1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <net/sock.h> 26 #include <linux/un.h> 27 #include <net/af_unix.h> 28 #include <linux/ip.h> 29 #include <linux/audit.h> 30 #include <linux/ipv6.h> 31 #include <net/ipv6.h> 32 #include "avc.h" 33 #include "avc_ss.h" 34 35 static const struct av_perm_to_string av_perm_to_string[] = { 36 #define S_(c, v, s) { c, v, s }, 37 #include "av_perm_to_string.h" 38 #undef S_ 39 }; 40 41 static const char *class_to_string[] = { 42 #define S_(s) s, 43 #include "class_to_string.h" 44 #undef S_ 45 }; 46 47 #define TB_(s) static const char * s [] = { 48 #define TE_(s) }; 49 #define S_(s) s, 50 #include "common_perm_to_string.h" 51 #undef TB_ 52 #undef TE_ 53 #undef S_ 54 55 static const struct av_inherit av_inherit[] = { 56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b }, 57 #include "av_inherit.h" 58 #undef S_ 59 }; 60 61 const struct selinux_class_perm selinux_class_perm = { 62 av_perm_to_string, 63 ARRAY_SIZE(av_perm_to_string), 64 class_to_string, 65 ARRAY_SIZE(class_to_string), 66 av_inherit, 67 ARRAY_SIZE(av_inherit) 68 }; 69 70 #define AVC_CACHE_SLOTS 512 71 #define AVC_DEF_CACHE_THRESHOLD 512 72 #define AVC_CACHE_RECLAIM 16 73 74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 75 #define avc_cache_stats_incr(field) \ 76 do { \ 77 per_cpu(avc_cache_stats, get_cpu()).field++; \ 78 put_cpu(); \ 79 } while (0) 80 #else 81 #define avc_cache_stats_incr(field) do {} while (0) 82 #endif 83 84 struct avc_entry { 85 u32 ssid; 86 u32 tsid; 87 u16 tclass; 88 struct av_decision avd; 89 atomic_t used; /* used recently */ 90 }; 91 92 struct avc_node { 93 struct avc_entry ae; 94 struct list_head list; 95 struct rcu_head rhead; 96 }; 97 98 struct avc_cache { 99 struct list_head slots[AVC_CACHE_SLOTS]; 100 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 101 atomic_t lru_hint; /* LRU hint for reclaim scan */ 102 atomic_t active_nodes; 103 u32 latest_notif; /* latest revocation notification */ 104 }; 105 106 struct avc_callback_node { 107 int (*callback) (u32 event, u32 ssid, u32 tsid, 108 u16 tclass, u32 perms, 109 u32 *out_retained); 110 u32 events; 111 u32 ssid; 112 u32 tsid; 113 u16 tclass; 114 u32 perms; 115 struct avc_callback_node *next; 116 }; 117 118 /* Exported via selinufs */ 119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 120 121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 123 #endif 124 125 static struct avc_cache avc_cache; 126 static struct avc_callback_node *avc_callbacks; 127 static struct kmem_cache *avc_node_cachep; 128 129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 130 { 131 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 132 } 133 134 /** 135 * avc_dump_av - Display an access vector in human-readable form. 136 * @tclass: target security class 137 * @av: access vector 138 */ 139 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 140 { 141 const char **common_pts = NULL; 142 u32 common_base = 0; 143 int i, i2, perm; 144 145 if (av == 0) { 146 audit_log_format(ab, " null"); 147 return; 148 } 149 150 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) { 151 if (av_inherit[i].tclass == tclass) { 152 common_pts = av_inherit[i].common_pts; 153 common_base = av_inherit[i].common_base; 154 break; 155 } 156 } 157 158 audit_log_format(ab, " {"); 159 i = 0; 160 perm = 1; 161 while (perm < common_base) { 162 if (perm & av) { 163 audit_log_format(ab, " %s", common_pts[i]); 164 av &= ~perm; 165 } 166 i++; 167 perm <<= 1; 168 } 169 170 while (i < sizeof(av) * 8) { 