xref: /openbmc/linux/security/selinux/avc.c (revision 4cff79e9)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88 
89 struct selinux_avc {
90 	unsigned int avc_cache_threshold;
91 	struct avc_cache avc_cache;
92 };
93 
94 static struct selinux_avc selinux_avc;
95 
96 void selinux_avc_init(struct selinux_avc **avc)
97 {
98 	int i;
99 
100 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 	}
105 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 	*avc = &selinux_avc;
108 }
109 
110 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
111 {
112 	return avc->avc_cache_threshold;
113 }
114 
115 void avc_set_cache_threshold(struct selinux_avc *avc,
116 			     unsigned int cache_threshold)
117 {
118 	avc->avc_cache_threshold = cache_threshold;
119 }
120 
121 static struct avc_callback_node *avc_callbacks;
122 static struct kmem_cache *avc_node_cachep;
123 static struct kmem_cache *avc_xperms_data_cachep;
124 static struct kmem_cache *avc_xperms_decision_cachep;
125 static struct kmem_cache *avc_xperms_cachep;
126 
127 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
128 {
129 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
130 }
131 
132 /**
133  * avc_dump_av - Display an access vector in human-readable form.
134  * @tclass: target security class
135  * @av: access vector
136  */
137 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
138 {
139 	const char **perms;
140 	int i, perm;
141 
142 	if (av == 0) {
143 		audit_log_format(ab, " null");
144 		return;
145 	}
146 
147 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
148 	perms = secclass_map[tclass-1].perms;
149 
150 	audit_log_format(ab, " {");
151 	i = 0;
152 	perm = 1;
153 	while (i < (sizeof(av) * 8)) {
154 		if ((perm & av) && perms[i]) {
155 			audit_log_format(ab, " %s", perms[i]);
156 			av &= ~perm;
157 		}
158 		i++;
159 		perm <<= 1;
160 	}
161 
162 	if (av)
163 		audit_log_format(ab, " 0x%x", av);
164 
165 	audit_log_format(ab, " }");
166 }
167 
168 /**
169  * avc_dump_query - Display a SID pair and a class in human-readable form.
170  * @ssid: source security identifier
171  * @tsid: target security identifier
172  * @tclass: target security class
173  */
174 static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
175 			   u32 ssid, u32 tsid, u16 tclass)
176 {
177 	int rc;
178 	char *scontext;
179 	u32 scontext_len;
180 
181 	rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
182 	if (rc)
183 		audit_log_format(ab, "ssid=%d", ssid);
184 	else {
185 		audit_log_format(ab, "scontext=%s", scontext);
186 		kfree(scontext);
187 	}
188 
189 	rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
190 	if (rc)
191 		audit_log_format(ab, " tsid=%d", tsid);
192 	else {
193 		audit_log_format(ab, " tcontext=%s", scontext);
194 		kfree(scontext);
195 	}
196 
197 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
198 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
199 }
200 
201 /**
202  * avc_init - Initialize the AVC.
203  *
204  * Initialize the access vector cache.
205  */
206 void __init avc_init(void)
207 {
208 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
209 					0, SLAB_PANIC, NULL);
210 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
211 					sizeof(struct avc_xperms_node),
212 					0, SLAB_PANIC, NULL);
213 	avc_xperms_decision_cachep = kmem_cache_create(
214 					"avc_xperms_decision_node",
215 					sizeof(struct avc_xperms_decision_node),
216 					0, SLAB_PANIC, NULL);
217 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
218 					sizeof(struct extended_perms_data),
219 					0, SLAB_PANIC, NULL);
220 }
221 
222 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
223 {
224 	int i, chain_len, max_chain_len, slots_used;
225 	struct avc_node *node;
226 	struct hlist_head *head;
227 
228 	rcu_read_lock();
229 
230 	slots_used = 0;
231 	max_chain_len = 0;
232 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
233 		head = &avc->avc_cache.slots[i];
234 		if (!hlist_empty(head)) {
235 			slots_used++;
236 			chain_len = 0;
237 			hlist_for_each_entry_rcu(node, head, list)
238 				chain_len++;
239 			if (chain_len > max_chain_len)
240 				max_chain_len = chain_len;
241 		}
242 	}
243 
244 	rcu_read_unlock();
245 
246 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
