1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 63 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 64 [LOCKDOWN_KCORE] = "/proc/kcore access", 65 [LOCKDOWN_KPROBES] = "use of kprobes", 66 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 67 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 68 [LOCKDOWN_PERF] = "unsafe use of perf", 69 [LOCKDOWN_TRACEFS] = "use of tracefs", 70 [LOCKDOWN_XMON_RW] = "xmon read and write access", 71 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 72 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 73 }; 74 75 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 77 78 static struct kmem_cache *lsm_file_cache; 79 static struct kmem_cache *lsm_inode_cache; 80 81 char *lsm_names; 82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 83 84 /* Boot-time LSM user choice */ 85 static __initdata const char *chosen_lsm_order; 86 static __initdata const char *chosen_major_lsm; 87 88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 89 90 /* Ordered list of LSMs to initialize. */ 91 static __initdata struct lsm_info **ordered_lsms; 92 static __initdata struct lsm_info *exclusive; 93 94 static __initdata bool debug; 95 #define init_debug(...) \ 96 do { \ 97 if (debug) \ 98 pr_info(__VA_ARGS__); \ 99 } while (0) 100 101 static bool __init is_enabled(struct lsm_info *lsm) 102 { 103 if (!lsm->enabled) 104 return false; 105 106 return *lsm->enabled; 107 } 108 109 /* Mark an LSM's enabled flag. */ 110 static int lsm_enabled_true __initdata = 1; 111 static int lsm_enabled_false __initdata = 0; 112 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 113 { 114 /* 115 * When an LSM hasn't configured an enable variable, we can use 116 * a hard-coded location for storing the default enabled state. 117 */ 118 if (!lsm->enabled) { 119 if (enabled) 120 lsm->enabled = &lsm_enabled_true; 121 else 122 lsm->enabled = &lsm_enabled_false; 123 } else if (lsm->enabled == &lsm_enabled_true) { 124 if (!enabled) 125 lsm->enabled = &lsm_enabled_false; 126 } else if (lsm->enabled == &lsm_enabled_false) { 127 if (enabled) 128 lsm->enabled = &lsm_enabled_true; 129 } else { 130 *lsm->enabled = enabled; 131 } 132 } 133 134 /* Is an LSM already listed in the ordered LSMs list? */ 135 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 136 { 137 struct lsm_info **check; 138 139 for (check = ordered_lsms; *check; check++) 140 if (*check == lsm) 141 return true; 142 143 return false; 144 } 145 146 /* Append an LSM to the list of ordered LSMs to initialize. */ 147 static int last_lsm __initdata; 148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 149 { 150 /* Ignore duplicate selections. */ 151 if (exists_ordered_lsm(lsm)) 152 return; 153 154 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 155 return; 156 157 /* Enable this LSM, if it is not already set. */ 158 if (!lsm->enabled) 159 lsm->enabled = &lsm_enabled_true; 160 ordered_lsms[last_lsm++] = lsm; 161 162 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 163 is_enabled(lsm) ? "en" : "dis"); 164 } 165 166 /* Is an LSM allowed to be initialized? */ 167 static bool __init lsm_allowed(struct lsm_info *lsm) 168 { 169 /* Skip if the LSM is disabled. */ 170 if (!is_enabled(lsm)) 171 return false; 172 173 /* Not allowed if another exclusive LSM already initialized. */ 174 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 175 init_debug("exclusive disabled: %s\n", lsm->name); 176 return false; 177 } 178 179 return true; 180 } 181 182 static void __init lsm_set_blob_size(int *need, int *lbs) 183 { 184 int offset; 185 186 if (*need > 0) { 187 offset = *lbs; 188 *lbs += *need; 189 *need = offset; 190 } 191 } 192 193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 194 { 195 if (!needed) 196 return; 197 198 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 199 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 200 /* 201 * The inode blob gets an rcu_head in addition to 202 * what the modules might need. 203 */ 204 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 205 blob_sizes.lbs_inode = sizeof(struct rcu_head); 206 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 207 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 208 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 209 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 210 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 211 } 212 213 /* Prepare LSM for initialization. */ 214 static void __init prepare_lsm(struct lsm_info *lsm) 215 { 216 int enabled = lsm_allowed(lsm); 217 218 /* Record enablement (to handle any following exclusive LSMs). */ 219 set_enabled(lsm, enabled); 220 221 /* If enabled, do pre-initialization work. */ 222 if (enabled) { 223 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 224 exclusive = lsm; 225 init_debug("exclusive chosen: %s\n", lsm->name); 226 } 227 228 lsm_set_blob_sizes(lsm->blobs); 229 } 230 } 231 232 /* Initialize a given LSM, if it is enabled. */ 233 static void __init initialize_lsm(struct lsm_info *lsm) 234 { 235 if (is_enabled(lsm)) { 236 int ret; 237 238 init_debug("initializing %s\n", lsm->name); 239 ret = lsm->init(); 240 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 241 } 242 } 243 244 /* Populate ordered LSMs list from comma-separated LSM name list. */ 245 static void __init ordered_lsm_parse(const char *order, const char *origin) 246 { 247 struct lsm_info *lsm; 248 char *sep, *name, *next; 249 250 /* LSM_ORDER_FIRST is always first. */ 251 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 252 if (lsm->order == LSM_ORDER_FIRST) 253 append_ordered_lsm(lsm, "first"); 254 } 255 256 /* Process "security=", if given. */ 257 if (chosen_major_lsm) { 258 struct lsm_info *major; 259 260 /* 261 * To match the original "security=" behavior, this 262 * explicitly does NOT fallback to another Legacy Major 263 * if the selected one was separately disabled: disable 264 * all non-matching Legacy Major LSMs. 265 */ 266 for (major = __start_lsm_info; major < __end_lsm_info; 267 major++) { 268 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 269 strcmp(major->name, chosen_major_lsm) != 0) { 270 set_enabled(major, false); 271 init_debug("security=%s disabled: %s\n", 272 chosen_major_lsm, major->name); 273 } 274 } 275 } 276 277 sep = kstrdup(order, GFP_KERNEL); 278 next = sep; 279 /* Walk the list, looking for matching LSMs. */ 280 while ((name = strsep(&next, ",")) != NULL) { 281 bool found = false; 282 283 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 284 if (lsm->order == LSM_ORDER_MUTABLE && 285 strcmp(lsm->name, name) == 0) { 286 append_ordered_lsm(lsm, origin); 287 found = true; 288 } 289 } 290 291 if (!found) 292 init_debug("%s ignored: %s\n", origin, name); 293 } 294 295 /* Process "security=", if given. */ 296 if (chosen_major_lsm) { 297 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 298 if (exists_ordered_lsm(lsm)) 299 continue; 300 if (strcmp(lsm->name, chosen_major_lsm) == 0) 301 append_ordered_lsm(lsm, "security="); 302 } 303 } 304 305 /* Disable all LSMs not in the ordered list. */ 306 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 307 if (exists_ordered_lsm(lsm)) 308 continue; 309 set_enabled(lsm, false); 310 init_debug("%s disabled: %s\n", origin, lsm->name); 311 } 312 313 kfree(sep); 314 } 315 316 static void __init lsm_early_cred(struct cred *cred); 317 static void __init lsm_early_task(struct task_struct *task); 318 319 static int lsm_append(const char *new, char **result); 320 321 static void __init ordered_lsm_init(void) 322 { 323 struct lsm_info **lsm; 324 325 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 326 GFP_KERNEL); 327 328 if (chosen_lsm_order) { 329 if (chosen_major_lsm) { 330 