1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13 #include <linux/types.h> 14 #include <linux/stddef.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/fs.h> 18 #include <linux/dcache.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/percpu.h> 22 #include <linux/list.h> 23 #include <net/sock.h> 24 #include <linux/un.h> 25 #include <net/af_unix.h> 26 #include <linux/ip.h> 27 #include <linux/audit.h> 28 #include <linux/ipv6.h> 29 #include <net/ipv6.h> 30 #include "avc.h" 31 #include "avc_ss.h" 32 #include "classmap.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/avc.h> 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87 #endif 88 89 struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92 }; 93 94 static struct selinux_avc selinux_avc; 95 96 void selinux_avc_init(struct selinux_avc **avc) 97 { 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 *avc = &selinux_avc; 108 } 109 110 unsigned int avc_get_cache_threshold(struct selinux_avc *avc) 111 { 112 return avc->avc_cache_threshold; 113 } 114 115 void avc_set_cache_threshold(struct selinux_avc *avc, 116 unsigned int cache_threshold) 117 { 118 avc->avc_cache_threshold = cache_threshold; 119 } 120 121 static struct avc_callback_node *avc_callbacks; 122 static struct kmem_cache *avc_node_cachep; 123 static struct kmem_cache *avc_xperms_data_cachep; 124 static struct kmem_cache *avc_xperms_decision_cachep; 125 static struct kmem_cache *avc_xperms_cachep; 126 127 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 128 { 129 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 130 } 131 132 /** 133 * avc_init - Initialize the AVC. 134 * 135 * Initialize the access vector cache. 136 */ 137 void __init avc_init(void) 138 { 139 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 140 0, SLAB_PANIC, NULL); 141 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 142 sizeof(struct avc_xperms_node), 143 0, SLAB_PANIC, NULL); 144 avc_xperms_decision_cachep = kmem_cache_create( 145 "avc_xperms_decision_node", 146 sizeof(struct avc_xperms_decision_node), 147 0, SLAB_PANIC, NULL); 148 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 149 sizeof(struct extended_perms_data), 150 0, SLAB_PANIC, NULL); 151 } 152 153 int avc_get_hash_stats(struct selinux_avc *avc, char *page) 154 { 155 int i, chain_len, max_chain_len, slots_used; 156 struct avc_node *node; 157 struct hlist_head *head; 158 159 rcu_read_lock(); 160 161 slots_used = 0; 162 max_chain_len = 0; 163 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 164 head = &avc->avc_cache.slots[i]; 165 if (!hlist_empty(head)) { 166 slots_used++; 167 chain_len = 0; 168 hlist_for_each_entry_rcu(node, head, list) 169 chain_len++; 170 if (chain_len > max_chain_len) 171 max_chain_len = chain_len; 172 } 173 } 174 175 rcu_read_unlock(); 176 177 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 178 "longest chain: %d\n", 179 atomic_read(&avc->avc_cache.active_nodes), 180 slots_used, AVC_CACHE_SLOTS, max_chain_len); 181 } 182 183 /* 184 * using a linked list for extended_perms_decision lookup because the list is 185 * always small. i.e. less than 5, typically 1 186 */ 187 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 188 struct avc_xperms_node *xp_node) 189 { 190 struct avc_xperms_decision_node *xpd_node; 191 192 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 193 if (xpd_node->xpd.driver == driver) 194 return &xpd_node->xpd; 195 } 196 return NULL; 197 } 198 199 static inline unsigned int 200 avc_xperms_has_perm(struct extended_perms_decision *xpd, 201 u8 perm, u8 which) 202 { 203 unsigned int rc = 0; 204 205 if ((which == XPERMS_ALLOWED) && 206 (xpd->used & XPERMS_ALLOWED)) 207 rc = security_xperm_test(xpd->allowed->p, perm); 208 else if ((which == XPERMS_AUDITALLOW) && 209 (xpd->used & XPERMS_AUDITALLOW)) 210 rc = security_xperm_test(xpd->auditallow->p, perm); 211 else if ((which == XPERMS_DONTAUDIT) && 212 (xpd->used & XPERMS_DONTAUDIT)) 213 rc = security_xperm_test(xpd->dontaudit->p, perm); 214 return rc; 215 } 216 217 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 218 u8 driver, u8 perm) 219 { 220 struct extended_perms_decision *xpd; 221 security_xperm_set(xp_node->xp.drivers.p, driver); 222 xpd = avc_xperms_decision_lookup(driver, xp_node); 223 if (xpd && xpd->allowed) 224 security_xperm_set(xpd->allowed->p, perm); 225 } 226 227 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 228 { 229 struct extended_perms_decision *xpd; 230 231 xpd = &xpd_node->xpd; 232 if (xpd->allowed) 233 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 234 if (xpd->auditallow) 235 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 236 if (xpd->dontaudit) 237 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 238 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 239 } 240 241 static void avc_xperms_free(struct avc_xperms_node *xp_node) 242 { 243 struct avc_xperms_decision_node *xpd_node, *tmp; 244 245 if (!xp_node) 246 return; 247 248 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 249 list_del(&xpd_node->xpd_list); 250 avc_xperms_decision_free(xpd_node); 251 } 252 kmem_cache_free(avc_xperms_cachep, xp_node); 253 } 254 255 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 256 struct extended_perms_decision *src) 257 { 258 dest->driver = src->driver; 259 dest->used = src->used; 260 if (dest->used & XPERMS_ALLOWED) 261 memcpy(dest->allowed->p, src->allowed->p, 262 sizeof(src->allowed->p)); 263 if (dest->used & XPERMS_AUDITALLOW) 264 memcpy(dest->auditallow->p, src->auditallow->p, 265 sizeof(src->auditallow->p)); 266 if (dest->used & XPERMS_DONTAUDIT) 267 memcpy(dest->dontaudit->p, src->dontaudit->p, 268 sizeof(src->dontaudit->p)); 269 } 270 271 /* 272 * similar to avc_copy_xperms_decision, but only copy decision 273 * information relevant to this perm 274 */ 275 static inline void avc_quick_copy_xperms_decision(u8 perm, 276 struct extended_perms_decision *dest, 277 struct extended_perms_decision *src) 278 { 279 /* 280 * compute index of the u32 of the 256 bits (8 u32s) that contain this 281 * command permission 282 */ 283 u8 i = perm >> 5; 284 285 dest->used = src->used; 286 if (dest->used & XPERMS_ALLOWED) 287 dest->allowed->p[i] = src->allowed->p[i]; 288 if (dest->used & XPERMS_AUDITALLOW) 289 dest->auditallow->p[i] = src->auditallow->p[i]; 290 if (dest->used & XPERMS_DONTAUDIT) 291 dest->dontaudit->p[i] = src->dontaudit->p[i]; 292 } 293 294 static struct avc_xperms_decision_node 295 *avc_xperms_decision_alloc(u8 which) 296 { 297 struct avc_xperms_decision_node *xpd_node; 298 struct extended_perms_decision *xpd; 299 300 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT); 301 if (!xpd_node) 302 return NULL; 303 304 xpd = &xpd_node->xpd; 305 if (which & XPERMS_ALLOWED) { 306 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 307 GFP_NOWAIT); 308 if (!xpd->allowed) 309 goto error; 310 } 311 if (which & XPERMS_AUDITALLOW) { 312 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 313 GFP_NOWAIT); 314 if (!xpd->auditallow) 315 goto error; 316 } 317 if (which & XPERMS_DONTAUDIT) { 318 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 319 GFP_NOWAIT); 320 if (!xpd->dontaudit) 321 goto error; 322 } 323 return xpd_node; 324 error: 325 avc_xperms_decision_free(xpd_node); 326 return NULL; 327 } 328 329 static int avc_add_xperms_decision(struct avc_node *node, 330 struct extended_perms_decision *src) 331 { 332 struct avc_xperms_decision_node *dest_xpd; 333 334 node->ae.xp_node->xp.len++; 335 dest_xpd = avc_xperms_decision_alloc(src->used); 336 if (!dest_xpd) 337 return -ENOMEM; 338 avc_copy_xperms_decision(&dest_xpd->xpd, src); 339 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 340 return 0; 341 } 342 343 static struct avc_xperms_node *avc_xperms_alloc(void) 344 { 345 struct avc_xperms_node *xp_node; 346 347 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT); 348 if (!xp_node) 349 return xp_node; 350 INIT_LIST_HEAD(&xp_node->xpd_head); 351 return xp_node; 352 } 353 354 static int avc_xperms_populate(struct avc_node *node, 355 struct avc_xperms_node *src) 356 { 357 struct avc_xperms_node *dest; 358 struct avc_xperms_decision_node *dest_xpd; 359 struct avc_xperms_decision_node *src_xpd; 360 361 if (src->xp.len == 0) 362 return 0; 363 dest = avc_xperms_alloc(); 364 if (!dest) 365 return -ENOMEM; 366 367 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 368 dest->xp.len = src->xp.len; 369 370 /* for each source xpd allocate a destination xpd and copy */ 371 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 372 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 373 if (!dest_xpd) 374 goto error; 375 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 376 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 377 } 378 node->ae.xp_node = dest; 379 return 0; 380 error: 381 avc_xperms_free(dest); 382 return -ENOMEM; 383 384 } 385 386 static inline u32 avc_xperms_audit_required(u32 requested, 387 struct av_decision *avd, 388 struct extended_perms_decision *xpd, 389 u8 perm, 390 int result, 391 u32 *deniedp) 392 { 393 u32 denied, audited; 394 395 denied = requested & ~avd->allowed; 396 if (unlikely(denied)) { 397 audited = denied & avd->auditdeny; 398 if (audited && xpd) { 399 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 400 audited &= ~requested; 401 } 402 } else if (result) { 403 audited = denied = requested; 404 } else { 405 audited = requested & avd->auditallow; 406 if (audited && xpd) { 407 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 408 audited &= ~requested; 409 } 410 } 411 412 *deniedp = denied; 413 return audited; 414 } 415 416 static inline int avc_xperms_audit(struct selinux_state *state, 417 u32 ssid, u32 tsid, u16 tclass, 418 u32 requested, struct av_decision *avd, 419 struct extended_perms_decision *xpd, 420 u8 perm, int result, 421 struct common_audit_data *ad) 422 { 423 u32 audited, denied; 424 425 audited = avc_xperms_audit_required( 426 requested, avd, xpd, perm, result, &denied); 427 if (likely(!audited)) 428 return 0; 429 return slow_avc_audit(state, ssid, tsid, tclass, requested, 430 audited, denied, result, ad); 431 } 432 433 static void avc_node_free(struct rcu_head *rhead) 434 { 435 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 436 avc_xperms_free(node->ae.xp_node); 437 kmem_cache_free(avc_node_cachep, node); 438 avc_cache_stats_incr(frees); 439 } 440 441 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node) 442 { 443 hlist_del_rcu(&node->list); 444 call_rcu(&node->rhead, avc_node_free); 445 atomic_dec(&avc->avc_cache.active_nodes); 446 } 447 448 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node) 449 { 450 avc_xperms_free(node->ae.xp_node); 451 kmem_cache_free(avc_node_cachep, node); 452 avc_cache_stats_incr(frees); 453 atomic_dec(&avc->avc_cache.active_nodes); 454 } 455 456 static void avc_node_replace(struct selinux_avc *avc, 457 struct avc_node *new, struct avc_node *old) 458 { 459 hlist_replace_rcu(&old->list, &new->list); 460 call_rcu(&old->rhead, avc_node_free); 461 atomic_dec(&avc->avc_cache.active_nodes); 462 } 463 464 static inline int avc_reclaim_node(struct selinux_avc *avc) 465 { 466 struct avc_node *node; 467 int hvalue, try, ecx; 468 unsigned long flags; 469 struct hlist_head *head; 470 spinlock_t *lock; 471 472 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 473 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) & 474 (AVC_CACHE_SLOTS - 1); 475 head = &avc->avc_cache.slots[hvalue]; 476 lock = &avc->avc_cache.slots_lock[hvalue]; 477 478 if (!spin_trylock_irqsave(lock, flags)) 479 continue; 480 481 rcu_read_lock(); 482 hlist_for_each_entry(node, head, list) { 483 avc_node_delete(avc, node); 484 avc_cache_stats_incr(reclaims); 485 ecx++; 486 if (ecx >= AVC_CACHE_RECLAIM) { 487 rcu_read_unlock(); 488 spin_unlock_irqrestore(lock, flags); 489 goto out; 490 } 491 } 492 rcu_read_unlock(); 493 spin_unlock_irqrestore(lock, flags); 494 } 495 out: 496 return ecx; 497 } 498 499 static struct avc_node *avc_alloc_node(struct selinux_avc *avc) 500 { 501 struct avc_node *node; 502 503 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT); 504 if (!node) 505 goto out; 506 507 INIT_HLIST_NODE(&node->list); 508 avc_cache_stats_incr(allocations); 509 510 if (atomic_inc_return(&avc->avc_cache.active_nodes) > 511 avc->avc_cache_threshold) 512 avc_reclaim_node(avc); 513 514 out: 515 return node; 516 } 517 518 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 519 { 520 node->ae.ssid = ssid; 521 node->ae.tsid = tsid; 522 node->ae.tclass = tclass; 523 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 524 } 525 526 static inline struct avc_node *avc_search_node(struct selinux_avc *avc, 527 u32 ssid, u32 tsid, u16 tclass) 528 { 529 struct avc_node *node, *ret = NULL; 530 int hvalue; 531 struct hlist_head *head; 532 533 hvalue = avc_hash(ssid, tsid, tclass); 534 head = &avc->avc_cache.slots[hvalue]; 535 hlist_for_each_entry_rcu(node, head, list) { 536 if (ssid == node->ae.ssid && 537 tclass == node->ae.tclass && 538 tsid == node->ae.tsid) { 539 ret = node; 540 break; 541 } 542 } 543 544 return ret; 545 } 546 547 /** 548 * avc_lookup - Look up an AVC entry. 