1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <linux/list.h> 26 #include <net/sock.h> 27 #include <linux/un.h> 28 #include <net/af_unix.h> 29 #include <linux/ip.h> 30 #include <linux/audit.h> 31 #include <linux/ipv6.h> 32 #include <net/ipv6.h> 33 #include "avc.h" 34 #include "avc_ss.h" 35 #include "classmap.h" 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87 #endif 88 89 struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92 }; 93 94 static struct selinux_avc selinux_avc; 95 96 void selinux_avc_init(struct selinux_avc **avc) 97 { 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 *avc = &selinux_avc; 108 } 109 110 unsigned int avc_get_cache_threshold(struct selinux_avc *avc) 111 { 112 return avc->avc_cache_threshold; 113 } 114 115 void avc_set_cache_threshold(struct selinux_avc *avc, 116 unsigned int cache_threshold) 117 { 118 avc->avc_cache_threshold = cache_threshold; 119 } 120 121 static struct avc_callback_node *avc_callbacks; 122 static struct kmem_cache *avc_node_cachep; 123 static struct kmem_cache *avc_xperms_data_cachep; 124 static struct kmem_cache *avc_xperms_decision_cachep; 125 static struct kmem_cache *avc_xperms_cachep; 126 127 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 128 { 129 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 130 } 131 132 /** 133 * avc_dump_av - Display an access vector in human-readable form. 134 * @tclass: target security class 135 * @av: access vector 136 */ 137 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 138 { 139 const char **perms; 140 int i, perm; 141 142 if (av == 0) { 143 audit_log_format(ab, " null"); 144 return; 145 } 146 147 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); 148 perms = secclass_map[tclass-1].perms; 149 150 audit_log_format(ab, " {"); 151 i = 0; 152 perm = 1; 153 while (i < (sizeof(av) * 8)) { 154 if ((perm & av) && perms[i]) { 155 audit_log_format(ab, " %s", perms[i]); 156 av &= ~perm; 157 } 158 i++; 159 perm <<= 1; 160 } 161 162 if (av) 163 audit_log_format(ab, " 0x%x", av); 164 165 audit_log_format(ab, " }"); 166 } 167 168 /** 169 * avc_dump_query - Display a SID pair and a class in human-readable form. 170 * @ssid: source security identifier 171 * @tsid: target security identifier 172 * @tclass: target security class 173 */ 174 static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state, 175 u32 ssid, u32 tsid, u16 tclass) 176 { 177 int rc; 178 char *scontext; 179 u32 scontext_len; 180 181 rc = security_sid_to_context(state, ssid, &scontext, &scontext_len); 182 if (rc) 183 audit_log_format(ab, "ssid=%d", ssid); 184 else { 185 audit_log_format(ab, "scontext=%s", scontext); 186 kfree(scontext); 187 } 188 189 rc = security_sid_to_context(state, tsid, &scontext, &scontext_len); 190 if (rc) 191 audit_log_format(ab, " tsid=%d", tsid); 192 else { 193 audit_log_format(ab, " tcontext=%s", scontext); 194 kfree(scontext); 195 } 196 197 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); 198 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 199 } 200 201 /** 202 * avc_init - Initialize the AVC. 203 * 204 * Initialize the access vector cache. 205 */ 206 void __init avc_init(void) 207 { 208 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 209 0, SLAB_PANIC, NULL); 210 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 211 sizeof(struct avc_xperms_node), 212 0, SLAB_PANIC, NULL); 213 avc_xperms_decision_cachep = kmem_cache_create( 214 "avc_xperms_decision_node", 215 sizeof(struct avc_xperms_decision_node), 216 0, SLAB_PANIC, NULL); 217 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 218 sizeof(struct extended_perms_data), 219 0, SLAB_PANIC, NULL); 220 } 221 222 int avc_get_hash_stats(struct selinux_avc *avc, char *page) 223 { 224 int i, chain_len, max_chain_len, slots_used; 225 struct avc_node *node; 226 struct hlist_head *head; 227 228 rcu_read_lock(); 229 230 slots_used = 0; 231 max_chain_len = 0; 232 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 233 head = &avc->avc_cache.slots[i]; 234 if (!hlist_empty(head)) { 235 slots_used++; 236 chain_len = 0; 237 hlist_for_each_entry_rcu(node, head, list) 238 chain_len++; 239 if (chain_len > max_chain_len) 240 max_chain_len = chain_len; 241 } 242 } 243 244 rcu_read_unlock(); 245 246 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 247 "longest chain: %d\n", 248 atomic_read(&avc->avc_cache.active_nodes), 249 slots_used, AVC_CACHE_SLOTS, max_chain_len); 250 } 251 252 /* 253 * using a linked list for extended_perms_decision lookup because the list is 254 * always small. i.e. less than 5, typically 1 255 */ 256 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 257 struct avc_xperms_node *xp_node) 258 { 259 struct avc_xperms_decision_node *xpd_node; 260 261 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 262 if (xpd_node->xpd.driver == driver) 263 return &xpd_node->xpd; 264 } 265 return NULL; 266 } 267 268 static inline unsigned int 269 avc_xperms_has_perm(struct extended_perms_decision *xpd, 270 u8 perm, u8 which) 271 { 272 unsigned int rc = 0; 273 274 if ((which == XPERMS_ALLOWED) && 275 (xpd->used & XPERMS_ALLOWED)) 276 rc = security_xperm_test(xpd->allowed->p, perm); 277 else if ((which == XPERMS_AUDITALLOW) && 278 (xpd->used & XPERMS_AUDITALLOW)) 279 rc = security_xperm_test(xpd->auditallow->p, perm); 280 else if ((which == XPERMS_DONTAUDIT) && 281 (xpd->used & XPERMS_DONTAUDIT)) 282 rc = security_xperm_test(xpd->dontaudit->p, perm); 283 return rc; 284 } 285 286 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 287 u8 driver, u8 perm) 288 { 289 struct extended_perms_decision *xpd; 290 security_xperm_set(xp_node->xp.drivers.p, driver); 291 xpd = avc_xperms_decision_lookup(driver, xp_node); 292 if (xpd && xpd->allowed) 293 security_xperm_set(xpd->allowed->p, perm); 294 } 295 296 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 297 { 298 struct extended_perms_decision *xpd; 299 300 xpd = &xpd_node->xpd; 301 if (xpd->allowed) 302 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 303 if (xpd->auditallow) 304 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 305 if (xpd->dontaudit) 306 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 307 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 308 } 309 310 static void avc_xperms_free(struct avc_xperms_node *xp_node) 311 { 312 struct avc_xperms_decision_node *xpd_node, *tmp; 313 314 if (!xp_node) 315 return; 316 317 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 318 list_del(&xpd_node->xpd_list); 319 avc_xperms_decision_free(xpd_node); 320 } 321 kmem_cache_free(avc_xperms_cachep, xp_node); 322 } 323 324 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 325 struct extended_perms_decision *src) 326 { 327 dest->driver = src->driver; 328 dest->used = src->used; 329 if (dest->used & XPERMS_ALLOWED) 330 memcpy(dest->allowed->p, src->allowed->p, 331 sizeof(src->allowed->p)); 332 if (dest->used & XPERMS_AUDITALLOW) 333 memcpy(dest->auditallow->p, src->auditallow->p, 334 sizeof(src->auditallow->p)); 335 if (dest->used & XPERMS_DONTAUDIT) 336 memcpy(dest->dontaudit->p, src->dontaudit->p, 337 sizeof(src->dontaudit->p)); 338 } 339 340 /* 341 * similar to avc_copy_xperms_decision, but only copy decision 342 * information relevant to this perm 343 */ 344 static inline void avc_quick_copy_xperms_decision(u8 perm, 345 struct extended_perms_decision *dest, 346 struct extended_perms_decision *src) 347 { 348 /* 349 * compute index of the u32 of the 256 bits (8 u32s) that contain this 350 * command permission 351 */ 352 u8 i = perm >> 5; 353 354 dest->used = src->used; 355 if (dest->used & XPERMS_ALLOWED) 356 dest->allowed->p[i] = src->allowed->p[i]; 357 if (dest->used & XPERMS_AUDITALLOW) 358 dest->auditallow->p[i] = src->auditallow->p[i]; 359 if (dest->used & XPERMS_DONTAUDIT) 360 dest->dontaudit->p[i] = src->dontaudit->p[i]; 361 } 362 363 static struct avc_xperms_decision_node 364 *avc_xperms_decision_alloc(u8 which) 365 { 366 struct avc_xperms_decision_node *xpd_node; 367 struct extended_perms_decision *xpd; 368 369 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT); 370 if (!xpd_node) 371 return NULL; 372 373 xpd = &xpd_node->xpd; 374 if (which & XPERMS_ALLOWED) { 375 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 376 GFP_NOWAIT); 377 if (!xpd->allowed) 