171 if (perm & av) { 172 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) { 173 if ((av_perm_to_string[i2].tclass == tclass) && 174 (av_perm_to_string[i2].value == perm)) 175 break; 176 } 177 if (i2 < ARRAY_SIZE(av_perm_to_string)) { 178 audit_log_format(ab, " %s", 179 av_perm_to_string[i2].name); 180 av &= ~perm; 181 } 182 } 183 i++; 184 perm <<= 1; 185 } 186 187 if (av) 188 audit_log_format(ab, " 0x%x", av); 189 190 audit_log_format(ab, " }"); 191 } 192 193 /** 194 * avc_dump_query - Display a SID pair and a class in human-readable form. 195 * @ssid: source security identifier 196 * @tsid: target security identifier 197 * @tclass: target security class 198 */ 199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 200 { 201 int rc; 202 char *scontext; 203 u32 scontext_len; 204 205 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 206 if (rc) 207 audit_log_format(ab, "ssid=%d", ssid); 208 else { 209 audit_log_format(ab, "scontext=%s", scontext); 210 kfree(scontext); 211 } 212 213 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 214 if (rc) 215 audit_log_format(ab, " tsid=%d", tsid); 216 else { 217 audit_log_format(ab, " tcontext=%s", scontext); 218 kfree(scontext); 219 } 220 221 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]); 222 audit_log_format(ab, " tclass=%s", class_to_string[tclass]); 223 } 224 225 /** 226 * avc_init - Initialize the AVC. 227 * 228 * Initialize the access vector cache. 229 */ 230 void __init avc_init(void) 231 { 232 int i; 233 234 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 235 INIT_LIST_HEAD(&avc_cache.slots[i]); 236 spin_lock_init(&avc_cache.slots_lock[i]); 237 } 238 atomic_set(&avc_cache.active_nodes, 0); 239 atomic_set(&avc_cache.lru_hint, 0); 240 241 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 242 0, SLAB_PANIC, NULL); 243 244 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); 245 } 246 247 int avc_get_hash_stats(char *page) 248 { 249 int i, chain_len, max_chain_len, slots_used; 250 struct avc_node *node; 251 252 rcu_read_lock(); 253 254 slots_used = 0; 255 max_chain_len = 0; 256 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 257 if (!list_empty(&avc_cache.slots[i])) { 258 slots_used++; 259 chain_len = 0; 260 list_for_each_entry_rcu(node, &avc_cache.slots[i], list) 261 chain_len++; 262 if (chain_len > max_chain_len) 263 max_chain_len = chain_len; 264 } 265 } 266 267 rcu_read_unlock(); 268 269 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 270 "longest chain: %d\n", 271 atomic_read(&avc_cache.active_nodes), 272 slots_used, AVC_CACHE_SLOTS, max_chain_len); 273 } 274 275 static void avc_node_free(struct rcu_head *rhead) 276 { 277 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 278 kmem_cache_free(avc_node_cachep, node); 279 avc_cache_stats_incr(frees); 280 } 281 282 static void avc_node_delete(struct avc_node *node) 283 { 284 list_del_rcu(&node->list); 285 call_rcu(&node->rhead, avc_node_free); 286 atomic_dec(&avc_cache.active_nodes); 287 } 288 289 static void avc_node_kill(struct avc_node *node) 290 { 291 kmem_cache_free(avc_node_cachep, node); 292 avc_cache_stats_incr(frees); 293 atomic_dec(&avc_cache.active_nodes); 294 } 295 296 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 297 { 298 list_replace_rcu(&old->list, &new->list); 299 call_rcu(&old->rhead, avc_node_free); 300 atomic_dec(&avc_cache.active_nodes); 301 } 302 303 static inline int avc_reclaim_node(void) 304 { 305 struct avc_node *node; 306 int hvalue, try, ecx; 307 unsigned long flags; 308 