1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <net/sock.h> 26 #include <linux/un.h> 27 #include <net/af_unix.h> 28 #include <linux/ip.h> 29 #include <linux/audit.h> 30 #include <linux/ipv6.h> 31 #include <net/ipv6.h> 32 #include "avc.h" 33 #include "avc_ss.h" 34 #include "classmap.h" 35 36 #define AVC_CACHE_SLOTS 512 37 #define AVC_DEF_CACHE_THRESHOLD 512 38 #define AVC_CACHE_RECLAIM 16 39 40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 42 #else 43 #define avc_cache_stats_incr(field) do {} while (0) 44 #endif 45 46 struct avc_entry { 47 u32 ssid; 48 u32 tsid; 49 u16 tclass; 50 struct av_decision avd; 51 }; 52 53 struct avc_node { 54 struct avc_entry ae; 55 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 56 struct rcu_head rhead; 57 }; 58 59 struct avc_cache { 60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 62 atomic_t lru_hint; /* LRU hint for reclaim scan */ 63 atomic_t active_nodes; 64 u32 latest_notif; /* latest revocation notification */ 65 }; 66 67 struct avc_callback_node { 68 int (*callback) (u32 event); 69 u32 events; 70 struct avc_callback_node *next; 71 }; 72 73 /* Exported via selinufs */ 74 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 75 76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 77 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 78 #endif 79 80 static struct avc_cache avc_cache; 81 static struct avc_callback_node *avc_callbacks; 82 static struct kmem_cache *avc_node_cachep; 83 84 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 85 { 86 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 87 } 88 89 /** 90 * avc_dump_av - Display an access vector in human-readable form. 91 * @tclass: target security class 92 * @av: access vector 93 */ 94 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 95 { 96 const char **perms; 97 int i, perm; 98 99 if (av == 0) { 100 audit_log_format(ab, " null"); 101 return; 102 } 103 104 perms = secclass_map[tclass-1].perms; 105 106 audit_log_format(ab, " {"); 107 i = 0; 108 perm = 1; 109 while (i < (sizeof(av) * 8)) { 110 if ((perm & av) && perms[i]) { 111 audit_log_format(ab, " %s", perms[i]); 112 av &= ~perm; 113 } 114 i++; 115 perm <<= 1; 116 } 117 118 if (av) 119 audit_log_format(ab, " 0x%x", av); 120 121 audit_log_format(ab, " }"); 122 } 123 124 /** 125 * avc_dump_query - Display a SID pair and a class in human-readable form. 126 * @ssid: source security identifier 127 * @tsid: target security identifier 128 * @tclass: target security class 129 */ 130 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 131 { 132 int rc; 133 char *scontext; 134 u32 scontext_len; 135 136 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 137 if (rc) 138 audit_log_format(ab, "ssid=%d", ssid); 139 else { 140 audit_log_format(ab, "scontext=%s", scontext); 141 kfree(scontext); 142 } 143 144 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 145 if (rc) 146 audit_log_format(ab, " tsid=%d", tsid); 147 else { 148 audit_log_format(ab, " tcontext=%s", scontext); 149 kfree(scontext); 150 } 151 152 BUG_ON(tclass >= ARRAY_SIZE(secclass_map)); 153 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 154 } 155 156 /** 157 * avc_init - Initialize the AVC. 158 * 159 * Initialize the access vector cache. 160 */ 161 void __init avc_init(void) 162 { 163 int i; 164 165 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 166 INIT_HLIST_HEAD(&avc_cache.slots[i]); 167 spin_lock_init(&avc_cache.slots_lock[i]); 168 } 169 atomic_set(&avc_cache.active_nodes, 0); 170 atomic_set(&avc_cache.lru_hint, 0); 171 172 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 173 0, SLAB_PANIC, NULL); 174 175 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); 176 } 177 178 int avc_get_hash_stats(char *page) 179 { 180 int i, chain_len, max_chain_len, slots_used; 181 struct avc_node *node; 182 struct hlist_head *head; 183 184 rcu_read_lock(); 185 186 slots_used = 0; 187 max_chain_len = 0; 188 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 189 head = &avc_cache.slots[i]; 190 if (!hlist_empty(head)) { 191 slots_used++; 192 chain_len = 0; 193 hlist_for_each_entry_rcu(node, head, list) 194 chain_len++; 195 if (chain_len > max_chain_len) 196 max_chain_len = chain_len; 197 } 198 } 199 200 rcu_read_unlock(); 201 202 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 203 "longest chain: %d\n", 204 atomic_read(&avc_cache.active_nodes), 205 slots_used, AVC_CACHE_SLOTS, max_chain_len); 206 } 207 208 static void avc_node_free(struct rcu_head *rhead) 209 { 210 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 211 kmem_cache_free(avc_node_cachep, node); 212 avc_cache_stats_incr(frees); 213 } 214 215 static void avc_node_delete(struct avc_node *node) 216 { 217 hlist_del_rcu(&node->list); 218 call_rcu(&node->rhead, avc_node_free); 219 atomic_dec(&avc_cache.active_nodes); 220 } 221 222 static void avc_node_kill(struct avc_node *node) 223 { 224 kmem_cache_free(avc_node_cachep, node); 225 avc_cache_stats_incr(frees); 226 atomic_dec(&avc_cache.active_nodes); 227 } 228 229 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 230 { 231 hlist_replace_rcu(&old->list, &new->list); 232 call_rcu(&old->rhead, avc_node_free); 233 atomic_dec(&avc_cache.active_nodes); 234 } 235 236 static inline int avc_reclaim_node(void) 237 { 238 struct avc_node *node; 239 int hvalue, try, ecx; 240 unsigned long flags; 241 struct hlist_head *head; 242 spinlock_t *lock; 243 244 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 245 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 246 head = &avc_cache.slots[hvalue]; 247 lock = &avc_cache.slots_lock[hvalue]; 248 249 if (!spin_trylock_irqsave(lock, flags)) 250 continue; 251 252 rcu_read_lock(); 253 hlist_for_each_entry(node, head, list) { 254 avc_node_delete(node); 255 avc_cache_stats_incr(reclaims); 256 ecx++; 257 if (ecx >= AVC_CACHE_RECLAIM) { 258 rcu_read_unlock(); 259 spin_unlock_irqrestore(lock, flags); 260 goto out; 261 } 262 } 263 rcu_read_unlock(); 264 spin_unlock_irqrestore(lock, flags); 265 } 266 out: 267 return ecx; 268 } 269 270 static struct avc_node *avc_alloc_node(void) 271 { 272 struct avc_node *node; 273 274 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC); 275 if (!node) 276 goto out; 277 278 INIT_HLIST_NODE(&node->list); 279 avc_cache_stats_incr(allocations); 280 281 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 282 avc_reclaim_node(); 283 284 out: 285 return node; 286 } 287 288 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 289 { 290 node->ae.ssid = ssid; 291 node->ae.tsid = tsid; 292 node->ae.tclass = tclass; 293 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 294 } 295 296 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 297 { 298 struct avc_node *node, *ret = NULL; 299 int hvalue; 300 struct hlist_head *head; 301 302 hvalue = avc_hash(ssid, tsid, tclass); 303 head = &avc_cache.slots[hvalue]; 304 hlist_for_each_entry_rcu(node, head, list) { 305 if (ssid == node->ae.ssid && 306 tclass == node->ae.tclass && 307 tsid == node->ae.tsid) { 308 ret = node; 309 break; 310 } 311 } 312 313 return ret; 314 } 315 316 /** 317 * avc_lookup - Look up an AVC entry. 318 * @ssid: source security identifier 319 * @tsid: target security identifier 320 * @tclass: target security class 321 * 322 * Look up an AVC entry that is valid for the 323 * (@ssid, @tsid), interpreting the permissions 324 * based on @tclass. If a valid AVC entry exists, 325 * then this function returns the avc_node. 326 * Otherwise, this function returns NULL. 327 */ 328 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 329 { 330 struct avc_node *node; 331 332 avc_cache_stats_incr(lookups); 333 node = avc_search_node(ssid, tsid, tclass); 334 335 if (node) 336 return node; 337 338 avc_cache_stats_incr(misses); 339 return NULL; 340 } 341 342 static int avc_latest_notif_update(int seqno, int is_insert) 343 { 344 int ret = 0; 345 static DEFINE_SPINLOCK(notif_lock); 346 unsigned long flag; 347 348 spin_lock_irqsave(¬if_lock, flag); 349 if (is_insert) { 350 if (seqno < avc_cache.latest_notif) { 351 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", 352 seqno, avc_cache.latest_notif); 353 ret = -EAGAIN; 354 } 355 } else { 356 if (seqno > avc_cache.latest_notif) 357 avc_cache.latest_notif = seqno; 358 } 359 spin_unlock_irqrestore(¬if_lock, flag); 360 361 return ret; 362 } 363 364 /** 365 * avc_insert - Insert an AVC entry. 