xref: /openbmc/linux/security/selinux/avc.c (revision a09d2831)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35 
36 #define AVC_CACHE_SLOTS			512
37 #define AVC_DEF_CACHE_THRESHOLD		512
38 #define AVC_CACHE_RECLAIM		16
39 
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field)				\
42 do {								\
43 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
44 	put_cpu();						\
45 } while (0)
46 #else
47 #define avc_cache_stats_incr(field)	do {} while (0)
48 #endif
49 
50 struct avc_entry {
51 	u32			ssid;
52 	u32			tsid;
53 	u16			tclass;
54 	struct av_decision	avd;
55 };
56 
57 struct avc_node {
58 	struct avc_entry	ae;
59 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
60 	struct rcu_head		rhead;
61 };
62 
63 struct avc_cache {
64 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
65 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
66 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
67 	atomic_t		active_nodes;
68 	u32			latest_notif;	/* latest revocation notification */
69 };
70 
71 struct avc_callback_node {
72 	int (*callback) (u32 event, u32 ssid, u32 tsid,
73 			 u16 tclass, u32 perms,
74 			 u32 *out_retained);
75 	u32 events;
76 	u32 ssid;
77 	u32 tsid;
78 	u16 tclass;
79 	u32 perms;
80 	struct avc_callback_node *next;
81 };
82 
83 /* Exported via selinufs */
84 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
85 
86 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
87 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
88 #endif
89 
90 static struct avc_cache avc_cache;
91 static struct avc_callback_node *avc_callbacks;
92 static struct kmem_cache *avc_node_cachep;
93 
94 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
95 {
96 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
97 }
98 
99 /**
100  * avc_dump_av - Display an access vector in human-readable form.
101  * @tclass: target security class
102  * @av: access vector
103  */
104 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
105 {
106 	const char **perms;
107 	int i, perm;
108 
109 	if (av == 0) {
110 		audit_log_format(ab, " null");
111 		return;
112 	}
113 
114 	perms = secclass_map[tclass-1].perms;
115 
116 	audit_log_format(ab, " {");
117 	i = 0;
118 	perm = 1;
119 	while (i < (sizeof(av) * 8)) {
120 		if ((perm & av) && perms[i]) {
121 			audit_log_format(ab, " %s", perms[i]);
122 			av &= ~perm;
123 		}
124 		i++;
125 		perm <<= 1;
126 	}
127 
128 	if (av)
129 		audit_log_format(ab, " 0x%x", av);
130 
131 	audit_log_format(ab, " }");
132 }
133 
134 /**
135  * avc_dump_query - Display a SID pair and a class in human-readable form.
136  * @ssid: source security identifier
137  * @tsid: target security identifier
138  * @tclass: target security class
139  */
140 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
141 {
142 	int rc;
143 	char *scontext;
144 	u32 scontext_len;
145 
146 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
147 	if (rc)
148 		audit_log_format(ab, "ssid=%d", ssid);
149 	else {
150 		audit_log_format(ab, "scontext=%s", scontext);
151 		kfree(scontext);
152 	}
153 
154 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
155 	if (rc)
156 		audit_log_format(ab, " tsid=%d", tsid);
157 	else {
158 		audit_log_format(ab, " tcontext=%s", scontext);
159 		kfree(scontext);
160 	}
161 
162 	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
163 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
164 }
165 
166 /**
167  * avc_init - Initialize the AVC.
168  *
169  * Initialize the access vector cache.
