488 
489 static void avc_node_delete(struct avc_node *node)
490 {
491 	hlist_del_rcu(&node->list);
492 	call_rcu(&node->rhead, avc_node_free);
493 	atomic_dec(&avc_cache.active_nodes);
494 }
495 
496 static void avc_node_kill(struct avc_node *node)
497 {
498 	avc_xperms_free(node->ae.xp_node);
499 	kmem_cache_free(avc_node_cachep, node);
500 	avc_cache_stats_incr(frees);
501 	atomic_dec(&avc_cache.active_nodes);
502 }
503 
504 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
505 {
506 	hlist_replace_rcu(&old->list, &new->list);
507 	call_rcu(&old->rhead, avc_node_free);
508 	atomic_dec(&avc_cache.active_nodes);
509 }
510 
511 static inline int avc_reclaim_node(void)
512 {
513 	struct avc_node *node;
514 	int hvalue, try, ecx;
515 	unsigned long flags;
516 	struct hlist_head *head;
517 	spinlock_t *lock;
518 
519 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
520 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
521 		head = &avc_cache.slots[hvalue];
522 		lock = &avc_cache.slots_lock[hvalue];
523 
524 		if (!spin_trylock_irqsave(lock, flags))
525 			continue;
526 
527 		rcu_read_lock();
528 		hlist_for_each_entry(node, head, list) {
529 			avc_node_delete(node);
530 			avc_cache_stats_incr(reclaims);
531 			ecx++;
532 			if (ecx >= AVC_CACHE_RECLAIM) {
533 				rcu_read_unlock();
534 				spin_unlock_irqrestore(lock, flags);
535 				goto out;
536 			}
537 		}
538 		rcu_read_unlock();
539 		spin_unlock_irqrestore(lock, flags);
540 	}
541 out:
542 	return ecx;
543 }
544 
545 static struct avc_node *avc_alloc_node(void)
546 {
547 	struct avc_node *node;
548 
549 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
550 	if (!node)
551 		goto out;
552 
553 	INIT_HLIST_NODE(&node->list);
554 	avc_cache_stats_incr(allocations);
555 
556 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
557 		avc_reclaim_node();
558 
559 out:
560 	return node;
561 }
562 
563 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
564 {
565 	node->ae.ssid = ssid;
566 	node->ae.tsid = tsid;
567 	node->ae.tclass = tclass;
568 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
569 }
570 
571 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
572 {
573 	struct avc_node *node, *ret = NULL;
574 	int hvalue;
575 	struct hlist_head *head;
576 
577 	hvalue = avc_hash(ssid, tsid, tclass);
578 	head = &avc_cache.slots[hvalue];
579 	hlist_for_each_entry_rcu(node, head, list) {
580 		if (ssid == node->ae.ssid &&
581 		    tclass == node->ae.tclass &&
582 		    tsid == node->ae.tsid) {
583 			ret = node;
584 			break;
585 		}
586 	}
587 
588 	return ret;
589 }
590 
591 /**
592  * avc_lookup - Look up an AVC entry.
593  * @ssid: source security identifier
594  * @tsid: target security identifier
595  * @tclass: target security class
596  *
597  * Look up an AVC entry that is valid for the
598  * (@ssid, @tsid), interpreting the permissions
599  * based on @tclass.  If a valid AVC entry exists,
600  * then this function returns the avc_node.
601  * Otherwise, this function returns NULL.
602  */
603 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
604 {
605 	struct avc_node *node;
606 
607 	avc_cache_stats_incr(lookups);
608 	node = avc_search_node(ssid, tsid, tclass);
609 
610 	if (node)
611 		return node;
612 
613 	avc_cache_stats_incr(misses);
614 	return NULL;
615 }
616 
617 static int avc_latest_notif_update(int seqno, int is_insert)
618 {
619 	int ret = 0;
620 	static DEFINE_SPINLOCK(notif_lock);
621 	unsigned long flag;
622 
623 	spin_lock_irqsave(&notif_lock, flag);
624 	if (is_insert) {
625 		if (seqno < avc_cache.latest_notif) {
626 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
627 			       seqno, avc_cache.latest_notif);
628 			ret = -EAGAIN;
629 		}
630 	} else {
631 		if (seqno > avc_cache.latest_notif)
632 			avc_cache.latest_notif = seqno;
633 	}
634 	spin_unlock_irqrestore(&notif_lock, flag);
635 
636 	return ret;
637 }
638 
639 /**
640  * avc_insert - Insert an AVC entry.