309 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) { 310 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 311 312 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags)) 313 continue; 314 315 list_for_each_entry(node, &avc_cache.slots[hvalue], list) { 316 if (atomic_dec_and_test(&node->ae.used)) { 317 /* Recently Unused */ 318 avc_node_delete(node); 319 avc_cache_stats_incr(reclaims); 320 ecx++; 321 if (ecx >= AVC_CACHE_RECLAIM) { 322 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); 323 goto out; 324 } 325 } 326 } 327 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); 328 } 329 out: 330 return ecx; 331 } 332 333 static struct avc_node *avc_alloc_node(void) 334 { 335 struct avc_node *node; 336 337 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC); 338 if (!node) 339 goto out; 340 341 INIT_RCU_HEAD(&node->rhead); 342 INIT_LIST_HEAD(&node->list); 343 atomic_set(&node->ae.used, 1); 344 avc_cache_stats_incr(allocations); 345 346 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 347 avc_reclaim_node(); 348 349 out: 350 return node; 351 } 352 353 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) 354 { 355 node->ae.ssid = ssid; 356 node->ae.tsid = tsid; 357 node->ae.tclass = tclass; 358 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd)); 359 } 360 361 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 362 { 363 struct avc_node *node, *ret = NULL; 364 int hvalue; 365 366 hvalue = avc_hash(ssid, tsid, tclass); 367 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) { 368 if (ssid == node->ae.ssid && 369 tclass == node->ae.tclass && 370 tsid == node->ae.tsid) { 371 ret = node; 372 break; 373 } 374 } 375 376 if (ret == NULL) { 377 /* cache miss */ 378 goto out; 379 } 380 381 /* cache hit */ 382 if (atomic_read(&ret->ae.used) != 1) 383 atomic_set(&ret->ae.used, 1); 384 out: 385 return ret; 386 } 387 388 /** 389 * avc_lookup - Look up an AVC entry. 390 * @ssid: source security identifier 391 * @tsid: target security identifier 392 * @tclass: target security class 393 * @requested: requested permissions, interpreted based on @tclass 394 * 395 * Look up an AVC entry that is valid for the 396 * @requested permissions between the SID pair 397 * (@ssid, @tsid), interpreting the permissions 398 * based on @tclass. If a valid AVC entry exists, 399 * then this function return the avc_node. 400 * Otherwise, this function returns NULL. 401 */ 402 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested) 403 { 404 struct avc_node *node; 405 406 avc_cache_stats_incr(lookups); 407 node = avc_search_node(ssid, tsid, tclass); 408 409 if (node && ((node->ae.avd.decided & requested) == requested)) { 410 avc_cache_stats_incr(hits); 411 goto out; 412 } 413 414 node = NULL; 415 avc_cache_stats_incr(misses); 416 out: 417 return node; 418 } 419 420 static int avc_latest_notif_update(int seqno, int is_insert) 421 { 422 int ret = 0; 423 static DEFINE_SPINLOCK(notif_lock); 424 unsigned long flag; 425 426 spin_lock_irqsave(¬if_lock, flag); 427 if (is_insert) { 428 if (seqno < avc_cache.latest_notif) { 429 printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n", 430 seqno, avc_cache.latest_notif); 431 ret = -EAGAIN; 432 } 433 } else { 434 if (seqno > avc_cache.latest_notif) 435 avc_cache.latest_notif = seqno; 436 } 437 spin_unlock_irqrestore(¬if_lock, flag); 438 439 return ret; 440 } 441 442 /** 443 * avc_insert - Insert an AVC entry. 