247 			 "longest chain: %d\n",
248 			 atomic_read(&avc->avc_cache.active_nodes),
249 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
250 }
251 
252 /*
253  * using a linked list for extended_perms_decision lookup because the list is
254  * always small. i.e. less than 5, typically 1
255  */
256 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
257 					struct avc_xperms_node *xp_node)
258 {
259 	struct avc_xperms_decision_node *xpd_node;
260 
261 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
262 		if (xpd_node->xpd.driver == driver)
263 			return &xpd_node->xpd;
264 	}
265 	return NULL;
266 }
267 
268 static inline unsigned int
269 avc_xperms_has_perm(struct extended_perms_decision *xpd,
270 					u8 perm, u8 which)
271 {
272 	unsigned int rc = 0;
273 
274 	if ((which == XPERMS_ALLOWED) &&
275 			(xpd->used & XPERMS_ALLOWED))
276 		rc = security_xperm_test(xpd->allowed->p, perm);
277 	else if ((which == XPERMS_AUDITALLOW) &&
278 			(xpd->used & XPERMS_AUDITALLOW))
279 		rc = security_xperm_test(xpd->auditallow->p, perm);
280 	else if ((which == XPERMS_DONTAUDIT) &&
281 			(xpd->used & XPERMS_DONTAUDIT))
282 		rc = security_xperm_test(xpd->dontaudit->p, perm);
283 	return rc;
284 }
285 
286 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
287 				u8 driver, u8 perm)
288 {
289 	struct extended_perms_decision *xpd;
290 	security_xperm_set(xp_node->xp.drivers.p, driver);
291 	xpd = avc_xperms_decision_lookup(driver, xp_node);
292 	if (xpd && xpd->allowed)
293 		security_xperm_set(xpd->allowed->p, perm);
294 }
295 
296 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
297 {
298 	struct extended_perms_decision *xpd;
299 
300 	xpd = &xpd_node->xpd;
301 	if (xpd->allowed)
302 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
303 	if (xpd->auditallow)
304 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
305 	if (xpd->dontaudit)
306 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
307 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
308 }
309 
310 static void avc_xperms_free(struct avc_xperms_node *xp_node)
311 {
312 	struct avc_xperms_decision_node *xpd_node, *tmp;
313 
314 	if (!xp_node)
315 		return;
316 
317 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
318 		list_del(&xpd_node->xpd_list);
319 		avc_xperms_decision_free(xpd_node);
320 	}
321 	kmem_cache_free(avc_xperms_cachep, xp_node);
322 }
323 
324 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
325 					struct extended_perms_decision *src)
326 {
327 	dest->driver = src->driver;
328 	dest->used = src->used;
329 	if (dest->used & XPERMS_ALLOWED)
330 		memcpy(dest->allowed->p, src->allowed->p,
331 				sizeof(src->allowed->p));
332 	if (dest->used & XPERMS_AUDITALLOW)
333 		memcpy(dest->auditallow->p, src->auditallow->p,
334 				sizeof(src->auditallow->p));
335 	if (dest->used & XPERMS_DONTAUDIT)
336 		memcpy(dest->dontaudit->p, src->dontaudit->p,
337 				sizeof(src->dontaudit->p));
338 }
339 
340 /*
341  * similar to avc_copy_xperms_decision, but only copy decision
342  * information relevant to this perm
343  */
344 static inline void avc_quick_copy_xperms_decision(u8 perm,
345 			struct extended_perms_decision *dest,
346 			struct extended_perms_decision *src)
347 {
348 	/*
349 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
350 	 * command permission
351 	 */
352 	u8 i = perm >> 5;
353 
354 	dest->used = src->used;
355 	if (dest->used & XPERMS_ALLOWED)
356 		dest->allowed->p[i] = src->allowed->p[i];
357 	if (dest->used & XPERMS_AUDITALLOW)
358 		dest->auditallow->p[i] = src->auditallow->p[i];
359 	if (dest->used & XPERMS_DONTAUDIT)
360 		dest->dontaudit->p[i] = src->dontaudit->p[i];
361 }
362 
363 static struct avc_xperms_decision_node
364 		*avc_xperms_decision_alloc(u8 which)
365 {
366 	struct avc_xperms_decision_node *xpd_node;
367 	struct extended_perms_decision *xpd;
368 
369 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
370 	if (!xpd_node)
371 		return NULL;
372 
373 	xpd = &xpd_node->xpd;
374 	if (which & XPERMS_ALLOWED) {
375 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
376 						GFP_NOWAIT);
377 		if (!xpd->allowed)
378 			goto error;
379 	}
380 	if (which & XPERMS_AUDITALLOW) {
381 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
382 						GFP_NOWAIT);
