1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <net/sock.h> 26 #include <linux/un.h> 27 #include <net/af_unix.h> 28 #include <linux/ip.h> 29 #include <linux/audit.h> 30 #include <linux/ipv6.h> 31 #include <net/ipv6.h> 32 #include "avc.h" 33 #include "avc_ss.h" 34 #include "classmap.h" 35 36 #define AVC_CACHE_SLOTS 512 37 #define AVC_DEF_CACHE_THRESHOLD 512 38 #define AVC_CACHE_RECLAIM 16 39 40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 42 #else 43 #define avc_cache_stats_incr(field) do {} while (0) 44 #endif 45 46 struct avc_entry { 47 u32 ssid; 48 u32 tsid; 49 u16 tclass; 50 struct av_decision avd; 51 }; 52 53 struct avc_node { 54 struct avc_entry ae; 55 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 56 struct rcu_head rhead; 57 }; 58 59 struct avc_cache { 60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 62 atomic_t lru_hint; /* LRU hint for reclaim scan */ 63 atomic_t active_nodes; 64 u32 latest_notif; /* latest revocation notification */ 65 }; 66 67 struct avc_callback_node { 68 int (*callback) (u32 event, u32 ssid, u32 tsid, 69 u16 tclass, u32 perms, 70 u32 *out_retained); 71 u32 events; 72 u32 ssid; 73 u32 tsid; 74 u16 tclass; 75 u32 perms; 76 struct avc_callback_node *next; 77 }; 78 79 /* Exported via selinufs */ 80 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 81 82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 84 #endif 85 86 static struct avc_cache avc_cache; 87 static struct avc_callback_node *avc_callbacks; 88 static struct kmem_cache *avc_node_cachep; 89 90 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 91 { 92 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 93 } 94 95 /** 96 * avc_dump_av - Display an access vector in human-readable form. 97 * @tclass: target security class 98 * @av: access vector 99 */ 100 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 101 { 102 const char **perms; 103 int i, perm; 104 105 if (av == 0) { 106 audit_log_format(ab, " null"); 107 return; 108 } 109 110 perms = secclass_map[tclass-1].perms; 111 112 audit_log_format(ab, " {"); 113 i = 0; 114 perm = 1; 115 while (i < (sizeof(av) * 8)) { 116 if ((perm & av) && perms[i]) { 117 audit_log_format(ab, " %s", perms[i]); 118 av &= ~perm; 119 } 120 i++; 121 perm <<= 1; 122 } 123 124 if (av) 125 audit_log_format(ab, " 0x%x", av); 126 127 audit_log_format(ab, " }"); 128 } 129 130 /** 131 * avc_dump_query - Display a SID pair and a class in human-readable form. 132 * @ssid: source security identifier 133 * @tsid: target security identifier 134 * @tclass: target security class 135 */ 136 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 137 { 138 int rc; 139 char *scontext; 140 u32 scontext_len; 141 142 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 143 if (rc) 144 audit_log_format(ab, "ssid=%d", ssid); 145 else { 146 audit_log_format(ab, "scontext=%s", scontext); 147 kfree(scontext); 148 } 149 150 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 151 if (rc) 152 audit_log_format(ab, " tsid=%d", tsid); 153 else { 154 audit_log_format(ab, " tcontext=%s", scontext); 155 kfree(scontext); 156 } 157 158 BUG_ON(tclass >= ARRAY_SIZE(secclass_map)); 159 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 160 } 161 162 /** 163 * avc_init - Initialize the AVC. 164 * 165 * Initialize the access vector cache. 