444 * @ssid: source security identifier 445 * @tsid: target security identifier 446 * @tclass: target security class 447 * @ae: AVC entry 448 * 449 * Insert an AVC entry for the SID pair 450 * (@ssid, @tsid) and class @tclass. 451 * The access vectors and the sequence number are 452 * normally provided by the security server in 453 * response to a security_compute_av() call. If the 454 * sequence number @ae->avd.seqno is not less than the latest 455 * revocation notification, then the function copies 456 * the access vectors into a cache entry, returns 457 * avc_node inserted. Otherwise, this function returns NULL. 458 */ 459 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) 460 { 461 struct avc_node *pos, *node = NULL; 462 int hvalue; 463 unsigned long flag; 464 465 if (avc_latest_notif_update(ae->avd.seqno, 1)) 466 goto out; 467 468 node = avc_alloc_node(); 469 if (node) { 470 hvalue = avc_hash(ssid, tsid, tclass); 471 avc_node_populate(node, ssid, tsid, tclass, ae); 472 473 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); 474 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { 475 if (pos->ae.ssid == ssid && 476 pos->ae.tsid == tsid && 477 pos->ae.tclass == tclass) { 478 avc_node_replace(node, pos); 479 goto found; 480 } 481 } 482 list_add_rcu(&node->list, &avc_cache.slots[hvalue]); 483 found: 484 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); 485 } 486 out: 487 return node; 488 } 489 490 static inline void avc_print_ipv6_addr(struct audit_buffer *ab, 491 struct in6_addr *addr, __be16 port, 492 char *name1, char *name2) 493 { 494 if (!ipv6_addr_any(addr)) 495 audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr)); 496 if (port) 497 audit_log_format(ab, " %s=%d", name2, ntohs(port)); 498 } 499 500 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr, 501 __be16 port, char *name1, char *name2) 502 { 503 if (addr) 504 audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr)); 505 if (port) 506 audit_log_format(ab, " %s=%d", name2, ntohs(port)); 507 } 508 509 /** 510 * avc_audit - Audit the granting or denial of permissions. 511 * @ssid: source security identifier 512 * @tsid: target security identifier 513 * @tclass: target security class 514 * @requested: requested permissions 515 * @avd: access vector decisions 516 * @result: result from avc_has_perm_noaudit 517 * @a: auxiliary audit data 518 * 519 * Audit the granting or denial of permissions in accordance 520 * with the policy. This function is typically called by 521 * avc_has_perm() after a permission check, but can also be 522 * called directly by callers who use avc_has_perm_noaudit() 523 * in order to separate the permission check from the auditing. 524 * For example, this separation is useful when the permission check must 525 * be performed under a lock, to allow the lock to be released 526 * before calling the auditing code. 527 */ 528 void avc_audit(u32 ssid, u32 tsid, 529 u16 tclass, u32 requested, 530 struct av_decision *avd, int result, struct avc_audit_data *a) 531 { 532 struct task_struct *tsk = current; 533 struct inode *inode = NULL; 534 u32 denied, audited; 535 struct audit_buffer *ab; 536 537 denied = requested & ~avd->allowed; 538 if (denied) { 539 audited = denied; 540 if (!(audited & avd->auditdeny)) 541 return; 542 } else if (result) { 543 audited = denied = requested; 544 } else { 545 audited = requested; 546 if (!