xref: /openbmc/linux/security/selinux/avc.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the kernel access vector cache (AVC).
4  *
5  * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
9  *	Replaced the avc_lock spinlock by RCU.
10  *
11  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12  */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88 
89 struct selinux_avc {
90 	unsigned int avc_cache_threshold;
91 	struct avc_cache avc_cache;
92 };
93 
94 static struct selinux_avc selinux_avc;
95 
96 void selinux_avc_init(struct selinux_avc **avc)
97 {
98 	int i;
99 
100 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 	}
105 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 	*avc = &selinux_avc;
108 }
109 
110 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
111 {
112 	return avc->avc_cache_threshold;
113 }
114 
115 void avc_set_cache_threshold(struct selinux_avc *avc,
116 			     unsigned int cache_threshold)
117 {
118 	avc->avc_cache_threshold = cache_threshold;
119 }
120 
121 static struct avc_callback_node *avc_callbacks __ro_after_init;
122 static struct kmem_cache *avc_node_cachep __ro_after_init;
123 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
124 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
125 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
126 
127 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
128 {
129 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
130 }
131 
132 /**
133  * avc_init - Initialize the AVC.
134  *
135  * Initialize the access vector cache.
136  */
137 void __init avc_init(void)
138 {
139 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
140 					0, SLAB_PANIC, NULL);
141 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
142 					sizeof(struct avc_xperms_node),
143 					0, SLAB_PANIC, NULL);
144 	avc_xperms_decision_cachep = kmem_cache_create(
145 					"avc_xperms_decision_node",
146 					sizeof(struct avc_xperms_decision_node),
147 					0, SLAB_PANIC, NULL);
148 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
149 					sizeof(struct extended_perms_data),
150 					0, SLAB_PANIC, NULL);
151 }
152 
153 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
154 {
155 	int i, chain_len, max_chain_len, slots_used;
156 	struct avc_node *node;
157 	struct hlist_head *head;
158 
159 	rcu_read_lock();
160 
161 	slots_used = 0;
162 	max_chain_len = 0;
163 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
164 		head = &avc->avc_cache.slots[i];
165 		if (!hlist_empty(head)) {
166 			slots_used++;
167 			chain_len = 0;
168 			hlist_for_each_entry_rcu(node, head, list)
169 				chain_len++;
170 			if (chain_len > max_chain_len)
171 				max_chain_len = chain_len;
172 		}
173 	}
174 
175 	rcu_read_unlock();
176 
177 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
178 			 "longest chain: %d\n",
179 			 atomic_read(&avc->avc_cache.active_nodes),
180 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
181 }
182 
183 /*
184  * using a linked list for extended_perms_decision lookup because the list is
185  * always small. i.e. less than 5, typically 1
186  */
187 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
188 					struct avc_xperms_node *xp_node)
189 {
190 	struct avc_xperms_decision_node *xpd_node;
191 
192 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
193 		if (xpd_node->xpd.driver == driver)
194 			return &xpd_node->xpd;
195 	}
196 	return NULL;
197 }
198 
199 static inline unsigned int
200 avc_xperms_has_perm(struct extended_perms_decision *xpd,
201 					u8 perm, u8 which)
202 {
203 	unsigned int rc = 0;
204 
205 	if ((which == XPERMS_ALLOWED) &&
206 			(xpd->used & XPERMS_ALLOWED))
207 		rc = security_xperm_test(xpd->allowed->p, perm);
208 	else if ((which == XPERMS_AUDITALLOW) &&
209 			(xpd->used & XPERMS_AUDITALLOW))
210 		rc = security_xperm_test(xpd->auditallow->p, perm);
211 	else if ((which == XPERMS_DONTAUDIT) &&
212 			(xpd->used & XPERMS_DONTAUDIT))
213 		rc = security_xperm_test(xpd->dontaudit->p, perm);
214 	return rc;
215 }
216 
217 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
218 				u8 driver, u8 perm)
219 {
220 	struct extended_perms_decision *xpd;
221 	security_xperm_set(xp_node->xp.drivers.p, driver);
222 	xpd = avc_xperms_decision_lookup(driver, xp_node);
223 	if (xpd && xpd->allowed)
224 		security_xperm_set(xpd->allowed->p, perm);
225 }
226 
227 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
228 {
229 	struct extended_perms_decision *xpd;
230 
231 	xpd = &xpd_node->xpd;
