xref: /openbmc/linux/security/selinux/avc.c (revision 861e10be)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35 
36 #define AVC_CACHE_SLOTS			512
37 #define AVC_DEF_CACHE_THRESHOLD		512
38 #define AVC_CACHE_RECLAIM		16
39 
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field)	do {} while (0)
44 #endif
45 
46 struct avc_entry {
47 	u32			ssid;
48 	u32			tsid;
49 	u16			tclass;
50 	struct av_decision	avd;
51 };
52 
53 struct avc_node {
54 	struct avc_entry	ae;
55 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
56 	struct rcu_head		rhead;
57 };
58 
59 struct avc_cache {
60 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
63 	atomic_t		active_nodes;
64 	u32			latest_notif;	/* latest revocation notification */
65 };
66 
67 struct avc_callback_node {
68 	int (*callback) (u32 event);
69 	u32 events;
70 	struct avc_callback_node *next;
71 };
72 
73 /* Exported via selinufs */
74 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
75 
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
78 #endif
79 
80 static struct avc_cache avc_cache;
81 static struct avc_callback_node *avc_callbacks;
82 static struct kmem_cache *avc_node_cachep;
83 
84 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
85 {
86 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
87 }
88 
89 /**
90  * avc_dump_av - Display an access vector in human-readable form.
91  * @tclass: target security class
92  * @av: access vector
93  */
94 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
95 {
96 	const char **perms;
97 	int i, perm;
98 
99 	if (av == 0) {
100 		audit_log_format(ab, " null");
101 		return;
102 	}
103 
104 	perms = secclass_map[tclass-1].perms;
105 
106 	audit_log_format(ab, " {");
107 	i = 0;
108 	perm = 1;
109 	while (i < (sizeof(av) * 8)) {
110 		if ((perm & av) && perms[i]) {
111 			audit_log_format(ab, " %s", perms[i]);
112 			av &= ~perm;
113 		}
114 		i++;
115 		perm <<= 1;
116 	}
117 
118 	if (av)
119 		audit_log_format(ab, " 0x%x", av);
120 
121 	audit_log_format(ab, " }");
122 }
123 
124 /**
125  * avc_dump_query - Display a SID pair and a class in human-readable form.
126  * @ssid: source security identifier
127  * @tsid: target security identifier
128  * @tclass: target security class
129  */
130 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131 {
132 	int rc;
133 	char *scontext;
134 	u32 scontext_len;
135 
136 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137 	if (rc)
138 		audit_log_format(ab, "ssid=%d", ssid);
139 	else {
140 		audit_log_format(ab, "scontext=%s", scontext);
141 		kfree(scontext);
142 	}
143 
144 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145 	if (rc)
146 		audit_log_format(ab, " tsid=%d", tsid);
147 	else {
148 		audit_log_format(ab, " tcontext=%s", scontext);
149 		kfree(scontext);
150 	}
151 
152 	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154 }
155 
156 /**
157  * avc_init - Initialize the AVC.
158  *
159  * Initialize the access vector cache.
160  */
161 void __init avc_init(void)
162 {
163 	int i;
164 
165 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167 		spin_lock_init(&avc_cache.slots_lock[i]);
168 	}
169 	atomic_set(&avc_cache.active_nodes, 0);
170 	atomic_set(&avc_cache.lru_hint, 0);
171 
172 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173 					     0, SLAB_PANIC, NULL);
174 
175 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176 }
177 
178 int avc_get_hash_stats(char *page)
179 {
180 	int i, chain_len, max_chain_len, slots_used;
181 	struct avc_node *node;
182 	struct hlist_head *head;
183 
184 	rcu_read_lock();
185 
186 	slots_used = 0;
187 	max_chain_len = 0;
188 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189 		head = &avc_cache.slots[i];
190 		if (!hlist_empty(head)) {
191 			struct hlist_node *next;
192 
193 			slots_used++;
194 			chain_len = 0;
195 			hlist_for_each_entry_rcu(node, next, head, list)
196 				chain_len++;
197 			if (chain_len > max_chain_len)
198 				max_chain_len = chain_len;
199 		}
200 	}
201 
202 	rcu_read_unlock();
203 
204 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
205 			 "longest chain: %d\n",
206 			 atomic_read(&avc_cache.active_nodes),
207 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