366 * @ssid: source security identifier 367 * @tsid: target security identifier 368 * @tclass: target security class 369 * @avd: resulting av decision 370 * 371 * Insert an AVC entry for the SID pair 372 * (@ssid, @tsid) and class @tclass. 373 * The access vectors and the sequence number are 374 * normally provided by the security server in 375 * response to a security_compute_av() call. If the 376 * sequence number @avd->seqno is not less than the latest 377 * revocation notification, then the function copies 378 * the access vectors into a cache entry, returns 379 * avc_node inserted. Otherwise, this function returns NULL. 380 */ 381 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 382 { 383 struct avc_node *pos, *node = NULL; 384 int hvalue; 385 unsigned long flag; 386 387 if (avc_latest_notif_update(avd->seqno, 1)) 388 goto out; 389 390 node = avc_alloc_node(); 391 if (node) { 392 struct hlist_head *head; 393 spinlock_t *lock; 394 395 hvalue = avc_hash(ssid, tsid, tclass); 396 avc_node_populate(node, ssid, tsid, tclass, avd); 397 398 head = &avc_cache.slots[hvalue]; 399 lock = &avc_cache.slots_lock[hvalue]; 400 401 spin_lock_irqsave(lock, flag); 402 hlist_for_each_entry(pos, head, list) { 403 if (pos->ae.ssid == ssid && 404 pos->ae.tsid == tsid && 405 pos->ae.tclass == tclass) { 406 avc_node_replace(node, pos); 407 goto found; 408 } 409 } 410 hlist_add_head_rcu(&node->list, head); 411 found: 412 spin_unlock_irqrestore(lock, flag); 413 } 414 out: 415 return node; 416 } 417 418 /** 419 * avc_audit_pre_callback - SELinux specific information 420 * will be called by generic audit code 421 * @ab: the audit buffer 422 * @a: audit_data 423 */ 424 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 425 { 426 struct common_audit_data *ad = a; 427 audit_log_format(ab, "avc: %s ", 428 ad->selinux_audit_data->denied ? "denied" : "granted"); 429 avc_dump_av(ab, ad->selinux_audit_data->tclass, 430 ad->selinux_audit_data->audited); 431 audit_log_format(ab, " for "); 432 } 433 434 /** 435 * avc_audit_post_callback - SELinux specific information 436 * will be called by generic audit code 437 * @ab: the audit buffer 438 * @a: audit_data 439 */ 440 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 441 { 442 struct common_audit_data *ad = a; 443 audit_log_format(ab, " "); 444 avc_dump_query(ab, ad->selinux_audit_data->ssid, 445 ad->selinux_audit_data->tsid, 446 ad->selinux_audit_data->tclass); 447 } 448 449 /* This is the slow part of avc audit with big stack footprint */ 450 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 451 u32 requested, u32 audited, u32 denied, 452 struct common_audit_data *a, 453 unsigned flags) 454 { 455 struct common_audit_data stack_data; 456 struct selinux_audit_data sad; 457 458 if (!a) { 459 a = &stack_data; 460 a->type = LSM_AUDIT_DATA_NONE; 461 } 462 463 /* 464 * When in a RCU walk do the audit on the RCU retry. This is because 465 * the collection of the dname in an inode audit message is not RCU 466 * safe. Note this may drop some audits when the situation changes 467 * during retry. However this is logically just as if the operation 468 * happened a little later. 469 */ 470 if ((a->type == LSM_AUDIT_DATA_INODE) && 471 (flags & MAY_NOT_BLOCK)) 472 return -ECHILD; 473 474 sad.tclass = tclass; 475 sad.requested = requested; 476 sad.ssid = ssid; 477 sad.tsid = tsid; 478 sad.audited = audited; 479 sad.denied = denied; 480 481 a->selinux_audit_data = &sad; 482 483 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 484 return 0; 485 } 486 487 /** 488 * avc_add_callback - Register a callback for security events. 489 * @callback: callback function 490 * @events: security events 491 * 492 * Register a callback function for events in the set @events. 493 * Returns %0 on success or -%ENOMEM if insufficient memory 494 * exists to add the callback. 