232 	if (xpd->allowed)
233 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
234 	if (xpd->auditallow)
235 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
236 	if (xpd->dontaudit)
237 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
238 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
239 }
240 
241 static void avc_xperms_free(struct avc_xperms_node *xp_node)
242 {
243 	struct avc_xperms_decision_node *xpd_node, *tmp;
244 
245 	if (!xp_node)
246 		return;
247 
248 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
249 		list_del(&xpd_node->xpd_list);
250 		avc_xperms_decision_free(xpd_node);
251 	}
252 	kmem_cache_free(avc_xperms_cachep, xp_node);
253 }
254 
255 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
256 					struct extended_perms_decision *src)
257 {
258 	dest->driver = src->driver;
259 	dest->used = src->used;
260 	if (dest->used & XPERMS_ALLOWED)
261 		memcpy(dest->allowed->p, src->allowed->p,
262 				sizeof(src->allowed->p));
263 	if (dest->used & XPERMS_AUDITALLOW)
264 		memcpy(dest->auditallow->p, src->auditallow->p,
265 				sizeof(src->auditallow->p));
266 	if (dest->used & XPERMS_DONTAUDIT)
267 		memcpy(dest->dontaudit->p, src->dontaudit->p,
268 				sizeof(src->dontaudit->p));
269 }
270 
271 /*
272  * similar to avc_copy_xperms_decision, but only copy decision
273  * information relevant to this perm
274  */
275 static inline void avc_quick_copy_xperms_decision(u8 perm,
276 			struct extended_perms_decision *dest,
277 			struct extended_perms_decision *src)
278 {
279 	/*
280 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
281 	 * command permission
282 	 */
283 	u8 i = perm >> 5;
284 
285 	dest->used = src->used;
286 	if (dest->used & XPERMS_ALLOWED)
287 		dest->allowed->p[i] = src->allowed->p[i];
288 	if (dest->used & XPERMS_AUDITALLOW)
289 		dest->auditallow->p[i] = src->auditallow->p[i];
290 	if (dest->used & XPERMS_DONTAUDIT)
291 		dest->dontaudit->p[i] = src->dontaudit->p[i];
292 }
293 
294 static struct avc_xperms_decision_node
295 		*avc_xperms_decision_alloc(u8 which)
296 {
297 	struct avc_xperms_decision_node *xpd_node;
298 	struct extended_perms_decision *xpd;
299 
300 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
301 	if (!xpd_node)
302 		return NULL;
303 
304 	xpd = &xpd_node->xpd;
305 	if (which & XPERMS_ALLOWED) {
306 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
307 						GFP_NOWAIT);
308 		if (!xpd->allowed)
309 			goto error;
310 	}
311 	if (which & XPERMS_AUDITALLOW) {
312 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
313 						GFP_NOWAIT);
314 		if (!xpd->auditallow)
315 			goto error;
316 	}
317 	if (which & XPERMS_DONTAUDIT) {
318 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
319 						GFP_NOWAIT);
320 		if (!xpd->dontaudit)
321 			goto error;
322 	}
323 	return xpd_node;
324 error:
325 	avc_xperms_decision_free(xpd_node);
326 	return NULL;
327 }
328 
329 static int avc_add_xperms_decision(struct avc_node *node,
330 			struct extended_perms_decision *src)
331 {
332 	struct avc_xperms_decision_node *dest_xpd;
333 
334 	node->ae.xp_node->xp.len++;
335 	dest_xpd = avc_xperms_decision_alloc(src->used);
336 	if (!dest_xpd)
337 		return -ENOMEM;
338 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
339 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
340 	return 0;
341 }
342 
343 static struct avc_xperms_node *avc_xperms_alloc(void)
344 {
345 	struct avc_xperms_node *xp_node;
346 
347 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
348 	if (!xp_node)
349 		return xp_node;
350 	INIT_LIST_HEAD(&xp_node->xpd_head);
351 	return xp_node;
352 }
353 
354 static int avc_xperms_populate(struct avc_node *node,
355 				struct avc_xperms_node *src)
356 {
357 	struct avc_xperms_node *dest;
358 	struct avc_xperms_decision_node *dest_xpd;
359 	struct avc_xperms_decision_node *src_xpd;
360 
361 	if (src->xp.len == 0)
362 		return 0;
363 	dest = avc_xperms_alloc();
364 	if (!dest)
365 		return -ENOMEM;
366 
367 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
368 	dest->xp.len = src->xp.len;
369 
370 	/* for each source xpd allocate a destination xpd and copy */
371 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
372 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
373 		if (!dest_xpd)
374 			goto error;
375 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
376 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
377 	}
378 	node->ae.xp_node = dest;
379 	return 0;
380 error:
381 	avc_xperms_free(dest);
382 	return -ENOMEM;