549 * @ssid: source security identifier 550 * @tsid: target security identifier 551 * @tclass: target security class 552 * 553 * Look up an AVC entry that is valid for the 554 * (@ssid, @tsid), interpreting the permissions 555 * based on @tclass. If a valid AVC entry exists, 556 * then this function returns the avc_node. 557 * Otherwise, this function returns NULL. 558 */ 559 static struct avc_node *avc_lookup(struct selinux_avc *avc, 560 u32 ssid, u32 tsid, u16 tclass) 561 { 562 struct avc_node *node; 563 564 avc_cache_stats_incr(lookups); 565 node = avc_search_node(avc, ssid, tsid, tclass); 566 567 if (node) 568 return node; 569 570 avc_cache_stats_incr(misses); 571 return NULL; 572 } 573 574 static int avc_latest_notif_update(struct selinux_avc *avc, 575 int seqno, int is_insert) 576 { 577 int ret = 0; 578 static DEFINE_SPINLOCK(notif_lock); 579 unsigned long flag; 580 581 spin_lock_irqsave(¬if_lock, flag); 582 if (is_insert) { 583 if (seqno < avc->avc_cache.latest_notif) { 584 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 585 seqno, avc->avc_cache.latest_notif); 586 ret = -EAGAIN; 587 } 588 } else { 589 if (seqno > avc->avc_cache.latest_notif) 590 avc->avc_cache.latest_notif = seqno; 591 } 592 spin_unlock_irqrestore(¬if_lock, flag); 593 594 return ret; 595 } 596 597 /** 598 * avc_insert - Insert an AVC entry. 599 * @ssid: source security identifier 600 * @tsid: target security identifier 601 * @tclass: target security class 602 * @avd: resulting av decision 603 * @xp_node: resulting extended permissions 604 * 605 * Insert an AVC entry for the SID pair 606 * (@ssid, @tsid) and class @tclass. 607 * The access vectors and the sequence number are 608 * normally provided by the security server in 609 * response to a security_compute_av() call. If the 610 * sequence number @avd->seqno is not less than the latest 611 * revocation notification, then the function copies 612 * the access vectors into a cache entry, returns 613 * avc_node inserted. Otherwise, this function returns NULL. 614 */ 615 static struct avc_node *avc_insert(struct selinux_avc *avc, 616 u32 ssid, u32 tsid, u16 tclass, 617 struct av_decision *avd, 618 struct avc_xperms_node *xp_node) 619 { 620 struct avc_node *pos, *node = NULL; 621 int hvalue; 622 unsigned long flag; 623 spinlock_t *lock; 624 struct hlist_head *head; 625 626 if (avc_latest_notif_update(avc, avd->seqno, 1)) 627 return NULL; 628 629 node = avc_alloc_node(avc); 630 if (!node) 631 return NULL; 632 633 avc_node_populate(node, ssid, tsid, tclass, avd); 634 if (avc_xperms_populate(node, xp_node)) { 635 avc_node_kill(avc, node); 636 return NULL; 637 } 638 639 hvalue = avc_hash(ssid, tsid, tclass); 640 head = &avc->avc_cache.slots[hvalue]; 641 lock = &avc->avc_cache.slots_lock[hvalue]; 642 spin_lock_irqsave(lock, flag); 643 hlist_for_each_entry(pos, head, list) { 644 if (pos->ae.ssid == ssid && 645 pos->ae.tsid == tsid && 646 pos->ae.tclass == tclass) { 647 avc_node_replace(avc, node, pos); 648 goto found; 649 } 650 } 651 hlist_add_head_rcu(&node->list, head); 652 found: 653 spin_unlock_irqrestore(lock, flag); 654 return node; 655 } 656 657 /** 658 * avc_audit_pre_callback - SELinux specific information 659 * will be called by generic audit code 660 * @ab: the audit buffer 661 * @a: audit_data 662 */ 663 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 664 { 665 struct common_audit_data *ad = a; 666 struct selinux_audit_data *sad = ad->selinux_audit_data; 667 u32 av = sad->audited; 668 const char **perms; 669 int i, perm; 670 671 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 672 673 if (av == 0) { 674 audit_log_format(ab, " null"); 675 return; 676 } 677 678 perms = secclass_map[sad->tclass-1].perms; 679 680 audit_log_format(ab, " {"); 681 i = 0; 682 perm = 1; 683 while (i < (sizeof(av) * 8)) { 684 if ((perm & av) && perms[i]) { 685 audit_log_format(ab, " %s", perms[i]); 686 av &= ~perm; 687 } 688 i++; 689 perm <<= 1; 690 } 691 692 if (av) 693 audit_log_format(ab, " 0x%x", av); 694 695 audit_log_format(ab, " } for "); 696 } 697 698 /** 699 * avc_audit_post_callback - SELinux specific information 700 * will be called by generic audit code 701 * @ab: the audit buffer 702 * @a: audit_data 703 */ 704 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 705 { 706 struct common_audit_data *ad = a; 707 struct selinux_audit_data *sad = ad->selinux_audit_data; 708 char *scontext = NULL; 709 char *tcontext = NULL; 710 const char *tclass = NULL; 711 u32 scontext_len; 712 u32 tcontext_len; 713 int rc; 714 715 rc = security_sid_to_context(sad->state, sad->ssid, &scontext, 716 &scontext_len); 717 if (rc) 718 audit_log_format(ab, " ssid=%d", sad->ssid); 719 else 720 audit_log_format(ab, " scontext=%s", scontext); 721 722 rc = security_sid_to_context(sad->state, sad->tsid, &tcontext, 723 &tcontext_len); 724 if (rc) 725 audit_log_format(ab, " tsid=%d", sad->tsid); 726 else 727 audit_log_format(ab, " tcontext=%s", tcontext); 728 729 tclass = secclass_map[sad->tclass-1].name; 730 audit_log_format(ab, " tclass=%s", tclass); 731 732 if (sad->denied) 733 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 734 735 trace_selinux_audited(sad, scontext, tcontext, tclass); 736 kfree(tcontext); 737 kfree(scontext); 738 739 /* in case of invalid context report also the actual context string */ 740 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext, 741 &scontext_len); 742 if (!rc && scontext) { 743 if (scontext_len && scontext[scontext_len - 1] == '\0') 744 scontext_len--; 745 audit_log_format(ab, " srawcon="); 746 audit_log_n_untrustedstring(ab, scontext, scontext_len); 747 kfree(scontext); 748 } 749 750 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext, 751 &scontext_len); 752 if (!rc && scontext) { 753 if (scontext_len && scontext[scontext_len - 1] == '\0') 754 scontext_len--; 755 audit_log_format(ab, " trawcon="); 756 audit_log_n_untrustedstring(ab, scontext, scontext_len); 757 kfree(scontext); 758 } 759 } 760 761 /* This is the slow part of avc audit with big stack footprint */ 762 noinline int slow_avc_audit(struct selinux_state *state, 763 u32 ssid, u32 tsid, u16 tclass, 764 u32 requested, u32 audited, u32 denied, int result, 765 struct common_audit_data *a) 766 { 767 struct common_audit_data stack_data; 768 struct selinux_audit_data sad; 769 770 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 771 return -EINVAL; 772 773 if (!a) { 774 a = &stack_data; 775 a->type = LSM_AUDIT_DATA_NONE; 776 } 777 778 sad.tclass = tclass; 779 sad.requested = requested; 780 sad.ssid = ssid; 781 sad.tsid = tsid; 782 sad.audited = audited; 783 sad.denied = denied; 784 sad.result = result; 785 sad.state = state; 786 787 a->selinux_audit_data = &sad; 788 789 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 790 return 0; 791 } 792 793 /** 794 * avc_add_callback - Register a callback for security events. 795 * @callback: callback function 796 * @events: security events 797 * 798 * Register a callback function for events in the set @events. 799 * Returns %0 on success or -%ENOMEM if insufficient memory 800 * exists to add the callback. 801 */ 802 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 803 { 804 struct avc_callback_node *c; 805 int rc = 0; 806 807 c = kmalloc(sizeof(*c), GFP_KERNEL); 808 if (!c) { 809 rc = -ENOMEM; 810 goto out; 811 } 812 813 c->callback = callback; 814 c->events = events; 815 c->next = avc_callbacks; 816 avc_callbacks = c; 817 out: 818 return rc; 819 } 820 821 /** 822 * avc_update_node Update an AVC entry 823 * @event : Updating event 824 * @perms : Permission mask bits 825 * @ssid,@tsid,@tclass : identifier of an AVC entry 826 * @seqno : sequence number when decision was made 827 * @xpd: extended_perms_decision to be added to the node 828 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0. 