166 */ 167 void __init avc_init(void) 168 { 169 int i; 170 171 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 172 INIT_HLIST_HEAD(&avc_cache.slots[i]); 173 spin_lock_init(&avc_cache.slots_lock[i]); 174 } 175 atomic_set(&avc_cache.active_nodes, 0); 176 atomic_set(&avc_cache.lru_hint, 0); 177 178 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 179 0, SLAB_PANIC, NULL); 180 181 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); 182 } 183 184 int avc_get_hash_stats(char *page) 185 { 186 int i, chain_len, max_chain_len, slots_used; 187 struct avc_node *node; 188 struct hlist_head *head; 189 190 rcu_read_lock(); 191 192 slots_used = 0; 193 max_chain_len = 0; 194 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 195 head = &avc_cache.slots[i]; 196 if (!hlist_empty(head)) { 197 struct hlist_node *next; 198 199 slots_used++; 200 chain_len = 0; 201 hlist_for_each_entry_rcu(node, next, head, list) 202 chain_len++; 203 if (chain_len > max_chain_len) 204 max_chain_len = chain_len; 205 } 206 } 207 208 rcu_read_unlock(); 209 210 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 211 "longest chain: %d\n", 212 atomic_read(&avc_cache.active_nodes), 213 slots_used, AVC_CACHE_SLOTS, max_chain_len); 214 } 215 216 static void avc_node_free(struct rcu_head *rhead) 217 { 218 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 219 kmem_cache_free(avc_node_cachep, node); 220 avc_cache_stats_incr(frees); 221 } 222 223 static void avc_node_delete(struct avc_node *node) 224 { 225 hlist_del_rcu(&node->list); 226 call_rcu(&node->rhead, avc_node_free); 227 atomic_dec(&avc_cache.active_nodes); 228 } 229 230 static void avc_node_kill(struct avc_node *node) 231 { 232 kmem_cache_free(avc_node_cachep, node); 233 avc_cache_stats_incr(frees); 234 atomic_dec(&avc_cache.active_nodes); 235 } 236 237 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 238 { 239 hlist_replace_rcu(&old->list, &new->list); 240 call_rcu(&old->rhead, avc_node_free); 241 atomic_dec(&avc_cache.active_nodes); 242 } 243 244 static inline int avc_reclaim_node(void) 245 { 246 struct avc_node *node; 247 int hvalue, try, ecx; 248 unsigned long flags; 249 struct hlist_head *head; 250 struct hlist_node *next; 251 spinlock_t *lock; 252 253 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 254 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 255 head = &avc_cache.slots[hvalue]; 256 lock = &avc_cache.slots_lock[hvalue]; 257 258 if (!spin_trylock_irqsave(lock, flags)) 259 continue; 260 261 rcu_read_lock(); 262 hlist_for_each_entry(node, next, head, list) { 263 avc_node_delete(node); 264 avc_cache_stats_incr(reclaims); 265 ecx++; 266 if (ecx >= AVC_CACHE_RECLAIM) { 267 rcu_read_unlock(); 268 spin_unlock_irqrestore(lock, flags); 269 goto out; 270 } 271 } 272 rcu_read_unlock(); 273 spin_unlock_irqrestore(lock, flags); 274 } 275 out: 276 return ecx; 277 } 278 279 static struct avc_node *avc_alloc_node(void) 280 { 281 struct avc_node *node; 282 283 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC); 284 if (!node) 285 goto out; 286 287 INIT_HLIST_NODE(&node->list); 288 avc_cache_stats_incr(allocations); 289 290 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 291 avc_reclaim_node(); 292 293 out: 294 return node; 295 } 296 297 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 298 { 299 node->ae.ssid = ssid; 300 node->ae.tsid = tsid; 301 node->ae.tclass = tclass; 302 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 303 } 304 305 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 306 { 307 struct avc_node *node, *ret = NULL; 308 int hvalue; 309 struct hlist_head *head; 310 struct hlist_node *next; 311 312 hvalue = avc_hash(ssid, tsid, tclass); 313 head = &avc_cache.slots[hvalue]; 314 hlist_for_each_entry_rcu(node, next, head, list) { 315 if (ssid == node->ae.ssid && 316 tclass == node->ae.tclass && 317 tsid == node->ae.tsid) { 318 ret = node; 319 break; 320 } 321 } 322 323 return ret; 324 } 325 326 /** 327 * avc_lookup - Look up an AVC entry. 