641  * @ssid: source security identifier
642  * @tsid: target security identifier
643  * @tclass: target security class
644  * @avd: resulting av decision
645  * @xp_node: resulting extended permissions
646  *
647  * Insert an AVC entry for the SID pair
648  * (@ssid, @tsid) and class @tclass.
649  * The access vectors and the sequence number are
650  * normally provided by the security server in
651  * response to a security_compute_av() call.  If the
652  * sequence number @avd->seqno is not less than the latest
653  * revocation notification, then the function copies
654  * the access vectors into a cache entry, returns
655  * avc_node inserted. Otherwise, this function returns NULL.
656  */
657 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
658 				struct av_decision *avd,
659 				struct avc_xperms_node *xp_node)
660 {
661 	struct avc_node *pos, *node = NULL;
662 	int hvalue;
663 	unsigned long flag;
664 
665 	if (avc_latest_notif_update(avd->seqno, 1))
666 		goto out;
667 
668 	node = avc_alloc_node();
669 	if (node) {
670 		struct hlist_head *head;
671 		spinlock_t *lock;
672 		int rc = 0;
673 
674 		hvalue = avc_hash(ssid, tsid, tclass);
675 		avc_node_populate(node, ssid, tsid, tclass, avd);
676 		rc = avc_xperms_populate(node, xp_node);
677 		if (rc) {
678 			kmem_cache_free(avc_node_cachep, node);
679 			return NULL;
680 		}
681 		head = &avc_cache.slots[hvalue];
682 		lock = &avc_cache.slots_lock[hvalue];
683 
684 		spin_lock_irqsave(lock, flag);
685 		hlist_for_each_entry(pos, head, list) {
686 			if (pos->ae.ssid == ssid &&
687 			    pos->ae.tsid == tsid &&
688 			    pos->ae.tclass == tclass) {
689 				avc_node_replace(node, pos);
690 				goto found;
691 			}
692 		}
693 		hlist_add_head_rcu(&node->list, head);
694 found:
695 		spin_unlock_irqrestore(lock, flag);
696 	}
697 out:
698 	return node;
699 }
700 
701 /**
702  * avc_audit_pre_callback - SELinux specific information
703  * will be called by generic audit code
704  * @ab: the audit buffer
705  * @a: audit_data
706  */
707 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
708 {
709 	struct common_audit_data *ad = a;
710 	audit_log_format(ab, "avc:  %s ",
711 			 ad->selinux_audit_data->denied ? "denied" : "granted");
712 	avc_dump_av(ab, ad->selinux_audit_data->tclass,
713 			ad->selinux_audit_data->audited);
714 	audit_log_format(ab, " for ");
715 }
716 
717 /**
718  * avc_audit_post_callback - SELinux specific information
719  * will be called by generic audit code
720  * @ab: the audit buffer
721  * @a: audit_data
722  */
723 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
724 {
725 	struct common_audit_data *ad = a;
726 	audit_log_format(ab, " ");
727 	avc_dump_query(ab, ad->selinux_audit_data->ssid,
728 			   ad->selinux_audit_data->tsid,
729 			   ad->selinux_audit_data->tclass);
730 	if (ad->selinux_audit_data->denied) {
731 		audit_log_format(ab, " permissive=%u",
732 				 ad->selinux_audit_data->result ? 0 : 1);
733 	}
734 }
735 
736 /* This is the slow part of avc audit with big stack footprint */
737 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
738 		u32 requested, u32 audited, u32 denied, int result,
739 		struct common_audit_data *a,
740 		unsigned flags)
741 {
742 	struct common_audit_data stack_data;
743 	struct selinux_audit_data sad;
744 
745 	if (!a) {
746 		a = &stack_data;
747 		a->type = LSM_AUDIT_DATA_NONE;
748 	}
749 
750 	/*
751 	 * When in a RCU walk do the audit on the RCU retry.  This is because
752 	 * the collection of the dname in an inode audit message is not RCU
753 	 * safe.  Note this may drop some audits when the situation changes
754 	 * during retry. However this is logically just as if the operation
755 	 * happened a little later.
756 	 */
757 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
758 	    (flags & MAY_NOT_BLOCK))
759 		return -ECHILD;
760 
761 	sad.tclass = tclass;
762 	sad.requested = requested;
763 	sad.ssid = ssid;
764 	sad.tsid = tsid;
765 	sad.audited = audited;
766 	sad.denied = denied;
767 	sad.result = result;
768 
769 	a->selinux_audit_data = &sad;
770 
771 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
772 	return 0;
773 }
774 
775 /**
776  * avc_add_callback - Register a callback for security events.
