1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13 #include <linux/types.h> 14 #include <linux/stddef.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/fs.h> 18 #include <linux/dcache.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/percpu.h> 22 #include <linux/list.h> 23 #include <net/sock.h> 24 #include <linux/un.h> 25 #include <net/af_unix.h> 26 #include <linux/ip.h> 27 #include <linux/audit.h> 28 #include <linux/ipv6.h> 29 #include <net/ipv6.h> 30 #include "avc.h" 31 #include "avc_ss.h" 32 #include "classmap.h" 33 34 #define AVC_CACHE_SLOTS 512 35 #define AVC_DEF_CACHE_THRESHOLD 512 36 #define AVC_CACHE_RECLAIM 16 37 38 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 39 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 40 #else 41 #define avc_cache_stats_incr(field) do {} while (0) 42 #endif 43 44 struct avc_entry { 45 u32 ssid; 46 u32 tsid; 47 u16 tclass; 48 struct av_decision avd; 49 struct avc_xperms_node *xp_node; 50 }; 51 52 struct avc_node { 53 struct avc_entry ae; 54 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 55 struct rcu_head rhead; 56 }; 57 58 struct avc_xperms_decision_node { 59 struct extended_perms_decision xpd; 60 struct list_head xpd_list; /* list of extended_perms_decision */ 61 }; 62 63 struct avc_xperms_node { 64 struct extended_perms xp; 65 struct list_head xpd_head; /* list head of extended_perms_decision */ 66 }; 67 68 struct avc_cache { 69 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 70 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 71 atomic_t lru_hint; /* LRU hint for reclaim scan */ 72 atomic_t active_nodes; 73 u32 latest_notif; /* latest revocation notification */ 74 }; 75 76 struct avc_callback_node { 77 int (*callback) (u32 event); 78 u32 events; 79 struct avc_callback_node *next; 80 }; 81 82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 84 #endif 85 86 struct selinux_avc { 87 unsigned int avc_cache_threshold; 88 struct avc_cache avc_cache; 89 }; 90 91 static struct selinux_avc selinux_avc; 92 93 void selinux_avc_init(struct selinux_avc **avc) 94 { 95 int i; 96 97 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 98 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 99 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 100 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 101 } 102 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 103 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 104 *avc = &selinux_avc; 105 } 106 107 unsigned int avc_get_cache_threshold(struct selinux_avc *avc) 108 { 109 return avc->avc_cache_threshold; 110 } 111 112 void avc_set_cache_threshold(struct selinux_avc *avc, 113 unsigned int cache_threshold) 114 { 115 avc->avc_cache_threshold = cache_threshold; 116 } 117 118 static struct avc_callback_node *avc_callbacks; 119 static struct kmem_cache *avc_node_cachep; 120 static struct kmem_cache *avc_xperms_data_cachep; 121 static struct kmem_cache *avc_xperms_decision_cachep; 122 static struct kmem_cache *avc_xperms_cachep; 123 124 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 125 { 126 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 127 } 128 129 /** 130 * avc_init - Initialize the AVC. 131 * 132 * Initialize the access vector cache. 133 */ 134 void __init avc_init(void) 135 { 136 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 137 0, SLAB_PANIC, NULL); 138 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 139 sizeof(struct avc_xperms_node), 140 0, SLAB_PANIC, NULL); 141 avc_xperms_decision_cachep = kmem_cache_create( 142 "avc_xperms_decision_node", 143 sizeof(struct avc_xperms_decision_node), 144 0, SLAB_PANIC, NULL); 145 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 146 sizeof(struct extended_perms_data), 147 0, SLAB_PANIC, NULL); 148 } 149 150 int avc_get_hash_stats(struct selinux_avc *avc, char *page) 151 { 152 int i, chain_len, max_chain_len, slots_used; 153 struct avc_node *node; 154 struct hlist_head *head; 155 156 rcu_read_lock(); 157 158 slots_used = 0; 159 max_chain_len = 0; 160 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 161 head = &avc->avc_cache.slots[i]; 162 if (!hlist_empty(head)) { 163 slots_used++; 164 chain_len = 0; 165 hlist_for_each_entry_rcu(node, head, list) 166 chain_len++; 167 if (chain_len > max_chain_len) 168 max_chain_len = chain_len; 169 } 170 } 171 172 rcu_read_unlock(); 173 174 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 175 "longest chain: %d\n", 176 atomic_read(&avc->avc_cache.active_nodes), 177 slots_used, AVC_CACHE_SLOTS, max_chain_len); 178 } 179 180 /* 181 * using a linked list for extended_perms_decision lookup because the list is 182 * always small. i.e. less than 5, typically 1 183 */ 184 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 185 struct avc_xperms_node *xp_node) 186 { 187 struct avc_xperms_decision_node *xpd_node; 188 189 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 190 if (xpd_node->xpd.driver == driver) 191 return &xpd_node->xpd; 192 } 193 return NULL; 194 } 195 196 static inline unsigned int 197 avc_xperms_has_perm(struct extended_perms_decision *xpd, 198 u8 perm, u8 which) 199 { 200 unsigned int rc = 0; 201 202 if ((which == XPERMS_ALLOWED) && 203 (xpd->used & XPERMS_ALLOWED)) 204 rc = security_xperm_test(xpd->allowed->p, perm); 205 else if ((which == XPERMS_AUDITALLOW) && 206 (xpd->used & XPERMS_AUDITALLOW)) 207 rc = security_xperm_test(xpd->auditallow->p, perm); 208 else if ((which == XPERMS_DONTAUDIT) && 209 (xpd->used & XPERMS_DONTAUDIT)) 210 rc = security_xperm_test(xpd->dontaudit->p, perm); 211 return rc; 212 } 213 214 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 215 u8 driver, u8 perm) 216 { 217 struct extended_perms_decision *xpd; 218 security_xperm_set(xp_node->xp.drivers.p, driver); 219 xpd = avc_xperms_decision_lookup(driver, xp_node); 220 if (xpd && xpd->allowed) 221 security_xperm_set(xpd->allowed->p, perm); 222 } 223 224 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 225 { 226 struct extended_perms_decision *xpd; 227 228 xpd = &xpd_node->xpd; 229 if (xpd->allowed) 230 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 231 if (xpd->auditallow) 232 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 233 if (xpd->dontaudit) 234 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 235 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 236 } 237 238 static void avc_xperms_free(struct avc_xperms_node *xp_node) 239 { 240 struct avc_xperms_decision_node *xpd_node, *tmp; 241 242 if (!xp_node) 243 return; 244 245 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 246 list_del(&xpd_node->xpd_list); 247 avc_xperms_decision_free(xpd_node); 248 } 249 kmem_cache_free(avc_xperms_cachep, xp_node); 250 } 251 252 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 253 struct extended_perms_decision *src) 254 { 255 dest->driver = src->driver; 256 dest->used = src->used; 257 if (dest->used & XPERMS_ALLOWED) 258 memcpy(dest->allowed->p, src->allowed->p, 259 sizeof(src->allowed->p)); 260 if (dest->used & XPERMS_AUDITALLOW) 261 memcpy(dest->auditallow->p, src->auditallow->p, 262 sizeof(src->auditallow->p)); 263 if (dest->used & XPERMS_DONTAUDIT) 264 memcpy(dest->dontaudit->p, src->dontaudit->p, 265 sizeof(src->dontaudit->p)); 266 } 267 268 /* 269 * similar to avc_copy_xperms_decision, but only copy decision 270 * information relevant to this perm 271 */ 272 static inline void avc_quick_copy_xperms_decision(u8 perm, 273 struct extended_perms_decision *dest, 274 struct extended_perms_decision *src) 275 { 276 /* 277 * compute index of the u32 of the 256 bits (8 u32s) that contain this 278 * command permission 279 */ 280 u8 i = perm >> 5; 281 282 dest->used = src->used; 283 if (dest->used & XPERMS_ALLOWED) 284 dest->allowed->p[i] = src->allowed->p[i]; 285 if (dest->used & XPERMS_AUDITALLOW) 286 dest->auditallow->p[i] = src->auditallow->p[i]; 287 if (dest->used & XPERMS_DONTAUDIT) 288 dest->dontaudit->p[i] = src->dontaudit->p[i]; 289 } 290 291 static struct avc_xperms_decision_node 292 *avc_xperms_decision_alloc(u8 which) 293 { 294 struct avc_xperms_decision_node *xpd_node; 295 struct extended_perms_decision *xpd; 296 297 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT); 298 if (!xpd_node) 299 return NULL; 300 301 xpd = &xpd_node->xpd; 302 if (which & XPERMS_ALLOWED) { 303 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 304 GFP_NOWAIT); 305 if (!xpd->allowed) 306 goto error; 307 } 308 if (which & XPERMS_AUDITALLOW) { 309 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 310 GFP_NOWAIT); 311 if (!xpd->auditallow) 312 goto error; 313 } 314 if (which & XPERMS_DONTAUDIT) { 315 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 316 GFP_NOWAIT); 317 if (!xpd->dontaudit) 318 goto error; 319 } 320 return xpd_node; 321 error: 322 avc_xperms_decision_free(xpd_node); 323 return NULL; 324 } 325 