1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <linux/list.h> 26 #include <net/sock.h> 27 #include <linux/un.h> 28 #include <net/af_unix.h> 29 #include <linux/ip.h> 30 #include <linux/audit.h> 31 #include <linux/ipv6.h> 32 #include <net/ipv6.h> 33 #include "avc.h" 34 #include "avc_ss.h" 35 #include "classmap.h" 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 /* Exported via selinufs */ 86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 87 88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 90 #endif 91 92 static struct avc_cache avc_cache; 93 static struct avc_callback_node *avc_callbacks; 94 static struct kmem_cache *avc_node_cachep; 95 static struct kmem_cache *avc_xperms_data_cachep; 96 static struct kmem_cache *avc_xperms_decision_cachep; 97 static struct kmem_cache *avc_xperms_cachep; 98 99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 100 { 101 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 102 } 103 104 /** 105 * avc_dump_av - Display an access vector in human-readable form. 106 * @tclass: target security class 107 * @av: access vector 108 */ 109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 110 { 111 const char **perms; 112 int i, perm; 113 114 if (av == 0) { 115 audit_log_format(ab, " null"); 116 return; 117 } 118 119 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); 120 perms = secclass_map[tclass-1].perms; 121 122 audit_log_format(ab, " {"); 123 i = 0; 124 perm = 1; 125 while (i < (sizeof(av) * 8)) { 126 if ((perm & av) && perms[i]) { 127 audit_log_format(ab, " %s", perms[i]); 128 av &= ~perm; 129 } 130 i++; 131 perm <<= 1; 132 } 133 134 if (av) 135 audit_log_format(ab, " 0x%x", av); 136 137 audit_log_format(ab, " }"); 138 } 139 140 /** 141 * avc_dump_query - Display a SID pair and a class in human-readable form. 142 * @ssid: source security identifier 143 * @tsid: target security identifier 144 * @tclass: target security class 145 */ 146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 147 { 148 int rc; 149 char *scontext; 150 u32 scontext_len; 151 152 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 153 if (rc) 154 audit_log_format(ab, "ssid=%d", ssid); 155 else { 156 audit_log_format(ab, "scontext=%s", scontext); 157 kfree(scontext); 158 } 159 160 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 161 if (rc) 162 audit_log_format(ab, " tsid=%d", tsid); 163 else { 164 audit_log_format(ab, " tcontext=%s", scontext); 165 kfree(scontext); 166 } 167 168 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); 169 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 170 } 171 172 /** 173 * avc_init - Initialize the AVC. 174 * 175 * Initialize the access vector cache. 176 */ 177 void __init avc_init(void) 178 { 179 int i; 180 181 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 182 INIT_HLIST_HEAD(&avc_cache.slots[i]); 183 spin_lock_init(&avc_cache.slots_lock[i]); 184 } 185 atomic_set(&avc_cache.active_nodes, 0); 186 atomic_set(&avc_cache.lru_hint, 0); 187 188 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 189 0, SLAB_PANIC, NULL); 190 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 191 sizeof(struct avc_xperms_node), 192 0, SLAB_PANIC, NULL); 193 avc_xperms_decision_cachep = kmem_cache_create( 194 "avc_xperms_decision_node", 195 sizeof(struct avc_xperms_decision_node), 196 0, SLAB_PANIC, NULL); 197 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 198 sizeof(struct extended_perms_data), 199 0, SLAB_PANIC, NULL); 200 } 201 202 int avc_get_hash_stats(char *page) 203 { 204 int i, chain_len, max_chain_len, slots_used; 205 struct avc_node *node; 206 struct hlist_head *head; 207 208 rcu_read_lock(); 209 210 slots_used = 0; 211 max_chain_len = 0; 212 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 213 head = &avc_cache.slots[i]; 214 if (!hlist_empty(head)) { 215 slots_used++; 216 chain_len = 0; 217 hlist_for_each_entry_rcu(node, head, list) 218 chain_len++; 219 if (chain_len > max_chain_len) 220 max_chain_len = chain_len; 221 } 222 } 223 224 rcu_read_unlock(); 225 226 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 227 "longest chain: %d\n", 228 atomic_read(&avc_cache.active_nodes), 229 slots_used, AVC_CACHE_SLOTS, max_chain_len); 230 } 231 232 /* 233 * using a linked list for extended_perms_decision lookup because the list is 234 * always small. i.e. less than 5, typically 1 235 */ 236 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 237 struct avc_xperms_node *xp_node) 238 { 239 struct avc_xperms_decision_node *xpd_node; 240 241 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 242 if (xpd_node->xpd.driver == driver) 243 return &xpd_node->xpd; 244 } 245 return NULL; 246 } 247 248 static inline unsigned int 249 avc_xperms_has_perm(struct extended_perms_decision *xpd, 250 u8 perm, u8 which) 251 { 252 unsigned int rc = 0; 253 254 if ((which == XPERMS_ALLOWED) && 255 (xpd->used & XPERMS_ALLOWED)) 256 rc = security_xperm_test(xpd->allowed->p, perm); 257 else if ((which == XPERMS_AUDITALLOW) && 258 (xpd->used & XPERMS_AUDITALLOW)) 259 rc = security_xperm_test(xpd->auditallow->p, perm); 260 else if ((which == XPERMS_DONTAUDIT) && 261 (xpd->used & XPERMS_DONTAUDIT)) 262 rc = security_xperm_test(xpd->dontaudit->p, perm); 263 return rc; 264 } 265 266 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 267 u8 driver, u8 perm) 268 { 269 struct extended_perms_decision *xpd; 270 security_xperm_set(xp_node->xp.drivers.p, driver); 271 xpd = avc_xperms_decision_lookup(driver, xp_node); 272 if (xpd && xpd->allowed) 273 security_xperm_set(xpd->allowed->p, perm); 274 } 275 276 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 277 { 278 struct extended_perms_decision *xpd; 279 280 xpd = &xpd_node->xpd; 281 if (xpd->allowed) 282 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 283 if (xpd->auditallow) 284 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 285 if (xpd->dontaudit) 286 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 287 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 288 } 289 290 static void avc_xperms_free(struct avc_xperms_node *xp_node) 291 { 292 struct avc_xperms_decision_node *xpd_node, *tmp; 293 294 if (!xp_node) 295 return; 296 297 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 298 list_del(&xpd_node->xpd_list); 299 avc_xperms_decision_free(xpd_node); 300 } 301 kmem_cache_free(avc_xperms_cachep, xp_node); 302 } 303 304 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 305 struct extended_perms_decision *src) 306 { 307 dest->driver = src->driver; 308 dest->used = src->used; 309 if (dest->used & XPERMS_ALLOWED) 310 memcpy(dest->allowed->p, src->allowed->p, 311 sizeof(src->allowed->p)); 312 if (dest->used & XPERMS_AUDITALLOW) 313 memcpy(dest->auditallow->p, src->auditallow->p, 314 sizeof(src->auditallow->p)); 315 if (dest->used & XPERMS_DONTAUDIT) 316 memcpy(dest->dontaudit->p, src->dontaudit->p, 317 sizeof(src->dontaudit->p)); 318 } 319 320 /* 321 * similar to avc_copy_xperms_decision, but only copy decision 322 * information relevant to this perm 323 */ 324 static inline void avc_quick_copy_xperms_decision(u8 perm, 325 struct extended_perms_decision *dest, 326 struct extended_perms_decision *src) 327 { 328 /* 329 * compute index of the u32 of the 256 bits (8 u32s) that contain this 330 * command permission 331 */ 332 u8 i = perm >> 5; 333 334 dest->used = src->used; 335 if (dest->used & XPERMS_ALLOWED) 336 dest->allowed->p[i] = src->allowed->p[i]; 337 if (dest->used & XPERMS_AUDITALLOW) 338 dest->auditallow->p[i] = src->auditallow->p[i]; 339 if (dest->used & XPERMS_DONTAUDIT) 340 dest->dontaudit->p[i] = src->dontaudit->p[i]; 341 } 342 343 static struct avc_xperms_decision_node 344 *avc_xperms_decision_alloc(u8 which) 345 { 346 struct avc_xperms_decision_node *xpd_node; 347 struct extended_perms_decision *xpd; 348 349 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT); 350 if (!xpd_node) 351 return NULL; 352 353 xpd = &xpd_node->xpd; 354 if (which & XPERMS_ALLOWED) { 355 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 356 GFP_NOWAIT); 357 if (!xpd->allowed) 358 goto error; 359 } 360 if (which & XPERMS_AUDITALLOW) { 361 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 362 GFP_NOWAIT); 363 if (!xpd->auditallow) 364 goto error; 365 } 366 if (which & XPERMS_DONTAUDIT) { 367 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 368 GFP_NOWAIT); 369 if (!xpd->dontaudit) 370 goto error; 371 } 372 return xpd_node; 373 error: 374 avc_xperms_decision_free(xpd_node); 375 return NULL; 376 } 377 378 static int avc_add_xperms_decision(struct avc_node *node, 379 struct extended_perms_decision *src) 380 { 381 struct avc_xperms_decision_node *dest_xpd; 382 383 node->ae.xp_node->xp.len++; 384 dest_xpd = avc_xperms_decision_alloc(src->used); 385 if (!dest_xpd) 386 return -ENOMEM; 387 avc_copy_xperms_decision(&dest_xpd->xpd, src); 388 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 389 return 0; 390 } 391 392 static struct avc_xperms_node *avc_xperms_alloc(void) 393 { 394 struct avc_xperms_node *xp_node; 395 396 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT); 397 if (!xp_node) 398 return xp_node; 399 INIT_LIST_HEAD(&xp_node->xpd_head); 400 return xp_node; 401 } 402 403 static int avc_xperms_populate(struct avc_node *node, 404 struct avc_xperms_node *src) 405 { 406 struct avc_xperms_node *dest; 407 struct avc_xperms_decision_node *dest_xpd; 408 struct avc_xperms_decision_node *src_xpd; 409 410 if (src->xp.len == 0) 411 return 0; 412 dest = avc_xperms_alloc(); 413 if (!dest) 414 return -ENOMEM; 415 416 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 417 dest->xp.len = src->xp.len; 418 419 /* for each source xpd allocate a destination xpd and copy */ 420 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 421 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 422 if (!dest_xpd) 423 goto error; 424 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 425 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 426 } 427 node->ae.xp_node = dest; 428 return 0; 429 error: 430 avc_xperms_free(dest); 431 return -ENOMEM; 432 433 } 434 435 static inline u32 avc_xperms_audit_required(u32 requested, 436 struct av_decision *avd, 437 struct extended_perms_decision *xpd, 438 u8 perm, 439 int result, 440 u32 *deniedp) 441 { 442 u32 denied, audited; 443 444 denied = requested & ~avd->allowed; 445 if (unlikely(denied)) { 446 audited = denied & avd->auditdeny; 447 if (audited && xpd) { 448 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 449 audited &= ~requested; 450 } 451 } else if (result) { 452 audited = denied = requested; 453 } else { 454 audited = requested & avd->auditallow; 455 if (audited && xpd) { 456 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 457 audited &= ~requested; 458 } 459 } 460 461 *deniedp = denied; 462 return audited; 463 } 464 465 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, 466 u32 requested, struct av_decision *avd, 467 struct extended_perms_decision *xpd, 468 u8 perm, int result, 469 struct common_audit_data *ad) 470 { 471 u32 audited, denied; 472 473 audited = avc_xperms_audit_required( 474 requested, avd, xpd, perm, result, &denied); 475 if (likely(!audited)) 476 return 0; 477 return slow_avc_audit(ssid, tsid, tclass, requested, 478 audited, denied, result, ad, 0); 479 } 480 481 static void avc_node_free(struct rcu_head *rhead) 482 { 483 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 484 avc_xperms_free(node->ae.xp_node); 485 kmem_cache_free(avc_node_cachep, node); 486 avc_cache_stats_incr(frees); 487 } 488 489 static void avc_node_delete(struct avc_node *node) 490 { 491 hlist_del_rcu(&node->list); 492 call_rcu(&node->rhead, avc_node_free); 493 atomic_dec(&avc_cache.active_nodes); 494 } 495 496 static void avc_node_kill(struct avc_node *node) 497 { 498 avc_xperms_free(node->ae.xp_node); 499 kmem_cache_free(avc_node_cachep, node); 500 avc_cache_stats_incr(frees); 501 atomic_dec(&avc_cache.active_nodes); 