1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13 #include <linux/types.h> 14 #include <linux/stddef.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/fs.h> 18 #include <linux/dcache.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/percpu.h> 22 #include <linux/list.h> 23 #include <net/sock.h> 24 #include <linux/un.h> 25 #include <net/af_unix.h> 26 #include <linux/ip.h> 27 #include <linux/audit.h> 28 #include <linux/ipv6.h> 29 #include <net/ipv6.h> 30 #include "avc.h" 31 #include "avc_ss.h" 32 #include "classmap.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/avc.h> 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87 #endif 88 89 struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92 }; 93 94 static struct selinux_avc selinux_avc; 95 96 void selinux_avc_init(void) 97 { 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 } 108 109 unsigned int avc_get_cache_threshold(void) 110 { 111 return selinux_avc.avc_cache_threshold; 112 } 113 114 void avc_set_cache_threshold(unsigned int cache_threshold) 115 { 116 selinux_avc.avc_cache_threshold = cache_threshold; 117 } 118 119 static struct avc_callback_node *avc_callbacks __ro_after_init; 120 static struct kmem_cache *avc_node_cachep __ro_after_init; 121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init; 122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init; 123 static struct kmem_cache *avc_xperms_cachep __ro_after_init; 124 125 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 126 { 127 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 128 } 129 130 /** 131 * avc_init - Initialize the AVC. 132 * 133 * Initialize the access vector cache. 134 */ 135 void __init avc_init(void) 136 { 137 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 138 0, SLAB_PANIC, NULL); 139 avc_xperms_cachep = kmem_cache_create("avc_xperms_node", 140 sizeof(struct avc_xperms_node), 141 0, SLAB_PANIC, NULL); 142 avc_xperms_decision_cachep = kmem_cache_create( 143 "avc_xperms_decision_node", 144 sizeof(struct avc_xperms_decision_node), 145 0, SLAB_PANIC, NULL); 146 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", 147 sizeof(struct extended_perms_data), 148 0, SLAB_PANIC, NULL); 149 } 150 151 int avc_get_hash_stats(char *page) 152 { 153 int i, chain_len, max_chain_len, slots_used; 154 struct avc_node *node; 155 struct hlist_head *head; 156 157 rcu_read_lock(); 158 159 slots_used = 0; 160 max_chain_len = 0; 161 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 162 head = &selinux_avc.avc_cache.slots[i]; 163 if (!hlist_empty(head)) { 164 slots_used++; 165 chain_len = 0; 166 hlist_for_each_entry_rcu(node, head, list) 167 chain_len++; 168 if (chain_len > max_chain_len) 169 max_chain_len = chain_len; 170 } 171 } 172 173 rcu_read_unlock(); 174 175 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 176 "longest chain: %d\n", 177 atomic_read(&selinux_avc.avc_cache.active_nodes), 178 slots_used, AVC_CACHE_SLOTS, max_chain_len); 179 } 180 181 /* 182 * using a linked list for extended_perms_decision lookup because the list is 183 * always small. i.e. less than 5, typically 1 184 */ 185 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 186 struct avc_xperms_node *xp_node) 187 { 188 struct avc_xperms_decision_node *xpd_node; 189 190 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 191 if (xpd_node->xpd.driver == driver) 192 return &xpd_node->xpd; 193 } 194 return NULL; 195 } 196 197 static inline unsigned int 198 avc_xperms_has_perm(struct extended_perms_decision *xpd, 199 u8 perm, u8 which) 200 { 201 unsigned int rc = 0; 202 203 if ((which == XPERMS_ALLOWED) && 204 (xpd->used & XPERMS_ALLOWED)) 205 rc = security_xperm_test(xpd->allowed->p, perm); 206 else if ((which == XPERMS_AUDITALLOW) && 207 (xpd->used & XPERMS_AUDITALLOW)) 208 rc = security_xperm_test(xpd->auditallow->p, perm); 209 else if ((which == XPERMS_DONTAUDIT) && 210 (xpd->used & XPERMS_DONTAUDIT)) 211 rc = security_xperm_test(xpd->dontaudit->p, perm); 212 return rc; 213 } 214 215 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 216 u8 driver, u8 perm) 217 { 218 struct extended_perms_decision *xpd; 219 