326 static int avc_add_xperms_decision(struct avc_node *node, 327 struct extended_perms_decision *src) 328 { 329 struct avc_xperms_decision_node *dest_xpd; 330 331 node->ae.xp_node->xp.len++; 332 dest_xpd = avc_xperms_decision_alloc(src->used); 333 if (!dest_xpd) 334 return -ENOMEM; 335 avc_copy_xperms_decision(&dest_xpd->xpd, src); 336 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 337 return 0; 338 } 339 340 static struct avc_xperms_node *avc_xperms_alloc(void) 341 { 342 struct avc_xperms_node *xp_node; 343 344 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT); 345 if (!xp_node) 346 return xp_node; 347 INIT_LIST_HEAD(&xp_node->xpd_head); 348 return xp_node; 349 } 350 351 static int avc_xperms_populate(struct avc_node *node, 352 struct avc_xperms_node *src) 353 { 354 struct avc_xperms_node *dest; 355 struct avc_xperms_decision_node *dest_xpd; 356 struct avc_xperms_decision_node *src_xpd; 357 358 if (src->xp.len == 0) 359 return 0; 360 dest = avc_xperms_alloc(); 361 if (!dest) 362 return -ENOMEM; 363 364 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 365 dest->xp.len = src->xp.len; 366 367 /* for each source xpd allocate a destination xpd and copy */ 368 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 369 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 370 if (!dest_xpd) 371 goto error; 372 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 373 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 374 } 375 node->ae.xp_node = dest; 376 return 0; 377 error: 378 avc_xperms_free(dest); 379 return -ENOMEM; 380 381 } 382 383 static inline u32 avc_xperms_audit_required(u32 requested, 384 struct av_decision *avd, 385 struct extended_perms_decision *xpd, 386 u8 perm, 387 int result, 388 u32 *deniedp) 389 { 390 u32 denied, audited; 391 392 denied = requested & ~avd->allowed; 393 if (unlikely(denied)) { 394 audited = denied & avd->auditdeny; 395 if (audited && xpd) { 396 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 397 audited &= ~requested; 398 } 399 } else if (result) { 400 audited = denied = requested; 401 } else { 402 audited = requested & avd->auditallow; 403 if (audited && xpd) { 404 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 405 audited &= ~requested; 406 } 407 } 408 409 *deniedp = denied; 410 return audited; 411 } 412 413 static inline int avc_xperms_audit(struct selinux_state *state, 414 u32 ssid, u32 tsid, u16 tclass, 415 u32 requested, struct av_decision *avd, 416 struct extended_perms_decision *xpd, 417 u8 perm, int result, 418 struct common_audit_data *ad) 419 { 420 u32 audited, denied; 421 422 audited = avc_xperms_audit_required( 423 requested, avd, xpd, perm, result, &denied); 424 if (likely(!audited)) 425 return 0; 426 return slow_avc_audit(state, ssid, tsid, tclass, requested, 427 audited, denied, result, ad, 0); 428 } 429 430 static void avc_node_free(struct rcu_head *rhead) 431 { 432 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 433 avc_xperms_free(node->ae.xp_node); 434 kmem_cache_free(avc_node_cachep, node); 435 avc_cache_stats_incr(frees); 436 } 437 438 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node) 439 { 440 hlist_del_rcu(&node->list); 441 call_rcu(&node->rhead, avc_node_free); 442 atomic_dec(&avc->avc_cache.active_nodes); 443 } 444 445 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node) 446 { 447 avc_xperms_free(node->ae.xp_node); 448 kmem_cache_free(avc_node_cachep, node); 449 avc_cache_stats_incr(frees); 450 atomic_dec(&avc->avc_cache.active_nodes); 451 } 452 453 static void avc_node_replace(struct selinux_avc *avc, 454 struct avc_node *new, struct avc_node *old) 455 { 456 hlist_replace_rcu(&old->list, &new->list); 457 call_rcu(&old->rhead, avc_node_free); 458 atomic_dec(&avc->avc_cache.active_nodes); 459 } 460 461 static inline int avc_reclaim_node(struct selinux_avc *avc) 462 { 463 struct avc_node *node; 464 int hvalue, try, ecx; 465 unsigned long flags; 466 struct hlist_head *head; 467 spinlock_t *lock; 468 469 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 470 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) & 471 (AVC_CACHE_SLOTS - 1); 472 head = &avc->avc_cache.slots[hvalue]; 473 lock = &avc->avc_cache.slots_lock[hvalue]; 474 475 if (!spin_trylock_irqsave(lock, flags)) 476 continue; 477 478 rcu_read_lock(); 479 hlist_for_each_entry(node, head, list) { 480 avc_node_delete(avc, node); 481 avc_cache_stats_incr(reclaims); 482 