1 /* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16 #include <linux/types.h> 17 #include <linux/stddef.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/dcache.h> 22 #include <linux/init.h> 23 #include <linux/skbuff.h> 24 #include <linux/percpu.h> 25 #include <linux/list.h> 26 #include <net/sock.h> 27 #include <linux/un.h> 28 #include <net/af_unix.h> 29 #include <linux/ip.h> 30 #include <linux/audit.h> 31 #include <linux/ipv6.h> 32 #include <net/ipv6.h> 33 #include "avc.h" 34 #include "avc_ss.h" 35 #include "classmap.h" 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 /* Exported via selinufs */ 86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 87 88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 90 #endif 91 92 static struct avc_cache avc_cache; 93 static struct avc_callback_node *avc_callbacks; 94 static struct kmem_cache *avc_node_cachep; 95 static struct kmem_cache *avc_xperms_data_cachep; 96 static struct kmem_cache *avc_xperms_decision_cachep; 97 static struct kmem_cache *avc_xperms_cachep; 98 99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 100 { 101 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 102 } 103 104 /** 105 * avc_dump_av - Display an access vector in human-readable form. 106 * @tclass: target security class 107 * @av: access vector 108 */ 109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 110 { 111 const char **perms; 112 int i, perm; 113 114 if (av == 0) { 115 audit_log_format(ab, " null"); 116 return; 117 } 118 119 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); 120 perms = secclass_map[tclass-1].perms; 121 122 audit_log_format(ab, " {"); 123 i = 0; 124 perm = 1; 125 while (i < (sizeof(av) * 8)) { 126 if ((perm & av) && perms[i]) { 127 audit_log_format(ab, " %s", perms[i]); 128 av &= ~perm; 129 } 130 i++; 131 perm <<= 1; 132 } 133 134 if (av) 135 audit_log_format(ab, " 0x%x", av); 136 137 audit_log_format(ab, " }"); 138 } 139 140 /** 141 * avc_dump_query - Display a SID pair and a class in human-readable form. 142 * @ssid: source security identifier 143 * @tsid: target security identifier 144 * @tclass: target security class 145 */ 146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 147 { 148 int rc; 149 char *scontext; 150 u32 scontext_len; 151 152 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 153 if (rc) 154 audit_log_format(ab, "ssid=%d", ssid); 155 else { 156 audit_log_format(ab, "scontext=%s", scontext); 157 kfree(scontext); 158 } 159 160 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 161 if (rc) 162 audit_log_format(ab, " tsid=%d", tsid); 163 else { 164 audit_log_format(ab, " tcontext=%s", scontext); 165 kfree(scontext); 166 } 167 168 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); 169 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 170 } 171 172 /** 173 * avc_init - Initialize the AVC. 174 * 175 * Initialize the access vector cache. 176 */ 177 void __init avc_init(void) 178 { 179 int i; 180 181 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 182 INIT_HLIST_HEAD(&avc_cache.slots[i]); 183 spin_lock_init(&avc_cache.slots_lock[i]); 184 } 185 atomic_set(&avc_cache.active_nodes, 0); 186 atomic_set(&avc_cache.lru_hint, 0); 187 188 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 189 0, SLAB_PANIC, NULL); 190 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 191 sizeof(struct avc_xperms_node), 192 0, SLAB_PANIC, NULL); 193 avc_xperms_decision_cachep = kmem_cache_create( 194 "avc_xperms_decision_node", 195 sizeof(struct avc_xperms_decision_node), 196 0, SLAB_PANIC, NULL); 197 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 198 sizeof(struct extended_perms_data), 199 0, SLAB_PANIC, NULL); 200 201 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); 202 } 203 204 int avc_get_hash_stats(char *page) 205 { 206 int i, chain_len, max_chain_len, slots_used; 207 struct avc_node *node; 208 struct hlist_head *head; 209 210 rcu_read_lock(); 211 212 slots_used = 0; 213 max_chain_len = 0; 214 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 