502 } 503 504 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 505 { 506 hlist_replace_rcu(&old->list, &new->list); 507 call_rcu(&old->rhead, avc_node_free); 508 atomic_dec(&avc_cache.active_nodes); 509 } 510 511 static inline int avc_reclaim_node(void) 512 { 513 struct avc_node *node; 514 int hvalue, try, ecx; 515 unsigned long flags; 516 struct hlist_head *head; 517 spinlock_t *lock; 518 519 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 520 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 521 head = &avc_cache.slots[hvalue]; 522 lock = &avc_cache.slots_lock[hvalue]; 523 524 if (!spin_trylock_irqsave(lock, flags)) 525 continue; 526 527 rcu_read_lock(); 528 hlist_for_each_entry(node, head, list) { 529 avc_node_delete(node); 530 avc_cache_stats_incr(reclaims); 531 ecx++; 532 if (ecx >= AVC_CACHE_RECLAIM) { 533 rcu_read_unlock(); 534 spin_unlock_irqrestore(lock, flags); 535 goto out; 536 } 537 } 538 rcu_read_unlock(); 539 spin_unlock_irqrestore(lock, flags); 540 } 541 out: 542 return ecx; 543 } 544 545 static struct avc_node *avc_alloc_node(void) 546 { 547 struct avc_node *node; 548 549 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT); 550 if (!node) 551 goto out; 552 553 INIT_HLIST_NODE(&node->list); 554 avc_cache_stats_incr(allocations); 555 556 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 557 avc_reclaim_node(); 558 559 out: 560 return node; 561 } 562 563 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 564 { 565 node->ae.ssid = ssid; 566 node->ae.tsid = tsid; 567 node->ae.tclass = tclass; 568 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 569 } 570 571 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 572 { 573 struct avc_node *node, *ret = NULL; 574 int hvalue; 575 struct hlist_head *head; 576 577 hvalue = avc_hash(ssid, tsid, tclass); 578 head = &avc_cache.slots[hvalue]; 579 hlist_for_each_entry_rcu(node, head, list) { 580 if (ssid == node->ae.ssid && 581 tclass == node->ae.tclass && 582 tsid == node->ae.tsid) { 583 ret = node; 584 break; 585 } 586 } 587 588 return ret; 589 } 590 591 /** 592 * avc_lookup - Look up an AVC entry. 593 * @ssid: source security identifier 594 * @tsid: target security identifier 595 * @tclass: target security class 596 * 597 * Look up an AVC entry that is valid for the 598 * (@ssid, @tsid), interpreting the permissions 599 * based on @tclass. If a valid AVC entry exists, 600 * then this function returns the avc_node. 601 * Otherwise, this function returns NULL. 602 */ 603 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 604 { 605 struct avc_node *node; 606 607 avc_cache_stats_incr(lookups); 608 node = avc_search_node(ssid, tsid, tclass); 609 610 if (node) 611 return node; 612 613 avc_cache_stats_incr(misses); 614 return NULL; 615 } 616 617 static int avc_latest_notif_update(int seqno, int is_insert) 618 { 619 int ret = 0; 620 static DEFINE_SPINLOCK(notif_lock); 621 unsigned long flag; 622 623 spin_lock_irqsave(¬if_lock, flag); 624 if (is_insert) { 625 if (seqno < avc_cache.latest_notif) { 626 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", 627 seqno, avc_cache.latest_notif); 628 ret = -EAGAIN; 629 } 630 } else { 631 if (seqno > avc_cache.latest_notif) 632 avc_cache.latest_notif = seqno; 633 } 634 spin_unlock_irqrestore(¬if_lock, flag); 635 636 return ret; 637 } 638 639 /** 640 * avc_insert - Insert an AVC entry. 641 * @ssid: source security identifier 642 * @tsid: target security identifier 643 * @tclass: target security class 644 * @avd: resulting av decision 645 * @xp_node: resulting extended permissions 646 * 647 * Insert an AVC entry for the SID pair 648 * (@ssid, @tsid) and class @tclass. 