1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 63 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 64 [LOCKDOWN_KCORE] = "/proc/kcore access", 65 [LOCKDOWN_KPROBES] = "use of kprobes", 66 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 67 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 68 [LOCKDOWN_PERF] = "unsafe use of perf", 69 [LOCKDOWN_TRACEFS] = "use of tracefs", 70 [LOCKDOWN_XMON_RW] = "xmon read and write access", 71 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 72 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 73 }; 74 75 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 77 78 static struct kmem_cache *lsm_file_cache; 79 static struct kmem_cache *lsm_inode_cache; 80 81 char *lsm_names; 82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 83 84 /* Boot-time LSM user choice */ 85 static __initdata const char *chosen_lsm_order; 86 static __initdata const char *chosen_major_lsm; 87 88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 89 90 /* Ordered list of LSMs to initialize. */ 91 static __initdata struct lsm_info **ordered_lsms; 92 static __initdata struct lsm_info *exclusive; 93 94 static __initdata bool debug; 95 #define init_debug(...) \ 96 do { \ 97 if (debug) \ 98 pr_info(__VA_ARGS__); \ 99 } while (0) 100 101 static bool __init is_enabled(struct lsm_info *lsm) 102 { 103 if (!lsm->enabled) 104 return false; 105 106 return *lsm->enabled; 107 } 108 109 /* Mark an LSM's enabled flag. */ 110 static int lsm_enabled_true __initdata = 1; 111 static int lsm_enabled_false __initdata = 0; 112 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 113 { 114 /* 115 * When an LSM hasn't configured an enable variable, we can use 116 * a hard-coded location for storing the default enabled state. 117 */ 118 if (!lsm->enabled) { 119 if (enabled) 120 lsm->enabled = &lsm_enabled_true; 121 else 122 lsm->enabled = &lsm_enabled_false; 123 } else if (lsm->enabled == &lsm_enabled_true) { 124 if (!enabled) 125 lsm->enabled = &lsm_enabled_false; 126 } else if (lsm->enabled == &lsm_enabled_false) { 127 if (enabled) 128 lsm->enabled = &lsm_enabled_true; 129 } else { 130 *lsm->enabled = enabled; 131 } 132 } 133 134 /* Is an LSM already listed in the ordered LSMs list? */ 135 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 136 { 137 struct lsm_info **check; 138 139 for (check = ordered_lsms; *check; check++) 140 if (*check == lsm) 141 return true; 142 143 return false; 144 } 145 146 /* Append an LSM to the list of ordered LSMs to initialize. */ 147 static int last_lsm __initdata; 148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 149 { 150 /* Ignore duplicate selections. */ 151 if (exists_ordered_lsm(lsm)) 152 return; 153 154 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 155 return; 156 157 /* Enable this LSM, if it is not already set. */ 158 if (!lsm->enabled) 159 lsm->enabled = &lsm_enabled_true; 160 ordered_lsms[last_lsm++] = lsm; 161 162 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 163 is_enabled(lsm) ? "en" : "dis"); 164 } 165 166 /* Is an LSM allowed to be initialized? */ 167 static bool __init lsm_allowed(struct lsm_info *lsm) 168 { 169 /* Skip if the LSM is disabled. */ 170 if (!is_enabled(lsm)) 171 return false; 172 173 /* Not allowed if another exclusive LSM already initialized. */ 174 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 175 init_debug("exclusive disabled: %s\n", lsm->name); 176 return false; 177 } 178 179 return true; 180 } 181 182 static void __init lsm_set_blob_size(int *need, int *lbs) 183 { 184 int offset; 185 186 if (*need > 0) { 187 offset = *lbs; 188 *lbs += *need; 189 *need = offset; 190 } 191 } 192 193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 194 { 195 if (!needed) 196 return; 197 198 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 199 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 200 /* 201 * The inode blob gets an rcu_head in addition to 202 * what the modules might need. 203 */ 204 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 205 blob_sizes.lbs_inode = sizeof(struct rcu_head); 206 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 207 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 208 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 209 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 210 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 211 } 212 213 /* Prepare LSM for initialization. */ 214 static void __init prepare_lsm(struct lsm_info *lsm) 215 { 216 int enabled = lsm_allowed(lsm); 217 218 /* Record enablement (to handle any following exclusive LSMs). */ 219 set_enabled(lsm, enabled); 220 221 /* If enabled, do pre-initialization work. */ 222 if (enabled) { 223 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 224 exclusive = lsm; 225 init_debug("exclusive chosen: %s\n", lsm->name); 226 } 227 228 lsm_set_blob_sizes(lsm->blobs); 229 } 230 } 231 232 /* Initialize a given LSM, if it is enabled. */ 233 static void __init initialize_lsm(struct lsm_info *lsm) 234 { 235 if (is_enabled(lsm)) { 236 int ret; 237 238 init_debug("initializing %s\n", lsm->name); 239 ret = lsm->init(); 240 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 241 } 242 } 243 244 /* Populate ordered LSMs list from comma-separated LSM name list. */ 245 static void __init ordered_lsm_parse(const char *order, const char *origin) 246 { 247 struct lsm_info *lsm; 248 char *sep, *name, *next; 249 250 /* LSM_ORDER_FIRST is always first. */ 251 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 252 if (lsm->order == LSM_ORDER_FIRST) 253 append_ordered_lsm(lsm, "first"); 254 } 255 256 /* Process "security=", if given. */ 257 if (chosen_major_lsm) { 258 struct lsm_info *major; 259 260 /* 261 * To match the original "security=" behavior, this 262 * explicitly does NOT fallback to another Legacy Major 263 * if the selected one was separately disabled: disable 264 * all non-matching Legacy Major LSMs. 265 */ 266 for (major = __start_lsm_info; major < __end_lsm_info; 267 major++) { 268 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 269 strcmp(major->name, chosen_major_lsm) != 0) { 270 set_enabled(major, false); 271 init_debug("security=%s disabled: %s\n", 272 chosen_major_lsm, major->name); 273 } 274 } 275 } 276 277 sep = kstrdup(order, GFP_KERNEL); 278 next = sep; 279 /* Walk the list, looking for matching LSMs. */ 280 while ((name = strsep(&next, ",")) != NULL) { 281 bool found = false; 282 283 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 284 if (lsm->order == LSM_ORDER_MUTABLE && 285 strcmp(lsm->name, name) == 0) { 286 append_ordered_lsm(lsm, origin); 287 found = true; 288 } 289 } 290 291 if (!found) 292 init_debug("%s ignored: %s\n", origin, name); 293 } 294 295 /* Process "security=", if given. */ 296 if (chosen_major_lsm) { 297 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 298 if (exists_ordered_lsm(lsm)) 299 continue; 300 if (strcmp(lsm->name, chosen_major_lsm) == 0) 301 append_ordered_lsm(lsm, "security="); 302 } 303 } 304 305 /* Disable all LSMs not in the ordered list. */ 306 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 307 if (exists_ordered_lsm(lsm)) 308 continue; 309 set_enabled(lsm, false); 310 init_debug("%s disabled: %s\n", origin, lsm->name); 311 } 312 313 kfree(sep); 314 } 315 316 static void __init lsm_early_cred(struct cred *cred); 317 static void __init lsm_early_task(struct task_struct *task); 318 319 static int lsm_append(const char *new, char **result); 320 321 static void __init ordered_lsm_init(void) 322 { 323 struct lsm_info **lsm; 324 325 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 326 GFP_KERNEL); 327 328 if (chosen_lsm_order) { 329 if (chosen_major_lsm) { 330 pr_info("security= is ignored because it is superseded by lsm=\n"); 331 chosen_major_lsm = NULL; 332 } 333 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 334 } else 335 ordered_lsm_parse(builtin_lsm_order, "builtin"); 336 337 for (lsm = ordered_lsms; *lsm; lsm++) 338 prepare_lsm(*lsm); 339 340 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 341 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 342 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 343 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 344 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 345 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 346 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 347 348 /* 349 * Create any kmem_caches needed for blobs 350 */ 351 if (blob_sizes.lbs_file) 352 lsm_file_cache = kmem_cache_create("lsm_file_cache", 353 blob_sizes.lbs_file, 0, 354 SLAB_PANIC, NULL); 355 if (blob_sizes.lbs_inode) 356 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 357 blob_sizes.lbs_inode, 0, 358 SLAB_PANIC, NULL); 359 360 lsm_early_cred((struct cred *) current->cred); 361 lsm_early_task(current); 362 for (lsm = ordered_lsms; *lsm; lsm++) 363 initialize_lsm(*lsm); 364 365 kfree(ordered_lsms); 366 } 367 368 int __init early_security_init(void) 369 { 370 struct lsm_info *lsm; 371 372 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 373 INIT_HLIST_HEAD(&security_hook_heads.NAME); 374 #include "linux/lsm_hook_defs.h" 375 #undef LSM_HOOK 376 377 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 378 if (!lsm->enabled) 379 lsm->enabled = &lsm_enabled_true; 380 prepare_lsm(lsm); 381 initialize_lsm(lsm); 382 } 383 384 return 0; 385 } 386 387 /** 388 * security_init - initializes the security framework 389 * 390 * This should be called early in the kernel initialization sequence. 