(audited & avd->auditallow)) 547 return; 548 } 549 550 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC); 551 if (!ab) 552 return; /* audit_panic has been called */ 553 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted"); 554 avc_dump_av(ab, tclass,audited); 555 audit_log_format(ab, " for "); 556 if (a && a->tsk) 557 tsk = a->tsk; 558 if (tsk && tsk->pid) { 559 audit_log_format(ab, " pid=%d comm=", tsk->pid); 560 audit_log_untrustedstring(ab, tsk->comm); 561 } 562 if (a) { 563 switch (a->type) { 564 case AVC_AUDIT_DATA_IPC: 565 audit_log_format(ab, " key=%d", a->u.ipc_id); 566 break; 567 case AVC_AUDIT_DATA_CAP: 568 audit_log_format(ab, " capability=%d", a->u.cap); 569 break; 570 case AVC_AUDIT_DATA_FS: 571 if (a->u.fs.path.dentry) { 572 struct dentry *dentry = a->u.fs.path.dentry; 573 if (a->u.fs.path.mnt) { 574 audit_log_d_path(ab, "path=", 575 &a->u.fs.path); 576 } else { 577 audit_log_format(ab, " name="); 578 audit_log_untrustedstring(ab, dentry->d_name.name); 579 } 580 inode = dentry->d_inode; 581 } else if (a->u.fs.inode) { 582 struct dentry *dentry; 583 inode = a->u.fs.inode; 584 dentry = d_find_alias(inode); 585 if (dentry) { 586 audit_log_format(ab, " name="); 587 audit_log_untrustedstring(ab, dentry->d_name.name); 588 dput(dentry); 589 } 590 } 591 if (inode) 592 audit_log_format(ab, " dev=%s ino=%lu", 593 inode->i_sb->s_id, 594 inode->i_ino); 595 break; 596 case AVC_AUDIT_DATA_NET: 597 if (a->u.net.sk) { 598 struct sock *sk = a->u.net.sk; 599 struct unix_sock *u; 600 int len = 0; 601 char *p = NULL; 602 603 switch (sk->sk_family) { 604 case AF_INET: { 605 struct inet_sock *inet = inet_sk(sk); 606 607 avc_print_ipv4_addr(ab, inet->rcv_saddr, 608 inet->sport, 609 "laddr", "lport"); 610 avc_print_ipv4_addr(ab, inet->daddr, 611 inet->dport, 612 "faddr", "fport"); 613 break; 614 } 615 case AF_INET6: { 616 struct inet_sock *inet = inet_sk(sk); 617 struct ipv6_pinfo *inet6 = inet6_sk(sk); 618 619 avc_print_ipv6_addr(ab, &inet6->rcv_saddr, 620 inet->sport, 621 "laddr", "lport"); 622 avc_print_ipv6_addr(ab, &inet6->daddr, 623 inet->dport, 624 "faddr", "fport"); 625 break; 626 } 627 case AF_UNIX: 628 u = unix_sk(sk); 629 if (u->dentry) { 630 struct path path = { 631 .dentry = u->dentry, 632 .mnt = u->mnt 633 }; 634 audit_log_d_path(ab, "path=", 635 &path); 636 break; 637 } 638 if (!u->addr) 639 break; 640 len = u->addr->len-sizeof(short); 641 p = &u->addr->name->sun_path[0]; 642 audit_log_format(ab, " path="); 643 if (*p) 644 audit_log_untrustedstring(ab, p); 645 else 646 audit_log_hex(ab, p, len); 647 break; 648 } 649 } 650 651 switch (a->u.net.family) { 652 case AF_INET: 653 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr, 654 a->u.net.sport, 655 "saddr", "src"); 656 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr, 657 a->u.net.dport, 658 "daddr", "dest"); 659 break; 660 case AF_INET6: 661 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr, 662 a->u.net.sport, 663 "saddr", "src"); 664 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr, 665 a->u.net.dport, 666 "daddr", "dest"); 667 break; 668 } 669 if (a->u.net.netif > 0) { 670 struct net_device *dev; 671 672 /* NOTE: we always use init's namespace */ 673 dev = dev_get_by_index(&init_net, 674 a->u.net.netif); 675 if (dev) { 676 audit_log_format(ab, " netif=%s", 677 dev->name); 678 dev_put(dev); 679 } 680 } 681 break; 682 } 683 } 684 audit_log_format(ab, " "); 685 avc_dump_query(ab, ssid, tsid, tclass); 686 audit_log_end(ab); 687 } 688 689 /** 690 * avc_add_callback - Register a callback for security events. 