xref: /openbmc/linux/security/security.c (revision fcfe0ac2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
64 	[LOCKDOWN_KCORE] = "/proc/kcore access",
65 	[LOCKDOWN_KPROBES] = "use of kprobes",
66 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
67 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68 	[LOCKDOWN_PERF] = "unsafe use of perf",
69 	[LOCKDOWN_TRACEFS] = "use of tracefs",
70 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
71 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
72 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
73 };
74 
75 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
77 
78 static struct kmem_cache *lsm_file_cache;
79 static struct kmem_cache *lsm_inode_cache;
80 
81 char *lsm_names;
82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
83 
84 /* Boot-time LSM user choice */
85 static __initdata const char *chosen_lsm_order;
86 static __initdata const char *chosen_major_lsm;
87 
88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
89 
90 /* Ordered list of LSMs to initialize. */
91 static __initdata struct lsm_info **ordered_lsms;
92 static __initdata struct lsm_info *exclusive;
93 
94 static __initdata bool debug;
95 #define init_debug(...)						\
96 	do {							\
97 		if (debug)					\
98 			pr_info(__VA_ARGS__);			\
99 	} while (0)
100 
101 static bool __init is_enabled(struct lsm_info *lsm)
102 {
103 	if (!lsm->enabled)
104 		return false;
105 
106 	return *lsm->enabled;
107 }
108 
109 /* Mark an LSM's enabled flag. */
110 static int lsm_enabled_true __initdata = 1;
111 static int lsm_enabled_false __initdata = 0;
112 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
113 {
114 	/*
115 	 * When an LSM hasn't configured an enable variable, we can use
116 	 * a hard-coded location for storing the default enabled state.
117 	 */
118 	if (!lsm->enabled) {
119 		if (enabled)
120 			lsm->enabled = &lsm_enabled_true;
121 		else
122 			lsm->enabled = &lsm_enabled_false;
123 	} else if (lsm->enabled == &lsm_enabled_true) {
124 		if (!enabled)
125 			lsm->enabled = &lsm_enabled_false;
126 	} else if (lsm->enabled == &lsm_enabled_false) {
127 		if (enabled)
128 			lsm->enabled = &lsm_enabled_true;
129 	} else {
130 		*lsm->enabled = enabled;
131 	}
132 }
133 
134 /* Is an LSM already listed in the ordered LSMs list? */
135 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
136 {
137 	struct lsm_info **check;
138 
139 	for (check = ordered_lsms; *check; check++)
140 		if (*check == lsm)
141 			return true;
142 
143 	return false;
144 }
145 
146 /* Append an LSM to the list of ordered LSMs to initialize. */
147 static int last_lsm __initdata;
148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
149 {
150 	/* Ignore duplicate selections. */
151 	if (exists_ordered_lsm(lsm))
152 		return;
153 
154 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
155 		return;
156 
157 	/* Enable this LSM, if it is not already set. */
158 	if (!lsm->enabled)
159 		lsm->enabled = &lsm_enabled_true;
160 	ordered_lsms[last_lsm++] = lsm;
161 
162 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
163 		   is_enabled(lsm) ? "en" : "dis");
164 }
165 
166 /* Is an LSM allowed to be initialized? */
167 static bool __init lsm_allowed(struct lsm_info *lsm)
168 {
169 	/* Skip if the LSM is disabled. */
170 	if (!is_enabled(lsm))
171 		return false;
172 
173 	/* Not allowed if another exclusive LSM already initialized. */
174 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
175 		init_debug("exclusive disabled: %s\n", lsm->name);
176 		return false;
177 	}
178 
179 	return true;
180 }
181 
182 static void __init lsm_set_blob_size(int *need, int *lbs)
183 {
184 	int offset;
185 
186 	if (*need > 0) {
187 		offset = *lbs;
188 		*lbs += *need;
189 		*need = offset;
190 	}
191 }
192 
193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
194 {
195 	if (!needed)
196 		return;
197 
198 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
199 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
200 	/*
201 	 * The inode blob gets an rcu_head in addition to
202 	 * what the modules might need.
203 	 */
204 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
205 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
206 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
207 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
208 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
209 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
210 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
211 }
212 
213 /* Prepare LSM for initialization. */
214 static void __init prepare_lsm(struct lsm_info *lsm)
215 {
216 	int enabled = lsm_allowed(lsm);
217 
218 	/* Record enablement (to handle any following exclusive LSMs). */
219 	set_enabled(lsm, enabled);
220 
221 	/* If enabled, do pre-initialization work. */
222 	if (enabled) {
223 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
224 			exclusive = lsm;
225 			init_debug("exclusive chosen: %s\n", lsm->name);
226 		}
227 
228 		lsm_set_blob_sizes(lsm->blobs);
229 	}
230 }
231 
232 /* Initialize a given LSM, if it is enabled. */
233 static void __init initialize_lsm(struct lsm_info *lsm)
234 {
235 	if (is_enabled(lsm)) {
236 		int ret;
237 
238 		init_debug("initializing %s\n", lsm->name);
239 		ret = lsm->init();
240 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
241 	}
242 }
243 
244 /* Populate ordered LSMs list from comma-separated LSM name list. */
245 static void __init ordered_lsm_parse(const char *order, const char *origin)
246 {
247 	struct lsm_info *lsm;
248 	char *sep, *name, *next;
249 
250 	/* LSM_ORDER_FIRST is always first. */
251 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
252 		if (lsm->order == LSM_ORDER_FIRST)
253 			append_ordered_lsm(lsm, "first");
254 	}
255 
256 	/* Process "security=", if given. */
257 	if (chosen_major_lsm) {
258 		struct lsm_info *major;
259 
260 		/*
261 		 * To match the original "security=" behavior, this
262 		 * explicitly does NOT fallback to another Legacy Major
263 		 * if the selected one was separately disabled: disable
264 		 * all non-matching Legacy Major LSMs.
265 		 */
266 		for (major = __start_lsm_info; major < __end_lsm_info;
267 		     major++) {
268 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
269 			    strcmp(major->name, chosen_major_lsm) != 0) {
270 				set_enabled(major, false);
271 				init_debug("security=%s disabled: %s\n",
272 					   chosen_major_lsm, major->name);
273 			}
274 		}
275 	}
276 
277 	sep = kstrdup(order, GFP_KERNEL);
278 	next = sep;
279 	/* Walk the list, looking for matching LSMs. */
280 	while ((name = strsep(&next, ",")) != NULL) {
281 		bool found = false;
282 
283 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
284 			if (lsm->order == LSM_ORDER_MUTABLE &&
285 			    strcmp(lsm->name, name) == 0) {
286 				append_ordered_lsm(lsm, origin);
287 				found = true;
288 			}
289 		}
290 
291 		if (!found)
292 			init_debug("%s ignored: %s\n", origin, name);
293 	}
294 
295 	/* Process "security=", if given. */
296 	if (chosen_major_lsm) {
297 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
298 			if (exists_ordered_lsm(lsm))
299 				continue;
300 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
301 				append_ordered_lsm(lsm, "security=");
302 		}
303 	}
304 
305 	/* Disable all LSMs not in the ordered list. */
306 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
307 		if (exists_ordered_lsm(lsm))
308 			continue;
309 		set_enabled(lsm, false);
310 		init_debug("%s disabled: %s\n", origin, lsm->name);
311 	}
312 
313 	kfree(sep);
314 }
315 
316 static void __init lsm_early_cred(struct cred *cred);
317 static void __init lsm_early_task(struct task_struct *task);
318 
319 static int lsm_append(const char *new, char **result);
320 
321 static void __init ordered_lsm_init(void)
322 {
323 	struct lsm_info **lsm;
324 
325 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
326 				GFP_KERNEL);
327 
328 	if (chosen_lsm_order) {
329 		if (chosen_major_lsm) {
330 			pr_info("security= is ignored because it is superseded by lsm=\n");
331 			chosen_major_lsm = NULL;
332 		}
333 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
334 	} else
335 		ordered_lsm_parse(builtin_lsm_order, "builtin");
336 
337 	for (lsm = ordered_lsms; *lsm; lsm++)
338 		prepare_lsm(*lsm);
339 
340 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
341 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
342 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
343 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
344 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
345 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
346 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
347 
348 	/*
349 	 * Create any kmem_caches needed for blobs
350 	 */
351 	if (blob_sizes.lbs_file)
352 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
353 						   blob_sizes.lbs_file, 0,
354 						   SLAB_PANIC, NULL);
355 	if (blob_sizes.lbs_inode)
356 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
357 						    blob_sizes.lbs_inode, 0,
358 						    SLAB_PANIC, NULL);
359 
360 	lsm_early_cred((struct cred *) current->cred);
361 	lsm_early_task(current);
362 	for (lsm = ordered_lsms; *lsm; lsm++)
363 		initialize_lsm(*lsm);
364 
365 	kfree(ordered_lsms);
366 }
367 
368 int __init early_security_init(void)
369 {
370 	struct lsm_info *lsm;
371 
372 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
373 	INIT_HLIST_HEAD(&security_hook_heads.NAME);
374 #include "linux/lsm_hook_defs.h"
375 #undef LSM_HOOK
376 
377 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
378 		if (!lsm->enabled)
379 			lsm->enabled = &lsm_enabled_true;
380 		prepare_lsm(lsm);
381 		initialize_lsm(lsm);
382 	}
383 
384 	return 0;
385 }
386 
387 /**
388  * security_init - initializes the security framework
389  *
390  * This should be called early in the kernel initialization sequence.