170  */
171 void __init avc_init(void)
172 {
173 	int i;
174 
175 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
176 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
177 		spin_lock_init(&avc_cache.slots_lock[i]);
178 	}
179 	atomic_set(&avc_cache.active_nodes, 0);
180 	atomic_set(&avc_cache.lru_hint, 0);
181 
182 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
183 					     0, SLAB_PANIC, NULL);
184 
185 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
186 }
187 
188 int avc_get_hash_stats(char *page)
189 {
190 	int i, chain_len, max_chain_len, slots_used;
191 	struct avc_node *node;
192 	struct hlist_head *head;
193 
194 	rcu_read_lock();
195 
196 	slots_used = 0;
197 	max_chain_len = 0;
198 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
199 		head = &avc_cache.slots[i];
200 		if (!hlist_empty(head)) {
201 			struct hlist_node *next;
202 
203 			slots_used++;
204 			chain_len = 0;
205 			hlist_for_each_entry_rcu(node, next, head, list)
206 				chain_len++;
207 			if (chain_len > max_chain_len)
208 				max_chain_len = chain_len;
209 		}
210 	}
211 
212 	rcu_read_unlock();
213 
214 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
215 			 "longest chain: %d\n",
216 			 atomic_read(&avc_cache.active_nodes),
217 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
218 }
219 
220 static void avc_node_free(struct rcu_head *rhead)
221 {
222 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
223 	kmem_cache_free(avc_node_cachep, node);
224 	avc_cache_stats_incr(frees);
225 }
226 
227 static void avc_node_delete(struct avc_node *node)
228 {
229 	hlist_del_rcu(&node->list);
230 	call_rcu(&node->rhead, avc_node_free);
231 	atomic_dec(&avc_cache.active_nodes);
232 }
233 
234 static void avc_node_kill(struct avc_node *node)
235 {
236 	kmem_cache_free(avc_node_cachep, node);
237 	avc_cache_stats_incr(frees);
238 	atomic_dec(&avc_cache.active_nodes);
239 }
240 
241 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
242 {
243 	hlist_replace_rcu(&old->list, &new->list);
244 	call_rcu(&old->rhead, avc_node_free);
245 	atomic_dec(&avc_cache.active_nodes);
246 }
247 
248 static inline int avc_reclaim_node(void)
249 {
250 	struct avc_node *node;
251 	int hvalue, try, ecx;
252 	unsigned long flags;
253 	struct hlist_head *head;
254 	struct hlist_node *next;
255 	spinlock_t *lock;
256 
257 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
258 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
259 		head = &avc_cache.slots[hvalue];
260 		lock = &avc_cache.slots_lock[hvalue];
261 
262 		if (!spin_trylock_irqsave(lock, flags))
263 			continue;
264 
265 		rcu_read_lock();
266 		hlist_for_each_entry(node, next, head, list) {
267 			avc_node_delete(node);
268 			avc_cache_stats_incr(reclaims);
269 			ecx++;
270 			if (ecx >= AVC_CACHE_RECLAIM) {
271 				rcu_read_unlock();
272 				spin_unlock_irqrestore(lock, flags);
273 				goto out;
274 			}
275 		}
276 		rcu_read_unlock();
277 		spin_unlock_irqrestore(lock, flags);
278 	}
279 out:
280 	return ecx;
281 }
282 
283 static struct avc_node *avc_alloc_node(void)
284 {
285 	struct avc_node *node;
286 
287 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
288 	if (!node)
289 		goto out;
290 
291 	INIT_RCU_HEAD(&node->rhead);
292 	INIT_HLIST_NODE(&node->list);
293 	avc_cache_stats_incr(allocations);
294 
295 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
296 		avc_reclaim_node();
297 
298 out:
299 	return node;
300 }
301 
302 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
303 {
304 	node->ae.ssid = ssid;
305 	node->ae.tsid = tsid;
306 	node->ae.tclass = tclass;
307 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
308 }
309 
310 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
311 {
312 	struct avc_node *node, *ret = NULL;
313 	int hvalue;
314 	struct hlist_head *head;
315 	struct hlist_node *next;
316 
317 	hvalue = avc_hash(ssid, tsid, tclass);
318 	head = &avc_cache.slots[hvalue];
319 	hlist_for_each_entry_rcu(node, next, head, list) {
320 		if (ssid == node->ae.ssid &&
321 		    tclass == node->ae.tclass &&
322 		    tsid == node->ae.tsid) {
323 			ret = node;
324 			break;
325 		}
326 	}
327 
328 	return ret;
329 }
330 
331 /**
332  * avc_lookup - Look up an AVC entry.
