xref: /openbmc/linux/security/selinux/avc.c (revision 8e9356c6)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35 
36 #define AVC_CACHE_SLOTS			512
37 #define AVC_DEF_CACHE_THRESHOLD		512
38 #define AVC_CACHE_RECLAIM		16
39 
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field)	do {} while (0)
44 #endif
45 
46 struct avc_entry {
47 	u32			ssid;
48 	u32			tsid;
49 	u16			tclass;
50 	struct av_decision	avd;
51 };
52 
53 struct avc_node {
54 	struct avc_entry	ae;
55 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
56 	struct rcu_head		rhead;
57 };
58 
59 struct avc_cache {
60 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
63 	atomic_t		active_nodes;
64 	u32			latest_notif;	/* latest revocation notification */
65 };
66 
67 struct avc_callback_node {
68 	int (*callback) (u32 event);
69 	u32 events;
70 	struct avc_callback_node *next;
71 };
72 
73 /* Exported via selinufs */
74 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
75 
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
78 #endif
79 
80 static struct avc_cache avc_cache;
81 static struct avc_callback_node *avc_callbacks;
82 static struct kmem_cache *avc_node_cachep;
83 
84 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
85 {
86 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
87 }
88 
89 /**
90  * avc_dump_av - Display an access vector in human-readable form.
91  * @tclass: target security class
92  * @av: access vector
93  */
94 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
95 {
96 	const char **perms;
97 	int i, perm;
98 
99 	if (av == 0) {
100 		audit_log_format(ab, " null");
101 		return;
102 	}
103 
104 	perms = secclass_map[tclass-1].perms;
105 
106 	audit_log_format(ab, " {");
107 	i = 0;
108 	perm = 1;
109 	while (i < (sizeof(av) * 8)) {
110 		if ((perm & av) && perms[i]) {
111 			audit_log_format(ab, " %s", perms[i]);
112 			av &= ~perm;
113 		}
114 		i++;
115 		perm <<= 1;
116 	}
117 
118 	if (av)
119 		audit_log_format(ab, " 0x%x", av);
120 
121 	audit_log_format(ab, " }");
122 }
123 
124 /**
125  * avc_dump_query - Display a SID pair and a class in human-readable form.
126  * @ssid: source security identifier
127  * @tsid: target security identifier
128  * @tclass: target security class
129  */
130 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131 {
132 	int rc;
133 	char *scontext;
134 	u32 scontext_len;
135 
136 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137 	if (rc)
138 		audit_log_format(ab, "ssid=%d", ssid);
139 	else {
140 		audit_log_format(ab, "scontext=%s", scontext);
141 		kfree(scontext);
142 	}
143 
144 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145 	if (rc)
146 		audit_log_format(ab, " tsid=%d", tsid);
147 	else {
148 		audit_log_format(ab, " tcontext=%s", scontext);
149 		kfree(scontext);
150 	}
151 
152 	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154 }
155 
156 /**
157  * avc_init - Initialize the AVC.
158  *
159  * Initialize the access vector cache.
160  */
161 void __init avc_init(void)
162 {
163 	int i;
164 
165 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167 		spin_lock_init(&avc_cache.slots_lock[i]);
168 	}
169 	atomic_set(&avc_cache.active_nodes, 0);
170 	atomic_set(&avc_cache.lru_hint, 0);
171 
172 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173 					     0, SLAB_PANIC, NULL);
174 
175 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176 }
177 
178 int avc_get_hash_stats(char *page)
179 {
180 	int i, chain_len, max_chain_len, slots_used;
181 	struct avc_node *node;
182 	struct hlist_head *head;
183 
184 	rcu_read_lock();
185 
186 	slots_used = 0;
187 	max_chain_len = 0;
188 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189 		head = &avc_cache.slots[i];
190 		if (!hlist_empty(head)) {
191 			slots_used++;
192 			chain_len = 0;
193 			hlist_for_each_entry_rcu(node, head, list)
194 				chain_len++;
195 			if (chain_len > max_chain_len)
196 				max_chain_len = chain_len;
197 		}
198 	}
199 
200 	rcu_read_unlock();
201 
202 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
203 			 "longest chain: %d\n",
204 			 atomic_read(&avc_cache.active_nodes),
205 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