777  * @callback: callback function
778  * @events: security events
779  *
780  * Register a callback function for events in the set @events.
781  * Returns %0 on success or -%ENOMEM if insufficient memory
782  * exists to add the callback.
783  */
784 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
785 {
786 	struct avc_callback_node *c;
787 	int rc = 0;
788 
789 	c = kmalloc(sizeof(*c), GFP_KERNEL);
790 	if (!c) {
791 		rc = -ENOMEM;
792 		goto out;
793 	}
794 
795 	c->callback = callback;
796 	c->events = events;
797 	c->next = avc_callbacks;
798 	avc_callbacks = c;
799 out:
800 	return rc;
801 }
802 
803 /**
804  * avc_update_node Update an AVC entry
805  * @event : Updating event
806  * @perms : Permission mask bits
807  * @ssid,@tsid,@tclass : identifier of an AVC entry
808  * @seqno : sequence number when decision was made
809  * @xpd: extended_perms_decision to be added to the node
810  *
811  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
812  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
813  * otherwise, this function updates the AVC entry. The original AVC-entry object
814  * will release later by RCU.
815  */
816 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
817 			u32 tsid, u16 tclass, u32 seqno,
818 			struct extended_perms_decision *xpd,
819 			u32 flags)
820 {
821 	int hvalue, rc = 0;
822 	unsigned long flag;
823 	struct avc_node *pos, *node, *orig = NULL;
824 	struct hlist_head *head;
825 	spinlock_t *lock;
826 
827 	node = avc_alloc_node();
828 	if (!node) {
829 		rc = -ENOMEM;
830 		goto out;
831 	}
832 
833 	/* Lock the target slot */
834 	hvalue = avc_hash(ssid, tsid, tclass);
835 
836 	head = &avc_cache.slots[hvalue];
837 	lock = &avc_cache.slots_lock[hvalue];
838 
839 	spin_lock_irqsave(lock, flag);
840 
841 	hlist_for_each_entry(pos, head, list) {
842 		if (ssid == pos->ae.ssid &&
843 		    tsid == pos->ae.tsid &&
844 		    tclass == pos->ae.tclass &&
845 		    seqno == pos->ae.avd.seqno){
846 			orig = pos;
847 			break;
848 		}
849 	}
850 
851 	if (!orig) {
852 		rc = -ENOENT;
853 		avc_node_kill(node);
854 		goto out_unlock;
855 	}
856 
857 	/*
858 	 * Copy and replace original node.
859 	 */
860 
861 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
862 
863 	if (orig->ae.xp_node) {
864 		rc = avc_xperms_populate(node, orig->ae.xp_node);
865 		if (rc) {
866 			kmem_cache_free(avc_node_cachep, node);
867 			goto out_unlock;
868 		}
869 	}
870 
871 	switch (event) {
872 	case AVC_CALLBACK_GRANT:
873 		node->ae.avd.allowed |= perms;
874 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
875 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
876 		break;
877 	case AVC_CALLBACK_TRY_REVOKE:
878 	case AVC_CALLBACK_REVOKE:
879 		node->ae.avd.allowed &= ~perms;
880 		break;
881 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
882 		node->ae.avd.auditallow |= perms;
883 		break;
884 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
885 		node->ae.avd.auditallow &= ~perms;
886 		break;
887 	case AVC_CALLBACK_AUDITDENY_ENABLE:
888 		node->ae.avd.auditdeny |= perms;
889 		break;
890 	case AVC_CALLBACK_AUDITDENY_DISABLE:
891 		node->ae.avd.auditdeny &= ~perms;
892 		break;
893 	case AVC_CALLBACK_ADD_XPERMS:
894 		avc_add_xperms_decision(node, xpd);
895 		break;
896 	}
897 	avc_node_replace(node, orig);
898 out_unlock:
899 	spin_unlock_irqrestore(lock, flag);
900 out:
901 	return rc;
902 }
903 
904 /**
905  * avc_flush - Flush the cache
906  */
907 static void avc_flush(void)
908 {
909 	struct hlist_head *head;
910 	struct avc_node *node;
911 	spinlock_t *lock;
912 	unsigned long flag;
913 	int i;
914 
915 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
916 		head = &avc_cache.slots[i];
917 		lock = &avc_cache.slots_lock[i];
918 
919 		spin_lock_irqsave(lock, flag);
920 		/*
921 		 * With preemptable RCU, the outer spinlock does not
922 		 * prevent RCU grace periods from ending.