security_xperm_set(xp_node->xp.drivers.p, driver); 220 xpd = avc_xperms_decision_lookup(driver, xp_node); 221 if (xpd && xpd->allowed) 222 security_xperm_set(xpd->allowed->p, perm); 223 } 224 225 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 226 { 227 struct extended_perms_decision *xpd; 228 229 xpd = &xpd_node->xpd; 230 if (xpd->allowed) 231 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 232 if (xpd->auditallow) 233 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 234 if (xpd->dontaudit) 235 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 236 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 237 } 238 239 static void avc_xperms_free(struct avc_xperms_node *xp_node) 240 { 241 struct avc_xperms_decision_node *xpd_node, *tmp; 242 243 if (!xp_node) 244 return; 245 246 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 247 list_del(&xpd_node->xpd_list); 248 avc_xperms_decision_free(xpd_node); 249 } 250 kmem_cache_free(avc_xperms_cachep, xp_node); 251 } 252 253 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 254 struct extended_perms_decision *src) 255 { 256 dest->driver = src->driver; 257 dest->used = src->used; 258 if (dest->used & XPERMS_ALLOWED) 259 memcpy(dest->allowed->p, src->allowed->p, 260 sizeof(src->allowed->p)); 261 if (dest->used & XPERMS_AUDITALLOW) 262 memcpy(dest->auditallow->p, src->auditallow->p, 263 sizeof(src->auditallow->p)); 264 if (dest->used & XPERMS_DONTAUDIT) 265 memcpy(dest->dontaudit->p, src->dontaudit->p, 266 sizeof(src->dontaudit->p)); 267 } 268 269 /* 270 * similar to avc_copy_xperms_decision, but only copy decision 271 * information relevant to this perm 272 */ 273 static inline void avc_quick_copy_xperms_decision(u8 perm, 274 struct extended_perms_decision *dest, 275 struct extended_perms_decision *src) 276 { 277 /* 278 * compute index of the u32 of the 256 bits (8 u32s) that contain this 279 * command permission 280 */ 281 u8 i = perm >> 5; 282 283 dest->used = src->used; 284 if (dest->used & XPERMS_ALLOWED) 285 dest->allowed->p[i] = src->allowed->p[i]; 286 if (dest->used & XPERMS_AUDITALLOW) 287 dest->auditallow->p[i] = src->auditallow->p[i]; 288 if (dest->used & XPERMS_DONTAUDIT) 289 dest->dontaudit->p[i] = src->dontaudit->p[i]; 290 } 291 292 static struct avc_xperms_decision_node 293 *avc_xperms_decision_alloc(u8 which) 294 { 295 struct avc_xperms_decision_node *xpd_node; 296 struct extended_perms_decision *xpd; 297 298 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, 299 GFP_NOWAIT | __GFP_NOWARN); 300 if (!xpd_node) 301 return NULL; 302 303 xpd = &xpd_node->xpd; 304 if (which & XPERMS_ALLOWED) { 305 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 306 GFP_NOWAIT | __GFP_NOWARN); 307 if (!xpd->allowed) 308 goto error; 309 } 310 if (which & XPERMS_AUDITALLOW) { 311 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 312 GFP_NOWAIT | __GFP_NOWARN); 313 if (!xpd->auditallow) 314 goto error; 315 } 316 if (which & XPERMS_DONTAUDIT) { 317 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 318 GFP_NOWAIT | __GFP_NOWARN); 319 if (!xpd->dontaudit) 320 goto error; 321 } 322 return xpd_node; 323 error: 324 avc_xperms_decision_free(xpd_node); 325 return NULL; 326 } 327 328 static int avc_add_xperms_decision(struct avc_node *node, 329 struct extended_perms_decision *src) 330 { 331 struct avc_xperms_decision_node *dest_xpd; 332 333 node->ae.xp_node->xp.len++; 334 dest_xpd = avc_xperms_decision_alloc(src->used); 335 if (!dest_xpd) 336 return -ENOMEM; 337 avc_copy_xperms_decision(&dest_xpd->xpd, src); 338 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 339 return 0; 340 } 341 342 static struct avc_xperms_node *avc_xperms_alloc(void) 343 { 344 struct avc_xperms_node *xp_node; 345 346 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); 347 if (!xp_node) 348 return xp_node; 349 INIT_LIST_HEAD(&xp_node->xpd_head); 350 return xp_node; 351 } 352 353 static int avc_xperms_populate(struct avc_node *node, 354 struct avc_xperms_node *src) 355 { 356 struct avc_xperms_node *dest; 357 struct avc_xperms_decision_node *dest_xpd; 358 struct avc_xperms_decision_node *src_xpd; 359 360 