391 */ 392 int __init security_init(void) 393 { 394 struct lsm_info *lsm; 395 396 pr_info("Security Framework initializing\n"); 397 398 /* 399 * Append the names of the early LSM modules now that kmalloc() is 400 * available 401 */ 402 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 403 if (lsm->enabled) 404 lsm_append(lsm->name, &lsm_names); 405 } 406 407 /* Load LSMs in specified order. */ 408 ordered_lsm_init(); 409 410 return 0; 411 } 412 413 /* Save user chosen LSM */ 414 static int __init choose_major_lsm(char *str) 415 { 416 chosen_major_lsm = str; 417 return 1; 418 } 419 __setup("security=", choose_major_lsm); 420 421 /* Explicitly choose LSM initialization order. */ 422 static int __init choose_lsm_order(char *str) 423 { 424 chosen_lsm_order = str; 425 return 1; 426 } 427 __setup("lsm=", choose_lsm_order); 428 429 /* Enable LSM order debugging. */ 430 static int __init enable_debug(char *str) 431 { 432 debug = true; 433 return 1; 434 } 435 __setup("lsm.debug", enable_debug); 436 437 static bool match_last_lsm(const char *list, const char *lsm) 438 { 439 const char *last; 440 441 if (WARN_ON(!list || !lsm)) 442 return false; 443 last = strrchr(list, ','); 444 if (last) 445 /* Pass the comma, strcmp() will check for '\0' */ 446 last++; 447 else 448 last = list; 449 return !strcmp(last, lsm); 450 } 451 452 static int lsm_append(const char *new, char **result) 453 { 454 char *cp; 455 456 if (*result == NULL) { 457 *result = kstrdup(new, GFP_KERNEL); 458 if (*result == NULL) 459 return -ENOMEM; 460 } else { 461 /* Check if it is the last registered name */ 462 if (match_last_lsm(*result, new)) 463 return 0; 464 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 465 if (cp == NULL) 466 return -ENOMEM; 467 kfree(*result); 468 *result = cp; 469 } 470 return 0; 471 } 472 473 /** 474 * security_add_hooks - Add a modules hooks to the hook lists. 475 * @hooks: the hooks to add 476 * @count: the number of hooks to add 477 * @lsm: the name of the security module 478 * 479 * Each LSM has to register its hooks with the infrastructure. 480 */ 481 void __init security_add_hooks(struct security_hook_list *hooks, int count, 482 const char *lsm) 483 { 484 int i; 485 486 for (i = 0; i < count; i++) { 487 hooks[i].lsm = lsm; 488 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 489 } 490 491 /* 492 * Don't try to append during early_security_init(), we'll come back 493 * and fix this up afterwards. 494 */ 495 if (slab_is_available()) { 496 if (lsm_append(lsm, &lsm_names) < 0) 497 panic("%s - Cannot get early memory.\n", __func__); 498 } 499 } 500 501 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 502 { 503 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 504 event, data); 505 } 506 EXPORT_SYMBOL(call_blocking_lsm_notifier); 507 508 int register_blocking_lsm_notifier(struct notifier_block *nb) 509 { 510 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 511 nb); 512 } 513 EXPORT_SYMBOL(register_blocking_lsm_notifier); 514 515 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 516 { 517 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 518 nb); 519 } 520 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 521 522 /** 523 * lsm_cred_alloc - allocate a composite cred blob 524 * @cred: the cred that needs a blob 525 * @gfp: allocation type 526 * 527 * Allocate the cred blob for all the modules 528 * 529 * Returns 0, or -ENOMEM if memory can't be allocated. 530 */ 531 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 532 { 533 if (blob_sizes.lbs_cred == 0) { 534 cred->security = NULL; 535 return 0; 536 } 537 538 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 539 if (cred->security == NULL) 540 return -ENOMEM; 541 return 0; 542 } 543 544 /** 545 * lsm_early_cred - during initialization allocate a composite cred blob 546 * @cred: the cred that needs a blob 547 * 548 * Allocate the cred blob for all the modules 549 */ 550 static void __init lsm_early_cred(struct cred *cred) 551 { 552 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 553 554 if (rc) 555 panic("%s: Early cred alloc failed.\n", __func__); 556 } 557 558 /** 559 * lsm_file_alloc - allocate a composite file blob 560 * @file: the file that needs a blob 561 * 562 * Allocate the file blob for all the modules 563 * 564 * Returns 0, or -ENOMEM if memory can't be allocated. 565 */ 566 static int lsm_file_alloc(struct file *file) 567 { 568 if (!lsm_file_cache) { 569 file->f_security = NULL; 570 return 0; 571 } 572 573 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 574 if (file->f_security == NULL) 575 return -ENOMEM; 576 return 0; 577 } 578 579 /** 580 * lsm_inode_alloc - allocate a composite inode blob 581 * @inode: the inode that needs a blob 582 * 583 * Allocate the inode blob for all the modules 584 * 585 * Returns 0, or -ENOMEM if memory can't be allocated. 586 */ 587 int lsm_inode_alloc(struct inode *inode) 588 { 589 if (!lsm_inode_cache) { 590 inode->i_security = NULL; 591 return 0; 592 } 593 594 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 595 if (inode->i_security == NULL) 596 return -ENOMEM; 597 return 0; 598 } 599 600 /** 601 * lsm_task_alloc - allocate a composite task blob 602 * @task: the task that needs a blob 603 * 604 * Allocate the task blob for all the modules 605 * 606 * Returns 0, or -ENOMEM if memory can't be allocated. 607 */ 608 static int lsm_task_alloc(struct task_struct *task) 609 { 610 if (blob_sizes.lbs_task == 0) { 611 task->security = NULL; 612 return 0; 613 } 614 615 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 616 if (task->security == NULL) 617 return -ENOMEM; 618 return 0; 619 } 620 621 /** 622 * lsm_ipc_alloc - allocate a composite ipc blob 623 * @kip: the ipc that needs a blob 624 * 625 * Allocate the ipc blob for all the modules 626 * 627 * Returns 0, or -ENOMEM if memory can't be allocated. 628 */ 629 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 630 { 631 if (blob_sizes.lbs_ipc == 0) { 632 kip->security = NULL; 633 return 0; 634 } 635 636 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 637 if (kip->security == NULL) 638 return -ENOMEM; 639 return 0; 640 } 641 642 /** 643 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 644 * @mp: the msg_msg that needs a blob 645 * 646 * Allocate the ipc blob for all the modules 647 * 648 * Returns 0, or -ENOMEM if memory can't be allocated. 649 */ 650 static int lsm_msg_msg_alloc(struct msg_msg *mp) 651 { 652 if (blob_sizes.lbs_msg_msg == 0) { 653 mp->security = NULL; 654 return 0; 655 } 656 657 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 658 if (mp->security == NULL) 659 return -ENOMEM; 660 return 0; 661 } 662 663 /** 664 * lsm_early_task - during initialization allocate a composite task blob 665 * @task: the task that needs a blob 666 * 667 * Allocate the task blob for all the modules 668 */ 669 static void __init lsm_early_task(struct task_struct *task) 670 { 671 int rc = lsm_task_alloc(task); 672 673 if (rc) 674 panic("%s: Early task alloc failed.\n", __func__); 675 } 676 677 /** 678 * lsm_superblock_alloc - allocate a composite superblock blob 679 * @sb: the superblock that needs a blob 680 * 681 * Allocate the superblock blob for all the modules 682 * 683 * Returns 0, or -ENOMEM if memory can't be allocated. 684 */ 685 static int lsm_superblock_alloc(struct super_block *sb) 686 { 687 if (blob_sizes.lbs_superblock == 0) { 688 sb->s_security = NULL; 689 return 0; 690 } 691 692 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 693 if (sb->s_security == NULL) 694 return -ENOMEM; 695 return 0; 696 } 697 698 /* 699 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 700 * can be accessed with: 701 * 702 * LSM_RET_DEFAULT(<hook_name>) 703 * 704 * The macros below define static constants for the default value of each 705 * LSM hook. 706 */ 707 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 708 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 709 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 710 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 711 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 712 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 713 714 #include <linux/lsm_hook_defs.h> 715 #undef LSM_HOOK 716 717 /* 718 * Hook list operation macros. 719 * 720 * call_void_hook: 721 * This is a hook that does not return a value. 722 * 723 * call_int_hook: 724 * This is a hook that returns a value. 