383 
384 }
385 
386 static inline u32 avc_xperms_audit_required(u32 requested,
387 					struct av_decision *avd,
388 					struct extended_perms_decision *xpd,
389 					u8 perm,
390 					int result,
391 					u32 *deniedp)
392 {
393 	u32 denied, audited;
394 
395 	denied = requested & ~avd->allowed;
396 	if (unlikely(denied)) {
397 		audited = denied & avd->auditdeny;
398 		if (audited && xpd) {
399 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
400 				audited &= ~requested;
401 		}
402 	} else if (result) {
403 		audited = denied = requested;
404 	} else {
405 		audited = requested & avd->auditallow;
406 		if (audited && xpd) {
407 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
408 				audited &= ~requested;
409 		}
410 	}
411 
412 	*deniedp = denied;
413 	return audited;
414 }
415 
416 static inline int avc_xperms_audit(struct selinux_state *state,
417 				   u32 ssid, u32 tsid, u16 tclass,
418 				   u32 requested, struct av_decision *avd,
419 				   struct extended_perms_decision *xpd,
420 				   u8 perm, int result,
421 				   struct common_audit_data *ad)
422 {
423 	u32 audited, denied;
424 
425 	audited = avc_xperms_audit_required(
426 			requested, avd, xpd, perm, result, &denied);
427 	if (likely(!audited))
428 		return 0;
429 	return slow_avc_audit(state, ssid, tsid, tclass, requested,
430 			audited, denied, result, ad);
431 }
432 
433 static void avc_node_free(struct rcu_head *rhead)
434 {
435 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
436 	avc_xperms_free(node->ae.xp_node);
437 	kmem_cache_free(avc_node_cachep, node);
438 	avc_cache_stats_incr(frees);
439 }
440 
441 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
442 {
443 	hlist_del_rcu(&node->list);
444 	call_rcu(&node->rhead, avc_node_free);
445 	atomic_dec(&avc->avc_cache.active_nodes);
446 }
447 
448 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
449 {
450 	avc_xperms_free(node->ae.xp_node);
451 	kmem_cache_free(avc_node_cachep, node);
452 	avc_cache_stats_incr(frees);
453 	atomic_dec(&avc->avc_cache.active_nodes);
454 }
455 
456 static void avc_node_replace(struct selinux_avc *avc,
457 			     struct avc_node *new, struct avc_node *old)
458 {
459 	hlist_replace_rcu(&old->list, &new->list);
460 	call_rcu(&old->rhead, avc_node_free);
461 	atomic_dec(&avc->avc_cache.active_nodes);
462 }
463 
464 static inline int avc_reclaim_node(struct selinux_avc *avc)
465 {
466 	struct avc_node *node;
467 	int hvalue, try, ecx;
468 	unsigned long flags;
469 	struct hlist_head *head;
470 	spinlock_t *lock;
471 
472 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
473 		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
474 			(AVC_CACHE_SLOTS - 1);
475 		head = &avc->avc_cache.slots[hvalue];
476 		lock = &avc->avc_cache.slots_lock[hvalue];
477 
478 		if (!spin_trylock_irqsave(lock, flags))
479 			continue;
480 
481 		rcu_read_lock();
482 		hlist_for_each_entry(node, head, list) {
483 			avc_node_delete(avc, node);
484 			avc_cache_stats_incr(reclaims);
485 			ecx++;
486 			if (ecx >= AVC_CACHE_RECLAIM) {
487 				rcu_read_unlock();
488 				spin_unlock_irqrestore(lock, flags);
489 				goto out;
490 			}
491 		}
492 		rcu_read_unlock();
493 		spin_unlock_irqrestore(lock, flags);
494 	}
495 out:
496 	return ecx;
497 }
498 
499 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
500 {
501 	struct avc_node *node;
502 
503 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
504 	if (!node)
505 		goto out;
506 
507 	INIT_HLIST_NODE(&node->list);
508 	avc_cache_stats_incr(allocations);
509 
510 	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
511 	    avc->avc_cache_threshold)
512 		avc_reclaim_node(avc);
513 
514 out:
515 	return node;
516 }
517 
518 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
519 {
520 	node->ae.ssid = ssid;
521 	node->ae.tsid = tsid;
522 	node->ae.tclass = tclass;
523 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
524 }
525 
526 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
527 					       u32 ssid, u32 tsid, u16 tclass)
528 {
529 	struct avc_node *node, *ret = NULL;
530 	int hvalue;
531 	struct hlist_head *head;
532 
533 	hvalue = avc_hash(ssid, tsid, tclass);
534 	head = &avc->avc_cache.slots[hvalue];
535 	hlist_for_each_entry_rcu(node, head, list) {
536 		if (ssid == node->ae.ssid &&
537 		    tclass == node->ae.tclass &&
538 		    tsid == node->ae.tsid) {
539 			ret = node;
540 			break;
541 		}
542 	}
543 
544 	return ret;
545 }
546 
547 /**
548  * avc_lookup - Look up an AVC entry.
