xref: /openbmc/linux/security/selinux/avc.c (revision a1e58bbd)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *     Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *      as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char * s [] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57 #include "av_inherit.h"
58 #undef S_
59 };
60 
61 const struct selinux_class_perm selinux_class_perm = {
62 	av_perm_to_string,
63 	ARRAY_SIZE(av_perm_to_string),
64 	class_to_string,
65 	ARRAY_SIZE(class_to_string),
66 	av_inherit,
67 	ARRAY_SIZE(av_inherit)
68 };
69 
70 #define AVC_CACHE_SLOTS			512
71 #define AVC_DEF_CACHE_THRESHOLD		512
72 #define AVC_CACHE_RECLAIM		16
73 
74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75 #define avc_cache_stats_incr(field) 				\
76 do {								\
77 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
78 	put_cpu();						\
79 } while (0)
80 #else
81 #define avc_cache_stats_incr(field)	do {} while (0)
82 #endif
83 
84 struct avc_entry {
85 	u32			ssid;
86 	u32			tsid;
87 	u16			tclass;
88 	struct av_decision	avd;
89 	atomic_t		used;	/* used recently */
90 };
91 
92 struct avc_node {
93 	struct avc_entry	ae;
94 	struct list_head	list;
95 	struct rcu_head         rhead;
96 };
97 
98 struct avc_cache {
99 	struct list_head	slots[AVC_CACHE_SLOTS];
100 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
102 	atomic_t		active_nodes;
103 	u32			latest_notif;	/* latest revocation notification */
104 };
105 
106 struct avc_callback_node {
107 	int (*callback) (u32 event, u32 ssid, u32 tsid,
108 	                 u16 tclass, u32 perms,
109 	                 u32 *out_retained);
110 	u32 events;
111 	u32 ssid;
112 	u32 tsid;
113 	u16 tclass;
114 	u32 perms;
115 	struct avc_callback_node *next;
116 };
117 
118 /* Exported via selinufs */
119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
120 
121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123 #endif
124 
125 static struct avc_cache avc_cache;
126 static struct avc_callback_node *avc_callbacks;
127 static struct kmem_cache *avc_node_cachep;
128 
129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
130 {
131 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
132 }
133 
134 /**
135  * avc_dump_av - Display an access vector in human-readable form.
136  * @tclass: target security class
137  * @av: access vector
138  */
139 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
140 {
141 	const char **common_pts = NULL;
142 	u32 common_base = 0;
143 	int i, i2, perm;
144 
145 	if (av == 0) {
146 		audit_log_format(ab, " null");
147 		return;
148 	}
149 
150 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 		if (av_inherit[i].tclass == tclass) {
152 			common_pts = av_inherit[i].common_pts;
153 			common_base = av_inherit[i].common_base;
154 			break;
155 		}
156 	}
157 
158 	audit_log_format(ab, " {");
159 	i = 0;
160 	perm = 1;
161 	while (perm < common_base) {
162 		if (perm & av) {
163 			audit_log_format(ab, " %s", common_pts[i]);
164 			av &= ~perm;
165 		}
166 		i++;
167 		perm <<= 1;
168 	}
169 
170 	while (i < sizeof(av) * 8) {
171 		if (perm & av) {
172 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 				if ((av_perm_to_string[i2].tclass == tclass) &&
174 				    (av_perm_to_string[i2].value == perm))
175 					break;
176 			}
177 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 				audit_log_format(ab, " %s",
179 						 av_perm_to_string[i2].name);
180 				av &= ~perm;
181 			}
182 		}
183 		i++;
184 		perm <<= 1;
185 	}
186 
187 	if (av)
188 		audit_log_format(ab, " 0x%x", av);
189 
190 	audit_log_format(ab, " }");
191 }
192 
193 /**
194  * avc_dump_query - Display a SID pair and a class in human-readable form.
195  * @ssid: source security identifier
196  * @tsid: target security identifier
197  * @tclass: target security class
198  */
199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
200 {
201 	int rc;
202 	char *scontext;
203 	u32 scontext_len;
204 
205  	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206 	if (rc)
207 		audit_log_format(ab, "ssid=%d", ssid);
208 	else {
209 		audit_log_format(ab, "scontext=%s", scontext);
210 		kfree(scontext);
211 	}
212 
213 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214 	if (rc)
215 		audit_log_format(ab, " tsid=%d", tsid);
216 	else {
217 		audit_log_format(ab, " tcontext=%s", scontext);
218 		kfree(scontext);
219 	}
220 
221 	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
222 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
223 }
224 
225 /**
226  * avc_init - Initialize the AVC.