383 		if (!xpd->auditallow)
384 			goto error;
385 	}
386 	if (which & XPERMS_DONTAUDIT) {
387 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
388 						GFP_NOWAIT);
389 		if (!xpd->dontaudit)
390 			goto error;
391 	}
392 	return xpd_node;
393 error:
394 	avc_xperms_decision_free(xpd_node);
395 	return NULL;
396 }
397 
398 static int avc_add_xperms_decision(struct avc_node *node,
399 			struct extended_perms_decision *src)
400 {
401 	struct avc_xperms_decision_node *dest_xpd;
402 
403 	node->ae.xp_node->xp.len++;
404 	dest_xpd = avc_xperms_decision_alloc(src->used);
405 	if (!dest_xpd)
406 		return -ENOMEM;
407 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
408 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
409 	return 0;
410 }
411 
412 static struct avc_xperms_node *avc_xperms_alloc(void)
413 {
414 	struct avc_xperms_node *xp_node;
415 
416 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
417 	if (!xp_node)
418 		return xp_node;
419 	INIT_LIST_HEAD(&xp_node->xpd_head);
420 	return xp_node;
421 }
422 
423 static int avc_xperms_populate(struct avc_node *node,
424 				struct avc_xperms_node *src)
425 {
426 	struct avc_xperms_node *dest;
427 	struct avc_xperms_decision_node *dest_xpd;
428 	struct avc_xperms_decision_node *src_xpd;
429 
430 	if (src->xp.len == 0)
431 		return 0;
432 	dest = avc_xperms_alloc();
433 	if (!dest)
434 		return -ENOMEM;
435 
436 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
437 	dest->xp.len = src->xp.len;
438 
439 	/* for each source xpd allocate a destination xpd and copy */
440 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
441 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
442 		if (!dest_xpd)
443 			goto error;
444 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
445 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
446 	}
447 	node->ae.xp_node = dest;
448 	return 0;
449 error:
450 	avc_xperms_free(dest);
451 	return -ENOMEM;
452 
453 }
454 
455 static inline u32 avc_xperms_audit_required(u32 requested,
456 					struct av_decision *avd,
457 					struct extended_perms_decision *xpd,
458 					u8 perm,
459 					int result,
460 					u32 *deniedp)
461 {
462 	u32 denied, audited;
463 
464 	denied = requested & ~avd->allowed;
465 	if (unlikely(denied)) {
466 		audited = denied & avd->auditdeny;
467 		if (audited && xpd) {
468 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
469 				audited &= ~requested;
470 		}
471 	} else if (result) {
472 		audited = denied = requested;
473 	} else {
474 		audited = requested & avd->auditallow;
475 		if (audited && xpd) {
476 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
477 				audited &= ~requested;
478 		}
479 	}
480 
481 	*deniedp = denied;
482 	return audited;
483 }
484 
485 static inline int avc_xperms_audit(struct selinux_state *state,
486 				   u32 ssid, u32 tsid, u16 tclass,
487 				   u32 requested, struct av_decision *avd,
488 				   struct extended_perms_decision *xpd,
489 				   u8 perm, int result,
490 				   struct common_audit_data *ad)
491 {
492 	u32 audited, denied;
493 
494 	audited = avc_xperms_audit_required(
495 			requested, avd, xpd, perm, result, &denied);
496 	if (likely(!audited))
497 		return 0;
498 	return slow_avc_audit(state, ssid, tsid, tclass, requested,
499 			audited, denied, result, ad, 0);
500 }
501 
502 static void avc_node_free(struct rcu_head *rhead)
503 {
504 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
505 	avc_xperms_free(node->ae.xp_node);
506 	kmem_cache_free(avc_node_cachep, node);
507 	avc_cache_stats_incr(frees);
508 }
509 
510 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
511 {
512 	hlist_del_rcu(&node->list);
513 	call_rcu(&node->rhead, avc_node_free);
514 	atomic_dec(&avc->avc_cache.active_nodes);
515 }
516 
517 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
518 {
519 	avc_xperms_free(node->ae.xp_node);
520 	kmem_cache_free(avc_node_cachep, node);
521 	avc_cache_stats_incr(frees);
522 	atomic_dec(&avc->avc_cache.active_nodes);
523 }
524 
525 static void avc_node_replace(struct selinux_avc *avc,
526 			     struct avc_node *new, struct avc_node *old)
527 {
528 	hlist_replace_rcu(&old->list, &new->list);
529 	call_rcu(&old->rhead, avc_node_free);
530 	atomic_dec(&avc->avc_cache.active_nodes);
531 }
532 