328 * @ssid: source security identifier 329 * @tsid: target security identifier 330 * @tclass: target security class 331 * 332 * Look up an AVC entry that is valid for the 333 * (@ssid, @tsid), interpreting the permissions 334 * based on @tclass. If a valid AVC entry exists, 335 * then this function returns the avc_node. 336 * Otherwise, this function returns NULL. 337 */ 338 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 339 { 340 struct avc_node *node; 341 342 avc_cache_stats_incr(lookups); 343 node = avc_search_node(ssid, tsid, tclass); 344 345 if (node) 346 return node; 347 348 avc_cache_stats_incr(misses); 349 return NULL; 350 } 351 352 static int avc_latest_notif_update(int seqno, int is_insert) 353 { 354 int ret = 0; 355 static DEFINE_SPINLOCK(notif_lock); 356 unsigned long flag; 357 358 spin_lock_irqsave(¬if_lock, flag); 359 if (is_insert) { 360 if (seqno < avc_cache.latest_notif) { 361 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", 362 seqno, avc_cache.latest_notif); 363 ret = -EAGAIN; 364 } 365 } else { 366 if (seqno > avc_cache.latest_notif) 367 avc_cache.latest_notif = seqno; 368 } 369 spin_unlock_irqrestore(¬if_lock, flag); 370 371 return ret; 372 } 373 374 /** 375 * avc_insert - Insert an AVC entry. 376 * @ssid: source security identifier 377 * @tsid: target security identifier 378 * @tclass: target security class 379 * @avd: resulting av decision 380 * 381 * Insert an AVC entry for the SID pair 382 * (@ssid, @tsid) and class @tclass. 383 * The access vectors and the sequence number are 384 * normally provided by the security server in 385 * response to a security_compute_av() call. If the 386 * sequence number @avd->seqno is not less than the latest 387 * revocation notification, then the function copies 388 * the access vectors into a cache entry, returns 389 * avc_node inserted. Otherwise, this function returns NULL. 390 */ 391 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 392 { 393 struct avc_node *pos, *node = NULL; 394 int hvalue; 395 unsigned long flag; 396 397 if (avc_latest_notif_update(avd->seqno, 1)) 398 goto out; 399 400 node = avc_alloc_node(); 401 if (node) { 402 struct hlist_head *head; 403 struct hlist_node *next; 404 spinlock_t *lock; 405 406 hvalue = avc_hash(ssid, tsid, tclass); 407 avc_node_populate(node, ssid, tsid, tclass, avd); 408 409 head = &avc_cache.slots[hvalue]; 410 lock = &avc_cache.slots_lock[hvalue]; 411 412 spin_lock_irqsave(lock, flag); 413 hlist_for_each_entry(pos, next, head, list) { 414 if (pos->ae.ssid == ssid && 415 pos->ae.tsid == tsid && 416 pos->ae.tclass == tclass) { 417 avc_node_replace(node, pos); 418 goto found; 419 } 420 } 421 hlist_add_head_rcu(&node->list, head); 422 found: 423 spin_unlock_irqrestore(lock, flag); 424 } 425 out: 426 return node; 427 } 428 429 /** 430 * avc_audit_pre_callback - SELinux specific information 431 * will be called by generic audit code 432 * @ab: the audit buffer 433 * @a: audit_data 434 */ 435 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 436 { 437 struct common_audit_data *ad = a; 438 audit_log_format(ab, "avc: %s ", 439 ad->selinux_audit_data.denied ? "denied" : "granted"); 440 avc_dump_av(ab, ad->selinux_audit_data.tclass, 441 ad->selinux_audit_data.audited); 442 audit_log_format(ab, " for "); 443 } 444 445 /** 446 * avc_audit_post_callback - SELinux specific information 447 * will be called by generic audit code 448 * @ab: the audit buffer 449 * @a: audit_data 450 */ 451 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 452 { 453 struct common_audit_data *ad = a; 454 audit_log_format(ab, " "); 455 avc_dump_query(ab, ad->selinux_audit_data.ssid, 456 ad->selinux_audit_data.tsid, 457 ad->selinux_audit_data.tclass); 458 } 459 460 /** 461 * avc_audit - Audit the granting or denial of permissions. 