215 head = &avc_cache.slots[i]; 216 if (!hlist_empty(head)) { 217 slots_used++; 218 chain_len = 0; 219 hlist_for_each_entry_rcu(node, head, list) 220 chain_len++; 221 if (chain_len > max_chain_len) 222 max_chain_len = chain_len; 223 } 224 } 225 226 rcu_read_unlock(); 227 228 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 229 "longest chain: %d\n", 230 atomic_read(&avc_cache.active_nodes), 231 slots_used, AVC_CACHE_SLOTS, max_chain_len); 232 } 233 234 /* 235 * using a linked list for extended_perms_decision lookup because the list is 236 * always small. i.e. less than 5, typically 1 237 */ 238 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 239 struct avc_xperms_node *xp_node) 240 { 241 struct avc_xperms_decision_node *xpd_node; 242 243 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 244 if (xpd_node->xpd.driver == driver) 245 return &xpd_node->xpd; 246 } 247 return NULL; 248 } 249 250 static inline unsigned int 251 avc_xperms_has_perm(struct extended_perms_decision *xpd, 252 u8 perm, u8 which) 253 { 254 unsigned int rc = 0; 255 256 if ((which == XPERMS_ALLOWED) && 257 (xpd->used & XPERMS_ALLOWED)) 258 rc = security_xperm_test(xpd->allowed->p, perm); 259 else if ((which == XPERMS_AUDITALLOW) && 260 (xpd->used & XPERMS_AUDITALLOW)) 261 rc = security_xperm_test(xpd->auditallow->p, perm); 262 else if ((which == XPERMS_DONTAUDIT) && 263 (xpd->used & XPERMS_DONTAUDIT)) 264 rc = security_xperm_test(xpd->dontaudit->p, perm); 265 return rc; 266 } 267 268 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 269 u8 driver, u8 perm) 270 { 271 struct extended_perms_decision *xpd; 272 security_xperm_set(xp_node->xp.drivers.p, driver); 273 xpd = avc_xperms_decision_lookup(driver, xp_node); 274 if (xpd && xpd->allowed) 275 security_xperm_set(xpd->allowed->p, perm); 276 } 277 278 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 279 { 280 struct extended_perms_decision *xpd; 281 282 xpd = &xpd_node->xpd; 283 if (xpd->allowed) 284 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 285 if (xpd->auditallow) 286 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 287 if (xpd->dontaudit) 288 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 289 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 290 } 291 292 static void avc_xperms_free(struct avc_xperms_node *xp_node) 293 { 294 struct avc_xperms_decision_node *xpd_node, *tmp; 295 296 if (!xp_node) 297 return; 298 299 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 300 list_del(&xpd_node->xpd_list); 301 avc_xperms_decision_free(xpd_node); 302 } 303 kmem_cache_free(avc_xperms_cachep, xp_node); 304 } 305 306 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 307 struct extended_perms_decision *src) 308 { 309 dest->driver = src->driver; 310 dest->used = src->used; 311 if (dest->used & XPERMS_ALLOWED) 312 memcpy(dest->allowed->p, src->allowed->p, 313 sizeof(src->allowed->p)); 314 if (dest->used & XPERMS_AUDITALLOW) 315 memcpy(dest->auditallow->p, src->auditallow->p, 316 sizeof(src->auditallow->p)); 317 if (dest->used & XPERMS_DONTAUDIT) 318 memcpy(dest->dontaudit->p, src->dontaudit->p, 319 sizeof(src->dontaudit->p)); 320 } 321 322 /* 323 * similar to avc_copy_xperms_decision, but only copy decision 324 * information relevant to this perm 325 */ 326 static inline void avc_quick_copy_xperms_decision(u8 perm, 327 struct extended_perms_decision *dest, 328 struct extended_perms_decision *src) 329 { 330 /* 331 * compute index of the u32 of the 256 bits (8 u32s) that contain this 332 * command permission 333 */ 334 u8 i = perm >> 5; 335 336 dest->used = src->used; 337 if (dest->used & XPERMS_ALLOWED) 338 dest->allowed->p[i] = src->allowed->p[i]; 339 if (dest->used & XPERMS_AUDITALLOW) 340 dest->auditallow->p[i] = src->auditallow->p[i]; 341 if (dest->used & XPERMS_DONTAUDIT) 342 dest->dontaudit->p[i] = src->dontaudit->p[i]; 343 } 344 345 static struct avc_xperms_decision_node 346 *avc_xperms_decision_alloc(u8 which) 347 { 348 struct avc_xperms_decision_node *xpd_node; 349 