208 }
209 
210 static void avc_node_free(struct rcu_head *rhead)
211 {
212 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
213 	kmem_cache_free(avc_node_cachep, node);
214 	avc_cache_stats_incr(frees);
215 }
216 
217 static void avc_node_delete(struct avc_node *node)
218 {
219 	hlist_del_rcu(&node->list);
220 	call_rcu(&node->rhead, avc_node_free);
221 	atomic_dec(&avc_cache.active_nodes);
222 }
223 
224 static void avc_node_kill(struct avc_node *node)
225 {
226 	kmem_cache_free(avc_node_cachep, node);
227 	avc_cache_stats_incr(frees);
228 	atomic_dec(&avc_cache.active_nodes);
229 }
230 
231 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
232 {
233 	hlist_replace_rcu(&old->list, &new->list);
234 	call_rcu(&old->rhead, avc_node_free);
235 	atomic_dec(&avc_cache.active_nodes);
236 }
237 
238 static inline int avc_reclaim_node(void)
239 {
240 	struct avc_node *node;
241 	int hvalue, try, ecx;
242 	unsigned long flags;
243 	struct hlist_head *head;
244 	struct hlist_node *next;
245 	spinlock_t *lock;
246 
247 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
248 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
249 		head = &avc_cache.slots[hvalue];
250 		lock = &avc_cache.slots_lock[hvalue];
251 
252 		if (!spin_trylock_irqsave(lock, flags))
253 			continue;
254 
255 		rcu_read_lock();
256 		hlist_for_each_entry(node, next, head, list) {
257 			avc_node_delete(node);
258 			avc_cache_stats_incr(reclaims);
259 			ecx++;
260 			if (ecx >= AVC_CACHE_RECLAIM) {
261 				rcu_read_unlock();
262 				spin_unlock_irqrestore(lock, flags);
263 				goto out;
264 			}
265 		}
266 		rcu_read_unlock();
267 		spin_unlock_irqrestore(lock, flags);
268 	}
269 out:
270 	return ecx;
271 }
272 
273 static struct avc_node *avc_alloc_node(void)
274 {
275 	struct avc_node *node;
276 
277 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
278 	if (!node)
279 		goto out;
280 
281 	INIT_HLIST_NODE(&node->list);
282 	avc_cache_stats_incr(allocations);
283 
284 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
285 		avc_reclaim_node();
286 
287 out:
288 	return node;
289 }
290 
291 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
292 {
293 	node->ae.ssid = ssid;
294 	node->ae.tsid = tsid;
295 	node->ae.tclass = tclass;
296 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
297 }
298 
299 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
300 {
301 	struct avc_node *node, *ret = NULL;
302 	int hvalue;
303 	struct hlist_head *head;
304 	struct hlist_node *next;
305 
306 	hvalue = avc_hash(ssid, tsid, tclass);
307 	head = &avc_cache.slots[hvalue];
308 	hlist_for_each_entry_rcu(node, next, head, list) {
309 		if (ssid == node->ae.ssid &&
310 		    tclass == node->ae.tclass &&
311 		    tsid == node->ae.tsid) {
312 			ret = node;
313 			break;
314 		}
315 	}
316 
317 	return ret;
318 }
319 
320 /**
321  * avc_lookup - Look up an AVC entry.
322  * @ssid: source security identifier
323  * @tsid: target security identifier
324  * @tclass: target security class
325  *
326  * Look up an AVC entry that is valid for the
327  * (@ssid, @tsid), interpreting the permissions
328  * based on @tclass.  If a valid AVC entry exists,
329  * then this function returns the avc_node.
330  * Otherwise, this function returns NULL.
331  */
332 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
333 {
334 	struct avc_node *node;
335 
336 	avc_cache_stats_incr(lookups);
337 	node = avc_search_node(ssid, tsid, tclass);
338 
339 	if (node)
340 		return node;
341 
342 	avc_cache_stats_incr(misses);
343 	return NULL;
344 }
345 
346 static int avc_latest_notif_update(int seqno, int is_insert)
347 {
348 	int ret = 0;
349 	static DEFINE_SPINLOCK(notif_lock);
350 	unsigned long flag;
351 
352 	spin_lock_irqsave(&notif_lock, flag);
353 	if (is_insert) {
354 		if (seqno < avc_cache.latest_notif) {
355 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
356 			       seqno, avc_cache.latest_notif);
357 			ret = -EAGAIN;
358 		}
359 	} else {
360 		if (seqno > avc_cache.latest_notif)
361 			avc_cache.latest_notif = seqno;
362 	}
363 	spin_unlock_irqrestore(&notif_lock, flag);
364 
365 	return ret;
366 }
367 
368 /**
369  * avc_insert - Insert an AVC entry.