pr_info("security= is ignored because it is superseded by lsm=\n"); 331 chosen_major_lsm = NULL; 332 } 333 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 334 } else 335 ordered_lsm_parse(builtin_lsm_order, "builtin"); 336 337 for (lsm = ordered_lsms; *lsm; lsm++) 338 prepare_lsm(*lsm); 339 340 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 341 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 342 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 343 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 344 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 345 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 346 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 347 348 /* 349 * Create any kmem_caches needed for blobs 350 */ 351 if (blob_sizes.lbs_file) 352 lsm_file_cache = kmem_cache_create("lsm_file_cache", 353 blob_sizes.lbs_file, 0, 354 SLAB_PANIC, NULL); 355 if (blob_sizes.lbs_inode) 356 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 357 blob_sizes.lbs_inode, 0, 358 SLAB_PANIC, NULL); 359 360 lsm_early_cred((struct cred *) current->cred); 361 lsm_early_task(current); 362 for (lsm = ordered_lsms; *lsm; lsm++) 363 initialize_lsm(*lsm); 364 365 kfree(ordered_lsms); 366 } 367 368 int __init early_security_init(void) 369 { 370 struct lsm_info *lsm; 371 372 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 373 INIT_HLIST_HEAD(&security_hook_heads.NAME); 374 #include "linux/lsm_hook_defs.h" 375 #undef LSM_HOOK 376 377 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 378 if (!lsm->enabled) 379 lsm->enabled = &lsm_enabled_true; 380 prepare_lsm(lsm); 381 initialize_lsm(lsm); 382 } 383 384 return 0; 385 } 386 387 /** 388 * security_init - initializes the security framework 389 * 390 * This should be called early in the kernel initialization sequence. 391 */ 392 int __init security_init(void) 393 { 394 struct lsm_info *lsm; 395 396 pr_info("Security Framework initializing\n"); 397 398 /* 399 * Append the names of the early LSM modules now that kmalloc() is 400 * available 401 */ 402 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 403 if (lsm->enabled) 404 lsm_append(lsm->name, &lsm_names); 405 } 406 407 /* Load LSMs in specified order. */ 408 ordered_lsm_init(); 409 410 return 0; 411 } 412 413 /* Save user chosen LSM */ 414 static int __init choose_major_lsm(char *str) 415 { 416 chosen_major_lsm = str; 417 return 1; 418 } 419 __setup("security=", choose_major_lsm); 420 421 /* Explicitly choose LSM initialization order. */ 422 static int __init choose_lsm_order(char *str) 423 { 424 chosen_lsm_order = str; 425 return 1; 426 } 427 __setup("lsm=", choose_lsm_order); 428 429 /* Enable LSM order debugging. */ 430 static int __init enable_debug(char *str) 431 { 432 debug = true; 433 return 1; 434 } 435 __setup("lsm.debug", enable_debug); 436 437 static bool match_last_lsm(const char *list, const char *lsm) 438 { 439 const char *last; 440 441 if (WARN_ON(!list || !lsm)) 442 return false; 443 last = strrchr(list, ','); 444 if (last) 445 /* Pass the comma, strcmp() will check for '\0' */ 446 last++; 447 else 448 last = list; 449 return !strcmp(last, lsm); 450 } 451 452 static int lsm_append(const char *new, char **result) 453 { 454 char *cp; 455 456 if (*result == NULL) { 457 *result = kstrdup(new, GFP_KERNEL); 458 if (*result == NULL) 459 return -ENOMEM; 460 } else { 461 /* Check if it is the last registered name */ 462 if (match_last_lsm(*result, new)) 463 return 0; 464 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 465 if (cp == NULL) 466 return -ENOMEM; 467 kfree(*result); 468 *result = cp; 469 } 470 return 0; 471 } 472 473 /** 474 * security_add_hooks - Add a modules hooks to the hook lists. 475 * @hooks: the hooks to add 476 * @count: the number of hooks to add 477 * @lsm: the name of the security module 478 * 479 * Each LSM has to register its hooks with the infrastructure. 480 */ 481 void __init security_add_hooks(struct security_hook_list *hooks, int count, 482 const char *lsm) 483 { 484 int i; 485 486 for (i = 0; i < count; i++) { 487 hooks[i].lsm = lsm; 488 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 489 } 490 491 /* 492 * Don't try to append during early_security_init(), we'll come back 493 * and fix this up afterwards. 494 */ 495 if (slab_is_available()) { 496 if (lsm_append(lsm, &lsm_names) < 0) 497 panic("%s - Cannot get early memory.\n", __func__); 498 } 499 } 500 501 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 502 { 503 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 504 event, data); 505 } 506 EXPORT_SYMBOL(call_blocking_lsm_notifier); 507 508 int register_blocking_lsm_notifier(struct notifier_block *nb) 509 { 510 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 511 nb); 512 } 513 EXPORT_SYMBOL(register_blocking_lsm_notifier); 514 515 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 516 { 517 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 518 nb); 519 } 520 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 521 522 /** 523 * lsm_cred_alloc - allocate a composite cred blob 524 * @cred: the cred that needs a blob 525 * @gfp: allocation type 526 * 527 * Allocate the cred blob for all the modules 528 * 529 * Returns 0, or -ENOMEM if memory can't be allocated. 530 */ 531 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 532 { 533 if (blob_sizes.lbs_cred == 0) { 534 cred->security = NULL; 535 return 0; 536 } 537 538 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 539 if (cred->security == NULL) 540 return -ENOMEM; 541 return 0; 542 } 543 544 /** 545 * lsm_early_cred - during initialization allocate a composite cred blob 546 * @cred: the cred that needs a blob 547 * 548 * Allocate the cred blob for all the modules 549 */ 550 static void __init lsm_early_cred(struct cred *cred) 551 { 552 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 553 554 if (rc) 555 panic("%s: Early cred alloc failed.\n", __func__); 556 } 557 558 /** 559 * lsm_file_alloc - allocate a composite file blob 560 * @file: the file that needs a blob 561 * 562 * Allocate the file blob for all the modules 563 * 564 * Returns 0, or -ENOMEM if memory can't be allocated. 565 */ 566 static int lsm_file_alloc(struct file *file) 567 { 568 if (!lsm_file_cache) { 569 file->f_security = NULL; 570 return 0; 571 } 572 573 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 574 if (file->f_security == NULL) 575 return -ENOMEM; 576 return 0; 577 } 578 579 /** 580 * lsm_inode_alloc - allocate a composite inode blob 581 * @inode: the inode that needs a blob 582 * 583 * Allocate the inode blob for all the modules 584 * 585 * Returns 0, or -ENOMEM if memory can't be allocated. 586 */ 587 int lsm_inode_alloc(struct inode *inode) 588 { 589 if (!lsm_inode_cache) { 590 inode->i_security = NULL; 591 return 0; 592 } 593 594 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 595 if (inode->i_security == NULL) 596 return -ENOMEM; 597 return 0; 598 } 599 600 /** 601 * lsm_task_alloc - allocate a composite task blob 602 * @task: the task that needs a blob 603 * 604 * Allocate the task blob for all the modules 605 * 606 * Returns 0, or -ENOMEM if memory can't be allocated. 607 */ 608 static int lsm_task_alloc(struct task_struct *task) 609 { 610 if (blob_sizes.lbs_task == 0) { 611 task->security = NULL; 612 return 0; 613 } 614 615 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 616 if (task->security == NULL) 617 return -ENOMEM; 618 return 0; 619 } 620 621 /** 622 * lsm_ipc_alloc - allocate a composite ipc blob 623 * @kip: the ipc that needs a blob 624 * 625 * Allocate the ipc blob for all the modules 626 * 627 * Returns 0, or -ENOMEM if memory can't be allocated. 