533 static inline int avc_reclaim_node(struct selinux_avc *avc)
534 {
535 	struct avc_node *node;
536 	int hvalue, try, ecx;
537 	unsigned long flags;
538 	struct hlist_head *head;
539 	spinlock_t *lock;
540 
541 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
542 		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
543 			(AVC_CACHE_SLOTS - 1);
544 		head = &avc->avc_cache.slots[hvalue];
545 		lock = &avc->avc_cache.slots_lock[hvalue];
546 
547 		if (!spin_trylock_irqsave(lock, flags))
548 			continue;
549 
550 		rcu_read_lock();
551 		hlist_for_each_entry(node, head, list) {
552 			avc_node_delete(avc, node);
553 			avc_cache_stats_incr(reclaims);
554 			ecx++;
555 			if (ecx >= AVC_CACHE_RECLAIM) {
556 				rcu_read_unlock();
557 				spin_unlock_irqrestore(lock, flags);
558 				goto out;
559 			}
560 		}
561 		rcu_read_unlock();
562 		spin_unlock_irqrestore(lock, flags);
563 	}
564 out:
565 	return ecx;
566 }
567 
568 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
569 {
570 	struct avc_node *node;
571 
572 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
573 	if (!node)
574 		goto out;
575 
576 	INIT_HLIST_NODE(&node->list);
577 	avc_cache_stats_incr(allocations);
578 
579 	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
580 	    avc->avc_cache_threshold)
581 		avc_reclaim_node(avc);
582 
583 out:
584 	return node;
585 }
586 
587 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
588 {
589 	node->ae.ssid = ssid;
590 	node->ae.tsid = tsid;
591 	node->ae.tclass = tclass;
592 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
593 }
594 
595 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
596 					       u32 ssid, u32 tsid, u16 tclass)
597 {
598 	struct avc_node *node, *ret = NULL;
599 	int hvalue;
600 	struct hlist_head *head;
601 
602 	hvalue = avc_hash(ssid, tsid, tclass);
603 	head = &avc->avc_cache.slots[hvalue];
604 	hlist_for_each_entry_rcu(node, head, list) {
605 		if (ssid == node->ae.ssid &&
606 		    tclass == node->ae.tclass &&
607 		    tsid == node->ae.tsid) {
608 			ret = node;
609 			break;
610 		}
611 	}
612 
613 	return ret;
614 }
615 
616 /**
617  * avc_lookup - Look up an AVC entry.
618  * @ssid: source security identifier
619  * @tsid: target security identifier
620  * @tclass: target security class
621  *
622  * Look up an AVC entry that is valid for the
623  * (@ssid, @tsid), interpreting the permissions
624  * based on @tclass.  If a valid AVC entry exists,
625  * then this function returns the avc_node.
626  * Otherwise, this function returns NULL.
627  */
628 static struct avc_node *avc_lookup(struct selinux_avc *avc,
629 				   u32 ssid, u32 tsid, u16 tclass)
630 {
631 	struct avc_node *node;
632 
633 	avc_cache_stats_incr(lookups);
634 	node = avc_search_node(avc, ssid, tsid, tclass);
635 
636 	if (node)
637 		return node;
638 
639 	avc_cache_stats_incr(misses);
640 	return NULL;
641 }
642 
643 static int avc_latest_notif_update(struct selinux_avc *avc,
644 				   int seqno, int is_insert)
645 {
646 	int ret = 0;
647 	static DEFINE_SPINLOCK(notif_lock);
648 	unsigned long flag;
649 
650 	spin_lock_irqsave(&notif_lock, flag);
651 	if (is_insert) {
652 		if (seqno < avc->avc_cache.latest_notif) {
653 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
654 			       seqno, avc->avc_cache.latest_notif);
655 			ret = -EAGAIN;
656 		}
657 	} else {
658 		if (seqno > avc->avc_cache.latest_notif)
659 			avc->avc_cache.latest_notif = seqno;
660 	}
661 	spin_unlock_irqrestore(&notif_lock, flag);
662 
663 	return ret;
664 }
665 
666 /**
667  * avc_insert - Insert an AVC entry.
668  * @ssid: source security identifier
669  * @tsid: target security identifier
670  * @tclass: target security class
671  * @avd: resulting av decision
672  * @xp_node: resulting extended permissions
673  *
674  * Insert an AVC entry for the SID pair
675  * (@ssid, @tsid) and class @tclass.
676  * The access vectors and the sequence number are
677  * normally provided by the security server in
678  * response to a security_compute_av() call.  If the
679  * sequence number @avd->seqno is not less than the latest
680  * revocation notification, then the function copies
681  * the access vectors into a cache entry, returns
682  * avc_node inserted. Otherwise, this function returns NULL.