649 * The access vectors and the sequence number are 650 * normally provided by the security server in 651 * response to a security_compute_av() call. If the 652 * sequence number @avd->seqno is not less than the latest 653 * revocation notification, then the function copies 654 * the access vectors into a cache entry, returns 655 * avc_node inserted. Otherwise, this function returns NULL. 656 */ 657 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, 658 struct av_decision *avd, 659 struct avc_xperms_node *xp_node) 660 { 661 struct avc_node *pos, *node = NULL; 662 int hvalue; 663 unsigned long flag; 664 665 if (avc_latest_notif_update(avd->seqno, 1)) 666 goto out; 667 668 node = avc_alloc_node(); 669 if (node) { 670 struct hlist_head *head; 671 spinlock_t *lock; 672 int rc = 0; 673 674 hvalue = avc_hash(ssid, tsid, tclass); 675 avc_node_populate(node, ssid, tsid, tclass, avd); 676 rc = avc_xperms_populate(node, xp_node); 677 if (rc) { 678 kmem_cache_free(avc_node_cachep, node); 679 return NULL; 680 } 681 head = &avc_cache.slots[hvalue]; 682 lock = &avc_cache.slots_lock[hvalue]; 683 684 spin_lock_irqsave(lock, flag); 685 hlist_for_each_entry(pos, head, list) { 686 if (pos->ae.ssid == ssid && 687 pos->ae.tsid == tsid && 688 pos->ae.tclass == tclass) { 689 avc_node_replace(node, pos); 690 goto found; 691 } 692 } 693 hlist_add_head_rcu(&node->list, head); 694 found: 695 spin_unlock_irqrestore(lock, flag); 696 } 697 out: 698 return node; 699 } 700 701 /** 702 * avc_audit_pre_callback - SELinux specific information 703 * will be called by generic audit code 704 * @ab: the audit buffer 705 * @a: audit_data 706 */ 707 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 708 { 709 struct common_audit_data *ad = a; 710 audit_log_format(ab, "avc: %s ", 711 ad->selinux_audit_data->denied ? "denied" : "granted"); 712 avc_dump_av(ab, ad->selinux_audit_data->tclass, 713 ad->selinux_audit_data->audited); 714 audit_log_format(ab, " for "); 715 } 716 717 /** 718 * avc_audit_post_callback - SELinux specific information 719 * will be called by generic audit code 720 * @ab: the audit buffer 721 * @a: audit_data 722 */ 723 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 724 { 725 struct common_audit_data *ad = a; 726 audit_log_format(ab, " "); 727 avc_dump_query(ab, ad->selinux_audit_data->ssid, 728 ad->selinux_audit_data->tsid, 729 ad->selinux_audit_data->tclass); 730 if (ad->selinux_audit_data->denied) { 731 audit_log_format(ab, " permissive=%u", 732 ad->selinux_audit_data->result ? 0 : 1); 733 } 734 } 735 736 /* This is the slow part of avc audit with big stack footprint */ 737 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 738 u32 requested, u32 audited, u32 denied, int result, 739 struct common_audit_data *a, 740 unsigned flags) 741 { 742 struct common_audit_data stack_data; 743 struct selinux_audit_data sad; 744 745 if (!a) { 746 a = &stack_data; 747 a->type = LSM_AUDIT_DATA_NONE; 748 } 749 750 /* 751 * When in a RCU walk do the audit on the RCU retry. This is because 752 * the collection of the dname in an inode audit message is not RCU 753 * safe. Note this may drop some audits when the situation changes 754 * during retry. However this is logically just as if the operation 755 * happened a little later. 756 */ 757 if ((a->type == LSM_AUDIT_DATA_INODE) && 758 (flags & MAY_NOT_BLOCK)) 759 return -ECHILD; 760 761 sad.tclass = tclass; 762 sad.requested = requested; 763 sad.ssid = ssid; 764 sad.tsid = tsid; 765 sad.audited = audited; 766 sad.denied = denied; 767 sad.result = result; 768 769 a->selinux_audit_data = &sad; 770 771 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 772 return 0; 773 } 774 775 /** 776 * avc_add_callback - Register a callback for security events. 777 * @callback: callback function 778 * @events: security events 779 * 780 * Register a callback function for events in the set @events. 781 * Returns %0 on success or -%ENOMEM if insufficient memory 782 * exists to add the callback. 