xref: /openbmc/linux/security/selinux/avc.c (revision 367b8112)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57 #include "av_inherit.h"
58 #undef S_
59 };
60 
61 const struct selinux_class_perm selinux_class_perm = {
62 	av_perm_to_string,
63 	ARRAY_SIZE(av_perm_to_string),
64 	class_to_string,
65 	ARRAY_SIZE(class_to_string),
66 	av_inherit,
67 	ARRAY_SIZE(av_inherit)
68 };
69 
70 #define AVC_CACHE_SLOTS			512
71 #define AVC_DEF_CACHE_THRESHOLD		512
72 #define AVC_CACHE_RECLAIM		16
73 
74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75 #define avc_cache_stats_incr(field)				\
76 do {								\
77 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
78 	put_cpu();						\
79 } while (0)
80 #else
81 #define avc_cache_stats_incr(field)	do {} while (0)
82 #endif
83 
84 struct avc_entry {
85 	u32			ssid;
86 	u32			tsid;
87 	u16			tclass;
88 	struct av_decision	avd;
89 	atomic_t		used;	/* used recently */
90 };
91 
92 struct avc_node {
93 	struct avc_entry	ae;
94 	struct list_head	list;
95 	struct rcu_head		rhead;
96 };
97 
98 struct avc_cache {
99 	struct list_head	slots[AVC_CACHE_SLOTS];
100 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
102 	atomic_t		active_nodes;
103 	u32			latest_notif;	/* latest revocation notification */
104 };
105 
106 struct avc_callback_node {
107 	int (*callback) (u32 event, u32 ssid, u32 tsid,
108 			 u16 tclass, u32 perms,
109 			 u32 *out_retained);
110 	u32 events;
111 	u32 ssid;
112 	u32 tsid;
113 	u16 tclass;
114 	u32 perms;
115 	struct avc_callback_node *next;
116 };
117 
118 /* Exported via selinufs */
119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
120 
121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123 #endif
124 
125 static struct avc_cache avc_cache;
126 static struct avc_callback_node *avc_callbacks;
127 static struct kmem_cache *avc_node_cachep;
128 
129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
130 {
131 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
132 }
133 
134 /**
135  * avc_dump_av - Display an access vector in human-readable form.
136  * @tclass: target security class
137  * @av: access vector
138  */
139 void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
140 {
141 	const char **common_pts = NULL;
142 	u32 common_base = 0;
143 	int i, i2, perm;
144 
145 	if (av == 0) {
146 		audit_log_format(ab, " null");
147 		return;
148 	}
149 
150 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 		if (av_inherit[i].tclass == tclass) {
152 			common_pts = av_inherit[i].common_pts;
153 			common_base = av_inherit[i].common_base;
154 			break;
155 		}
156 	}
157 
158 	audit_log_format(ab, " {");
159 	i = 0;
160 	perm = 1;
161 	while (perm < common_base) {
162 		if (perm & av) {
163 			audit_log_format(ab, " %s", common_pts[i]);
164 			av &= ~perm;
165 		}
166 		i++;
167 		perm <<= 1;
168 	}
169 
170 	while (i < sizeof(av) * 8) {
171 		if (perm & av) {
172 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 				if ((av_perm_to_string[i2].tclass == tclass) &&
174 				    (av_perm_to_string[i2].value == perm))
175 					break;
176 			}
177 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 				audit_log_format(ab, " %s",
179 						 av_perm_to_string[i2].name);
180 				av &= ~perm;
181 			}
182 		}
183 		i++;
184 		perm <<= 1;
185 	}
186 
187 	if (av)
188 		audit_log_format(ab, " 0x%x", av);
189 
190 	audit_log_format(ab, " }");
191 }
192 
193 /**
194  * avc_dump_query - Display a SID pair and a class in human-readable form.
195  * @ssid: source security identifier
196  * @tsid: target security identifier
197  * @tclass: target security class
198  */
199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
200 {
201 	int rc;
202 	char *scontext;
203 	u32 scontext_len;
204 
205 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206 	if (rc)
207 		audit_log_format(ab, "ssid=%d", ssid);
208 	else {
209 		audit_log_format(ab, "scontext=%s", scontext);
210 		kfree(scontext);
211 	}
212 
213 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214 	if (rc)
215 		audit_log_format(ab, " tsid=%d", tsid);
216 	else {
217 		audit_log_format(ab, " tcontext=%s", scontext);
218 		kfree(scontext);
219 	}
220 
221 	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
222 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
223 }
224 
225 /**
226  * avc_init - Initialize the AVC.