549  * @ssid: source security identifier
550  * @tsid: target security identifier
551  * @tclass: target security class
552  *
553  * Look up an AVC entry that is valid for the
554  * (@ssid, @tsid), interpreting the permissions
555  * based on @tclass.  If a valid AVC entry exists,
556  * then this function returns the avc_node.
557  * Otherwise, this function returns NULL.
558  */
559 static struct avc_node *avc_lookup(struct selinux_avc *avc,
560 				   u32 ssid, u32 tsid, u16 tclass)
561 {
562 	struct avc_node *node;
563 
564 	avc_cache_stats_incr(lookups);
565 	node = avc_search_node(avc, ssid, tsid, tclass);
566 
567 	if (node)
568 		return node;
569 
570 	avc_cache_stats_incr(misses);
571 	return NULL;
572 }
573 
574 static int avc_latest_notif_update(struct selinux_avc *avc,
575 				   int seqno, int is_insert)
576 {
577 	int ret = 0;
578 	static DEFINE_SPINLOCK(notif_lock);
579 	unsigned long flag;
580 
581 	spin_lock_irqsave(&notif_lock, flag);
582 	if (is_insert) {
583 		if (seqno < avc->avc_cache.latest_notif) {
584 			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
585 			       seqno, avc->avc_cache.latest_notif);
586 			ret = -EAGAIN;
587 		}
588 	} else {
589 		if (seqno > avc->avc_cache.latest_notif)
590 			avc->avc_cache.latest_notif = seqno;
591 	}
592 	spin_unlock_irqrestore(&notif_lock, flag);
593 
594 	return ret;
595 }
596 
597 /**
598  * avc_insert - Insert an AVC entry.
599  * @ssid: source security identifier
600  * @tsid: target security identifier
601  * @tclass: target security class
602  * @avd: resulting av decision
603  * @xp_node: resulting extended permissions
604  *
605  * Insert an AVC entry for the SID pair
606  * (@ssid, @tsid) and class @tclass.
607  * The access vectors and the sequence number are
608  * normally provided by the security server in
609  * response to a security_compute_av() call.  If the
610  * sequence number @avd->seqno is not less than the latest
611  * revocation notification, then the function copies
612  * the access vectors into a cache entry, returns
613  * avc_node inserted. Otherwise, this function returns NULL.
614  */
615 static struct avc_node *avc_insert(struct selinux_avc *avc,
616 				   u32 ssid, u32 tsid, u16 tclass,
617 				   struct av_decision *avd,
618 				   struct avc_xperms_node *xp_node)
619 {
620 	struct avc_node *pos, *node = NULL;
621 	int hvalue;
622 	unsigned long flag;
623 	spinlock_t *lock;
624 	struct hlist_head *head;
625 
626 	if (avc_latest_notif_update(avc, avd->seqno, 1))
627 		return NULL;
628 
629 	node = avc_alloc_node(avc);
630 	if (!node)
631 		return NULL;
632 
633 	avc_node_populate(node, ssid, tsid, tclass, avd);
634 	if (avc_xperms_populate(node, xp_node)) {
635 		avc_node_kill(avc, node);
636 		return NULL;
637 	}
638 
639 	hvalue = avc_hash(ssid, tsid, tclass);
640 	head = &avc->avc_cache.slots[hvalue];
641 	lock = &avc->avc_cache.slots_lock[hvalue];
642 	spin_lock_irqsave(lock, flag);
643 	hlist_for_each_entry(pos, head, list) {
644 		if (pos->ae.ssid == ssid &&
645 			pos->ae.tsid == tsid &&
646 			pos->ae.tclass == tclass) {
647 			avc_node_replace(avc, node, pos);
648 			goto found;
649 		}
650 	}
651 	hlist_add_head_rcu(&node->list, head);
652 found:
653 	spin_unlock_irqrestore(lock, flag);
654 	return node;
655 }
656 
657 /**
658  * avc_audit_pre_callback - SELinux specific information
659  * will be called by generic audit code
660  * @ab: the audit buffer
661  * @a: audit_data
662  */
663 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
664 {
665 	struct common_audit_data *ad = a;
666 	struct selinux_audit_data *sad = ad->selinux_audit_data;
667 	u32 av = sad->audited;
668 	const char **perms;
669 	int i, perm;
670 
671 	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
672 
673 	if (av == 0) {
674 		audit_log_format(ab, " null");
675 		return;
676 	}
677 
678 	perms = secclass_map[sad->tclass-1].perms;
679 
680 	audit_log_format(ab, " {");
681 	i = 0;
682 	perm = 1;
683 	while (i < (sizeof(av) * 8)) {
684 		if ((perm & av) && perms[i]) {
685 			audit_log_format(ab, " %s", perms[i]);
686 			av &= ~perm;
687 		}
688 		i++;
689 		perm <<= 1;
690 	}
691 
692 	if (av)
693 		audit_log_format(ab, " 0x%x", av);