391  */
392 int __init security_init(void)
393 {
394 	struct lsm_info *lsm;
395 
396 	pr_info("Security Framework initializing\n");
397 
398 	/*
399 	 * Append the names of the early LSM modules now that kmalloc() is
400 	 * available
401 	 */
402 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
403 		if (lsm->enabled)
404 			lsm_append(lsm->name, &lsm_names);
405 	}
406 
407 	/* Load LSMs in specified order. */
408 	ordered_lsm_init();
409 
410 	return 0;
411 }
412 
413 /* Save user chosen LSM */
414 static int __init choose_major_lsm(char *str)
415 {
416 	chosen_major_lsm = str;
417 	return 1;
418 }
419 __setup("security=", choose_major_lsm);
420 
421 /* Explicitly choose LSM initialization order. */
422 static int __init choose_lsm_order(char *str)
423 {
424 	chosen_lsm_order = str;
425 	return 1;
426 }
427 __setup("lsm=", choose_lsm_order);
428 
429 /* Enable LSM order debugging. */
430 static int __init enable_debug(char *str)
431 {
432 	debug = true;
433 	return 1;
434 }
435 __setup("lsm.debug", enable_debug);
436 
437 static bool match_last_lsm(const char *list, const char *lsm)
438 {
439 	const char *last;
440 
441 	if (WARN_ON(!list || !lsm))
442 		return false;
443 	last = strrchr(list, ',');
444 	if (last)
445 		/* Pass the comma, strcmp() will check for '\0' */
446 		last++;
447 	else
448 		last = list;
449 	return !strcmp(last, lsm);
450 }
451 
452 static int lsm_append(const char *new, char **result)
453 {
454 	char *cp;
455 
456 	if (*result == NULL) {
457 		*result = kstrdup(new, GFP_KERNEL);
458 		if (*result == NULL)
459 			return -ENOMEM;
460 	} else {
461 		/* Check if it is the last registered name */
462 		if (match_last_lsm(*result, new))
463 			return 0;
464 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
465 		if (cp == NULL)
466 			return -ENOMEM;
467 		kfree(*result);
468 		*result = cp;
469 	}
470 	return 0;
471 }
472 
473 /**
474  * security_add_hooks - Add a modules hooks to the hook lists.
475  * @hooks: the hooks to add
476  * @count: the number of hooks to add
477  * @lsm: the name of the security module
478  *
479  * Each LSM has to register its hooks with the infrastructure.
480  */
481 void __init security_add_hooks(struct security_hook_list *hooks, int count,
482 				const char *lsm)
483 {
484 	int i;
485 
486 	for (i = 0; i < count; i++) {
487 		hooks[i].lsm = lsm;
488 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
489 	}
490 
491 	/*
492 	 * Don't try to append during early_security_init(), we'll come back
493 	 * and fix this up afterwards.
494 	 */
495 	if (slab_is_available()) {
496 		if (lsm_append(lsm, &lsm_names) < 0)
497 			panic("%s - Cannot get early memory.\n", __func__);
498 	}
499 }
500 
501 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
502 {
503 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
504 					    event, data);
505 }
506 EXPORT_SYMBOL(call_blocking_lsm_notifier);
507 
508 int register_blocking_lsm_notifier(struct notifier_block *nb)
509 {
510 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
511 						nb);
512 }
513 EXPORT_SYMBOL(register_blocking_lsm_notifier);
514 
515 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
516 {
517 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
518 						  nb);
519 }
520 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
521 
522 /**
523  * lsm_cred_alloc - allocate a composite cred blob
524  * @cred: the cred that needs a blob
525  * @gfp: allocation type
526  *
527  * Allocate the cred blob for all the modules
528  *
529  * Returns 0, or -ENOMEM if memory can't be allocated.
530  */
531 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
532 {
533 	if (blob_sizes.lbs_cred == 0) {
534 		cred->security = NULL;
535 		return 0;
536 	}
537 
538 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
539 	if (cred->security == NULL)
540 		return -ENOMEM;
541 	return 0;
542 }
543 
544 /**
545  * lsm_early_cred - during initialization allocate a composite cred blob
546  * @cred: the cred that needs a blob
547  *
548  * Allocate the cred blob for all the modules
549  */
550 static void __init lsm_early_cred(struct cred *cred)
551 {
552 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
553 
554 	if (rc)
555 		panic("%s: Early cred alloc failed.\n", __func__);
556 }
557 
558 /**
559  * lsm_file_alloc - allocate a composite file blob
560  * @file: the file that needs a blob
561  *
562  * Allocate the file blob for all the modules
563  *
564  * Returns 0, or -ENOMEM if memory can't be allocated.
565  */
566 static int lsm_file_alloc(struct file *file)
567 {
568 	if (!lsm_file_cache) {
569 		file->f_security = NULL;
570 		return 0;
571 	}
572 
573 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
574 	if (file->f_security == NULL)
575 		return -ENOMEM;
576 	return 0;
577 }
578 
579 /**
580  * lsm_inode_alloc - allocate a composite inode blob
581  * @inode: the inode that needs a blob
582  *
583  * Allocate the inode blob for all the modules
584  *
585  * Returns 0, or -ENOMEM if memory can't be allocated.
586  */
587 int lsm_inode_alloc(struct inode *inode)
588 {
589 	if (!lsm_inode_cache) {
590 		inode->i_security = NULL;
591 		return 0;
592 	}
593 
594 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
595 	if (inode->i_security == NULL)
596 		return -ENOMEM;
597 	return 0;
598 }
599 
600 /**
601  * lsm_task_alloc - allocate a composite task blob
602  * @task: the task that needs a blob
603  *
604  * Allocate the task blob for all the modules
605  *
606  * Returns 0, or -ENOMEM if memory can't be allocated.
607  */
608 static int lsm_task_alloc(struct task_struct *task)
609 {
610 	if (blob_sizes.lbs_task == 0) {
611 		task->security = NULL;
612 		return 0;
613 	}
614 
615 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
616 	if (task->security == NULL)
617 		return -ENOMEM;
618 	return 0;
619 }
620 
621 /**
622  * lsm_ipc_alloc - allocate a composite ipc blob
623  * @kip: the ipc that needs a blob
624  *
625  * Allocate the ipc blob for all the modules
626  *
627  * Returns 0, or -ENOMEM if memory can't be allocated.
628  */
629 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
630 {
631 	if (blob_sizes.lbs_ipc == 0) {
632 		kip->security = NULL;
633 		return 0;
634 	}
635 
636 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
637 	if (kip->security == NULL)
638 		return -ENOMEM;
639 	return 0;
640 }
641 
642 /**
643  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
644  * @mp: the msg_msg that needs a blob
645  *
646  * Allocate the ipc blob for all the modules
647  *
648  * Returns 0, or -ENOMEM if memory can't be allocated.
649  */
650 static int lsm_msg_msg_alloc(struct msg_msg *mp)
651 {
652 	if (blob_sizes.lbs_msg_msg == 0) {
653 		mp->security = NULL;
654 		return 0;
655 	}
656 
657 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
658 	if (mp->security == NULL)
659 		return -ENOMEM;
660 	return 0;
661 }
662 
663 /**
664  * lsm_early_task - during initialization allocate a composite task blob
665  * @task: the task that needs a blob
666  *
667  * Allocate the task blob for all the modules
668  */
669 static void __init lsm_early_task(struct task_struct *task)
670 {
671 	int rc = lsm_task_alloc(task);
672 
673 	if (rc)
674 		panic("%s: Early task alloc failed.\n", __func__);
675 }
676 
677 /**
678  * lsm_superblock_alloc - allocate a composite superblock blob
679  * @sb: the superblock that needs a blob
680  *
681  * Allocate the superblock blob for all the modules
682  *
683  * Returns 0, or -ENOMEM if memory can't be allocated.