829 * 830 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 831 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 832 * otherwise, this function updates the AVC entry. The original AVC-entry object 833 * will release later by RCU. 834 */ 835 static int avc_update_node(struct selinux_avc *avc, 836 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 837 u32 tsid, u16 tclass, u32 seqno, 838 struct extended_perms_decision *xpd, 839 u32 flags) 840 { 841 int hvalue, rc = 0; 842 unsigned long flag; 843 struct avc_node *pos, *node, *orig = NULL; 844 struct hlist_head *head; 845 spinlock_t *lock; 846 847 /* 848 * If we are in a non-blocking code path, e.g. VFS RCU walk, 849 * then we must not add permissions to a cache entry 850 * because we will not audit the denial. Otherwise, 851 * during the subsequent blocking retry (e.g. VFS ref walk), we 852 * will find the permissions already granted in the cache entry 853 * and won't audit anything at all, leading to silent denials in 854 * permissive mode that only appear when in enforcing mode. 855 * 856 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit() 857 * and selinux_inode_permission(). 858 */ 859 if (flags & AVC_NONBLOCKING) 860 return 0; 861 862 node = avc_alloc_node(avc); 863 if (!node) { 864 rc = -ENOMEM; 865 goto out; 866 } 867 868 /* Lock the target slot */ 869 hvalue = avc_hash(ssid, tsid, tclass); 870 871 head = &avc->avc_cache.slots[hvalue]; 872 lock = &avc->avc_cache.slots_lock[hvalue]; 873 874 spin_lock_irqsave(lock, flag); 875 876 hlist_for_each_entry(pos, head, list) { 877 if (ssid == pos->ae.ssid && 878 tsid == pos->ae.tsid && 879 tclass == pos->ae.tclass && 880 seqno == pos->ae.avd.seqno){ 881 orig = pos; 882 break; 883 } 884 } 885 886 if (!orig) { 887 rc = -ENOENT; 888 avc_node_kill(avc, node); 889 goto out_unlock; 890 } 891 892 /* 893 * Copy and replace original node. 894 */ 895 896 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 897 898 if (orig->ae.xp_node) { 899 rc = avc_xperms_populate(node, orig->ae.xp_node); 900 if (rc) { 901 avc_node_kill(avc, node); 902 goto out_unlock; 903 } 904 } 905 906 switch (event) { 907 case AVC_CALLBACK_GRANT: 908 node->ae.avd.allowed |= perms; 909 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 910 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 911 break; 912 case AVC_CALLBACK_TRY_REVOKE: 913 case AVC_CALLBACK_REVOKE: 914 node->ae.avd.allowed &= ~perms; 915 break; 916 case AVC_CALLBACK_AUDITALLOW_ENABLE: 917 node->ae.avd.auditallow |= perms; 918 break; 919 case AVC_CALLBACK_AUDITALLOW_DISABLE: 920 node->ae.avd.auditallow &= ~perms; 921 break; 922 case AVC_CALLBACK_AUDITDENY_ENABLE: 923 node->ae.avd.auditdeny |= perms; 924 break; 925 case AVC_CALLBACK_AUDITDENY_DISABLE: 926 node->ae.avd.auditdeny &= ~perms; 927 break; 928 case AVC_CALLBACK_ADD_XPERMS: 929 avc_add_xperms_decision(node, xpd); 930 break; 931 } 932 avc_node_replace(avc, node, orig); 933 out_unlock: 934 spin_unlock_irqrestore(lock, flag); 935 out: 936 return rc; 937 } 938 939 /** 940 * avc_flush - Flush the cache 941 */ 942 static void avc_flush(struct selinux_avc *avc) 943 { 944 struct hlist_head *head; 945 struct avc_node *node; 946 spinlock_t *lock; 947 unsigned long flag; 948 int i; 949 950 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 951 head = &avc->avc_cache.slots[i]; 952 lock = &avc->avc_cache.slots_lock[i]; 953 954 spin_lock_irqsave(lock, flag); 955 /* 956 * With preemptable RCU, the outer spinlock does not 957 * prevent RCU grace periods from ending. 958 */ 959 rcu_read_lock(); 960 hlist_for_each_entry(node, head, list) 961 avc_node_delete(avc, node); 962 rcu_read_unlock(); 963 spin_unlock_irqrestore(lock, flag); 964 } 965 } 966 967 /** 968 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 969 * @seqno: policy sequence number 970 */ 971 int avc_ss_reset(struct selinux_avc *avc, u32 seqno) 972 { 973 struct avc_callback_node *c; 974 int rc = 0, tmprc; 975 976 avc_flush(avc); 977 978 for (c = avc_callbacks; c; c = c->next) { 979 if (c->events & AVC_CALLBACK_RESET) { 980 tmprc = c->callback(AVC_CALLBACK_RESET); 981 /* save the first error encountered for the return 982 value and continue processing the callbacks */ 983 if (!rc) 984 rc = tmprc; 985 } 986 } 987 988 avc_latest_notif_update(avc, seqno, 0); 989 return rc; 990 } 991 992 /* 993 * Slow-path helper function for avc_has_perm_noaudit, 994 * when the avc_node lookup fails. We get called with 995 * the RCU read lock held, and need to return with it 996 * still held, but drop if for the security compute. 