462 * @ssid: source security identifier 463 * @tsid: target security identifier 464 * @tclass: target security class 465 * @requested: requested permissions 466 * @avd: access vector decisions 467 * @result: result from avc_has_perm_noaudit 468 * @a: auxiliary audit data 469 * @flags: VFS walk flags 470 * 471 * Audit the granting or denial of permissions in accordance 472 * with the policy. This function is typically called by 473 * avc_has_perm() after a permission check, but can also be 474 * called directly by callers who use avc_has_perm_noaudit() 475 * in order to separate the permission check from the auditing. 476 * For example, this separation is useful when the permission check must 477 * be performed under a lock, to allow the lock to be released 478 * before calling the auditing code. 479 */ 480 int avc_audit(u32 ssid, u32 tsid, 481 u16 tclass, u32 requested, 482 struct av_decision *avd, int result, struct common_audit_data *a, 483 unsigned flags) 484 { 485 struct common_audit_data stack_data; 486 u32 denied, audited; 487 denied = requested & ~avd->allowed; 488 if (denied) { 489 audited = denied & avd->auditdeny; 490 /* 491 * a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in 492 * this field means that ANY denials should NOT be audited if 493 * the policy contains an explicit dontaudit rule for that 494 * permission. Take notice that this is unrelated to the 495 * actual permissions that were denied. As an example lets 496 * assume: 497 * 498 * denied == READ 499 * avd.auditdeny & ACCESS == 0 (not set means explicit rule) 500 * selinux_audit_data.auditdeny & ACCESS == 1 501 * 502 * We will NOT audit the denial even though the denied 503 * permission was READ and the auditdeny checks were for 504 * ACCESS 505 */ 506 if (a && 507 a->selinux_audit_data.auditdeny && 508 !(a->selinux_audit_data.auditdeny & avd->auditdeny)) 509 audited = 0; 510 } else if (result) 511 audited = denied = requested; 512 else 513 audited = requested & avd->auditallow; 514 if (!audited) 515 return 0; 516 517 if (!a) { 518 a = &stack_data; 519 COMMON_AUDIT_DATA_INIT(a, NONE); 520 } 521 522 /* 523 * When in a RCU walk do the audit on the RCU retry. This is because 524 * the collection of the dname in an inode audit message is not RCU 525 * safe. Note this may drop some audits when the situation changes 526 * during retry. However this is logically just as if the operation 527 * happened a little later. 528 */ 529 if ((a->type == LSM_AUDIT_DATA_INODE) && 530 (flags & MAY_NOT_BLOCK)) 531 return -ECHILD; 532 533 a->selinux_audit_data.tclass = tclass; 534 a->selinux_audit_data.requested = requested; 535 a->selinux_audit_data.ssid = ssid; 536 a->selinux_audit_data.tsid = tsid; 537 a->selinux_audit_data.audited = audited; 538 a->selinux_audit_data.denied = denied; 539 a->lsm_pre_audit = avc_audit_pre_callback; 540 a->lsm_post_audit = avc_audit_post_callback; 541 common_lsm_audit(a); 542 return 0; 543 } 544 545 /** 546 * avc_add_callback - Register a callback for security events. 547 * @callback: callback function 548 * @events: security events 549 * @ssid: source security identifier or %SECSID_WILD 550 * @tsid: target security identifier or %SECSID_WILD 551 * @tclass: target security class 552 * @perms: permissions 553 * 554 * Register a callback function for events in the set @events 555 * related to the SID pair (@ssid, @tsid) 556 * and the permissions @perms, interpreting 557 * @perms based on @tclass. Returns %0 on success or 558 * -%ENOMEM if insufficient memory exists to add the callback. 