ecx++; 483 if (ecx >= AVC_CACHE_RECLAIM) { 484 rcu_read_unlock(); 485 spin_unlock_irqrestore(lock, flags); 486 goto out; 487 } 488 } 489 rcu_read_unlock(); 490 spin_unlock_irqrestore(lock, flags); 491 } 492 out: 493 return ecx; 494 } 495 496 static struct avc_node *avc_alloc_node(struct selinux_avc *avc) 497 { 498 struct avc_node *node; 499 500 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT); 501 if (!node) 502 goto out; 503 504 INIT_HLIST_NODE(&node->list); 505 avc_cache_stats_incr(allocations); 506 507 if (atomic_inc_return(&avc->avc_cache.active_nodes) > 508 avc->avc_cache_threshold) 509 avc_reclaim_node(avc); 510 511 out: 512 return node; 513 } 514 515 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 516 { 517 node->ae.ssid = ssid; 518 node->ae.tsid = tsid; 519 node->ae.tclass = tclass; 520 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 521 } 522 523 static inline struct avc_node *avc_search_node(struct selinux_avc *avc, 524 u32 ssid, u32 tsid, u16 tclass) 525 { 526 struct avc_node *node, *ret = NULL; 527 int hvalue; 528 struct hlist_head *head; 529 530 hvalue = avc_hash(ssid, tsid, tclass); 531 head = &avc->avc_cache.slots[hvalue]; 532 hlist_for_each_entry_rcu(node, head, list) { 533 if (ssid == node->ae.ssid && 534 tclass == node->ae.tclass && 535 tsid == node->ae.tsid) { 536 ret = node; 537 break; 538 } 539 } 540 541 return ret; 542 } 543 544 /** 545 * avc_lookup - Look up an AVC entry. 546 * @ssid: source security identifier 547 * @tsid: target security identifier 548 * @tclass: target security class 549 * 550 * Look up an AVC entry that is valid for the 551 * (@ssid, @tsid), interpreting the permissions 552 * based on @tclass. If a valid AVC entry exists, 553 * then this function returns the avc_node. 554 * Otherwise, this function returns NULL. 555 */ 556 static struct avc_node *avc_lookup(struct selinux_avc *avc, 557 u32 ssid, u32 tsid, u16 tclass) 558 { 559 struct avc_node *node; 560 561 avc_cache_stats_incr(lookups); 562 node = avc_search_node(avc, ssid, tsid, tclass); 563 564 if (node) 565 return node; 566 567 avc_cache_stats_incr(misses); 568 return NULL; 569 } 570 571 static int avc_latest_notif_update(struct selinux_avc *avc, 572 int seqno, int is_insert) 573 { 574 int ret = 0; 575 static DEFINE_SPINLOCK(notif_lock); 576 unsigned long flag; 577 578 spin_lock_irqsave(¬if_lock, flag); 579 if (is_insert) { 580 if (seqno < avc->avc_cache.latest_notif) { 581 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 582 seqno, avc->avc_cache.latest_notif); 583 ret = -EAGAIN; 584 } 585 } else { 586 if (seqno > avc->avc_cache.latest_notif) 587 avc->avc_cache.latest_notif = seqno; 588 } 589 spin_unlock_irqrestore(¬if_lock, flag); 590 591 return ret; 592 } 593 594 /** 595 * avc_insert - Insert an AVC entry. 596 * @ssid: source security identifier 597 * @tsid: target security identifier 598 * @tclass: target security class 599 * @avd: resulting av decision 600 * @xp_node: resulting extended permissions 601 * 602 * Insert an AVC entry for the SID pair 603 * (@ssid, @tsid) and class @tclass. 604 * The access vectors and the sequence number are 605 * normally provided by the security server in 606 * response to a security_compute_av() call. If the 607 * sequence number @avd->seqno is not less than the latest 608 * revocation notification, then the function copies 609 * the access vectors into a cache entry, returns 610 * avc_node inserted. Otherwise, this function returns NULL. 611 */ 612 static struct avc_node *avc_insert(struct selinux_avc *avc, 613 u32 ssid, u32 tsid, u16 tclass, 614 struct av_decision *avd, 615 struct avc_xperms_node *xp_node) 616 { 617 struct avc_node *pos, *node = NULL; 618 int hvalue; 619 unsigned long flag; 620 621 if (avc_latest_notif_update(avc, avd->seqno, 1)) 622 goto out; 623 624 node = avc_alloc_node(avc); 625 if (node) { 626 struct hlist_head *head; 627 spinlock_t *lock; 628 int rc = 0; 629 630 hvalue = avc_hash(ssid, tsid, tclass); 631 avc_node_populate(node, ssid, tsid, tclass, avd); 632 rc = avc_xperms_populate(node, xp_node); 633 if (rc) { 634 kmem_cache_free(avc_node_cachep, node); 635 return NULL; 636 } 637 head = &avc->avc_cache.slots[hvalue]; 638 lock = &avc->avc_cache.slots_lock[hvalue]; 639 640 spin_lock_irqsave(lock, flag); 641 hlist_for_each_entry(pos, head, list) { 642 if (pos->ae.ssid == ssid && 643 pos->ae.tsid == tsid && 644 pos->ae.tclass == tclass) { 645 