struct extended_perms_decision *xpd; 350 351 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, 352 GFP_ATOMIC | __GFP_NOMEMALLOC); 353 if (!xpd_node) 354 return NULL; 355 356 xpd = &xpd_node->xpd; 357 if (which & XPERMS_ALLOWED) { 358 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 359 GFP_ATOMIC | __GFP_NOMEMALLOC); 360 if (!xpd->allowed) 361 goto error; 362 } 363 if (which & XPERMS_AUDITALLOW) { 364 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 365 GFP_ATOMIC | __GFP_NOMEMALLOC); 366 if (!xpd->auditallow) 367 goto error; 368 } 369 if (which & XPERMS_DONTAUDIT) { 370 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 371 GFP_ATOMIC | __GFP_NOMEMALLOC); 372 if (!xpd->dontaudit) 373 goto error; 374 } 375 return xpd_node; 376 error: 377 avc_xperms_decision_free(xpd_node); 378 return NULL; 379 } 380 381 static int avc_add_xperms_decision(struct avc_node *node, 382 struct extended_perms_decision *src) 383 { 384 struct avc_xperms_decision_node *dest_xpd; 385 386 node->ae.xp_node->xp.len++; 387 dest_xpd = avc_xperms_decision_alloc(src->used); 388 if (!dest_xpd) 389 return -ENOMEM; 390 avc_copy_xperms_decision(&dest_xpd->xpd, src); 391 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 392 return 0; 393 } 394 395 static struct avc_xperms_node *avc_xperms_alloc(void) 396 { 397 struct avc_xperms_node *xp_node; 398 399 xp_node = kmem_cache_zalloc(avc_xperms_cachep, 400 GFP_ATOMIC|__GFP_NOMEMALLOC); 401 if (!xp_node) 402 return xp_node; 403 INIT_LIST_HEAD(&xp_node->xpd_head); 404 return xp_node; 405 } 406 407 static int avc_xperms_populate(struct avc_node *node, 408 struct avc_xperms_node *src) 409 { 410 struct avc_xperms_node *dest; 411 struct avc_xperms_decision_node *dest_xpd; 412 struct avc_xperms_decision_node *src_xpd; 413 414 if (src->xp.len == 0) 415 return 0; 416 dest = avc_xperms_alloc(); 417 if (!dest) 418 return -ENOMEM; 419 420 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 421 dest->xp.len = src->xp.len; 422 423 /* for each source xpd allocate a destination xpd and copy */ 424 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 425 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 426 if (!dest_xpd) 427 goto error; 428 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 429 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 430 } 431 node->ae.xp_node = dest; 432 return 0; 433 error: 434 avc_xperms_free(dest); 435 return -ENOMEM; 436 437 } 438 439 static inline u32 avc_xperms_audit_required(u32 requested, 440 struct av_decision *avd, 441 struct extended_perms_decision *xpd, 442 u8 perm, 443 int result, 444 u32 *deniedp) 445 { 446 u32 denied, audited; 447 448 denied = requested & ~avd->allowed; 449 if (unlikely(denied)) { 450 audited = denied & avd->auditdeny; 451 if (audited && xpd) { 452 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 453 audited &= ~requested; 454 } 455 } else if (result) { 456 audited = denied = requested; 457 } else { 458 audited = requested & avd->auditallow; 459 if (audited && xpd) { 460 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 461 audited &= ~requested; 462 } 463 } 464 465 *deniedp = denied; 466 return audited; 467 } 468 469 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, 470 u32 requested, struct av_decision *avd, 471 struct extended_perms_decision *xpd, 472 u8 perm, int result, 473 struct common_audit_data *ad) 474 { 475 u32 audited, denied; 476 477 audited = avc_xperms_audit_required( 478 requested, avd, xpd, perm, result, &denied); 479 if (likely(!audited)) 480 return 0; 481 return slow_avc_audit(ssid, tsid, tclass, requested, 482 audited, denied, result, ad, 0); 483 } 484 485 static void avc_node_free(struct rcu_head *rhead) 486 { 487 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 488 avc_xperms_free(node->ae.xp_node); 489 kmem_cache_free(avc_node_cachep, node); 490 avc_cache_stats_incr(frees); 491 } 492 493 static void avc_node_delete(struct avc_node *node) 494 { 495 hlist_del_rcu(&node->list); 496 call_rcu(&node->rhead, avc_node_free); 497 