xref: /openbmc/linux/security/selinux/avc.c (revision 81d67439)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35 
36 #define AVC_CACHE_SLOTS			512
37 #define AVC_DEF_CACHE_THRESHOLD		512
38 #define AVC_CACHE_RECLAIM		16
39 
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field)	do {} while (0)
44 #endif
45 
46 struct avc_entry {
47 	u32			ssid;
48 	u32			tsid;
49 	u16			tclass;
50 	struct av_decision	avd;
51 };
52 
53 struct avc_node {
54 	struct avc_entry	ae;
55 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
56 	struct rcu_head		rhead;
57 };
58 
59 struct avc_cache {
60 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
63 	atomic_t		active_nodes;
64 	u32			latest_notif;	/* latest revocation notification */
65 };
66 
67 struct avc_callback_node {
68 	int (*callback) (u32 event, u32 ssid, u32 tsid,
69 			 u16 tclass, u32 perms,
70 			 u32 *out_retained);
71 	u32 events;
72 	u32 ssid;
73 	u32 tsid;
74 	u16 tclass;
75 	u32 perms;
76 	struct avc_callback_node *next;
77 };
78 
79 /* Exported via selinufs */
80 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
81 
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
85 
86 static struct avc_cache avc_cache;
87 static struct avc_callback_node *avc_callbacks;
88 static struct kmem_cache *avc_node_cachep;
89 
90 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
91 {
92 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
93 }
94 
95 /**
96  * avc_dump_av - Display an access vector in human-readable form.
97  * @tclass: target security class
98  * @av: access vector
99  */
100 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101 {
102 	const char **perms;
103 	int i, perm;
104 
105 	if (av == 0) {
106 		audit_log_format(ab, " null");
107 		return;
108 	}
109 
110 	perms = secclass_map[tclass-1].perms;
111 
112 	audit_log_format(ab, " {");
113 	i = 0;
114 	perm = 1;
115 	while (i < (sizeof(av) * 8)) {
116 		if ((perm & av) && perms[i]) {
117 			audit_log_format(ab, " %s", perms[i]);
118 			av &= ~perm;
119 		}
120 		i++;
121 		perm <<= 1;
122 	}
123 
124 	if (av)
125 		audit_log_format(ab, " 0x%x", av);
126 
127 	audit_log_format(ab, " }");
128 }
129 
130 /**
131  * avc_dump_query - Display a SID pair and a class in human-readable form.
132  * @ssid: source security identifier
133  * @tsid: target security identifier
134  * @tclass: target security class
135  */
136 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137 {
138 	int rc;
139 	char *scontext;
140 	u32 scontext_len;
141 
142 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143 	if (rc)
144 		audit_log_format(ab, "ssid=%d", ssid);
145 	else {
146 		audit_log_format(ab, "scontext=%s", scontext);
147 		kfree(scontext);
148 	}
149 
150 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151 	if (rc)
152 		audit_log_format(ab, " tsid=%d", tsid);
153 	else {
154 		audit_log_format(ab, " tcontext=%s", scontext);
155 		kfree(scontext);
156 	}
157 
158 	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160 }
161 
162 /**
163  * avc_init - Initialize the AVC.
164  *
165  * Initialize the access vector cache.