227  *
228  * Initialize the access vector cache.
229  */
230 void __init avc_init(void)
231 {
232 	int i;
233 
234 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
235 		INIT_LIST_HEAD(&avc_cache.slots[i]);
236 		spin_lock_init(&avc_cache.slots_lock[i]);
237 	}
238 	atomic_set(&avc_cache.active_nodes, 0);
239 	atomic_set(&avc_cache.lru_hint, 0);
240 
241 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
242 					     0, SLAB_PANIC, NULL);
243 
244 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
245 }
246 
247 int avc_get_hash_stats(char *page)
248 {
249 	int i, chain_len, max_chain_len, slots_used;
250 	struct avc_node *node;
251 
252 	rcu_read_lock();
253 
254 	slots_used = 0;
255 	max_chain_len = 0;
256 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
257 		if (!list_empty(&avc_cache.slots[i])) {
258 			slots_used++;
259 			chain_len = 0;
260 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
261 				chain_len++;
262 			if (chain_len > max_chain_len)
263 				max_chain_len = chain_len;
264 		}
265 	}
266 
267 	rcu_read_unlock();
268 
269 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
270 			 "longest chain: %d\n",
271 			 atomic_read(&avc_cache.active_nodes),
272 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
273 }
274 
275 static void avc_node_free(struct rcu_head *rhead)
276 {
277 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
278 	kmem_cache_free(avc_node_cachep, node);
279 	avc_cache_stats_incr(frees);
280 }
281 
282 static void avc_node_delete(struct avc_node *node)
283 {
284 	list_del_rcu(&node->list);
285 	call_rcu(&node->rhead, avc_node_free);
286 	atomic_dec(&avc_cache.active_nodes);
287 }
288 
289 static void avc_node_kill(struct avc_node *node)
290 {
291 	kmem_cache_free(avc_node_cachep, node);
292 	avc_cache_stats_incr(frees);
293 	atomic_dec(&avc_cache.active_nodes);
294 }
295 
296 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
297 {
298 	list_replace_rcu(&old->list, &new->list);
299 	call_rcu(&old->rhead, avc_node_free);
300 	atomic_dec(&avc_cache.active_nodes);
301 }
302 
303 static inline int avc_reclaim_node(void)
304 {
305 	struct avc_node *node;
306 	int hvalue, try, ecx;
307 	unsigned long flags;
308 
309 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
310 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
311 
312 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
313 			continue;
314 
315 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
316 			if (atomic_dec_and_test(&node->ae.used)) {
317 				/* Recently Unused */
318 				avc_node_delete(node);
319 				avc_cache_stats_incr(reclaims);
320 				ecx++;
321 				if (ecx >= AVC_CACHE_RECLAIM) {
322 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
323 					goto out;
324 				}
325 			}
326 		}
327 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
328 	}
329 out:
330 	return ecx;
331 }
332 
333 static struct avc_node *avc_alloc_node(void)
334 {
335 	struct avc_node *node;
336 
337 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
338 	if (!node)
339 		goto out;
340 
341 	INIT_RCU_HEAD(&node->rhead);
342 	INIT_LIST_HEAD(&node->list);
343 	atomic_set(&node->ae.used, 1);
344 	avc_cache_stats_incr(allocations);
345 
346 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
347 		avc_reclaim_node();
348 
349 out:
350 	return node;
351 }
352 
353 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
354 {
355 	node->ae.ssid = ssid;
356 	node->ae.tsid = tsid;
357 	node->ae.tclass = tclass;
358 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
359 }
360 
361 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
362 {
363 	struct avc_node *node, *ret = NULL;
364 	int hvalue;
365 
366 	hvalue = avc_hash(ssid, tsid, tclass);
367 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
368 		if (ssid == node->ae.ssid &&
369 		    tclass == node->ae.tclass &&
370 		    tsid == node->ae.tsid) {
371 			ret = node;
372 			break;
373 		}
374 	}
375 
376 	if (ret == NULL) {
377 		/* cache miss */
378 		goto out;
379 	}
380 
381 	/* cache hit */
382 	if (atomic_read(&ret->ae.used) != 1)
383 		atomic_set(&ret->ae.used, 1);
384 out:
385 	return ret;
386 }
387 
388 /**
389  * avc_lookup - Look up an AVC entry.