avc_node_replace(avc, node, pos); 646 goto found; 647 } 648 } 649 hlist_add_head_rcu(&node->list, head); 650 found: 651 spin_unlock_irqrestore(lock, flag); 652 } 653 out: 654 return node; 655 } 656 657 /** 658 * avc_audit_pre_callback - SELinux specific information 659 * will be called by generic audit code 660 * @ab: the audit buffer 661 * @a: audit_data 662 */ 663 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 664 { 665 struct common_audit_data *ad = a; 666 struct selinux_audit_data *sad = ad->selinux_audit_data; 667 u32 av = sad->audited; 668 const char **perms; 669 int i, perm; 670 671 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 672 673 if (av == 0) { 674 audit_log_format(ab, " null"); 675 return; 676 } 677 678 perms = secclass_map[sad->tclass-1].perms; 679 680 audit_log_format(ab, " {"); 681 i = 0; 682 perm = 1; 683 while (i < (sizeof(av) * 8)) { 684 if ((perm & av) && perms[i]) { 685 audit_log_format(ab, " %s", perms[i]); 686 av &= ~perm; 687 } 688 i++; 689 perm <<= 1; 690 } 691 692 if (av) 693 audit_log_format(ab, " 0x%x", av); 694 695 audit_log_format(ab, " } for "); 696 } 697 698 /** 699 * avc_audit_post_callback - SELinux specific information 700 * will be called by generic audit code 701 * @ab: the audit buffer 702 * @a: audit_data 703 */ 704 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 705 { 706 struct common_audit_data *ad = a; 707 struct selinux_audit_data *sad = ad->selinux_audit_data; 708 char *scontext; 709 u32 scontext_len; 710 int rc; 711 712 rc = security_sid_to_context(sad->state, sad->ssid, &scontext, 713 &scontext_len); 714 if (rc) 715 audit_log_format(ab, " ssid=%d", sad->ssid); 716 else { 717 audit_log_format(ab, " scontext=%s", scontext); 718 kfree(scontext); 719 } 720 721 rc = security_sid_to_context(sad->state, sad->tsid, &scontext, 722 &scontext_len); 723 if (rc) 724 audit_log_format(ab, " tsid=%d", sad->tsid); 725 else { 726 audit_log_format(ab, " tcontext=%s", scontext); 727 kfree(scontext); 728 } 729 730 audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name); 731 732 if (sad->denied) 733 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 734 735 /* in case of invalid context report also the actual context string */ 736 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext, 737 &scontext_len); 738 if (!rc && scontext) { 739 if (scontext_len && scontext[scontext_len - 1] == '\0') 740 scontext_len--; 741 audit_log_format(ab, " srawcon="); 742 audit_log_n_untrustedstring(ab, scontext, scontext_len); 743 kfree(scontext); 744 } 745 746 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext, 747 &scontext_len); 748 if (!rc && scontext) { 749 if (scontext_len && scontext[scontext_len - 1] == '\0') 750 scontext_len--; 751 audit_log_format(ab, " trawcon="); 752 audit_log_n_untrustedstring(ab, scontext, scontext_len); 753 kfree(scontext); 754 } 755 } 756 757 /* This is the slow part of avc audit with big stack footprint */ 758 noinline int slow_avc_audit(struct selinux_state *state, 759 u32 ssid, u32 tsid, u16 tclass, 760 u32 requested, u32 audited, u32 denied, int result, 761 struct common_audit_data *a, 762 unsigned int flags) 763 { 764 struct common_audit_data stack_data; 765 struct selinux_audit_data sad; 766 767 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 768 return -EINVAL; 769 770 if (!a) { 771 a = &stack_data; 772 a->type = LSM_AUDIT_DATA_NONE; 773 } 774 775 /* 776 * When in a RCU walk do the audit on the RCU retry. This is because 777 * the collection of the dname in an inode audit message is not RCU 778 * safe. Note this may drop some audits when the situation changes 779 * during retry. However this is logically just as if the operation 780 * happened a little later. 781 */ 782 if ((a->type == LSM_AUDIT_DATA_INODE) && 783 (flags & MAY_NOT_BLOCK)) 784 return -ECHILD; 785 786 sad.tclass = tclass; 787 sad.requested = requested; 788 sad.ssid = ssid; 789 sad.tsid = tsid; 790 sad.audited = audited; 791 sad.denied = denied; 792 sad.result = result; 793 sad.state = state; 794 795 a->selinux_audit_data = &sad; 796 797 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 798 return 0; 799 } 800 801 /** 802 * avc_add_callback - Register a callback for security events. 803 * @callback: callback function 804 * @events: security events 805 * 806 * Register a callback function for events in the set @events. 807 * Returns %0 on success or -%ENOMEM if insufficient memory 808 * exists to add the callback. 