xref: /openbmc/linux/security/selinux/avc.c (revision b04b4f78)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) {	.tclass = c,\
57 			.common_pts = common_##i##_perm_to_string,\
58 			.common_base =  b },
59 #include "av_inherit.h"
60 #undef S_
61 };
62 
63 const struct selinux_class_perm selinux_class_perm = {
64 	.av_perm_to_string = av_perm_to_string,
65 	.av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 	.class_to_string = class_to_string,
67 	.cts_len = ARRAY_SIZE(class_to_string),
68 	.av_inherit = av_inherit,
69 	.av_inherit_len = ARRAY_SIZE(av_inherit)
70 };
71 
72 #define AVC_CACHE_SLOTS			512
73 #define AVC_DEF_CACHE_THRESHOLD		512
74 #define AVC_CACHE_RECLAIM		16
75 
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 #define avc_cache_stats_incr(field)				\
78 do {								\
79 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
80 	put_cpu();						\
81 } while (0)
82 #else
83 #define avc_cache_stats_incr(field)	do {} while (0)
84 #endif
85 
86 struct avc_entry {
87 	u32			ssid;
88 	u32			tsid;
89 	u16			tclass;
90 	struct av_decision	avd;
91 };
92 
93 struct avc_node {
94 	struct avc_entry	ae;
95 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
96 	struct rcu_head		rhead;
97 };
98 
99 struct avc_cache {
100 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
101 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
102 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
103 	atomic_t		active_nodes;
104 	u32			latest_notif;	/* latest revocation notification */
105 };
106 
107 struct avc_callback_node {
108 	int (*callback) (u32 event, u32 ssid, u32 tsid,
109 			 u16 tclass, u32 perms,
110 			 u32 *out_retained);
111 	u32 events;
112 	u32 ssid;
113 	u32 tsid;
114 	u16 tclass;
115 	u32 perms;
116 	struct avc_callback_node *next;
117 };
118 
119 /* Exported via selinufs */
120 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121 
122 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
124 #endif
125 
126 static struct avc_cache avc_cache;
127 static struct avc_callback_node *avc_callbacks;
128 static struct kmem_cache *avc_node_cachep;
129 
130 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131 {
132 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
133 }
134 
135 /**
136  * avc_dump_av - Display an access vector in human-readable form.
137  * @tclass: target security class
138  * @av: access vector
139  */
140 void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
141 {
142 	const char **common_pts = NULL;
143 	u32 common_base = 0;
144 	int i, i2, perm;
145 
146 	if (av == 0) {
147 		audit_log_format(ab, " null");
148 		return;
149 	}
150 
151 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
152 		if (av_inherit[i].tclass == tclass) {
153 			common_pts = av_inherit[i].common_pts;
154 			common_base = av_inherit[i].common_base;
155 			break;
156 		}
157 	}
158 
159 	audit_log_format(ab, " {");
160 	i = 0;
161 	perm = 1;
162 	while (perm < common_base) {
163 		if (perm & av) {
164 			audit_log_format(ab, " %s", common_pts[i]);
165 			av &= ~perm;
166 		}
167 		i++;
168 		perm <<= 1;
169 	}
170 
171 	while (i < sizeof(av) * 8) {
172 		if (perm & av) {
173 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
174 				if ((av_perm_to_string[i2].tclass == tclass) &&
175 				    (av_perm_to_string[i2].value == perm))
176 					break;
177 			}
178 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
179 				audit_log_format(ab, " %s",
180 						 av_perm_to_string[i2].name);
181 				av &= ~perm;
182 			}
183 		}
184 		i++;
185 		perm <<= 1;
186 	}
187 
188 	if (av)
189 		audit_log_format(ab, " 0x%x", av);
190 
191 	audit_log_format(ab, " }");
192 }
193 
194 /**
195  * avc_dump_query - Display a SID pair and a class in human-readable form.