378 goto error; 379 } 380 if (which & XPERMS_AUDITALLOW) { 381 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 382 GFP_NOWAIT); 383 if (!xpd->auditallow) 384 goto error; 385 } 386 if (which & XPERMS_DONTAUDIT) { 387 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 388 GFP_NOWAIT); 389 if (!xpd->dontaudit) 390 goto error; 391 } 392 return xpd_node; 393 error: 394 avc_xperms_decision_free(xpd_node); 395 return NULL; 396 } 397 398 static int avc_add_xperms_decision(struct avc_node *node, 399 struct extended_perms_decision *src) 400 { 401 struct avc_xperms_decision_node *dest_xpd; 402 403 node->ae.xp_node->xp.len++; 404 dest_xpd = avc_xperms_decision_alloc(src->used); 405 if (!dest_xpd) 406 return -ENOMEM; 407 avc_copy_xperms_decision(&dest_xpd->xpd, src); 408 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 409 return 0; 410 } 411 412 static struct avc_xperms_node *avc_xperms_alloc(void) 413 { 414 struct avc_xperms_node *xp_node; 415 416 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT); 417 if (!xp_node) 418 return xp_node; 419 INIT_LIST_HEAD(&xp_node->xpd_head); 420 return xp_node; 421 } 422 423 static int avc_xperms_populate(struct avc_node *node, 424 struct avc_xperms_node *src) 425 { 426 struct avc_xperms_node *dest; 427 struct avc_xperms_decision_node *dest_xpd; 428 struct avc_xperms_decision_node *src_xpd; 429 430 if (src->xp.len == 0) 431 return 0; 432 dest = avc_xperms_alloc(); 433 if (!dest) 434 return -ENOMEM; 435 436 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 437 dest->xp.len = src->xp.len; 438 439 /* for each source xpd allocate a destination xpd and copy */ 440 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 441 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 442 if (!dest_xpd) 443 goto error; 444 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 445 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 446 } 447 node->ae.xp_node = dest; 448 return 0; 449 error: 450 avc_xperms_free(dest); 451 return -ENOMEM; 452 453 } 454 455 static inline u32 avc_xperms_audit_required(u32 requested, 456 struct av_decision *avd, 457 struct extended_perms_decision *xpd, 458 u8 perm, 459 int result, 460 u32 *deniedp) 461 { 462 u32 denied, audited; 463 464 denied = requested & ~avd->allowed; 465 if (unlikely(denied)) { 466 audited = denied & avd->auditdeny; 467 if (audited && xpd) { 468 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 469 audited &= ~requested; 470 } 471 } else if (result) { 472 audited = denied = requested; 473 } else { 474 audited = requested & avd->auditallow; 475 if (audited && xpd) { 476 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 477 audited &= ~requested; 478 } 479 } 480 481 *deniedp = denied; 482 return audited; 483 } 484 485 static inline int avc_xperms_audit(struct selinux_state *state, 486 u32 ssid, u32 tsid, u16 tclass, 487 u32 requested, struct av_decision *avd, 488 struct extended_perms_decision *xpd, 489 u8 perm, int result, 490 struct common_audit_data *ad) 491 { 492 u32 audited, denied; 493 494 audited = avc_xperms_audit_required( 495 requested, avd, xpd, perm, result, &denied); 496 if (likely(!audited)) 497 return 0; 498 return slow_avc_audit(state, ssid, tsid, tclass, requested, 499 audited, denied, result, ad, 0); 500 } 501 502 static void avc_node_free(struct rcu_head *rhead) 503 { 504 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 505 avc_xperms_free(node->ae.xp_node); 506 kmem_cache_free(avc_node_cachep, node); 507 avc_cache_stats_incr(frees); 508 } 509 510 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node) 511 { 512 hlist_del_rcu(&node->list); 513 call_rcu(&node->rhead, avc_node_free); 514 atomic_dec(&avc->avc_cache.active_nodes); 515 } 516 517 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node) 518 { 519 avc_xperms_free(node->ae.xp_node); 520 kmem_cache_free(avc_node_cachep, node); 521 avc_cache_stats_incr(frees); 522 atomic_dec(&avc->avc_cache.active_nodes); 523 } 524 525 static void avc_node_replace(struct selinux_avc *avc, 526 struct avc_node *new, struct avc_node *old) 527 { 528 hlist_replace_rcu(&old->list, &new->list); 529 