390  * @ssid: source security identifier
391  * @tsid: target security identifier
392  * @tclass: target security class
393  * @requested: requested permissions, interpreted based on @tclass
394  *
395  * Look up an AVC entry that is valid for the
396  * @requested permissions between the SID pair
397  * (@ssid, @tsid), interpreting the permissions
398  * based on @tclass.  If a valid AVC entry exists,
399  * then this function return the avc_node.
400  * Otherwise, this function returns NULL.
401  */
402 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
403 {
404 	struct avc_node *node;
405 
406 	avc_cache_stats_incr(lookups);
407 	node = avc_search_node(ssid, tsid, tclass);
408 
409 	if (node && ((node->ae.avd.decided & requested) == requested)) {
410 		avc_cache_stats_incr(hits);
411 		goto out;
412 	}
413 
414 	node = NULL;
415 	avc_cache_stats_incr(misses);
416 out:
417 	return node;
418 }
419 
420 static int avc_latest_notif_update(int seqno, int is_insert)
421 {
422 	int ret = 0;
423 	static DEFINE_SPINLOCK(notif_lock);
424 	unsigned long flag;
425 
426 	spin_lock_irqsave(&notif_lock, flag);
427 	if (is_insert) {
428 		if (seqno < avc_cache.latest_notif) {
429 			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
430 			       seqno, avc_cache.latest_notif);
431 			ret = -EAGAIN;
432 		}
433 	} else {
434 		if (seqno > avc_cache.latest_notif)
435 			avc_cache.latest_notif = seqno;
436 	}
437 	spin_unlock_irqrestore(&notif_lock, flag);
438 
439 	return ret;
440 }
441 
442 /**
443  * avc_insert - Insert an AVC entry.
444  * @ssid: source security identifier
445  * @tsid: target security identifier
446  * @tclass: target security class
447  * @ae: AVC entry
448  *
449  * Insert an AVC entry for the SID pair
450  * (@ssid, @tsid) and class @tclass.
451  * The access vectors and the sequence number are
452  * normally provided by the security server in
453  * response to a security_compute_av() call.  If the
454  * sequence number @ae->avd.seqno is not less than the latest
455  * revocation notification, then the function copies
456  * the access vectors into a cache entry, returns
457  * avc_node inserted. Otherwise, this function returns NULL.
458  */
459 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
460 {
461 	struct avc_node *pos, *node = NULL;
462 	int hvalue;
463 	unsigned long flag;
464 
465 	if (avc_latest_notif_update(ae->avd.seqno, 1))
466 		goto out;
467 
468 	node = avc_alloc_node();
469 	if (node) {
470 		hvalue = avc_hash(ssid, tsid, tclass);
471 		avc_node_populate(node, ssid, tsid, tclass, ae);
472 
473 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
474 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
475 			if (pos->ae.ssid == ssid &&
476 			    pos->ae.tsid == tsid &&
477 			    pos->ae.tclass == tclass) {
478 			    	avc_node_replace(node, pos);
479 				goto found;
480 			}
481 		}
482 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
483 found:
484 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
485 	}
486 out:
487 	return node;
488 }
489 
490 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
491 				       struct in6_addr *addr, __be16 port,
492 				       char *name1, char *name2)
493 {
494 	if (!ipv6_addr_any(addr))
495 		audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
496 	if (port)
497 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
498 }
499 
500 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
501 				       __be16 port, char *name1, char *name2)
502 {
503 	if (addr)
504 		audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
505 	if (port)
506 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
507 }
508 
509 /**
510  * avc_audit - Audit the granting or denial of permissions.
511  * @ssid: source security identifier
512  * @tsid: target security identifier
513  * @tclass: target security class
514  * @requested: requested permissions
515  * @avd: access vector decisions
516  * @result: result from avc_has_perm_noaudit
517  * @a:  auxiliary audit data
518  *
519  * Audit the granting or denial of permissions in accordance
520  * with the policy.  This function is typically called by
521  * avc_has_perm() after a permission check, but can also be
522  * called directly by callers who use avc_has_perm_noaudit()
523  * in order to separate the permission check from the auditing.
524  * For example, this separation is useful when the permission check must
525  * be performed under a lock, to allow the lock to be released
526  * before calling the auditing code.