684  */
685 static int lsm_superblock_alloc(struct super_block *sb)
686 {
687 	if (blob_sizes.lbs_superblock == 0) {
688 		sb->s_security = NULL;
689 		return 0;
690 	}
691 
692 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
693 	if (sb->s_security == NULL)
694 		return -ENOMEM;
695 	return 0;
696 }
697 
698 /*
699  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
700  * can be accessed with:
701  *
702  *	LSM_RET_DEFAULT(<hook_name>)
703  *
704  * The macros below define static constants for the default value of each
705  * LSM hook.
706  */
707 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
708 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
709 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
710 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
711 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
712 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
713 
714 #include <linux/lsm_hook_defs.h>
715 #undef LSM_HOOK
716 
717 /*
718  * Hook list operation macros.
719  *
720  * call_void_hook:
721  *	This is a hook that does not return a value.
722  *
723  * call_int_hook:
724  *	This is a hook that returns a value.
725  */
726 
727 #define call_void_hook(FUNC, ...)				\
728 	do {							\
729 		struct security_hook_list *P;			\
730 								\
731 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
732 			P->hook.FUNC(__VA_ARGS__);		\
733 	} while (0)
734 
735 #define call_int_hook(FUNC, IRC, ...) ({			\
736 	int RC = IRC;						\
737 	do {							\
738 		struct security_hook_list *P;			\
739 								\
740 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
741 			RC = P->hook.FUNC(__VA_ARGS__);		\
742 			if (RC != 0)				\
743 				break;				\
744 		}						\
745 	} while (0);						\
746 	RC;							\
747 })
748 
749 /* Security operations */
750 
751 int security_binder_set_context_mgr(const struct cred *mgr)
752 {
753 	return call_int_hook(binder_set_context_mgr, 0, mgr);
754 }
755 
756 int security_binder_transaction(const struct cred *from,
757 				const struct cred *to)
758 {
759 	return call_int_hook(binder_transaction, 0, from, to);
760 }
761 
762 int security_binder_transfer_binder(const struct cred *from,
763 				    const struct cred *to)
764 {
765 	return call_int_hook(binder_transfer_binder, 0, from, to);
766 }
767 
768 int security_binder_transfer_file(const struct cred *from,
769 				  const struct cred *to, struct file *file)
770 {
771 	return call_int_hook(binder_transfer_file, 0, from, to, file);
772 }
773 
774 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
775 {
776 	return call_int_hook(ptrace_access_check, 0, child, mode);
777 }
778 
779 int security_ptrace_traceme(struct task_struct *parent)
780 {
781 	return call_int_hook(ptrace_traceme, 0, parent);
782 }
783 
784 int security_capget(struct task_struct *target,
785 		     kernel_cap_t *effective,
786 		     kernel_cap_t *inheritable,
787 		     kernel_cap_t *permitted)
788 {
789 	return call_int_hook(capget, 0, target,
790 				effective, inheritable, permitted);
791 }
792 
793 int security_capset(struct cred *new, const struct cred *old,
794 		    const kernel_cap_t *effective,
795 		    const kernel_cap_t *inheritable,
796 		    const kernel_cap_t *permitted)
797 {
798 	return call_int_hook(capset, 0, new, old,
799 				effective, inheritable, permitted);
800 }
801 
802 int security_capable(const struct cred *cred,
803 		     struct user_namespace *ns,
804 		     int cap,
805 		     unsigned int opts)
806 {
807 	return call_int_hook(capable, 0, cred, ns, cap, opts);
808 }
809 
810 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
811 {
812 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
813 }
814 
815 int security_quota_on(struct dentry *dentry)
816 {
817 	return call_int_hook(quota_on, 0, dentry);
818 }
819 
820 int security_syslog(int type)
821 {
822 	return call_int_hook(syslog, 0, type);
823 }
824 
825 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
826 {
827 	return call_int_hook(settime, 0, ts, tz);
828 }
829 
830 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
831 {
832 	struct security_hook_list *hp;
833 	int cap_sys_admin = 1;
834 	int rc;
835 
836 	/*
837 	 * The module will respond with a positive value if
838 	 * it thinks the __vm_enough_memory() call should be
839 	 * made with the cap_sys_admin set. If all of the modules
840 	 * agree that it should be set it will. If any module
841 	 * thinks it should not be set it won't.
842 	 */
843 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
844 		rc = hp->hook.vm_enough_memory(mm, pages);
845 		if (rc <= 0) {
846 			cap_sys_admin = 0;
847 			break;
848 		}
849 	}
850 	return __vm_enough_memory(mm, pages, cap_sys_admin);
851 }
852 
853 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
854 {
855 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
856 }
857 
858 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
859 {
860 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
861 }
862 
863 int security_bprm_check(struct linux_binprm *bprm)
864 {
865 	int ret;
866 
867 	ret = call_int_hook(bprm_check_security, 0, bprm);
868 	if (ret)
869 		return ret;
870 	return ima_bprm_check(bprm);
871 }
872 
873 void security_bprm_committing_creds(struct linux_binprm *bprm)
874 {
875 	call_void_hook(bprm_committing_creds, bprm);
876 }
877 
878 void security_bprm_committed_creds(struct linux_binprm *bprm)
879 {
880 	call_void_hook(bprm_committed_creds, bprm);
881 }
882 
883 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
884 {
885 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
886 }
887 
888 int security_fs_context_parse_param(struct fs_context *fc,
889 				    struct fs_parameter *param)
890 {
891 	struct security_hook_list *hp;
892 	int trc;
893 	int rc = -ENOPARAM;
894 
895 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
896 			     list) {
897 		trc = hp->hook.fs_context_parse_param(fc, param);
898 		if (trc == 0)
899 			rc = 0;
900 		else if (trc != -ENOPARAM)
901 			return trc;
902 	}
903 	return rc;
904 }
905 
906 int security_sb_alloc(struct super_block *sb)
907 {
908 	int rc = lsm_superblock_alloc(sb);
909 
910 	if (unlikely(rc))
911 		return rc;
912 	rc = call_int_hook(sb_alloc_security, 0, sb);
913 	if (unlikely(rc))
914 		security_sb_free(sb);
915 	return rc;
916 }
917 
918 void security_sb_delete(struct super_block *sb)
919 {
920 	call_void_hook(sb_delete, sb);
921 }
922 
923 void security_sb_free(struct super_block *sb)
924 {
925 	call_void_hook(sb_free_security, sb);
926 	kfree(sb->s_security);
927 	sb->s_security = NULL;
928 }
929 
930 void security_free_mnt_opts(void **mnt_opts)
931 {
932 	if (!*mnt_opts)
933 		return;
934 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
935 	*mnt_opts = NULL;
936 }
937 EXPORT_SYMBOL(security_free_mnt_opts);
938 
939 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
940 {
941 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
944 
945 int security_sb_mnt_opts_compat(struct super_block *sb,
946 				void *mnt_opts)
947 {
948 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
949 }
950 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
951 
952 int security_sb_remount(struct super_block *sb,
953 			void *mnt_opts)
954 {
955 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
956 }
957 EXPORT_SYMBOL(security_sb_remount);
958 
959 int security_sb_kern_mount(struct super_block *sb)
960 {
961 	return call_int_hook(sb_kern_mount, 0, sb);
962 }
963 
964 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
965 {
966 	return call_int_hook(sb_show_options, 0, m, sb);
967 }
968 
969 int security_sb_statfs(struct dentry *dentry)
970 {
971 	return call_int_hook(sb_statfs, 0, dentry);
972 }
973 
974 int security_sb_mount(const char *dev_name, const struct path *path,
975                        const char *type, unsigned long flags, void *data)
976 {
977 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
978 }
979 
980 int security_sb_umount(struct vfsmount *mnt, int flags)
981 {
982 	return call_int_hook(sb_umount, 0, mnt, flags);
983 }
984 
985 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
986 {
987 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
988 }
989 
990 int security_sb_set_mnt_opts(struct super_block *sb,
991 				void *mnt_opts,
992 				unsigned long kern_flags,
993 				unsigned long *set_kern_flags)
994 {
995 	return call_int_hook(sb_set_mnt_opts,
996 				mnt_opts ? -EOPNOTSUPP : 0, sb,
997 				mnt_opts, kern_flags, set_kern_flags);
998 }
999 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1000 
1001 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1002 				struct super_block *newsb,
1003 				unsigned long kern_flags,
1004 				unsigned long *set_kern_flags)
1005 {
1006 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1007 				kern_flags, set_kern_flags);
1008 }
1009 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1010 
1011 int security_move_mount(const struct path *from_path, const struct path *to_path)
1012 {
1013 	return call_int_hook(move_mount, 0, from_path, to_path);
1014 }
1015 
1016 int security_path_notify(const struct path *path, u64 mask,
1017 				unsigned int obj_type)
1018 {
1019 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1020 }
1021 
1022 int security_inode_alloc(struct inode *inode)
1023 {
1024 	int rc = lsm_inode_alloc(inode);
1025 
1026 	if (unlikely(rc))
1027 		return rc;
1028 	rc = call_int_hook(inode_alloc_security, 0, inode);
1029 	if (unlikely(rc))
1030 		security_inode_free(inode);
1031 	return rc;
1032 }
1033 
1034 static void inode_free_by_rcu(struct rcu_head *head)
1035 {
1036 	/*
1037 	 * The rcu head is at the start of the inode blob
1038 	 */
1039 	kmem_cache_free(lsm_inode_cache, head);
1040 }
1041 
1042 void security_inode_free(struct inode *inode)
1043 {
1044 	integrity_inode_free(inode);
1045 	call_void_hook(inode_free_security, inode);
1046 	/*
1047 	 * The inode may still be referenced in a path walk and
1048 	 * a call to security_inode_permission() can be made
1049 	 * after inode_free_security() is called. Ideally, the VFS
1050 	 * wouldn't do this, but fixing that is a much harder
1051 	 * job. For now, simply free the i_security via RCU, and
1052 	 * leave the current inode->i_security pointer intact.