628 */ 629 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 630 { 631 if (blob_sizes.lbs_ipc == 0) { 632 kip->security = NULL; 633 return 0; 634 } 635 636 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 637 if (kip->security == NULL) 638 return -ENOMEM; 639 return 0; 640 } 641 642 /** 643 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 644 * @mp: the msg_msg that needs a blob 645 * 646 * Allocate the ipc blob for all the modules 647 * 648 * Returns 0, or -ENOMEM if memory can't be allocated. 649 */ 650 static int lsm_msg_msg_alloc(struct msg_msg *mp) 651 { 652 if (blob_sizes.lbs_msg_msg == 0) { 653 mp->security = NULL; 654 return 0; 655 } 656 657 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 658 if (mp->security == NULL) 659 return -ENOMEM; 660 return 0; 661 } 662 663 /** 664 * lsm_early_task - during initialization allocate a composite task blob 665 * @task: the task that needs a blob 666 * 667 * Allocate the task blob for all the modules 668 */ 669 static void __init lsm_early_task(struct task_struct *task) 670 { 671 int rc = lsm_task_alloc(task); 672 673 if (rc) 674 panic("%s: Early task alloc failed.\n", __func__); 675 } 676 677 /** 678 * lsm_superblock_alloc - allocate a composite superblock blob 679 * @sb: the superblock that needs a blob 680 * 681 * Allocate the superblock blob for all the modules 682 * 683 * Returns 0, or -ENOMEM if memory can't be allocated. 684 */ 685 static int lsm_superblock_alloc(struct super_block *sb) 686 { 687 if (blob_sizes.lbs_superblock == 0) { 688 sb->s_security = NULL; 689 return 0; 690 } 691 692 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 693 if (sb->s_security == NULL) 694 return -ENOMEM; 695 return 0; 696 } 697 698 /* 699 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 700 * can be accessed with: 701 * 702 * LSM_RET_DEFAULT(<hook_name>) 703 * 704 * The macros below define static constants for the default value of each 705 * LSM hook. 706 */ 707 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 708 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 709 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 710 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 711 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 712 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 713 714 #include <linux/lsm_hook_defs.h> 715 #undef LSM_HOOK 716 717 /* 718 * Hook list operation macros. 719 * 720 * call_void_hook: 721 * This is a hook that does not return a value. 722 * 723 * call_int_hook: 724 * This is a hook that returns a value. 725 */ 726 727 #define call_void_hook(FUNC, ...) \ 728 do { \ 729 struct security_hook_list *P; \ 730 \ 731 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 732 P->hook.FUNC(__VA_ARGS__); \ 733 } while (0) 734 735 #define call_int_hook(FUNC, IRC, ...) ({ \ 736 int RC = IRC; \ 737 do { \ 738 struct security_hook_list *P; \ 739 \ 740 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 741 RC = P->hook.FUNC(__VA_ARGS__); \ 742 if (RC != 0) \ 743 break; \ 744 } \ 745 } while (0); \ 746 RC; \ 747 }) 748 749 /* Security operations */ 750 751 int security_binder_set_context_mgr(const struct cred *mgr) 752 { 753 return call_int_hook(binder_set_context_mgr, 0, mgr); 754 } 755 756 int security_binder_transaction(const struct cred *from, 757 const struct cred *to) 758 { 759 return call_int_hook(binder_transaction, 0, from, to); 760 } 761 762 int security_binder_transfer_binder(const struct cred *from, 763 const struct cred *to) 764 { 765 return call_int_hook(binder_transfer_binder, 0, from, to); 766 } 767 768 int security_binder_transfer_file(const struct cred *from, 769 const struct cred *to, struct file *file) 770 { 771 return call_int_hook(binder_transfer_file, 0, from, to, file); 772 } 773 774 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 775 { 776 return call_int_hook(ptrace_access_check, 0, child, mode); 777 } 778 779 int security_ptrace_traceme(struct task_struct *parent) 780 { 781 return call_int_hook(ptrace_traceme, 0, parent); 782 } 783 784 int security_capget(struct task_struct *target, 785 kernel_cap_t *effective, 786 kernel_cap_t *inheritable, 787 kernel_cap_t *permitted) 788 { 789 return call_int_hook(capget, 0, target, 790 effective, inheritable, permitted); 791 } 792 793 int security_capset(struct cred *new, const struct cred *old, 794 const kernel_cap_t *effective, 795 const kernel_cap_t *inheritable, 796 const kernel_cap_t *permitted) 797 { 798 return call_int_hook(capset, 0, new, old, 799 effective, inheritable, permitted); 800 } 801 802 int security_capable(const struct cred *cred, 803 struct user_namespace *ns, 804 int cap, 805 unsigned int opts) 806 { 807 return call_int_hook(capable, 0, cred, ns, cap, opts); 808 } 809 810 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 811 { 812 return call_int_hook(quotactl, 0, cmds, type, id, sb); 813 } 814 815 int security_quota_on(struct dentry *dentry) 816 { 817 return call_int_hook(quota_on, 0, dentry); 818 } 819 820 int security_syslog(int type) 821 { 822 return call_int_hook(syslog, 0, type); 823 } 824 825 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 826 { 827 return call_int_hook(settime, 0, ts, tz); 828 } 829 830 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 831 { 832 struct security_hook_list *hp; 833 int cap_sys_admin = 1; 834 int rc; 835 836 /* 837 * The module will respond with a positive value if 838 * it thinks the __vm_enough_memory() call should be 839 * made with the cap_sys_admin set. If all of the modules 840 * agree that it should be set it will. If any module 841 * thinks it should not be set it won't. 842 */ 843 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 844 rc = hp->hook.vm_enough_memory(mm, pages); 845 if (rc <= 0) { 846 cap_sys_admin = 0; 847 break; 848 } 849 } 850 return __vm_enough_memory(mm, pages, cap_sys_admin); 851 } 852 853 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 854 { 855 return call_int_hook(bprm_creds_for_exec, 0, bprm); 856 } 857 858 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 859 { 860 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 861 } 862 863 int security_bprm_check(struct linux_binprm *bprm) 864 { 865 int ret; 866 867 ret = call_int_hook(bprm_check_security, 0, bprm); 868 if (ret) 869 return ret; 870 return ima_bprm_check(bprm); 871 } 872 873 void security_bprm_committing_creds(struct linux_binprm *bprm) 874 { 875 call_void_hook(bprm_committing_creds, bprm); 876 } 877 878 void security_bprm_committed_creds(struct linux_binprm *bprm) 879 { 880 call_void_hook(bprm_committed_creds, bprm); 881 } 882 883 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 884 { 885 return call_int_hook(fs_context_dup, 0, fc, src_fc); 886 } 887 888 int security_fs_context_parse_param(struct fs_context *fc, 889 struct fs_parameter *param) 890 { 891 struct security_hook_list *hp; 892 int trc; 893 int rc = -ENOPARAM; 894 895 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 896 list) { 897 trc = hp->hook.fs_context_parse_param(fc, param); 898 if (trc == 0) 899 rc = 0; 900 else if (trc != -ENOPARAM) 901 return trc; 902 } 903 return rc; 904 } 905 906 int security_sb_alloc(struct super_block *sb) 907 { 908 int rc = lsm_superblock_alloc(sb); 909 910 if (unlikely(rc)) 911 return rc; 912 rc = call_int_hook(sb_alloc_security, 0, sb); 913 if (unlikely(rc)) 914 security_sb_free(sb); 915 return rc; 916 } 917 918 void security_sb_delete(struct super_block *sb) 919 { 920 call_void_hook(sb_delete, sb); 921 } 922 923 void security_sb_free(struct super_block *sb) 924 { 925 call_void_hook(sb_free_security, sb); 926 kfree(sb->s_security); 927 sb->s_security = NULL; 928 } 929 930 void security_free_mnt_opts(void **mnt_opts) 931 { 932 if (!