559 */ 560 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, 561 u16 tclass, u32 perms, 562 u32 *out_retained), 563 u32 events, u32 ssid, u32 tsid, 564 u16 tclass, u32 perms) 565 { 566 struct avc_callback_node *c; 567 int rc = 0; 568 569 c = kmalloc(sizeof(*c), GFP_ATOMIC); 570 if (!c) { 571 rc = -ENOMEM; 572 goto out; 573 } 574 575 c->callback = callback; 576 c->events = events; 577 c->ssid = ssid; 578 c->tsid = tsid; 579 c->perms = perms; 580 c->next = avc_callbacks; 581 avc_callbacks = c; 582 out: 583 return rc; 584 } 585 586 static inline int avc_sidcmp(u32 x, u32 y) 587 { 588 return (x == y || x == SECSID_WILD || y == SECSID_WILD); 589 } 590 591 /** 592 * avc_update_node Update an AVC entry 593 * @event : Updating event 594 * @perms : Permission mask bits 595 * @ssid,@tsid,@tclass : identifier of an AVC entry 596 * @seqno : sequence number when decision was made 597 * 598 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 599 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 600 * otherwise, this function updates the AVC entry. The original AVC-entry object 601 * will release later by RCU. 602 */ 603 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass, 604 u32 seqno) 605 { 606 int hvalue, rc = 0; 607 unsigned long flag; 608 struct avc_node *pos, *node, *orig = NULL; 609 struct hlist_head *head; 610 struct hlist_node *next; 611 spinlock_t *lock; 612 613 node = avc_alloc_node(); 614 if (!node) { 615 rc = -ENOMEM; 616 goto out; 617 } 618 619 /* Lock the target slot */ 620 hvalue = avc_hash(ssid, tsid, tclass); 621 622 head = &avc_cache.slots[hvalue]; 623 lock = &avc_cache.slots_lock[hvalue]; 624 625 spin_lock_irqsave(lock, flag); 626 627 hlist_for_each_entry(pos, next, head, list) { 628 if (ssid == pos->ae.ssid && 629 tsid == pos->ae.tsid && 630 tclass == pos->ae.tclass && 631 seqno == pos->ae.avd.seqno){ 632 orig = pos; 633 break; 634 } 635 } 636 637 if (!orig) { 638 rc = -ENOENT; 639 avc_node_kill(node); 640 goto out_unlock; 641 } 642 643 /* 644 * Copy and replace original node. 645 */ 646 647 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 648 649 switch (event) { 650 case AVC_CALLBACK_GRANT: 651 node->ae.avd.allowed |= perms; 652 break; 653 case AVC_CALLBACK_TRY_REVOKE: 654 case AVC_CALLBACK_REVOKE: 655 node->ae.avd.allowed &= ~perms; 656 break; 657 case AVC_CALLBACK_AUDITALLOW_ENABLE: 658 node->ae.avd.auditallow |= perms; 659 break; 660 case AVC_CALLBACK_AUDITALLOW_DISABLE: 661 node->ae.avd.auditallow &= ~perms; 662 break; 663 case AVC_CALLBACK_AUDITDENY_ENABLE: 664 node->ae.avd.auditdeny |= perms; 665 break; 666 case AVC_CALLBACK_AUDITDENY_DISABLE: 667 node->ae.avd.auditdeny &= ~perms; 668 break; 669 } 670 avc_node_replace(node, orig); 671 out_unlock: 672 spin_unlock_irqrestore(lock, flag); 673 out: 674 return rc; 675 } 676 677 /** 678 * avc_flush - Flush the cache 679 */ 680 static void avc_flush(void) 681 { 682 struct hlist_head *head; 683 struct hlist_node *next; 684 struct avc_node *node; 685 spinlock_t *lock; 686 unsigned long flag; 687 int i; 688 689 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 690 head = &avc_cache.slots[i]; 691 lock = &avc_cache.slots_lock[i]; 692 693 spin_lock_irqsave(lock, flag); 694 /* 695 * With preemptable RCU, the outer spinlock does not 696 * prevent RCU grace periods from ending. 697 */ 698 rcu_read_lock(); 699 hlist_for_each_entry(node, next, head, list) 700 avc_node_delete(node); 701 rcu_read_unlock(); 702 spin_unlock_irqrestore(lock, flag); 703 } 704 } 705 706 /** 707 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 708 * @seqno: policy sequence number 709 */ 710 int avc_ss_reset(u32 seqno) 711 { 712 struct avc_callback_node *c; 713 int rc = 0, tmprc; 714 715 avc_flush(); 716 717 for (c = avc_callbacks; c; c = c->next) { 718 if (c->events & AVC_CALLBACK_RESET) { 719 tmprc = c->callback(AVC_CALLBACK_RESET, 720 0, 0, 0, 0, NULL); 721 /* save the first error encountered for the return 722 value and continue processing the callbacks */ 723 if (!rc) 724 rc = tmprc; 725 } 726 } 727 728 avc_latest_notif_update(seqno, 0); 729 return rc; 730 } 731 732 /** 733 * avc_has_perm_noaudit - Check permissions but perform no auditing. 