691 * @callback: callback function 692 * @events: security events 693 * @ssid: source security identifier or %SECSID_WILD 694 * @tsid: target security identifier or %SECSID_WILD 695 * @tclass: target security class 696 * @perms: permissions 697 * 698 * Register a callback function for events in the set @events 699 * related to the SID pair (@ssid, @tsid) and 700 * and the permissions @perms, interpreting 701 * @perms based on @tclass. Returns %0 on success or 702 * -%ENOMEM if insufficient memory exists to add the callback. 703 */ 704 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, 705 u16 tclass, u32 perms, 706 u32 *out_retained), 707 u32 events, u32 ssid, u32 tsid, 708 u16 tclass, u32 perms) 709 { 710 struct avc_callback_node *c; 711 int rc = 0; 712 713 c = kmalloc(sizeof(*c), GFP_ATOMIC); 714 if (!c) { 715 rc = -ENOMEM; 716 goto out; 717 } 718 719 c->callback = callback; 720 c->events = events; 721 c->ssid = ssid; 722 c->tsid = tsid; 723 c->perms = perms; 724 c->next = avc_callbacks; 725 avc_callbacks = c; 726 out: 727 return rc; 728 } 729 730 static inline int avc_sidcmp(u32 x, u32 y) 731 { 732 return (x == y || x == SECSID_WILD || y == SECSID_WILD); 733 } 734 735 /** 736 * avc_update_node Update an AVC entry 737 * @event : Updating event 738 * @perms : Permission mask bits 739 * @ssid,@tsid,@tclass : identifier of an AVC entry 740 * 741 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 742 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 743 * otherwise, this function update the AVC entry. The original AVC-entry object 744 * will release later by RCU. 745 */ 746 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass) 747 { 748 int hvalue, rc = 0; 749 unsigned long flag; 750 struct avc_node *pos, *node, *orig = NULL; 751 752 node = avc_alloc_node(); 753 if (!node) { 754 rc = -ENOMEM; 755 goto out; 756 } 757 758 /* Lock the target slot */ 759 hvalue = avc_hash(ssid, tsid, tclass); 760 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); 761 762 list_for_each_entry(pos, &avc_cache.slots[hvalue], list){ 763 if ( ssid==pos->ae.ssid && 764 tsid==pos->ae.tsid && 765 tclass==pos->ae.tclass ){ 766 orig = pos; 767 break; 768 } 769 } 770 771 if (!orig) { 772 rc = -ENOENT; 773 avc_node_kill(node); 774 goto out_unlock; 775 } 776 777 /* 778 * Copy and replace original node. 779 */ 780 781 avc_node_populate(node, ssid, tsid, tclass, &orig->ae); 782 783 switch (event) { 784 case AVC_CALLBACK_GRANT: 785 node->ae.avd.allowed |= perms; 786 break; 787 case AVC_CALLBACK_TRY_REVOKE: 788 case AVC_CALLBACK_REVOKE: 789 node->ae.avd.allowed &= ~perms; 790 break; 791 case AVC_CALLBACK_AUDITALLOW_ENABLE: 792 node->ae.avd.auditallow |= perms; 793 break; 794 case AVC_CALLBACK_AUDITALLOW_DISABLE: 795 node->ae.avd.auditallow &= ~perms; 796 break; 797 case AVC_CALLBACK_AUDITDENY_ENABLE: 798 node->ae.avd.auditdeny |= perms; 799 break; 800 case AVC_CALLBACK_AUDITDENY_DISABLE: 801 node->ae.avd.auditdeny &= ~perms; 802 break; 803 } 804 avc_node_replace(node, orig); 805 out_unlock: 806 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); 807 out: 808 return rc; 809 } 810 811 /** 812 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 813 * @seqno: policy sequence number 814 */ 815 int avc_ss_reset(u32 seqno) 816 { 817 struct avc_callback_node *c; 818 int i, rc = 0, tmprc; 819 unsigned long flag; 820 struct avc_node *node; 821 822 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 823 spin_lock_irqsave(&avc_cache.slots_lock[i], flag); 824 list_for_each_entry(node, &avc_cache.slots[i], list) 825 avc_node_delete(node); 826 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag); 827 } 828 829 for (c = avc_callbacks; c; c = c->next) { 830 if (c->events & AVC_CALLBACK_RESET) { 831 tmprc = c->callback(AVC_CALLBACK_RESET, 832 0, 0, 0, 0, NULL); 833 /* save the first error encountered for the return 834 value and continue processing the callbacks */ 835 if (!rc) 836 rc = tmprc; 837 } 838 } 839 840 avc_latest_notif_update(seqno, 0); 841 return rc; 842 } 843 844 /** 845 * avc_has_perm_noaudit - Check permissions but perform no auditing. 