196  * @ssid: source security identifier
197  * @tsid: target security identifier
198  * @tclass: target security class
199  */
200 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
201 {
202 	int rc;
203 	char *scontext;
204 	u32 scontext_len;
205 
206 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
207 	if (rc)
208 		audit_log_format(ab, "ssid=%d", ssid);
209 	else {
210 		audit_log_format(ab, "scontext=%s", scontext);
211 		kfree(scontext);
212 	}
213 
214 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215 	if (rc)
216 		audit_log_format(ab, " tsid=%d", tsid);
217 	else {
218 		audit_log_format(ab, " tcontext=%s", scontext);
219 		kfree(scontext);
220 	}
221 
222 	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
223 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224 }
225 
226 /**
227  * avc_init - Initialize the AVC.
228  *
229  * Initialize the access vector cache.
230  */
231 void __init avc_init(void)
232 {
233 	int i;
234 
235 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
237 		spin_lock_init(&avc_cache.slots_lock[i]);
238 	}
239 	atomic_set(&avc_cache.active_nodes, 0);
240 	atomic_set(&avc_cache.lru_hint, 0);
241 
242 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243 					     0, SLAB_PANIC, NULL);
244 
245 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
246 }
247 
248 int avc_get_hash_stats(char *page)
249 {
250 	int i, chain_len, max_chain_len, slots_used;
251 	struct avc_node *node;
252 	struct hlist_head *head;
253 
254 	rcu_read_lock();
255 
256 	slots_used = 0;
257 	max_chain_len = 0;
258 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
259 		head = &avc_cache.slots[i];
260 		if (!hlist_empty(head)) {
261 			struct hlist_node *next;
262 
263 			slots_used++;
264 			chain_len = 0;
265 			hlist_for_each_entry_rcu(node, next, head, list)
266 				chain_len++;
267 			if (chain_len > max_chain_len)
268 				max_chain_len = chain_len;
269 		}
270 	}
271 
272 	rcu_read_unlock();
273 
274 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
275 			 "longest chain: %d\n",
276 			 atomic_read(&avc_cache.active_nodes),
277 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
278 }
279 
280 static void avc_node_free(struct rcu_head *rhead)
281 {
282 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
283 	kmem_cache_free(avc_node_cachep, node);
284 	avc_cache_stats_incr(frees);
285 }
286 
287 static void avc_node_delete(struct avc_node *node)
288 {
289 	hlist_del_rcu(&node->list);
290 	call_rcu(&node->rhead, avc_node_free);
291 	atomic_dec(&avc_cache.active_nodes);
292 }
293 
294 static void avc_node_kill(struct avc_node *node)
295 {
296 	kmem_cache_free(avc_node_cachep, node);
297 	avc_cache_stats_incr(frees);
298 	atomic_dec(&avc_cache.active_nodes);
299 }
300 
301 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
302 {
303 	hlist_replace_rcu(&old->list, &new->list);
304 	call_rcu(&old->rhead, avc_node_free);
305 	atomic_dec(&avc_cache.active_nodes);
306 }
307 
308 static inline int avc_reclaim_node(void)
309 {
310 	struct avc_node *node;
311 	int hvalue, try, ecx;
312 	unsigned long flags;
313 	struct hlist_head *head;
314 	struct hlist_node *next;
315 	spinlock_t *lock;
316 
317 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
318 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
319 		head = &avc_cache.slots[hvalue];
320 		lock = &avc_cache.slots_lock[hvalue];
321 
322 		if (!spin_trylock_irqsave(lock, flags))
323 			continue;
324 
325 		rcu_read_lock();
326 		hlist_for_each_entry(node, next, head, list) {