atomic_dec(&avc_cache.active_nodes); 498 } 499 500 static void avc_node_kill(struct avc_node *node) 501 { 502 avc_xperms_free(node->ae.xp_node); 503 kmem_cache_free(avc_node_cachep, node); 504 avc_cache_stats_incr(frees); 505 atomic_dec(&avc_cache.active_nodes); 506 } 507 508 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 509 { 510 hlist_replace_rcu(&old->list, &new->list); 511 call_rcu(&old->rhead, avc_node_free); 512 atomic_dec(&avc_cache.active_nodes); 513 } 514 515 static inline int avc_reclaim_node(void) 516 { 517 struct avc_node *node; 518 int hvalue, try, ecx; 519 unsigned long flags; 520 struct hlist_head *head; 521 spinlock_t *lock; 522 523 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 524 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 525 head = &avc_cache.slots[hvalue]; 526 lock = &avc_cache.slots_lock[hvalue]; 527 528 if (!spin_trylock_irqsave(lock, flags)) 529 continue; 530 531 rcu_read_lock(); 532 hlist_for_each_entry(node, head, list) { 533 avc_node_delete(node); 534 avc_cache_stats_incr(reclaims); 535 ecx++; 536 if (ecx >= AVC_CACHE_RECLAIM) { 537 rcu_read_unlock(); 538 spin_unlock_irqrestore(lock, flags); 539 goto out; 540 } 541 } 542 rcu_read_unlock(); 543 spin_unlock_irqrestore(lock, flags); 544 } 545 out: 546 return ecx; 547 } 548 549 static struct avc_node *avc_alloc_node(void) 550 { 551 struct avc_node *node; 552 553 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC); 554 if (!node) 555 goto out; 556 557 INIT_HLIST_NODE(&node->list); 558 avc_cache_stats_incr(allocations); 559 560 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 561 avc_reclaim_node(); 562 563 out: 564 return node; 565 } 566 567 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 568 { 569 node->ae.ssid = ssid; 570 node->ae.tsid = tsid; 571 node->ae.tclass = tclass; 572 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 573 } 574 575 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 576 { 577 struct avc_node *node, *ret = NULL; 578 int hvalue; 579 struct hlist_head *head; 580 581 hvalue = avc_hash(ssid, tsid, tclass); 582 head = &avc_cache.slots[hvalue]; 583 hlist_for_each_entry_rcu(node, head, list) { 584 if (ssid == node->ae.ssid && 585 tclass == node->ae.tclass && 586 tsid == node->ae.tsid) { 587 ret = node; 588 break; 589 } 590 } 591 592 return ret; 593 } 594 595 /** 596 * avc_lookup - Look up an AVC entry. 597 * @ssid: source security identifier 598 * @tsid: target security identifier 599 * @tclass: target security class 600 * 601 * Look up an AVC entry that is valid for the 602 * (@ssid, @tsid), interpreting the permissions 603 * based on @tclass. If a valid AVC entry exists, 604 * then this function returns the avc_node. 605 * Otherwise, this function returns NULL. 606 */ 607 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 608 { 609 struct avc_node *node; 610 611 avc_cache_stats_incr(lookups); 612 node = avc_search_node(ssid, tsid, tclass); 613 614 if (node) 615 return node; 616 617 avc_cache_stats_incr(misses); 618 return NULL; 619 } 620 621 static int avc_latest_notif_update(int seqno, int is_insert) 622 { 623 int ret = 0; 624 static DEFINE_SPINLOCK(notif_lock); 625 unsigned long flag; 626 627 spin_lock_irqsave(¬if_lock, flag); 628 if (is_insert) { 629 if (seqno < avc_cache.latest_notif) { 630 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", 631 seqno, avc_cache.latest_notif); 632 ret = -EAGAIN; 633 } 634 } else { 635 if (seqno > avc_cache.latest_notif) 636 avc_cache.latest_notif = seqno; 637 } 638 spin_unlock_irqrestore(¬if_lock, flag); 639 640 return ret; 641 } 642 643 /** 644 * avc_insert - Insert an AVC entry. 645 * @ssid: source security identifier 646 * @tsid: target security identifier 647 * @tclass: target security class 648 * @avd: resulting av decision 649 * @xp_node: resulting extended permissions 650 * 651 * Insert an AVC entry for the SID pair 652 * (@ssid, @tsid) and class @tclass. 