1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <net/sock.h> 26 #include <linux/un.h> 27 #include <net/af_unix.h> 28 #include <linux/ip.h> 29 #include <linux/audit.h> 30 #include <linux/ipv6.h> 31 #include <net/ipv6.h> 32 #include "avc.h" 33 #include "avc_ss.h" 34 #include "classmap.h" 35 36 #define AVC_CACHE_SLOTS 512 37 #define AVC_DEF_CACHE_THRESHOLD 512 38 #define AVC_CACHE_RECLAIM 16 39 40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 42 #else 43 #define avc_cache_stats_incr(field) do {} while (0) 44 #endif 45 46 struct avc_entry { 47 u32 ssid; 48 u32 tsid; 49 u16 tclass; 50 struct av_decision avd; 51 }; 52 53 struct avc_node { 54 struct avc_entry ae; 55 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 56 struct rcu_head rhead; 57 }; 58 59 struct avc_cache { 60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 62 atomic_t lru_hint; /* LRU hint for reclaim scan */ 63 atomic_t active_nodes; 64 u32 latest_notif; /* latest revocation notification */ 65 }; 66 67 struct avc_callback_node { 68 int (*callback) (u32 event); 69 u32 events; 70 struct avc_callback_node *next; 71 }; 72 73 /* Exported via selinufs */ 74 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 75 76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 77 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 78 #endif 79 80 static struct avc_cache avc_cache; 81 static struct avc_callback_node *avc_callbacks; 82 static struct kmem_cache *avc_node_cachep; 83 84 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 85 { 86 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 87 } 88 89 /** 90 * avc_dump_av - Display an access vector in human-readable form. 91 * @tclass: target security class 92 * @av: access vector 93 */ 94 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 95 { 96 const char **perms; 97 int i, perm; 98 99 if (av == 0) { 100 audit_log_format(ab, " null"); 101 return; 102 } 103 104 perms = secclass_map[tclass-1].perms; 105 106 audit_log_format(ab, " {"); 107 i = 0; 108 perm = 1; 109 while (i < (sizeof(av) * 8)) { 110 if ((perm & av) && perms[i]) { 111 audit_log_format(ab, " %s", perms[i]); 112 av &= ~perm; 113 } 114 i++; 115 perm <<= 1; 116 } 117 118 if (av) 119 audit_log_format(ab, " 0x%x", av); 120 121 audit_log_format(ab, " }"); 122 } 123 124 /** 125 * avc_dump_query - Display a SID pair and a class in human-readable form. 126 * @ssid: source security identifier 127 * @tsid: target security identifier 128 * @tclass: target security class 129 */ 130 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 131 { 132 int rc; 133 char *scontext; 134 u32 scontext_len; 135 136 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 137 if (rc) 138 audit_log_format(ab, "ssid=%d", ssid); 139 else { 140 audit_log_format(ab, "scontext=%s", scontext); 141 kfree(scontext); 142 } 143 144 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 145 if (rc) 146 audit_log_format(ab, " tsid=%d", tsid); 147 else { 148 audit_log_format(ab, " tcontext=%s", scontext); 149 kfree(scontext); 150 } 151 152 BUG_ON(tclass >= ARRAY_SIZE(secclass_map)); 153 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 154 } 155 156 /** 157 * avc_init - Initialize the AVC. 158 * 159 * Initialize the access vector cache. 160 */ 161 void __init avc_init(void) 162 { 163 int i; 164 165 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 166 INIT_HLIST_HEAD(&avc_cache.slots[i]); 167 spin_lock_init(&avc_cache.slots_lock[i]); 168 } 169 atomic_set(&avc_cache.active_nodes, 0); 170 atomic_set(&avc_cache.lru_hint, 0); 171 172 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 173 0, SLAB_PANIC, NULL); 174 175 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); 176 } 177 178 int avc_get_hash_stats(char *page) 179 { 180 int i, chain_len, max_chain_len, slots_used; 181 struct avc_node *node; 182 struct hlist_head *head; 183 184 rcu_read_lock(); 185 186 slots_used = 0; 187 max_chain_len = 0; 188 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 189 head = &avc_cache.slots[i]; 190 if (!hlist_empty(head)) { 191 struct hlist_node *next; 192 193 slots_used++; 194 chain_len = 0; 195 hlist_for_each_entry_rcu(node, next, head, list) 196 chain_len++; 197 if (chain_len > max_chain_len) 198 max_chain_len = chain_len; 199 } 200 } 201 202 rcu_read_unlock(); 203 204 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 205 "longest chain: %d\n", 206 atomic_read(&avc_cache.active_nodes), 207 slots_used, AVC_CACHE_SLOTS, max_chain_len); 208 } 209 210 static void avc_node_free(struct rcu_head *rhead) 211 { 212 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 213 kmem_cache_free(avc_node_cachep, node); 214 avc_cache_stats_incr(frees); 215 } 216 217 static void avc_node_delete(struct avc_node *node) 218 { 219 hlist_del_rcu(&node->list); 220 call_rcu(&node->rhead, avc_node_free); 221 atomic_dec(&avc_cache.active_nodes); 222 } 223 224 static void avc_node_kill(struct avc_node *node) 225 { 226 kmem_cache_free(avc_node_cachep, node); 227 avc_cache_stats_incr(frees); 228 atomic_dec(&avc_cache.active_nodes); 229 } 230 231 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 232 { 233 hlist_replace_rcu(&old->list, &new->list); 234 call_rcu(&old->rhead, avc_node_free); 235 atomic_dec(&avc_cache.active_nodes); 236 } 237 238 static inline int avc_reclaim_node(void) 239 { 240 struct avc_node *node; 241 int hvalue, try, ecx; 242 unsigned long flags; 243 struct hlist_head *head; 244 struct hlist_node *next; 245 spinlock_t *lock; 246 247 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 248 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 249 head = &avc_cache.slots[hvalue]; 250 lock = &avc_cache.slots_lock[hvalue]; 251 252 if (!spin_trylock_irqsave(lock, flags)) 253 continue; 254 255 rcu_read_lock(); 256 hlist_for_each_entry(node, next, head, list) { 257 avc_node_delete(node); 258 avc_cache_stats_incr(reclaims); 259 ecx++; 260 if (ecx >= AVC_CACHE_RECLAIM) { 261 rcu_read_unlock(); 262 spin_unlock_irqrestore(lock, flags); 263 goto out; 264 } 265 } 266 rcu_read_unlock(); 267 spin_unlock_irqrestore(lock, flags); 268 } 269 out: 270 return ecx; 271 } 272 273 static struct avc_node *avc_alloc_node(void) 274 { 275 struct avc_node *node; 276 277 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC); 278 if (!node) 279 goto out; 280 281 INIT_HLIST_NODE(&node->list); 282 avc_cache_stats_incr(allocations); 283 284 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 285 avc_reclaim_node(); 286 287 out: 288 return node; 289 } 290 291 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 292 { 293 node->ae.ssid = ssid; 294 node->ae.tsid = tsid; 295 node->ae.tclass = tclass; 296 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 297 } 298 299 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 300 { 301 struct avc_node *node, *ret = NULL; 302 int hvalue; 303 struct hlist_head *head; 304 struct hlist_node *next; 305 306 hvalue = avc_hash(ssid, tsid, tclass); 307 head = &avc_cache.slots[hvalue]; 308 hlist_for_each_entry_rcu(node, next, head, list) { 309 if (ssid == node->ae.ssid && 310 tclass == node->ae.tclass && 311 tsid == node->ae.tsid) { 312 ret = node; 313 break; 314 } 315 } 316 317 return ret; 318 } 319 320 /** 321 * avc_lookup - Look up an AVC entry. 322 * @ssid: source security identifier 323 * @tsid: target security identifier 324 * @tclass: target security class 325 * 326 * Look up an AVC entry that is valid for the 327 * (@ssid, @tsid), interpreting the permissions 328 * based on @tclass. If a valid AVC entry exists, 329 * then this function returns the avc_node. 330 * Otherwise, this function returns NULL. 331 */ 332 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 333 { 334 struct avc_node *node; 335 336 avc_cache_stats_incr(lookups); 337 node = avc_search_node(ssid, tsid, tclass); 338 339 if (node) 340 return node; 341 342 avc_cache_stats_incr(misses); 343 return NULL; 344 } 345 346 static int avc_latest_notif_update(int seqno, int is_insert) 347 { 348 int ret = 0; 349 static DEFINE_SPINLOCK(notif_lock); 350 unsigned long flag; 351 352 spin_lock_irqsave(¬if_lock, flag); 353 if (is_insert) { 354 if (seqno < avc_cache.latest_notif) { 355 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", 356 seqno, avc_cache.latest_notif); 357 ret = -EAGAIN; 358 } 359 } else { 360 if (seqno > avc_cache.latest_notif) 361 avc_cache.latest_notif = seqno; 362 } 363 spin_unlock_irqrestore(¬if_lock, flag); 364 365 return ret; 366 } 367 368 /** 369 * avc_insert - Insert an AVC entry. 