694 
695 	audit_log_format(ab, " } for ");
696 }
697 
698 /**
699  * avc_audit_post_callback - SELinux specific information
700  * will be called by generic audit code
701  * @ab: the audit buffer
702  * @a: audit_data
703  */
704 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
705 {
706 	struct common_audit_data *ad = a;
707 	struct selinux_audit_data *sad = ad->selinux_audit_data;
708 	char *scontext = NULL;
709 	char *tcontext = NULL;
710 	const char *tclass = NULL;
711 	u32 scontext_len;
712 	u32 tcontext_len;
713 	int rc;
714 
715 	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
716 				     &scontext_len);
717 	if (rc)
718 		audit_log_format(ab, " ssid=%d", sad->ssid);
719 	else
720 		audit_log_format(ab, " scontext=%s", scontext);
721 
722 	rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
723 				     &tcontext_len);
724 	if (rc)
725 		audit_log_format(ab, " tsid=%d", sad->tsid);
726 	else
727 		audit_log_format(ab, " tcontext=%s", tcontext);
728 
729 	tclass = secclass_map[sad->tclass-1].name;
730 	audit_log_format(ab, " tclass=%s", tclass);
731 
732 	if (sad->denied)
733 		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
734 
735 	trace_selinux_audited(sad, scontext, tcontext, tclass);
736 	kfree(tcontext);
737 	kfree(scontext);
738 
739 	/* in case of invalid context report also the actual context string */
740 	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
741 					   &scontext_len);
742 	if (!rc && scontext) {
743 		if (scontext_len && scontext[scontext_len - 1] == '\0')
744 			scontext_len--;
745 		audit_log_format(ab, " srawcon=");
746 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
747 		kfree(scontext);
748 	}
749 
750 	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
751 					   &scontext_len);
752 	if (!rc && scontext) {
753 		if (scontext_len && scontext[scontext_len - 1] == '\0')
754 			scontext_len--;
755 		audit_log_format(ab, " trawcon=");
756 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
757 		kfree(scontext);
758 	}
759 }
760 
761 /* This is the slow part of avc audit with big stack footprint */
762 noinline int slow_avc_audit(struct selinux_state *state,
763 			    u32 ssid, u32 tsid, u16 tclass,
764 			    u32 requested, u32 audited, u32 denied, int result,
765 			    struct common_audit_data *a)
766 {
767 	struct common_audit_data stack_data;
768 	struct selinux_audit_data sad;
769 
770 	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
771 		return -EINVAL;
772 
773 	if (!a) {
774 		a = &stack_data;
775 		a->type = LSM_AUDIT_DATA_NONE;
776 	}
777 
778 	sad.tclass = tclass;
779 	sad.requested = requested;
780 	sad.ssid = ssid;
781 	sad.tsid = tsid;
782 	sad.audited = audited;
783 	sad.denied = denied;
784 	sad.result = result;
785 	sad.state = state;
786 
787 	a->selinux_audit_data = &sad;
788 
789 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
790 	return 0;
791 }
792 
793 /**
794  * avc_add_callback - Register a callback for security events.
795  * @callback: callback function
796  * @events: security events
797  *
798  * Register a callback function for events in the set @events.
799  * Returns %0 on success or -%ENOMEM if insufficient memory
800  * exists to add the callback.
801  */
802 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
803 {
804 	struct avc_callback_node *c;
805 	int rc = 0;
806 
807 	c = kmalloc(sizeof(*c), GFP_KERNEL);
808 	if (!c) {
809 		rc = -ENOMEM;
810 		goto out;
811 	}
812 
813 	c->callback = callback;
814 	c->events = events;
815 	c->next = avc_callbacks;
816 	avc_callbacks = c;
817 out:
818 	return rc;
819 }
820 
821 /**
822  * avc_update_node Update an AVC entry
823  * @event : Updating event
824  * @perms : Permission mask bits
825  * @ssid,@tsid,@tclass : identifier of an AVC entry
826  * @seqno : sequence number when decision was made
827  * @xpd: extended_perms_decision to be added to the node
828  * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
829  *
830  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
831  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
832  * otherwise, this function updates the AVC entry. The original AVC-entry object
833  * will release later by RCU.