783 */ 784 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 785 { 786 struct avc_callback_node *c; 787 int rc = 0; 788 789 c = kmalloc(sizeof(*c), GFP_KERNEL); 790 if (!c) { 791 rc = -ENOMEM; 792 goto out; 793 } 794 795 c->callback = callback; 796 c->events = events; 797 c->next = avc_callbacks; 798 avc_callbacks = c; 799 out: 800 return rc; 801 } 802 803 /** 804 * avc_update_node Update an AVC entry 805 * @event : Updating event 806 * @perms : Permission mask bits 807 * @ssid,@tsid,@tclass : identifier of an AVC entry 808 * @seqno : sequence number when decision was made 809 * @xpd: extended_perms_decision to be added to the node 810 * 811 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 812 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 813 * otherwise, this function updates the AVC entry. The original AVC-entry object 814 * will release later by RCU. 815 */ 816 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 817 u32 tsid, u16 tclass, u32 seqno, 818 struct extended_perms_decision *xpd, 819 u32 flags) 820 { 821 int hvalue, rc = 0; 822 unsigned long flag; 823 struct avc_node *pos, *node, *orig = NULL; 824 struct hlist_head *head; 825 spinlock_t *lock; 826 827 node = avc_alloc_node(); 828 if (!node) { 829 rc = -ENOMEM; 830 goto out; 831 } 832 833 /* Lock the target slot */ 834 hvalue = avc_hash(ssid, tsid, tclass); 835 836 head = &avc_cache.slots[hvalue]; 837 lock = &avc_cache.slots_lock[hvalue]; 838 839 spin_lock_irqsave(lock, flag); 840 841 hlist_for_each_entry(pos, head, list) { 842 if (ssid == pos->ae.ssid && 843 tsid == pos->ae.tsid && 844 tclass == pos->ae.tclass && 845 seqno == pos->ae.avd.seqno){ 846 orig = pos; 847 break; 848 } 849 } 850 851 if (!orig) { 852 rc = -ENOENT; 853 avc_node_kill(node); 854 goto out_unlock; 855 } 856 857 /* 858 * Copy and replace original node. 859 */ 860 861 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 862 863 if (orig->ae.xp_node) { 864 rc = avc_xperms_populate(node, orig->ae.xp_node); 865 if (rc) { 866 kmem_cache_free(avc_node_cachep, node); 867 goto out_unlock; 868 } 869 } 870 871 switch (event) { 872 case AVC_CALLBACK_GRANT: 873 node->ae.avd.allowed |= perms; 874 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 875 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 876 break; 877 case AVC_CALLBACK_TRY_REVOKE: 878 case AVC_CALLBACK_REVOKE: 879 node->ae.avd.allowed &= ~perms; 880 break; 881 case AVC_CALLBACK_AUDITALLOW_ENABLE: 882 node->ae.avd.auditallow |= perms; 883 break; 884 case AVC_CALLBACK_AUDITALLOW_DISABLE: 885 node->ae.avd.auditallow &= ~perms; 886 break; 887 case AVC_CALLBACK_AUDITDENY_ENABLE: 888 node->ae.avd.auditdeny |= perms; 889 break; 890 case AVC_CALLBACK_AUDITDENY_DISABLE: 891 node->ae.avd.auditdeny &= ~perms; 892 break; 893 case AVC_CALLBACK_ADD_XPERMS: 894 avc_add_xperms_decision(node, xpd); 895 break; 896 } 897 avc_node_replace(node, orig); 898 out_unlock: 899 spin_unlock_irqrestore(lock, flag); 900 out: 901 return rc; 902 } 903 904 /** 905 * avc_flush - Flush the cache 906 */ 907 static void avc_flush(void) 908 { 909 struct hlist_head *head; 910 struct avc_node *node; 911 spinlock_t *lock; 912 unsigned long flag; 913 int i; 914 915 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 916 head = &avc_cache.slots[i]; 917 lock = &avc_cache.slots_lock[i]; 918 919 spin_lock_irqsave(lock, flag); 920 /* 921 * With preemptable RCU, the outer spinlock does not 922 * prevent RCU grace periods from ending. 923 */ 924 rcu_read_lock(); 925 hlist_for_each_entry(node, head, list) 926 avc_node_delete(node); 927 rcu_read_unlock(); 928 spin_unlock_irqrestore(lock, flag); 929 } 930 } 931 932 /** 933 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 934 * @seqno: policy sequence number 935 */ 936 int avc_ss_reset(u32 seqno) 937 { 938 struct avc_callback_node *c; 939 int rc = 0, tmprc; 940 941 avc_flush(); 942 943 for (c = avc_callbacks; c; c = c->next) { 944 if (c->events & AVC_CALLBACK_RESET) { 945 tmprc = c->callback(AVC_CALLBACK_RESET); 946 /* save the first error encountered for the return 947 value and continue processing the callbacks */ 948 if (!rc) 949 rc = tmprc; 950 } 951 } 952 953 avc_latest_notif_update(seqno, 0); 954 return rc; 955 } 956 957 /* 958 * Slow-path helper function for avc_has_perm_noaudit, 959 * when the avc_node lookup fails. We get called with 960 * the RCU read lock held, and need to return with it 961 * still held, but drop if for the security compute. 