327 			avc_node_delete(node);
328 			avc_cache_stats_incr(reclaims);
329 			ecx++;
330 			if (ecx >= AVC_CACHE_RECLAIM) {
331 				rcu_read_unlock();
332 				spin_unlock_irqrestore(lock, flags);
333 				goto out;
334 			}
335 		}
336 		rcu_read_unlock();
337 		spin_unlock_irqrestore(lock, flags);
338 	}
339 out:
340 	return ecx;
341 }
342 
343 static struct avc_node *avc_alloc_node(void)
344 {
345 	struct avc_node *node;
346 
347 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
348 	if (!node)
349 		goto out;
350 
351 	INIT_RCU_HEAD(&node->rhead);
352 	INIT_HLIST_NODE(&node->list);
353 	avc_cache_stats_incr(allocations);
354 
355 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
356 		avc_reclaim_node();
357 
358 out:
359 	return node;
360 }
361 
362 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
363 {
364 	node->ae.ssid = ssid;
365 	node->ae.tsid = tsid;
366 	node->ae.tclass = tclass;
367 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
368 }
369 
370 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
371 {
372 	struct avc_node *node, *ret = NULL;
373 	int hvalue;
374 	struct hlist_head *head;
375 	struct hlist_node *next;
376 
377 	hvalue = avc_hash(ssid, tsid, tclass);
378 	head = &avc_cache.slots[hvalue];
379 	hlist_for_each_entry_rcu(node, next, head, list) {
380 		if (ssid == node->ae.ssid &&
381 		    tclass == node->ae.tclass &&
382 		    tsid == node->ae.tsid) {
383 			ret = node;
384 			break;
385 		}
386 	}
387 
388 	return ret;
389 }
390 
391 /**
392  * avc_lookup - Look up an AVC entry.
393  * @ssid: source security identifier
394  * @tsid: target security identifier
395  * @tclass: target security class
396  *
397  * Look up an AVC entry that is valid for the
398  * (@ssid, @tsid), interpreting the permissions
399  * based on @tclass.  If a valid AVC entry exists,
400  * then this function return the avc_node.
401  * Otherwise, this function returns NULL.
402  */
403 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
404 {
405 	struct avc_node *node;
406 
407 	avc_cache_stats_incr(lookups);
408 	node = avc_search_node(ssid, tsid, tclass);
409 
410 	if (node)
411 		avc_cache_stats_incr(hits);
412 	else
413 		avc_cache_stats_incr(misses);
414 
415 	return node;
416 }
417 
418 static int avc_latest_notif_update(int seqno, int is_insert)
419 {
420 	int ret = 0;
421 	static DEFINE_SPINLOCK(notif_lock);
422 	unsigned long flag;
423 
424 	spin_lock_irqsave(&notif_lock, flag);
425 	if (is_insert) {
426 		if (seqno < avc_cache.latest_notif) {
427 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
428 			       seqno, avc_cache.latest_notif);
429 			ret = -EAGAIN;
430 		}
431 	} else {
432 		if (seqno > avc_cache.latest_notif)
433 			avc_cache.latest_notif = seqno;
434 	}
435 	spin_unlock_irqrestore(&notif_lock, flag);
436 
437 	return ret;
438 }
439 
440 /**
441  * avc_insert - Insert an AVC entry.
442  * @ssid: source security identifier
443  * @tsid: target security identifier
444  * @tclass: target security class
445  * @avd: resulting av decision
446  *
447  * Insert an AVC entry for the SID pair
448  * (@ssid, @tsid) and class @tclass.
449  * The access vectors and the sequence number are
450  * normally provided by the security server in
451  * response to a security_compute_av() call.  If the
452  * sequence number @avd->seqno is not less than the latest
453  * revocation notification, then the function copies
454  * the access vectors into a cache entry, returns
455  * avc_node inserted. Otherwise, this function returns NULL.