333  * @ssid: source security identifier
334  * @tsid: target security identifier
335  * @tclass: target security class
336  *
337  * Look up an AVC entry that is valid for the
338  * (@ssid, @tsid), interpreting the permissions
339  * based on @tclass.  If a valid AVC entry exists,
340  * then this function return the avc_node.
341  * Otherwise, this function returns NULL.
342  */
343 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
344 {
345 	struct avc_node *node;
346 
347 	avc_cache_stats_incr(lookups);
348 	node = avc_search_node(ssid, tsid, tclass);
349 
350 	if (node)
351 		avc_cache_stats_incr(hits);
352 	else
353 		avc_cache_stats_incr(misses);
354 
355 	return node;
356 }
357 
358 static int avc_latest_notif_update(int seqno, int is_insert)
359 {
360 	int ret = 0;
361 	static DEFINE_SPINLOCK(notif_lock);
362 	unsigned long flag;
363 
364 	spin_lock_irqsave(&notif_lock, flag);
365 	if (is_insert) {
366 		if (seqno < avc_cache.latest_notif) {
367 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
368 			       seqno, avc_cache.latest_notif);
369 			ret = -EAGAIN;
370 		}
371 	} else {
372 		if (seqno > avc_cache.latest_notif)
373 			avc_cache.latest_notif = seqno;
374 	}
375 	spin_unlock_irqrestore(&notif_lock, flag);
376 
377 	return ret;
378 }
379 
380 /**
381  * avc_insert - Insert an AVC entry.
382  * @ssid: source security identifier
383  * @tsid: target security identifier
384  * @tclass: target security class
385  * @avd: resulting av decision
386  *
387  * Insert an AVC entry for the SID pair
388  * (@ssid, @tsid) and class @tclass.
389  * The access vectors and the sequence number are
390  * normally provided by the security server in
391  * response to a security_compute_av() call.  If the
392  * sequence number @avd->seqno is not less than the latest
393  * revocation notification, then the function copies
394  * the access vectors into a cache entry, returns
395  * avc_node inserted. Otherwise, this function returns NULL.
396  */
397 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
398 {
399 	struct avc_node *pos, *node = NULL;
400 	int hvalue;
401 	unsigned long flag;
402 
403 	if (avc_latest_notif_update(avd->seqno, 1))
404 		goto out;
405 
406 	node = avc_alloc_node();
407 	if (node) {
408 		struct hlist_head *head;
409 		struct hlist_node *next;
410 		spinlock_t *lock;
411 
412 		hvalue = avc_hash(ssid, tsid, tclass);
413 		avc_node_populate(node, ssid, tsid, tclass, avd);
414 
415 		head = &avc_cache.slots[hvalue];
416 		lock = &avc_cache.slots_lock[hvalue];
417 
418 		spin_lock_irqsave(lock, flag);
419 		hlist_for_each_entry(pos, next, head, list) {
420 			if (pos->ae.ssid == ssid &&
421 			    pos->ae.tsid == tsid &&
422 			    pos->ae.tclass == tclass) {
423 				avc_node_replace(node, pos);
424 				goto found;
425 			}
426 		}
427 		hlist_add_head_rcu(&node->list, head);
428 found:
429 		spin_unlock_irqrestore(lock, flag);
430 	}
431 out:
432 	return node;
433 }
434 
435 /**
436  * avc_audit_pre_callback - SELinux specific information
437  * will be called by generic audit code
438  * @ab: the audit buffer
439  * @a: audit_data
440  */
441 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
442 {
443 	struct common_audit_data *ad = a;
444 	audit_log_format(ab, "avc:  %s ",
445 			 ad->selinux_audit_data.denied ? "denied" : "granted");
446 	avc_dump_av(ab, ad->selinux_audit_data.tclass,
447 			ad->selinux_audit_data.audited);
448 	audit_log_format(ab, " for ");
449 }
450 
451 /**
452  * avc_audit_post_callback - SELinux specific information
453  * will be called by generic audit code
454  * @ab: the audit buffer
455  * @a: audit_data
456  */
457 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
458 {
459 	struct common_audit_data *ad = a;
460 	audit_log_format(ab, " ");
461 	avc_dump_query(ab, ad->selinux_audit_data.ssid,
462 			   ad->selinux_audit_data.tsid,
463 			   ad->selinux_audit_data.tclass);
464 }
465 
466 /**
467  * avc_audit - Audit the granting or denial of permissions.