962 * 963 * Don't inline this, since it's the slow-path and just 964 * results in a bigger stack frame. 965 */ 966 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid, 967 u16 tclass, struct av_decision *avd, 968 struct avc_xperms_node *xp_node) 969 { 970 rcu_read_unlock(); 971 INIT_LIST_HEAD(&xp_node->xpd_head); 972 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); 973 rcu_read_lock(); 974 return avc_insert(ssid, tsid, tclass, avd, xp_node); 975 } 976 977 static noinline int avc_denied(u32 ssid, u32 tsid, 978 u16 tclass, u32 requested, 979 u8 driver, u8 xperm, unsigned flags, 980 struct av_decision *avd) 981 { 982 if (flags & AVC_STRICT) 983 return -EACCES; 984 985 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE)) 986 return -EACCES; 987 988 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid, 989 tsid, tclass, avd->seqno, NULL, flags); 990 return 0; 991 } 992 993 /* 994 * The avc extended permissions logic adds an additional 256 bits of 995 * permissions to an avc node when extended permissions for that node are 996 * specified in the avtab. If the additional 256 permissions is not adequate, 997 * as-is the case with ioctls, then multiple may be chained together and the 998 * driver field is used to specify which set contains the permission. 999 */ 1000 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, 1001 u8 driver, u8 xperm, struct common_audit_data *ad) 1002 { 1003 struct avc_node *node; 1004 struct av_decision avd; 1005 u32 denied; 1006 struct extended_perms_decision local_xpd; 1007 struct extended_perms_decision *xpd = NULL; 1008 struct extended_perms_data allowed; 1009 struct extended_perms_data auditallow; 1010 struct extended_perms_data dontaudit; 1011 struct avc_xperms_node local_xp_node; 1012 struct avc_xperms_node *xp_node; 1013 int rc = 0, rc2; 1014 1015 xp_node = &local_xp_node; 1016 BUG_ON(!requested); 1017 1018 rcu_read_lock(); 1019 1020 node = avc_lookup(ssid, tsid, tclass); 1021 if (unlikely(!node)) { 1022 node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node); 1023 } else { 1024 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1025 xp_node = node->ae.xp_node; 1026 } 1027 /* if extended permissions are not defined, only consider av_decision */ 1028 if (!xp_node || !xp_node->xp.len) 1029 goto decision; 1030 1031 local_xpd.allowed = &allowed; 1032 local_xpd.auditallow = &auditallow; 1033 local_xpd.dontaudit = &dontaudit; 1034 1035 xpd = avc_xperms_decision_lookup(driver, xp_node); 1036 if (unlikely(!xpd)) { 1037 /* 1038 * Compute the extended_perms_decision only if the driver 1039 * is flagged 1040 */ 1041 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1042 avd.allowed &= ~requested; 1043 goto decision; 1044 } 1045 rcu_read_unlock(); 1046 security_compute_xperms_decision(ssid, tsid, tclass, driver, 1047 &local_xpd); 1048 rcu_read_lock(); 1049 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm, 1050 ssid, tsid, tclass, avd.seqno, &local_xpd, 0); 1051 } else { 1052 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1053 } 1054 xpd = &local_xpd; 1055 1056 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1057 avd.allowed &= ~requested; 1058 1059 decision: 1060 denied = requested & ~(avd.allowed); 1061 if (unlikely(denied)) 1062 rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm, 1063 AVC_EXTENDED_PERMS, &avd); 1064 1065 rcu_read_unlock(); 1066 1067 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, 1068 &avd, xpd, xperm, rc, ad); 1069 if (rc2) 1070 return rc2; 1071 return rc; 1072 } 1073 1074 /** 1075 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1076 * @ssid: source security identifier 1077 * @tsid: target security identifier 1078 * @tclass: target security class 1079 * @requested: requested permissions, interpreted based on @tclass 