227  *
228  * Initialize the access vector cache.
229  */
230 void __init avc_init(void)
231 {
232 	int i;
233 
234 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
235 		INIT_LIST_HEAD(&avc_cache.slots[i]);
236 		spin_lock_init(&avc_cache.slots_lock[i]);
237 	}
238 	atomic_set(&avc_cache.active_nodes, 0);
239 	atomic_set(&avc_cache.lru_hint, 0);
240 
241 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
242 					     0, SLAB_PANIC, NULL);
243 
244 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
245 }
246 
247 int avc_get_hash_stats(char *page)
248 {
249 	int i, chain_len, max_chain_len, slots_used;
250 	struct avc_node *node;
251 
252 	rcu_read_lock();
253 
254 	slots_used = 0;
255 	max_chain_len = 0;
256 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
257 		if (!list_empty(&avc_cache.slots[i])) {
258 			slots_used++;
259 			chain_len = 0;
260 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
261 				chain_len++;
262 			if (chain_len > max_chain_len)
263 				max_chain_len = chain_len;
264 		}
265 	}
266 
267 	rcu_read_unlock();
268 
269 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
270 			 "longest chain: %d\n",
271 			 atomic_read(&avc_cache.active_nodes),
272 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
273 }
274 
275 static void avc_node_free(struct rcu_head *rhead)
276 {
277 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
278 	kmem_cache_free(avc_node_cachep, node);
279 	avc_cache_stats_incr(frees);
280 }
281 
282 static void avc_node_delete(struct avc_node *node)
283 {
284 	list_del_rcu(&node->list);
285 	call_rcu(&node->rhead, avc_node_free);
286 	atomic_dec(&avc_cache.active_nodes);
287 }
288 
289 static void avc_node_kill(struct avc_node *node)
290 {
291 	kmem_cache_free(avc_node_cachep, node);
292 	avc_cache_stats_incr(frees);
293 	atomic_dec(&avc_cache.active_nodes);
294 }
295 
296 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
297 {
298 	list_replace_rcu(&old->list, &new->list);
299 	call_rcu(&old->rhead, avc_node_free);
300 	atomic_dec(&avc_cache.active_nodes);
301 }
302 
303 static inline int avc_reclaim_node(void)
304 {
305 	struct avc_node *node;
306 	int hvalue, try, ecx;
307 	unsigned long flags;
308 
309 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
310 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
311 
312 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
313 			continue;
314 
315 		rcu_read_lock();
316 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
317 			if (atomic_dec_and_test(&node->ae.used)) {
318 				/* Recently Unused */
319 				avc_node_delete(node);
320 				avc_cache_stats_incr(reclaims);
321 				ecx++;
322 				if (ecx >= AVC_CACHE_RECLAIM) {
323 					rcu_read_unlock();
324 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
325 					goto out;
326 				}
327 			}
328 		}
329 		rcu_read_unlock();
330 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
331 	}
332 out:
333 	return ecx;
334 }
335 
336 static struct avc_node *avc_alloc_node(void)
337 {
338 	struct avc_node *node;
339 
340 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
341 	if (!node)
342 		goto out;
343 
344 	INIT_RCU_HEAD(&node->rhead);
345 	INIT_LIST_HEAD(&node->list);
346 	atomic_set(&node->ae.used, 1);
347 	avc_cache_stats_incr(allocations);
348 
349 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
350 		avc_reclaim_node();
351 
352 out:
353 	return node;
354 }
355 
356 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
357 {
358 	node->ae.ssid = ssid;
359 	node->ae.tsid = tsid;
360 	node->ae.tclass = tclass;
361 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
362 }
363 
364 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
365 {
366 	struct avc_node *node, *ret = NULL;
367 	int hvalue;
368 
369 	hvalue = avc_hash(ssid, tsid, tclass);
370 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
371 		if (ssid == node->ae.ssid &&
372 		    tclass == node->ae.tclass &&
373 		    tsid == node->ae.tsid) {
374 			ret = node;
375 			break;
376 		}
377 	}
378 
379 	if (ret == NULL) {
380 		/* cache miss */
381 		goto out;
382 	}
383 
384 	/* cache hit */
385 	if (atomic_read(&ret->ae.used) != 1)
386 		atomic_set(&ret->ae.used, 1);
387 out:
388 	return ret;
389 }
390 
391 /**
392  * avc_lookup - Look up an AVC entry.