370  * @ssid: source security identifier
371  * @tsid: target security identifier
372  * @tclass: target security class
373  * @avd: resulting av decision
374  *
375  * Insert an AVC entry for the SID pair
376  * (@ssid, @tsid) and class @tclass.
377  * The access vectors and the sequence number are
378  * normally provided by the security server in
379  * response to a security_compute_av() call.  If the
380  * sequence number @avd->seqno is not less than the latest
381  * revocation notification, then the function copies
382  * the access vectors into a cache entry, returns
383  * avc_node inserted. Otherwise, this function returns NULL.
384  */
385 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
386 {
387 	struct avc_node *pos, *node = NULL;
388 	int hvalue;
389 	unsigned long flag;
390 
391 	if (avc_latest_notif_update(avd->seqno, 1))
392 		goto out;
393 
394 	node = avc_alloc_node();
395 	if (node) {
396 		struct hlist_head *head;
397 		struct hlist_node *next;
398 		spinlock_t *lock;
399 
400 		hvalue = avc_hash(ssid, tsid, tclass);
401 		avc_node_populate(node, ssid, tsid, tclass, avd);
402 
403 		head = &avc_cache.slots[hvalue];
404 		lock = &avc_cache.slots_lock[hvalue];
405 
406 		spin_lock_irqsave(lock, flag);
407 		hlist_for_each_entry(pos, next, head, list) {
408 			if (pos->ae.ssid == ssid &&
409 			    pos->ae.tsid == tsid &&
410 			    pos->ae.tclass == tclass) {
411 				avc_node_replace(node, pos);
412 				goto found;
413 			}
414 		}
415 		hlist_add_head_rcu(&node->list, head);
416 found:
417 		spin_unlock_irqrestore(lock, flag);
418 	}
419 out:
420 	return node;
421 }
422 
423 /**
424  * avc_audit_pre_callback - SELinux specific information
425  * will be called by generic audit code
426  * @ab: the audit buffer
427  * @a: audit_data
428  */
429 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
430 {
431 	struct common_audit_data *ad = a;
432 	audit_log_format(ab, "avc:  %s ",
433 			 ad->selinux_audit_data->denied ? "denied" : "granted");
434 	avc_dump_av(ab, ad->selinux_audit_data->tclass,
435 			ad->selinux_audit_data->audited);
436 	audit_log_format(ab, " for ");
437 }
438 
439 /**
440  * avc_audit_post_callback - SELinux specific information
441  * will be called by generic audit code
442  * @ab: the audit buffer
443  * @a: audit_data
444  */
445 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
446 {
447 	struct common_audit_data *ad = a;
448 	audit_log_format(ab, " ");
449 	avc_dump_query(ab, ad->selinux_audit_data->ssid,
450 			   ad->selinux_audit_data->tsid,
451 			   ad->selinux_audit_data->tclass);
452 }
453 
454 /* This is the slow part of avc audit with big stack footprint */
455 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
456 		u32 requested, u32 audited, u32 denied,
457 		struct common_audit_data *a,
458 		unsigned flags)
459 {
460 	struct common_audit_data stack_data;
461 	struct selinux_audit_data sad;
462 
463 	if (!a) {
464 		a = &stack_data;
465 		a->type = LSM_AUDIT_DATA_NONE;
466 	}
467 
468 	/*
469 	 * When in a RCU walk do the audit on the RCU retry.  This is because
470 	 * the collection of the dname in an inode audit message is not RCU
471 	 * safe.  Note this may drop some audits when the situation changes
472 	 * during retry. However this is logically just as if the operation
473 	 * happened a little later.
474 	 */
475 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
476 	    (flags & MAY_NOT_BLOCK))
477 		return -ECHILD;
478 
479 	sad.tclass = tclass;
480 	sad.requested = requested;
481 	sad.ssid = ssid;
482 	sad.tsid = tsid;
483 	sad.audited = audited;
484 	sad.denied = denied;
485 
486 	a->selinux_audit_data = &sad;
487 
488 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489 	return 0;
490 }
491 
492 /**
493  * avc_add_callback - Register a callback for security events.
494  * @callback: callback function
495  * @events: security events
496  *
497  * Register a callback function for events in the set @events.
498  * Returns %0 on success or -%ENOMEM if insufficient memory
499  * exists to add the callback.