call_rcu(&old->rhead, avc_node_free); 530 atomic_dec(&avc->avc_cache.active_nodes); 531 } 532 533 static inline int avc_reclaim_node(struct selinux_avc *avc) 534 { 535 struct avc_node *node; 536 int hvalue, try, ecx; 537 unsigned long flags; 538 struct hlist_head *head; 539 spinlock_t *lock; 540 541 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 542 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) & 543 (AVC_CACHE_SLOTS - 1); 544 head = &avc->avc_cache.slots[hvalue]; 545 lock = &avc->avc_cache.slots_lock[hvalue]; 546 547 if (!spin_trylock_irqsave(lock, flags)) 548 continue; 549 550 rcu_read_lock(); 551 hlist_for_each_entry(node, head, list) { 552 avc_node_delete(avc, node); 553 avc_cache_stats_incr(reclaims); 554 ecx++; 555 if (ecx >= AVC_CACHE_RECLAIM) { 556 rcu_read_unlock(); 557 spin_unlock_irqrestore(lock, flags); 558 goto out; 559 } 560 } 561 rcu_read_unlock(); 562 spin_unlock_irqrestore(lock, flags); 563 } 564 out: 565 return ecx; 566 } 567 568 static struct avc_node *avc_alloc_node(struct selinux_avc *avc) 569 { 570 struct avc_node *node; 571 572 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT); 573 if (!node) 574 goto out; 575 576 INIT_HLIST_NODE(&node->list); 577 avc_cache_stats_incr(allocations); 578 579 if (atomic_inc_return(&avc->avc_cache.active_nodes) > 580 avc->avc_cache_threshold) 581 avc_reclaim_node(avc); 582 583 out: 584 return node; 585 } 586 587 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 588 { 589 node->ae.ssid = ssid; 590 node->ae.tsid = tsid; 591 node->ae.tclass = tclass; 592 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 593 } 594 595 static inline struct avc_node *avc_search_node(struct selinux_avc *avc, 596 u32 ssid, u32 tsid, u16 tclass) 597 { 598 struct avc_node *node, *ret = NULL; 599 int hvalue; 600 struct hlist_head *head; 601 602 hvalue = avc_hash(ssid, tsid, tclass); 603 head = &avc->avc_cache.slots[hvalue]; 604 hlist_for_each_entry_rcu(node, head, list) { 605 if (ssid == node->ae.ssid && 606 tclass == node->ae.tclass && 607 tsid == node->ae.tsid) { 608 ret = node; 609 break; 610 } 611 } 612 613 return ret; 614 } 615 616 /** 617 * avc_lookup - Look up an AVC entry. 618 * @ssid: source security identifier 619 * @tsid: target security identifier 620 * @tclass: target security class 621 * 622 * Look up an AVC entry that is valid for the 623 * (@ssid, @tsid), interpreting the permissions 624 * based on @tclass. If a valid AVC entry exists, 625 * then this function returns the avc_node. 626 * Otherwise, this function returns NULL. 627 */ 628 static struct avc_node *avc_lookup(struct selinux_avc *avc, 629 u32 ssid, u32 tsid, u16 tclass) 630 { 631 struct avc_node *node; 632 633 avc_cache_stats_incr(lookups); 634 node = avc_search_node(avc, ssid, tsid, tclass); 635 636 if (node) 637 return node; 638 639 avc_cache_stats_incr(misses); 640 return NULL; 641 } 642 643 static int avc_latest_notif_update(struct selinux_avc *avc, 644 int seqno, int is_insert) 645 { 646 int ret = 0; 647 static DEFINE_SPINLOCK(notif_lock); 648 unsigned long flag; 649 650 spin_lock_irqsave(¬if_lock, flag); 651 if (is_insert) { 652 if (seqno < avc->avc_cache.latest_notif) { 653 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 654 seqno, avc->avc_cache.latest_notif); 655 ret = -EAGAIN; 656 } 657 } else { 658 if (seqno > avc->avc_cache.latest_notif) 659 avc->avc_cache.latest_notif = seqno; 660 } 661 spin_unlock_irqrestore(¬if_lock, flag); 662 663 return ret; 664 } 665 666 /** 667 * avc_insert - Insert an AVC entry. 668 * @ssid: source security identifier 669 * @tsid: target security identifier 670 * @tclass: target security class 671 * @avd: resulting av decision 672 * @xp_node: resulting extended permissions 673 * 674 * Insert an AVC entry for the SID pair 675 * (@ssid, @tsid) and class @tclass. 