456  */
457 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
458 {
459 	struct avc_node *pos, *node = NULL;
460 	int hvalue;
461 	unsigned long flag;
462 
463 	if (avc_latest_notif_update(avd->seqno, 1))
464 		goto out;
465 
466 	node = avc_alloc_node();
467 	if (node) {
468 		struct hlist_head *head;
469 		struct hlist_node *next;
470 		spinlock_t *lock;
471 
472 		hvalue = avc_hash(ssid, tsid, tclass);
473 		avc_node_populate(node, ssid, tsid, tclass, avd);
474 
475 		head = &avc_cache.slots[hvalue];
476 		lock = &avc_cache.slots_lock[hvalue];
477 
478 		spin_lock_irqsave(lock, flag);
479 		hlist_for_each_entry(pos, next, head, list) {
480 			if (pos->ae.ssid == ssid &&
481 			    pos->ae.tsid == tsid &&
482 			    pos->ae.tclass == tclass) {
483 				avc_node_replace(node, pos);
484 				goto found;
485 			}
486 		}
487 		hlist_add_head_rcu(&node->list, head);
488 found:
489 		spin_unlock_irqrestore(lock, flag);
490 	}
491 out:
492 	return node;
493 }
494 
495 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
496 				       struct in6_addr *addr, __be16 port,
497 				       char *name1, char *name2)
498 {
499 	if (!ipv6_addr_any(addr))
500 		audit_log_format(ab, " %s=%pI6", name1, addr);
501 	if (port)
502 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
503 }
504 
505 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
506 				       __be16 port, char *name1, char *name2)
507 {
508 	if (addr)
509 		audit_log_format(ab, " %s=%pI4", name1, &addr);
510 	if (port)
511 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
512 }
513 
514 /**
515  * avc_audit - Audit the granting or denial of permissions.
516  * @ssid: source security identifier
517  * @tsid: target security identifier
518  * @tclass: target security class
519  * @requested: requested permissions
520  * @avd: access vector decisions
521  * @result: result from avc_has_perm_noaudit
522  * @a:  auxiliary audit data
523  *
524  * Audit the granting or denial of permissions in accordance
525  * with the policy.  This function is typically called by
526  * avc_has_perm() after a permission check, but can also be
527  * called directly by callers who use avc_has_perm_noaudit()
528  * in order to separate the permission check from the auditing.
529  * For example, this separation is useful when the permission check must
530  * be performed under a lock, to allow the lock to be released
531  * before calling the auditing code.
532  */
533 void avc_audit(u32 ssid, u32 tsid,
534 	       u16 tclass, u32 requested,
535 	       struct av_decision *avd, int result, struct avc_audit_data *a)
536 {
537 	struct task_struct *tsk = current;
538 	struct inode *inode = NULL;
539 	u32 denied, audited;
540 	struct audit_buffer *ab;
541 
542 	denied = requested & ~avd->allowed;
543 	if (denied) {
544 		audited = denied;
545 		if (!(audited & avd->auditdeny))
546 			return;
547 	} else if (result) {
548 		audited = denied = requested;
549 	} else {
550 		audited = requested;
551 		if (!(audited & avd->auditallow))
552 			return;
553 	}
554 
555 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
556 	if (!ab)
557 		return;		/* audit_panic has been called */
558 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
559 	avc_dump_av(ab, tclass, audited);
560 	audit_log_format(ab, " for ");
561 	if (a && a->tsk)
562 		tsk = a->tsk;
563 	if (tsk && tsk->pid) {
564 		audit_log_format(ab, " pid=%d comm=", tsk->pid);
565 		audit_log_untrustedstring(ab, tsk->comm);
566 	}
567 	if (a) {
568 		switch (a->type) {
569 		case AVC_AUDIT_DATA_IPC:
570 			audit_log_format(ab, " key=%d", a->u.ipc_id);
571 			break;
572 		case AVC_AUDIT_DATA_CAP:
573 			audit_log_format(ab, " capability=%d", a->u.cap);
574 			break;
575 		case AVC_AUDIT_DATA_FS:
576 			if (a->u.fs.path.dentry) {
577 				struct dentry *dentry = a->u.fs.path.dentry;
578 				if (a->u.fs.path.mnt) {