500  */
501 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502 {
503 	struct avc_callback_node *c;
504 	int rc = 0;
505 
506 	c = kmalloc(sizeof(*c), GFP_KERNEL);
507 	if (!c) {
508 		rc = -ENOMEM;
509 		goto out;
510 	}
511 
512 	c->callback = callback;
513 	c->events = events;
514 	c->next = avc_callbacks;
515 	avc_callbacks = c;
516 out:
517 	return rc;
518 }
519 
520 static inline int avc_sidcmp(u32 x, u32 y)
521 {
522 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523 }
524 
525 /**
526  * avc_update_node Update an AVC entry
527  * @event : Updating event
528  * @perms : Permission mask bits
529  * @ssid,@tsid,@tclass : identifier of an AVC entry
530  * @seqno : sequence number when decision was made
531  *
532  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534  * otherwise, this function updates the AVC entry. The original AVC-entry object
535  * will release later by RCU.
536  */
537 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538 			   u32 seqno)
539 {
540 	int hvalue, rc = 0;
541 	unsigned long flag;
542 	struct avc_node *pos, *node, *orig = NULL;
543 	struct hlist_head *head;
544 	struct hlist_node *next;
545 	spinlock_t *lock;
546 
547 	node = avc_alloc_node();
548 	if (!node) {
549 		rc = -ENOMEM;
550 		goto out;
551 	}
552 
553 	/* Lock the target slot */
554 	hvalue = avc_hash(ssid, tsid, tclass);
555 
556 	head = &avc_cache.slots[hvalue];
557 	lock = &avc_cache.slots_lock[hvalue];
558 
559 	spin_lock_irqsave(lock, flag);
560 
561 	hlist_for_each_entry(pos, next, head, list) {
562 		if (ssid == pos->ae.ssid &&
563 		    tsid == pos->ae.tsid &&
564 		    tclass == pos->ae.tclass &&
565 		    seqno == pos->ae.avd.seqno){
566 			orig = pos;
567 			break;
568 		}
569 	}
570 
571 	if (!orig) {
572 		rc = -ENOENT;
573 		avc_node_kill(node);
574 		goto out_unlock;
575 	}
576 
577 	/*
578 	 * Copy and replace original node.
579 	 */
580 
581 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
582 
583 	switch (event) {
584 	case AVC_CALLBACK_GRANT:
585 		node->ae.avd.allowed |= perms;
586 		break;
587 	case AVC_CALLBACK_TRY_REVOKE:
588 	case AVC_CALLBACK_REVOKE:
589 		node->ae.avd.allowed &= ~perms;
590 		break;
591 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
592 		node->ae.avd.auditallow |= perms;
593 		break;
594 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
595 		node->ae.avd.auditallow &= ~perms;
596 		break;
597 	case AVC_CALLBACK_AUDITDENY_ENABLE:
598 		node->ae.avd.auditdeny |= perms;
599 		break;
600 	case AVC_CALLBACK_AUDITDENY_DISABLE:
601 		node->ae.avd.auditdeny &= ~perms;
602 		break;
603 	}
604 	avc_node_replace(node, orig);
605 out_unlock:
606 	spin_unlock_irqrestore(lock, flag);
607 out:
608 	return rc;
609 }
610 
611 /**
612  * avc_flush - Flush the cache
613  */
614 static void avc_flush(void)
615 {
616 	struct hlist_head *head;
617 	struct hlist_node *next;
618 	struct avc_node *node;
619 	spinlock_t *lock;
620 	unsigned long flag;
621 	int i;
622 
623 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
624 		head = &avc_cache.slots[i];
625 		lock = &avc_cache.slots_lock[i];
626 
627 		spin_lock_irqsave(lock, flag);
628 		/*
629 		 * With preemptable RCU, the outer spinlock does not
630 		 * prevent RCU grace periods from ending.
631 		 */
632 		rcu_read_lock();
633 		hlist_for_each_entry(node, next, head, list)
634 			avc_node_delete(node);
635 		rcu_read_unlock();
636 		spin_unlock_irqrestore(lock, flag);
637 	}
638 }
639 
640 /**
641  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
642  * @seqno: policy sequence number
643  */
644 int avc_ss_reset(u32 seqno)
645 {
646 	struct avc_callback_node *c;
647 	int rc = 0, tmprc;
648 
649 	avc_flush();
650 
651 	for (c = avc_callbacks; c; c = c->next) {
652 		if (c->events & AVC_CALLBACK_RESET) {
653 			tmprc = c->callback(AVC_CALLBACK_RESET);
654 			/* save the first error encountered for the return
655 			   value and continue processing the callbacks */
656 			if (!rc)
657 				rc = tmprc;
658 		}
659 	}
660 
661 	avc_latest_notif_update(seqno, 0);
662 	return rc;
663 }
664 
665 /*
666  * Slow-path helper function for avc_has_perm_noaudit,
667  * when the avc_node lookup fails. We get called with
668  * the RCU read lock held, and need to return with it
669  * still held, but drop if for the security compute.