468  * @ssid: source security identifier
469  * @tsid: target security identifier
470  * @tclass: target security class
471  * @requested: requested permissions
472  * @avd: access vector decisions
473  * @result: result from avc_has_perm_noaudit
474  * @a:  auxiliary audit data
475  *
476  * Audit the granting or denial of permissions in accordance
477  * with the policy.  This function is typically called by
478  * avc_has_perm() after a permission check, but can also be
479  * called directly by callers who use avc_has_perm_noaudit()
480  * in order to separate the permission check from the auditing.
481  * For example, this separation is useful when the permission check must
482  * be performed under a lock, to allow the lock to be released
483  * before calling the auditing code.
484  */
485 void avc_audit(u32 ssid, u32 tsid,
486 	       u16 tclass, u32 requested,
487 	       struct av_decision *avd, int result, struct common_audit_data *a)
488 {
489 	struct common_audit_data stack_data;
490 	u32 denied, audited;
491 	denied = requested & ~avd->allowed;
492 	if (denied) {
493 		audited = denied;
494 		if (!(audited & avd->auditdeny))
495 			return;
496 	} else if (result) {
497 		audited = denied = requested;
498 	} else {
499 		audited = requested;
500 		if (!(audited & avd->auditallow))
501 			return;
502 	}
503 	if (!a) {
504 		a = &stack_data;
505 		memset(a, 0, sizeof(*a));
506 		a->type = LSM_AUDIT_NO_AUDIT;
507 	}
508 	a->selinux_audit_data.tclass = tclass;
509 	a->selinux_audit_data.requested = requested;
510 	a->selinux_audit_data.ssid = ssid;
511 	a->selinux_audit_data.tsid = tsid;
512 	a->selinux_audit_data.audited = audited;
513 	a->selinux_audit_data.denied = denied;
514 	a->lsm_pre_audit = avc_audit_pre_callback;
515 	a->lsm_post_audit = avc_audit_post_callback;
516 	common_lsm_audit(a);
517 }
518 
519 /**
520  * avc_add_callback - Register a callback for security events.
521  * @callback: callback function
522  * @events: security events
523  * @ssid: source security identifier or %SECSID_WILD
524  * @tsid: target security identifier or %SECSID_WILD
525  * @tclass: target security class
526  * @perms: permissions
527  *
528  * Register a callback function for events in the set @events
529  * related to the SID pair (@ssid, @tsid) and
530  * and the permissions @perms, interpreting
531  * @perms based on @tclass.  Returns %0 on success or
532  * -%ENOMEM if insufficient memory exists to add the callback.
533  */
534 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
535 				     u16 tclass, u32 perms,
536 				     u32 *out_retained),
537 		     u32 events, u32 ssid, u32 tsid,
538 		     u16 tclass, u32 perms)
539 {
540 	struct avc_callback_node *c;
541 	int rc = 0;
542 
543 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
544 	if (!c) {
545 		rc = -ENOMEM;
546 		goto out;
547 	}
548 
549 	c->callback = callback;
550 	c->events = events;
551 	c->ssid = ssid;
552 	c->tsid = tsid;
553 	c->perms = perms;
554 	c->next = avc_callbacks;
555 	avc_callbacks = c;
556 out:
557 	return rc;
558 }
559 
560 static inline int avc_sidcmp(u32 x, u32 y)
561 {
562 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
563 }
564 
565 /**
566  * avc_update_node Update an AVC entry
567  * @event : Updating event
568  * @perms : Permission mask bits
569  * @ssid,@tsid,@tclass : identifier of an AVC entry
570  * @seqno : sequence number when decision was made
571  *
572  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
573  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
574  * otherwise, this function update the AVC entry. The original AVC-entry object
575  * will release later by RCU.