393  * @ssid: source security identifier
394  * @tsid: target security identifier
395  * @tclass: target security class
396  * @requested: requested permissions, interpreted based on @tclass
397  *
398  * Look up an AVC entry that is valid for the
399  * @requested permissions between the SID pair
400  * (@ssid, @tsid), interpreting the permissions
401  * based on @tclass.  If a valid AVC entry exists,
402  * then this function return the avc_node.
403  * Otherwise, this function returns NULL.
404  */
405 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
406 {
407 	struct avc_node *node;
408 
409 	avc_cache_stats_incr(lookups);
410 	node = avc_search_node(ssid, tsid, tclass);
411 
412 	if (node && ((node->ae.avd.decided & requested) == requested)) {
413 		avc_cache_stats_incr(hits);
414 		goto out;
415 	}
416 
417 	node = NULL;
418 	avc_cache_stats_incr(misses);
419 out:
420 	return node;
421 }
422 
423 static int avc_latest_notif_update(int seqno, int is_insert)
424 {
425 	int ret = 0;
426 	static DEFINE_SPINLOCK(notif_lock);
427 	unsigned long flag;
428 
429 	spin_lock_irqsave(&notif_lock, flag);
430 	if (is_insert) {
431 		if (seqno < avc_cache.latest_notif) {
432 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
433 			       seqno, avc_cache.latest_notif);
434 			ret = -EAGAIN;
435 		}
436 	} else {
437 		if (seqno > avc_cache.latest_notif)
438 			avc_cache.latest_notif = seqno;
439 	}
440 	spin_unlock_irqrestore(&notif_lock, flag);
441 
442 	return ret;
443 }
444 
445 /**
446  * avc_insert - Insert an AVC entry.
447  * @ssid: source security identifier
448  * @tsid: target security identifier
449  * @tclass: target security class
450  * @ae: AVC entry
451  *
452  * Insert an AVC entry for the SID pair
453  * (@ssid, @tsid) and class @tclass.
454  * The access vectors and the sequence number are
455  * normally provided by the security server in
456  * response to a security_compute_av() call.  If the
457  * sequence number @ae->avd.seqno is not less than the latest
458  * revocation notification, then the function copies
459  * the access vectors into a cache entry, returns
460  * avc_node inserted. Otherwise, this function returns NULL.
461  */
462 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
463 {
464 	struct avc_node *pos, *node = NULL;
465 	int hvalue;
466 	unsigned long flag;
467 
468 	if (avc_latest_notif_update(ae->avd.seqno, 1))
469 		goto out;
470 
471 	node = avc_alloc_node();
472 	if (node) {
473 		hvalue = avc_hash(ssid, tsid, tclass);
474 		avc_node_populate(node, ssid, tsid, tclass, ae);
475 
476 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
477 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
478 			if (pos->ae.ssid == ssid &&
479 			    pos->ae.tsid == tsid &&
480 			    pos->ae.tclass == tclass) {
481 				avc_node_replace(node, pos);
482 				goto found;
483 			}
484 		}
485 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
486 found:
487 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
488 	}
489 out:
490 	return node;
491 }
492 
493 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
494 				       struct in6_addr *addr, __be16 port,
495 				       char *name1, char *name2)
496 {
497 	if (!ipv6_addr_any(addr))
498 		audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
499 	if (port)
500 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
501 }
502 
503 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
504 				       __be16 port, char *name1, char *name2)
505 {
506 	if (addr)
507 		audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
508 	if (port)
509 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
510 }
511 
512 /**
513  * avc_audit - Audit the granting or denial of permissions.
514  * @ssid: source security identifier
515  * @tsid: target security identifier
516  * @tclass: target security class
517  * @requested: requested permissions
518  * @avd: access vector decisions
519  * @result: result from avc_has_perm_noaudit
520  * @a:  auxiliary audit data
521  *
522  * Audit the granting or denial of permissions in accordance
523  * with the policy.  This function is typically called by
524  * avc_has_perm() after a permission check, but can also be
525  * called directly by callers who use avc_has_perm_noaudit()
526  * in order to separate the permission check from the auditing.
527  * For example, this separation is useful when the permission check must
528  * be performed under a lock, to allow the lock to be released
529  * before calling the auditing code.