683  */
684 static struct avc_node *avc_insert(struct selinux_avc *avc,
685 				   u32 ssid, u32 tsid, u16 tclass,
686 				   struct av_decision *avd,
687 				   struct avc_xperms_node *xp_node)
688 {
689 	struct avc_node *pos, *node = NULL;
690 	int hvalue;
691 	unsigned long flag;
692 
693 	if (avc_latest_notif_update(avc, avd->seqno, 1))
694 		goto out;
695 
696 	node = avc_alloc_node(avc);
697 	if (node) {
698 		struct hlist_head *head;
699 		spinlock_t *lock;
700 		int rc = 0;
701 
702 		hvalue = avc_hash(ssid, tsid, tclass);
703 		avc_node_populate(node, ssid, tsid, tclass, avd);
704 		rc = avc_xperms_populate(node, xp_node);
705 		if (rc) {
706 			kmem_cache_free(avc_node_cachep, node);
707 			return NULL;
708 		}
709 		head = &avc->avc_cache.slots[hvalue];
710 		lock = &avc->avc_cache.slots_lock[hvalue];
711 
712 		spin_lock_irqsave(lock, flag);
713 		hlist_for_each_entry(pos, head, list) {
714 			if (pos->ae.ssid == ssid &&
715 			    pos->ae.tsid == tsid &&
716 			    pos->ae.tclass == tclass) {
717 				avc_node_replace(avc, node, pos);
718 				goto found;
719 			}
720 		}
721 		hlist_add_head_rcu(&node->list, head);
722 found:
723 		spin_unlock_irqrestore(lock, flag);
724 	}
725 out:
726 	return node;
727 }
728 
729 /**
730  * avc_audit_pre_callback - SELinux specific information
731  * will be called by generic audit code
732  * @ab: the audit buffer
733  * @a: audit_data
734  */
735 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
736 {
737 	struct common_audit_data *ad = a;
738 	audit_log_format(ab, "avc:  %s ",
739 			 ad->selinux_audit_data->denied ? "denied" : "granted");
740 	avc_dump_av(ab, ad->selinux_audit_data->tclass,
741 			ad->selinux_audit_data->audited);
742 	audit_log_format(ab, " for ");
743 }
744 
745 /**
746  * avc_audit_post_callback - SELinux specific information
747  * will be called by generic audit code
748  * @ab: the audit buffer
749  * @a: audit_data
750  */
751 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
752 {
753 	struct common_audit_data *ad = a;
754 	audit_log_format(ab, " ");
755 	avc_dump_query(ab, ad->selinux_audit_data->state,
756 		       ad->selinux_audit_data->ssid,
757 		       ad->selinux_audit_data->tsid,
758 		       ad->selinux_audit_data->tclass);
759 	if (ad->selinux_audit_data->denied) {
760 		audit_log_format(ab, " permissive=%u",
761 				 ad->selinux_audit_data->result ? 0 : 1);
762 	}
763 }
764 
765 /* This is the slow part of avc audit with big stack footprint */
766 noinline int slow_avc_audit(struct selinux_state *state,
767 			    u32 ssid, u32 tsid, u16 tclass,
768 			    u32 requested, u32 audited, u32 denied, int result,
769 			    struct common_audit_data *a,
770 			    unsigned int flags)
771 {
772 	struct common_audit_data stack_data;
773 	struct selinux_audit_data sad;
774 
775 	if (!a) {
776 		a = &stack_data;
777 		a->type = LSM_AUDIT_DATA_NONE;
778 	}
779 
780 	/*
781 	 * When in a RCU walk do the audit on the RCU retry.  This is because
782 	 * the collection of the dname in an inode audit message is not RCU
783 	 * safe.  Note this may drop some audits when the situation changes
784 	 * during retry. However this is logically just as if the operation
785 	 * happened a little later.
786 	 */
787 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
788 	    (flags & MAY_NOT_BLOCK))
789 		return -ECHILD;
790 
791 	sad.tclass = tclass;
792 	sad.requested = requested;
793 	sad.ssid = ssid;
794 	sad.tsid = tsid;
795 	sad.audited = audited;
796 	sad.denied = denied;
797 	sad.result = result;
798 	sad.state = state;
799 
800 	a->selinux_audit_data = &sad;
801 
802 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
803 	return 0;
804 }
805 
806 /**
807  * avc_add_callback - Register a callback for security events.
808  * @callback: callback function
809  * @events: security events
810  *
811  * Register a callback function for events in the set @events.
812  * Returns %0 on success or -%ENOMEM if insufficient memory
813  * exists to add the callback.