166  */
167 void __init avc_init(void)
168 {
169 	int i;
170 
171 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
173 		spin_lock_init(&avc_cache.slots_lock[i]);
174 	}
175 	atomic_set(&avc_cache.active_nodes, 0);
176 	atomic_set(&avc_cache.lru_hint, 0);
177 
178 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179 					     0, SLAB_PANIC, NULL);
180 
181 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182 }
183 
184 int avc_get_hash_stats(char *page)
185 {
186 	int i, chain_len, max_chain_len, slots_used;
187 	struct avc_node *node;
188 	struct hlist_head *head;
189 
190 	rcu_read_lock();
191 
192 	slots_used = 0;
193 	max_chain_len = 0;
194 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195 		head = &avc_cache.slots[i];
196 		if (!hlist_empty(head)) {
197 			struct hlist_node *next;
198 
199 			slots_used++;
200 			chain_len = 0;
201 			hlist_for_each_entry_rcu(node, next, head, list)
202 				chain_len++;
203 			if (chain_len > max_chain_len)
204 				max_chain_len = chain_len;
205 		}
206 	}
207 
208 	rcu_read_unlock();
209 
210 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211 			 "longest chain: %d\n",
212 			 atomic_read(&avc_cache.active_nodes),
213 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214 }
215 
216 static void avc_node_free(struct rcu_head *rhead)
217 {
218 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219 	kmem_cache_free(avc_node_cachep, node);
220 	avc_cache_stats_incr(frees);
221 }
222 
223 static void avc_node_delete(struct avc_node *node)
224 {
225 	hlist_del_rcu(&node->list);
226 	call_rcu(&node->rhead, avc_node_free);
227 	atomic_dec(&avc_cache.active_nodes);
228 }
229 
230 static void avc_node_kill(struct avc_node *node)
231 {
232 	kmem_cache_free(avc_node_cachep, node);
233 	avc_cache_stats_incr(frees);
234 	atomic_dec(&avc_cache.active_nodes);
235 }
236 
237 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238 {
239 	hlist_replace_rcu(&old->list, &new->list);
240 	call_rcu(&old->rhead, avc_node_free);
241 	atomic_dec(&avc_cache.active_nodes);
242 }
243 
244 static inline int avc_reclaim_node(void)
245 {
246 	struct avc_node *node;
247 	int hvalue, try, ecx;
248 	unsigned long flags;
249 	struct hlist_head *head;
250 	struct hlist_node *next;
251 	spinlock_t *lock;
252 
253 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255 		head = &avc_cache.slots[hvalue];
256 		lock = &avc_cache.slots_lock[hvalue];
257 
258 		if (!spin_trylock_irqsave(lock, flags))
259 			continue;
260 
261 		rcu_read_lock();
262 		hlist_for_each_entry(node, next, head, list) {
263 			avc_node_delete(node);
264 			avc_cache_stats_incr(reclaims);
265 			ecx++;
266 			if (ecx >= AVC_CACHE_RECLAIM) {
267 				rcu_read_unlock();
268 				spin_unlock_irqrestore(lock, flags);
269 				goto out;
270 			}
271 		}
272 		rcu_read_unlock();
273 		spin_unlock_irqrestore(lock, flags);
274 	}
275 out:
276 	return ecx;
277 }
278 
279 static struct avc_node *avc_alloc_node(void)
280 {
281 	struct avc_node *node;
282 
283 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284 	if (!node)
285 		goto out;
286 
287 	INIT_HLIST_NODE(&node->list);
288 	avc_cache_stats_incr(allocations);
289 
290 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291 		avc_reclaim_node();
292 
293 out:
294 	return node;
295 }
296 
297 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298 {
299 	node->ae.ssid = ssid;
300 	node->ae.tsid = tsid;
301 	node->ae.tclass = tclass;
302 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303 }
304 
305 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306 {
307 	struct avc_node *node, *ret = NULL;
308 	int hvalue;
309 	struct hlist_head *head;
310 	struct hlist_node *next;
311 
312 	hvalue = avc_hash(ssid, tsid, tclass);
313 	head = &avc_cache.slots[hvalue];
314 	hlist_for_each_entry_rcu(node, next, head, list) {
315 		if (ssid == node->ae.ssid &&
316 		    tclass == node->ae.tclass &&
317 		    tsid == node->ae.tsid) {
318 			ret = node;
319 			break;
320 		}
321 	}
322 
323 	return ret;
324 }
325 
326 /**
327  * avc_lookup - Look up an AVC entry.
328  * @ssid: source security identifier
329  * @tsid: target security identifier
330  * @tclass: target security class
331  *
332  * Look up an AVC entry that is valid for the
333  * (@ssid, @tsid), interpreting the permissions
334  * based on @tclass.  If a valid AVC entry exists,
335  * then this function returns the avc_node.
336  * Otherwise, this function returns NULL.