530  */
531 void avc_audit(u32 ssid, u32 tsid,
532 	       u16 tclass, u32 requested,
533 	       struct av_decision *avd, int result, struct avc_audit_data *a)
534 {
535 	struct task_struct *tsk = current;
536 	struct inode *inode = NULL;
537 	u32 denied, audited;
538 	struct audit_buffer *ab;
539 
540 	denied = requested & ~avd->allowed;
541 	if (denied) {
542 		audited = denied;
543 		if (!(audited & avd->auditdeny))
544 			return;
545 	} else if (result) {
546 		audited = denied = requested;
547 	} else {
548 		audited = requested;
549 		if (!(audited & avd->auditallow))
550 			return;
551 	}
552 
553 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
554 	if (!ab)
555 		return;		/* audit_panic has been called */
556 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
557 	avc_dump_av(ab, tclass, audited);
558 	audit_log_format(ab, " for ");
559 	if (a && a->tsk)
560 		tsk = a->tsk;
561 	if (tsk && tsk->pid) {
562 		audit_log_format(ab, " pid=%d comm=", tsk->pid);
563 		audit_log_untrustedstring(ab, tsk->comm);
564 	}
565 	if (a) {
566 		switch (a->type) {
567 		case AVC_AUDIT_DATA_IPC:
568 			audit_log_format(ab, " key=%d", a->u.ipc_id);
569 			break;
570 		case AVC_AUDIT_DATA_CAP:
571 			audit_log_format(ab, " capability=%d", a->u.cap);
572 			break;
573 		case AVC_AUDIT_DATA_FS:
574 			if (a->u.fs.path.dentry) {
575 				struct dentry *dentry = a->u.fs.path.dentry;
576 				if (a->u.fs.path.mnt) {
577 					audit_log_d_path(ab, "path=",
578 							 &a->u.fs.path);
579 				} else {
580 					audit_log_format(ab, " name=");
581 					audit_log_untrustedstring(ab, dentry->d_name.name);
582 				}
583 				inode = dentry->d_inode;
584 			} else if (a->u.fs.inode) {
585 				struct dentry *dentry;
586 				inode = a->u.fs.inode;
587 				dentry = d_find_alias(inode);
588 				if (dentry) {
589 					audit_log_format(ab, " name=");
590 					audit_log_untrustedstring(ab, dentry->d_name.name);
591 					dput(dentry);
592 				}
593 			}
594 			if (inode)
595 				audit_log_format(ab, " dev=%s ino=%lu",
596 						 inode->i_sb->s_id,
597 						 inode->i_ino);
598 			break;
599 		case AVC_AUDIT_DATA_NET:
600 			if (a->u.net.sk) {
601 				struct sock *sk = a->u.net.sk;
602 				struct unix_sock *u;
603 				int len = 0;
604 				char *p = NULL;
605 
606 				switch (sk->sk_family) {
607 				case AF_INET: {
608 					struct inet_sock *inet = inet_sk(sk);
609 
610 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
611 							    inet->sport,
612 							    "laddr", "lport");
613 					avc_print_ipv4_addr(ab, inet->daddr,
614 							    inet->dport,
615 							    "faddr", "fport");
616 					break;
617 				}
618 				case AF_INET6: {
619 					struct inet_sock *inet = inet_sk(sk);
620 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
621 
622 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
623 							    inet->sport,
624 							    "laddr", "lport");
625 					avc_print_ipv6_addr(ab, &inet6->daddr,
626 							    inet->dport,
627 							    "faddr", "fport");
628 					break;
629 				}
630 				case AF_UNIX:
631 					u = unix_sk(sk);
632 					if (u->dentry) {
633 						struct path path = {
634 							.dentry = u->dentry,
635 							.mnt = u->mnt
636 						};
637 						audit_log_d_path(ab, "path=",
638 								 &path);
639 						break;
640 					}
641 					if (!u->addr)
642 						break;
643 					len = u->addr->len-sizeof(short);
644 					p = &u->addr->name->sun_path[0];
645 					audit_log_format(ab, " path=");
646 					if (*p)
647 						audit_log_untrustedstring(ab, p);
648 					else
649 						audit_log_n_hex(ab, p, len);
650 					break;
651 				}
652 			}
653 
654 			switch (a->u.net.family) {
655 			case AF_INET:
656 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
657 						    a->u.net.sport,
658 						    "saddr", "src");
659 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
660 						    a->u.net.dport,
661 						    "daddr", "dest");
662 				break;
663 			case AF_INET6:
664 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
665 						    a->u.net.sport,
666 						    "saddr", "src");
667 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
668 						    a->u.net.dport,
669 						    "daddr", "dest");
670 				break;
671 			}
672 			if (a->u.net.netif > 0) {
673 				struct net_device *dev;
674 
675 				/* NOTE: we always use init's namespace */
676 				dev = dev_get_by_index(&init_net,
677 						       a->u.net.netif);
678 				if (dev) {
679 					audit_log_format(ab, " netif=%s",
680 							 dev->name);
681 					dev_put(dev);
682 				}
683 			}
684 			break;
685 		}
686 	}
687 	audit_log_format(ab, " ");
688 	avc_dump_query(ab, ssid, tsid, tclass);
689 	audit_log_end(ab);
690 }
691 
692 /**
693  * avc_add_callback - Register a callback for security events.