814  */
815 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
816 {
817 	struct avc_callback_node *c;
818 	int rc = 0;
819 
820 	c = kmalloc(sizeof(*c), GFP_KERNEL);
821 	if (!c) {
822 		rc = -ENOMEM;
823 		goto out;
824 	}
825 
826 	c->callback = callback;
827 	c->events = events;
828 	c->next = avc_callbacks;
829 	avc_callbacks = c;
830 out:
831 	return rc;
832 }
833 
834 /**
835  * avc_update_node Update an AVC entry
836  * @event : Updating event
837  * @perms : Permission mask bits
838  * @ssid,@tsid,@tclass : identifier of an AVC entry
839  * @seqno : sequence number when decision was made
840  * @xpd: extended_perms_decision to be added to the node
841  *
842  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
843  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
844  * otherwise, this function updates the AVC entry. The original AVC-entry object
845  * will release later by RCU.
846  */
847 static int avc_update_node(struct selinux_avc *avc,
848 			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
849 			   u32 tsid, u16 tclass, u32 seqno,
850 			   struct extended_perms_decision *xpd,
851 			   u32 flags)
852 {
853 	int hvalue, rc = 0;
854 	unsigned long flag;
855 	struct avc_node *pos, *node, *orig = NULL;
856 	struct hlist_head *head;
857 	spinlock_t *lock;
858 
859 	node = avc_alloc_node(avc);
860 	if (!node) {
861 		rc = -ENOMEM;
862 		goto out;
863 	}
864 
865 	/* Lock the target slot */
866 	hvalue = avc_hash(ssid, tsid, tclass);
867 
868 	head = &avc->avc_cache.slots[hvalue];
869 	lock = &avc->avc_cache.slots_lock[hvalue];
870 
871 	spin_lock_irqsave(lock, flag);
872 
873 	hlist_for_each_entry(pos, head, list) {
874 		if (ssid == pos->ae.ssid &&
875 		    tsid == pos->ae.tsid &&
876 		    tclass == pos->ae.tclass &&
877 		    seqno == pos->ae.avd.seqno){
878 			orig = pos;
879 			break;
880 		}
881 	}
882 
883 	if (!orig) {
884 		rc = -ENOENT;
885 		avc_node_kill(avc, node);
886 		goto out_unlock;
887 	}
888 
889 	/*
890 	 * Copy and replace original node.
891 	 */
892 
893 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
894 
895 	if (orig->ae.xp_node) {
896 		rc = avc_xperms_populate(node, orig->ae.xp_node);
897 		if (rc) {
898 			kmem_cache_free(avc_node_cachep, node);
899 			goto out_unlock;
900 		}
901 	}
902 
903 	switch (event) {
904 	case AVC_CALLBACK_GRANT:
905 		node->ae.avd.allowed |= perms;
906 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
907 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
908 		break;
909 	case AVC_CALLBACK_TRY_REVOKE:
910 	case AVC_CALLBACK_REVOKE:
911 		node->ae.avd.allowed &= ~perms;
912 		break;
913 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
914 		node->ae.avd.auditallow |= perms;
915 		break;
916 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
917 		node->ae.avd.auditallow &= ~perms;
918 		break;
919 	case AVC_CALLBACK_AUDITDENY_ENABLE:
920 		node->ae.avd.auditdeny |= perms;
921 		break;
922 	case AVC_CALLBACK_AUDITDENY_DISABLE:
923 		node->ae.avd.auditdeny &= ~perms;
924 		break;
925 	case AVC_CALLBACK_ADD_XPERMS:
926 		avc_add_xperms_decision(node, xpd);
927 		break;
928 	}
929 	avc_node_replace(avc, node, orig);
930 out_unlock:
931 	spin_unlock_irqrestore(lock, flag);
932 out:
933 	return rc;
934 }
935 
936 /**
937  * avc_flush - Flush the cache
938  */
939 static void avc_flush(struct selinux_avc *avc)
940 {
941 	struct hlist_head *head;
942 	struct avc_node *node;
943 	spinlock_t *lock;
944 	unsigned long flag;
945 	int i;
946 
947 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
948 		head = &avc->avc_cache.slots[i];
949 		lock = &avc->avc_cache.slots_lock[i];
950 
951 		spin_lock_irqsave(lock, flag);
952 		/*
953 		 * With preemptable RCU, the outer spinlock does not
954 		 * prevent RCU grace periods from ending.