206 }
207 
208 static void avc_node_free(struct rcu_head *rhead)
209 {
210 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
211 	kmem_cache_free(avc_node_cachep, node);
212 	avc_cache_stats_incr(frees);
213 }
214 
215 static void avc_node_delete(struct avc_node *node)
216 {
217 	hlist_del_rcu(&node->list);
218 	call_rcu(&node->rhead, avc_node_free);
219 	atomic_dec(&avc_cache.active_nodes);
220 }
221 
222 static void avc_node_kill(struct avc_node *node)
223 {
224 	kmem_cache_free(avc_node_cachep, node);
225 	avc_cache_stats_incr(frees);
226 	atomic_dec(&avc_cache.active_nodes);
227 }
228 
229 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
230 {
231 	hlist_replace_rcu(&old->list, &new->list);
232 	call_rcu(&old->rhead, avc_node_free);
233 	atomic_dec(&avc_cache.active_nodes);
234 }
235 
236 static inline int avc_reclaim_node(void)
237 {
238 	struct avc_node *node;
239 	int hvalue, try, ecx;
240 	unsigned long flags;
241 	struct hlist_head *head;
242 	spinlock_t *lock;
243 
244 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
245 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
246 		head = &avc_cache.slots[hvalue];
247 		lock = &avc_cache.slots_lock[hvalue];
248 
249 		if (!spin_trylock_irqsave(lock, flags))
250 			continue;
251 
252 		rcu_read_lock();
253 		hlist_for_each_entry(node, head, list) {
254 			avc_node_delete(node);
255 			avc_cache_stats_incr(reclaims);
256 			ecx++;
257 			if (ecx >= AVC_CACHE_RECLAIM) {
258 				rcu_read_unlock();
259 				spin_unlock_irqrestore(lock, flags);
260 				goto out;
261 			}
262 		}
263 		rcu_read_unlock();
264 		spin_unlock_irqrestore(lock, flags);
265 	}
266 out:
267 	return ecx;
268 }
269 
270 static struct avc_node *avc_alloc_node(void)
271 {
272 	struct avc_node *node;
273 
274 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
275 	if (!node)
276 		goto out;
277 
278 	INIT_HLIST_NODE(&node->list);
279 	avc_cache_stats_incr(allocations);
280 
281 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
282 		avc_reclaim_node();
283 
284 out:
285 	return node;
286 }
287 
288 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
289 {
290 	node->ae.ssid = ssid;
291 	node->ae.tsid = tsid;
292 	node->ae.tclass = tclass;
293 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
294 }
295 
296 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
297 {
298 	struct avc_node *node, *ret = NULL;
299 	int hvalue;
300 	struct hlist_head *head;
301 
302 	hvalue = avc_hash(ssid, tsid, tclass);
303 	head = &avc_cache.slots[hvalue];
304 	hlist_for_each_entry_rcu(node, head, list) {
305 		if (ssid == node->ae.ssid &&
306 		    tclass == node->ae.tclass &&
307 		    tsid == node->ae.tsid) {
308 			ret = node;
309 			break;
310 		}
311 	}
312 
313 	return ret;
314 }
315 
316 /**
317  * avc_lookup - Look up an AVC entry.
318  * @ssid: source security identifier
319  * @tsid: target security identifier
320  * @tclass: target security class
321  *
322  * Look up an AVC entry that is valid for the
323  * (@ssid, @tsid), interpreting the permissions
324  * based on @tclass.  If a valid AVC entry exists,
325  * then this function returns the avc_node.
326  * Otherwise, this function returns NULL.
327  */
328 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
329 {
330 	struct avc_node *node;
331 
332 	avc_cache_stats_incr(lookups);
333 	node = avc_search_node(ssid, tsid, tclass);
334 
335 	if (node)
336 		return node;
337 
338 	avc_cache_stats_incr(misses);
339 	return NULL;
340 }
341 
342 static int avc_latest_notif_update(int seqno, int is_insert)
343 {
344 	int ret = 0;
345 	static DEFINE_SPINLOCK(notif_lock);
346 	unsigned long flag;
347 
348 	spin_lock_irqsave(&notif_lock, flag);
349 	if (is_insert) {
350 		if (seqno < avc_cache.latest_notif) {
351 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
352 			       seqno, avc_cache.latest_notif);
353 			ret = -EAGAIN;
354 		}
355 	} else {
356 		if (seqno > avc_cache.latest_notif)
357 			avc_cache.latest_notif = seqno;
358 	}
359 	spin_unlock_irqrestore(&notif_lock, flag);
360 
361 	return ret;
362 }
363 
364 /**
365  * avc_insert - Insert an AVC entry.