if (src->xp.len == 0) 361 return 0; 362 dest = avc_xperms_alloc(); 363 if (!dest) 364 return -ENOMEM; 365 366 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 367 dest->xp.len = src->xp.len; 368 369 /* for each source xpd allocate a destination xpd and copy */ 370 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 371 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 372 if (!dest_xpd) 373 goto error; 374 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 375 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 376 } 377 node->ae.xp_node = dest; 378 return 0; 379 error: 380 avc_xperms_free(dest); 381 return -ENOMEM; 382 383 } 384 385 static inline u32 avc_xperms_audit_required(u32 requested, 386 struct av_decision *avd, 387 struct extended_perms_decision *xpd, 388 u8 perm, 389 int result, 390 u32 *deniedp) 391 { 392 u32 denied, audited; 393 394 denied = requested & ~avd->allowed; 395 if (unlikely(denied)) { 396 audited = denied & avd->auditdeny; 397 if (audited && xpd) { 398 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 399 audited &= ~requested; 400 } 401 } else if (result) { 402 audited = denied = requested; 403 } else { 404 audited = requested & avd->auditallow; 405 if (audited && xpd) { 406 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 407 audited &= ~requested; 408 } 409 } 410 411 *deniedp = denied; 412 return audited; 413 } 414 415 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, 416 u32 requested, struct av_decision *avd, 417 struct extended_perms_decision *xpd, 418 u8 perm, int result, 419 struct common_audit_data *ad) 420 { 421 u32 audited, denied; 422 423 audited = avc_xperms_audit_required( 424 requested, avd, xpd, perm, result, &denied); 425 if (likely(!audited)) 426 return 0; 427 return slow_avc_audit(ssid, tsid, tclass, requested, 428 audited, denied, result, ad); 429 } 430 431 static void avc_node_free(struct rcu_head *rhead) 432 { 433 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 434 avc_xperms_free(node->ae.xp_node); 435 kmem_cache_free(avc_node_cachep, node); 436 avc_cache_stats_incr(frees); 437 } 438 439 static void avc_node_delete(struct avc_node *node) 440 { 441 hlist_del_rcu(&node->list); 442 call_rcu(&node->rhead, avc_node_free); 443 atomic_dec(&selinux_avc.avc_cache.active_nodes); 444 } 445 446 static void avc_node_kill(struct avc_node *node) 447 { 448 avc_xperms_free(node->ae.xp_node); 449 kmem_cache_free(avc_node_cachep, node); 450 avc_cache_stats_incr(frees); 451 atomic_dec(&selinux_avc.avc_cache.active_nodes); 452 } 453 454 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 455 { 456 hlist_replace_rcu(&old->list, &new->list); 457 call_rcu(&old->rhead, avc_node_free); 458 atomic_dec(&selinux_avc.avc_cache.active_nodes); 459 } 460 461 static inline int avc_reclaim_node(void) 462 { 463 struct avc_node *node; 464 int hvalue, try, ecx; 465 unsigned long flags; 466 struct hlist_head *head; 467 spinlock_t *lock; 468 469 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 470 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) & 471 (AVC_CACHE_SLOTS - 1); 472 head = &selinux_avc.avc_cache.slots[hvalue]; 473 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 474 475 if (!spin_trylock_irqsave(lock, flags)) 476 continue; 477 478 rcu_read_lock(); 479 hlist_for_each_entry(node, head, list) { 480 avc_node_delete(node); 481 avc_cache_stats_incr(reclaims); 482 ecx++; 483 if (ecx >= AVC_CACHE_RECLAIM) { 484 rcu_read_unlock(); 485 spin_unlock_irqrestore(lock, flags); 486 goto out; 487 } 488 } 489 rcu_read_unlock(); 490 spin_unlock_irqrestore(lock, flags); 491 } 492 out: 493 return ecx; 494 } 495 496 static struct avc_node *avc_alloc_node(void) 497 { 498 struct avc_node *node; 499 500 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); 501 if (!node) 502 goto out; 503 504 INIT_HLIST_NODE(&node->list); 505 avc_cache_stats_incr(allocations); 506 507 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) > 508 selinux_avc.avc_cache_threshold) 509 avc_reclaim_node(); 510 511 out: 512 return node; 513 } 514 515 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 516 { 517 node->ae.ssid = ssid; 518 node->ae.tsid = tsid; 519 node->ae.tclass = tclass; 520 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 521 } 522 523 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 524 { 525 struct avc_node *node, *ret = NULL; 526 int hvalue; 527 struct hlist_head *head; 528 529 hvalue = avc_hash(ssid, tsid, tclass); 530 head = &selinux_avc.avc_cache.slots[hvalue]; 531 hlist_for_each_entry_rcu(node, head, list) { 532 if (ssid == node->ae.ssid && 533 tclass == node->ae.tclass && 534 tsid == node->ae.tsid) { 535 ret = node; 536 break; 537 } 538 } 539 540 return ret; 541 } 542 543 /** 544 * avc_lookup - Look up an AVC entry. 545 * @ssid: source security identifier 546 * @tsid: target security identifier 547 * @tclass: target security class 548 * 549 * Look up an AVC entry that is valid for the 550 * (@ssid, @tsid), interpreting the permissions 551 * based on @tclass. If a valid AVC entry exists, 552 * then this function returns the avc_node. 553 * Otherwise, this function returns NULL. 554 */ 555 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 556 { 557 struct avc_node *node; 558 559 avc_cache_stats_incr(lookups); 560 node = avc_search_node(ssid, tsid, tclass); 561 562 if (node) 563 return node; 564 565 avc_cache_stats_incr(misses); 566 return NULL; 567 } 568 569 static int avc_latest_notif_update(int seqno, int is_insert) 570 { 571 int ret = 0; 572 static DEFINE_SPINLOCK(notif_lock); 573 unsigned long flag; 574 575 spin_lock_irqsave(¬if_lock, flag); 576 if (is_insert) { 577 if (seqno < selinux_avc.avc_cache.latest_notif) { 578 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 579 seqno, selinux_avc.avc_cache.latest_notif); 580 ret = -EAGAIN; 581 } 582 } else { 583 if (seqno > selinux_avc.avc_cache.latest_notif) 584 selinux_avc.avc_cache.latest_notif = seqno; 585 } 586 spin_unlock_irqrestore(¬if_lock, flag); 587 588 return ret; 589 } 590 591 /** 592 * avc_insert - Insert an AVC entry. 593 * @ssid: source security identifier 594 * @tsid: target security identifier 595 * @tclass: target security class 596 * @avd: resulting av decision 597 * @xp_node: resulting extended permissions 598 * 599 * Insert an AVC entry for the SID pair 600 * (@ssid, @tsid) and class @tclass. 601 * The access vectors and the sequence number are 602 * normally provided by the security server in 603 * response to a security_compute_av() call. If the 604 * sequence number @avd->seqno is not less than the latest 605 * revocation notification, then the function copies 606 * the access vectors into a cache entry. 607 */ 608 static void avc_insert(u32 ssid, u32 tsid, u16 tclass, 609 struct av_decision *avd, struct avc_xperms_node *xp_node) 610 { 611 struct avc_node *pos, *node = NULL; 612 int hvalue; 613 unsigned long flag; 614 spinlock_t *lock; 615 struct hlist_head *head; 616 617 if (avc_latest_notif_update(avd->seqno, 1)) 618 return; 619 620 node = avc_alloc_node(); 621 if (!node) 622 return; 623 624 avc_node_populate(node, ssid, tsid, tclass, avd); 625 if (avc_xperms_populate(node, xp_node)) { 626 avc_node_kill(node); 627 return; 628 } 629 630 hvalue = avc_hash(ssid, tsid, tclass); 631 head = &selinux_avc.avc_cache.slots[hvalue]; 632 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 633 spin_lock_irqsave(lock, flag); 634 hlist_for_each_entry(pos, head, list) { 635 if (pos->ae.ssid == ssid && 636 pos->ae.tsid == tsid && 637 pos->ae.tclass == tclass) { 638 avc_node_replace(node, pos); 639 goto found; 640 } 641 } 642 hlist_add_head_rcu(&node->list, head); 643 found: 644 spin_unlock_irqrestore(lock, flag); 645 return; 646 } 647 648 /** 649 * avc_audit_pre_callback - SELinux specific information 650 * will be called by generic audit code 651 * @ab: the audit buffer 652 * @a: audit_data 653 */ 654 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 655 { 656 struct common_audit_data *ad = a; 657 struct selinux_audit_data *sad = ad->selinux_audit_data; 658 u32 av = sad->audited; 659 const char *const *perms; 660 int i, perm; 661 662 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 663 664 if (av == 0) { 665 audit_log_format(ab, " null"); 666 return; 667 } 