527  */
528 void avc_audit(u32 ssid, u32 tsid,
529                u16 tclass, u32 requested,
530                struct av_decision *avd, int result, struct avc_audit_data *a)
531 {
532 	struct task_struct *tsk = current;
533 	struct inode *inode = NULL;
534 	u32 denied, audited;
535 	struct audit_buffer *ab;
536 
537 	denied = requested & ~avd->allowed;
538 	if (denied) {
539 		audited = denied;
540 		if (!(audited & avd->auditdeny))
541 			return;
542 	} else if (result) {
543 		audited = denied = requested;
544         } else {
545 		audited = requested;
546 		if (!(audited & avd->auditallow))
547 			return;
548 	}
549 
550 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
551 	if (!ab)
552 		return;		/* audit_panic has been called */
553 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
554 	avc_dump_av(ab, tclass,audited);
555 	audit_log_format(ab, " for ");
556 	if (a && a->tsk)
557 		tsk = a->tsk;
558 	if (tsk && tsk->pid) {
559 		audit_log_format(ab, " pid=%d comm=", tsk->pid);
560 		audit_log_untrustedstring(ab, tsk->comm);
561 	}
562 	if (a) {
563 		switch (a->type) {
564 		case AVC_AUDIT_DATA_IPC:
565 			audit_log_format(ab, " key=%d", a->u.ipc_id);
566 			break;
567 		case AVC_AUDIT_DATA_CAP:
568 			audit_log_format(ab, " capability=%d", a->u.cap);
569 			break;
570 		case AVC_AUDIT_DATA_FS:
571 			if (a->u.fs.path.dentry) {
572 				struct dentry *dentry = a->u.fs.path.dentry;
573 				if (a->u.fs.path.mnt) {
574 					audit_log_d_path(ab, "path=",
575 							 &a->u.fs.path);
576 				} else {
577 					audit_log_format(ab, " name=");
578 					audit_log_untrustedstring(ab, dentry->d_name.name);
579 				}
580 				inode = dentry->d_inode;
581 			} else if (a->u.fs.inode) {
582 				struct dentry *dentry;
583 				inode = a->u.fs.inode;
584 				dentry = d_find_alias(inode);
585 				if (dentry) {
586 					audit_log_format(ab, " name=");
587 					audit_log_untrustedstring(ab, dentry->d_name.name);
588 					dput(dentry);
589 				}
590 			}
591 			if (inode)
592 				audit_log_format(ab, " dev=%s ino=%lu",
593 						 inode->i_sb->s_id,
594 						 inode->i_ino);
595 			break;
596 		case AVC_AUDIT_DATA_NET:
597 			if (a->u.net.sk) {
598 				struct sock *sk = a->u.net.sk;
599 				struct unix_sock *u;
600 				int len = 0;
601 				char *p = NULL;
602 
603 				switch (sk->sk_family) {
604 				case AF_INET: {
605 					struct inet_sock *inet = inet_sk(sk);
606 
607 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
608 							    inet->sport,
609 							    "laddr", "lport");
610 					avc_print_ipv4_addr(ab, inet->daddr,
611 							    inet->dport,
612 							    "faddr", "fport");
613 					break;
614 				}
615 				case AF_INET6: {
616 					struct inet_sock *inet = inet_sk(sk);
617 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
618 
619 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
620 							    inet->sport,
621 							    "laddr", "lport");
622 					avc_print_ipv6_addr(ab, &inet6->daddr,
623 							    inet->dport,
624 							    "faddr", "fport");
625 					break;
626 				}
627 				case AF_UNIX:
628 					u = unix_sk(sk);
629 					if (u->dentry) {
630 						struct path path = {
631 							.dentry = u->dentry,
632 							.mnt = u->mnt
633 						};
634 						audit_log_d_path(ab, "path=",
635 								 &path);
636 						break;
637 					}
638 					if (!u->addr)
639 						break;
640 					len = u->addr->len-sizeof(short);
641 					p = &u->addr->name->sun_path[0];
642 					audit_log_format(ab, " path=");
643 					if (*p)
644 						audit_log_untrustedstring(ab, p);
645 					else
646 						audit_log_hex(ab, p, len);
647 					break;
648 				}
649 			}
650 
651 			switch (a->u.net.family) {
652 			case AF_INET:
653 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
654 						    a->u.net.sport,
655 						    "saddr", "src");
656 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
657 						    a->u.net.dport,
658 						    "daddr", "dest");
659 				break;
660 			case AF_INET6:
661 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
662 						    a->u.net.sport,
663 						    "saddr", "src");
664 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
665 						    a->u.net.dport,
666 						    "daddr", "dest");
667 				break;
668 			}
669 			if (a->u.net.netif > 0) {
670 				struct net_device *dev;
671 
672 				/* NOTE: we always use init's namespace */
673 				dev = dev_get_by_index(&init_net,
674 						       a->u.net.netif);
675 				if (dev) {
676 					audit_log_format(ab, " netif=%s",
677 							 dev->name);
678 					dev_put(dev);
679 				}
680 			}
681 			break;
682 		}
683 	}
684 	audit_log_format(ab, " ");
685 	avc_dump_query(ab, ssid, tsid, tclass);
686 	audit_log_end(ab);
687 }
688 
689 /**
690  * avc_add_callback - Register a callback for security events.