653 * The access vectors and the sequence number are 654 * normally provided by the security server in 655 * response to a security_compute_av() call. If the 656 * sequence number @avd->seqno is not less than the latest 657 * revocation notification, then the function copies 658 * the access vectors into a cache entry, returns 659 * avc_node inserted. Otherwise, this function returns NULL. 660 */ 661 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, 662 struct av_decision *avd, 663 struct avc_xperms_node *xp_node) 664 { 665 struct avc_node *pos, *node = NULL; 666 int hvalue; 667 unsigned long flag; 668 669 if (avc_latest_notif_update(avd->seqno, 1)) 670 goto out; 671 672 node = avc_alloc_node(); 673 if (node) { 674 struct hlist_head *head; 675 spinlock_t *lock; 676 int rc = 0; 677 678 hvalue = avc_hash(ssid, tsid, tclass); 679 avc_node_populate(node, ssid, tsid, tclass, avd); 680 rc = avc_xperms_populate(node, xp_node); 681 if (rc) { 682 kmem_cache_free(avc_node_cachep, node); 683 return NULL; 684 } 685 head = &avc_cache.slots[hvalue]; 686 lock = &avc_cache.slots_lock[hvalue]; 687 688 spin_lock_irqsave(lock, flag); 689 hlist_for_each_entry(pos, head, list) { 690 if (pos->ae.ssid == ssid && 691 pos->ae.tsid == tsid && 692 pos->ae.tclass == tclass) { 693 avc_node_replace(node, pos); 694 goto found; 695 } 696 } 697 hlist_add_head_rcu(&node->list, head); 698 found: 699 spin_unlock_irqrestore(lock, flag); 700 } 701 out: 702 return node; 703 } 704 705 /** 706 * avc_audit_pre_callback - SELinux specific information 707 * will be called by generic audit code 708 * @ab: the audit buffer 709 * @a: audit_data 710 */ 711 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 712 { 713 struct common_audit_data *ad = a; 714 audit_log_format(ab, "avc: %s ", 715 ad->selinux_audit_data->denied ? "denied" : "granted"); 716 avc_dump_av(ab, ad->selinux_audit_data->tclass, 717 ad->selinux_audit_data->audited); 718 audit_log_format(ab, " for "); 719 } 720 721 /** 722 * avc_audit_post_callback - SELinux specific information 723 * will be called by generic audit code 724 * @ab: the audit buffer 725 * @a: audit_data 726 */ 727 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 728 { 729 struct common_audit_data *ad = a; 730 audit_log_format(ab, " "); 731 avc_dump_query(ab, ad->selinux_audit_data->ssid, 732 ad->selinux_audit_data->tsid, 733 ad->selinux_audit_data->tclass); 734 if (ad->selinux_audit_data->denied) { 735 audit_log_format(ab, " permissive=%u", 736 ad->selinux_audit_data->result ? 0 : 1); 737 } 738 } 739 740 /* This is the slow part of avc audit with big stack footprint */ 741 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 742 u32 requested, u32 audited, u32 denied, int result, 743 struct common_audit_data *a, 744 unsigned flags) 745 { 746 struct common_audit_data stack_data; 747 struct selinux_audit_data sad; 748 749 if (!a) { 750 a = &stack_data; 751 a->type = LSM_AUDIT_DATA_NONE; 752 } 753 754 /* 755 * When in a RCU walk do the audit on the RCU retry. This is because 756 * the collection of the dname in an inode audit message is not RCU 757 * safe. Note this may drop some audits when the situation changes 758 * during retry. However this is logically just as if the operation 759 * happened a little later. 760 */ 761 if ((a->type == LSM_AUDIT_DATA_INODE) && 762 (flags & MAY_NOT_BLOCK)) 763 return -ECHILD; 764 765 sad.tclass = tclass; 766 sad.requested = requested; 767 sad.ssid = ssid; 768 sad.tsid = tsid; 769 sad.audited = audited; 770 sad.denied = denied; 771 sad.result = result; 772 773 a->selinux_audit_data = &sad; 774 775 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 776 return 0; 777 } 778 779 /** 780 * avc_add_callback - Register a callback for security events. 781 * @callback: callback function 782 * @events: security events 783 * 784 * Register a callback function for events in the set @events. 785 * Returns %0 on success or -%ENOMEM if insufficient memory 786 * exists to add the callback. 