*mnt_opts) 933 return; 934 call_void_hook(sb_free_mnt_opts, *mnt_opts); 935 *mnt_opts = NULL; 936 } 937 EXPORT_SYMBOL(security_free_mnt_opts); 938 939 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 940 { 941 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 942 } 943 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 944 945 int security_sb_mnt_opts_compat(struct super_block *sb, 946 void *mnt_opts) 947 { 948 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 949 } 950 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 951 952 int security_sb_remount(struct super_block *sb, 953 void *mnt_opts) 954 { 955 return call_int_hook(sb_remount, 0, sb, mnt_opts); 956 } 957 EXPORT_SYMBOL(security_sb_remount); 958 959 int security_sb_kern_mount(struct super_block *sb) 960 { 961 return call_int_hook(sb_kern_mount, 0, sb); 962 } 963 964 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 965 { 966 return call_int_hook(sb_show_options, 0, m, sb); 967 } 968 969 int security_sb_statfs(struct dentry *dentry) 970 { 971 return call_int_hook(sb_statfs, 0, dentry); 972 } 973 974 int security_sb_mount(const char *dev_name, const struct path *path, 975 const char *type, unsigned long flags, void *data) 976 { 977 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 978 } 979 980 int security_sb_umount(struct vfsmount *mnt, int flags) 981 { 982 return call_int_hook(sb_umount, 0, mnt, flags); 983 } 984 985 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 986 { 987 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 988 } 989 990 int security_sb_set_mnt_opts(struct super_block *sb, 991 void *mnt_opts, 992 unsigned long kern_flags, 993 unsigned long *set_kern_flags) 994 { 995 return call_int_hook(sb_set_mnt_opts, 996 mnt_opts ? -EOPNOTSUPP : 0, sb, 997 mnt_opts, kern_flags, set_kern_flags); 998 } 999 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1000 1001 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1002 struct super_block *newsb, 1003 unsigned long kern_flags, 1004 unsigned long *set_kern_flags) 1005 { 1006 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1007 kern_flags, set_kern_flags); 1008 } 1009 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1010 1011 int security_move_mount(const struct path *from_path, const struct path *to_path) 1012 { 1013 return call_int_hook(move_mount, 0, from_path, to_path); 1014 } 1015 1016 int security_path_notify(const struct path *path, u64 mask, 1017 unsigned int obj_type) 1018 { 1019 return call_int_hook(path_notify, 0, path, mask, obj_type); 1020 } 1021 1022 int security_inode_alloc(struct inode *inode) 1023 { 1024 int rc = lsm_inode_alloc(inode); 1025 1026 if (unlikely(rc)) 1027 return rc; 1028 rc = call_int_hook(inode_alloc_security, 0, inode); 1029 if (unlikely(rc)) 1030 security_inode_free(inode); 1031 return rc; 1032 } 1033 1034 static void inode_free_by_rcu(struct rcu_head *head) 1035 { 1036 /* 1037 * The rcu head is at the start of the inode blob 1038 */ 1039 kmem_cache_free(lsm_inode_cache, head); 1040 } 1041 1042 void security_inode_free(struct inode *inode) 1043 { 1044 integrity_inode_free(inode); 1045 call_void_hook(inode_free_security, inode); 1046 /* 1047 * The inode may still be referenced in a path walk and 1048 * a call to security_inode_permission() can be made 1049 * after inode_free_security() is called. Ideally, the VFS 1050 * wouldn't do this, but fixing that is a much harder 1051 * job. For now, simply free the i_security via RCU, and 1052 * leave the current inode->i_security pointer intact. 1053 * The inode will be freed after the RCU grace period too. 1054 */ 1055 if (inode->i_security) 1056 call_rcu((struct rcu_head *)inode->i_security, 1057 inode_free_by_rcu); 1058 } 1059 1060 int security_dentry_init_security(struct dentry *dentry, int mode, 1061 const struct qstr *name, 1062 const char **xattr_name, void **ctx, 1063 u32 *ctxlen) 1064 { 1065 struct security_hook_list *hp; 1066 int rc; 1067 1068 /* 1069 * Only one module will provide a security context. 1070 */ 1071 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1072 rc = hp->hook.dentry_init_security(dentry, mode, name, 1073 xattr_name, ctx, ctxlen); 1074 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1075 return rc; 1076 } 1077 return LSM_RET_DEFAULT(dentry_init_security); 1078 } 1079 EXPORT_SYMBOL(security_dentry_init_security); 1080 1081 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1082 struct qstr *name, 1083 const struct cred *old, struct cred *new) 1084 { 1085 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1086 name, old, new); 1087 } 1088 EXPORT_SYMBOL(security_dentry_create_files_as); 1089 1090 int security_inode_init_security(struct inode *inode, struct inode *dir, 1091 const struct qstr *qstr, 1092 const initxattrs initxattrs, void *fs_data) 1093 { 1094 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1095 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1096 int ret; 1097 1098 if (unlikely(IS_PRIVATE(inode))) 1099 return 0; 1100 1101 if (!initxattrs) 1102 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1103 dir, qstr, NULL, NULL, NULL); 1104 memset(new_xattrs, 0, sizeof(new_xattrs)); 1105 lsm_xattr = new_xattrs; 1106 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1107 &lsm_xattr->name, 1108 &lsm_xattr->value, 1109 &lsm_xattr->value_len); 1110 if (ret) 1111 goto out; 1112 1113 evm_xattr = lsm_xattr + 1; 1114 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1115 if (ret) 1116 goto out; 1117 ret = initxattrs(inode, new_xattrs, fs_data); 1118 out: 1119 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1120 kfree(xattr->value); 1121 return (ret == -EOPNOTSUPP) ? 0 : ret; 1122 } 1123 EXPORT_SYMBOL(security_inode_init_security); 1124 1125 int security_inode_init_security_anon(struct inode *inode, 1126 const struct qstr *name, 1127 const struct inode *context_inode) 1128 { 1129 return call_int_hook(inode_init_security_anon, 0, inode, name, 1130 context_inode); 1131 } 1132 1133 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1134 const struct qstr *qstr, const char **name, 1135 void **value, size_t *len) 1136 { 1137 if (unlikely(IS_PRIVATE(inode))) 1138 return -EOPNOTSUPP; 1139 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1140 qstr, name, value, len); 1141 } 1142 EXPORT_SYMBOL(security_old_inode_init_security); 1143 1144 #ifdef CONFIG_SECURITY_PATH 1145 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1146 unsigned int dev) 1147 { 1148 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1149 return 0; 1150 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1151 } 1152 EXPORT_SYMBOL(security_path_mknod); 1153 1154 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1155 { 1156 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1157 return 0; 1158 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1159 } 1160 EXPORT_SYMBOL(security_path_mkdir); 1161 1162 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1163 { 1164 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1165 return 0; 1166 return call_int_hook(path_rmdir, 0, dir, dentry); 1167 } 1168 1169 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1170 { 1171 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1172 return 0; 1173 return call_int_hook(path_unlink, 0, dir, dentry); 1174 } 1175 EXPORT_SYMBOL(security_path_unlink); 1176 1177 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1178 const char *old_name) 1179 { 1180 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1181 return 0; 1182 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1183 } 1184 1185 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1186 struct dentry *new_dentry) 1187 { 1188 