955 		 */
956 		rcu_read_lock();
957 		hlist_for_each_entry(node, head, list)
958 			avc_node_delete(avc, node);
959 		rcu_read_unlock();
960 		spin_unlock_irqrestore(lock, flag);
961 	}
962 }
963 
964 /**
965  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
966  * @seqno: policy sequence number
967  */
968 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
969 {
970 	struct avc_callback_node *c;
971 	int rc = 0, tmprc;
972 
973 	avc_flush(avc);
974 
975 	for (c = avc_callbacks; c; c = c->next) {
976 		if (c->events & AVC_CALLBACK_RESET) {
977 			tmprc = c->callback(AVC_CALLBACK_RESET);
978 			/* save the first error encountered for the return
979 			   value and continue processing the callbacks */
980 			if (!rc)
981 				rc = tmprc;
982 		}
983 	}
984 
985 	avc_latest_notif_update(avc, seqno, 0);
986 	return rc;
987 }
988 
989 /*
990  * Slow-path helper function for avc_has_perm_noaudit,
991  * when the avc_node lookup fails. We get called with
992  * the RCU read lock held, and need to return with it
993  * still held, but drop if for the security compute.
994  *
995  * Don't inline this, since it's the slow-path and just
996  * results in a bigger stack frame.
997  */
998 static noinline
999 struct avc_node *avc_compute_av(struct selinux_state *state,
1000 				u32 ssid, u32 tsid,
1001 				u16 tclass, struct av_decision *avd,
1002 				struct avc_xperms_node *xp_node)
1003 {
1004 	rcu_read_unlock();
1005 	INIT_LIST_HEAD(&xp_node->xpd_head);
1006 	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1007 	rcu_read_lock();
1008 	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1009 }
1010 
1011 static noinline int avc_denied(struct selinux_state *state,
1012 			       u32 ssid, u32 tsid,
1013 			       u16 tclass, u32 requested,
1014 			       u8 driver, u8 xperm, unsigned int flags,
1015 			       struct av_decision *avd)
1016 {
1017 	if (flags & AVC_STRICT)
1018 		return -EACCES;
1019 
1020 	if (enforcing_enabled(state) &&
1021 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022 		return -EACCES;
1023 
1024 	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1026 	return 0;
1027 }
1028 
1029 /*
1030  * The avc extended permissions logic adds an additional 256 bits of
1031  * permissions to an avc node when extended permissions for that node are
1032  * specified in the avtab. If the additional 256 permissions is not adequate,
1033  * as-is the case with ioctls, then multiple may be chained together and the
1034  * driver field is used to specify which set contains the permission.
1035  */
1036 int avc_has_extended_perms(struct selinux_state *state,
1037 			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038 			   u8 driver, u8 xperm, struct common_audit_data *ad)
1039 {
1040 	struct avc_node *node;
1041 	struct av_decision avd;
1042 	u32 denied;
1043 	struct extended_perms_decision local_xpd;
1044 	struct extended_perms_decision *xpd = NULL;
1045 	struct extended_perms_data allowed;
1046 	struct extended_perms_data auditallow;
1047 	struct extended_perms_data dontaudit;
1048 	struct avc_xperms_node local_xp_node;
1049 	struct avc_xperms_node *xp_node;
1050 	int rc = 0, rc2;
1051 
1052 	xp_node = &local_xp_node;
1053 	BUG_ON(!requested);
1054 
1055 	rcu_read_lock();
1056 
1057 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1058 	if (unlikely(!node)) {
1059 		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1060 	} else {
1061 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1062 		xp_node = node->ae.xp_node;
1063 	}
1064 	/* if extended permissions are not defined, only consider av_decision */
1065 	if (!xp_node || !xp_node->xp.len)
1066 		goto decision;
1067 
1068 	local_xpd.allowed = &allowed;
1069 	local_xpd.auditallow = &auditallow;
1070 	local_xpd.dontaudit = &dontaudit;
1071 
1072 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1073 	if (unlikely(!xpd)) {
1074 		/*
1075 		 * Compute the extended_perms_decision only if the driver
1076 		 * is flagged
1077 		 */
1078 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079 			avd.allowed &= ~requested;
1080 			goto decision;
1081 		}
1082 		rcu_read_unlock();
1083 		security_compute_xperms_decision(state, ssid, tsid, tclass,
1084 						 driver, &local_xpd);
1085 		rcu_read_lock();
1086 		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087 				driver, xperm, ssid, tsid, tclass, avd.seqno,
1088 				&local_xpd, 0);
1089 	} else {
1090 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091 	}
1092 	xpd = &local_xpd;
1093 
1094 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095 		avd.allowed &= ~requested;
1096 
1097 decision:
1098 	denied = requested & ~(avd.allowed);
1099 	if (unlikely(denied))
1100 		rc = avc_denied(state, ssid, tsid, tclass, requested,
1101 				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1102 
1103 	rcu_read_unlock();
1104 
1105 	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1106 			&avd, xpd, xperm, rc, ad);
1107 	if (rc2)
1108 		return rc2;
1109 	return rc;
1110 }
1111 
1112 /**
1113  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1114  * @ssid: source security identifier
1115  * @tsid: target security identifier
1116  * @tclass: target security class
1117  * @requested: requested permissions, interpreted based on @tclass
1118  * @flags:  AVC_STRICT or 0
1119  * @avd: access vector decisions
1120  *
1121  * Check the AVC to determine whether the @requested permissions are granted
1122  * for the SID pair (@ssid, @tsid), interpreting the permissions
1123  * based on @tclass, and call the security server on a cache miss to obtain
1124  * a new decision and add it to the cache.  Return a copy of the decisions
1125  * in @avd.  Return %0 if all @requested permissions are granted,
1126  * -%EACCES if any permissions are denied, or another -errno upon
1127  * other errors.  This function is typically called by avc_has_perm(),
1128  * but may also be called directly to separate permission checking from
1129  * auditing, e.g. in cases where a lock must be held for the check but
1130  * should be released for the auditing.