337  */
338 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339 {
340 	struct avc_node *node;
341 
342 	avc_cache_stats_incr(lookups);
343 	node = avc_search_node(ssid, tsid, tclass);
344 
345 	if (node)
346 		return node;
347 
348 	avc_cache_stats_incr(misses);
349 	return NULL;
350 }
351 
352 static int avc_latest_notif_update(int seqno, int is_insert)
353 {
354 	int ret = 0;
355 	static DEFINE_SPINLOCK(notif_lock);
356 	unsigned long flag;
357 
358 	spin_lock_irqsave(&notif_lock, flag);
359 	if (is_insert) {
360 		if (seqno < avc_cache.latest_notif) {
361 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
362 			       seqno, avc_cache.latest_notif);
363 			ret = -EAGAIN;
364 		}
365 	} else {
366 		if (seqno > avc_cache.latest_notif)
367 			avc_cache.latest_notif = seqno;
368 	}
369 	spin_unlock_irqrestore(&notif_lock, flag);
370 
371 	return ret;
372 }
373 
374 /**
375  * avc_insert - Insert an AVC entry.
376  * @ssid: source security identifier
377  * @tsid: target security identifier
378  * @tclass: target security class
379  * @avd: resulting av decision
380  *
381  * Insert an AVC entry for the SID pair
382  * (@ssid, @tsid) and class @tclass.
383  * The access vectors and the sequence number are
384  * normally provided by the security server in
385  * response to a security_compute_av() call.  If the
386  * sequence number @avd->seqno is not less than the latest
387  * revocation notification, then the function copies
388  * the access vectors into a cache entry, returns
389  * avc_node inserted. Otherwise, this function returns NULL.
390  */
391 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392 {
393 	struct avc_node *pos, *node = NULL;
394 	int hvalue;
395 	unsigned long flag;
396 
397 	if (avc_latest_notif_update(avd->seqno, 1))
398 		goto out;
399 
400 	node = avc_alloc_node();
401 	if (node) {
402 		struct hlist_head *head;
403 		struct hlist_node *next;
404 		spinlock_t *lock;
405 
406 		hvalue = avc_hash(ssid, tsid, tclass);
407 		avc_node_populate(node, ssid, tsid, tclass, avd);
408 
409 		head = &avc_cache.slots[hvalue];
410 		lock = &avc_cache.slots_lock[hvalue];
411 
412 		spin_lock_irqsave(lock, flag);
413 		hlist_for_each_entry(pos, next, head, list) {
414 			if (pos->ae.ssid == ssid &&
415 			    pos->ae.tsid == tsid &&
416 			    pos->ae.tclass == tclass) {
417 				avc_node_replace(node, pos);
418 				goto found;
419 			}
420 		}
421 		hlist_add_head_rcu(&node->list, head);
422 found:
423 		spin_unlock_irqrestore(lock, flag);
424 	}
425 out:
426 	return node;
427 }
428 
429 /**
430  * avc_audit_pre_callback - SELinux specific information
431  * will be called by generic audit code
432  * @ab: the audit buffer
433  * @a: audit_data
434  */
435 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436 {
437 	struct common_audit_data *ad = a;
438 	audit_log_format(ab, "avc:  %s ",
439 			 ad->selinux_audit_data.denied ? "denied" : "granted");
440 	avc_dump_av(ab, ad->selinux_audit_data.tclass,
441 			ad->selinux_audit_data.audited);
442 	audit_log_format(ab, " for ");
443 }
444 
445 /**
446  * avc_audit_post_callback - SELinux specific information
447  * will be called by generic audit code
448  * @ab: the audit buffer
449  * @a: audit_data
450  */
451 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452 {
453 	struct common_audit_data *ad = a;
454 	audit_log_format(ab, " ");
455 	avc_dump_query(ab, ad->selinux_audit_data.ssid,
456 			   ad->selinux_audit_data.tsid,
457 			   ad->selinux_audit_data.tclass);
458 }
459 
460 /**
461  * avc_audit - Audit the granting or denial of permissions.
462  * @ssid: source security identifier
463  * @tsid: target security identifier
464  * @tclass: target security class
465  * @requested: requested permissions
466  * @avd: access vector decisions
467  * @result: result from avc_has_perm_noaudit
468  * @a:  auxiliary audit data
469  * @flags: VFS walk flags
470  *
471  * Audit the granting or denial of permissions in accordance
472  * with the policy.  This function is typically called by
473  * avc_has_perm() after a permission check, but can also be
474  * called directly by callers who use avc_has_perm_noaudit()
475  * in order to separate the permission check from the auditing.