691  * @callback: callback function
692  * @events: security events
693  * @ssid: source security identifier or %SECSID_WILD
694  * @tsid: target security identifier or %SECSID_WILD
695  * @tclass: target security class
696  * @perms: permissions
697  *
698  * Register a callback function for events in the set @events
699  * related to the SID pair (@ssid, @tsid) and
700  * and the permissions @perms, interpreting
701  * @perms based on @tclass.  Returns %0 on success or
702  * -%ENOMEM if insufficient memory exists to add the callback.
703  */
704 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
705                                      u16 tclass, u32 perms,
706                                      u32 *out_retained),
707                      u32 events, u32 ssid, u32 tsid,
708                      u16 tclass, u32 perms)
709 {
710 	struct avc_callback_node *c;
711 	int rc = 0;
712 
713 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
714 	if (!c) {
715 		rc = -ENOMEM;
716 		goto out;
717 	}
718 
719 	c->callback = callback;
720 	c->events = events;
721 	c->ssid = ssid;
722 	c->tsid = tsid;
723 	c->perms = perms;
724 	c->next = avc_callbacks;
725 	avc_callbacks = c;
726 out:
727 	return rc;
728 }
729 
730 static inline int avc_sidcmp(u32 x, u32 y)
731 {
732 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
733 }
734 
735 /**
736  * avc_update_node Update an AVC entry
737  * @event : Updating event
738  * @perms : Permission mask bits
739  * @ssid,@tsid,@tclass : identifier of an AVC entry
740  *
741  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
742  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
743  * otherwise, this function update the AVC entry. The original AVC-entry object
744  * will release later by RCU.
745  */
746 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
747 {
748 	int hvalue, rc = 0;
749 	unsigned long flag;
750 	struct avc_node *pos, *node, *orig = NULL;
751 
752 	node = avc_alloc_node();
753 	if (!node) {
754 		rc = -ENOMEM;
755 		goto out;
756 	}
757 
758 	/* Lock the target slot */
759 	hvalue = avc_hash(ssid, tsid, tclass);
760 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
761 
762 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
763 		if ( ssid==pos->ae.ssid &&
764 		     tsid==pos->ae.tsid &&
765 		     tclass==pos->ae.tclass ){
766 			orig = pos;
767 			break;
768 		}
769 	}
770 
771 	if (!orig) {
772 		rc = -ENOENT;
773 		avc_node_kill(node);
774 		goto out_unlock;
775 	}
776 
777 	/*
778 	 * Copy and replace original node.