809 */ 810 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 811 { 812 struct avc_callback_node *c; 813 int rc = 0; 814 815 c = kmalloc(sizeof(*c), GFP_KERNEL); 816 if (!c) { 817 rc = -ENOMEM; 818 goto out; 819 } 820 821 c->callback = callback; 822 c->events = events; 823 c->next = avc_callbacks; 824 avc_callbacks = c; 825 out: 826 return rc; 827 } 828 829 /** 830 * avc_update_node Update an AVC entry 831 * @event : Updating event 832 * @perms : Permission mask bits 833 * @ssid,@tsid,@tclass : identifier of an AVC entry 834 * @seqno : sequence number when decision was made 835 * @xpd: extended_perms_decision to be added to the node 836 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0. 837 * 838 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 839 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 840 * otherwise, this function updates the AVC entry. The original AVC-entry object 841 * will release later by RCU. 842 */ 843 static int avc_update_node(struct selinux_avc *avc, 844 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 845 u32 tsid, u16 tclass, u32 seqno, 846 struct extended_perms_decision *xpd, 847 u32 flags) 848 { 849 int hvalue, rc = 0; 850 unsigned long flag; 851 struct avc_node *pos, *node, *orig = NULL; 852 struct hlist_head *head; 853 spinlock_t *lock; 854 855 /* 856 * If we are in a non-blocking code path, e.g. VFS RCU walk, 857 * then we must not add permissions to a cache entry 858 * because we cannot safely audit the denial. Otherwise, 859 * during the subsequent blocking retry (e.g. VFS ref walk), we 860 * will find the permissions already granted in the cache entry 861 * and won't audit anything at all, leading to silent denials in 862 * permissive mode that only appear when in enforcing mode. 863 * 864 * See the corresponding handling in slow_avc_audit(), and the 865 * logic in selinux_inode_permission for the MAY_NOT_BLOCK flag, 866 * which is transliterated into AVC_NONBLOCKING. 867 */ 868 if (flags & AVC_NONBLOCKING) 869 return 0; 870 871 node = avc_alloc_node(avc); 872 if (!node) { 873 rc = -ENOMEM; 874 goto out; 875 } 876 877 /* Lock the target slot */ 878 hvalue = avc_hash(ssid, tsid, tclass); 879 880 head = &avc->avc_cache.slots[hvalue]; 881 lock = &avc->avc_cache.slots_lock[hvalue]; 882 883 spin_lock_irqsave(lock, flag); 884 885 hlist_for_each_entry(pos, head, list) { 886 if (ssid == pos->ae.ssid && 887 tsid == pos->ae.tsid && 888 tclass == pos->ae.tclass && 889 seqno == pos->ae.avd.seqno){ 890 orig = pos; 891 break; 892 } 893 } 894 895 if (!orig) { 896 rc = -ENOENT; 897 avc_node_kill(avc, node); 898 goto out_unlock; 899 } 900 901 /* 902 * Copy and replace original node. 903 */ 904 905 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 906 907 if (orig->ae.xp_node) { 908 rc = avc_xperms_populate(node, orig->ae.xp_node); 909 if (rc) { 910 kmem_cache_free(avc_node_cachep, node); 911 goto out_unlock; 912 } 913 } 914 915 switch (event) { 916 case AVC_CALLBACK_GRANT: 917 node->ae.avd.allowed |= perms; 918 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 919 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 920 break; 921 case AVC_CALLBACK_TRY_REVOKE: 922 case AVC_CALLBACK_REVOKE: 923 node->ae.avd.allowed &= ~perms; 924 break; 925 case AVC_CALLBACK_AUDITALLOW_ENABLE: 926 node->ae.avd.auditallow |= perms; 927 break; 928 case AVC_CALLBACK_AUDITALLOW_DISABLE: 929 node->ae.avd.auditallow &= ~perms; 930 break; 931 case AVC_CALLBACK_AUDITDENY_ENABLE: 932 node->ae.avd.auditdeny |= perms; 933 break; 934 case AVC_CALLBACK_AUDITDENY_DISABLE: 935 node->ae.avd.auditdeny &= ~perms; 936 break; 937 case AVC_CALLBACK_ADD_XPERMS: 938 avc_add_xperms_decision(node, xpd); 939 break; 940 } 941 avc_node_replace(avc, node, orig); 942 out_unlock: 943 spin_unlock_irqrestore(lock, flag); 944 out: 945 return rc; 946 } 947 948 /** 949 * avc_flush - Flush the cache 950 */ 951 static void avc_flush(struct selinux_avc *avc) 952 { 953 struct hlist_head *head; 954 struct avc_node *node; 955 spinlock_t *lock; 956 unsigned long flag; 957 int i; 958 959 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 960 head = &avc->avc_cache.slots[i]; 961 lock = &avc->avc_cache.slots_lock[i]; 962 963 spin_lock_irqsave(lock, flag); 964 /* 965 * With preemptable RCU, the outer spinlock does not 966 * prevent RCU grace periods from ending. 