366  * @ssid: source security identifier
367  * @tsid: target security identifier
368  * @tclass: target security class
369  * @avd: resulting av decision
370  *
371  * Insert an AVC entry for the SID pair
372  * (@ssid, @tsid) and class @tclass.
373  * The access vectors and the sequence number are
374  * normally provided by the security server in
375  * response to a security_compute_av() call.  If the
376  * sequence number @avd->seqno is not less than the latest
377  * revocation notification, then the function copies
378  * the access vectors into a cache entry, returns
379  * avc_node inserted. Otherwise, this function returns NULL.
380  */
381 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
382 {
383 	struct avc_node *pos, *node = NULL;
384 	int hvalue;
385 	unsigned long flag;
386 
387 	if (avc_latest_notif_update(avd->seqno, 1))
388 		goto out;
389 
390 	node = avc_alloc_node();
391 	if (node) {
392 		struct hlist_head *head;
393 		spinlock_t *lock;
394 
395 		hvalue = avc_hash(ssid, tsid, tclass);
396 		avc_node_populate(node, ssid, tsid, tclass, avd);
397 
398 		head = &avc_cache.slots[hvalue];
399 		lock = &avc_cache.slots_lock[hvalue];
400 
401 		spin_lock_irqsave(lock, flag);
402 		hlist_for_each_entry(pos, head, list) {
403 			if (pos->ae.ssid == ssid &&
404 			    pos->ae.tsid == tsid &&
405 			    pos->ae.tclass == tclass) {
406 				avc_node_replace(node, pos);
407 				goto found;
408 			}
409 		}
410 		hlist_add_head_rcu(&node->list, head);
411 found:
412 		spin_unlock_irqrestore(lock, flag);
413 	}
414 out:
415 	return node;
416 }
417 
418 /**
419  * avc_audit_pre_callback - SELinux specific information
420  * will be called by generic audit code
421  * @ab: the audit buffer
422  * @a: audit_data
423  */
424 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
425 {
426 	struct common_audit_data *ad = a;
427 	audit_log_format(ab, "avc:  %s ",
428 			 ad->selinux_audit_data->denied ? "denied" : "granted");
429 	avc_dump_av(ab, ad->selinux_audit_data->tclass,
430 			ad->selinux_audit_data->audited);
431 	audit_log_format(ab, " for ");
432 }
433 
434 /**
435  * avc_audit_post_callback - SELinux specific information
436  * will be called by generic audit code
437  * @ab: the audit buffer
438  * @a: audit_data
439  */
440 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
441 {
442 	struct common_audit_data *ad = a;
443 	audit_log_format(ab, " ");
444 	avc_dump_query(ab, ad->selinux_audit_data->ssid,
445 			   ad->selinux_audit_data->tsid,
446 			   ad->selinux_audit_data->tclass);
447 }
448 
449 /* This is the slow part of avc audit with big stack footprint */
450 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
451 		u32 requested, u32 audited, u32 denied,
452 		struct common_audit_data *a,
453 		unsigned flags)
454 {
455 	struct common_audit_data stack_data;
456 	struct selinux_audit_data sad;
457 
458 	if (!a) {
459 		a = &stack_data;
460 		a->type = LSM_AUDIT_DATA_NONE;
461 	}
462 
463 	/*
464 	 * When in a RCU walk do the audit on the RCU retry.  This is because
465 	 * the collection of the dname in an inode audit message is not RCU
466 	 * safe.  Note this may drop some audits when the situation changes
467 	 * during retry. However this is logically just as if the operation
468 	 * happened a little later.
469 	 */
470 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
471 	    (flags & MAY_NOT_BLOCK))
472 		return -ECHILD;
473 
474 	sad.tclass = tclass;
475 	sad.requested = requested;
476 	sad.ssid = ssid;
477 	sad.tsid = tsid;
478 	sad.audited = audited;
479 	sad.denied = denied;
480 
481 	a->selinux_audit_data = &sad;
482 
483 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
484 	return 0;
485 }
486 
487 /**
488  * avc_add_callback - Register a callback for security events.
489  * @callback: callback function
490  * @events: security events
491  *
492  * Register a callback function for events in the set @events.
493  * Returns %0 on success or -%ENOMEM if insufficient memory
494  * exists to add the callback.