725 */ 726 727 #define call_void_hook(FUNC, ...) \ 728 do { \ 729 struct security_hook_list *P; \ 730 \ 731 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 732 P->hook.FUNC(__VA_ARGS__); \ 733 } while (0) 734 735 #define call_int_hook(FUNC, IRC, ...) ({ \ 736 int RC = IRC; \ 737 do { \ 738 struct security_hook_list *P; \ 739 \ 740 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 741 RC = P->hook.FUNC(__VA_ARGS__); \ 742 if (RC != 0) \ 743 break; \ 744 } \ 745 } while (0); \ 746 RC; \ 747 }) 748 749 /* Security operations */ 750 751 int security_binder_set_context_mgr(const struct cred *mgr) 752 { 753 return call_int_hook(binder_set_context_mgr, 0, mgr); 754 } 755 756 int security_binder_transaction(const struct cred *from, 757 const struct cred *to) 758 { 759 return call_int_hook(binder_transaction, 0, from, to); 760 } 761 762 int security_binder_transfer_binder(const struct cred *from, 763 const struct cred *to) 764 { 765 return call_int_hook(binder_transfer_binder, 0, from, to); 766 } 767 768 int security_binder_transfer_file(const struct cred *from, 769 const struct cred *to, struct file *file) 770 { 771 return call_int_hook(binder_transfer_file, 0, from, to, file); 772 } 773 774 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 775 { 776 return call_int_hook(ptrace_access_check, 0, child, mode); 777 } 778 779 int security_ptrace_traceme(struct task_struct *parent) 780 { 781 return call_int_hook(ptrace_traceme, 0, parent); 782 } 783 784 int security_capget(struct task_struct *target, 785 kernel_cap_t *effective, 786 kernel_cap_t *inheritable, 787 kernel_cap_t *permitted) 788 { 789 return call_int_hook(capget, 0, target, 790 effective, inheritable, permitted); 791 } 792 793 int security_capset(struct cred *new, const struct cred *old, 794 const kernel_cap_t *effective, 795 const kernel_cap_t *inheritable, 796 const kernel_cap_t *permitted) 797 { 798 return call_int_hook(capset, 0, new, old, 799 effective, inheritable, permitted); 800 } 801 802 int security_capable(const struct cred *cred, 803 struct user_namespace *ns, 804 int cap, 805 unsigned int opts) 806 { 807 return call_int_hook(capable, 0, cred, ns, cap, opts); 808 } 809 810 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 811 { 812 return call_int_hook(quotactl, 0, cmds, type, id, sb); 813 } 814 815 int security_quota_on(struct dentry *dentry) 816 { 817 return call_int_hook(quota_on, 0, dentry); 818 } 819 820 int security_syslog(int type) 821 { 822 return call_int_hook(syslog, 0, type); 823 } 824 825 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 826 { 827 return call_int_hook(settime, 0, ts, tz); 828 } 829 830 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 831 { 832 struct security_hook_list *hp; 833 int cap_sys_admin = 1; 834 int rc; 835 836 /* 837 * The module will respond with a positive value if 838 * it thinks the __vm_enough_memory() call should be 839 * made with the cap_sys_admin set. If all of the modules 840 * agree that it should be set it will. If any module 841 * thinks it should not be set it won't. 842 */ 843 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 844 rc = hp->hook.vm_enough_memory(mm, pages); 845 if (rc <= 0) { 846 cap_sys_admin = 0; 847 break; 848 } 849 } 850 return __vm_enough_memory(mm, pages, cap_sys_admin); 851 } 852 853 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 854 { 855 return call_int_hook(bprm_creds_for_exec, 0, bprm); 856 } 857 858 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 859 { 860 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 861 } 862 863 int security_bprm_check(struct linux_binprm *bprm) 864 { 865 int ret; 866 867 ret = call_int_hook(bprm_check_security, 0, bprm); 868 if (ret) 869 return ret; 870 return ima_bprm_check(bprm); 871 } 872 873 void security_bprm_committing_creds(struct linux_binprm *bprm) 874 { 875 call_void_hook(bprm_committing_creds, bprm); 876 } 877 878 void security_bprm_committed_creds(struct linux_binprm *bprm) 879 { 880 call_void_hook(bprm_committed_creds, bprm); 881 } 882 883 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 884 { 885 return call_int_hook(fs_context_dup, 0, fc, src_fc); 886 } 887 888 int security_fs_context_parse_param(struct fs_context *fc, 889 struct fs_parameter *param) 890 { 891 struct security_hook_list *hp; 892 int trc; 893 int rc = -ENOPARAM; 894 895 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 896 list) { 897 trc = hp->hook.fs_context_parse_param(fc, param); 898 if (trc == 0) 899 rc = 0; 900 else if (trc != -ENOPARAM) 901 return trc; 902 } 903 return rc; 904 } 905 906 int security_sb_alloc(struct super_block *sb) 907 { 908 int rc = lsm_superblock_alloc(sb); 909 910 if (unlikely(rc)) 911 return rc; 912 rc = call_int_hook(sb_alloc_security, 0, sb); 913 if (unlikely(rc)) 914 security_sb_free(sb); 915 return rc; 916 } 917 918 void security_sb_delete(struct super_block *sb) 919 { 920 call_void_hook(sb_delete, sb); 921 } 922 923 void security_sb_free(struct super_block *sb) 924 { 925 call_void_hook(sb_free_security, sb); 926 kfree(sb->s_security); 927 sb->s_security = NULL; 928 } 929 930 void security_free_mnt_opts(void **mnt_opts) 931 { 932 if (!*mnt_opts) 933 return; 934 call_void_hook(sb_free_mnt_opts, *mnt_opts); 935 *mnt_opts = NULL; 936 } 937 EXPORT_SYMBOL(security_free_mnt_opts); 938 939 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 940 { 941 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 942 } 943 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 944 945 int security_sb_mnt_opts_compat(struct super_block *sb, 946 void *mnt_opts) 947 { 948 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 949 } 950 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 951 952 int security_sb_remount(struct super_block *sb, 953 void *mnt_opts) 954 { 955 return call_int_hook(sb_remount, 0, sb, mnt_opts); 956 } 957 EXPORT_SYMBOL(security_sb_remount); 958 959 int security_sb_kern_mount(struct super_block *sb) 960 { 961 return call_int_hook(sb_kern_mount, 0, sb); 962 } 963 964 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 965 { 966 return call_int_hook(sb_show_options, 0, m, sb); 967 } 968 969 int security_sb_statfs(struct dentry *dentry) 970 { 971 return call_int_hook(sb_statfs, 0, dentry); 972 } 973 974 int security_sb_mount(const char *dev_name, const struct path *path, 975 const char *type, unsigned long flags, void *data) 976 { 977 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 978 } 979 980 int security_sb_umount(struct vfsmount *mnt, int flags) 981 { 982 return call_int_hook(sb_umount, 0, mnt, flags); 983 } 984 985 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 986 { 987 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 988 } 989 990 int security_sb_set_mnt_opts(struct super_block *sb, 991 void *mnt_opts, 992 unsigned long kern_flags, 993 unsigned long *set_kern_flags) 994 { 995 return call_int_hook(sb_set_mnt_opts, 996 mnt_opts ? -EOPNOTSUPP : 0, sb, 997 mnt_opts, kern_flags, set_kern_flags); 998 } 999 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1000 1001 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1002 struct super_block *newsb, 1003 unsigned long kern_flags, 1004 unsigned long *set_kern_flags) 1005 { 1006 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1007 kern_flags, set_kern_flags); 1008 } 1009 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1010 1011 int security_move_mount(const struct path *from_path, const struct path *to_path) 1012 { 1013 return call_int_hook(move_mount, 0, from_path, to_path); 1014 } 1015 1016 int security_path_notify(const struct path *path, u64 mask, 1017 unsigned int obj_type) 1018 { 1019 return call_int_hook(path_notify, 0, path, mask, obj_type); 1020 } 1021 1022 int security_inode_alloc(struct inode *inode) 1023 { 1024 int rc = lsm_inode_alloc(inode); 1025 1026 if (unlikely(rc)) 1027 return rc; 1028 rc = call_int_hook(inode_alloc_security, 0, inode); 1029 if (unlikely(rc)) 1030 security_inode_free(inode); 1031 return rc; 1032 } 1033 1034 static void inode_free_by_rcu(struct rcu_head *head) 1035 { 1036 /* 1037 * The rcu head is at the start of the inode blob 1038 */ 1039 kmem_cache_free(lsm_inode_cache, head); 1040 } 1041 1042 void security_inode_free(struct inode *inode) 1043 { 1044 integrity_inode_free(inode); 1045 call_void_hook(inode_free_security, inode); 1046 /* 1047 * The inode may still be referenced in a path walk and 1048 * a call to security_inode_permission() can be made 1049 * after inode_free_security() is called. Ideally, the VFS 1050 * wouldn't do this, but fixing that is a much harder 1051 * job. For now, simply free the i_security via RCU, and 1052 * leave the current inode->i_security pointer intact. 1053 * The inode will be freed after the RCU grace period too. 1054 */ 1055 if (inode->i_security) 1056 call_rcu((struct rcu_head *)inode->i_security, 1057 inode_free_by_rcu); 1058 } 1059 1060 int security_dentry_init_security(struct dentry *dentry, int mode, 1061 const struct qstr *name, 1062 const char **xattr_name, void **ctx, 1063 u32 *ctxlen) 1064 { 1065 struct security_hook_list *hp; 1066 int rc; 1067 1068 /* 1069 * Only one module will provide a security context. 