1131  */
1132 inline int avc_has_perm_noaudit(struct selinux_state *state,
1133 				u32 ssid, u32 tsid,
1134 				u16 tclass, u32 requested,
1135 				unsigned int flags,
1136 				struct av_decision *avd)
1137 {
1138 	struct avc_node *node;
1139 	struct avc_xperms_node xp_node;
1140 	int rc = 0;
1141 	u32 denied;
1142 
1143 	BUG_ON(!requested);
1144 
1145 	rcu_read_lock();
1146 
1147 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1148 	if (unlikely(!node))
1149 		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1150 	else
1151 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1152 
1153 	denied = requested & ~(avd->allowed);
1154 	if (unlikely(denied))
1155 		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156 				flags, avd);
1157 
1158 	rcu_read_unlock();
1159 	return rc;
1160 }
1161 
1162 /**
1163  * avc_has_perm - Check permissions and perform any appropriate auditing.
1164  * @ssid: source security identifier
1165  * @tsid: target security identifier
1166  * @tclass: target security class
1167  * @requested: requested permissions, interpreted based on @tclass
1168  * @auditdata: auxiliary audit data
1169  *
1170  * Check the AVC to determine whether the @requested permissions are granted
1171  * for the SID pair (@ssid, @tsid), interpreting the permissions
1172  * based on @tclass, and call the security server on a cache miss to obtain
1173  * a new decision and add it to the cache.  Audit the granting or denial of
1174  * permissions in accordance with the policy.  Return %0 if all @requested
1175  * permissions are granted, -%EACCES if any permissions are denied, or
1176  * another -errno upon other errors.
1177  */
1178 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1179 		 u32 requested, struct common_audit_data *auditdata)
1180 {
1181 	struct av_decision avd;
1182 	int rc, rc2;
1183 
1184 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185 				  &avd);
1186 
1187 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188 			auditdata, 0);
1189 	if (rc2)
1190 		return rc2;
1191 	return rc;
1192 }
1193 
1194 int avc_has_perm_flags(struct selinux_state *state,
1195 		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196 		       struct common_audit_data *auditdata,
1197 		       int flags)
1198 {
1199 	struct av_decision avd;
1200 	int rc, rc2;
1201 
1202 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203 				  &avd);
1204 
1205 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206 			auditdata, flags);
1207 	if (rc2)
1208 		return rc2;
1209 	return rc;
1210 }
1211 
1212 u32 avc_policy_seqno(struct selinux_state *state)
1213 {
1214 	return state->avc->avc_cache.latest_notif;
1215 }
1216 
1217 void avc_disable(void)
1218 {
1219 	/*
1220 	 * If you are looking at this because you have realized that we are
1221 	 * not destroying the avc_node_cachep it might be easy to fix, but
1222 	 * I don't know the memory barrier semantics well enough to know.  It's
1223 	 * possible that some other task dereferenced security_ops when
1224 	 * it still pointed to selinux operations.  If that is the case it's
1225 	 * possible that it is about to use the avc and is about to need the
1226 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1227 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1228 	 * the cache and get that memory back.
1229 	 */
1230 	if (avc_node_cachep) {
1231 		avc_flush(selinux_state.avc);
1232 		/* kmem_cache_destroy(avc_node_cachep); */
1233 	}
1234 }
1235