846 * @ssid: source security identifier 847 * @tsid: target security identifier 848 * @tclass: target security class 849 * @requested: requested permissions, interpreted based on @tclass 850 * @flags: AVC_STRICT or 0 851 * @avd: access vector decisions 852 * 853 * Check the AVC to determine whether the @requested permissions are granted 854 * for the SID pair (@ssid, @tsid), interpreting the permissions 855 * based on @tclass, and call the security server on a cache miss to obtain 856 * a new decision and add it to the cache. Return a copy of the decisions 857 * in @avd. Return %0 if all @requested permissions are granted, 858 * -%EACCES if any permissions are denied, or another -errno upon 859 * other errors. This function is typically called by avc_has_perm(), 860 * but may also be called directly to separate permission checking from 861 * auditing, e.g. in cases where a lock must be held for the check but 862 * should be released for the auditing. 863 */ 864 int avc_has_perm_noaudit(u32 ssid, u32 tsid, 865 u16 tclass, u32 requested, 866 unsigned flags, 867 struct av_decision *avd) 868 { 869 struct avc_node *node; 870 struct avc_entry entry, *p_ae; 871 int rc = 0; 872 u32 denied; 873 874 rcu_read_lock(); 875 876 node = avc_lookup(ssid, tsid, tclass, requested); 877 if (!node) { 878 rcu_read_unlock(); 879 rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd); 880 if (rc) 881 goto out; 882 rcu_read_lock(); 883 node = avc_insert(ssid,tsid,tclass,&entry); 884 } 885 886 p_ae = node ? &node->ae : &entry; 887 888 if (avd) 889 memcpy(avd, &p_ae->avd, sizeof(*avd)); 890 891 denied = requested & ~(p_ae->avd.allowed); 892 893 if (!requested || denied) { 894 if (selinux_enforcing || (flags & AVC_STRICT)) 895 rc = -EACCES; 896 else 897 if (node) 898 avc_update_node(AVC_CALLBACK_GRANT,requested, 899 ssid,tsid,tclass); 900 } 901 902 rcu_read_unlock(); 903 out: 904 return rc; 905 } 906 907 /** 908 * avc_has_perm - Check permissions and perform any appropriate auditing. 909 * @ssid: source security identifier 910 * @tsid: target security identifier 911 * @tclass: target security class 912 * @requested: requested permissions, interpreted based on @tclass 913 * @auditdata: auxiliary audit data 914 * 915 * Check the AVC to determine whether the @requested permissions are granted 916 * for the SID pair (@ssid, @tsid), interpreting the permissions 917 * based on @tclass, and call the security server on a cache miss to obtain 918 * a new decision and add it to the cache. Audit the granting or denial of 919 * permissions in accordance with the policy. Return %0 if all @requested 920 * permissions are granted, -%EACCES if any permissions are denied, or 921 * another -errno upon other errors. 922 */ 923 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 924 u32 requested, struct avc_audit_data *auditdata) 925 { 926 struct av_decision avd; 927 int rc; 928 929 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 930 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); 931 return rc; 932 } 933 934 u32 avc_policy_seqno(void) 935 { 936 return avc_cache.latest_notif; 937 } 938