670  *
671  * Don't inline this, since it's the slow-path and just
672  * results in a bigger stack frame.
673  */
674 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
675 			 u16 tclass, struct av_decision *avd)
676 {
677 	rcu_read_unlock();
678 	security_compute_av(ssid, tsid, tclass, avd);
679 	rcu_read_lock();
680 	return avc_insert(ssid, tsid, tclass, avd);
681 }
682 
683 static noinline int avc_denied(u32 ssid, u32 tsid,
684 			 u16 tclass, u32 requested,
685 			 unsigned flags,
686 			 struct av_decision *avd)
687 {
688 	if (flags & AVC_STRICT)
689 		return -EACCES;
690 
691 	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
692 		return -EACCES;
693 
694 	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
695 				tsid, tclass, avd->seqno);
696 	return 0;
697 }
698 
699 
700 /**
701  * avc_has_perm_noaudit - Check permissions but perform no auditing.
702  * @ssid: source security identifier
703  * @tsid: target security identifier
704  * @tclass: target security class
705  * @requested: requested permissions, interpreted based on @tclass
706  * @flags:  AVC_STRICT or 0
707  * @avd: access vector decisions
708  *
709  * Check the AVC to determine whether the @requested permissions are granted
710  * for the SID pair (@ssid, @tsid), interpreting the permissions
711  * based on @tclass, and call the security server on a cache miss to obtain
712  * a new decision and add it to the cache.  Return a copy of the decisions
713  * in @avd.  Return %0 if all @requested permissions are granted,
714  * -%EACCES if any permissions are denied, or another -errno upon
715  * other errors.  This function is typically called by avc_has_perm(),
716  * but may also be called directly to separate permission checking from
717  * auditing, e.g. in cases where a lock must be held for the check but
718  * should be released for the auditing.
719  */
720 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
721 			 u16 tclass, u32 requested,
722 			 unsigned flags,
723 			 struct av_decision *avd)
724 {
725 	struct avc_node *node;
726 	int rc = 0;
727 	u32 denied;
728 
729 	BUG_ON(!requested);
730 
731 	rcu_read_lock();
732 
733 	node = avc_lookup(ssid, tsid, tclass);
734 	if (unlikely(!node)) {
735 		node = avc_compute_av(ssid, tsid, tclass, avd);
736 	} else {
737 		memcpy(avd, &node->ae.avd, sizeof(*avd));
738 		avd = &node->ae.avd;
739 	}
740 
741 	denied = requested & ~(avd->allowed);
742 	if (unlikely(denied))
743 		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
744 
745 	rcu_read_unlock();
746 	return rc;
747 }
748 
749 /**
750  * avc_has_perm - Check permissions and perform any appropriate auditing.
751  * @ssid: source security identifier
752  * @tsid: target security identifier
753  * @tclass: target security class
754  * @requested: requested permissions, interpreted based on @tclass
755  * @auditdata: auxiliary audit data
756  * @flags: VFS walk flags
757  *
758  * Check the AVC to determine whether the @requested permissions are granted
759  * for the SID pair (@ssid, @tsid), interpreting the permissions
760  * based on @tclass, and call the security server on a cache miss to obtain
761  * a new decision and add it to the cache.  Audit the granting or denial of
762  * permissions in accordance with the policy.  Return %0 if all @requested
763  * permissions are granted, -%EACCES if any permissions are denied, or
764  * another -errno upon other errors.
765  */
766 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
767 		       u32 requested, struct common_audit_data *auditdata,
768 		       unsigned flags)
769 {
770 	struct av_decision avd;
771 	int rc, rc2;
772 
773 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
774 
775 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
776 			flags);
777 	if (rc2)
778 		return rc2;
779 	return rc;
780 }
781 
782 u32 avc_policy_seqno(void)
783 {
784 	return avc_cache.latest_notif;
785 }
786 
787 void avc_disable(void)
788 {
789 	/*
790 	 * If you are looking at this because you have realized that we are
791 	 * not destroying the avc_node_cachep it might be easy to fix, but
792 	 * I don't know the memory barrier semantics well enough to know.  It's
793 	 * possible that some other task dereferenced security_ops when
794 	 * it still pointed to selinux operations.  If that is the case it's
795 	 * possible that it is about to use the avc and is about to need the
796 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
797 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
798 	 * the cache and get that memory back.
799 	 */
800 	if (avc_node_cachep) {
801 		avc_flush();
802 		/* kmem_cache_destroy(avc_node_cachep); */
803 	}
804 }
805