576  */
577 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
578 			   u32 seqno)
579 {
580 	int hvalue, rc = 0;
581 	unsigned long flag;
582 	struct avc_node *pos, *node, *orig = NULL;
583 	struct hlist_head *head;
584 	struct hlist_node *next;
585 	spinlock_t *lock;
586 
587 	node = avc_alloc_node();
588 	if (!node) {
589 		rc = -ENOMEM;
590 		goto out;
591 	}
592 
593 	/* Lock the target slot */
594 	hvalue = avc_hash(ssid, tsid, tclass);
595 
596 	head = &avc_cache.slots[hvalue];
597 	lock = &avc_cache.slots_lock[hvalue];
598 
599 	spin_lock_irqsave(lock, flag);
600 
601 	hlist_for_each_entry(pos, next, head, list) {
602 		if (ssid == pos->ae.ssid &&
603 		    tsid == pos->ae.tsid &&
604 		    tclass == pos->ae.tclass &&
605 		    seqno == pos->ae.avd.seqno){
606 			orig = pos;
607 			break;
608 		}
609 	}
610 
611 	if (!orig) {
612 		rc = -ENOENT;
613 		avc_node_kill(node);
614 		goto out_unlock;
615 	}
616 
617 	/*
618 	 * Copy and replace original node.
619 	 */
620 
621 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
622 
623 	switch (event) {
624 	case AVC_CALLBACK_GRANT:
625 		node->ae.avd.allowed |= perms;
626 		break;
627 	case AVC_CALLBACK_TRY_REVOKE:
628 	case AVC_CALLBACK_REVOKE:
629 		node->ae.avd.allowed &= ~perms;
630 		break;
631 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
632 		node->ae.avd.auditallow |= perms;
633 		break;
634 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
635 		node->ae.avd.auditallow &= ~perms;
636 		break;
637 	case AVC_CALLBACK_AUDITDENY_ENABLE:
638 		node->ae.avd.auditdeny |= perms;
639 		break;
640 	case AVC_CALLBACK_AUDITDENY_DISABLE:
641 		node->ae.avd.auditdeny &= ~perms;
642 		break;
643 	}
644 	avc_node_replace(node, orig);
645 out_unlock:
646 	spin_unlock_irqrestore(lock, flag);
647 out:
648 	return rc;
649 }
650 
651 /**
652  * avc_flush - Flush the cache
653  */
654 static void avc_flush(void)
655 {
656 	struct hlist_head *head;
657 	struct hlist_node *next;
658 	struct avc_node *node;
659 	spinlock_t *lock;
660 	unsigned long flag;
661 	int i;
662 
663 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
664 		head = &avc_cache.slots[i];
665 		lock = &avc_cache.slots_lock[i];
666 
667 		spin_lock_irqsave(lock, flag);
668 		/*
669 		 * With preemptable RCU, the outer spinlock does not
670 		 * prevent RCU grace periods from ending.
671 		 */
672 		rcu_read_lock();
673 		hlist_for_each_entry(node, next, head, list)
674 			avc_node_delete(node);
675 		rcu_read_unlock();
676 		spin_unlock_irqrestore(lock, flag);
677 	}
678 }
679 
680 /**
681  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
682  * @seqno: policy sequence number
683  */
684 int avc_ss_reset(u32 seqno)
685 {
686 	struct avc_callback_node *c;
687 	int rc = 0, tmprc;
688 
689 	avc_flush();
690 
691 	for (c = avc_callbacks; c; c = c->next) {
692 		if (c->events & AVC_CALLBACK_RESET) {
693 			tmprc = c->callback(AVC_CALLBACK_RESET,
694 					    0, 0, 0, 0, NULL);
695 			/* save the first error encountered for the return
696 			   value and continue processing the callbacks */
697 			if (!rc)
698 				rc = tmprc;
699 		}
700 	}
701 
702 	avc_latest_notif_update(seqno, 0);
703 	return rc;
704 }
705 
706 /**
707  * avc_has_perm_noaudit - Check permissions but perform no auditing.