1070 */ 1071 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1072 rc = hp->hook.dentry_init_security(dentry, mode, name, 1073 xattr_name, ctx, ctxlen); 1074 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1075 return rc; 1076 } 1077 return LSM_RET_DEFAULT(dentry_init_security); 1078 } 1079 EXPORT_SYMBOL(security_dentry_init_security); 1080 1081 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1082 struct qstr *name, 1083 const struct cred *old, struct cred *new) 1084 { 1085 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1086 name, old, new); 1087 } 1088 EXPORT_SYMBOL(security_dentry_create_files_as); 1089 1090 int security_inode_init_security(struct inode *inode, struct inode *dir, 1091 const struct qstr *qstr, 1092 const initxattrs initxattrs, void *fs_data) 1093 { 1094 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1095 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1096 int ret; 1097 1098 if (unlikely(IS_PRIVATE(inode))) 1099 return 0; 1100 1101 if (!initxattrs) 1102 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1103 dir, qstr, NULL, NULL, NULL); 1104 memset(new_xattrs, 0, sizeof(new_xattrs)); 1105 lsm_xattr = new_xattrs; 1106 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1107 &lsm_xattr->name, 1108 &lsm_xattr->value, 1109 &lsm_xattr->value_len); 1110 if (ret) 1111 goto out; 1112 1113 evm_xattr = lsm_xattr + 1; 1114 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1115 if (ret) 1116 goto out; 1117 ret = initxattrs(inode, new_xattrs, fs_data); 1118 out: 1119 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1120 kfree(xattr->value); 1121 return (ret == -EOPNOTSUPP) ? 0 : ret; 1122 } 1123 EXPORT_SYMBOL(security_inode_init_security); 1124 1125 int security_inode_init_security_anon(struct inode *inode, 1126 const struct qstr *name, 1127 const struct inode *context_inode) 1128 { 1129 return call_int_hook(inode_init_security_anon, 0, inode, name, 1130 context_inode); 1131 } 1132 1133 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1134 const struct qstr *qstr, const char **name, 1135 void **value, size_t *len) 1136 { 1137 if (unlikely(IS_PRIVATE(inode))) 1138 return -EOPNOTSUPP; 1139 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1140 qstr, name, value, len); 1141 } 1142 EXPORT_SYMBOL(security_old_inode_init_security); 1143 1144 #ifdef CONFIG_SECURITY_PATH 1145 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1146 unsigned int dev) 1147 { 1148 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1149 return 0; 1150 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1151 } 1152 EXPORT_SYMBOL(security_path_mknod); 1153 1154 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1155 { 1156 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1157 return 0; 1158 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1159 } 1160 EXPORT_SYMBOL(security_path_mkdir); 1161 1162 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1163 { 1164 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1165 return 0; 1166 return call_int_hook(path_rmdir, 0, dir, dentry); 1167 } 1168 1169 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1170 { 1171 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1172 return 0; 1173 return call_int_hook(path_unlink, 0, dir, dentry); 1174 } 1175 EXPORT_SYMBOL(security_path_unlink); 1176 1177 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1178 const char *old_name) 1179 { 1180 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1181 return 0; 1182 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1183 } 1184 1185 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1186 struct dentry *new_dentry) 1187 { 1188 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1189 return 0; 1190 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1191 } 1192 1193 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1194 const struct path *new_dir, struct dentry *new_dentry, 1195 unsigned int flags) 1196 { 1197 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1198 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1199 return 0; 1200 1201 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1202 new_dentry, flags); 1203 } 1204 EXPORT_SYMBOL(security_path_rename); 1205 1206 int security_path_truncate(const struct path *path) 1207 { 1208 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1209 return 0; 1210 return call_int_hook(path_truncate, 0, path); 1211 } 1212 1213 int security_path_chmod(const struct path *path, umode_t mode) 1214 { 1215 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1216 return 0; 1217 return call_int_hook(path_chmod, 0, path, mode); 1218 } 1219 1220 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1221 { 1222 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1223 return 0; 1224 return call_int_hook(path_chown, 0, path, uid, gid); 1225 } 1226 1227 int security_path_chroot(const struct path *path) 1228 { 1229 return call_int_hook(path_chroot, 0, path); 1230 } 1231 #endif 1232 1233 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1234 { 1235 if (unlikely(IS_PRIVATE(dir))) 1236 return 0; 1237 return call_int_hook(inode_create, 0, dir, dentry, mode); 1238 } 1239 EXPORT_SYMBOL_GPL(security_inode_create); 1240 1241 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1242 struct dentry *new_dentry) 1243 { 1244 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1245 return 0; 1246 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1247 } 1248 1249 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1250 { 1251 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1252 return 0; 1253 return call_int_hook(inode_unlink, 0, dir, dentry); 1254 } 1255 1256 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1257 const char *old_name) 1258 { 1259 if (unlikely(IS_PRIVATE(dir))) 1260 return 0; 1261 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1262 } 1263 1264 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1265 { 1266 if (unlikely(IS_PRIVATE(dir))) 1267 return 0; 1268 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1269 } 1270 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1271 1272 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1273 { 1274 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1275 return 0; 1276 return call_int_hook(inode_rmdir, 0, dir, dentry); 1277 } 1278 1279 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1280 { 1281 if (unlikely(IS_PRIVATE(dir))) 1282 return 0; 1283 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1284 } 1285 1286 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1287 struct inode *new_dir, struct dentry *new_dentry, 1288 unsigned int flags) 1289 { 1290 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1291 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1292 return 0; 1293 1294 if (flags & RENAME_EXCHANGE) { 1295 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1296 old_dir, old_dentry); 1297 if (err) 1298 return err; 1299 } 1300 1301 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1302 new_dir, new_dentry); 1303 } 1304 1305 int security_inode_readlink(struct dentry *dentry) 1306 { 1307 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1308 return 0; 1309 return call_int_hook(inode_readlink, 0, dentry); 1310 } 1311 1312 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1313 bool rcu) 1314 { 1315 if (unlikely(IS_PRIVATE(inode))) 1316 return 0; 1317 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1318 } 1319 1320 int security_inode_permission(struct inode *inode, int mask) 1321 { 1322 if (unlikely(IS_PRIVATE(inode))) 1323 return 0; 1324 return call_int_hook(inode_permission, 0, inode, mask); 1325 } 1326 1327 int security_inode_setattr(struct user_namespace *mnt_userns, 1328 struct dentry *dentry, struct iattr *attr) 1329 { 1330 int ret; 1331 1332 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1333 return 0; 1334 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1335 if (ret) 1336 return ret; 1337 return evm_inode_setattr(mnt_userns, dentry, attr); 1338 } 1339 EXPORT_SYMBOL_GPL(security_inode_setattr); 1340 1341 int security_inode_getattr(const struct path *path) 1342 { 1343 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1344 return 0; 1345 return call_int_hook(inode_getattr, 0, path); 1346 } 1347 1348 int security_inode_setxattr(struct user_namespace *mnt_userns, 1349 struct dentry *dentry, const char *name, 1350 const void *value, size_t size, int flags) 1351 { 1352 int ret; 1353 1354 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1355 return 0; 1356 /* 1357 * SELinux and Smack integrate the cap call, 1358 * so assume that all LSMs supplying this call do so. 1359 */ 1360 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1361 size, flags); 1362 1363 if (ret == 1) 1364 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1365 if (ret) 1366 return ret; 1367 ret = ima_inode_setxattr(dentry, name, value, size); 1368 if (ret) 1369 return ret; 1370 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1371 } 1372 1373 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1374 const void *value, size_t size, int flags) 1375 { 1376 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1377 return; 1378 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1379 evm_inode_post_setxattr(dentry, name, value, size); 1380 } 1381 1382 int security_inode_getxattr(struct dentry *dentry, const char *name) 1383 { 1384 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1385 return 0; 1386 return call_int_hook(inode_getxattr, 0, dentry, name); 1387 } 1388 1389 int security_inode_listxattr(struct dentry *dentry) 1390 { 1391 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1392 return 0; 1393 return call_int_hook(inode_listxattr, 0, dentry); 1394 } 1395 1396 int security_inode_removexattr(struct user_namespace *mnt_userns, 1397 struct dentry *dentry, const char *name) 1398 { 1399 int ret; 1400 1401 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1402 return 0; 1403 /* 1404 * SELinux and Smack integrate the cap call, 1405 * so assume that all LSMs supplying this call do so. 1406 */ 1407 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1408 if (ret == 1) 1409 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1410 if (ret) 1411 return ret; 1412 ret = ima_inode_removexattr(dentry, name); 1413 if (ret) 1414 return ret; 1415 return evm_inode_removexattr(mnt_userns, dentry, name); 1416 } 1417 1418 int security_inode_need_killpriv(struct dentry *dentry) 1419 { 1420 return call_int_hook(inode_need_killpriv, 0, dentry); 1421 } 1422 1423 int security_inode_killpriv(struct user_namespace *mnt_userns, 1424 struct dentry *dentry) 1425 { 1426 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1427 } 1428 1429 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1430 struct inode *inode, const char *name, 1431 void **buffer, bool alloc) 1432 { 1433 struct security_hook_list *hp; 1434 int rc; 1435 1436 if (unlikely(IS_PRIVATE(inode))) 1437 return LSM_RET_DEFAULT(inode_getsecurity); 1438 /* 1439 * Only one module will provide an attribute with a given name. 1440 */ 1441 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1442 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1443 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1444 return rc; 1445 } 1446 return LSM_RET_DEFAULT(inode_getsecurity); 1447 } 1448 1449 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1450 { 1451 struct security_hook_list *hp; 1452 int rc; 1453 1454 if (unlikely(IS_PRIVATE(inode))) 1455 return LSM_RET_DEFAULT(inode_setsecurity); 1456 /* 1457 * Only one module will provide an attribute with a given name. 1458 */ 1459 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1460 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1461 flags); 1462 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1463 return rc; 1464 } 1465 return LSM_RET_DEFAULT(inode_setsecurity); 1466 } 1467 1468 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1469 { 1470 if (unlikely(IS_PRIVATE(inode))) 1471 return 0; 1472 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1473 } 1474 EXPORT_SYMBOL(security_inode_listsecurity); 1475 1476 void security_inode_getsecid(struct inode *inode, u32 *secid) 1477 { 1478 call_void_hook(inode_getsecid, inode, secid); 1479 } 1480 1481 int security_inode_copy_up(struct dentry *src, struct cred **new) 1482 { 1483 return call_int_hook(inode_copy_up, 0, src, new); 1484 } 1485 EXPORT_SYMBOL(security_inode_copy_up); 1486 1487 int security_inode_copy_up_xattr(const char *name) 1488 { 1489 struct security_hook_list *hp; 1490 int rc; 1491 1492 /* 1493 * The implementation can return 0 (accept the xattr), 1 (discard the 1494 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1495 * any other error code incase of an error. 1496 */ 1497 hlist_for_each_entry(hp, 1498 &security_hook_heads.inode_copy_up_xattr, list) { 1499 rc = hp->hook.inode_copy_up_xattr(name); 1500 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1501 return rc; 1502 } 1503 1504 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1505 } 1506 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1507 1508 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1509 struct kernfs_node *kn) 1510 { 1511 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1512 } 1513 1514 int security_file_permission(struct file *file, int mask) 1515 { 1516 int ret; 1517 1518 ret = call_int_hook(file_permission, 0, file, mask); 1519 if (ret) 1520 return ret; 1521 1522 return fsnotify_perm(file, mask); 1523 } 1524 1525 int security_file_alloc(struct file *file) 1526 { 1527 int rc = lsm_file_alloc(file); 1528 1529 if (rc) 1530 return rc; 1531 rc = call_int_hook(file_alloc_security, 0, file); 1532 if (unlikely(rc)) 1533 security_file_free(file); 1534 return rc; 1535 } 1536 1537 void security_file_free(struct file *file) 1538 { 1539 void *blob; 1540 1541 call_void_hook(file_free_security, file); 1542 1543 blob = file->f_security; 1544 if (blob) { 1545 file->f_security = NULL; 1546 kmem_cache_free(lsm_file_cache, blob); 1547 } 1548 } 1549 1550 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1551 { 1552 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1553 } 1554 EXPORT_SYMBOL_GPL(security_file_ioctl); 1555 1556 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1557 { 1558 /* 1559 * Does we have PROT_READ and does the application expect 1560 * it to imply PROT_EXEC? If not, nothing to talk about... 1561 */ 1562 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1563 return prot; 1564 if (!(current->personality & READ_IMPLIES_EXEC)) 1565 return prot; 1566 /* 1567 * if that's an anonymous mapping, let it. 1568 */ 1569 if (!file) 1570 return prot | PROT_EXEC; 1571 /* 1572 * ditto if it's not on noexec mount, except that on !MMU we need 1573 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1574 */ 1575 if (!path_noexec(&file->f_path)) { 1576 #ifndef CONFIG_MMU 1577 if (file->f_op->mmap_capabilities) { 1578 unsigned caps = file->f_op->mmap_capabilities(file); 1579 if (!(caps & NOMMU_MAP_EXEC)) 1580 return prot; 1581 } 1582 #endif 1583 return prot | PROT_EXEC; 1584 } 1585 /* anything on noexec mount won't get PROT_EXEC */ 1586 return prot; 1587 } 1588 1589 int security_mmap_file(struct file *file, unsigned long prot, 1590 unsigned long flags) 1591 { 1592 int ret; 1593 ret = call_int_hook(mmap_file, 0, file, prot, 1594 mmap_prot(file, prot), flags); 1595 if (ret) 1596 return ret; 1597 return ima_file_mmap(file, prot); 1598 } 1599 1600 int security_mmap_addr(unsigned long addr) 1601 { 1602 return call_int_hook(mmap_addr, 0, addr); 1603 } 1604 1605 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1606 unsigned long prot) 1607 { 1608 int ret; 1609 1610 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1611 if (ret) 1612 return ret; 1613 return ima_file_mprotect(vma, prot); 1614 } 1615 1616 int security_file_lock(struct file *file, unsigned int cmd) 1617 { 1618 return call_int_hook(file_lock, 0, file, cmd); 1619 } 1620 1621 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1622 { 1623 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1624 } 1625 1626 void security_file_set_fowner(struct file *file) 1627 { 1628 call_void_hook(file_set_fowner, file); 1629 } 1630 1631 int security_file_send_sigiotask(struct task_struct *tsk, 1632 struct fown_struct *fown, int sig) 1633 { 1634 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1635 } 1636 1637 int security_file_receive(struct file *file) 1638 { 1639 return call_int_hook(file_receive, 0, file); 1640 } 1641 1642 int security_file_open(struct file *file) 1643 { 1644 int ret; 1645 1646 ret = call_int_hook(file_open, 0, file); 1647 if (ret) 1648 return ret; 1649 1650 return fsnotify_perm(file, MAY_OPEN); 1651 } 1652 1653 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1654 { 1655 int rc = lsm_task_alloc(task); 1656 1657 if (rc) 1658 return rc; 1659 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1660 if (unlikely(rc)) 1661 security_task_free(task); 1662 return rc; 1663 } 1664 1665 void security_task_free(struct task_struct *task) 1666 { 1667 call_void_hook(task_free, task); 1668 1669 kfree(task->security); 1670 task->security = NULL; 1671 } 1672 1673 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1674 { 1675 int rc = lsm_cred_alloc(cred, gfp); 1676 1677 if (rc) 1678 return rc; 1679 1680 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1681 if (unlikely(rc)) 1682 security_cred_free(cred); 1683 return rc; 1684 } 1685 1686 void security_cred_free(struct cred *cred) 1687 { 1688 /* 1689 * There is a failure case in prepare_creds() that 1690 * may result in a call here with ->security being NULL. 1691 */ 1692 if (unlikely(cred->security == NULL)) 1693 return; 1694 1695 call_void_hook(cred_free, cred); 1696 1697 kfree(cred->security); 1698 cred->security = NULL; 1699 } 1700 1701 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1702 { 1703 int rc = lsm_cred_alloc(new, gfp); 1704 1705 if (rc) 1706 return rc; 1707 1708 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1709 if (unlikely(rc)) 1710 security_cred_free(new); 1711 return rc; 1712 } 1713 1714 void security_transfer_creds(struct cred *new, const struct cred *old) 1715 { 1716 call_void_hook(cred_transfer, new, old); 1717 } 1718 1719 void security_cred_getsecid(const struct cred *c, u32 *secid) 1720 { 1721 *secid = 0; 1722 call_void_hook(cred_getsecid, c, secid); 1723 } 1724 EXPORT_SYMBOL(security_cred_getsecid); 1725 1726 int security_kernel_act_as(struct cred *new, u32 secid) 1727 { 1728 return call_int_hook(kernel_act_as, 0, new, secid); 1729 } 1730 1731 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1732 { 1733 return call_int_hook(kernel_create_files_as, 0, new, inode); 1734 } 1735 1736 int security_kernel_module_request(char *kmod_name) 1737 { 1738 int ret; 1739 1740 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1741 if (ret) 1742 return ret; 1743 return integrity_kernel_module_request(kmod_name); 1744 } 1745 1746 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1747 bool contents) 1748 { 1749 int ret; 1750 1751 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1752 if (ret) 1753 return ret; 1754 return ima_read_file(file, id, contents); 1755 } 1756 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1757 1758 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1759 enum kernel_read_file_id id) 1760 { 1761 int ret; 1762 1763 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1764 if (ret) 1765 return ret; 1766 return ima_post_read_file(file, buf, size, id); 1767 } 1768 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1769 1770 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1771 { 1772 int ret; 1773 1774 ret = call_int_hook(kernel_load_data, 0, id, contents); 1775 if (ret) 1776 return ret; 1777 return ima_load_data(id, contents); 1778 } 1779 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1780 1781 int security_kernel_post_load_data(char *buf, loff_t size, 1782 enum kernel_load_data_id id, 1783 char *description) 1784 { 1785 int ret; 1786 1787 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1788 description); 1789 if (ret) 1790 return ret; 1791 return ima_post_load_data(buf, size, id, description); 1792 } 1793 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1794 1795 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1796 int flags) 1797 { 1798 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1799 } 1800 1801 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1802 int flags) 1803 { 1804 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1805 } 1806 1807 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 1808 { 1809 return call_int_hook(task_fix_setgroups, 0, new, old); 1810 } 1811 1812 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1813 { 1814 return call_int_hook(task_setpgid, 0, p, pgid); 1815 } 1816 1817 int security_task_getpgid(struct task_struct *p) 1818 { 1819 return call_int_hook(task_getpgid, 0, p); 1820 } 1821 1822 int security_task_getsid(struct task_struct *p) 1823 { 1824 return call_int_hook(task_getsid, 0, p); 1825 } 1826 1827 void security_current_getsecid_subj(u32 *secid) 1828 { 1829 *secid = 0; 1830 call_void_hook(current_getsecid_subj, secid); 1831 } 1832 EXPORT_SYMBOL(security_current_getsecid_subj); 1833 1834 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1835 { 1836 *secid = 0; 1837 call_void_hook(task_getsecid_obj, p, secid); 1838 } 1839 EXPORT_SYMBOL(security_task_getsecid_obj); 1840 1841 int security_task_setnice(struct task_struct *p, int nice) 1842 { 1843 return call_int_hook(task_setnice, 0, p, nice); 1844 } 1845 1846 int security_task_setioprio(struct task_struct *p, int ioprio) 1847 { 1848 return call_int_hook(task_setioprio, 0, p, ioprio); 1849 } 1850 1851 int security_task_getioprio(struct task_struct *p) 1852 { 1853 return call_int_hook(task_getioprio, 0, p); 1854 } 1855 1856 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1857 unsigned int flags) 1858 { 1859 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1860 } 1861 1862 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1863 struct rlimit *new_rlim) 1864 { 1865 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1866 } 1867 1868 int security_task_setscheduler(struct task_struct *p) 1869 { 1870 return call_int_hook(task_setscheduler, 0, p); 1871 } 1872 1873 int security_task_getscheduler(struct task_struct *p) 1874 { 1875 return call_int_hook(task_getscheduler, 0, p); 1876 } 1877 1878 int security_task_movememory(struct task_struct *p) 1879 { 1880 return call_int_hook(task_movememory, 0, p); 1881 } 1882 1883 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1884 int sig, const struct cred *cred) 1885 { 1886 return call_int_hook(task_kill, 0, p, info, sig, cred); 1887 } 1888 1889 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1890 unsigned long arg4, unsigned long arg5) 1891 { 1892 int thisrc; 1893 int rc = LSM_RET_DEFAULT(task_prctl); 1894 struct security_hook_list *hp; 1895 1896 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1897 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1898 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1899 rc = thisrc; 1900 if (thisrc != 0) 1901 break; 1902 } 1903 } 1904 return rc; 1905 } 1906 1907 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1908 { 1909 call_void_hook(task_to_inode, p, inode); 1910 } 1911 1912 int security_create_user_ns(const struct cred *cred) 1913 { 1914 return call_int_hook(userns_create, 0, cred); 1915 } 1916 1917 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1918 { 1919 return call_int_hook(ipc_permission, 0, ipcp, flag); 1920 } 1921 1922 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1923 { 1924 *secid = 0; 1925 call_void_hook(ipc_getsecid, ipcp, secid); 1926 } 1927 1928 int security_msg_msg_alloc(struct msg_msg *msg) 1929 { 1930 int rc = lsm_msg_msg_alloc(msg); 1931 1932 if (unlikely(rc)) 1933 return rc; 1934 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1935 if (unlikely(rc)) 1936 security_msg_msg_free(msg); 1937 return rc; 1938 } 1939 1940 void security_msg_msg_free(struct msg_msg *msg) 1941 { 1942 call_void_hook(msg_msg_free_security, msg); 1943 kfree(msg->security); 1944 msg->security = NULL; 1945 } 1946 1947 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1948 { 1949 int rc = lsm_ipc_alloc(msq); 1950 1951 if (unlikely(rc)) 1952 return rc; 1953 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1954 if (unlikely(rc)) 1955 security_msg_queue_free(msq); 1956 return rc; 1957 } 1958 1959 void security_msg_queue_free(struct kern_ipc_perm *msq) 1960 { 1961 call_void_hook(msg_queue_free_security, msq); 1962 kfree(msq->security); 1963 msq->security = NULL; 1964 } 1965 1966 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1967 { 1968 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1969 } 1970 1971 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1972 { 1973 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1974 } 1975 1976 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1977 struct msg_msg *msg, int msqflg) 1978 { 1979 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1980 } 1981 1982 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1983 struct task_struct *target, long type, int mode) 1984 { 1985 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1986 } 1987 1988 int security_shm_alloc(struct kern_ipc_perm *shp) 1989 { 1990 int rc = lsm_ipc_alloc(shp); 1991 1992 if (unlikely(rc)) 1993 return rc; 1994 rc = call_int_hook(shm_alloc_security, 0, shp); 1995 if (unlikely(rc)) 1996 security_shm_free(shp); 1997 return rc; 1998 } 1999 2000 void security_shm_free(struct kern_ipc_perm *shp) 2001 { 2002 call_void_hook(shm_free_security, shp); 2003 kfree(shp->security); 2004 shp->security = NULL; 2005 } 2006 2007 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 2008 { 2009 return call_int_hook(shm_associate, 0, shp, shmflg); 2010 } 2011 2012 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2013 { 2014 return call_int_hook(shm_shmctl, 0, shp, cmd); 2015 } 2016 2017 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2018 { 2019 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2020 } 2021 2022 int security_sem_alloc(struct kern_ipc_perm *sma) 2023 { 2024 int rc = lsm_ipc_alloc(sma); 2025 2026 if (unlikely(rc)) 2027 return rc; 2028 rc = call_int_hook(sem_alloc_security, 0, sma); 2029 if (unlikely(rc)) 2030 security_sem_free(sma); 2031 return rc; 2032 } 2033 2034 void security_sem_free(struct kern_ipc_perm *sma) 2035 { 2036 call_void_hook(sem_free_security, sma); 2037 kfree(sma->security); 2038 sma->security = NULL; 2039 } 2040 2041 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2042 { 2043 return call_int_hook(sem_associate, 0, sma, semflg); 2044 } 2045 2046 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2047 { 2048 return call_int_hook(sem_semctl, 0, sma, cmd); 2049 } 2050 2051 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2052 unsigned nsops, int alter) 2053 { 2054 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2055 } 2056 2057 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2058 { 2059 if (unlikely(inode && IS_PRIVATE(inode))) 2060 return; 2061 call_void_hook(d_instantiate, dentry, inode); 2062 } 2063 EXPORT_SYMBOL(security_d_instantiate); 2064 2065 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2066 char **value) 2067 { 2068 struct security_hook_list *hp; 2069 2070 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2071 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2072 continue; 2073 return hp->hook.getprocattr(p, name, value); 2074 } 2075 return LSM_RET_DEFAULT(getprocattr); 2076 } 2077 2078 int security_setprocattr(const char *lsm, const char *name, void *value, 2079 size_t size) 2080 { 2081 struct security_hook_list *hp; 2082 2083 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2084 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2085 continue; 2086 return hp->hook.setprocattr(name, value, size); 2087 } 2088 return LSM_RET_DEFAULT(setprocattr); 2089 } 2090 2091 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2092 { 2093 return call_int_hook(netlink_send, 0, sk, skb); 2094 } 2095 2096 int security_ismaclabel(const char *name) 2097 { 2098 return call_int_hook(ismaclabel, 0, name); 2099 } 2100 EXPORT_SYMBOL(security_ismaclabel); 2101 2102 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2103 { 2104 struct security_hook_list *hp; 2105 int rc; 2106 2107 /* 2108 * Currently, only one LSM can implement secid_to_secctx (i.e this 2109 * LSM hook is not "stackable"). 2110 */ 2111 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2112 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2113 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2114 return rc; 2115 } 2116 2117 return LSM_RET_DEFAULT(secid_to_secctx); 2118 } 2119 EXPORT_SYMBOL(security_secid_to_secctx); 2120 2121 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2122 { 2123 *secid = 0; 2124 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2125 } 2126 EXPORT_SYMBOL(security_secctx_to_secid); 2127 2128 void security_release_secctx(char *secdata, u32 seclen) 2129 { 2130 call_void_hook(release_secctx, secdata, seclen); 2131 } 2132 EXPORT_SYMBOL(security_release_secctx); 2133 2134 void security_inode_invalidate_secctx(struct inode *inode) 2135 { 2136 call_void_hook(inode_invalidate_secctx, inode); 2137 } 2138 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2139 2140 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2141 { 2142 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2143 } 2144 EXPORT_SYMBOL(security_inode_notifysecctx); 2145 2146 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2147 { 2148 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2149 } 2150 EXPORT_SYMBOL(security_inode_setsecctx); 2151 2152 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2153 { 2154 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2155 } 2156 EXPORT_SYMBOL(security_inode_getsecctx); 2157 2158 #ifdef CONFIG_WATCH_QUEUE 2159 int security_post_notification(const struct cred *w_cred, 2160 const struct cred *cred, 2161 struct watch_notification *n) 2162 { 2163 return call_int_hook(post_notification, 0, w_cred, cred, n); 2164 } 2165 #endif /* CONFIG_WATCH_QUEUE */ 2166 2167 #ifdef CONFIG_KEY_NOTIFICATIONS 2168 int security_watch_key(struct key *key) 2169 { 2170 return call_int_hook(watch_key, 0, key); 2171 } 2172 #endif 2173 2174 #ifdef CONFIG_SECURITY_NETWORK 2175 2176 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2177 { 2178 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2179 } 2180 EXPORT_SYMBOL(security_unix_stream_connect); 2181 2182 int security_unix_may_send(struct socket *sock, struct socket *other) 2183 { 2184 return call_int_hook(unix_may_send, 0, sock, other); 2185 } 2186 EXPORT_SYMBOL(security_unix_may_send); 2187 2188 int security_socket_create(int family, int type, int protocol, int kern) 2189 { 2190 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2191 } 2192 2193 int security_socket_post_create(struct socket *sock, int family, 2194 int type, int protocol, int kern) 2195 { 2196 return call_int_hook(socket_post_create, 0, sock, family, type, 2197 protocol, kern); 2198 } 2199 2200 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2201 { 2202 return call_int_hook(socket_socketpair, 0, socka, sockb); 2203 } 2204 EXPORT_SYMBOL(security_socket_socketpair); 2205 2206 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2207 { 2208 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2209 } 2210 2211 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2212 { 2213 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2214 } 2215 2216 int security_socket_listen(struct socket *sock, int backlog) 2217 { 2218 return call_int_hook(socket_listen, 0, sock, backlog); 2219 } 2220 2221 int security_socket_accept(struct socket *sock, struct socket *newsock) 2222 { 2223 return call_int_hook(socket_accept, 0, sock, newsock); 2224 } 2225 2226 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2227 { 2228 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2229 } 2230 2231 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2232 int size, int flags) 2233 { 2234 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2235 } 2236 2237 int security_socket_getsockname(struct socket *sock) 2238 { 2239 return call_int_hook(socket_getsockname, 0, sock); 2240 } 2241 2242 int security_socket_getpeername(struct socket *sock) 2243 { 2244 return call_int_hook(socket_getpeername, 0, sock); 2245 } 2246 2247 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2248 { 2249 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2250 } 2251 2252 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2253 { 2254 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2255 } 2256 2257 int security_socket_shutdown(struct socket *sock, int how) 2258 { 2259 return call_int_hook(socket_shutdown, 0, sock, how); 2260 } 2261 2262 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2263 { 2264 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2265 } 2266 EXPORT_SYMBOL(security_sock_rcv_skb); 2267 2268 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2269 int __user *optlen, unsigned len) 2270 { 2271 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2272 optval, optlen, len); 2273 } 2274 2275 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2276 { 2277 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2278 skb, secid); 2279 } 2280 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2281 2282 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2283 { 2284 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2285 } 2286 2287 void security_sk_free(struct sock *sk) 2288 { 2289 call_void_hook(sk_free_security, sk); 2290 } 2291 2292 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2293 { 2294 call_void_hook(sk_clone_security, sk, newsk); 2295 } 2296 EXPORT_SYMBOL(security_sk_clone); 2297 2298 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2299 { 2300 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2301 } 2302 EXPORT_SYMBOL(security_sk_classify_flow); 2303 2304 void security_req_classify_flow(const struct request_sock *req, 2305 struct flowi_common *flic) 2306 { 2307 call_void_hook(req_classify_flow, req, flic); 2308 } 2309 EXPORT_SYMBOL(security_req_classify_flow); 2310 2311 void security_sock_graft(struct sock *sk, struct socket *parent) 2312 { 2313 call_void_hook(sock_graft, sk, parent); 2314 } 2315 EXPORT_SYMBOL(security_sock_graft); 2316 2317 int security_inet_conn_request(const struct sock *sk, 2318 struct sk_buff *skb, struct request_sock *req) 2319 { 2320 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2321 } 2322 EXPORT_SYMBOL(security_inet_conn_request); 2323 2324 void security_inet_csk_clone(struct sock *newsk, 2325 const struct request_sock *req) 2326 { 2327 call_void_hook(inet_csk_clone, newsk, req); 2328 } 2329 2330 void security_inet_conn_established(struct sock *sk, 2331 struct sk_buff *skb) 2332 { 2333 call_void_hook(inet_conn_established, sk, skb); 2334 } 2335 EXPORT_SYMBOL(security_inet_conn_established); 2336 2337 int security_secmark_relabel_packet(u32 secid) 2338 { 2339 return call_int_hook(secmark_relabel_packet, 0, secid); 2340 } 2341 EXPORT_SYMBOL(security_secmark_relabel_packet); 2342 2343 void security_secmark_refcount_inc(void) 2344 { 2345 call_void_hook(secmark_refcount_inc); 2346 } 2347 EXPORT_SYMBOL(security_secmark_refcount_inc); 2348 2349 void security_secmark_refcount_dec(void) 2350 { 2351 call_void_hook(secmark_refcount_dec); 2352 } 2353 EXPORT_SYMBOL(security_secmark_refcount_dec); 2354 2355 int security_tun_dev_alloc_security(void **security) 2356 { 2357 return call_int_hook(tun_dev_alloc_security, 0, security); 2358 } 2359 