779 	 */
780 
781 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
782 
783 	switch (event) {
784 	case AVC_CALLBACK_GRANT:
785 		node->ae.avd.allowed |= perms;
786 		break;
787 	case AVC_CALLBACK_TRY_REVOKE:
788 	case AVC_CALLBACK_REVOKE:
789 		node->ae.avd.allowed &= ~perms;
790 		break;
791 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
792 		node->ae.avd.auditallow |= perms;
793 		break;
794 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
795 		node->ae.avd.auditallow &= ~perms;
796 		break;
797 	case AVC_CALLBACK_AUDITDENY_ENABLE:
798 		node->ae.avd.auditdeny |= perms;
799 		break;
800 	case AVC_CALLBACK_AUDITDENY_DISABLE:
801 		node->ae.avd.auditdeny &= ~perms;
802 		break;
803 	}
804 	avc_node_replace(node, orig);
805 out_unlock:
806 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
807 out:
808 	return rc;
809 }
810 
811 /**
812  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
813  * @seqno: policy sequence number
814  */
815 int avc_ss_reset(u32 seqno)
816 {
817 	struct avc_callback_node *c;
818 	int i, rc = 0, tmprc;
819 	unsigned long flag;
820 	struct avc_node *node;
821 
822 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
823 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
824 		list_for_each_entry(node, &avc_cache.slots[i], list)
825 			avc_node_delete(node);
826 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
827 	}
828 
829 	for (c = avc_callbacks; c; c = c->next) {
830 		if (c->events & AVC_CALLBACK_RESET) {
831 			tmprc = c->callback(AVC_CALLBACK_RESET,
832 			                    0, 0, 0, 0, NULL);
833 			/* save the first error encountered for the return
834 			   value and continue processing the callbacks */
835 			if (!rc)
836 				rc = tmprc;
837 		}
838 	}
839 
840 	avc_latest_notif_update(seqno, 0);
841 	return rc;
842 }
843 
844 /**
845  * avc_has_perm_noaudit - Check permissions but perform no auditing.
846  * @ssid: source security identifier
847  * @tsid: target security identifier
848  * @tclass: target security class
849  * @requested: requested permissions, interpreted based on @tclass
850  * @flags:  AVC_STRICT or 0
851  * @avd: access vector decisions
852  *
853  * Check the AVC to determine whether the @requested permissions are granted
854  * for the SID pair (@ssid, @tsid), interpreting the permissions
855  * based on @tclass, and call the security server on a cache miss to obtain
856  * a new decision and add it to the cache.  Return a copy of the decisions
857  * in @avd.  Return %0 if all @requested permissions are granted,
858  * -%EACCES if any permissions are denied, or another -errno upon
859  * other errors.  This function is typically called by avc_has_perm(),
860  * but may also be called directly to separate permission checking from
861  * auditing, e.g. in cases where a lock must be held for the check but
862  * should be released for the auditing.
863  */
864 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
865 			 u16 tclass, u32 requested,
866 			 unsigned flags,
867 			 struct av_decision *avd)
868 {
869 	struct avc_node *node;
870 	struct avc_entry entry, *p_ae;
871 	int rc = 0;
872 	u32 denied;
873 
874 	rcu_read_lock();
875 
876 	node = avc_lookup(ssid, tsid, tclass, requested);
877 	if (!node) {
878 		rcu_read_unlock();
879 		rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
880 		if (rc)
881 			goto out;
882 		rcu_read_lock();
883 		node = avc_insert(ssid,tsid,tclass,&entry);
884 	}
885 
886 	p_ae = node ? &node->ae : &entry;
887 
888 	if (avd)
889 		memcpy(avd, &p_ae->avd, sizeof(*avd));
890 
891 	denied = requested & ~(p_ae->avd.allowed);
892 
893 	if (!requested || denied) {
894 		if (selinux_enforcing || (flags & AVC_STRICT))
895 			rc = -EACCES;
896 		else
897 			if (node)
898 				avc_update_node(AVC_CALLBACK_GRANT,requested,
899 						ssid,tsid,tclass);
900 	}
901 
902 	rcu_read_unlock();
903 out:
904 	return rc;
905 }
906 
907 /**
908  * avc_has_perm - Check permissions and perform any appropriate auditing.
909  * @ssid: source security identifier
910  * @tsid: target security identifier
911  * @tclass: target security class
912  * @requested: requested permissions, interpreted based on @tclass
913  * @auditdata: auxiliary audit data
914  *
915  * Check the AVC to determine whether the @requested permissions are granted
916  * for the SID pair (@ssid, @tsid), interpreting the permissions
917  * based on @tclass, and call the security server on a cache miss to obtain
918  * a new decision and add it to the cache.  Audit the granting or denial of
919  * permissions in accordance with the policy.  Return %0 if all @requested
920  * permissions are granted, -%EACCES if any permissions are denied, or
921  * another -errno upon other errors.
922  */
923 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
924                  u32 requested, struct avc_audit_data *auditdata)
925 {
926 	struct av_decision avd;
927 	int rc;
928 
929 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
930 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
931 	return rc;
932 }
933 
934 u32 avc_policy_seqno(void)
935 {
936 	return avc_cache.latest_notif;
937 }
938