370 * @ssid: source security identifier 371 * @tsid: target security identifier 372 * @tclass: target security class 373 * @avd: resulting av decision 374 * 375 * Insert an AVC entry for the SID pair 376 * (@ssid, @tsid) and class @tclass. 377 * The access vectors and the sequence number are 378 * normally provided by the security server in 379 * response to a security_compute_av() call. If the 380 * sequence number @avd->seqno is not less than the latest 381 * revocation notification, then the function copies 382 * the access vectors into a cache entry, returns 383 * avc_node inserted. Otherwise, this function returns NULL. 384 */ 385 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 386 { 387 struct avc_node *pos, *node = NULL; 388 int hvalue; 389 unsigned long flag; 390 391 if (avc_latest_notif_update(avd->seqno, 1)) 392 goto out; 393 394 node = avc_alloc_node(); 395 if (node) { 396 struct hlist_head *head; 397 struct hlist_node *next; 398 spinlock_t *lock; 399 400 hvalue = avc_hash(ssid, tsid, tclass); 401 avc_node_populate(node, ssid, tsid, tclass, avd); 402 403 head = &avc_cache.slots[hvalue]; 404 lock = &avc_cache.slots_lock[hvalue]; 405 406 spin_lock_irqsave(lock, flag); 407 hlist_for_each_entry(pos, next, head, list) { 408 if (pos->ae.ssid == ssid && 409 pos->ae.tsid == tsid && 410 pos->ae.tclass == tclass) { 411 avc_node_replace(node, pos); 412 goto found; 413 } 414 } 415 hlist_add_head_rcu(&node->list, head); 416 found: 417 spin_unlock_irqrestore(lock, flag); 418 } 419 out: 420 return node; 421 } 422 423 /** 424 * avc_audit_pre_callback - SELinux specific information 425 * will be called by generic audit code 426 * @ab: the audit buffer 427 * @a: audit_data 428 */ 429 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 430 { 431 struct common_audit_data *ad = a; 432 audit_log_format(ab, "avc: %s ", 433 ad->selinux_audit_data->denied ? "denied" : "granted"); 434 avc_dump_av(ab, ad->selinux_audit_data->tclass, 435 ad->selinux_audit_data->audited); 436 audit_log_format(ab, " for "); 437 } 438 439 /** 440 * avc_audit_post_callback - SELinux specific information 441 * will be called by generic audit code 442 * @ab: the audit buffer 443 * @a: audit_data 444 */ 445 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 446 { 447 struct common_audit_data *ad = a; 448 audit_log_format(ab, " "); 449 avc_dump_query(ab, ad->selinux_audit_data->ssid, 450 ad->selinux_audit_data->tsid, 451 ad->selinux_audit_data->tclass); 452 } 453 454 /* This is the slow part of avc audit with big stack footprint */ 455 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 456 u32 requested, u32 audited, u32 denied, 457 struct common_audit_data *a, 458 unsigned flags) 459 { 460 struct common_audit_data stack_data; 461 struct selinux_audit_data sad; 462 463 if (!a) { 464 a = &stack_data; 465 a->type = LSM_AUDIT_DATA_NONE; 466 } 467 468 /* 469 * When in a RCU walk do the audit on the RCU retry. This is because 470 * the collection of the dname in an inode audit message is not RCU 471 * safe. Note this may drop some audits when the situation changes 472 * during retry. However this is logically just as if the operation 473 * happened a little later. 474 */ 475 if ((a->type == LSM_AUDIT_DATA_INODE) && 476 (flags & MAY_NOT_BLOCK)) 477 return -ECHILD; 478 479 sad.tclass = tclass; 480 sad.requested = requested; 481 sad.ssid = ssid; 482 sad.tsid = tsid; 483 sad.audited = audited; 484 sad.denied = denied; 485 486 a->selinux_audit_data = &sad; 487 488 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 489 return 0; 490 } 491 492 /** 493 * avc_add_callback - Register a callback for security events. 494 * @callback: callback function 495 * @events: security events 496 * 497 * Register a callback function for events in the set @events. 498 * Returns %0 on success or -%ENOMEM if insufficient memory 499 * exists to add the callback. 