1053 	 * The inode will be freed after the RCU grace period too.
1054 	 */
1055 	if (inode->i_security)
1056 		call_rcu((struct rcu_head *)inode->i_security,
1057 				inode_free_by_rcu);
1058 }
1059 
1060 int security_dentry_init_security(struct dentry *dentry, int mode,
1061 				  const struct qstr *name,
1062 				  const char **xattr_name, void **ctx,
1063 				  u32 *ctxlen)
1064 {
1065 	struct security_hook_list *hp;
1066 	int rc;
1067 
1068 	/*
1069 	 * Only one module will provide a security context.
1070 	 */
1071 	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1072 		rc = hp->hook.dentry_init_security(dentry, mode, name,
1073 						   xattr_name, ctx, ctxlen);
1074 		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1075 			return rc;
1076 	}
1077 	return LSM_RET_DEFAULT(dentry_init_security);
1078 }
1079 EXPORT_SYMBOL(security_dentry_init_security);
1080 
1081 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1082 				    struct qstr *name,
1083 				    const struct cred *old, struct cred *new)
1084 {
1085 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1086 				name, old, new);
1087 }
1088 EXPORT_SYMBOL(security_dentry_create_files_as);
1089 
1090 int security_inode_init_security(struct inode *inode, struct inode *dir,
1091 				 const struct qstr *qstr,
1092 				 const initxattrs initxattrs, void *fs_data)
1093 {
1094 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1095 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1096 	int ret;
1097 
1098 	if (unlikely(IS_PRIVATE(inode)))
1099 		return 0;
1100 
1101 	if (!initxattrs)
1102 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1103 				     dir, qstr, NULL, NULL, NULL);
1104 	memset(new_xattrs, 0, sizeof(new_xattrs));
1105 	lsm_xattr = new_xattrs;
1106 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1107 						&lsm_xattr->name,
1108 						&lsm_xattr->value,
1109 						&lsm_xattr->value_len);
1110 	if (ret)
1111 		goto out;
1112 
1113 	evm_xattr = lsm_xattr + 1;
1114 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1115 	if (ret)
1116 		goto out;
1117 	ret = initxattrs(inode, new_xattrs, fs_data);
1118 out:
1119 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1120 		kfree(xattr->value);
1121 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1122 }
1123 EXPORT_SYMBOL(security_inode_init_security);
1124 
1125 int security_inode_init_security_anon(struct inode *inode,
1126 				      const struct qstr *name,
1127 				      const struct inode *context_inode)
1128 {
1129 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1130 			     context_inode);
1131 }
1132 
1133 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1134 				     const struct qstr *qstr, const char **name,
1135 				     void **value, size_t *len)
1136 {
1137 	if (unlikely(IS_PRIVATE(inode)))
1138 		return -EOPNOTSUPP;
1139 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1140 			     qstr, name, value, len);
1141 }
1142 EXPORT_SYMBOL(security_old_inode_init_security);
1143 
1144 #ifdef CONFIG_SECURITY_PATH
1145 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1146 			unsigned int dev)
1147 {
1148 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1149 		return 0;
1150 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1151 }
1152 EXPORT_SYMBOL(security_path_mknod);
1153 
1154 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1155 {
1156 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1157 		return 0;
1158 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1159 }
1160 EXPORT_SYMBOL(security_path_mkdir);
1161 
1162 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1163 {
1164 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1165 		return 0;
1166 	return call_int_hook(path_rmdir, 0, dir, dentry);
1167 }
1168 
1169 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1170 {
1171 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1172 		return 0;
1173 	return call_int_hook(path_unlink, 0, dir, dentry);
1174 }
1175 EXPORT_SYMBOL(security_path_unlink);
1176 
1177 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1178 			  const char *old_name)
1179 {
1180 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1181 		return 0;
1182 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1183 }
1184 
1185 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1186 		       struct dentry *new_dentry)
1187 {
1188 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1189 		return 0;
1190 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1191 }
1192 
1193 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1194 			 const struct path *new_dir, struct dentry *new_dentry,
1195 			 unsigned int flags)
1196 {
1197 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1198 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1199 		return 0;
1200 
1201 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1202 				new_dentry, flags);
1203 }
1204 EXPORT_SYMBOL(security_path_rename);
1205 
1206 int security_path_truncate(const struct path *path)
1207 {
1208 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1209 		return 0;
1210 	return call_int_hook(path_truncate, 0, path);
1211 }
1212 
1213 int security_path_chmod(const struct path *path, umode_t mode)
1214 {
1215 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1216 		return 0;
1217 	return call_int_hook(path_chmod, 0, path, mode);
1218 }
1219 
1220 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1221 {
1222 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1223 		return 0;
1224 	return call_int_hook(path_chown, 0, path, uid, gid);
1225 }
1226 
1227 int security_path_chroot(const struct path *path)
1228 {
1229 	return call_int_hook(path_chroot, 0, path);
1230 }
1231 #endif
1232 
1233 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1234 {
1235 	if (unlikely(IS_PRIVATE(dir)))
1236 		return 0;
1237 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1238 }
1239 EXPORT_SYMBOL_GPL(security_inode_create);
1240 
1241 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1242 			 struct dentry *new_dentry)
1243 {
1244 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1245 		return 0;
1246 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1247 }
1248 
1249 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1250 {
1251 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252 		return 0;
1253 	return call_int_hook(inode_unlink, 0, dir, dentry);
1254 }
1255 
1256 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1257 			    const char *old_name)
1258 {
1259 	if (unlikely(IS_PRIVATE(dir)))
1260 		return 0;
1261 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1262 }
1263 
1264 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1265 {
1266 	if (unlikely(IS_PRIVATE(dir)))
1267 		return 0;
1268 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1269 }
1270 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1271 
1272 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1273 {
1274 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1275 		return 0;
1276 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1277 }
1278 
1279 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1280 {
1281 	if (unlikely(IS_PRIVATE(dir)))
1282 		return 0;
1283 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1284 }
1285 
1286 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1287 			   struct inode *new_dir, struct dentry *new_dentry,
1288 			   unsigned int flags)
1289 {
1290         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1291             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1292 		return 0;
1293 
1294 	if (flags & RENAME_EXCHANGE) {
1295 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1296 						     old_dir, old_dentry);
1297 		if (err)
1298 			return err;
1299 	}
1300 
1301 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1302 					   new_dir, new_dentry);
1303 }
1304 
1305 int security_inode_readlink(struct dentry *dentry)
1306 {
1307 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1308 		return 0;
1309 	return call_int_hook(inode_readlink, 0, dentry);
1310 }
1311 
1312 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1313 			       bool rcu)
1314 {
1315 	if (unlikely(IS_PRIVATE(inode)))
1316 		return 0;
1317 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1318 }
1319 
1320 int security_inode_permission(struct inode *inode, int mask)
1321 {
1322 	if (unlikely(IS_PRIVATE(inode)))
1323 		return 0;
1324 	return call_int_hook(inode_permission, 0, inode, mask);
1325 }
1326 
1327 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1328 {
1329 	int ret;
1330 
1331 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1332 		return 0;
1333 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1334 	if (ret)
1335 		return ret;
1336 	return evm_inode_setattr(dentry, attr);
1337 }
1338 EXPORT_SYMBOL_GPL(security_inode_setattr);
1339 
1340 int security_inode_getattr(const struct path *path)
1341 {
1342 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1343 		return 0;
1344 	return call_int_hook(inode_getattr, 0, path);
1345 }
1346 
1347 int security_inode_setxattr(struct user_namespace *mnt_userns,
1348 			    struct dentry *dentry, const char *name,
1349 			    const void *value, size_t size, int flags)
1350 {
1351 	int ret;
1352 
1353 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1354 		return 0;
1355 	/*
1356 	 * SELinux and Smack integrate the cap call,
1357 	 * so assume that all LSMs supplying this call do so.