476  * For example, this separation is useful when the permission check must
477  * be performed under a lock, to allow the lock to be released
478  * before calling the auditing code.
479  */
480 int avc_audit(u32 ssid, u32 tsid,
481 	       u16 tclass, u32 requested,
482 	       struct av_decision *avd, int result, struct common_audit_data *a,
483 	       unsigned flags)
484 {
485 	struct common_audit_data stack_data;
486 	u32 denied, audited;
487 	denied = requested & ~avd->allowed;
488 	if (denied) {
489 		audited = denied & avd->auditdeny;
490 		/*
491 		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
492 		 * this field means that ANY denials should NOT be audited if
493 		 * the policy contains an explicit dontaudit rule for that
494 		 * permission.  Take notice that this is unrelated to the
495 		 * actual permissions that were denied.  As an example lets
496 		 * assume:
497 		 *
498 		 * denied == READ
499 		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500 		 * selinux_audit_data.auditdeny & ACCESS == 1
501 		 *
502 		 * We will NOT audit the denial even though the denied
503 		 * permission was READ and the auditdeny checks were for
504 		 * ACCESS
505 		 */
506 		if (a &&
507 		    a->selinux_audit_data.auditdeny &&
508 		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
509 			audited = 0;
510 	} else if (result)
511 		audited = denied = requested;
512 	else
513 		audited = requested & avd->auditallow;
514 	if (!audited)
515 		return 0;
516 
517 	if (!a) {
518 		a = &stack_data;
519 		COMMON_AUDIT_DATA_INIT(a, NONE);
520 	}
521 
522 	/*
523 	 * When in a RCU walk do the audit on the RCU retry.  This is because
524 	 * the collection of the dname in an inode audit message is not RCU
525 	 * safe.  Note this may drop some audits when the situation changes
526 	 * during retry. However this is logically just as if the operation
527 	 * happened a little later.
528 	 */
529 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
530 	    (flags & MAY_NOT_BLOCK))
531 		return -ECHILD;
532 
533 	a->selinux_audit_data.tclass = tclass;
534 	a->selinux_audit_data.requested = requested;
535 	a->selinux_audit_data.ssid = ssid;
536 	a->selinux_audit_data.tsid = tsid;
537 	a->selinux_audit_data.audited = audited;
538 	a->selinux_audit_data.denied = denied;
539 	a->lsm_pre_audit = avc_audit_pre_callback;
540 	a->lsm_post_audit = avc_audit_post_callback;
541 	common_lsm_audit(a);
542 	return 0;
543 }
544 
545 /**
546  * avc_add_callback - Register a callback for security events.
547  * @callback: callback function
548  * @events: security events
549  * @ssid: source security identifier or %SECSID_WILD
550  * @tsid: target security identifier or %SECSID_WILD
551  * @tclass: target security class
552  * @perms: permissions
553  *
554  * Register a callback function for events in the set @events
555  * related to the SID pair (@ssid, @tsid)
556  * and the permissions @perms, interpreting
557  * @perms based on @tclass.  Returns %0 on success or
558  * -%ENOMEM if insufficient memory exists to add the callback.
559  */
560 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561 				     u16 tclass, u32 perms,
562 				     u32 *out_retained),
563 		     u32 events, u32 ssid, u32 tsid,
564 		     u16 tclass, u32 perms)
565 {
566 	struct avc_callback_node *c;
567 	int rc = 0;
568 
569 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
570 	if (!c) {
571 		rc = -ENOMEM;
572 		goto out;
573 	}
574 
575 	c->callback = callback;
576 	c->events = events;
577 	c->ssid = ssid;
578 	c->tsid = tsid;
579 	c->perms = perms;
580 	c->next = avc_callbacks;
581 	avc_callbacks = c;
582 out:
583 	return rc;
584 }
585 
586 static inline int avc_sidcmp(u32 x, u32 y)
587 {
588 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
589 }
590 
591 /**
592  * avc_update_node Update an AVC entry
593  * @event : Updating event
594  * @perms : Permission mask bits
595  * @ssid,@tsid,@tclass : identifier of an AVC entry
596  * @seqno : sequence number when decision was made
597  *
598  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
599  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600  * otherwise, this function updates the AVC entry. The original AVC-entry object
601  * will release later by RCU.