708  * @ssid: source security identifier
709  * @tsid: target security identifier
710  * @tclass: target security class
711  * @requested: requested permissions, interpreted based on @tclass
712  * @flags:  AVC_STRICT or 0
713  * @avd: access vector decisions
714  *
715  * Check the AVC to determine whether the @requested permissions are granted
716  * for the SID pair (@ssid, @tsid), interpreting the permissions
717  * based on @tclass, and call the security server on a cache miss to obtain
718  * a new decision and add it to the cache.  Return a copy of the decisions
719  * in @avd.  Return %0 if all @requested permissions are granted,
720  * -%EACCES if any permissions are denied, or another -errno upon
721  * other errors.  This function is typically called by avc_has_perm(),
722  * but may also be called directly to separate permission checking from
723  * auditing, e.g. in cases where a lock must be held for the check but
724  * should be released for the auditing.
725  */
726 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
727 			 u16 tclass, u32 requested,
728 			 unsigned flags,
729 			 struct av_decision *in_avd)
730 {
731 	struct avc_node *node;
732 	struct av_decision avd_entry, *avd;
733 	int rc = 0;
734 	u32 denied;
735 
736 	BUG_ON(!requested);
737 
738 	rcu_read_lock();
739 
740 	node = avc_lookup(ssid, tsid, tclass);
741 	if (!node) {
742 		rcu_read_unlock();
743 
744 		if (in_avd)
745 			avd = in_avd;
746 		else
747 			avd = &avd_entry;
748 
749 		rc = security_compute_av(ssid, tsid, tclass, requested, avd);
750 		if (rc)
751 			goto out;
752 		rcu_read_lock();
753 		node = avc_insert(ssid, tsid, tclass, avd);
754 	} else {
755 		if (in_avd)
756 			memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
757 		avd = &node->ae.avd;
758 	}
759 
760 	denied = requested & ~(avd->allowed);
761 
762 	if (denied) {
763 		if (flags & AVC_STRICT)
764 			rc = -EACCES;
765 		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
766 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
767 					tsid, tclass, avd->seqno);
768 		else
769 			rc = -EACCES;
770 	}
771 
772 	rcu_read_unlock();
773 out:
774 	return rc;
775 }
776 
777 /**
778  * avc_has_perm - Check permissions and perform any appropriate auditing.
779  * @ssid: source security identifier
780  * @tsid: target security identifier
781  * @tclass: target security class
782  * @requested: requested permissions, interpreted based on @tclass
783  * @auditdata: auxiliary audit data
784  *
785  * Check the AVC to determine whether the @requested permissions are granted
786  * for the SID pair (@ssid, @tsid), interpreting the permissions
787  * based on @tclass, and call the security server on a cache miss to obtain
788  * a new decision and add it to the cache.  Audit the granting or denial of
789  * permissions in accordance with the policy.  Return %0 if all @requested
790  * permissions are granted, -%EACCES if any permissions are denied, or
791  * another -errno upon other errors.
792  */
793 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
794 		 u32 requested, struct common_audit_data *auditdata)
795 {
796 	struct av_decision avd;
797 	int rc;
798 
799 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
800 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
801 	return rc;
802 }
803 
804 u32 avc_policy_seqno(void)
805 {
806 	return avc_cache.latest_notif;
807 }
808 
809 void avc_disable(void)
810 {
811 	/*
812 	 * If you are looking at this because you have realized that we are
813 	 * not destroying the avc_node_cachep it might be easy to fix, but
814 	 * I don't know the memory barrier semantics well enough to know.  It's
815 	 * possible that some other task dereferenced security_ops when
816 	 * it still pointed to selinux operations.  If that is the case it's
817 	 * possible that it is about to use the avc and is about to need the
818 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
819 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
820 	 * the cache and get that memory back.
821 	 */
822 	if (avc_node_cachep) {
823 		avc_flush();
824 		/* kmem_cache_destroy(avc_node_cachep); */
825 	}
826 }
827