1358 	 */
1359 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1360 			    size, flags);
1361 
1362 	if (ret == 1)
1363 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1364 	if (ret)
1365 		return ret;
1366 	ret = ima_inode_setxattr(dentry, name, value, size);
1367 	if (ret)
1368 		return ret;
1369 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1370 }
1371 
1372 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1373 				  const void *value, size_t size, int flags)
1374 {
1375 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1376 		return;
1377 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1378 	evm_inode_post_setxattr(dentry, name, value, size);
1379 }
1380 
1381 int security_inode_getxattr(struct dentry *dentry, const char *name)
1382 {
1383 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1384 		return 0;
1385 	return call_int_hook(inode_getxattr, 0, dentry, name);
1386 }
1387 
1388 int security_inode_listxattr(struct dentry *dentry)
1389 {
1390 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1391 		return 0;
1392 	return call_int_hook(inode_listxattr, 0, dentry);
1393 }
1394 
1395 int security_inode_removexattr(struct user_namespace *mnt_userns,
1396 			       struct dentry *dentry, const char *name)
1397 {
1398 	int ret;
1399 
1400 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1401 		return 0;
1402 	/*
1403 	 * SELinux and Smack integrate the cap call,
1404 	 * so assume that all LSMs supplying this call do so.
1405 	 */
1406 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1407 	if (ret == 1)
1408 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1409 	if (ret)
1410 		return ret;
1411 	ret = ima_inode_removexattr(dentry, name);
1412 	if (ret)
1413 		return ret;
1414 	return evm_inode_removexattr(mnt_userns, dentry, name);
1415 }
1416 
1417 int security_inode_need_killpriv(struct dentry *dentry)
1418 {
1419 	return call_int_hook(inode_need_killpriv, 0, dentry);
1420 }
1421 
1422 int security_inode_killpriv(struct user_namespace *mnt_userns,
1423 			    struct dentry *dentry)
1424 {
1425 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1426 }
1427 
1428 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1429 			       struct inode *inode, const char *name,
1430 			       void **buffer, bool alloc)
1431 {
1432 	struct security_hook_list *hp;
1433 	int rc;
1434 
1435 	if (unlikely(IS_PRIVATE(inode)))
1436 		return LSM_RET_DEFAULT(inode_getsecurity);
1437 	/*
1438 	 * Only one module will provide an attribute with a given name.
1439 	 */
1440 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1441 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1442 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1443 			return rc;
1444 	}
1445 	return LSM_RET_DEFAULT(inode_getsecurity);
1446 }
1447 
1448 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1449 {
1450 	struct security_hook_list *hp;
1451 	int rc;
1452 
1453 	if (unlikely(IS_PRIVATE(inode)))
1454 		return LSM_RET_DEFAULT(inode_setsecurity);
1455 	/*
1456 	 * Only one module will provide an attribute with a given name.
1457 	 */
1458 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1459 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1460 								flags);
1461 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1462 			return rc;
1463 	}
1464 	return LSM_RET_DEFAULT(inode_setsecurity);
1465 }
1466 
1467 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1468 {
1469 	if (unlikely(IS_PRIVATE(inode)))
1470 		return 0;
1471 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1472 }
1473 EXPORT_SYMBOL(security_inode_listsecurity);
1474 
1475 void security_inode_getsecid(struct inode *inode, u32 *secid)
1476 {
1477 	call_void_hook(inode_getsecid, inode, secid);
1478 }
1479 
1480 int security_inode_copy_up(struct dentry *src, struct cred **new)
1481 {
1482 	return call_int_hook(inode_copy_up, 0, src, new);
1483 }
1484 EXPORT_SYMBOL(security_inode_copy_up);
1485 
1486 int security_inode_copy_up_xattr(const char *name)
1487 {
1488 	struct security_hook_list *hp;
1489 	int rc;
1490 
1491 	/*
1492 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1493 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1494 	 * any other error code incase of an error.
1495 	 */
1496 	hlist_for_each_entry(hp,
1497 		&security_hook_heads.inode_copy_up_xattr, list) {
1498 		rc = hp->hook.inode_copy_up_xattr(name);
1499 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1500 			return rc;
1501 	}
1502 
1503 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1504 }
1505 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1506 
1507 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1508 				  struct kernfs_node *kn)
1509 {
1510 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1511 }
1512 
1513 int security_file_permission(struct file *file, int mask)
1514 {
1515 	int ret;
1516 
1517 	ret = call_int_hook(file_permission, 0, file, mask);
1518 	if (ret)
1519 		return ret;
1520 
1521 	return fsnotify_perm(file, mask);
1522 }
1523 
1524 int security_file_alloc(struct file *file)
1525 {
1526 	int rc = lsm_file_alloc(file);
1527 
1528 	if (rc)
1529 		return rc;
1530 	rc = call_int_hook(file_alloc_security, 0, file);
1531 	if (unlikely(rc))
1532 		security_file_free(file);
1533 	return rc;
1534 }
1535 
1536 void security_file_free(struct file *file)
1537 {
1538 	void *blob;
1539 
1540 	call_void_hook(file_free_security, file);
1541 
1542 	blob = file->f_security;
1543 	if (blob) {
1544 		file->f_security = NULL;
1545 		kmem_cache_free(lsm_file_cache, blob);
1546 	}
1547 }
1548 
1549 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1550 {
1551 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1552 }
1553 EXPORT_SYMBOL_GPL(security_file_ioctl);
1554 
1555 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1556 {
1557 	/*
1558 	 * Does we have PROT_READ and does the application expect
1559 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1560 	 */
1561 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1562 		return prot;
1563 	if (!(current->personality & READ_IMPLIES_EXEC))
1564 		return prot;
1565 	/*
1566 	 * if that's an anonymous mapping, let it.
1567 	 */
1568 	if (!file)
1569 		return prot | PROT_EXEC;
1570 	/*
1571 	 * ditto if it's not on noexec mount, except that on !MMU we need
1572 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1573 	 */
1574 	if (!path_noexec(&file->f_path)) {
1575 #ifndef CONFIG_MMU
1576 		if (file->f_op->mmap_capabilities) {
1577 			unsigned caps = file->f_op->mmap_capabilities(file);
1578 			if (!(caps & NOMMU_MAP_EXEC))
1579 				return prot;
1580 		}
1581 #endif
1582 		return prot | PROT_EXEC;
1583 	}
1584 	/* anything on noexec mount won't get PROT_EXEC */
1585 	return prot;
1586 }
1587 
1588 int security_mmap_file(struct file *file, unsigned long prot,
1589 			unsigned long flags)
1590 {
1591 	int ret;
1592 	ret = call_int_hook(mmap_file, 0, file, prot,
1593 					mmap_prot(file, prot), flags);
1594 	if (ret)
1595 		return ret;
1596 	return ima_file_mmap(file, prot);
1597 }
1598 
1599 int security_mmap_addr(unsigned long addr)
1600 {
1601 	return call_int_hook(mmap_addr, 0, addr);
1602 }
1603 
1604 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1605 			    unsigned long prot)
1606 {
1607 	int ret;
1608 
1609 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1610 	if (ret)
1611 		return ret;
1612 	return ima_file_mprotect(vma, prot);
1613 }
1614 
1615 int security_file_lock(struct file *file, unsigned int cmd)
1616 {
1617 	return call_int_hook(file_lock, 0, file, cmd);
1618 }
1619 
1620 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1621 {
1622 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1623 }
1624 
1625 void security_file_set_fowner(struct file *file)
1626 {
1627 	call_void_hook(file_set_fowner, file);
1628 }
1629 
1630 int security_file_send_sigiotask(struct task_struct *tsk,
1631 				  struct fown_struct *fown, int sig)
1632 {
1633 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1634 }
1635 
1636 int security_file_receive(struct file *file)
1637 {
1638 	return call_int_hook(file_receive, 0, file);
1639 }
1640 
1641 int security_file_open(struct file *file)
1642 {
1643 	int ret;
1644 
1645 	ret = call_int_hook(file_open, 0, file);
1646 	if (ret)
1647 		return ret;
1648 
1649 	return fsnotify_perm(file, MAY_OPEN);
1650 }
1651 
1652 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1653 {
1654 	int rc = lsm_task_alloc(task);
1655 
1656 	if (rc)
1657 		return rc;
1658 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1659 	if (unlikely(rc))
1660 		security_task_free(task);
1661 	return rc;
1662 }
1663 
1664 void security_task_free(struct task_struct *task)
1665 {
1666 	call_void_hook(task_free, task);
1667 
1668 	kfree(task->security);
1669 	task->security = NULL;
1670 }
1671 
1672 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1673 {
1674 	int rc = lsm_cred_alloc(cred, gfp);
1675 
1676 	if (rc)
1677 		return rc;
1678 
1679 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1680 	if (unlikely(rc))
1681 		security_cred_free(cred);
1682 	return rc;
1683 }
1684 
1685 void security_cred_free(struct cred *cred)
1686 {
1687 	/*
1688 	 * There is a failure case in prepare_creds() that
1689 	 * may result in a call here with ->security being NULL.