602  */
603 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604 			   u32 seqno)
605 {
606 	int hvalue, rc = 0;
607 	unsigned long flag;
608 	struct avc_node *pos, *node, *orig = NULL;
609 	struct hlist_head *head;
610 	struct hlist_node *next;
611 	spinlock_t *lock;
612 
613 	node = avc_alloc_node();
614 	if (!node) {
615 		rc = -ENOMEM;
616 		goto out;
617 	}
618 
619 	/* Lock the target slot */
620 	hvalue = avc_hash(ssid, tsid, tclass);
621 
622 	head = &avc_cache.slots[hvalue];
623 	lock = &avc_cache.slots_lock[hvalue];
624 
625 	spin_lock_irqsave(lock, flag);
626 
627 	hlist_for_each_entry(pos, next, head, list) {
628 		if (ssid == pos->ae.ssid &&
629 		    tsid == pos->ae.tsid &&
630 		    tclass == pos->ae.tclass &&
631 		    seqno == pos->ae.avd.seqno){
632 			orig = pos;
633 			break;
634 		}
635 	}
636 
637 	if (!orig) {
638 		rc = -ENOENT;
639 		avc_node_kill(node);
640 		goto out_unlock;
641 	}
642 
643 	/*
644 	 * Copy and replace original node.
645 	 */
646 
647 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
648 
649 	switch (event) {
650 	case AVC_CALLBACK_GRANT:
651 		node->ae.avd.allowed |= perms;
652 		break;
653 	case AVC_CALLBACK_TRY_REVOKE:
654 	case AVC_CALLBACK_REVOKE:
655 		node->ae.avd.allowed &= ~perms;
656 		break;
657 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
658 		node->ae.avd.auditallow |= perms;
659 		break;
660 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
661 		node->ae.avd.auditallow &= ~perms;
662 		break;
663 	case AVC_CALLBACK_AUDITDENY_ENABLE:
664 		node->ae.avd.auditdeny |= perms;
665 		break;
666 	case AVC_CALLBACK_AUDITDENY_DISABLE:
667 		node->ae.avd.auditdeny &= ~perms;
668 		break;
669 	}
670 	avc_node_replace(node, orig);
671 out_unlock:
672 	spin_unlock_irqrestore(lock, flag);
673 out:
674 	return rc;
675 }
676 
677 /**
678  * avc_flush - Flush the cache
679  */
680 static void avc_flush(void)
681 {
682 	struct hlist_head *head;
683 	struct hlist_node *next;
684 	struct avc_node *node;
685 	spinlock_t *lock;
686 	unsigned long flag;
687 	int i;
688 
689 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690 		head = &avc_cache.slots[i];
691 		lock = &avc_cache.slots_lock[i];
692 
693 		spin_lock_irqsave(lock, flag);
694 		/*
695 		 * With preemptable RCU, the outer spinlock does not
696 		 * prevent RCU grace periods from ending.
697 		 */
698 		rcu_read_lock();
699 		hlist_for_each_entry(node, next, head, list)
700 			avc_node_delete(node);
701 		rcu_read_unlock();
702 		spin_unlock_irqrestore(lock, flag);
703 	}
704 }
705 
706 /**
707  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
708  * @seqno: policy sequence number
709  */
710 int avc_ss_reset(u32 seqno)
711 {
712 	struct avc_callback_node *c;
713 	int rc = 0, tmprc;
714 
715 	avc_flush();
716 
717 	for (c = avc_callbacks; c; c = c->next) {
718 		if (c->events & AVC_CALLBACK_RESET) {
719 			tmprc = c->callback(AVC_CALLBACK_RESET,
720 					    0, 0, 0, 0, NULL);
721 			/* save the first error encountered for the return
722 			   value and continue processing the callbacks */
723 			if (!rc)
724 				rc = tmprc;
725 		}
726 	}
727 
728 	avc_latest_notif_update(seqno, 0);
729 	return rc;
730 }
731 
732 /**
733  * avc_has_perm_noaudit - Check permissions but perform no auditing.