834  */
835 static int avc_update_node(struct selinux_avc *avc,
836 			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
837 			   u32 tsid, u16 tclass, u32 seqno,
838 			   struct extended_perms_decision *xpd,
839 			   u32 flags)
840 {
841 	int hvalue, rc = 0;
842 	unsigned long flag;
843 	struct avc_node *pos, *node, *orig = NULL;
844 	struct hlist_head *head;
845 	spinlock_t *lock;
846 
847 	/*
848 	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
849 	 * then we must not add permissions to a cache entry
850 	 * because we will not audit the denial.  Otherwise,
851 	 * during the subsequent blocking retry (e.g. VFS ref walk), we
852 	 * will find the permissions already granted in the cache entry
853 	 * and won't audit anything at all, leading to silent denials in
854 	 * permissive mode that only appear when in enforcing mode.
855 	 *
856 	 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
857 	 * and selinux_inode_permission().
858 	 */
859 	if (flags & AVC_NONBLOCKING)
860 		return 0;
861 
862 	node = avc_alloc_node(avc);
863 	if (!node) {
864 		rc = -ENOMEM;
865 		goto out;
866 	}
867 
868 	/* Lock the target slot */
869 	hvalue = avc_hash(ssid, tsid, tclass);
870 
871 	head = &avc->avc_cache.slots[hvalue];
872 	lock = &avc->avc_cache.slots_lock[hvalue];
873 
874 	spin_lock_irqsave(lock, flag);
875 
876 	hlist_for_each_entry(pos, head, list) {
877 		if (ssid == pos->ae.ssid &&
878 		    tsid == pos->ae.tsid &&
879 		    tclass == pos->ae.tclass &&
880 		    seqno == pos->ae.avd.seqno){
881 			orig = pos;
882 			break;
883 		}
884 	}
885 
886 	if (!orig) {
887 		rc = -ENOENT;
888 		avc_node_kill(avc, node);
889 		goto out_unlock;
890 	}
891 
892 	/*
893 	 * Copy and replace original node.
894 	 */
895 
896 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
897 
898 	if (orig->ae.xp_node) {
899 		rc = avc_xperms_populate(node, orig->ae.xp_node);
900 		if (rc) {
901 			avc_node_kill(avc, node);
902 			goto out_unlock;
903 		}
904 	}
905 
906 	switch (event) {
907 	case AVC_CALLBACK_GRANT:
908 		node->ae.avd.allowed |= perms;
909 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
910 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
911 		break;
912 	case AVC_CALLBACK_TRY_REVOKE:
913 	case AVC_CALLBACK_REVOKE:
914 		node->ae.avd.allowed &= ~perms;
915 		break;
916 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
917 		node->ae.avd.auditallow |= perms;
918 		break;
919 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
920 		node->ae.avd.auditallow &= ~perms;
921 		break;
922 	case AVC_CALLBACK_AUDITDENY_ENABLE:
923 		node->ae.avd.auditdeny |= perms;
924 		break;
925 	case AVC_CALLBACK_AUDITDENY_DISABLE:
926 		node->ae.avd.auditdeny &= ~perms;
927 		break;
928 	case AVC_CALLBACK_ADD_XPERMS:
929 		avc_add_xperms_decision(node, xpd);
930 		break;
931 	}
932 	avc_node_replace(avc, node, orig);
933 out_unlock:
934 	spin_unlock_irqrestore(lock, flag);
935 out:
936 	return rc;
937 }
938 
939 /**
940  * avc_flush - Flush the cache
941  */
942 static void avc_flush(struct selinux_avc *avc)
943 {
944 	struct hlist_head *head;
945 	struct avc_node *node;
946 	spinlock_t *lock;
947 	unsigned long flag;
948 	int i;
949 
950 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
951 		head = &avc->avc_cache.slots[i];
952 		lock = &avc->avc_cache.slots_lock[i];
953 
954 		spin_lock_irqsave(lock, flag);
955 		/*
956 		 * With preemptable RCU, the outer spinlock does not
957 		 * prevent RCU grace periods from ending.