1690 	 */
1691 	if (unlikely(cred->security == NULL))
1692 		return;
1693 
1694 	call_void_hook(cred_free, cred);
1695 
1696 	kfree(cred->security);
1697 	cred->security = NULL;
1698 }
1699 
1700 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1701 {
1702 	int rc = lsm_cred_alloc(new, gfp);
1703 
1704 	if (rc)
1705 		return rc;
1706 
1707 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1708 	if (unlikely(rc))
1709 		security_cred_free(new);
1710 	return rc;
1711 }
1712 
1713 void security_transfer_creds(struct cred *new, const struct cred *old)
1714 {
1715 	call_void_hook(cred_transfer, new, old);
1716 }
1717 
1718 void security_cred_getsecid(const struct cred *c, u32 *secid)
1719 {
1720 	*secid = 0;
1721 	call_void_hook(cred_getsecid, c, secid);
1722 }
1723 EXPORT_SYMBOL(security_cred_getsecid);
1724 
1725 int security_kernel_act_as(struct cred *new, u32 secid)
1726 {
1727 	return call_int_hook(kernel_act_as, 0, new, secid);
1728 }
1729 
1730 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1731 {
1732 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1733 }
1734 
1735 int security_kernel_module_request(char *kmod_name)
1736 {
1737 	int ret;
1738 
1739 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1740 	if (ret)
1741 		return ret;
1742 	return integrity_kernel_module_request(kmod_name);
1743 }
1744 
1745 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1746 			      bool contents)
1747 {
1748 	int ret;
1749 
1750 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1751 	if (ret)
1752 		return ret;
1753 	return ima_read_file(file, id, contents);
1754 }
1755 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1756 
1757 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1758 				   enum kernel_read_file_id id)
1759 {
1760 	int ret;
1761 
1762 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1763 	if (ret)
1764 		return ret;
1765 	return ima_post_read_file(file, buf, size, id);
1766 }
1767 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1768 
1769 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1770 {
1771 	int ret;
1772 
1773 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1774 	if (ret)
1775 		return ret;
1776 	return ima_load_data(id, contents);
1777 }
1778 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1779 
1780 int security_kernel_post_load_data(char *buf, loff_t size,
1781 				   enum kernel_load_data_id id,
1782 				   char *description)
1783 {
1784 	int ret;
1785 
1786 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1787 			    description);
1788 	if (ret)
1789 		return ret;
1790 	return ima_post_load_data(buf, size, id, description);
1791 }
1792 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1793 
1794 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1795 			     int flags)
1796 {
1797 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1798 }
1799 
1800 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1801 				 int flags)
1802 {
1803 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1804 }
1805 
1806 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1807 {
1808 	return call_int_hook(task_fix_setgroups, 0, new, old);
1809 }
1810 
1811 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1812 {
1813 	return call_int_hook(task_setpgid, 0, p, pgid);
1814 }
1815 
1816 int security_task_getpgid(struct task_struct *p)
1817 {
1818 	return call_int_hook(task_getpgid, 0, p);
1819 }
1820 
1821 int security_task_getsid(struct task_struct *p)
1822 {
1823 	return call_int_hook(task_getsid, 0, p);
1824 }
1825 
1826 void security_current_getsecid_subj(u32 *secid)
1827 {
1828 	*secid = 0;
1829 	call_void_hook(current_getsecid_subj, secid);
1830 }
1831 EXPORT_SYMBOL(security_current_getsecid_subj);
1832 
1833 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1834 {
1835 	*secid = 0;
1836 	call_void_hook(task_getsecid_obj, p, secid);
1837 }
1838 EXPORT_SYMBOL(security_task_getsecid_obj);
1839 
1840 int security_task_setnice(struct task_struct *p, int nice)
1841 {
1842 	return call_int_hook(task_setnice, 0, p, nice);
1843 }
1844 
1845 int security_task_setioprio(struct task_struct *p, int ioprio)
1846 {
1847 	return call_int_hook(task_setioprio, 0, p, ioprio);
1848 }
1849 
1850 int security_task_getioprio(struct task_struct *p)
1851 {
1852 	return call_int_hook(task_getioprio, 0, p);
1853 }
1854 
1855 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1856 			  unsigned int flags)
1857 {
1858 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1859 }
1860 
1861 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1862 		struct rlimit *new_rlim)
1863 {
1864 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1865 }
1866 
1867 int security_task_setscheduler(struct task_struct *p)
1868 {
1869 	return call_int_hook(task_setscheduler, 0, p);
1870 }
1871 
1872 int security_task_getscheduler(struct task_struct *p)
1873 {
1874 	return call_int_hook(task_getscheduler, 0, p);
1875 }
1876 
1877 int security_task_movememory(struct task_struct *p)
1878 {
1879 	return call_int_hook(task_movememory, 0, p);
1880 }
1881 
1882 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1883 			int sig, const struct cred *cred)
1884 {
1885 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1886 }
1887 
1888 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1889 			 unsigned long arg4, unsigned long arg5)
1890 {
1891 	int thisrc;
1892 	int rc = LSM_RET_DEFAULT(task_prctl);
1893 	struct security_hook_list *hp;
1894 
1895 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1896 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1897 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1898 			rc = thisrc;
1899 			if (thisrc != 0)
1900 				break;
1901 		}
1902 	}
1903 	return rc;
1904 }
1905 
1906 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1907 {
1908 	call_void_hook(task_to_inode, p, inode);
1909 }
1910 
1911 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1912 {
1913 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1914 }
1915 
1916 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1917 {
1918 	*secid = 0;
1919 	call_void_hook(ipc_getsecid, ipcp, secid);
1920 }
1921 
1922 int security_msg_msg_alloc(struct msg_msg *msg)
1923 {
1924 	int rc = lsm_msg_msg_alloc(msg);
1925 
1926 	if (unlikely(rc))
1927 		return rc;
1928 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1929 	if (unlikely(rc))
1930 		security_msg_msg_free(msg);
1931 	return rc;
1932 }
1933 
1934 void security_msg_msg_free(struct msg_msg *msg)
1935 {
1936 	call_void_hook(msg_msg_free_security, msg);
1937 	kfree(msg->security);
1938 	msg->security = NULL;
1939 }
1940 
1941 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1942 {
1943 	int rc = lsm_ipc_alloc(msq);
1944 
1945 	if (unlikely(rc))
1946 		return rc;
1947 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1948 	if (unlikely(rc))
1949 		security_msg_queue_free(msq);
1950 	return rc;
1951 }
1952 
1953 void security_msg_queue_free(struct kern_ipc_perm *msq)
1954 {
1955 	call_void_hook(msg_queue_free_security, msq);
1956 	kfree(msq->security);
1957 	msq->security = NULL;
1958 }
1959 
1960 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1961 {
1962 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1963 }
1964 
1965 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1966 {
1967 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1968 }
1969 
1970 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1971 			       struct msg_msg *msg, int msqflg)
1972 {
1973 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1974 }
1975 
1976 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1977 			       struct task_struct *target, long type, int mode)
1978 {
1979 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1980 }
1981 
1982 int security_shm_alloc(struct kern_ipc_perm *shp)
1983 {
1984 	int rc = lsm_ipc_alloc(shp);
1985 
1986 	if (unlikely(rc))
1987 		return rc;
1988 	rc = call_int_hook(shm_alloc_security, 0, shp);
1989 	if (unlikely(rc))
1990 		security_shm_free(shp);
1991 	return rc;
1992 }
1993 
1994 void security_shm_free(struct kern_ipc_perm *shp)
1995 {
1996 	call_void_hook(shm_free_security, shp);
1997 	kfree(shp->security);
1998 	shp->security = NULL;
1999 }
2000 
2001 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2002 {
2003 	return call_int_hook(shm_associate, 0, shp, shmflg);
2004 }
2005 
2006 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2007 {
2008 	return call_int_hook(shm_shmctl, 0, shp, cmd);
2009 }
2010 
2011 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2012 {
2013 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2014 }
2015 
2016 int security_sem_alloc(struct kern_ipc_perm *sma)
2017 {
2018 	int rc = lsm_ipc_alloc(sma);
2019 
2020 	if (unlikely(rc))
2021 		return rc;
2022 	rc = call_int_hook(sem_alloc_security, 0, sma);
2023 	if (unlikely(rc))
2024 		security_sem_free(sma);
2025 	return rc;
2026 }
2027 
2028 void security_sem_free(struct kern_ipc_perm *sma)
2029 {
2030 	call_void_hook(sem_free_security, sma);
2031 	kfree(sma->security);
2032 	sma->security = NULL;
2033 }
2034 
2035 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2036 {
2037 	return call_int_hook(sem_associate, 0, sma, semflg);
2038 }
2039 
2040 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2041 {
2042 	return call_int_hook(sem_semctl, 0, sma, cmd);
2043 }
2044 
2045 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2046 			unsigned nsops, int alter)
2047 {
2048 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2049 }
2050 
2051 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2052 {
2053 	if (unlikely(inode && IS_PRIVATE(inode)))
2054 		return;
2055 	call_void_hook(d_instantiate, dentry, inode);
2056 }
2057 EXPORT_SYMBOL(security_d_instantiate);
2058 
2059 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2060 				char **value)
2061 {
2062 	struct security_hook_list *hp;
2063 
2064 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2065 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2066 			continue;
2067 		return hp->hook.getprocattr(p, name, value);
2068 	}
2069 	return LSM_RET_DEFAULT(getprocattr);
2070 }
2071 
2072 int security_setprocattr(const char *lsm, const char *name, void *value,
2073 			 size_t size)
2074 {
2075 	struct security_hook_list *hp;
2076 
2077 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2078 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2079 			continue;
2080 		return hp->hook.setprocattr(name, value, size);
2081 	}
2082 	return LSM_RET_DEFAULT(setprocattr);
2083 }
2084 
2085 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2086 {
2087 	return call_int_hook(netlink_send, 0, sk, skb);
2088 }
2089 
2090 int security_ismaclabel(const char *name)
2091 {
2092 	return call_int_hook(ismaclabel, 0, name);
2093 }
2094 EXPORT_SYMBOL(security_ismaclabel);
2095 
2096 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2097 {
2098 	struct security_hook_list *hp;
2099 	int rc;
2100 
2101 	/*
2102 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2103 	 * LSM hook is not "stackable").