579 					audit_log_d_path(ab, "path=",
580 							 &a->u.fs.path);
581 				} else {
582 					audit_log_format(ab, " name=");
583 					audit_log_untrustedstring(ab, dentry->d_name.name);
584 				}
585 				inode = dentry->d_inode;
586 			} else if (a->u.fs.inode) {
587 				struct dentry *dentry;
588 				inode = a->u.fs.inode;
589 				dentry = d_find_alias(inode);
590 				if (dentry) {
591 					audit_log_format(ab, " name=");
592 					audit_log_untrustedstring(ab, dentry->d_name.name);
593 					dput(dentry);
594 				}
595 			}
596 			if (inode)
597 				audit_log_format(ab, " dev=%s ino=%lu",
598 						 inode->i_sb->s_id,
599 						 inode->i_ino);
600 			break;
601 		case AVC_AUDIT_DATA_NET:
602 			if (a->u.net.sk) {
603 				struct sock *sk = a->u.net.sk;
604 				struct unix_sock *u;
605 				int len = 0;
606 				char *p = NULL;
607 
608 				switch (sk->sk_family) {
609 				case AF_INET: {
610 					struct inet_sock *inet = inet_sk(sk);
611 
612 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
613 							    inet->sport,
614 							    "laddr", "lport");
615 					avc_print_ipv4_addr(ab, inet->daddr,
616 							    inet->dport,
617 							    "faddr", "fport");
618 					break;
619 				}
620 				case AF_INET6: {
621 					struct inet_sock *inet = inet_sk(sk);
622 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
623 
624 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
625 							    inet->sport,
626 							    "laddr", "lport");
627 					avc_print_ipv6_addr(ab, &inet6->daddr,
628 							    inet->dport,
629 							    "faddr", "fport");
630 					break;
631 				}
632 				case AF_UNIX:
633 					u = unix_sk(sk);
634 					if (u->dentry) {
635 						struct path path = {
636 							.dentry = u->dentry,
637 							.mnt = u->mnt
638 						};
639 						audit_log_d_path(ab, "path=",
640 								 &path);
641 						break;
642 					}
643 					if (!u->addr)
644 						break;
645 					len = u->addr->len-sizeof(short);
646 					p = &u->addr->name->sun_path[0];
647 					audit_log_format(ab, " path=");
648 					if (*p)
649 						audit_log_untrustedstring(ab, p);
650 					else
651 						audit_log_n_hex(ab, p, len);
652 					break;
653 				}
654 			}
655 
656 			switch (a->u.net.family) {
657 			case AF_INET:
658 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
659 						    a->u.net.sport,
660 						    "saddr", "src");
661 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
662 						    a->u.net.dport,
663 						    "daddr", "dest");
664 				break;
665 			case AF_INET6:
666 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
667 						    a->u.net.sport,
668 						    "saddr", "src");
669 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
670 						    a->u.net.dport,
671 						    "daddr", "dest");
672 				break;
673 			}
674 			if (a->u.net.netif > 0) {
675 				struct net_device *dev;
676 
677 				/* NOTE: we always use init's namespace */
678 				dev = dev_get_by_index(&init_net,
679 						       a->u.net.netif);
680 				if (dev) {
681 					audit_log_format(ab, " netif=%s",
682 							 dev->name);
683 					dev_put(dev);
684 				}
685 			}
686 			break;
687 		}
688 	}
689 	audit_log_format(ab, " ");
690 	avc_dump_query(ab, ssid, tsid, tclass);
691 	audit_log_end(ab);
692 }
693 
694 /**
695  * avc_add_callback - Register a callback for security events.
696  * @callback: callback function
697  * @events: security events
698  * @ssid: source security identifier or %SECSID_WILD
699  * @tsid: target security identifier or %SECSID_WILD
700  * @tclass: target security class
701  * @perms: permissions
702  *
703  * Register a callback function for events in the set @events
704  * related to the SID pair (@ssid, @tsid) and
705  * and the permissions @perms, interpreting
706  * @perms based on @tclass.  Returns %0 on success or
707  * -%ENOMEM if insufficient memory exists to add the callback.