676 * The access vectors and the sequence number are 677 * normally provided by the security server in 678 * response to a security_compute_av() call. If the 679 * sequence number @avd->seqno is not less than the latest 680 * revocation notification, then the function copies 681 * the access vectors into a cache entry, returns 682 * avc_node inserted. Otherwise, this function returns NULL. 683 */ 684 static struct avc_node *avc_insert(struct selinux_avc *avc, 685 u32 ssid, u32 tsid, u16 tclass, 686 struct av_decision *avd, 687 struct avc_xperms_node *xp_node) 688 { 689 struct avc_node *pos, *node = NULL; 690 int hvalue; 691 unsigned long flag; 692 693 if (avc_latest_notif_update(avc, avd->seqno, 1)) 694 goto out; 695 696 node = avc_alloc_node(avc); 697 if (node) { 698 struct hlist_head *head; 699 spinlock_t *lock; 700 int rc = 0; 701 702 hvalue = avc_hash(ssid, tsid, tclass); 703 avc_node_populate(node, ssid, tsid, tclass, avd); 704 rc = avc_xperms_populate(node, xp_node); 705 if (rc) { 706 kmem_cache_free(avc_node_cachep, node); 707 return NULL; 708 } 709 head = &avc->avc_cache.slots[hvalue]; 710 lock = &avc->avc_cache.slots_lock[hvalue]; 711 712 spin_lock_irqsave(lock, flag); 713 hlist_for_each_entry(pos, head, list) { 714 if (pos->ae.ssid == ssid && 715 pos->ae.tsid == tsid && 716 pos->ae.tclass == tclass) { 717 avc_node_replace(avc, node, pos); 718 goto found; 719 } 720 } 721 hlist_add_head_rcu(&node->list, head); 722 found: 723 spin_unlock_irqrestore(lock, flag); 724 } 725 out: 726 return node; 727 } 728 729 /** 730 * avc_audit_pre_callback - SELinux specific information 731 * will be called by generic audit code 732 * @ab: the audit buffer 733 * @a: audit_data 734 */ 735 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 736 { 737 struct common_audit_data *ad = a; 738 audit_log_format(ab, "avc: %s ", 739 ad->selinux_audit_data->denied ? "denied" : "granted"); 740 avc_dump_av(ab, ad->selinux_audit_data->tclass, 741 ad->selinux_audit_data->audited); 742 audit_log_format(ab, " for "); 743 } 744 745 /** 746 * avc_audit_post_callback - SELinux specific information 747 * will be called by generic audit code 748 * @ab: the audit buffer 749 * @a: audit_data 750 */ 751 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 752 { 753 struct common_audit_data *ad = a; 754 audit_log_format(ab, " "); 755 avc_dump_query(ab, ad->selinux_audit_data->state, 756 ad->selinux_audit_data->ssid, 757 ad->selinux_audit_data->tsid, 758 ad->selinux_audit_data->tclass); 759 if (ad->selinux_audit_data->denied) { 760 audit_log_format(ab, " permissive=%u", 761 ad->selinux_audit_data->result ? 0 : 1); 762 } 763 } 764 765 /* This is the slow part of avc audit with big stack footprint */ 766 noinline int slow_avc_audit(struct selinux_state *state, 767 u32 ssid, u32 tsid, u16 tclass, 768 u32 requested, u32 audited, u32 denied, int result, 769 struct common_audit_data *a, 770 unsigned int flags) 771 { 772 struct common_audit_data stack_data; 773 struct selinux_audit_data sad; 774 775 if (!a) { 776 a = &stack_data; 777 a->type = LSM_AUDIT_DATA_NONE; 778 } 779 780 /* 781 * When in a RCU walk do the audit on the RCU retry. This is because 782 * the collection of the dname in an inode audit message is not RCU 783 * safe. Note this may drop some audits when the situation changes 784 * during retry. However this is logically just as if the operation 785 * happened a little later. 786 */ 787 if ((a->type == LSM_AUDIT_DATA_INODE) && 788 (flags & MAY_NOT_BLOCK)) 789 return -ECHILD; 790 791 sad.tclass = tclass; 792 sad.requested = requested; 793 sad.ssid = ssid; 794 sad.tsid = tsid; 795 sad.audited = audited; 796 sad.denied = denied; 797 sad.result = result; 798 sad.state = state; 799 800 a->selinux_audit_data = &sad; 801 802 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 803 return 0; 804 } 805 806 /** 807 * avc_add_callback - Register a callback for security events. 808 * @callback: callback function 809 * @events: security events 810 * 811 * Register a callback function for events in the set @events. 812 * Returns %0 on success or -%ENOMEM if insufficient memory 813 * exists to add the callback. 