734 * @ssid: source security identifier 735 * @tsid: target security identifier 736 * @tclass: target security class 737 * @requested: requested permissions, interpreted based on @tclass 738 * @flags: AVC_STRICT or 0 739 * @avd: access vector decisions 740 * 741 * Check the AVC to determine whether the @requested permissions are granted 742 * for the SID pair (@ssid, @tsid), interpreting the permissions 743 * based on @tclass, and call the security server on a cache miss to obtain 744 * a new decision and add it to the cache. Return a copy of the decisions 745 * in @avd. Return %0 if all @requested permissions are granted, 746 * -%EACCES if any permissions are denied, or another -errno upon 747 * other errors. This function is typically called by avc_has_perm(), 748 * but may also be called directly to separate permission checking from 749 * auditing, e.g. in cases where a lock must be held for the check but 750 * should be released for the auditing. 751 */ 752 int avc_has_perm_noaudit(u32 ssid, u32 tsid, 753 u16 tclass, u32 requested, 754 unsigned flags, 755 struct av_decision *avd) 756 { 757 struct avc_node *node; 758 int rc = 0; 759 u32 denied; 760 761 BUG_ON(!requested); 762 763 rcu_read_lock(); 764 765 node = avc_lookup(ssid, tsid, tclass); 766 if (unlikely(!node)) { 767 rcu_read_unlock(); 768 security_compute_av(ssid, tsid, tclass, avd); 769 rcu_read_lock(); 770 node = avc_insert(ssid, tsid, tclass, avd); 771 } else { 772 memcpy(avd, &node->ae.avd, sizeof(*avd)); 773 avd = &node->ae.avd; 774 } 775 776 denied = requested & ~(avd->allowed); 777 778 if (denied) { 779 if (flags & AVC_STRICT) 780 rc = -EACCES; 781 else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE)) 782 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid, 783 tsid, tclass, avd->seqno); 784 else 785 rc = -EACCES; 786 } 787 788 rcu_read_unlock(); 789 return rc; 790 } 791 792 /** 793 * avc_has_perm - Check permissions and perform any appropriate auditing. 794 * @ssid: source security identifier 795 * @tsid: target security identifier 796 * @tclass: target security class 797 * @requested: requested permissions, interpreted based on @tclass 798 * @auditdata: auxiliary audit data 799 * @flags: VFS walk flags 800 * 801 * Check the AVC to determine whether the @requested permissions are granted 802 * for the SID pair (@ssid, @tsid), interpreting the permissions 803 * based on @tclass, and call the security server on a cache miss to obtain 804 * a new decision and add it to the cache. Audit the granting or denial of 805 * permissions in accordance with the policy. Return %0 if all @requested 806 * permissions are granted, -%EACCES if any permissions are denied, or 807 * another -errno upon other errors. 808 */ 809 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass, 810 u32 requested, struct common_audit_data *auditdata, 811 unsigned flags) 812 { 813 struct av_decision avd; 814 int rc, rc2; 815 816 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 817 818 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 819 flags); 820 if (rc2) 821 return rc2; 822 return rc; 823 } 824 825 u32 avc_policy_seqno(void) 826 { 827 return avc_cache.latest_notif; 828 } 829 830 void avc_disable(void) 831 { 832 /* 833 * If you are looking at this because you have realized that we are 834 * not destroying the avc_node_cachep it might be easy to fix, but 835 * I don't know the memory barrier semantics well enough to know. It's 836 * possible that some other task dereferenced security_ops when 837 * it still pointed to selinux operations. If that is the case it's 838 * possible that it is about to use the avc and is about to need the 839 * avc_node_cachep. I know I could wrap the security.c security_ops call 840 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 841 * the cache and get that memory back. 842 */ 843 if (avc_node_cachep) { 844 avc_flush(); 845 /* kmem_cache_destroy(avc_node_cachep); */ 846 } 847 } 848