668 669 perms = secclass_map[sad->tclass-1].perms; 670 671 audit_log_format(ab, " {"); 672 i = 0; 673 perm = 1; 674 while (i < (sizeof(av) * 8)) { 675 if ((perm & av) && perms[i]) { 676 audit_log_format(ab, " %s", perms[i]); 677 av &= ~perm; 678 } 679 i++; 680 perm <<= 1; 681 } 682 683 if (av) 684 audit_log_format(ab, " 0x%x", av); 685 686 audit_log_format(ab, " } for "); 687 } 688 689 /** 690 * avc_audit_post_callback - SELinux specific information 691 * will be called by generic audit code 692 * @ab: the audit buffer 693 * @a: audit_data 694 */ 695 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 696 { 697 struct common_audit_data *ad = a; 698 struct selinux_audit_data *sad = ad->selinux_audit_data; 699 char *scontext = NULL; 700 char *tcontext = NULL; 701 const char *tclass = NULL; 702 u32 scontext_len; 703 u32 tcontext_len; 704 int rc; 705 706 rc = security_sid_to_context(sad->ssid, &scontext, 707 &scontext_len); 708 if (rc) 709 audit_log_format(ab, " ssid=%d", sad->ssid); 710 else 711 audit_log_format(ab, " scontext=%s", scontext); 712 713 rc = security_sid_to_context(sad->tsid, &tcontext, 714 &tcontext_len); 715 if (rc) 716 audit_log_format(ab, " tsid=%d", sad->tsid); 717 else 718 audit_log_format(ab, " tcontext=%s", tcontext); 719 720 tclass = secclass_map[sad->tclass-1].name; 721 audit_log_format(ab, " tclass=%s", tclass); 722 723 if (sad->denied) 724 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 725 726 trace_selinux_audited(sad, scontext, tcontext, tclass); 727 kfree(tcontext); 728 kfree(scontext); 729 730 /* in case of invalid context report also the actual context string */ 731 rc = security_sid_to_context_inval(sad->ssid, &scontext, 732 &scontext_len); 733 if (!rc && scontext) { 734 if (scontext_len && scontext[scontext_len - 1] == '\0') 735 scontext_len--; 736 audit_log_format(ab, " srawcon="); 737 audit_log_n_untrustedstring(ab, scontext, scontext_len); 738 kfree(scontext); 739 } 740 741 rc = security_sid_to_context_inval(sad->tsid, &scontext, 742 &scontext_len); 743 if (!rc && scontext) { 744 if (scontext_len && scontext[scontext_len - 1] == '\0') 745 scontext_len--; 746 audit_log_format(ab, " trawcon="); 747 audit_log_n_untrustedstring(ab, scontext, scontext_len); 748 kfree(scontext); 749 } 750 } 751 752 /* 753 * This is the slow part of avc audit with big stack footprint. 754 * Note that it is non-blocking and can be called from under 755 * rcu_read_lock(). 756 */ 757 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 758 u32 requested, u32 audited, u32 denied, int result, 759 struct common_audit_data *a) 760 { 761 struct common_audit_data stack_data; 762 struct selinux_audit_data sad; 763 764 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 765 return -EINVAL; 766 767 if (!a) { 768 a = &stack_data; 769 a->type = LSM_AUDIT_DATA_NONE; 770 } 771 772 sad.tclass = tclass; 773 sad.requested = requested; 774 sad.ssid = ssid; 775 sad.tsid = tsid; 776 sad.audited = audited; 777 sad.denied = denied; 778 sad.result = result; 779 780 a->selinux_audit_data = &sad; 781 782 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 783 return 0; 784 } 785 786 /** 787 * avc_add_callback - Register a callback for security events. 788 * @callback: callback function 789 * @events: security events 790 * 791 * Register a callback function for events in the set @events. 792 * Returns %0 on success or -%ENOMEM if insufficient memory 793 * exists to add the callback. 794 */ 795 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 796 { 797 struct avc_callback_node *c; 798 int rc = 0; 799 800 c = kmalloc(sizeof(*c), GFP_KERNEL); 801 if (!c) { 802 rc = -ENOMEM; 803 goto out; 804 } 805 806 c->callback = callback; 807 c->events = events; 808 c->next = avc_callbacks; 809 avc_callbacks = c; 810 out: 811 return rc; 812 } 813 814 /** 815 * avc_update_node - Update an AVC entry 816 * @event : Updating event 817 * @perms : Permission mask bits 818 * @driver: xperm driver information 819 * @xperm: xperm permissions 820 * @ssid: AVC entry source sid 821 * @tsid: AVC entry target sid 822 * @tclass : AVC entry target object class 823 * @seqno : sequence number when decision was made 824 * @xpd: extended_perms_decision to be added to the node 825 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0. 