958 		 */
959 		rcu_read_lock();
960 		hlist_for_each_entry(node, head, list)
961 			avc_node_delete(avc, node);
962 		rcu_read_unlock();
963 		spin_unlock_irqrestore(lock, flag);
964 	}
965 }
966 
967 /**
968  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
969  * @seqno: policy sequence number
970  */
971 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
972 {
973 	struct avc_callback_node *c;
974 	int rc = 0, tmprc;
975 
976 	avc_flush(avc);
977 
978 	for (c = avc_callbacks; c; c = c->next) {
979 		if (c->events & AVC_CALLBACK_RESET) {
980 			tmprc = c->callback(AVC_CALLBACK_RESET);
981 			/* save the first error encountered for the return
982 			   value and continue processing the callbacks */
983 			if (!rc)
984 				rc = tmprc;
985 		}
986 	}
987 
988 	avc_latest_notif_update(avc, seqno, 0);
989 	return rc;
990 }
991 
992 /*
993  * Slow-path helper function for avc_has_perm_noaudit,
994  * when the avc_node lookup fails. We get called with
995  * the RCU read lock held, and need to return with it
996  * still held, but drop if for the security compute.
997  *
998  * Don't inline this, since it's the slow-path and just
999  * results in a bigger stack frame.
1000  */
1001 static noinline
1002 struct avc_node *avc_compute_av(struct selinux_state *state,
1003 				u32 ssid, u32 tsid,
1004 				u16 tclass, struct av_decision *avd,
1005 				struct avc_xperms_node *xp_node)
1006 {
1007 	rcu_read_unlock();
1008 	INIT_LIST_HEAD(&xp_node->xpd_head);
1009 	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1010 	rcu_read_lock();
1011 	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1012 }
1013 
1014 static noinline int avc_denied(struct selinux_state *state,
1015 			       u32 ssid, u32 tsid,
1016 			       u16 tclass, u32 requested,
1017 			       u8 driver, u8 xperm, unsigned int flags,
1018 			       struct av_decision *avd)
1019 {
1020 	if (flags & AVC_STRICT)
1021 		return -EACCES;
1022 
1023 	if (enforcing_enabled(state) &&
1024 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1025 		return -EACCES;
1026 
1027 	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1028 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1029 	return 0;
1030 }
1031 
1032 /*
1033  * The avc extended permissions logic adds an additional 256 bits of
1034  * permissions to an avc node when extended permissions for that node are
1035  * specified in the avtab. If the additional 256 permissions is not adequate,
1036  * as-is the case with ioctls, then multiple may be chained together and the
1037  * driver field is used to specify which set contains the permission.
1038  */
1039 int avc_has_extended_perms(struct selinux_state *state,
1040 			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1041 			   u8 driver, u8 xperm, struct common_audit_data *ad)
1042 {
1043 	struct avc_node *node;
1044 	struct av_decision avd;
1045 	u32 denied;
1046 	struct extended_perms_decision local_xpd;
1047 	struct extended_perms_decision *xpd = NULL;
1048 	struct extended_perms_data allowed;
1049 	struct extended_perms_data auditallow;
1050 	struct extended_perms_data dontaudit;
1051 	struct avc_xperms_node local_xp_node;
1052 	struct avc_xperms_node *xp_node;
1053 	int rc = 0, rc2;
1054 
1055 	xp_node = &local_xp_node;
1056 	if (WARN_ON(!requested))
1057 		return -EACCES;
1058 
1059 	rcu_read_lock();
1060 
1061 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1062 	if (unlikely(!node)) {
1063 		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1064 	} else {
1065 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1066 		xp_node = node->ae.xp_node;
1067 	}
1068 	/* if extended permissions are not defined, only consider av_decision */
1069 	if (!xp_node || !xp_node->xp.len)
1070 		goto decision;
1071 
1072 	local_xpd.allowed = &allowed;
1073 	local_xpd.auditallow = &auditallow;
1074 	local_xpd.dontaudit = &dontaudit;
1075 
1076 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1077 	if (unlikely(!xpd)) {
1078 		/*
1079 		 * Compute the extended_perms_decision only if the driver
1080 		 * is flagged
1081 		 */
1082 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1083 			avd.allowed &= ~requested;
1084 			goto decision;
1085 		}
1086 		rcu_read_unlock();
1087 		security_compute_xperms_decision(state, ssid, tsid, tclass,
1088 						 driver, &local_xpd);
1089 		rcu_read_lock();
1090 		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1091 				driver, xperm, ssid, tsid, tclass, avd.seqno,
1092 				&local_xpd, 0);
1093 	} else {
1094 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1095 	}
1096 	xpd = &local_xpd;
1097 
1098 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1099 		avd.allowed &= ~requested;
1100 
1101 decision:
1102 	denied = requested & ~(avd.allowed);
1103 	if (unlikely(denied))
1104 		rc = avc_denied(state, ssid, tsid, tclass, requested,
1105 				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1106 
1107 	rcu_read_unlock();
1108 
1109 	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1110 			&avd, xpd, xperm, rc, ad);
1111 	if (rc2)
1112 		return rc2;
1113 	return rc;
1114 }
1115 
1116 /**
1117  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1118  * @ssid: source security identifier
1119  * @tsid: target security identifier
1120  * @tclass: target security class
1121  * @requested: requested permissions, interpreted based on @tclass
1122  * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
1123  * @avd: access vector decisions
1124  *
1125  * Check the AVC to determine whether the @requested permissions are granted
1126  * for the SID pair (@ssid, @tsid), interpreting the permissions
1127  * based on @tclass, and call the security server on a cache miss to obtain
1128  * a new decision and add it to the cache.  Return a copy of the decisions
1129  * in @avd.  Return %0 if all @requested permissions are granted,
1130  * -%EACCES if any permissions are denied, or another -errno upon
1131  * other errors.  This function is typically called by avc_has_perm(),
1132  * but may also be called directly to separate permission checking from
1133  * auditing, e.g. in cases where a lock must be held for the check but
1134  * should be released for the auditing.