923 		 */
924 		rcu_read_lock();
925 		hlist_for_each_entry(node, head, list)
926 			avc_node_delete(node);
927 		rcu_read_unlock();
928 		spin_unlock_irqrestore(lock, flag);
929 	}
930 }
931 
932 /**
933  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
934  * @seqno: policy sequence number
935  */
936 int avc_ss_reset(u32 seqno)
937 {
938 	struct avc_callback_node *c;
939 	int rc = 0, tmprc;
940 
941 	avc_flush();
942 
943 	for (c = avc_callbacks; c; c = c->next) {
944 		if (c->events & AVC_CALLBACK_RESET) {
945 			tmprc = c->callback(AVC_CALLBACK_RESET);
946 			/* save the first error encountered for the return
947 			   value and continue processing the callbacks */
948 			if (!rc)
949 				rc = tmprc;
950 		}
951 	}
952 
953 	avc_latest_notif_update(seqno, 0);
954 	return rc;
955 }
956 
957 /*
958  * Slow-path helper function for avc_has_perm_noaudit,
959  * when the avc_node lookup fails. We get called with
960  * the RCU read lock held, and need to return with it
961  * still held, but drop if for the security compute.
962  *
963  * Don't inline this, since it's the slow-path and just
964  * results in a bigger stack frame.
965  */
966 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
967 			 u16 tclass, struct av_decision *avd,
968 			 struct avc_xperms_node *xp_node)
969 {
970 	rcu_read_unlock();
971 	INIT_LIST_HEAD(&xp_node->xpd_head);
972 	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
973 	rcu_read_lock();
974 	return avc_insert(ssid, tsid, tclass, avd, xp_node);
975 }
976 
977 static noinline int avc_denied(u32 ssid, u32 tsid,
978 				u16 tclass, u32 requested,
979 				u8 driver, u8 xperm, unsigned flags,
980 				struct av_decision *avd)
981 {
982 	if (flags & AVC_STRICT)
983 		return -EACCES;
984 
985 	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
986 		return -EACCES;
987 
988 	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
989 				tsid, tclass, avd->seqno, NULL, flags);
990 	return 0;
991 }
992 
993 /*
994  * The avc extended permissions logic adds an additional 256 bits of
995  * permissions to an avc node when extended permissions for that node are
996  * specified in the avtab. If the additional 256 permissions is not adequate,
997  * as-is the case with ioctls, then multiple may be chained together and the
998  * driver field is used to specify which set contains the permission.
999  */
1000 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1001 			u8 driver, u8 xperm, struct common_audit_data *ad)
1002 {
1003 	struct avc_node *node;
1004 	struct av_decision avd;
1005 	u32 denied;
1006 	struct extended_perms_decision local_xpd;
1007 	struct extended_perms_decision *xpd = NULL;
1008 	struct extended_perms_data allowed;
1009 	struct extended_perms_data auditallow;
1010 	struct extended_perms_data dontaudit;
1011 	struct avc_xperms_node local_xp_node;
1012 	struct avc_xperms_node *xp_node;
1013 	int rc = 0, rc2;
1014 
1015 	xp_node = &local_xp_node;
1016 	BUG_ON(!requested);
1017 
1018 	rcu_read_lock();
1019 
1020 	node = avc_lookup(ssid, tsid, tclass);
1021 	if (unlikely(!node)) {
1022 		node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1023 	} else {
1024 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1025 		xp_node = node->ae.xp_node;
1026 	}
1027 	/* if extended permissions are not defined, only consider av_decision */
1028 	if (!xp_node || !xp_node->xp.len)
1029 		goto decision;
1030 
1031 	local_xpd.allowed = &allowed;
1032 	local_xpd.auditallow = &auditallow;
1033 	local_xpd.dontaudit = &dontaudit;
1034 
1035 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1036 	if (unlikely(!xpd)) {
1037 		/*
1038 		 * Compute the extended_perms_decision only if the driver
1039 		 * is flagged
1040 		 */
1041 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1042 			avd.allowed &= ~requested;
1043 			goto decision;
1044 		}
1045 		rcu_read_unlock();
1046 		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1047 						&local_xpd);
1048 		rcu_read_lock();
1049 		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1050 				ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1051 	} else {
1052 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1053 	}
1054 	xpd = &local_xpd;
1055 
1056 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1057 		avd.allowed &= ~requested;
1058 
1059 decision:
1060 	denied = requested & ~(avd.allowed);
1061 	if (unlikely(denied))
1062 		rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1063 				AVC_EXTENDED_PERMS, &avd);
1064 