495 */ 496 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 497 { 498 struct avc_callback_node *c; 499 int rc = 0; 500 501 c = kmalloc(sizeof(*c), GFP_KERNEL); 502 if (!c) { 503 rc = -ENOMEM; 504 goto out; 505 } 506 507 c->callback = callback; 508 c->events = events; 509 c->next = avc_callbacks; 510 avc_callbacks = c; 511 out: 512 return rc; 513 } 514 515 static inline int avc_sidcmp(u32 x, u32 y) 516 { 517 return (x == y || x == SECSID_WILD || y == SECSID_WILD); 518 } 519 520 /** 521 * avc_update_node Update an AVC entry 522 * @event : Updating event 523 * @perms : Permission mask bits 524 * @ssid,@tsid,@tclass : identifier of an AVC entry 525 * @seqno : sequence number when decision was made 526 * 527 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 528 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 529 * otherwise, this function updates the AVC entry. The original AVC-entry object 530 * will release later by RCU. 531 */ 532 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass, 533 u32 seqno) 534 { 535 int hvalue, rc = 0; 536 unsigned long flag; 537 struct avc_node *pos, *node, *orig = NULL; 538 struct hlist_head *head; 539 spinlock_t *lock; 540 541 node = avc_alloc_node(); 542 if (!node) { 543 rc = -ENOMEM; 544 goto out; 545 } 546 547 /* Lock the target slot */ 548 hvalue = avc_hash(ssid, tsid, tclass); 549 550 head = &avc_cache.slots[hvalue]; 551 lock = &avc_cache.slots_lock[hvalue]; 552 553 spin_lock_irqsave(lock, flag); 554 555 hlist_for_each_entry(pos, head, list) { 556 if (ssid == pos->ae.ssid && 557 tsid == pos->ae.tsid && 558 tclass == pos->ae.tclass && 559 seqno == pos->ae.avd.seqno){ 560 orig = pos; 561 break; 562 } 563 } 564 565 if (!orig) { 566 rc = -ENOENT; 567 avc_node_kill(node); 568 goto out_unlock; 569 } 570 571 /* 572 * Copy and replace original node. 573 */ 574 575 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 576 577 switch (event) { 578 case AVC_CALLBACK_GRANT: 579 node->ae.avd.allowed |= perms; 580 break; 581 case AVC_CALLBACK_TRY_REVOKE: 582 case AVC_CALLBACK_REVOKE: 583 node->ae.avd.allowed &= ~perms; 584 break; 585 case AVC_CALLBACK_AUDITALLOW_ENABLE: 586 node->ae.avd.auditallow |= perms; 587 break; 588 case AVC_CALLBACK_AUDITALLOW_DISABLE: 589 node->ae.avd.auditallow &= ~perms; 590 break; 591 case AVC_CALLBACK_AUDITDENY_ENABLE: 592 node->ae.avd.auditdeny |= perms; 593 break; 594 case AVC_CALLBACK_AUDITDENY_DISABLE: 595 node->ae.avd.auditdeny &= ~perms; 596 break; 597 } 598 avc_node_replace(node, orig); 599 out_unlock: 600 spin_unlock_irqrestore(lock, flag); 601 out: 602 return rc; 603 } 604 605 /** 606 * avc_flush - Flush the cache 607 */ 608 static void avc_flush(void) 609 { 610 struct hlist_head *head; 611 struct avc_node *node; 612 spinlock_t *lock; 613 unsigned long flag; 614 int i; 615 616 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 617 head = &avc_cache.slots[i]; 618 lock = &avc_cache.slots_lock[i]; 619 620 spin_lock_irqsave(lock, flag); 621 /* 622 * With preemptable RCU, the outer spinlock does not 623 * prevent RCU grace periods from ending. 624 */ 625 rcu_read_lock(); 626 hlist_for_each_entry(node, head, list) 627 avc_node_delete(node); 628 rcu_read_unlock(); 629 spin_unlock_irqrestore(lock, flag); 630 } 631 } 632 633 /** 634 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 635 * @seqno: policy sequence number 636 */ 637 int avc_ss_reset(u32 seqno) 638 { 639 struct avc_callback_node *c; 640 int rc = 0, tmprc; 641 642 avc_flush(); 643 644 for (c = avc_callbacks; c; c = c->next) { 645 if (c->events & AVC_CALLBACK_RESET) { 646 tmprc = c->callback(AVC_CALLBACK_RESET); 647 /* save the first error encountered for the return 648 value and continue processing the callbacks */ 649 if (!rc) 650 rc = tmprc; 651 } 652 } 653 654 avc_latest_notif_update(seqno, 0); 655 return rc; 656 } 657 658 /* 659 * Slow-path helper function for avc_has_perm_noaudit, 660 * when the avc_node lookup fails. We get called with 661 * the RCU read lock held, and need to return with it 662 * still held, but drop if for the security compute. 663 * 664 * Don't inline this, since it's the slow-path and just 665 * results in a bigger stack frame. 