1135  */
1136 inline int avc_has_perm_noaudit(struct selinux_state *state,
1137 				u32 ssid, u32 tsid,
1138 				u16 tclass, u32 requested,
1139 				unsigned int flags,
1140 				struct av_decision *avd)
1141 {
1142 	struct avc_node *node;
1143 	struct avc_xperms_node xp_node;
1144 	int rc = 0;
1145 	u32 denied;
1146 
1147 	if (WARN_ON(!requested))
1148 		return -EACCES;
1149 
1150 	rcu_read_lock();
1151 
1152 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1153 	if (unlikely(!node))
1154 		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1155 	else
1156 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1157 
1158 	denied = requested & ~(avd->allowed);
1159 	if (unlikely(denied))
1160 		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1161 				flags, avd);
1162 
1163 	rcu_read_unlock();
1164 	return rc;
1165 }
1166 
1167 /**
1168  * avc_has_perm - Check permissions and perform any appropriate auditing.
1169  * @ssid: source security identifier
1170  * @tsid: target security identifier
1171  * @tclass: target security class
1172  * @requested: requested permissions, interpreted based on @tclass
1173  * @auditdata: auxiliary audit data
1174  *
1175  * Check the AVC to determine whether the @requested permissions are granted
1176  * for the SID pair (@ssid, @tsid), interpreting the permissions
1177  * based on @tclass, and call the security server on a cache miss to obtain
1178  * a new decision and add it to the cache.  Audit the granting or denial of
1179  * permissions in accordance with the policy.  Return %0 if all @requested
1180  * permissions are granted, -%EACCES if any permissions are denied, or
1181  * another -errno upon other errors.
1182  */
1183 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1184 		 u32 requested, struct common_audit_data *auditdata)
1185 {
1186 	struct av_decision avd;
1187 	int rc, rc2;
1188 
1189 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1190 				  &avd);
1191 
1192 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1193 			auditdata, 0);
1194 	if (rc2)
1195 		return rc2;
1196 	return rc;
1197 }
1198 
1199 int avc_has_perm_flags(struct selinux_state *state,
1200 		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1201 		       struct common_audit_data *auditdata,
1202 		       int flags)
1203 {
1204 	struct av_decision avd;
1205 	int rc, rc2;
1206 
1207 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
1208 				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
1209 				  &avd);
1210 
1211 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1212 			auditdata, flags);
1213 	if (rc2)
1214 		return rc2;
1215 	return rc;
1216 }
1217 
1218 u32 avc_policy_seqno(struct selinux_state *state)
1219 {
1220 	return state->avc->avc_cache.latest_notif;
1221 }
1222 
1223 void avc_disable(void)
1224 {
1225 	/*
1226 	 * If you are looking at this because you have realized that we are
1227 	 * not destroying the avc_node_cachep it might be easy to fix, but
1228 	 * I don't know the memory barrier semantics well enough to know.  It's
1229 	 * possible that some other task dereferenced security_ops when
1230 	 * it still pointed to selinux operations.  If that is the case it's
1231 	 * possible that it is about to use the avc and is about to need the
1232 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1233 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1234 	 * the cache and get that memory back.
1235 	 */
1236 	if (avc_node_cachep) {
1237 		avc_flush(selinux_state.avc);
1238 		/* kmem_cache_destroy(avc_node_cachep); */
1239 	}
1240 }
1241