997 * 998 * Don't inline this, since it's the slow-path and just 999 * results in a bigger stack frame. 1000 */ 1001 static noinline 1002 struct avc_node *avc_compute_av(struct selinux_state *state, 1003 u32 ssid, u32 tsid, 1004 u16 tclass, struct av_decision *avd, 1005 struct avc_xperms_node *xp_node) 1006 { 1007 rcu_read_unlock(); 1008 INIT_LIST_HEAD(&xp_node->xpd_head); 1009 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp); 1010 rcu_read_lock(); 1011 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node); 1012 } 1013 1014 static noinline int avc_denied(struct selinux_state *state, 1015 u32 ssid, u32 tsid, 1016 u16 tclass, u32 requested, 1017 u8 driver, u8 xperm, unsigned int flags, 1018 struct av_decision *avd) 1019 { 1020 if (flags & AVC_STRICT) 1021 return -EACCES; 1022 1023 if (enforcing_enabled(state) && 1024 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1025 return -EACCES; 1026 1027 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver, 1028 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1029 return 0; 1030 } 1031 1032 /* 1033 * The avc extended permissions logic adds an additional 256 bits of 1034 * permissions to an avc node when extended permissions for that node are 1035 * specified in the avtab. If the additional 256 permissions is not adequate, 1036 * as-is the case with ioctls, then multiple may be chained together and the 1037 * driver field is used to specify which set contains the permission. 1038 */ 1039 int avc_has_extended_perms(struct selinux_state *state, 1040 u32 ssid, u32 tsid, u16 tclass, u32 requested, 1041 u8 driver, u8 xperm, struct common_audit_data *ad) 1042 { 1043 struct avc_node *node; 1044 struct av_decision avd; 1045 u32 denied; 1046 struct extended_perms_decision local_xpd; 1047 struct extended_perms_decision *xpd = NULL; 1048 struct extended_perms_data allowed; 1049 struct extended_perms_data auditallow; 1050 struct extended_perms_data dontaudit; 1051 struct avc_xperms_node local_xp_node; 1052 struct avc_xperms_node *xp_node; 1053 int rc = 0, rc2; 1054 1055 xp_node = &local_xp_node; 1056 if (WARN_ON(!requested)) 1057 return -EACCES; 1058 1059 rcu_read_lock(); 1060 1061 node = avc_lookup(state->avc, ssid, tsid, tclass); 1062 if (unlikely(!node)) { 1063 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node); 1064 } else { 1065 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1066 xp_node = node->ae.xp_node; 1067 } 1068 /* if extended permissions are not defined, only consider av_decision */ 1069 if (!xp_node || !xp_node->xp.len) 1070 goto decision; 1071 1072 local_xpd.allowed = &allowed; 1073 local_xpd.auditallow = &auditallow; 1074 local_xpd.dontaudit = &dontaudit; 1075 1076 xpd = avc_xperms_decision_lookup(driver, xp_node); 1077 if (unlikely(!xpd)) { 1078 /* 1079 * Compute the extended_perms_decision only if the driver 1080 * is flagged 1081 */ 1082 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1083 avd.allowed &= ~requested; 1084 goto decision; 1085 } 1086 rcu_read_unlock(); 1087 security_compute_xperms_decision(state, ssid, tsid, tclass, 1088 driver, &local_xpd); 1089 rcu_read_lock(); 1090 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested, 1091 driver, xperm, ssid, tsid, tclass, avd.seqno, 1092 &local_xpd, 0); 1093 } else { 1094 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1095 } 1096 xpd = &local_xpd; 1097 1098 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1099 avd.allowed &= ~requested; 1100 1101 decision: 1102 denied = requested & ~(avd.allowed); 1103 if (unlikely(denied)) 1104 rc = avc_denied(state, ssid, tsid, tclass, requested, 1105 driver, xperm, AVC_EXTENDED_PERMS, &avd); 1106 1107 rcu_read_unlock(); 1108 1109 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested, 1110 &avd, xpd, xperm, rc, ad); 1111 if (rc2) 1112 return rc2; 1113 return rc; 1114 } 1115 1116 /** 1117 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1118 * @ssid: source security identifier 1119 * @tsid: target security identifier 1120 * @tclass: target security class 1121 * @requested: requested permissions, interpreted based on @tclass 1122 * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0 