666 */ 667 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid, 668 u16 tclass, struct av_decision *avd) 669 { 670 rcu_read_unlock(); 671 security_compute_av(ssid, tsid, tclass, avd); 672 rcu_read_lock(); 673 return avc_insert(ssid, tsid, tclass, avd); 674 } 675 676 static noinline int avc_denied(u32 ssid, u32 tsid, 677 u16 tclass, u32 requested, 678 unsigned flags, 679 struct av_decision *avd) 680 { 681 if (flags & AVC_STRICT) 682 return -EACCES; 683 684 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE)) 685 return -EACCES; 686 687 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid, 688 tsid, tclass, avd->seqno); 689 return 0; 690 } 691 692 693 /** 694 * avc_has_perm_noaudit - Check permissions but perform no auditing. 695 * @ssid: source security identifier 696 * @tsid: target security identifier 697 * @tclass: target security class 698 * @requested: requested permissions, interpreted based on @tclass 699 * @flags: AVC_STRICT or 0 700 * @avd: access vector decisions 701 * 702 * Check the AVC to determine whether the @requested permissions are granted 703 * for the SID pair (@ssid, @tsid), interpreting the permissions 704 * based on @tclass, and call the security server on a cache miss to obtain 705 * a new decision and add it to the cache. Return a copy of the decisions 706 * in @avd. Return %0 if all @requested permissions are granted, 707 * -%EACCES if any permissions are denied, or another -errno upon 708 * other errors. This function is typically called by avc_has_perm(), 709 * but may also be called directly to separate permission checking from 710 * auditing, e.g. in cases where a lock must be held for the check but 711 * should be released for the auditing. 712 */ 713 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 714 u16 tclass, u32 requested, 715 unsigned flags, 716 struct av_decision *avd) 717 { 718 struct avc_node *node; 719 int rc = 0; 720 u32 denied; 721 722 BUG_ON(!requested); 723 724 rcu_read_lock(); 725 726 node = avc_lookup(ssid, tsid, tclass); 727 if (unlikely(!node)) { 728 node = avc_compute_av(ssid, tsid, tclass, avd); 729 } else { 730 memcpy(avd, &node->ae.avd, sizeof(*avd)); 731 avd = &node->ae.avd; 732 } 733 734 denied = requested & ~(avd->allowed); 735 if (unlikely(denied)) 736 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd); 737 738 rcu_read_unlock(); 739 return rc; 740 } 741 742 /** 743 * avc_has_perm - Check permissions and perform any appropriate auditing. 744 * @ssid: source security identifier 745 * @tsid: target security identifier 746 * @tclass: target security class 747 * @requested: requested permissions, interpreted based on @tclass 748 * @auditdata: auxiliary audit data 749 * 750 * Check the AVC to determine whether the @requested permissions are granted 751 * for the SID pair (@ssid, @tsid), interpreting the permissions 752 * based on @tclass, and call the security server on a cache miss to obtain 753 * a new decision and add it to the cache. Audit the granting or denial of 754 * permissions in accordance with the policy. Return %0 if all @requested 755 * permissions are granted, -%EACCES if any permissions are denied, or 756 * another -errno upon other errors. 757 */ 758 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 759 u32 requested, struct common_audit_data *auditdata) 760 { 761 struct av_decision avd; 762 int rc, rc2; 763 764 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 765 766 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); 767 if (rc2) 768 return rc2; 769 return rc; 770 } 771 772 u32 avc_policy_seqno(void) 773 { 774 return avc_cache.latest_notif; 775 } 776 777 void avc_disable(void) 778 { 779 /* 780 * If you are looking at this because you have realized that we are 781 * not destroying the avc_node_cachep it might be easy to fix, but 782 * I don't know the memory barrier semantics well enough to know. It's 783 * possible that some other task dereferenced security_ops when 784 * it still pointed to selinux operations. If that is the case it's 785 * possible that it is about to use the avc and is about to need the 786 * avc_node_cachep. I know I could wrap the security.c security_ops call 787 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 788 * the cache and get that memory back. 789 */ 790 if (avc_node_cachep) { 791 avc_flush(); 792 /* kmem_cache_destroy(avc_node_cachep); */ 793 } 794 } 795