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1189 return 0; 1190 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1191 } 1192 1193 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1194 const struct path *new_dir, struct dentry *new_dentry, 1195 unsigned int flags) 1196 { 1197 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1198 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1199 return 0; 1200 1201 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1202 new_dentry, flags); 1203 } 1204 EXPORT_SYMBOL(security_path_rename); 1205 1206 int security_path_truncate(const struct path *path) 1207 { 1208 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1209 return 0; 1210 return call_int_hook(path_truncate, 0, path); 1211 } 1212 1213 int security_path_chmod(const struct path *path, umode_t mode) 1214 { 1215 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1216 return 0; 1217 return call_int_hook(path_chmod, 0, path, mode); 1218 } 1219 1220 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1221 { 1222 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1223 return 0; 1224 return call_int_hook(path_chown, 0, path, uid, gid); 1225 } 1226 1227 int security_path_chroot(const struct path *path) 1228 { 1229 return call_int_hook(path_chroot, 0, path); 1230 } 1231 #endif 1232 1233 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1234 { 1235 if (unlikely(IS_PRIVATE(dir))) 1236 return 0; 1237 return call_int_hook(inode_create, 0, dir, dentry, mode); 1238 } 1239 EXPORT_SYMBOL_GPL(security_inode_create); 1240 1241 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1242 struct dentry *new_dentry) 1243 { 1244 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1245 return 0; 1246 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1247 } 1248 1249 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1250 { 1251 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1252 return 0; 1253 return call_int_hook(inode_unlink, 0, dir, dentry); 1254 } 1255 1256 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1257 const char *old_name) 1258 { 1259 if (unlikely(IS_PRIVATE(dir))) 1260 return 0; 1261 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1262 } 1263 1264 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1265 { 1266 if (unlikely(IS_PRIVATE(dir))) 1267 return 0; 1268 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1269 } 1270 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1271 1272 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1273 { 1274 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1275 return 0; 1276 return call_int_hook(inode_rmdir, 0, dir, dentry); 1277 } 1278 1279 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1280 { 1281 if (unlikely(IS_PRIVATE(dir))) 1282 return 0; 1283 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1284 } 1285 1286 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1287 struct inode *new_dir, struct dentry *new_dentry, 1288 unsigned int flags) 1289 { 1290 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1291 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1292 return 0; 1293 1294 if (flags & RENAME_EXCHANGE) { 1295 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1296 old_dir, old_dentry); 1297 if (err) 1298 return err; 1299 } 1300 1301 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1302 new_dir, new_dentry); 1303 } 1304 1305 int security_inode_readlink(struct dentry *dentry) 1306 { 1307 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1308 return 0; 1309 return call_int_hook(inode_readlink, 0, dentry); 1310 } 1311 1312 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1313 bool rcu) 1314 { 1315 if (unlikely(IS_PRIVATE(inode))) 1316 return 0; 1317 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1318 } 1319 1320 int security_inode_permission(struct inode *inode, int mask) 1321 { 1322 if (unlikely(IS_PRIVATE(inode))) 1323 return 0; 1324 return call_int_hook(inode_permission, 0, inode, mask); 1325 } 1326 1327 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1328 { 1329 int ret; 1330 1331 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1332 return 0; 1333 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1334 if (ret) 1335 return ret; 1336 return evm_inode_setattr(dentry, attr); 1337 } 1338 EXPORT_SYMBOL_GPL(security_inode_setattr); 1339 1340 int security_inode_getattr(const struct path *path) 1341 { 1342 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1343 return 0; 1344 return call_int_hook(inode_getattr, 0, path); 1345 } 1346 1347 int security_inode_setxattr(struct user_namespace *mnt_userns, 1348 struct dentry *dentry, const char *name, 1349 const void *value, size_t size, int flags) 1350 { 1351 int ret; 1352 1353 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1354 return 0; 1355 /* 1356 * SELinux and Smack integrate the cap call, 1357 * so assume that all LSMs supplying this call do so. 1358 */ 1359 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1360 size, flags); 1361 1362 if (ret == 1) 1363 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1364 if (ret) 1365 return ret; 1366 ret = ima_inode_setxattr(dentry, name, value, size); 1367 if (ret) 1368 return ret; 1369 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1370 } 1371 1372 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1373 const void *value, size_t size, int flags) 1374 { 1375 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1376 return; 1377 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1378 evm_inode_post_setxattr(dentry, name, value, size); 1379 } 1380 1381 int security_inode_getxattr(struct dentry *dentry, const char *name) 1382 { 1383 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1384 return 0; 1385 return call_int_hook(inode_getxattr, 0, dentry, name); 1386 } 1387 1388 int security_inode_listxattr(struct dentry *dentry) 1389 { 1390 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1391 return 0; 1392 return call_int_hook(inode_listxattr, 0, dentry); 1393 } 1394 1395 int security_inode_removexattr(struct user_namespace *mnt_userns, 1396 struct dentry *dentry, const char *name) 1397 { 1398 int ret; 1399 1400 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1401 return 0; 1402 /* 1403 * SELinux and Smack integrate the cap call, 1404 * so assume that all LSMs supplying this call do so. 1405 */ 1406 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1407 if (ret == 1) 1408 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1409 if (ret) 1410 return ret; 1411 ret = ima_inode_removexattr(dentry, name); 1412 if (ret) 1413 return ret; 1414 return evm_inode_removexattr(mnt_userns, dentry, name); 1415 } 1416 1417 int security_inode_need_killpriv(struct dentry *dentry) 1418 { 1419 return call_int_hook(inode_need_killpriv, 0, dentry); 1420 } 1421 1422 int security_inode_killpriv(struct user_namespace *mnt_userns, 1423 struct dentry *dentry) 1424 { 1425 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1426 } 1427 1428 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1429 struct inode *inode, const char *name, 1430 void **buffer, bool alloc) 1431 { 1432 struct security_hook_list *hp; 1433 int rc; 1434 1435 if (unlikely(IS_PRIVATE(inode))) 1436 return LSM_RET_DEFAULT(inode_getsecurity); 1437 /* 1438 * Only one module will provide an attribute with a given name. 1439 */ 1440 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1441 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1442 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1443 return rc; 1444 } 1445 return LSM_RET_DEFAULT(inode_getsecurity); 1446 } 1447 1448 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1449 { 1450 struct security_hook_list *hp; 