787 */ 788 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 789 { 790 struct avc_callback_node *c; 791 int rc = 0; 792 793 c = kmalloc(sizeof(*c), GFP_KERNEL); 794 if (!c) { 795 rc = -ENOMEM; 796 goto out; 797 } 798 799 c->callback = callback; 800 c->events = events; 801 c->next = avc_callbacks; 802 avc_callbacks = c; 803 out: 804 return rc; 805 } 806 807 /** 808 * avc_update_node Update an AVC entry 809 * @event : Updating event 810 * @perms : Permission mask bits 811 * @ssid,@tsid,@tclass : identifier of an AVC entry 812 * @seqno : sequence number when decision was made 813 * @xpd: extended_perms_decision to be added to the node 814 * 815 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 816 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 817 * otherwise, this function updates the AVC entry. The original AVC-entry object 818 * will release later by RCU. 819 */ 820 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 821 u32 tsid, u16 tclass, u32 seqno, 822 struct extended_perms_decision *xpd, 823 u32 flags) 824 { 825 int hvalue, rc = 0; 826 unsigned long flag; 827 struct avc_node *pos, *node, *orig = NULL; 828 struct hlist_head *head; 829 spinlock_t *lock; 830 831 node = avc_alloc_node(); 832 if (!node) { 833 rc = -ENOMEM; 834 goto out; 835 } 836 837 /* Lock the target slot */ 838 hvalue = avc_hash(ssid, tsid, tclass); 839 840 head = &avc_cache.slots[hvalue]; 841 lock = &avc_cache.slots_lock[hvalue]; 842 843 spin_lock_irqsave(lock, flag); 844 845 hlist_for_each_entry(pos, head, list) { 846 if (ssid == pos->ae.ssid && 847 tsid == pos->ae.tsid && 848 tclass == pos->ae.tclass && 849 seqno == pos->ae.avd.seqno){ 850 orig = pos; 851 break; 852 } 853 } 854 855 if (!orig) { 856 rc = -ENOENT; 857 avc_node_kill(node); 858 goto out_unlock; 859 } 860 861 /* 862 * Copy and replace original node. 863 */ 864 865 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 866 867 if (orig->ae.xp_node) { 868 rc = avc_xperms_populate(node, orig->ae.xp_node); 869 if (rc) { 870 kmem_cache_free(avc_node_cachep, node); 871 goto out_unlock; 872 } 873 } 874 875 switch (event) { 876 case AVC_CALLBACK_GRANT: 877 node->ae.avd.allowed |= perms; 878 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 879 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 880 break; 881 case AVC_CALLBACK_TRY_REVOKE: 882 case AVC_CALLBACK_REVOKE: 883 node->ae.avd.allowed &= ~perms; 884 break; 885 case AVC_CALLBACK_AUDITALLOW_ENABLE: 886 node->ae.avd.auditallow |= perms; 887 break; 888 case AVC_CALLBACK_AUDITALLOW_DISABLE: 889 node->ae.avd.auditallow &= ~perms; 890 break; 891 case AVC_CALLBACK_AUDITDENY_ENABLE: 892 node->ae.avd.auditdeny |= perms; 893 break; 894 case AVC_CALLBACK_AUDITDENY_DISABLE: 895 node->ae.avd.auditdeny &= ~perms; 896 break; 897 case AVC_CALLBACK_ADD_XPERMS: 898 avc_add_xperms_decision(node, xpd); 899 break; 900 } 901 avc_node_replace(node, orig); 902 out_unlock: 903 spin_unlock_irqrestore(lock, flag); 904 out: 905 return rc; 906 } 907 908 /** 909 * avc_flush - Flush the cache 910 */ 911 static void avc_flush(void) 912 { 913 struct hlist_head *head; 914 struct avc_node *node; 915 spinlock_t *lock; 916 unsigned long flag; 917 int i; 918 919 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 920 head = &avc_cache.slots[i]; 921 lock = &avc_cache.slots_lock[i]; 922 923 spin_lock_irqsave(lock, flag); 924 /* 925 * With preemptable RCU, the outer spinlock does not 926 * prevent RCU grace periods from ending. 927 */ 928 rcu_read_lock(); 929 hlist_for_each_entry(node, head, list) 930 avc_node_delete(node); 931 rcu_read_unlock(); 932 spin_unlock_irqrestore(lock, flag); 933 } 934 } 935 936 /** 937 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 938 * @seqno: policy sequence number 939 */ 940 int avc_ss_reset(u32 seqno) 941 { 942 struct avc_callback_node *c; 943 int rc = 0, tmprc; 944 945 avc_flush(); 946 947 for (c = avc_callbacks; c; c = c->next) { 948 if (c->events & AVC_CALLBACK_RESET) { 949 tmprc = c->callback(AVC_CALLBACK_RESET); 950 /* save the first error encountered for the return 951 value and continue processing the callbacks */ 952 if (!rc) 953 rc = tmprc; 954 } 955 } 956 957 avc_latest_notif_update(seqno, 0); 958 return rc; 959 } 960 961 /* 962 * Slow-path helper function for avc_has_perm_noaudit, 963 * when the avc_node lookup fails. We get called with 964 * the RCU read lock held, and need to return with it 965 * still held, but drop if for the security compute. 