814 */ 815 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 816 { 817 struct avc_callback_node *c; 818 int rc = 0; 819 820 c = kmalloc(sizeof(*c), GFP_KERNEL); 821 if (!c) { 822 rc = -ENOMEM; 823 goto out; 824 } 825 826 c->callback = callback; 827 c->events = events; 828 c->next = avc_callbacks; 829 avc_callbacks = c; 830 out: 831 return rc; 832 } 833 834 /** 835 * avc_update_node Update an AVC entry 836 * @event : Updating event 837 * @perms : Permission mask bits 838 * @ssid,@tsid,@tclass : identifier of an AVC entry 839 * @seqno : sequence number when decision was made 840 * @xpd: extended_perms_decision to be added to the node 841 * 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 844 * otherwise, this function updates the AVC entry. The original AVC-entry object 845 * will release later by RCU. 846 */ 847 static int avc_update_node(struct selinux_avc *avc, 848 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 849 u32 tsid, u16 tclass, u32 seqno, 850 struct extended_perms_decision *xpd, 851 u32 flags) 852 { 853 int hvalue, rc = 0; 854 unsigned long flag; 855 struct avc_node *pos, *node, *orig = NULL; 856 struct hlist_head *head; 857 spinlock_t *lock; 858 859 node = avc_alloc_node(avc); 860 if (!node) { 861 rc = -ENOMEM; 862 goto out; 863 } 864 865 /* Lock the target slot */ 866 hvalue = avc_hash(ssid, tsid, tclass); 867 868 head = &avc->avc_cache.slots[hvalue]; 869 lock = &avc->avc_cache.slots_lock[hvalue]; 870 871 spin_lock_irqsave(lock, flag); 872 873 hlist_for_each_entry(pos, head, list) { 874 if (ssid == pos->ae.ssid && 875 tsid == pos->ae.tsid && 876 tclass == pos->ae.tclass && 877 seqno == pos->ae.avd.seqno){ 878 orig = pos; 879 break; 880 } 881 } 882 883 if (!orig) { 884 rc = -ENOENT; 885 avc_node_kill(avc, node); 886 goto out_unlock; 887 } 888 889 /* 890 * Copy and replace original node. 891 */ 892 893 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 894 895 if (orig->ae.xp_node) { 896 rc = avc_xperms_populate(node, orig->ae.xp_node); 897 if (rc) { 898 kmem_cache_free(avc_node_cachep, node); 899 goto out_unlock; 900 } 901 } 902 903 switch (event) { 904 case AVC_CALLBACK_GRANT: 905 node->ae.avd.allowed |= perms; 906 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 907 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 908 break; 909 case AVC_CALLBACK_TRY_REVOKE: 910 case AVC_CALLBACK_REVOKE: 911 node->ae.avd.allowed &= ~perms; 912 break; 913 case AVC_CALLBACK_AUDITALLOW_ENABLE: 914 node->ae.avd.auditallow |= perms; 915 break; 916 case AVC_CALLBACK_AUDITALLOW_DISABLE: 917 node->ae.avd.auditallow &= ~perms; 918 break; 919 case AVC_CALLBACK_AUDITDENY_ENABLE: 920 node->ae.avd.auditdeny |= perms; 921 break; 922 case AVC_CALLBACK_AUDITDENY_DISABLE: 923 node->ae.avd.auditdeny &= ~perms; 924 break; 925 case AVC_CALLBACK_ADD_XPERMS: 926 avc_add_xperms_decision(node, xpd); 927 break; 928 } 929 avc_node_replace(avc, node, orig); 930 out_unlock: 931 spin_unlock_irqrestore(lock, flag); 932 out: 933 return rc; 934 } 935 936 /** 937 * avc_flush - Flush the cache 938 */ 939 static void avc_flush(struct selinux_avc *avc) 940 { 941 struct hlist_head *head; 942 struct avc_node *node; 943 spinlock_t *lock; 944 unsigned long flag; 945 int i; 946 947 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 948 head = &avc->avc_cache.slots[i]; 949 lock = &avc->avc_cache.slots_lock[i]; 950 951 spin_lock_irqsave(lock, flag); 952 /* 953 * With preemptable RCU, the outer spinlock does not 954 * prevent RCU grace periods from ending. 955 */ 956 rcu_read_lock(); 957 hlist_for_each_entry(node, head, list) 958 avc_node_delete(avc, node); 959 rcu_read_unlock(); 960 spin_unlock_irqrestore(lock, flag); 961 } 962 } 963 964 /** 965 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 966 * @seqno: policy sequence number 967 */ 968 int avc_ss_reset(struct selinux_avc *avc, u32 seqno) 969 { 970 struct avc_callback_node *c; 971 int rc = 0, tmprc; 972 973 avc_flush(avc); 974 975 for (c = avc_callbacks; c; c = c->next) { 976 if (c->events & AVC_CALLBACK_RESET) { 977 tmprc = c->callback(AVC_CALLBACK_RESET); 978 /* save the first error encountered for the return 979 value and continue processing the callbacks */ 980 if (!rc) 981 rc = tmprc; 982 } 983 } 984 985 avc_latest_notif_update(avc, seqno, 0); 986 return rc; 987 } 988 989 /* 990 * Slow-path helper function for avc_has_perm_noaudit, 991 * when the avc_node lookup fails. We get called with 992 * the RCU read lock held, and need to return with it 993 * still held, but drop if for the security compute. 