694  * @callback: callback function
695  * @events: security events
696  * @ssid: source security identifier or %SECSID_WILD
697  * @tsid: target security identifier or %SECSID_WILD
698  * @tclass: target security class
699  * @perms: permissions
700  *
701  * Register a callback function for events in the set @events
702  * related to the SID pair (@ssid, @tsid) and
703  * and the permissions @perms, interpreting
704  * @perms based on @tclass.  Returns %0 on success or
705  * -%ENOMEM if insufficient memory exists to add the callback.
706  */
707 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
708 				     u16 tclass, u32 perms,
709 				     u32 *out_retained),
710 		     u32 events, u32 ssid, u32 tsid,
711 		     u16 tclass, u32 perms)
712 {
713 	struct avc_callback_node *c;
714 	int rc = 0;
715 
716 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
717 	if (!c) {
718 		rc = -ENOMEM;
719 		goto out;
720 	}
721 
722 	c->callback = callback;
723 	c->events = events;
724 	c->ssid = ssid;
725 	c->tsid = tsid;
726 	c->perms = perms;
727 	c->next = avc_callbacks;
728 	avc_callbacks = c;
729 out:
730 	return rc;
731 }
732 
733 static inline int avc_sidcmp(u32 x, u32 y)
734 {
735 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
736 }
737 
738 /**
739  * avc_update_node Update an AVC entry
740  * @event : Updating event
741  * @perms : Permission mask bits
742  * @ssid,@tsid,@tclass : identifier of an AVC entry
743  *
744  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
745  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
746  * otherwise, this function update the AVC entry. The original AVC-entry object
747  * will release later by RCU.
748  */
749 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
750 {
751 	int hvalue, rc = 0;
752 	unsigned long flag;
753 	struct avc_node *pos, *node, *orig = NULL;
754 
755 	node = avc_alloc_node();
756 	if (!node) {
757 		rc = -ENOMEM;
758 		goto out;
759 	}
760 
761 	/* Lock the target slot */
762 	hvalue = avc_hash(ssid, tsid, tclass);
763 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
764 
765 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
766 		if (ssid == pos->ae.ssid &&
767 		    tsid == pos->ae.tsid &&
768 		    tclass == pos->ae.tclass){
769 			orig = pos;
770 			break;
771 		}
772 	}
773 
774 	if (!orig) {
775 		rc = -ENOENT;
776 		avc_node_kill(node);
777 		goto out_unlock;
778 	}
779 
780 	/*
781 	 * Copy and replace original node.
782 	 */
783 
784 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
785 
786 	switch (event) {
787 	case AVC_CALLBACK_GRANT:
788 		node->ae.avd.allowed |= perms;
789 		break;
790 	case AVC_CALLBACK_TRY_REVOKE:
791 	case AVC_CALLBACK_REVOKE:
792 		node->ae.avd.allowed &= ~perms;
793 		break;
794 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
795 		node->ae.avd.auditallow |= perms;
796 		break;
797 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
798 		node->ae.avd.auditallow &= ~perms;
799 		break;
800 	case AVC_CALLBACK_AUDITDENY_ENABLE:
801 		node->ae.avd.auditdeny |= perms;
802 		break;
803 	case AVC_CALLBACK_AUDITDENY_DISABLE:
804 		node->ae.avd.auditdeny &= ~perms;
805 		break;
806 	}
807 	avc_node_replace(node, orig);
808 out_unlock:
809 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
810 out:
811 	return rc;
812 }
813 
814 /**
815  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
816  * @seqno: policy sequence number
817  */
818 int avc_ss_reset(u32 seqno)
819 {
820 	struct avc_callback_node *c;
821 	int i, rc = 0, tmprc;
822 	unsigned long flag;
823 	struct avc_node *node;
824 
825 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
826 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
827 		/*
828 		 * With preemptable RCU, the outer spinlock does not
829 		 * prevent RCU grace periods from ending.