708  */
709 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
710 				     u16 tclass, u32 perms,
711 				     u32 *out_retained),
712 		     u32 events, u32 ssid, u32 tsid,
713 		     u16 tclass, u32 perms)
714 {
715 	struct avc_callback_node *c;
716 	int rc = 0;
717 
718 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
719 	if (!c) {
720 		rc = -ENOMEM;
721 		goto out;
722 	}
723 
724 	c->callback = callback;
725 	c->events = events;
726 	c->ssid = ssid;
727 	c->tsid = tsid;
728 	c->perms = perms;
729 	c->next = avc_callbacks;
730 	avc_callbacks = c;
731 out:
732 	return rc;
733 }
734 
735 static inline int avc_sidcmp(u32 x, u32 y)
736 {
737 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
738 }
739 
740 /**
741  * avc_update_node Update an AVC entry
742  * @event : Updating event
743  * @perms : Permission mask bits
744  * @ssid,@tsid,@tclass : identifier of an AVC entry
745  * @seqno : sequence number when decision was made
746  *
747  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
748  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
749  * otherwise, this function update the AVC entry. The original AVC-entry object
750  * will release later by RCU.
751  */
752 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
753 			   u32 seqno)
754 {
755 	int hvalue, rc = 0;
756 	unsigned long flag;
757 	struct avc_node *pos, *node, *orig = NULL;
758 	struct hlist_head *head;
759 	struct hlist_node *next;
760 	spinlock_t *lock;
761 
762 	node = avc_alloc_node();
763 	if (!node) {
764 		rc = -ENOMEM;
765 		goto out;
766 	}
767 
768 	/* Lock the target slot */
769 	hvalue = avc_hash(ssid, tsid, tclass);
770 
771 	head = &avc_cache.slots[hvalue];
772 	lock = &avc_cache.slots_lock[hvalue];
773 
774 	spin_lock_irqsave(lock, flag);
775 
776 	hlist_for_each_entry(pos, next, head, list) {
777 		if (ssid == pos->ae.ssid &&
778 		    tsid == pos->ae.tsid &&
779 		    tclass == pos->ae.tclass &&
780 		    seqno == pos->ae.avd.seqno){
781 			orig = pos;
782 			break;
783 		}
784 	}
785 
786 	if (!orig) {
787 		rc = -ENOENT;
788 		avc_node_kill(node);
789 		goto out_unlock;
790 	}
791 
792 	/*
793 	 * Copy and replace original node.
794 	 */
795 
796 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
797 
798 	switch (event) {
799 	case AVC_CALLBACK_GRANT:
800 		node->ae.avd.allowed |= perms;
801 		break;
802 	case AVC_CALLBACK_TRY_REVOKE:
803 	case AVC_CALLBACK_REVOKE:
804 		node->ae.avd.allowed &= ~perms;
805 		break;
806 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
807 		node->ae.avd.auditallow |= perms;
808 		break;
809 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
810 		node->ae.avd.auditallow &= ~perms;
811 		break;
812 	case AVC_CALLBACK_AUDITDENY_ENABLE:
813 		node->ae.avd.auditdeny |= perms;
814 		break;
815 	case AVC_CALLBACK_AUDITDENY_DISABLE:
816 		node->ae.avd.auditdeny &= ~perms;
817 		break;
818 	}
819 	avc_node_replace(node, orig);
820 out_unlock:
821 	spin_unlock_irqrestore(lock, flag);
822 out:
823 	return rc;
824 }
825 
826 /**
827  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
828  * @seqno: policy sequence number
829  */
830 int avc_ss_reset(u32 seqno)
831 {
832 	struct avc_callback_node *c;
833 	int i, rc = 0, tmprc;
834 	unsigned long flag;
835 	struct avc_node *node;
836 	struct hlist_head *head;
837 	struct hlist_node *next;
838 	spinlock_t *lock;
839 
840 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
841 		head = &avc_cache.slots[i];
842 		lock = &avc_cache.slots_lock[i];
843 
844 		spin_lock_irqsave(lock, flag);
845 		/*
846 		 * With preemptable RCU, the outer spinlock does not
847 		 * prevent RCU grace periods from ending.