500 */ 501 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 502 { 503 struct avc_callback_node *c; 504 int rc = 0; 505 506 c = kmalloc(sizeof(*c), GFP_KERNEL); 507 if (!c) { 508 rc = -ENOMEM; 509 goto out; 510 } 511 512 c->callback = callback; 513 c->events = events; 514 c->next = avc_callbacks; 515 avc_callbacks = c; 516 out: 517 return rc; 518 } 519 520 static inline int avc_sidcmp(u32 x, u32 y) 521 { 522 return (x == y || x == SECSID_WILD || y == SECSID_WILD); 523 } 524 525 /** 526 * avc_update_node Update an AVC entry 527 * @event : Updating event 528 * @perms : Permission mask bits 529 * @ssid,@tsid,@tclass : identifier of an AVC entry 530 * @seqno : sequence number when decision was made 531 * 532 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 534 * otherwise, this function updates the AVC entry. The original AVC-entry object 535 * will release later by RCU. 536 */ 537 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass, 538 u32 seqno) 539 { 540 int hvalue, rc = 0; 541 unsigned long flag; 542 struct avc_node *pos, *node, *orig = NULL; 543 struct hlist_head *head; 544 struct hlist_node *next; 545 spinlock_t *lock; 546 547 node = avc_alloc_node(); 548 if (!node) { 549 rc = -ENOMEM; 550 goto out; 551 } 552 553 /* Lock the target slot */ 554 hvalue = avc_hash(ssid, tsid, tclass); 555 556 head = &avc_cache.slots[hvalue]; 557 lock = &avc_cache.slots_lock[hvalue]; 558 559 spin_lock_irqsave(lock, flag); 560 561 hlist_for_each_entry(pos, next, head, list) { 562 if (ssid == pos->ae.ssid && 563 tsid == pos->ae.tsid && 564 tclass == pos->ae.tclass && 565 seqno == pos->ae.avd.seqno){ 566 orig = pos; 567 break; 568 } 569 } 570 571 if (!orig) { 572 rc = -ENOENT; 573 avc_node_kill(node); 574 goto out_unlock; 575 } 576 577 /* 578 * Copy and replace original node. 579 */ 580 581 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 582 583 switch (event) { 584 case AVC_CALLBACK_GRANT: 585 node->ae.avd.allowed |= perms; 586 break; 587 case AVC_CALLBACK_TRY_REVOKE: 588 case AVC_CALLBACK_REVOKE: 589 node->ae.avd.allowed &= ~perms; 590 break; 591 case AVC_CALLBACK_AUDITALLOW_ENABLE: 592 node->ae.avd.auditallow |= perms; 593 break; 594 case AVC_CALLBACK_AUDITALLOW_DISABLE: 595 node->ae.avd.auditallow &= ~perms; 596 break; 597 case AVC_CALLBACK_AUDITDENY_ENABLE: 598 node->ae.avd.auditdeny |= perms; 599 break; 600 case AVC_CALLBACK_AUDITDENY_DISABLE: 601 node->ae.avd.auditdeny &= ~perms; 602 break; 603 } 604 avc_node_replace(node, orig); 605 out_unlock: 606 spin_unlock_irqrestore(lock, flag); 607 out: 608 return rc; 609 } 610 611 /** 612 * avc_flush - Flush the cache 613 */ 614 static void avc_flush(void) 615 { 616 struct hlist_head *head; 617 struct hlist_node *next; 618 struct avc_node *node; 619 spinlock_t *lock; 620 unsigned long flag; 621 int i; 622 623 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 624 head = &avc_cache.slots[i]; 625 lock = &avc_cache.slots_lock[i]; 626 627 spin_lock_irqsave(lock, flag); 628 /* 629 * With preemptable RCU, the outer spinlock does not 630 * prevent RCU grace periods from ending. 631 */ 632 rcu_read_lock(); 633 hlist_for_each_entry(node, next, head, list) 634 avc_node_delete(node); 635 rcu_read_unlock(); 636 spin_unlock_irqrestore(lock, flag); 637 } 638 } 639 640 /** 641 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 642 * @seqno: policy sequence number 643 */ 644 int avc_ss_reset(u32 seqno) 645 { 646 struct avc_callback_node *c; 647 int rc = 0, tmprc; 648 649 avc_flush(); 650 651 for (c = avc_callbacks; c; c = c->next) { 652 if (c->events & AVC_CALLBACK_RESET) { 653 tmprc = c->callback(AVC_CALLBACK_RESET); 654 /* save the first error encountered for the return 655 value and continue processing the callbacks */ 656 if (!rc) 657 rc = tmprc; 658 } 659 } 660 661 avc_latest_notif_update(seqno, 0); 662 return rc; 663 } 664 665 /* 666 * Slow-path helper function for avc_has_perm_noaudit, 667 * when the avc_node lookup fails. We get called with 668 * the RCU read lock held, and need to return with it 669 * still held, but drop if for the security compute. 670 * 671 * Don't inline this, since it's the slow-path and just 672 * results in a bigger stack frame. 