830 		 */
831 		rcu_read_lock();
832 		list_for_each_entry(node, &avc_cache.slots[i], list)
833 			avc_node_delete(node);
834 		rcu_read_unlock();
835 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
836 	}
837 
838 	for (c = avc_callbacks; c; c = c->next) {
839 		if (c->events & AVC_CALLBACK_RESET) {
840 			tmprc = c->callback(AVC_CALLBACK_RESET,
841 					    0, 0, 0, 0, NULL);
842 			/* save the first error encountered for the return
843 			   value and continue processing the callbacks */
844 			if (!rc)
845 				rc = tmprc;
846 		}
847 	}
848 
849 	avc_latest_notif_update(seqno, 0);
850 	return rc;
851 }
852 
853 /**
854  * avc_has_perm_noaudit - Check permissions but perform no auditing.
855  * @ssid: source security identifier
856  * @tsid: target security identifier
857  * @tclass: target security class
858  * @requested: requested permissions, interpreted based on @tclass
859  * @flags:  AVC_STRICT or 0
860  * @avd: access vector decisions
861  *
862  * Check the AVC to determine whether the @requested permissions are granted
863  * for the SID pair (@ssid, @tsid), interpreting the permissions
864  * based on @tclass, and call the security server on a cache miss to obtain
865  * a new decision and add it to the cache.  Return a copy of the decisions
866  * in @avd.  Return %0 if all @requested permissions are granted,
867  * -%EACCES if any permissions are denied, or another -errno upon
868  * other errors.  This function is typically called by avc_has_perm(),
869  * but may also be called directly to separate permission checking from
870  * auditing, e.g. in cases where a lock must be held for the check but
871  * should be released for the auditing.
872  */
873 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
874 			 u16 tclass, u32 requested,
875 			 unsigned flags,
876 			 struct av_decision *avd)
877 {
878 	struct avc_node *node;
879 	struct avc_entry entry, *p_ae;
880 	int rc = 0;
881 	u32 denied;
882 
883 	BUG_ON(!requested);
884 
885 	rcu_read_lock();
886 
887 	node = avc_lookup(ssid, tsid, tclass, requested);
888 	if (!node) {
889 		rcu_read_unlock();
890 		rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd);
891 		if (rc)
892 			goto out;
893 		rcu_read_lock();
894 		node = avc_insert(ssid, tsid, tclass, &entry);
895 	}
896 
897 	p_ae = node ? &node->ae : &entry;
898 
899 	if (avd)
900 		memcpy(avd, &p_ae->avd, sizeof(*avd));
901 
902 	denied = requested & ~(p_ae->avd.allowed);
903 
904 	if (denied) {
905 		if (flags & AVC_STRICT)
906 			rc = -EACCES;
907 		else if (!selinux_enforcing || security_permissive_sid(ssid))
908 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
909 					tsid, tclass);
910 		else
911 			rc = -EACCES;
912 	}
913 
914 	rcu_read_unlock();
915 out:
916 	return rc;
917 }
918 
919 /**
920  * avc_has_perm - Check permissions and perform any appropriate auditing.
921  * @ssid: source security identifier
922  * @tsid: target security identifier
923  * @tclass: target security class
924  * @requested: requested permissions, interpreted based on @tclass
925  * @auditdata: auxiliary audit data
926  *
927  * Check the AVC to determine whether the @requested permissions are granted
928  * for the SID pair (@ssid, @tsid), interpreting the permissions
929  * based on @tclass, and call the security server on a cache miss to obtain
930  * a new decision and add it to the cache.  Audit the granting or denial of
931  * permissions in accordance with the policy.  Return %0 if all @requested
932  * permissions are granted, -%EACCES if any permissions are denied, or
933  * another -errno upon other errors.
934  */
935 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
936 		 u32 requested, struct avc_audit_data *auditdata)
937 {
938 	struct av_decision avd;
939 	int rc;
940 
941 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
942 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
943 	return rc;
944 }
945 
946 u32 avc_policy_seqno(void)
947 {
948 	return avc_cache.latest_notif;
949 }
950