2104 	 */
2105 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2106 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2107 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2108 			return rc;
2109 	}
2110 
2111 	return LSM_RET_DEFAULT(secid_to_secctx);
2112 }
2113 EXPORT_SYMBOL(security_secid_to_secctx);
2114 
2115 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2116 {
2117 	*secid = 0;
2118 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2119 }
2120 EXPORT_SYMBOL(security_secctx_to_secid);
2121 
2122 void security_release_secctx(char *secdata, u32 seclen)
2123 {
2124 	call_void_hook(release_secctx, secdata, seclen);
2125 }
2126 EXPORT_SYMBOL(security_release_secctx);
2127 
2128 void security_inode_invalidate_secctx(struct inode *inode)
2129 {
2130 	call_void_hook(inode_invalidate_secctx, inode);
2131 }
2132 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2133 
2134 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2135 {
2136 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2137 }
2138 EXPORT_SYMBOL(security_inode_notifysecctx);
2139 
2140 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2141 {
2142 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2143 }
2144 EXPORT_SYMBOL(security_inode_setsecctx);
2145 
2146 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2147 {
2148 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2149 }
2150 EXPORT_SYMBOL(security_inode_getsecctx);
2151 
2152 #ifdef CONFIG_WATCH_QUEUE
2153 int security_post_notification(const struct cred *w_cred,
2154 			       const struct cred *cred,
2155 			       struct watch_notification *n)
2156 {
2157 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2158 }
2159 #endif /* CONFIG_WATCH_QUEUE */
2160 
2161 #ifdef CONFIG_KEY_NOTIFICATIONS
2162 int security_watch_key(struct key *key)
2163 {
2164 	return call_int_hook(watch_key, 0, key);
2165 }
2166 #endif
2167 
2168 #ifdef CONFIG_SECURITY_NETWORK
2169 
2170 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2171 {
2172 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2173 }
2174 EXPORT_SYMBOL(security_unix_stream_connect);
2175 
2176 int security_unix_may_send(struct socket *sock,  struct socket *other)
2177 {
2178 	return call_int_hook(unix_may_send, 0, sock, other);
2179 }
2180 EXPORT_SYMBOL(security_unix_may_send);
2181 
2182 int security_socket_create(int family, int type, int protocol, int kern)
2183 {
2184 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2185 }
2186 
2187 int security_socket_post_create(struct socket *sock, int family,
2188 				int type, int protocol, int kern)
2189 {
2190 	return call_int_hook(socket_post_create, 0, sock, family, type,
2191 						protocol, kern);
2192 }
2193 
2194 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2195 {
2196 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2197 }
2198 EXPORT_SYMBOL(security_socket_socketpair);
2199 
2200 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2201 {
2202 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2203 }
2204 
2205 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2206 {
2207 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2208 }
2209 
2210 int security_socket_listen(struct socket *sock, int backlog)
2211 {
2212 	return call_int_hook(socket_listen, 0, sock, backlog);
2213 }
2214 
2215 int security_socket_accept(struct socket *sock, struct socket *newsock)
2216 {
2217 	return call_int_hook(socket_accept, 0, sock, newsock);
2218 }
2219 
2220 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2221 {
2222 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2223 }
2224 
2225 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2226 			    int size, int flags)
2227 {
2228 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2229 }
2230 
2231 int security_socket_getsockname(struct socket *sock)
2232 {
2233 	return call_int_hook(socket_getsockname, 0, sock);
2234 }
2235 
2236 int security_socket_getpeername(struct socket *sock)
2237 {
2238 	return call_int_hook(socket_getpeername, 0, sock);
2239 }
2240 
2241 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2242 {
2243 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2244 }
2245 
2246 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2247 {
2248 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2249 }
2250 
2251 int security_socket_shutdown(struct socket *sock, int how)
2252 {
2253 	return call_int_hook(socket_shutdown, 0, sock, how);
2254 }
2255 
2256 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2257 {
2258 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2259 }
2260 EXPORT_SYMBOL(security_sock_rcv_skb);
2261 
2262 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2263 				      int __user *optlen, unsigned len)
2264 {
2265 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2266 				optval, optlen, len);
2267 }
2268 
2269 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2270 {
2271 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2272 			     skb, secid);
2273 }
2274 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2275 
2276 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2277 {
2278 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2279 }
2280 
2281 void security_sk_free(struct sock *sk)
2282 {
2283 	call_void_hook(sk_free_security, sk);
2284 }
2285 
2286 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2287 {
2288 	call_void_hook(sk_clone_security, sk, newsk);
2289 }
2290 EXPORT_SYMBOL(security_sk_clone);
2291 
2292 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2293 {
2294 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2295 }
2296 EXPORT_SYMBOL(security_sk_classify_flow);
2297 
2298 void security_req_classify_flow(const struct request_sock *req,
2299 				struct flowi_common *flic)
2300 {
2301 	call_void_hook(req_classify_flow, req, flic);
2302 }
2303 EXPORT_SYMBOL(security_req_classify_flow);
2304 
2305 void security_sock_graft(struct sock *sk, struct socket *parent)
2306 {
2307 	call_void_hook(sock_graft, sk, parent);
2308 }
2309 EXPORT_SYMBOL(security_sock_graft);
2310 
2311 int security_inet_conn_request(const struct sock *sk,
2312 			struct sk_buff *skb, struct request_sock *req)
2313 {
2314 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2315 }
2316 EXPORT_SYMBOL(security_inet_conn_request);
2317 
2318 void security_inet_csk_clone(struct sock *newsk,
2319 			const struct request_sock *req)
2320 {
2321 	call_void_hook(inet_csk_clone, newsk, req);
2322 }
2323 
2324 void security_inet_conn_established(struct sock *sk,
2325 			struct sk_buff *skb)
2326 {
2327 	call_void_hook(inet_conn_established, sk, skb);
2328 }
2329 EXPORT_SYMBOL(security_inet_conn_established);
2330 
2331 int security_secmark_relabel_packet(u32 secid)
2332 {
2333 	return call_int_hook(secmark_relabel_packet, 0, secid);
2334 }
2335 EXPORT_SYMBOL(security_secmark_relabel_packet);
2336 
2337 void security_secmark_refcount_inc(void)
2338 {
2339 	call_void_hook(secmark_refcount_inc);
2340 }
2341 EXPORT_SYMBOL(security_secmark_refcount_inc);
2342 
2343 void security_secmark_refcount_dec(void)
2344 {
2345 	call_void_hook(secmark_refcount_dec);
2346 }
2347 EXPORT_SYMBOL(security_secmark_refcount_dec);
2348 
2349 int security_tun_dev_alloc_security(void **security)
2350 {
2351 	return call_int_hook(tun_dev_alloc_security, 0, security);
2352 }
2353 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2354 
2355 void security_tun_dev_free_security(void *security)
2356 {
2357 	call_void_hook(tun_dev_free_security, security);
2358 }
2359 EXPORT_SYMBOL(security_tun_dev_free_security);
2360 
2361 int security_tun_dev_create(void)
2362 {
2363 	return call_int_hook(tun_dev_create, 0);
2364 }
2365 EXPORT_SYMBOL(security_tun_dev_create);
2366 
2367 int security_tun_dev_attach_queue(void *security)
2368 {
2369 	return call_int_hook(tun_dev_attach_queue, 0, security);
2370 }
2371 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2372 
2373 int security_tun_dev_attach(struct sock *sk, void *security)
2374 {
2375 	return call_int_hook(tun_dev_attach, 0, sk, security);
2376 }
2377 EXPORT_SYMBOL(security_tun_dev_attach);
2378 
2379 int security_tun_dev_open(void *security)
2380 {
2381 	return call_int_hook(tun_dev_open, 0, security);