967 */ 968 rcu_read_lock(); 969 hlist_for_each_entry(node, head, list) 970 avc_node_delete(avc, node); 971 rcu_read_unlock(); 972 spin_unlock_irqrestore(lock, flag); 973 } 974 } 975 976 /** 977 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 978 * @seqno: policy sequence number 979 */ 980 int avc_ss_reset(struct selinux_avc *avc, u32 seqno) 981 { 982 struct avc_callback_node *c; 983 int rc = 0, tmprc; 984 985 avc_flush(avc); 986 987 for (c = avc_callbacks; c; c = c->next) { 988 if (c->events & AVC_CALLBACK_RESET) { 989 tmprc = c->callback(AVC_CALLBACK_RESET); 990 /* save the first error encountered for the return 991 value and continue processing the callbacks */ 992 if (!rc) 993 rc = tmprc; 994 } 995 } 996 997 avc_latest_notif_update(avc, seqno, 0); 998 return rc; 999 } 1000 1001 /* 1002 * Slow-path helper function for avc_has_perm_noaudit, 1003 * when the avc_node lookup fails. We get called with 1004 * the RCU read lock held, and need to return with it 1005 * still held, but drop if for the security compute. 1006 * 1007 * Don't inline this, since it's the slow-path and just 1008 * results in a bigger stack frame. 1009 */ 1010 static noinline 1011 struct avc_node *avc_compute_av(struct selinux_state *state, 1012 u32 ssid, u32 tsid, 1013 u16 tclass, struct av_decision *avd, 1014 struct avc_xperms_node *xp_node) 1015 { 1016 rcu_read_unlock(); 1017 INIT_LIST_HEAD(&xp_node->xpd_head); 1018 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp); 1019 rcu_read_lock(); 1020 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node); 1021 } 1022 1023 static noinline int avc_denied(struct selinux_state *state, 1024 u32 ssid, u32 tsid, 1025 u16 tclass, u32 requested, 1026 u8 driver, u8 xperm, unsigned int flags, 1027 struct av_decision *avd) 1028 { 1029 if (flags & AVC_STRICT) 1030 return -EACCES; 1031 1032 if (enforcing_enabled(state) && 1033 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1034 return -EACCES; 1035 1036 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver, 1037 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1038 return 0; 1039 } 1040 1041 /* 1042 * The avc extended permissions logic adds an additional 256 bits of 1043 * permissions to an avc node when extended permissions for that node are 1044 * specified in the avtab. If the additional 256 permissions is not adequate, 1045 * as-is the case with ioctls, then multiple may be chained together and the 1046 * driver field is used to specify which set contains the permission. 1047 */ 1048 int avc_has_extended_perms(struct selinux_state *state, 1049 u32 ssid, u32 tsid, u16 tclass, u32 requested, 1050 u8 driver, u8 xperm, struct common_audit_data *ad) 1051 { 1052 struct avc_node *node; 1053 struct av_decision avd; 1054 u32 denied; 1055 struct extended_perms_decision local_xpd; 1056 struct extended_perms_decision *xpd = NULL; 1057 struct extended_perms_data allowed; 1058 struct extended_perms_data auditallow; 1059 struct extended_perms_data dontaudit; 1060 struct avc_xperms_node local_xp_node; 1061 struct avc_xperms_node *xp_node; 1062 int rc = 0, rc2; 1063 1064 xp_node = &local_xp_node; 1065 if (WARN_ON(!requested)) 1066 return -EACCES; 1067 1068 rcu_read_lock(); 1069 1070 node = avc_lookup(state->avc, ssid, tsid, tclass); 1071 if (unlikely(!node)) { 1072 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node); 1073 } else { 1074 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1075 xp_node = node->ae.xp_node; 1076 } 1077 /* if extended permissions are not defined, only consider av_decision */ 1078 if (!xp_node || !xp_node->xp.len) 1079 goto decision; 1080 1081 local_xpd.allowed = &allowed; 1082 local_xpd.auditallow = &auditallow; 1083 local_xpd.dontaudit = &dontaudit; 1084 1085 xpd = avc_xperms_decision_lookup(driver, xp_node); 1086 if (unlikely(!xpd)) { 1087 /* 1088 * Compute the extended_perms_decision only if the driver 1089 * is flagged 1090 */ 1091 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1092 avd.allowed &= ~requested; 1093 goto decision; 1094 } 1095 rcu_read_unlock(); 1096 security_compute_xperms_decision(state, ssid, tsid, tclass, 1097 driver, &local_xpd); 1098 rcu_read_lock(); 1099 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested, 1100 driver, xperm, ssid, tsid, tclass, avd.seqno, 1101 &local_xpd, 0); 1102 } else { 1103 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1104 } 1105 xpd = &local_xpd; 1106 1107 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1108 avd.allowed &= ~requested; 1109 1110 decision: 1111 denied = requested & ~(avd.allowed); 1112 if (unlikely(denied)) 1113 rc = avc_denied(state, ssid, tsid, tclass, requested, 1114 driver, xperm, AVC_EXTENDED_PERMS, &avd); 1115 1116 rcu_read_unlock(); 1117 1118 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested, 1119 &avd, xpd, xperm, rc, ad); 1120 if (rc2) 1121 return rc2; 1122 return rc; 1123 } 1124 1125 /** 1126 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1127 * @ssid: source security identifier 1128 * @tsid: target security identifier 1129 * @tclass: target security class 1130 * @requested: requested permissions, interpreted based on @tclass 1131 * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0 1132 * @avd: access vector decisions 1133 * 1134 * Check the AVC to determine whether the @requested permissions are granted 1135 * for the SID pair (@ssid, @tsid), interpreting the permissions 1136 * based on @tclass, and call the security server on a cache miss to obtain 1137 * a new decision and add it to the cache. Return a copy of the decisions 1138 * in @avd. Return %0 if all @requested permissions are granted, 1139 * -%EACCES if any permissions are denied, or another -errno upon 1140 * other errors. This function is typically called by avc_has_perm(), 1141 * but may also be called directly to separate permission checking from 1142 * auditing, e.g. in cases where a lock must be held for the check but 1143 * should be released for the auditing. 1144 */ 1145 inline int avc_has_perm_noaudit(struct selinux_state *state, 1146 u32 ssid, u32 tsid, 1147 u16 tclass, u32 requested, 1148 unsigned int flags, 1149 struct av_decision *avd) 1150 { 1151 struct avc_node *node; 1152 struct avc_xperms_node xp_node; 1153 int rc = 0; 1154 u32 denied; 1155 1156 if (WARN_ON(!requested)) 1157 return -EACCES; 1158 1159 rcu_read_lock(); 1160 1161 node = avc_lookup(state->avc, ssid, tsid, tclass); 1162 if (unlikely(!node)) 1163 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node); 1164 else 1165 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1166 1167 denied = requested & ~(avd->allowed); 1168 if (unlikely(denied)) 1169 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0, 1170 flags, avd); 1171 1172 rcu_read_unlock(); 1173 return rc; 1174 } 1175 1176 /** 1177 * avc_has_perm - Check permissions and perform any appropriate auditing. 1178 * @ssid: source security identifier 1179 * @tsid: target security identifier 1180 * @tclass: target security class 1181 * @requested: requested permissions, interpreted based on @tclass 1182 * @auditdata: auxiliary audit data 1183 * 1184 * Check the AVC to determine whether the @requested permissions are granted 1185 * for the SID pair (@ssid, @tsid), interpreting the permissions 1186 * based on @tclass, and call the security server on a cache miss to obtain 1187 * a new decision and add it to the cache. Audit the granting or denial of 1188 * permissions in accordance with the policy. Return %0 if all @requested 1189 * permissions are granted, -%EACCES if any permissions are denied, or 1190 * another -errno upon other errors. 1191 */ 1192 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, 1193 u32 requested, struct common_audit_data *auditdata) 1194 { 1195 struct av_decision avd; 1196 int rc, rc2; 1197 1198 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, 1199 &avd); 1200 1201 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, 1202 auditdata, 0); 1203 if (rc2) 1204 return rc2; 1205 return rc; 1206 } 1207 1208 u32 avc_policy_seqno(struct selinux_state *state) 1209 { 1210 return state->avc->avc_cache.latest_notif; 1211 } 1212 1213 void avc_disable(void) 1214 { 1215 /* 1216 * If you are looking at this because you have realized that we are 1217 * not destroying the avc_node_cachep it might be easy to fix, but 1218 * I don't know the memory barrier semantics well enough to know. It's 1219 * possible that some other task dereferenced security_ops when 1220 * it still pointed to selinux operations. If that is the case it's 1221 * possible that it is about to use the avc and is about to need the 1222 * avc_node_cachep. I know I could wrap the security.c security_ops call 1223 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1224 * the cache and get that memory back. 1225 */ 1226 if (avc_node_cachep) { 1227 avc_flush(selinux_state.avc); 1228 /* kmem_cache_destroy(avc_node_cachep); */ 1229 } 1230 } 1231