1123 * @avd: access vector decisions 1124 * 1125 * Check the AVC to determine whether the @requested permissions are granted 1126 * for the SID pair (@ssid, @tsid), interpreting the permissions 1127 * based on @tclass, and call the security server on a cache miss to obtain 1128 * a new decision and add it to the cache. Return a copy of the decisions 1129 * in @avd. Return %0 if all @requested permissions are granted, 1130 * -%EACCES if any permissions are denied, or another -errno upon 1131 * other errors. This function is typically called by avc_has_perm(), 1132 * but may also be called directly to separate permission checking from 1133 * auditing, e.g. in cases where a lock must be held for the check but 1134 * should be released for the auditing. 1135 */ 1136 inline int avc_has_perm_noaudit(struct selinux_state *state, 1137 u32 ssid, u32 tsid, 1138 u16 tclass, u32 requested, 1139 unsigned int flags, 1140 struct av_decision *avd) 1141 { 1142 struct avc_node *node; 1143 struct avc_xperms_node xp_node; 1144 int rc = 0; 1145 u32 denied; 1146 1147 if (WARN_ON(!requested)) 1148 return -EACCES; 1149 1150 rcu_read_lock(); 1151 1152 node = avc_lookup(state->avc, ssid, tsid, tclass); 1153 if (unlikely(!node)) 1154 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node); 1155 else 1156 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1157 1158 denied = requested & ~(avd->allowed); 1159 if (unlikely(denied)) 1160 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0, 1161 flags, avd); 1162 1163 rcu_read_unlock(); 1164 return rc; 1165 } 1166 1167 /** 1168 * avc_has_perm - Check permissions and perform any appropriate auditing. 1169 * @ssid: source security identifier 1170 * @tsid: target security identifier 1171 * @tclass: target security class 1172 * @requested: requested permissions, interpreted based on @tclass 1173 * @auditdata: auxiliary audit data 1174 * 1175 * Check the AVC to determine whether the @requested permissions are granted 1176 * for the SID pair (@ssid, @tsid), interpreting the permissions 1177 * based on @tclass, and call the security server on a cache miss to obtain 1178 * a new decision and add it to the cache. Audit the granting or denial of 1179 * permissions in accordance with the policy. Return %0 if all @requested 1180 * permissions are granted, -%EACCES if any permissions are denied, or 1181 * another -errno upon other errors. 1182 */ 1183 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, 1184 u32 requested, struct common_audit_data *auditdata) 1185 { 1186 struct av_decision avd; 1187 int rc, rc2; 1188 1189 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, 1190 &avd); 1191 1192 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, 1193 auditdata, 0); 1194 if (rc2) 1195 return rc2; 1196 return rc; 1197 } 1198 1199 int avc_has_perm_flags(struct selinux_state *state, 1200 u32 ssid, u32 tsid, u16 tclass, u32 requested, 1201 struct common_audit_data *auditdata, 1202 int flags) 1203 { 1204 struct av_decision avd; 1205 int rc, rc2; 1206 1207 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 1208 (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0, 1209 &avd); 1210 1211 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, 1212 auditdata, flags); 1213 if (rc2) 1214 return rc2; 1215 return rc; 1216 } 1217 1218 u32 avc_policy_seqno(struct selinux_state *state) 1219 { 1220 return state->avc->avc_cache.latest_notif; 1221 } 1222 1223 void avc_disable(void) 1224 { 1225 /* 1226 * If you are looking at this because you have realized that we are 1227 * not destroying the avc_node_cachep it might be easy to fix, but 1228 * I don't know the memory barrier semantics well enough to know. It's 1229 * possible that some other task dereferenced security_ops when 1230 * it still pointed to selinux operations. If that is the case it's 1231 * possible that it is about to use the avc and is about to need the 1232 * avc_node_cachep. I know I could wrap the security.c security_ops call 1233 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1234 * the cache and get that memory back. 1235 */ 1236 if (avc_node_cachep) { 1237 avc_flush(selinux_state.avc); 1238 /* kmem_cache_destroy(avc_node_cachep); */ 1239 } 1240 } 1241