2382 }
2383 EXPORT_SYMBOL(security_tun_dev_open);
2384 
2385 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2386 {
2387 	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2388 }
2389 EXPORT_SYMBOL(security_sctp_assoc_request);
2390 
2391 int security_sctp_bind_connect(struct sock *sk, int optname,
2392 			       struct sockaddr *address, int addrlen)
2393 {
2394 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2395 			     address, addrlen);
2396 }
2397 EXPORT_SYMBOL(security_sctp_bind_connect);
2398 
2399 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2400 			    struct sock *newsk)
2401 {
2402 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2403 }
2404 EXPORT_SYMBOL(security_sctp_sk_clone);
2405 
2406 int security_sctp_assoc_established(struct sctp_association *asoc,
2407 				    struct sk_buff *skb)
2408 {
2409 	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2410 }
2411 EXPORT_SYMBOL(security_sctp_assoc_established);
2412 
2413 #endif	/* CONFIG_SECURITY_NETWORK */
2414 
2415 #ifdef CONFIG_SECURITY_INFINIBAND
2416 
2417 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2418 {
2419 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2420 }
2421 EXPORT_SYMBOL(security_ib_pkey_access);
2422 
2423 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2424 {
2425 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2426 }
2427 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2428 
2429 int security_ib_alloc_security(void **sec)
2430 {
2431 	return call_int_hook(ib_alloc_security, 0, sec);
2432 }
2433 EXPORT_SYMBOL(security_ib_alloc_security);
2434 
2435 void security_ib_free_security(void *sec)
2436 {
2437 	call_void_hook(ib_free_security, sec);
2438 }
2439 EXPORT_SYMBOL(security_ib_free_security);
2440 #endif	/* CONFIG_SECURITY_INFINIBAND */
2441 
2442 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2443 
2444 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2445 			       struct xfrm_user_sec_ctx *sec_ctx,
2446 			       gfp_t gfp)
2447 {
2448 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2449 }
2450 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2451 
2452 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2453 			      struct xfrm_sec_ctx **new_ctxp)
2454 {
2455 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2456 }
2457 
2458 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2459 {
2460 	call_void_hook(xfrm_policy_free_security, ctx);
2461 }
2462 EXPORT_SYMBOL(security_xfrm_policy_free);
2463 
2464 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2465 {
2466 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2467 }
2468 
2469 int security_xfrm_state_alloc(struct xfrm_state *x,
2470 			      struct xfrm_user_sec_ctx *sec_ctx)
2471 {
2472 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2473 }
2474 EXPORT_SYMBOL(security_xfrm_state_alloc);
2475 
2476 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2477 				      struct xfrm_sec_ctx *polsec, u32 secid)
2478 {
2479 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2480 }
2481 
2482 int security_xfrm_state_delete(struct xfrm_state *x)
2483 {
2484 	return call_int_hook(xfrm_state_delete_security, 0, x);
2485 }
2486 EXPORT_SYMBOL(security_xfrm_state_delete);
2487 
2488 void security_xfrm_state_free(struct xfrm_state *x)
2489 {
2490 	call_void_hook(xfrm_state_free_security, x);
2491 }
2492 
2493 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2494 {
2495 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2496 }
2497 
2498 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2499 				       struct xfrm_policy *xp,
2500 				       const struct flowi_common *flic)
2501 {
2502 	struct security_hook_list *hp;
2503 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2504 
2505 	/*
2506 	 * Since this function is expected to return 0 or 1, the judgment
2507 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2508 	 * we can use the first LSM's judgment because currently only SELinux
2509 	 * supplies this call.
2510 	 *
2511 	 * For speed optimization, we explicitly break the loop rather than
2512 	 * using the macro
2513 	 */
2514 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2515 				list) {
2516 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2517 		break;
2518 	}
2519 	return rc;
2520 }
2521 
2522 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2523 {
2524 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2525 }
2526 
2527 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2528 {
2529 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2530 				0);
2531 
2532 	BUG_ON(rc);
2533 }
2534 EXPORT_SYMBOL(security_skb_classify_flow);
2535 
2536 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2537 
2538 #ifdef CONFIG_KEYS
2539 
2540 int security_key_alloc(struct key *key, const struct cred *cred,
2541 		       unsigned long flags)
2542 {
2543 	return call_int_hook(key_alloc, 0, key, cred, flags);
2544 }
2545 
2546 void security_key_free(struct key *key)
2547 {
2548 	call_void_hook(key_free, key);
2549 }
2550 
2551 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2552 			    enum key_need_perm need_perm)
2553 {
2554 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2555 }
2556 
2557 int security_key_getsecurity(struct key *key, char **_buffer)
2558 {
2559 	*_buffer = NULL;
2560 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2561 }
2562 
2563 #endif	/* CONFIG_KEYS */
2564 
2565 #ifdef CONFIG_AUDIT
2566 
2567 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2568 {
2569 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2570 }
2571 
2572 int security_audit_rule_known(struct audit_krule *krule)
2573 {
2574 	return call_int_hook(audit_rule_known, 0, krule);
2575 }
2576 
2577 void security_audit_rule_free(void *lsmrule)
2578 {
2579 	call_void_hook(audit_rule_free, lsmrule);
2580 }
2581 
2582 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2583 {
2584 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2585 }
2586 #endif /* CONFIG_AUDIT */
2587 
2588 #ifdef CONFIG_BPF_SYSCALL
2589 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2590 {
2591 	return call_int_hook(bpf, 0, cmd, attr, size);
2592 }
2593 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2594 {
2595 	return call_int_hook(bpf_map, 0, map, fmode);
2596 }
2597 int security_bpf_prog(struct bpf_prog *prog)
2598 {
2599 	return call_int_hook(bpf_prog, 0, prog);
2600 }
2601 int security_bpf_map_alloc(struct bpf_map *map)
2602 {
2603 	return call_int_hook(bpf_map_alloc_security, 0, map);
2604 }
2605 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2606 {
2607 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2608 }
2609 void security_bpf_map_free(struct bpf_map *map)
2610 {
2611 	call_void_hook(bpf_map_free_security, map);
2612 }
2613 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2614 {
2615 	call_void_hook(bpf_prog_free_security, aux);
2616 }
2617 #endif /* CONFIG_BPF_SYSCALL */
2618 
2619 int security_locked_down(enum lockdown_reason what)
2620 {
2621 	return call_int_hook(locked_down, 0, what);
2622 }
2623 EXPORT_SYMBOL(security_locked_down);
2624 
2625 #ifdef CONFIG_PERF_EVENTS
2626 int security_perf_event_open(struct perf_event_attr *attr, int type)
2627 {
2628 	return call_int_hook(perf_event_open, 0, attr, type);
2629 }
2630 
2631 int security_perf_event_alloc(struct perf_event *event)
2632 {
2633 	return call_int_hook(perf_event_alloc, 0, event);
2634 }
2635 
2636 void security_perf_event_free(struct perf_event *event)
2637 {
2638 	call_void_hook(perf_event_free, event);
2639 }
2640 
2641 int security_perf_event_read(struct perf_event *event)
2642 {
2643 	return call_int_hook(perf_event_read, 0, event);
2644 }
2645 
2646 int security_perf_event_write(struct perf_event *event)
2647 {
2648 	return call_int_hook(perf_event_write, 0, event);
2649 }
2650 #endif /* CONFIG_PERF_EVENTS */
2651 
2652 #ifdef CONFIG_IO_URING
2653 int security_uring_override_creds(const struct cred *new)
2654 {
2655 	return call_int_hook(uring_override_creds, 0, new);
2656 }
2657 
2658 int security_uring_sqpoll(void)
2659 {
2660 	return call_int_hook(uring_sqpoll, 0);
2661 }
2662 #endif /* CONFIG_IO_URING */
2663