495  */
496 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
497 {
498 	struct avc_callback_node *c;
499 	int rc = 0;
500 
501 	c = kmalloc(sizeof(*c), GFP_KERNEL);
502 	if (!c) {
503 		rc = -ENOMEM;
504 		goto out;
505 	}
506 
507 	c->callback = callback;
508 	c->events = events;
509 	c->next = avc_callbacks;
510 	avc_callbacks = c;
511 out:
512 	return rc;
513 }
514 
515 static inline int avc_sidcmp(u32 x, u32 y)
516 {
517 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
518 }
519 
520 /**
521  * avc_update_node Update an AVC entry
522  * @event : Updating event
523  * @perms : Permission mask bits
524  * @ssid,@tsid,@tclass : identifier of an AVC entry
525  * @seqno : sequence number when decision was made
526  *
527  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
528  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
529  * otherwise, this function updates the AVC entry. The original AVC-entry object
530  * will release later by RCU.
531  */
532 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
533 			   u32 seqno)
534 {
535 	int hvalue, rc = 0;
536 	unsigned long flag;
537 	struct avc_node *pos, *node, *orig = NULL;
538 	struct hlist_head *head;
539 	spinlock_t *lock;
540 
541 	node = avc_alloc_node();
542 	if (!node) {
543 		rc = -ENOMEM;
544 		goto out;
545 	}
546 
547 	/* Lock the target slot */
548 	hvalue = avc_hash(ssid, tsid, tclass);
549 
550 	head = &avc_cache.slots[hvalue];
551 	lock = &avc_cache.slots_lock[hvalue];
552 
553 	spin_lock_irqsave(lock, flag);
554 
555 	hlist_for_each_entry(pos, head, list) {
556 		if (ssid == pos->ae.ssid &&
557 		    tsid == pos->ae.tsid &&
558 		    tclass == pos->ae.tclass &&
559 		    seqno == pos->ae.avd.seqno){
560 			orig = pos;
561 			break;
562 		}
563 	}
564 
565 	if (!orig) {
566 		rc = -ENOENT;
567 		avc_node_kill(node);
568 		goto out_unlock;
569 	}
570 
571 	/*
572 	 * Copy and replace original node.
573 	 */
574 
575 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
576 
577 	switch (event) {
578 	case AVC_CALLBACK_GRANT:
579 		node->ae.avd.allowed |= perms;
580 		break;
581 	case AVC_CALLBACK_TRY_REVOKE:
582 	case AVC_CALLBACK_REVOKE:
583 		node->ae.avd.allowed &= ~perms;
584 		break;
585 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
586 		node->ae.avd.auditallow |= perms;
587 		break;
588 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
589 		node->ae.avd.auditallow &= ~perms;
590 		break;
591 	case AVC_CALLBACK_AUDITDENY_ENABLE:
592 		node->ae.avd.auditdeny |= perms;
593 		break;
594 	case AVC_CALLBACK_AUDITDENY_DISABLE:
595 		node->ae.avd.auditdeny &= ~perms;
596 		break;
597 	}
598 	avc_node_replace(node, orig);
599 out_unlock:
600 	spin_unlock_irqrestore(lock, flag);
601 out:
602 	return rc;
603 }
604 
605 /**
606  * avc_flush - Flush the cache
607  */
608 static void avc_flush(void)
609 {
610 	struct hlist_head *head;
611 	struct avc_node *node;
612 	spinlock_t *lock;
613 	unsigned long flag;
614 	int i;
615 
616 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
617 		head = &avc_cache.slots[i];
618 		lock = &avc_cache.slots_lock[i];
619 
620 		spin_lock_irqsave(lock, flag);
621 		/*
622 		 * With preemptable RCU, the outer spinlock does not
623 		 * prevent RCU grace periods from ending.
624 		 */
625 		rcu_read_lock();
626 		hlist_for_each_entry(node, head, list)
627 			avc_node_delete(node);
628 		rcu_read_unlock();
629 		spin_unlock_irqrestore(lock, flag);
630 	}
631 }
632 
633 /**
634  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
635  * @seqno: policy sequence number
636  */
637 int avc_ss_reset(u32 seqno)
638 {
639 	struct avc_callback_node *c;
640 	int rc = 0, tmprc;
641 
642 	avc_flush();
643 
644 	for (c = avc_callbacks; c; c = c->next) {
645 		if (c->events & AVC_CALLBACK_RESET) {
646 			tmprc = c->callback(AVC_CALLBACK_RESET);
647 			/* save the first error encountered for the return
648 			   value and continue processing the callbacks */
649 			if (!rc)
650 				rc = tmprc;
651 		}
652 	}
653 
654 	avc_latest_notif_update(seqno, 0);
655 	return rc;
656 }
657 
658 /*
659  * Slow-path helper function for avc_has_perm_noaudit,
660  * when the avc_node lookup fails. We get called with
661  * the RCU read lock held, and need to return with it
662  * still held, but drop if for the security compute.