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2360 2361 void security_tun_dev_free_security(void *security) 2362 { 2363 call_void_hook(tun_dev_free_security, security); 2364 } 2365 EXPORT_SYMBOL(security_tun_dev_free_security); 2366 2367 int security_tun_dev_create(void) 2368 { 2369 return call_int_hook(tun_dev_create, 0); 2370 } 2371 EXPORT_SYMBOL(security_tun_dev_create); 2372 2373 int security_tun_dev_attach_queue(void *security) 2374 { 2375 return call_int_hook(tun_dev_attach_queue, 0, security); 2376 } 2377 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2378 2379 int security_tun_dev_attach(struct sock *sk, void *security) 2380 { 2381 return call_int_hook(tun_dev_attach, 0, sk, security); 2382 } 2383 EXPORT_SYMBOL(security_tun_dev_attach); 2384 2385 int security_tun_dev_open(void *security) 2386 { 2387 return call_int_hook(tun_dev_open, 0, security); 2388 } 2389 EXPORT_SYMBOL(security_tun_dev_open); 2390 2391 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2392 { 2393 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2394 } 2395 EXPORT_SYMBOL(security_sctp_assoc_request); 2396 2397 int security_sctp_bind_connect(struct sock *sk, int optname, 2398 struct sockaddr *address, int addrlen) 2399 { 2400 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2401 address, addrlen); 2402 } 2403 EXPORT_SYMBOL(security_sctp_bind_connect); 2404 2405 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2406 struct sock *newsk) 2407 { 2408 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2409 } 2410 EXPORT_SYMBOL(security_sctp_sk_clone); 2411 2412 int security_sctp_assoc_established(struct sctp_association *asoc, 2413 struct sk_buff *skb) 2414 { 2415 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2416 } 2417 EXPORT_SYMBOL(security_sctp_assoc_established); 2418 2419 #endif /* CONFIG_SECURITY_NETWORK */ 2420 2421 #ifdef CONFIG_SECURITY_INFINIBAND 2422 2423 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2424 { 2425 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2426 } 2427 EXPORT_SYMBOL(security_ib_pkey_access); 2428 2429 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2430 { 2431 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2432 } 2433 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2434 2435 int security_ib_alloc_security(void **sec) 2436 { 2437 return call_int_hook(ib_alloc_security, 0, sec); 2438 } 2439 EXPORT_SYMBOL(security_ib_alloc_security); 2440 2441 void security_ib_free_security(void *sec) 2442 { 2443 call_void_hook(ib_free_security, sec); 2444 } 2445 EXPORT_SYMBOL(security_ib_free_security); 2446 #endif /* CONFIG_SECURITY_INFINIBAND */ 2447 2448 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2449 2450 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2451 struct xfrm_user_sec_ctx *sec_ctx, 2452 gfp_t gfp) 2453 { 2454 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2455 } 2456 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2457 2458 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2459 struct xfrm_sec_ctx **new_ctxp) 2460 { 2461 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2462 } 2463 2464 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2465 { 2466 call_void_hook(xfrm_policy_free_security, ctx); 2467 } 2468 EXPORT_SYMBOL(security_xfrm_policy_free); 2469 2470 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2471 { 2472 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2473 } 2474 2475 int security_xfrm_state_alloc(struct xfrm_state *x, 2476 struct xfrm_user_sec_ctx *sec_ctx) 2477 { 2478 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2479 } 2480 EXPORT_SYMBOL(security_xfrm_state_alloc); 2481 2482 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2483 struct xfrm_sec_ctx *polsec, u32 secid) 2484 { 2485 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2486 } 2487 2488 int security_xfrm_state_delete(struct xfrm_state *x) 2489 { 2490 return call_int_hook(xfrm_state_delete_security, 0, x); 2491 } 2492 EXPORT_SYMBOL(security_xfrm_state_delete); 2493 2494 void security_xfrm_state_free(struct xfrm_state *x) 2495 { 2496 call_void_hook(xfrm_state_free_security, x); 2497 } 2498 2499 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2500 { 2501 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2502 } 2503 2504 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2505 struct xfrm_policy *xp, 2506 const struct flowi_common *flic) 2507 { 2508 struct security_hook_list *hp; 2509 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2510 2511 /* 2512 * Since this function is expected to return 0 or 1, the judgment 2513 * becomes difficult if multiple LSMs supply this call. Fortunately, 2514 * we can use the first LSM's judgment because currently only SELinux 2515 * supplies this call. 2516 * 2517 * For speed optimization, we explicitly break the loop rather than 2518 * using the macro 2519 */ 2520 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2521 list) { 2522 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2523 break; 2524 } 2525 return rc; 2526 } 2527 2528 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2529 { 2530 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2531 } 2532 2533 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2534 { 2535 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2536 0); 2537 2538 BUG_ON(rc); 2539 } 2540 EXPORT_SYMBOL(security_skb_classify_flow); 2541 2542 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2543 2544 #ifdef CONFIG_KEYS 2545 2546 int security_key_alloc(struct key *key, const struct cred *cred, 2547 unsigned long flags) 2548 { 2549 return call_int_hook(key_alloc, 0, key, cred, flags); 2550 } 2551 2552 void security_key_free(struct key *key) 2553 { 2554 call_void_hook(key_free, key); 2555 } 2556 2557 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2558 enum key_need_perm need_perm) 2559 { 2560 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2561 } 2562 2563 int security_key_getsecurity(struct key *key, char **_buffer) 2564 { 2565 *_buffer = NULL; 2566 return call_int_hook(key_getsecurity, 0, key, _buffer); 2567 } 2568 2569 #endif /* CONFIG_KEYS */ 2570 2571 #ifdef CONFIG_AUDIT 2572 2573 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2574 { 2575 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2576 } 2577 2578 int security_audit_rule_known(struct audit_krule *krule) 2579 { 2580 return call_int_hook(audit_rule_known, 0, krule); 2581 } 2582 2583 void security_audit_rule_free(void *lsmrule) 2584 { 2585 call_void_hook(audit_rule_free, lsmrule); 2586 } 2587 2588 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2589 { 2590 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2591 } 2592 #endif /* CONFIG_AUDIT */ 2593 2594 #ifdef CONFIG_BPF_SYSCALL 2595 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2596 { 2597 return call_int_hook(bpf, 0, cmd, attr, size); 2598 } 2599 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2600 { 2601 return call_int_hook(bpf_map, 0, map, fmode); 2602 } 2603 int security_bpf_prog(struct bpf_prog *prog) 2604 { 2605 return call_int_hook(bpf_prog, 0, prog); 2606 } 2607 int security_bpf_map_alloc(struct bpf_map *map) 2608 { 2609 return call_int_hook(bpf_map_alloc_security, 0, map); 2610 } 2611 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2612 { 2613 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2614 } 2615 void security_bpf_map_free(struct bpf_map *map) 2616 { 2617 call_void_hook(bpf_map_free_security, map); 2618 } 2619 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2620 { 2621 call_void_hook(bpf_prog_free_security, aux); 2622 } 2623 #endif /* CONFIG_BPF_SYSCALL */ 2624 2625 int security_locked_down(enum lockdown_reason what) 2626 { 2627 return call_int_hook(locked_down, 0, what); 2628 } 2629 EXPORT_SYMBOL(security_locked_down); 2630 2631 #ifdef CONFIG_PERF_EVENTS 2632 int security_perf_event_open(struct perf_event_attr *attr, int type) 2633 { 2634 return call_int_hook(perf_event_open, 0, attr, type); 2635 } 2636 2637 int security_perf_event_alloc(struct perf_event *event) 2638 { 2639 return call_int_hook(perf_event_alloc, 0, event); 2640 } 2641 2642 void security_perf_event_free(struct perf_event *event) 2643 { 2644 call_void_hook(perf_event_free, event); 2645 } 2646 2647 int security_perf_event_read(struct perf_event *event) 2648 { 2649 return call_int_hook(perf_event_read, 0, event); 2650 } 2651 2652 int security_perf_event_write(struct perf_event *event) 2653 { 2654 return call_int_hook(perf_event_write, 0, event); 2655 } 2656 #endif /* CONFIG_PERF_EVENTS */ 2657 2658 #ifdef CONFIG_IO_URING 2659 int security_uring_override_creds(const struct cred *new) 2660 { 2661 return call_int_hook(uring_override_creds, 0, new); 2662 } 2663 2664 int security_uring_sqpoll(void) 2665 { 2666 return call_int_hook(uring_sqpoll, 0); 2667 } 2668 int security_uring_cmd(struct io_uring_cmd *ioucmd) 2669 { 2670 return call_int_hook(uring_cmd, 0, ioucmd); 2671 } 2672 #endif /* CONFIG_IO_URING */ 2673