826 * 827 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 828 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 829 * otherwise, this function updates the AVC entry. The original AVC-entry object 830 * will release later by RCU. 831 */ 832 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 833 u32 tsid, u16 tclass, u32 seqno, 834 struct extended_perms_decision *xpd, 835 u32 flags) 836 { 837 int hvalue, rc = 0; 838 unsigned long flag; 839 struct avc_node *pos, *node, *orig = NULL; 840 struct hlist_head *head; 841 spinlock_t *lock; 842 843 node = avc_alloc_node(); 844 if (!node) { 845 rc = -ENOMEM; 846 goto out; 847 } 848 849 /* Lock the target slot */ 850 hvalue = avc_hash(ssid, tsid, tclass); 851 852 head = &selinux_avc.avc_cache.slots[hvalue]; 853 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 854 855 spin_lock_irqsave(lock, flag); 856 857 hlist_for_each_entry(pos, head, list) { 858 if (ssid == pos->ae.ssid && 859 tsid == pos->ae.tsid && 860 tclass == pos->ae.tclass && 861 seqno == pos->ae.avd.seqno){ 862 orig = pos; 863 break; 864 } 865 } 866 867 if (!orig) { 868 rc = -ENOENT; 869 avc_node_kill(node); 870 goto out_unlock; 871 } 872 873 /* 874 * Copy and replace original node. 875 */ 876 877 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 878 879 if (orig->ae.xp_node) { 880 rc = avc_xperms_populate(node, orig->ae.xp_node); 881 if (rc) { 882 avc_node_kill(node); 883 goto out_unlock; 884 } 885 } 886 887 switch (event) { 888 case AVC_CALLBACK_GRANT: 889 node->ae.avd.allowed |= perms; 890 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 891 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 892 break; 893 case AVC_CALLBACK_TRY_REVOKE: 894 case AVC_CALLBACK_REVOKE: 895 node->ae.avd.allowed &= ~perms; 896 break; 897 case AVC_CALLBACK_AUDITALLOW_ENABLE: 898 node->ae.avd.auditallow |= perms; 899 break; 900 case AVC_CALLBACK_AUDITALLOW_DISABLE: 901 node->ae.avd.auditallow &= ~perms; 902 break; 903 case AVC_CALLBACK_AUDITDENY_ENABLE: 904 node->ae.avd.auditdeny |= perms; 905 break; 906 case AVC_CALLBACK_AUDITDENY_DISABLE: 907 node->ae.avd.auditdeny &= ~perms; 908 break; 909 case AVC_CALLBACK_ADD_XPERMS: 910 avc_add_xperms_decision(node, xpd); 911 break; 912 } 913 avc_node_replace(node, orig); 914 out_unlock: 915 spin_unlock_irqrestore(lock, flag); 916 out: 917 return rc; 918 } 919 920 /** 921 * avc_flush - Flush the cache 922 */ 923 static void avc_flush(void) 924 { 925 struct hlist_head *head; 926 struct avc_node *node; 927 spinlock_t *lock; 928 unsigned long flag; 929 int i; 930 931 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 932 head = &selinux_avc.avc_cache.slots[i]; 933 lock = &selinux_avc.avc_cache.slots_lock[i]; 934 935 spin_lock_irqsave(lock, flag); 936 /* 937 * With preemptable RCU, the outer spinlock does not 938 * prevent RCU grace periods from ending. 939 */ 940 rcu_read_lock(); 941 hlist_for_each_entry(node, head, list) 942 avc_node_delete(node); 943 rcu_read_unlock(); 944 spin_unlock_irqrestore(lock, flag); 945 } 946 } 947 948 /** 949 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 950 * @seqno: policy sequence number 951 */ 952 int avc_ss_reset(u32 seqno) 953 { 954 struct avc_callback_node *c; 955 int rc = 0, tmprc; 956 957 avc_flush(); 958 959 for (c = avc_callbacks; c; c = c->next) { 960 if (c->events & AVC_CALLBACK_RESET) { 961 tmprc = c->callback(AVC_CALLBACK_RESET); 962 /* save the first error encountered for the return 963 value and continue processing the callbacks */ 964 if (!rc) 965 rc = tmprc; 966 } 967 } 968 969 avc_latest_notif_update(seqno, 0); 970 return rc; 971 } 972 973 /** 974 * avc_compute_av - Add an entry to the AVC based on the security policy 975 * @ssid: subject 976 * @tsid: object/target 977 * @tclass: object class 978 * @avd: access vector decision 979 * @xp_node: AVC extended permissions node 980 * 981 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup 982 * fails. Don't inline this, since it's the slow-path and just results in a 983 * bigger stack frame. 