663  *
664  * Don't inline this, since it's the slow-path and just
665  * results in a bigger stack frame.
666  */
667 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
668 			 u16 tclass, struct av_decision *avd)
669 {
670 	rcu_read_unlock();
671 	security_compute_av(ssid, tsid, tclass, avd);
672 	rcu_read_lock();
673 	return avc_insert(ssid, tsid, tclass, avd);
674 }
675 
676 static noinline int avc_denied(u32 ssid, u32 tsid,
677 			 u16 tclass, u32 requested,
678 			 unsigned flags,
679 			 struct av_decision *avd)
680 {
681 	if (flags & AVC_STRICT)
682 		return -EACCES;
683 
684 	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
685 		return -EACCES;
686 
687 	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
688 				tsid, tclass, avd->seqno);
689 	return 0;
690 }
691 
692 
693 /**
694  * avc_has_perm_noaudit - Check permissions but perform no auditing.
695  * @ssid: source security identifier
696  * @tsid: target security identifier
697  * @tclass: target security class
698  * @requested: requested permissions, interpreted based on @tclass
699  * @flags:  AVC_STRICT or 0
700  * @avd: access vector decisions
701  *
702  * Check the AVC to determine whether the @requested permissions are granted
703  * for the SID pair (@ssid, @tsid), interpreting the permissions
704  * based on @tclass, and call the security server on a cache miss to obtain
705  * a new decision and add it to the cache.  Return a copy of the decisions
706  * in @avd.  Return %0 if all @requested permissions are granted,
707  * -%EACCES if any permissions are denied, or another -errno upon
708  * other errors.  This function is typically called by avc_has_perm(),
709  * but may also be called directly to separate permission checking from
710  * auditing, e.g. in cases where a lock must be held for the check but
711  * should be released for the auditing.
712  */
713 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
714 			 u16 tclass, u32 requested,
715 			 unsigned flags,
716 			 struct av_decision *avd)
717 {
718 	struct avc_node *node;
719 	int rc = 0;
720 	u32 denied;
721 
722 	BUG_ON(!requested);
723 
724 	rcu_read_lock();
725 
726 	node = avc_lookup(ssid, tsid, tclass);
727 	if (unlikely(!node)) {
728 		node = avc_compute_av(ssid, tsid, tclass, avd);
729 	} else {
730 		memcpy(avd, &node->ae.avd, sizeof(*avd));
731 		avd = &node->ae.avd;
732 	}
733 
734 	denied = requested & ~(avd->allowed);
735 	if (unlikely(denied))
736 		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
737 
738 	rcu_read_unlock();
739 	return rc;
740 }
741 
742 /**
743  * avc_has_perm - Check permissions and perform any appropriate auditing.
744  * @ssid: source security identifier
745  * @tsid: target security identifier
746  * @tclass: target security class
747  * @requested: requested permissions, interpreted based on @tclass
748  * @auditdata: auxiliary audit data
749  *
750  * Check the AVC to determine whether the @requested permissions are granted
751  * for the SID pair (@ssid, @tsid), interpreting the permissions
752  * based on @tclass, and call the security server on a cache miss to obtain
753  * a new decision and add it to the cache.  Audit the granting or denial of
754  * permissions in accordance with the policy.  Return %0 if all @requested
755  * permissions are granted, -%EACCES if any permissions are denied, or
756  * another -errno upon other errors.
757  */
758 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
759 		 u32 requested, struct common_audit_data *auditdata)
760 {
761 	struct av_decision avd;
762 	int rc, rc2;
763 
764 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
765 
766 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
767 	if (rc2)
768 		return rc2;
769 	return rc;
770 }
771 
772 u32 avc_policy_seqno(void)
773 {
774 	return avc_cache.latest_notif;
775 }
776 
777 void avc_disable(void)
778 {
779 	/*
780 	 * If you are looking at this because you have realized that we are
781 	 * not destroying the avc_node_cachep it might be easy to fix, but
782 	 * I don't know the memory barrier semantics well enough to know.  It's
783 	 * possible that some other task dereferenced security_ops when
784 	 * it still pointed to selinux operations.  If that is the case it's
785 	 * possible that it is about to use the avc and is about to need the
786 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
787 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
788 	 * the cache and get that memory back.
789 	 */
790 	if (avc_node_cachep) {
791 		avc_flush();
792 		/* kmem_cache_destroy(avc_node_cachep); */
793 	}
794 }
795