1080 * @flags: AVC_STRICT or 0 1081 * @avd: access vector decisions 1082 * 1083 * Check the AVC to determine whether the @requested permissions are granted 1084 * for the SID pair (@ssid, @tsid), interpreting the permissions 1085 * based on @tclass, and call the security server on a cache miss to obtain 1086 * a new decision and add it to the cache. Return a copy of the decisions 1087 * in @avd. Return %0 if all @requested permissions are granted, 1088 * -%EACCES if any permissions are denied, or another -errno upon 1089 * other errors. This function is typically called by avc_has_perm(), 1090 * but may also be called directly to separate permission checking from 1091 * auditing, e.g. in cases where a lock must be held for the check but 1092 * should be released for the auditing. 1093 */ 1094 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 1095 u16 tclass, u32 requested, 1096 unsigned flags, 1097 struct av_decision *avd) 1098 { 1099 struct avc_node *node; 1100 struct avc_xperms_node xp_node; 1101 int rc = 0; 1102 u32 denied; 1103 1104 BUG_ON(!requested); 1105 1106 rcu_read_lock(); 1107 1108 node = avc_lookup(ssid, tsid, tclass); 1109 if (unlikely(!node)) 1110 node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node); 1111 else 1112 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1113 1114 denied = requested & ~(avd->allowed); 1115 if (unlikely(denied)) 1116 rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd); 1117 1118 rcu_read_unlock(); 1119 return rc; 1120 } 1121 1122 /** 1123 * avc_has_perm - Check permissions and perform any appropriate auditing. 1124 * @ssid: source security identifier 1125 * @tsid: target security identifier 1126 * @tclass: target security class 1127 * @requested: requested permissions, interpreted based on @tclass 1128 * @auditdata: auxiliary audit data 1129 * 1130 * Check the AVC to determine whether the @requested permissions are granted 1131 * for the SID pair (@ssid, @tsid), interpreting the permissions 1132 * based on @tclass, and call the security server on a cache miss to obtain 1133 * a new decision and add it to the cache. Audit the granting or denial of 1134 * permissions in accordance with the policy. Return %0 if all @requested 1135 * permissions are granted, -%EACCES if any permissions are denied, or 1136 * another -errno upon other errors. 1137 */ 1138 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 1139 u32 requested, struct common_audit_data *auditdata) 1140 { 1141 struct av_decision avd; 1142 int rc, rc2; 1143 1144 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 1145 1146 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0); 1147 if (rc2) 1148 return rc2; 1149 return rc; 1150 } 1151 1152 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass, 1153 u32 requested, struct common_audit_data *auditdata, 1154 int flags) 1155 { 1156 struct av_decision avd; 1157 int rc, rc2; 1158 1159 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 1160 1161 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, 1162 auditdata, flags); 1163 if (rc2) 1164 return rc2; 1165 return rc; 1166 } 1167 1168 u32 avc_policy_seqno(void) 1169 { 1170 return avc_cache.latest_notif; 1171 } 1172 1173 void avc_disable(void) 1174 { 1175 /* 1176 * If you are looking at this because you have realized that we are 1177 * not destroying the avc_node_cachep it might be easy to fix, but 1178 * I don't know the memory barrier semantics well enough to know. It's 1179 * possible that some other task dereferenced security_ops when 1180 * it still pointed to selinux operations. If that is the case it's 1181 * possible that it is about to use the avc and is about to need the 1182 * avc_node_cachep. I know I could wrap the security.c security_ops call 1183 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1184 * the cache and get that memory back. 1185 */ 1186 if (avc_node_cachep) { 1187 avc_flush(); 1188 /* kmem_cache_destroy(avc_node_cachep); */ 1189 } 1190 } 1191