984 */ 985 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass, 986 struct av_decision *avd, 987 struct avc_xperms_node *xp_node) 988 { 989 INIT_LIST_HEAD(&xp_node->xpd_head); 990 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); 991 avc_insert(ssid, tsid, tclass, avd, xp_node); 992 } 993 994 static noinline int avc_denied(u32 ssid, u32 tsid, 995 u16 tclass, u32 requested, 996 u8 driver, u8 xperm, unsigned int flags, 997 struct av_decision *avd) 998 { 999 if (flags & AVC_STRICT) 1000 return -EACCES; 1001 1002 if (enforcing_enabled() && 1003 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1004 return -EACCES; 1005 1006 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, 1007 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1008 return 0; 1009 } 1010 1011 /* 1012 * The avc extended permissions logic adds an additional 256 bits of 1013 * permissions to an avc node when extended permissions for that node are 1014 * specified in the avtab. If the additional 256 permissions is not adequate, 1015 * as-is the case with ioctls, then multiple may be chained together and the 1016 * driver field is used to specify which set contains the permission. 1017 */ 1018 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, 1019 u8 driver, u8 xperm, struct common_audit_data *ad) 1020 { 1021 struct avc_node *node; 1022 struct av_decision avd; 1023 u32 denied; 1024 struct extended_perms_decision local_xpd; 1025 struct extended_perms_decision *xpd = NULL; 1026 struct extended_perms_data allowed; 1027 struct extended_perms_data auditallow; 1028 struct extended_perms_data dontaudit; 1029 struct avc_xperms_node local_xp_node; 1030 struct avc_xperms_node *xp_node; 1031 int rc = 0, rc2; 1032 1033 xp_node = &local_xp_node; 1034 if (WARN_ON(!requested)) 1035 return -EACCES; 1036 1037 rcu_read_lock(); 1038 1039 node = avc_lookup(ssid, tsid, tclass); 1040 if (unlikely(!node)) { 1041 avc_compute_av(ssid, tsid, tclass, &avd, xp_node); 1042 } else { 1043 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1044 xp_node = node->ae.xp_node; 1045 } 1046 /* if extended permissions are not defined, only consider av_decision */ 1047 if (!xp_node || !xp_node->xp.len) 1048 goto decision; 1049 1050 local_xpd.allowed = &allowed; 1051 local_xpd.auditallow = &auditallow; 1052 local_xpd.dontaudit = &dontaudit; 1053 1054 xpd = avc_xperms_decision_lookup(driver, xp_node); 1055 if (unlikely(!xpd)) { 1056 /* 1057 * Compute the extended_perms_decision only if the driver 1058 * is flagged 1059 */ 1060 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1061 avd.allowed &= ~requested; 1062 goto decision; 1063 } 1064 rcu_read_unlock(); 1065 security_compute_xperms_decision(ssid, tsid, tclass, 1066 driver, &local_xpd); 1067 rcu_read_lock(); 1068 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, 1069 driver, xperm, ssid, tsid, tclass, avd.seqno, 1070 &local_xpd, 0); 1071 } else { 1072 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1073 } 1074 xpd = &local_xpd; 1075 1076 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1077 avd.allowed &= ~requested; 1078 1079 decision: 1080 denied = requested & ~(avd.allowed); 1081 if (unlikely(denied)) 1082 rc = avc_denied(ssid, tsid, tclass, requested, 1083 driver, xperm, AVC_EXTENDED_PERMS, &avd); 1084 1085 rcu_read_unlock(); 1086 1087 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, 1088 &avd, xpd, xperm, rc, ad); 1089 if (rc2) 1090 return rc2; 1091 return rc; 1092 } 1093 1094 /** 1095 * avc_perm_nonode - Add an entry to the AVC 1096 * @ssid: subject 1097 * @tsid: object/target 1098 * @tclass: object class 1099 * @requested: requested permissions 1100 * @flags: AVC flags 1101 * @avd: access vector decision 1102 * 1103 * This is the "we have no node" part of avc_has_perm_noaudit(), which is 1104 * unlikely and needs extra stack space for the new node that we generate, so 1105 * don't inline it. 1106 */ 1107 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass, 1108 u32 requested, unsigned int flags, 1109 struct av_decision *avd) 1110 { 1111 u32 denied; 1112 struct avc_xperms_node