966 * 967 * Don't inline this, since it's the slow-path and just 968 * results in a bigger stack frame. 969 */ 970 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid, 971 u16 tclass, struct av_decision *avd, 972 struct avc_xperms_node *xp_node) 973 { 974 rcu_read_unlock(); 975 INIT_LIST_HEAD(&xp_node->xpd_head); 976 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); 977 rcu_read_lock(); 978 return avc_insert(ssid, tsid, tclass, avd, xp_node); 979 } 980 981 static noinline int avc_denied(u32 ssid, u32 tsid, 982 u16 tclass, u32 requested, 983 u8 driver, u8 xperm, unsigned flags, 984 struct av_decision *avd) 985 { 986 if (flags & AVC_STRICT) 987 return -EACCES; 988 989 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE)) 990 return -EACCES; 991 992 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid, 993 tsid, tclass, avd->seqno, NULL, flags); 994 return 0; 995 } 996 997 /* 998 * The avc extended permissions logic adds an additional 256 bits of 999 * permissions to an avc node when extended permissions for that node are 1000 * specified in the avtab. If the additional 256 permissions is not adequate, 1001 * as-is the case with ioctls, then multiple may be chained together and the 1002 * driver field is used to specify which set contains the permission. 1003 */ 1004 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, 1005 u8 driver, u8 xperm, struct common_audit_data *ad) 1006 { 1007 struct avc_node *node; 1008 struct av_decision avd; 1009 u32 denied; 1010 struct extended_perms_decision local_xpd; 1011 struct extended_perms_decision *xpd = NULL; 1012 struct extended_perms_data allowed; 1013 struct extended_perms_data auditallow; 1014 struct extended_perms_data dontaudit; 1015 struct avc_xperms_node local_xp_node; 1016 struct avc_xperms_node *xp_node; 1017 int rc = 0, rc2; 1018 1019 xp_node = &local_xp_node; 1020 BUG_ON(!requested); 1021 1022 rcu_read_lock(); 1023 1024 node = avc_lookup(ssid, tsid, tclass); 1025 if (unlikely(!node)) { 1026 node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node); 1027 } else { 1028 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1029 xp_node = node->ae.xp_node; 1030 } 1031 /* if extended permissions are not defined, only consider av_decision */ 1032 if (!xp_node || !xp_node->xp.len) 1033 goto decision; 1034 1035 local_xpd.allowed = &allowed; 1036 local_xpd.auditallow = &auditallow; 1037 local_xpd.dontaudit = &dontaudit; 1038 1039 xpd = avc_xperms_decision_lookup(driver, xp_node); 1040 if (unlikely(!xpd)) { 1041 /* 1042 * Compute the extended_perms_decision only if the driver 1043 * is flagged 1044 */ 1045 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1046 avd.allowed &= ~requested; 1047 goto decision; 1048 } 1049 rcu_read_unlock(); 1050 security_compute_xperms_decision(ssid, tsid, tclass, driver, 1051 &local_xpd); 1052 rcu_read_lock(); 1053 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm, 1054 ssid, tsid, tclass, avd.seqno, &local_xpd, 0); 1055 } else { 1056 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1057 } 1058 xpd = &local_xpd; 1059 1060 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1061 avd.allowed &= ~requested; 1062 1063 decision: 1064 denied = requested & ~(avd.allowed); 1065 if (unlikely(denied)) 1066 rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm, 1067 AVC_EXTENDED_PERMS, &avd); 1068 1069 rcu_read_unlock(); 1070 1071 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, 1072 &avd, xpd, xperm, rc, ad); 1073 if (rc2) 1074 return rc2; 1075 return rc; 1076 } 1077 1078 /** 1079 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1080 * @ssid: source security identifier 1081 * @tsid: target security identifier 1082 * @tclass: target security class 1083 * @requested: requested permissions, interpreted based on @tclass 1084 * @flags: AVC_STRICT or 0 1085 * @avd: access vector decisions 1086 * 1087 * Check the AVC to determine whether the @requested permissions are granted 1088 * for the SID pair (@ssid, @tsid), interpreting the permissions 1089 * based on @tclass, and call the security server on a cache miss to obtain 1090 * a new decision and add it to the cache. Return a copy of the decisions 1091 * in @avd. Return %0 if all @requested permissions are granted, 1092 * -%EACCES if any permissions are denied, or another -errno upon 1093 * other errors. This function is typically called by avc_has_perm(), 1094 * but may also be called directly to separate permission checking from 1095 * auditing, e.g. in cases where a lock must be held for the check but 1096 * should be released for the auditing. 1097 */ 1098 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 1099 u16 tclass, u32 requested, 1100 unsigned flags, 1101 struct av_decision *avd) 1102 { 1103 struct avc_node *node; 1104 struct avc_xperms_node xp_node; 1105 int rc = 0; 1106 u32 denied; 1107 1108 BUG_ON(!requested); 1109 1110 rcu_read_lock(); 1111 1112 node = avc_lookup(ssid, tsid, tclass); 1113 if (unlikely(!node)) 1114 node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node); 1115 else 1116 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1117 1118 denied = requested & ~(avd->allowed); 1119 if (unlikely(denied)) 1120 rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd); 1121 1122 rcu_read_unlock(); 1123 return rc; 1124 } 1125 1126 /** 1127 * avc_has_perm - Check permissions and perform any appropriate auditing. 1128 * @ssid: source security identifier 1129 * @tsid: target security identifier 1130 * @tclass: target security class 1131 * @requested: requested permissions, interpreted based on @tclass 1132 * @auditdata: auxiliary audit data 1133 * 1134 * Check the AVC to determine whether the @requested permissions are granted 1135 * for the SID pair (@ssid, @tsid), interpreting the permissions 1136 * based on @tclass, and call the security server on a cache miss to obtain 1137 * a new decision and add it to the cache. Audit the granting or denial of 1138 * permissions in accordance with the policy. Return %0 if all @requested 1139 * permissions are granted, -%EACCES if any permissions are denied, or 1140 * another -errno upon other errors. 1141 */ 1142 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 1143 u32 requested, struct common_audit_data *auditdata) 1144 { 1145 struct av_decision avd; 1146 int rc, rc2; 1147 1148 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 1149 1150 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0); 1151 if (rc2) 1152 return rc2; 1153 return rc; 1154 } 1155 1156 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass, 1157 u32 requested, struct common_audit_data *auditdata, 1158 int flags) 1159 { 1160 struct av_decision avd; 1161 int rc, rc2; 1162 1163 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 1164 1165 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, 1166 auditdata, flags); 1167 if (rc2) 1168 return rc2; 1169 return rc; 1170 } 1171 1172 u32 avc_policy_seqno(void) 1173 { 1174 return avc_cache.latest_notif; 1175 } 1176 1177 void avc_disable(void) 1178 { 1179 /* 1180 * If you are looking at this because you have realized that we are 1181 * not destroying the avc_node_cachep it might be easy to fix, but 1182 * I don't know the memory barrier semantics well enough to know. It's 1183 * possible that some other task dereferenced security_ops when 1184 * it still pointed to selinux operations. If that is the case it's 1185 * possible that it is about to use the avc and is about to need the 1186 * avc_node_cachep. I know I could wrap the security.c security_ops call 1187 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1188 * the cache and get that memory back. 1189 */ 1190 if (avc_node_cachep) { 1191 avc_flush(); 1192 /* kmem_cache_destroy(avc_node_cachep); */ 1193 } 1194 } 1195