1065 	rcu_read_unlock();
1066 
1067 	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1068 			&avd, xpd, xperm, rc, ad);
1069 	if (rc2)
1070 		return rc2;
1071 	return rc;
1072 }
1073 
1074 /**
1075  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1076  * @ssid: source security identifier
1077  * @tsid: target security identifier
1078  * @tclass: target security class
1079  * @requested: requested permissions, interpreted based on @tclass
1080  * @flags:  AVC_STRICT or 0
1081  * @avd: access vector decisions
1082  *
1083  * Check the AVC to determine whether the @requested permissions are granted
1084  * for the SID pair (@ssid, @tsid), interpreting the permissions
1085  * based on @tclass, and call the security server on a cache miss to obtain
1086  * a new decision and add it to the cache.  Return a copy of the decisions
1087  * in @avd.  Return %0 if all @requested permissions are granted,
1088  * -%EACCES if any permissions are denied, or another -errno upon
1089  * other errors.  This function is typically called by avc_has_perm(),
1090  * but may also be called directly to separate permission checking from
1091  * auditing, e.g. in cases where a lock must be held for the check but
1092  * should be released for the auditing.
1093  */
1094 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1095 			 u16 tclass, u32 requested,
1096 			 unsigned flags,
1097 			 struct av_decision *avd)
1098 {
1099 	struct avc_node *node;
1100 	struct avc_xperms_node xp_node;
1101 	int rc = 0;
1102 	u32 denied;
1103 
1104 	BUG_ON(!requested);
1105 
1106 	rcu_read_lock();
1107 
1108 	node = avc_lookup(ssid, tsid, tclass);
1109 	if (unlikely(!node))
1110 		node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1111 	else
1112 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1113 
1114 	denied = requested & ~(avd->allowed);
1115 	if (unlikely(denied))
1116 		rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1117 
1118 	rcu_read_unlock();
1119 	return rc;
1120 }
1121 
1122 /**
1123  * avc_has_perm - Check permissions and perform any appropriate auditing.
1124  * @ssid: source security identifier
1125  * @tsid: target security identifier
1126  * @tclass: target security class
1127  * @requested: requested permissions, interpreted based on @tclass
1128  * @auditdata: auxiliary audit data
1129  *
1130  * Check the AVC to determine whether the @requested permissions are granted
1131  * for the SID pair (@ssid, @tsid), interpreting the permissions
1132  * based on @tclass, and call the security server on a cache miss to obtain
1133  * a new decision and add it to the cache.  Audit the granting or denial of
1134  * permissions in accordance with the policy.  Return %0 if all @requested
1135  * permissions are granted, -%EACCES if any permissions are denied, or
1136  * another -errno upon other errors.
1137  */
1138 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1139 		 u32 requested, struct common_audit_data *auditdata)
1140 {
1141 	struct av_decision avd;
1142 	int rc, rc2;
1143 
1144 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1145 
1146 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
1147 	if (rc2)
1148 		return rc2;
1149 	return rc;
1150 }
1151 
1152 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1153 		       u32 requested, struct common_audit_data *auditdata,
1154 		       int flags)
1155 {
1156 	struct av_decision avd;
1157 	int rc, rc2;
1158 
1159 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1160 
1161 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1162 			auditdata, flags);
1163 	if (rc2)
1164 		return rc2;
1165 	return rc;
1166 }
1167 
1168 u32 avc_policy_seqno(void)
1169 {
1170 	return avc_cache.latest_notif;
1171 }
1172 
1173 void avc_disable(void)
1174 {
1175 	/*
1176 	 * If you are looking at this because you have realized that we are
1177 	 * not destroying the avc_node_cachep it might be easy to fix, but
1178 	 * I don't know the memory barrier semantics well enough to know.  It's
1179 	 * possible that some other task dereferenced security_ops when
1180 	 * it still pointed to selinux operations.  If that is the case it's
1181 	 * possible that it is about to use the avc and is about to need the
1182 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1183 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1184 	 * the cache and get that memory back.
1185 	 */
1186 	if (avc_node_cachep) {
1187 		avc_flush();
1188 		/* kmem_cache_destroy(avc_node_cachep); */
1189 	}
1190 }
1191