994 * 995 * Don't inline this, since it's the slow-path and just 996 * results in a bigger stack frame. 997 */ 998 static noinline 999 struct avc_node *avc_compute_av(struct selinux_state *state, 1000 u32 ssid, u32 tsid, 1001 u16 tclass, struct av_decision *avd, 1002 struct avc_xperms_node *xp_node) 1003 { 1004 rcu_read_unlock(); 1005 INIT_LIST_HEAD(&xp_node->xpd_head); 1006 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp); 1007 rcu_read_lock(); 1008 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node); 1009 } 1010 1011 static noinline int avc_denied(struct selinux_state *state, 1012 u32 ssid, u32 tsid, 1013 u16 tclass, u32 requested, 1014 u8 driver, u8 xperm, unsigned int flags, 1015 struct av_decision *avd) 1016 { 1017 if (flags & AVC_STRICT) 1018 return -EACCES; 1019 1020 if (enforcing_enabled(state) && 1021 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1022 return -EACCES; 1023 1024 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver, 1025 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1026 return 0; 1027 } 1028 1029 /* 1030 * The avc extended permissions logic adds an additional 256 bits of 1031 * permissions to an avc node when extended permissions for that node are 1032 * specified in the avtab. If the additional 256 permissions is not adequate, 1033 * as-is the case with ioctls, then multiple may be chained together and the 1034 * driver field is used to specify which set contains the permission. 1035 */ 1036 int avc_has_extended_perms(struct selinux_state *state, 1037 u32 ssid, u32 tsid, u16 tclass, u32 requested, 1038 u8 driver, u8 xperm, struct common_audit_data *ad) 1039 { 1040 struct avc_node *node; 1041 struct av_decision avd; 1042 u32 denied; 1043 struct extended_perms_decision local_xpd; 1044 struct extended_perms_decision *xpd = NULL; 1045 struct extended_perms_data allowed; 1046 struct extended_perms_data auditallow; 1047 struct extended_perms_data dontaudit; 1048 struct avc_xperms_node local_xp_node; 1049 struct avc_xperms_node *xp_node; 1050 int rc = 0, rc2; 1051 1052 xp_node = &local_xp_node; 1053 BUG_ON(!requested); 1054 1055 rcu_read_lock(); 1056 1057 node = avc_lookup(state->avc, ssid, tsid, tclass); 1058 if (unlikely(!node)) { 1059 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node); 1060 } else { 1061 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1062 xp_node = node->ae.xp_node; 1063 } 1064 /* if extended permissions are not defined, only consider av_decision */ 1065 if (!xp_node || !xp_node->xp.len) 1066 goto decision; 1067 1068 local_xpd.allowed = &allowed; 1069 local_xpd.auditallow = &auditallow; 1070 local_xpd.dontaudit = &dontaudit; 1071 1072 xpd = avc_xperms_decision_lookup(driver, xp_node); 1073 if (unlikely(!xpd)) { 1074 /* 1075 * Compute the extended_perms_decision only if the driver 1076 * is flagged 1077 */ 1078 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1079 avd.allowed &= ~requested; 1080 goto decision; 1081 } 1082 rcu_read_unlock(); 1083 security_compute_xperms_decision(state, ssid, tsid, tclass, 1084 driver, &local_xpd); 1085 rcu_read_lock(); 1086 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested, 1087 driver, xperm, ssid, tsid, tclass, avd.seqno, 1088 &local_xpd, 0); 1089 } else { 1090 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1091 } 1092 xpd = &local_xpd; 1093 1094 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1095 avd.allowed &= ~requested; 1096 1097 decision: 1098 denied = requested & ~(avd.allowed); 1099 if (unlikely(denied)) 1100 rc = avc_denied(state, ssid, tsid, tclass, requested, 1101 driver, xperm, AVC_EXTENDED_PERMS, &avd); 1102 1103 rcu_read_unlock(); 1104 1105 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested, 1106 &avd, xpd, xperm, rc, ad); 1107 if (rc2) 1108 return rc2; 1109 return rc; 1110 } 1111 1112 /** 1113 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1114 * @ssid: source security identifier 1115 * @tsid: target security identifier 1116 * @tclass: target security class 1117 * @requested: requested permissions, interpreted based on @tclass 1118 * @flags: AVC_STRICT or 0 1119 * @avd: access vector decisions 1120 * 1121 * Check the AVC to determine whether the @requested permissions are granted 1122 * for the SID pair (@ssid, @tsid), interpreting the permissions 1123 * based on @tclass, and call the security server on a cache miss to obtain 1124 * a new decision and add it to the cache. Return a copy of the decisions 1125 * in @avd. Return %0 if all @requested permissions are granted, 1126 * -%EACCES if any permissions are denied, or another -errno upon 1127 * other errors. This function is typically called by avc_has_perm(), 1128 * but may also be called directly to separate permission checking from 1129 * auditing, e.g. in cases where a lock must be held for the check but 1130 * should be released for the auditing. 1131 */ 1132 inline int avc_has_perm_noaudit(struct selinux_state *state, 1133 u32 ssid, u32 tsid, 1134 u16 tclass, u32 requested, 1135 unsigned int flags, 1136 struct av_decision *avd) 1137 { 1138 struct avc_node *node; 1139 struct avc_xperms_node xp_node; 1140 int rc = 0; 1141 u32 denied; 1142 1143 BUG_ON(!requested); 1144 1145 rcu_read_lock(); 1146 1147 node = avc_lookup(state->avc, ssid, tsid, tclass); 1148 if (unlikely(!node)) 1149 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node); 1150 else 1151 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1152 1153 denied = requested & ~(avd->allowed); 1154 if (unlikely(denied)) 1155 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0, 1156 flags, avd); 1157 1158 rcu_read_unlock(); 1159 return rc; 1160 } 1161 1162 /** 1163 * avc_has_perm - Check permissions and perform any appropriate auditing. 1164 * @ssid: source security identifier 1165 * @tsid: target security identifier 1166 * @tclass: target security class 1167 * @requested: requested permissions, interpreted based on @tclass 1168 * @auditdata: auxiliary audit data 1169 * 1170 * Check the AVC to determine whether the @requested permissions are granted 1171 * for the SID pair (@ssid, @tsid), interpreting the permissions 1172 * based on @tclass, and call the security server on a cache miss to obtain 1173 * a new decision and add it to the cache. Audit the granting or denial of 1174 * permissions in accordance with the policy. Return %0 if all @requested 1175 * permissions are granted, -%EACCES if any permissions are denied, or 1176 * another -errno upon other errors. 1177 */ 1178 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, 1179 u32 requested, struct common_audit_data *auditdata) 1180 { 1181 struct av_decision avd; 1182 int rc, rc2; 1183 1184 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, 1185 &avd); 1186 1187 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, 1188 auditdata, 0); 1189 if (rc2) 1190 return rc2; 1191 return rc; 1192 } 1193 1194 int avc_has_perm_flags(struct selinux_state *state, 1195 u32 ssid, u32 tsid, u16 tclass, u32 requested, 1196 struct common_audit_data *auditdata, 1197 int flags) 1198 { 1199 struct av_decision avd; 1200 int rc, rc2; 1201 1202 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, 1203 &avd); 1204 1205 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, 1206 auditdata, flags); 1207 if (rc2) 1208 return rc2; 1209 return rc; 1210 } 1211 1212 u32 avc_policy_seqno(struct selinux_state *state) 1213 { 1214 return state->avc->avc_cache.latest_notif; 1215 } 1216 1217 void avc_disable(void) 1218 { 1219 /* 1220 * If you are looking at this because you have realized that we are 1221 * not destroying the avc_node_cachep it might be easy to fix, but 1222 * I don't know the memory barrier semantics well enough to know. It's 1223 * possible that some other task dereferenced security_ops when 1224 * it still pointed to selinux operations. If that is the case it's 1225 * possible that it is about to use the avc and is about to need the 1226 * avc_node_cachep. I know I could wrap the security.c security_ops call 1227 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1228 * the cache and get that memory back. 1229 */ 1230 if (avc_node_cachep) { 1231 avc_flush(selinux_state.avc); 1232 /* kmem_cache_destroy(avc_node_cachep); */ 1233 } 1234 } 1235