848 		 */
849 		rcu_read_lock();
850 		hlist_for_each_entry(node, next, head, list)
851 			avc_node_delete(node);
852 		rcu_read_unlock();
853 		spin_unlock_irqrestore(lock, flag);
854 	}
855 
856 	for (c = avc_callbacks; c; c = c->next) {
857 		if (c->events & AVC_CALLBACK_RESET) {
858 			tmprc = c->callback(AVC_CALLBACK_RESET,
859 					    0, 0, 0, 0, NULL);
860 			/* save the first error encountered for the return
861 			   value and continue processing the callbacks */
862 			if (!rc)
863 				rc = tmprc;
864 		}
865 	}
866 
867 	avc_latest_notif_update(seqno, 0);
868 	return rc;
869 }
870 
871 /**
872  * avc_has_perm_noaudit - Check permissions but perform no auditing.
873  * @ssid: source security identifier
874  * @tsid: target security identifier
875  * @tclass: target security class
876  * @requested: requested permissions, interpreted based on @tclass
877  * @flags:  AVC_STRICT or 0
878  * @avd: access vector decisions
879  *
880  * Check the AVC to determine whether the @requested permissions are granted
881  * for the SID pair (@ssid, @tsid), interpreting the permissions
882  * based on @tclass, and call the security server on a cache miss to obtain
883  * a new decision and add it to the cache.  Return a copy of the decisions
884  * in @avd.  Return %0 if all @requested permissions are granted,
885  * -%EACCES if any permissions are denied, or another -errno upon
886  * other errors.  This function is typically called by avc_has_perm(),
887  * but may also be called directly to separate permission checking from
888  * auditing, e.g. in cases where a lock must be held for the check but
889  * should be released for the auditing.
890  */
891 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
892 			 u16 tclass, u32 requested,
893 			 unsigned flags,
894 			 struct av_decision *in_avd)
895 {
896 	struct avc_node *node;
897 	struct av_decision avd_entry, *avd;
898 	int rc = 0;
899 	u32 denied;
900 
901 	BUG_ON(!requested);
902 
903 	rcu_read_lock();
904 
905 	node = avc_lookup(ssid, tsid, tclass);
906 	if (!node) {
907 		rcu_read_unlock();
908 
909 		if (in_avd)
910 			avd = in_avd;
911 		else
912 			avd = &avd_entry;
913 
914 		rc = security_compute_av(ssid, tsid, tclass, requested, avd);
915 		if (rc)
916 			goto out;
917 		rcu_read_lock();
918 		node = avc_insert(ssid, tsid, tclass, avd);
919 	} else {
920 		if (in_avd)
921 			memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
922 		avd = &node->ae.avd;
923 	}
924 
925 	denied = requested & ~(avd->allowed);
926 
927 	if (denied) {
928 		if (flags & AVC_STRICT)
929 			rc = -EACCES;
930 		else if (!selinux_enforcing || security_permissive_sid(ssid))
931 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
932 					tsid, tclass, avd->seqno);
933 		else
934 			rc = -EACCES;
935 	}
936 
937 	rcu_read_unlock();
938 out:
939 	return rc;
940 }
941 
942 /**
943  * avc_has_perm - Check permissions and perform any appropriate auditing.
944  * @ssid: source security identifier
945  * @tsid: target security identifier
946  * @tclass: target security class
947  * @requested: requested permissions, interpreted based on @tclass
948  * @auditdata: auxiliary audit data
949  *
950  * Check the AVC to determine whether the @requested permissions are granted
951  * for the SID pair (@ssid, @tsid), interpreting the permissions
952  * based on @tclass, and call the security server on a cache miss to obtain
953  * a new decision and add it to the cache.  Audit the granting or denial of
954  * permissions in accordance with the policy.  Return %0 if all @requested
955  * permissions are granted, -%EACCES if any permissions are denied, or
956  * another -errno upon other errors.
957  */
958 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
959 		 u32 requested, struct avc_audit_data *auditdata)
960 {
961 	struct av_decision avd;
962 	int rc;
963 
964 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
965 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
966 	return rc;
967 }
968 
969 u32 avc_policy_seqno(void)
970 {
971 	return avc_cache.latest_notif;
972 }
973