673 */ 674 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid, 675 u16 tclass, struct av_decision *avd) 676 { 677 rcu_read_unlock(); 678 security_compute_av(ssid, tsid, tclass, avd); 679 rcu_read_lock(); 680 return avc_insert(ssid, tsid, tclass, avd); 681 } 682 683 static noinline int avc_denied(u32 ssid, u32 tsid, 684 u16 tclass, u32 requested, 685 unsigned flags, 686 struct av_decision *avd) 687 { 688 if (flags & AVC_STRICT) 689 return -EACCES; 690 691 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE)) 692 return -EACCES; 693 694 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid, 695 tsid, tclass, avd->seqno); 696 return 0; 697 } 698 699 700 /** 701 * avc_has_perm_noaudit - Check permissions but perform no auditing. 702 * @ssid: source security identifier 703 * @tsid: target security identifier 704 * @tclass: target security class 705 * @requested: requested permissions, interpreted based on @tclass 706 * @flags: AVC_STRICT or 0 707 * @avd: access vector decisions 708 * 709 * Check the AVC to determine whether the @requested permissions are granted 710 * for the SID pair (@ssid, @tsid), interpreting the permissions 711 * based on @tclass, and call the security server on a cache miss to obtain 712 * a new decision and add it to the cache. Return a copy of the decisions 713 * in @avd. Return %0 if all @requested permissions are granted, 714 * -%EACCES if any permissions are denied, or another -errno upon 715 * other errors. This function is typically called by avc_has_perm(), 716 * but may also be called directly to separate permission checking from 717 * auditing, e.g. in cases where a lock must be held for the check but 718 * should be released for the auditing. 719 */ 720 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 721 u16 tclass, u32 requested, 722 unsigned flags, 723 struct av_decision *avd) 724 { 725 struct avc_node *node; 726 int rc = 0; 727 u32 denied; 728 729 BUG_ON(!requested); 730 731 rcu_read_lock(); 732 733 node = avc_lookup(ssid, tsid, tclass); 734 if (unlikely(!node)) { 735 node = avc_compute_av(ssid, tsid, tclass, avd); 736 } else { 737 memcpy(avd, &node->ae.avd, sizeof(*avd)); 738 avd = &node->ae.avd; 739 } 740 741 denied = requested & ~(avd->allowed); 742 if (unlikely(denied)) 743 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd); 744 745 rcu_read_unlock(); 746 return rc; 747 } 748 749 /** 750 * avc_has_perm - Check permissions and perform any appropriate auditing. 751 * @ssid: source security identifier 752 * @tsid: target security identifier 753 * @tclass: target security class 754 * @requested: requested permissions, interpreted based on @tclass 755 * @auditdata: auxiliary audit data 756 * @flags: VFS walk flags 757 * 758 * Check the AVC to determine whether the @requested permissions are granted 759 * for the SID pair (@ssid, @tsid), interpreting the permissions 760 * based on @tclass, and call the security server on a cache miss to obtain 761 * a new decision and add it to the cache. Audit the granting or denial of 762 * permissions in accordance with the policy. Return %0 if all @requested 763 * permissions are granted, -%EACCES if any permissions are denied, or 764 * another -errno upon other errors. 765 */ 766 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass, 767 u32 requested, struct common_audit_data *auditdata, 768 unsigned flags) 769 { 770 struct av_decision avd; 771 int rc, rc2; 772 773 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 774 775 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 776 flags); 777 if (rc2) 778 return rc2; 779 return rc; 780 } 781 782 u32 avc_policy_seqno(void) 783 { 784 return avc_cache.latest_notif; 785 } 786 787 void avc_disable(void) 788 { 789 /* 790 * If you are looking at this because you have realized that we are 791 * not destroying the avc_node_cachep it might be easy to fix, but 792 * I don't know the memory barrier semantics well enough to know. It's 793 * possible that some other task dereferenced security_ops when 794 * it still pointed to selinux operations. If that is the case it's 795 * possible that it is about to use the avc and is about to need the 796 * avc_node_cachep. I know I could wrap the security.c security_ops call 797 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 798 * the cache and get that memory back. 799 */ 800 if (avc_node_cachep) { 801 avc_flush(); 802 /* kmem_cache_destroy(avc_node_cachep); */ 803 } 804 } 805