734  * @ssid: source security identifier
735  * @tsid: target security identifier
736  * @tclass: target security class
737  * @requested: requested permissions, interpreted based on @tclass
738  * @flags:  AVC_STRICT or 0
739  * @avd: access vector decisions
740  *
741  * Check the AVC to determine whether the @requested permissions are granted
742  * for the SID pair (@ssid, @tsid), interpreting the permissions
743  * based on @tclass, and call the security server on a cache miss to obtain
744  * a new decision and add it to the cache.  Return a copy of the decisions
745  * in @avd.  Return %0 if all @requested permissions are granted,
746  * -%EACCES if any permissions are denied, or another -errno upon
747  * other errors.  This function is typically called by avc_has_perm(),
748  * but may also be called directly to separate permission checking from
749  * auditing, e.g. in cases where a lock must be held for the check but
750  * should be released for the auditing.
751  */
752 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753 			 u16 tclass, u32 requested,
754 			 unsigned flags,
755 			 struct av_decision *avd)
756 {
757 	struct avc_node *node;
758 	int rc = 0;
759 	u32 denied;
760 
761 	BUG_ON(!requested);
762 
763 	rcu_read_lock();
764 
765 	node = avc_lookup(ssid, tsid, tclass);
766 	if (unlikely(!node)) {
767 		rcu_read_unlock();
768 		security_compute_av(ssid, tsid, tclass, avd);
769 		rcu_read_lock();
770 		node = avc_insert(ssid, tsid, tclass, avd);
771 	} else {
772 		memcpy(avd, &node->ae.avd, sizeof(*avd));
773 		avd = &node->ae.avd;
774 	}
775 
776 	denied = requested & ~(avd->allowed);
777 
778 	if (denied) {
779 		if (flags & AVC_STRICT)
780 			rc = -EACCES;
781 		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783 					tsid, tclass, avd->seqno);
784 		else
785 			rc = -EACCES;
786 	}
787 
788 	rcu_read_unlock();
789 	return rc;
790 }
791 
792 /**
793  * avc_has_perm - Check permissions and perform any appropriate auditing.
794  * @ssid: source security identifier
795  * @tsid: target security identifier
796  * @tclass: target security class
797  * @requested: requested permissions, interpreted based on @tclass
798  * @auditdata: auxiliary audit data
799  * @flags: VFS walk flags
800  *
801  * Check the AVC to determine whether the @requested permissions are granted
802  * for the SID pair (@ssid, @tsid), interpreting the permissions
803  * based on @tclass, and call the security server on a cache miss to obtain
804  * a new decision and add it to the cache.  Audit the granting or denial of
805  * permissions in accordance with the policy.  Return %0 if all @requested
806  * permissions are granted, -%EACCES if any permissions are denied, or
807  * another -errno upon other errors.
808  */
809 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810 		       u32 requested, struct common_audit_data *auditdata,
811 		       unsigned flags)
812 {
813 	struct av_decision avd;
814 	int rc, rc2;
815 
816 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
817 
818 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819 			flags);
820 	if (rc2)
821 		return rc2;
822 	return rc;
823 }
824 
825 u32 avc_policy_seqno(void)
826 {
827 	return avc_cache.latest_notif;
828 }
829 
830 void avc_disable(void)
831 {
832 	/*
833 	 * If you are looking at this because you have realized that we are
834 	 * not destroying the avc_node_cachep it might be easy to fix, but
835 	 * I don't know the memory barrier semantics well enough to know.  It's
836 	 * possible that some other task dereferenced security_ops when
837 	 * it still pointed to selinux operations.  If that is the case it's
838 	 * possible that it is about to use the avc and is about to need the
839 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
840 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
841 	 * the cache and get that memory back.
842 	 */
843 	if (avc_node_cachep) {
844 		avc_flush();
845 		/* kmem_cache_destroy(avc_node_cachep); */
846 	}
847 }
848