xp_node; 1113 1114 avc_compute_av(ssid, tsid, tclass, avd, &xp_node); 1115 denied = requested & ~(avd->allowed); 1116 if (unlikely(denied)) 1117 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 1118 flags, avd); 1119 return 0; 1120 } 1121 1122 /** 1123 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1124 * @ssid: source security identifier 1125 * @tsid: target security identifier 1126 * @tclass: target security class 1127 * @requested: requested permissions, interpreted based on @tclass 1128 * @flags: AVC_STRICT or 0 1129 * @avd: access vector decisions 1130 * 1131 * Check the AVC to determine whether the @requested permissions are granted 1132 * for the SID pair (@ssid, @tsid), interpreting the permissions 1133 * based on @tclass, and call the security server on a cache miss to obtain 1134 * a new decision and add it to the cache. Return a copy of the decisions 1135 * in @avd. Return %0 if all @requested permissions are granted, 1136 * -%EACCES if any permissions are denied, or another -errno upon 1137 * other errors. This function is typically called by avc_has_perm(), 1138 * but may also be called directly to separate permission checking from 1139 * auditing, e.g. in cases where a lock must be held for the check but 1140 * should be released for the auditing. 1141 */ 1142 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 1143 u16 tclass, u32 requested, 1144 unsigned int flags, 1145 struct av_decision *avd) 1146 { 1147 u32 denied; 1148 struct avc_node *node; 1149 1150 if (WARN_ON(!requested)) 1151 return -EACCES; 1152 1153 rcu_read_lock(); 1154 node = avc_lookup(ssid, tsid, tclass); 1155 if (unlikely(!node)) { 1156 rcu_read_unlock(); 1157 return avc_perm_nonode(ssid, tsid, tclass, requested, 1158 flags, avd); 1159 } 1160 denied = requested & ~node->ae.avd.allowed; 1161 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1162 rcu_read_unlock(); 1163 1164 if (unlikely(denied)) 1165 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 1166 flags, avd); 1167 return 0; 1168 } 1169 1170 /** 1171 * avc_has_perm - Check permissions and perform any appropriate auditing. 1172 * @ssid: source security identifier 1173 * @tsid: target security identifier 1174 * @tclass: target security class 1175 * @requested: requested permissions, interpreted based on @tclass 1176 * @auditdata: auxiliary audit data 1177 * 1178 * Check the AVC to determine whether the @requested permissions are granted 1179 * for the SID pair (@ssid, @tsid), interpreting the permissions 1180 * based on @tclass, and call the security server on a cache miss to obtain 1181 * a new decision and add it to the cache. Audit the granting or denial of 1182 * permissions in accordance with the policy. Return %0 if all @requested 1183 * permissions are granted, -%EACCES if any permissions are denied, or 1184 * another -errno upon other errors. 1185 */ 1186 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 1187 u32 requested, struct common_audit_data *auditdata) 1188 { 1189 struct av_decision avd; 1190 int rc, rc2; 1191 1192 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, 1193 &avd); 1194 1195 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, 1196 auditdata); 1197 if (rc2) 1198 return rc2; 1199 return rc; 1200 } 1201 1202 u32 avc_policy_seqno(void) 1203 { 1204 return selinux_avc.avc_cache.latest_notif; 1205 } 1206 1207 void avc_disable(void) 1208 { 1209 /* 1210 * If you are looking at this because you have realized that we are 1211 * not destroying the avc_node_cachep it might be easy to fix, but 1212 * I don't know the memory barrier semantics well enough to know. It's 1213 * possible that some other task dereferenced security_ops when 1214 * it still pointed to selinux operations. If that is the case it's 1215 * possible that it is about to use the avc and is about to need the 1216 * avc_node_cachep. I know I could wrap the security.c security_ops call 1217 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 1218 * the cache and get that memory back. 1219 */ 1220 if (avc_node_cachep) { 1221 avc_flush(); 1222 /* kmem_cache_destroy(avc_node_cachep); */ 1223 } 1224 } 1225