1451 int rc; 1452 1453 if (unlikely(IS_PRIVATE(inode))) 1454 return LSM_RET_DEFAULT(inode_setsecurity); 1455 /* 1456 * Only one module will provide an attribute with a given name. 1457 */ 1458 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1459 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1460 flags); 1461 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1462 return rc; 1463 } 1464 return LSM_RET_DEFAULT(inode_setsecurity); 1465 } 1466 1467 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1468 { 1469 if (unlikely(IS_PRIVATE(inode))) 1470 return 0; 1471 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1472 } 1473 EXPORT_SYMBOL(security_inode_listsecurity); 1474 1475 void security_inode_getsecid(struct inode *inode, u32 *secid) 1476 { 1477 call_void_hook(inode_getsecid, inode, secid); 1478 } 1479 1480 int security_inode_copy_up(struct dentry *src, struct cred **new) 1481 { 1482 return call_int_hook(inode_copy_up, 0, src, new); 1483 } 1484 EXPORT_SYMBOL(security_inode_copy_up); 1485 1486 int security_inode_copy_up_xattr(const char *name) 1487 { 1488 struct security_hook_list *hp; 1489 int rc; 1490 1491 /* 1492 * The implementation can return 0 (accept the xattr), 1 (discard the 1493 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1494 * any other error code incase of an error. 1495 */ 1496 hlist_for_each_entry(hp, 1497 &security_hook_heads.inode_copy_up_xattr, list) { 1498 rc = hp->hook.inode_copy_up_xattr(name); 1499 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1500 return rc; 1501 } 1502 1503 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1504 } 1505 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1506 1507 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1508 struct kernfs_node *kn) 1509 { 1510 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1511 } 1512 1513 int security_file_permission(struct file *file, int mask) 1514 { 1515 int ret; 1516 1517 ret = call_int_hook(file_permission, 0, file, mask); 1518 if (ret) 1519 return ret; 1520 1521 return fsnotify_perm(file, mask); 1522 } 1523 1524 int security_file_alloc(struct file *file) 1525 { 1526 int rc = lsm_file_alloc(file); 1527 1528 if (rc) 1529 return rc; 1530 rc = call_int_hook(file_alloc_security, 0, file); 1531 if (unlikely(rc)) 1532 security_file_free(file); 1533 return rc; 1534 } 1535 1536 void security_file_free(struct file *file) 1537 { 1538 void *blob; 1539 1540 call_void_hook(file_free_security, file); 1541 1542 blob = file->f_security; 1543 if (blob) { 1544 file->f_security = NULL; 1545 kmem_cache_free(lsm_file_cache, blob); 1546 } 1547 } 1548 1549 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1550 { 1551 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1552 } 1553 EXPORT_SYMBOL_GPL(security_file_ioctl); 1554 1555 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1556 { 1557 /* 1558 * Does we have PROT_READ and does the application expect 1559 * it to imply PROT_EXEC? If not, nothing to talk about... 1560 */ 1561 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1562 return prot; 1563 if (!(current->personality & READ_IMPLIES_EXEC)) 1564 return prot; 1565 /* 1566 * if that's an anonymous mapping, let it. 1567 */ 1568 if (!file) 1569 return prot | PROT_EXEC; 1570 /* 1571 * ditto if it's not on noexec mount, except that on !MMU we need 1572 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1573 */ 1574 if (!path_noexec(&file->f_path)) { 1575 #ifndef CONFIG_MMU 1576 if (file->f_op->mmap_capabilities) { 1577 unsigned caps = file->f_op->mmap_capabilities(file); 1578 if (!(caps & NOMMU_MAP_EXEC)) 1579 return prot; 1580 } 1581 #endif 1582 return prot | PROT_EXEC; 1583 } 1584 /* anything on noexec mount won't get PROT_EXEC */ 1585 return prot; 1586 } 1587 1588 int security_mmap_file(struct file *file, unsigned long prot, 1589 unsigned long flags) 1590 { 1591 int ret; 1592 ret = call_int_hook(mmap_file, 0, file, prot, 1593 mmap_prot(file, prot), flags); 1594 if (ret) 1595 return ret; 1596 return ima_file_mmap(file, prot); 1597 } 1598 1599 int security_mmap_addr(unsigned long addr) 1600 { 1601 return call_int_hook(mmap_addr, 0, addr); 1602 } 1603 1604 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1605 unsigned long prot) 1606 { 1607 int ret; 1608 1609 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1610 if (ret) 1611 return ret; 1612 return ima_file_mprotect(vma, prot); 1613 } 1614 1615 int security_file_lock(struct file *file, unsigned int cmd) 1616 { 1617 return call_int_hook(file_lock, 0, file, cmd); 1618 } 1619 1620 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1621 { 1622 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1623 } 1624 1625 void security_file_set_fowner(struct file *file) 1626 { 1627 call_void_hook(file_set_fowner, file); 1628 } 1629 1630 int security_file_send_sigiotask(struct task_struct *tsk, 1631 struct fown_struct *fown, int sig) 1632 { 1633 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1634 } 1635 1636 int security_file_receive(struct file *file) 1637 { 1638 return call_int_hook(file_receive, 0, file); 1639 } 1640 1641 int security_file_open(struct file *file) 1642 { 1643 int ret; 1644 1645 ret = call_int_hook(file_open, 0, file); 1646 if (ret) 1647 return ret; 1648 1649 return fsnotify_perm(file, MAY_OPEN); 1650 } 1651 1652 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1653 { 1654 int rc = lsm_task_alloc(task); 1655 1656 if (rc) 1657 return rc; 1658 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1659 if (unlikely(rc)) 1660 security_task_free(task); 1661 return rc; 1662 } 1663 1664 void security_task_free(struct task_struct *task) 1665 { 1666 call_void_hook(task_free, task); 1667 1668 kfree(task->security); 1669 task->security = NULL; 1670 } 1671 1672 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1673 { 1674 int rc = lsm_cred_alloc(cred, gfp); 1675 1676 if (rc) 1677 return rc; 1678 1679 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1680 if (unlikely(rc)) 1681 security_cred_free(cred); 1682 return rc; 1683 } 1684 1685 void security_cred_free(struct cred *cred) 1686 { 1687 /* 1688 * There is a failure case in prepare_creds() that 1689 * may result in a call here with ->security being NULL. 1690 */ 1691 if (unlikely(cred->security == NULL)) 1692 return; 1693 1694 call_void_hook(cred_free, cred); 1695 1696 kfree(cred->security); 1697 cred->security = NULL; 1698 } 1699 1700 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1701 { 1702 int rc = lsm_cred_alloc(new, gfp); 1703 1704 if (rc) 1705 return rc; 1706 1707 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1708 if (unlikely(rc)) 1709 security_cred_free(new); 1710 return rc; 1711 } 1712 1713 void security_transfer_creds(struct cred *new, const struct cred *old) 1714 { 1715 call_void_hook(cred_transfer, new, old); 1716 } 1717 1718 void security_cred_getsecid(const struct cred *c, u32 *secid) 1719 { 1720 *secid = 0; 1721 call_void_hook(cred_getsecid, c, secid); 1722 } 1723 EXPORT_SYMBOL(security_cred_getsecid); 1724 1725 int security_kernel_act_as(struct cred *new, u32 secid) 1726 { 1727 return call_int_hook(kernel_act_as, 0, new, secid); 1728 } 1729 1730 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1731 { 1732 return call_int_hook(kernel_create_files_as, 0, new, inode); 1733 } 1734 1735 int security_kernel_module_request(char *kmod_name) 1736 { 1737 int ret; 1738 1739 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1740 if (ret) 1741 return ret; 1742 return integrity_kernel_module_request(kmod_name); 1743 } 1744 1745 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1746 bool contents) 1747 { 1748 int ret; 1749 1750 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1751 if (ret) 1752 return ret; 1753 return ima_read_file(file, id, contents); 1754 } 1755 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1756 1757 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1758 enum kernel_read_file_id id) 1759 { 1760 int ret; 1761 1762 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1763 if (ret) 1764 return ret; 1765 return ima_post_read_file(file, buf, size, id); 1766 } 1767 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1768 1769 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1770 { 1771 int ret; 1772 1773 ret = call_int_hook(kernel_load_data, 0, id, contents); 1774 if (ret) 1775 return ret; 1776 return ima_load_data(id, contents); 1777 } 1778 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1779 1780 int security_kernel_post_load_data(char *buf, loff_t size, 1781 enum kernel_load_data_id id, 1782 char *description) 1783 { 1784 int ret; 1785 1786 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1787 description); 1788 if (ret) 1789 return ret; 1790 return ima_post_load_data(buf, size, id, description); 1791 } 1792 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1793 1794 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1795 int flags) 1796 { 1797 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1798 } 1799 1800 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1801 int flags) 1802 { 1803 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1804 } 1805 1806 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1807 { 1808 return call_int_hook(task_setpgid, 0, p, pgid); 1809 } 1810 1811 int security_task_getpgid(struct task_struct *p) 1812 { 1813 return call_int_hook(task_getpgid, 0, p); 1814 } 1815 1816 int security_task_getsid(struct task_struct *p) 1817 { 1818 return call_int_hook(task_getsid, 0, p); 1819 } 1820 1821 void security_current_getsecid_subj(u32 *secid) 1822 { 1823 *secid = 0; 1824 call_void_hook(current_getsecid_subj, secid); 1825 } 1826 EXPORT_SYMBOL(security_current_getsecid_subj); 1827 1828 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1829 { 1830 *secid = 0; 1831 call_void_hook(task_getsecid_obj, p, secid); 1832 } 1833 EXPORT_SYMBOL(security_task_getsecid_obj); 1834 1835 int security_task_setnice(struct task_struct *p, int nice) 1836 { 1837 return call_int_hook(task_setnice, 0, p, nice); 1838 } 1839 1840 int security_task_setioprio(struct task_struct *p, int ioprio) 1841 { 1842 return call_int_hook(task_setioprio, 0, p, ioprio); 1843 } 1844 1845 int security_task_getioprio(struct task_struct *p) 1846 { 1847 return call_int_hook(task_getioprio, 0, p); 1848 } 1849 1850 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1851 unsigned int flags) 1852 { 1853 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1854 } 1855 1856 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1857 struct rlimit *new_rlim) 1858 { 1859 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1860 } 1861 1862 int security_task_setscheduler(struct task_struct *p) 1863 { 1864 return call_int_hook(task_setscheduler, 0, p); 1865 } 1866 1867 int security_task_getscheduler(struct task_struct *p) 1868 { 1869 return call_int_hook(task_getscheduler, 0, p); 1870 } 1871 1872 int security_task_movememory(struct task_struct *p) 1873 { 1874 return call_int_hook(task_movememory, 0, p); 1875 } 1876 1877 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1878 int sig, const struct cred *cred) 1879 { 1880 return call_int_hook(task_kill, 0, p, info, sig, cred); 1881 } 1882 1883 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1884 unsigned long arg4, unsigned long arg5) 1885 { 1886 int thisrc; 1887 int rc = LSM_RET_DEFAULT(task_prctl); 1888 struct security_hook_list *hp; 1889 1890 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1891 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1892 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1893 rc = thisrc; 1894 if (thisrc != 0) 1895 break; 1896 } 1897 } 1898 return rc; 1899 } 1900 1901 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1902 { 1903 call_void_hook(task_to_inode, p, inode); 1904 } 1905 1906 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1907 { 1908 return call_int_hook(ipc_permission, 0, ipcp, flag); 1909 } 1910 1911 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1912 { 1913 *secid = 0; 1914 call_void_hook(ipc_getsecid, ipcp, secid); 1915 } 1916 1917 int security_msg_msg_alloc(struct msg_msg *msg) 1918 { 1919 int rc = lsm_msg_msg_alloc(msg); 1920 1921 if (unlikely(rc)) 1922 return rc; 1923 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1924 if (unlikely(rc)) 1925 security_msg_msg_free(msg); 1926 return rc; 1927 } 1928 1929 void security_msg_msg_free(struct msg_msg *msg) 1930 { 1931 call_void_hook(msg_msg_free_security, msg); 1932 kfree(msg->security); 1933 msg->security = NULL; 1934 } 1935 1936 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1937 { 1938 int rc = lsm_ipc_alloc(msq); 1939 1940 if (unlikely(rc)) 1941 return rc; 1942 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1943 if (unlikely(rc)) 1944 security_msg_queue_free(msq); 1945 return rc; 1946 } 1947 1948 void security_msg_queue_free(struct kern_ipc_perm *msq) 1949 { 1950 call_void_hook(msg_queue_free_security, msq); 1951 kfree(msq->security); 1952 msq->security = NULL; 1953 } 1954 1955 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1956 { 1957 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1958 } 1959 1960 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1961 { 1962 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1963 } 1964 1965 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1966 struct msg_msg *msg, int msqflg) 1967 { 1968 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1969 } 1970 1971 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1972 struct task_struct *target, long type, int mode) 1973 { 1974 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1975 } 1976 1977 int security_shm_alloc(struct kern_ipc_perm *shp) 1978 { 1979 int rc = lsm_ipc_alloc(shp); 1980 1981 if (unlikely(rc)) 1982 return rc; 1983 rc = call_int_hook(shm_alloc_security, 0, shp); 1984 if (unlikely(rc)) 1985 security_shm_free(shp); 1986 return rc; 1987 } 1988 1989 void security_shm_free(struct kern_ipc_perm *shp) 1990 { 1991 call_void_hook(shm_free_security, shp); 1992 kfree(shp->security); 1993 shp->security = NULL; 1994 } 1995 1996 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1997 { 1998 return call_int_hook(shm_associate, 0, shp, shmflg); 1999 } 2000 2001 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2002 { 2003 return call_int_hook(shm_shmctl, 0, shp, cmd); 2004 } 2005 2006 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2007 { 2008 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2009 } 2010 2011 int security_sem_alloc(struct kern_ipc_perm *sma) 2012 { 2013 int rc = lsm_ipc_alloc(sma); 2014 2015 if (unlikely(rc)) 2016 return rc; 2017 rc = call_int_hook(sem_alloc_security, 0, sma); 2018 if (unlikely(rc)) 2019 security_sem_free(sma); 2020 return rc; 2021 } 2022 2023 void security_sem_free(struct kern_ipc_perm *sma) 2024 { 2025 call_void_hook(sem_free_security, sma); 2026 kfree(sma->security); 2027 sma->security = NULL; 2028 } 2029 2030 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2031 { 2032 return call_int_hook(sem_associate, 0, sma, semflg); 2033 } 2034 2035 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2036 { 2037 return call_int_hook(sem_semctl, 0, sma, cmd); 2038 } 2039 2040 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2041 unsigned nsops, int alter) 2042 { 2043 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2044 } 2045 2046 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2047 { 2048 if (unlikely(inode && IS_PRIVATE(inode))) 2049 return; 2050 call_void_hook(d_instantiate, dentry, inode); 2051 } 2052 EXPORT_SYMBOL(security_d_instantiate); 2053 2054 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2055 char **value) 2056 { 2057 struct security_hook_list *hp; 2058 2059 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2060 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2061 continue; 2062 return hp->hook.getprocattr(p, name, value); 2063 } 2064 return LSM_RET_DEFAULT(getprocattr); 2065 } 2066 2067 int security_setprocattr(const char *lsm, const char *name, void *value, 2068 size_t size) 2069 { 2070 struct security_hook_list *hp; 2071 2072 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2073 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2074 continue; 2075 return hp->hook.setprocattr(name, value, size); 2076 } 2077 return LSM_RET_DEFAULT(setprocattr); 2078 } 2079 2080 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2081 { 2082 return call_int_hook(netlink_send, 0, sk, skb); 2083 } 2084 2085 int security_ismaclabel(const char *name) 2086 { 2087 return call_int_hook(ismaclabel, 0, name); 2088 } 2089 EXPORT_SYMBOL(security_ismaclabel); 2090 2091 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2092 { 2093 struct security_hook_list *hp; 2094 int rc; 2095 2096 /* 2097 * Currently, only one LSM can implement secid_to_secctx (i.e this 2098 * LSM hook is not "stackable"). 2099 */ 2100 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2101 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2102 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2103 return rc; 2104 } 2105 2106 return LSM_RET_DEFAULT(secid_to_secctx); 2107 } 2108 EXPORT_SYMBOL(security_secid_to_secctx); 2109 2110 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2111 { 2112 *secid = 0; 2113 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2114 } 2115 EXPORT_SYMBOL(security_secctx_to_secid); 2116 2117 void security_release_secctx(char *secdata, u32 seclen) 2118 { 2119 call_void_hook(release_secctx, secdata, seclen); 2120 } 2121 EXPORT_SYMBOL(security_release_secctx); 2122 2123 void security_inode_invalidate_secctx(struct inode *inode) 2124 { 2125 call_void_hook(inode_invalidate_secctx, inode); 2126 } 2127 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2128 2129 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2130 { 2131 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2132 } 2133 EXPORT_SYMBOL(security_inode_notifysecctx); 2134 2135 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2136 { 2137 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2138 } 2139 EXPORT_SYMBOL(security_inode_setsecctx); 2140 2141 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2142 { 2143 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2144 } 2145 EXPORT_SYMBOL(security_inode_getsecctx); 2146 2147 #ifdef CONFIG_WATCH_QUEUE 2148 int security_post_notification(const struct cred *w_cred, 2149 const struct cred *cred, 2150 struct watch_notification *n) 2151 { 2152 return call_int_hook(post_notification, 0, w_cred, cred, n); 2153 } 2154 #endif /* CONFIG_WATCH_QUEUE */ 2155 2156 #ifdef CONFIG_KEY_NOTIFICATIONS 2157 int security_watch_key(struct key *key) 2158 { 2159 return call_int_hook(watch_key, 0, key); 2160 } 2161 #endif 2162 2163 #ifdef CONFIG_SECURITY_NETWORK 2164 2165 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2166 { 2167 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2168 } 2169 EXPORT_SYMBOL(security_unix_stream_connect); 2170 2171 int security_unix_may_send(struct socket *sock, struct socket *other) 2172 { 2173 return call_int_hook(unix_may_send, 0, sock, other); 2174 } 2175 EXPORT_SYMBOL(security_unix_may_send); 2176 2177 int security_socket_create(int family, int type, int protocol, int kern) 2178 { 2179 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2180 } 2181 2182 int security_socket_post_create(struct socket *sock, int family, 2183 int type, int protocol, int kern) 2184 { 2185 return call_int_hook(socket_post_create, 0, sock, family, type, 2186 protocol, kern); 2187 } 2188 2189 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2190 { 2191 return call_int_hook(socket_socketpair, 0, socka, sockb); 2192 } 2193 EXPORT_SYMBOL(security_socket_socketpair); 2194 2195 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2196 { 2197 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2198 } 2199 2200 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2201 { 2202 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2203 } 2204 2205 int security_socket_listen(struct socket *sock, int backlog) 2206 { 2207 return call_int_hook(socket_listen, 0, sock, backlog); 2208 } 2209 2210 int security_socket_accept(struct socket *sock, struct socket *newsock) 2211 { 2212 return call_int_hook(socket_accept, 0, sock, newsock); 2213 } 2214 2215 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2216 { 2217 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2218 } 2219 2220 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2221 int size, int flags) 2222 { 2223 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2224 } 2225 2226 int security_socket_getsockname(struct socket *sock) 2227 { 2228 return call_int_hook(socket_getsockname, 0, sock); 2229 } 2230 2231 int security_socket_getpeername(struct socket *sock) 2232 { 2233 return call_int_hook(socket_getpeername, 0, sock); 2234 } 2235 2236 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2237 { 2238 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2239 } 2240 2241 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2242 { 2243 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2244 } 2245 2246 int security_socket_shutdown(struct socket *sock, int how) 2247 { 2248 return call_int_hook(socket_shutdown, 0, sock, how); 2249 } 2250 2251 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2252 { 2253 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2254 } 2255 EXPORT_SYMBOL(security_sock_rcv_skb); 2256 2257 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2258 int __user *optlen, unsigned len) 2259 { 2260 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2261 optval, optlen, len); 2262 } 2263 2264 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2265 { 2266 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2267 skb, secid); 2268 } 2269 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2270 2271 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2272 { 2273 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2274 } 2275 2276 void security_sk_free(struct sock *sk) 2277 { 2278 call_void_hook(sk_free_security, sk); 2279 } 2280 2281 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2282 { 2283 call_void_hook(sk_clone_security, sk, newsk); 2284 } 2285 EXPORT_SYMBOL(security_sk_clone); 2286 2287 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2288 { 2289 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2290 } 2291 EXPORT_SYMBOL(security_sk_classify_flow); 2292 2293 void security_req_classify_flow(const struct request_sock *req, 2294 struct flowi_common *flic) 2295 { 2296 call_void_hook(req_classify_flow, req, flic); 2297 } 2298 EXPORT_SYMBOL(security_req_classify_flow); 2299 2300 void security_sock_graft(struct sock *sk, struct socket *parent) 2301 { 2302 call_void_hook(sock_graft, sk, parent); 2303 } 2304 EXPORT_SYMBOL(security_sock_graft); 2305 2306 int security_inet_conn_request(const struct sock *sk, 2307 struct sk_buff *skb, struct request_sock *req) 2308 { 2309 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2310 } 2311 EXPORT_SYMBOL(security_inet_conn_request); 2312 2313 void security_inet_csk_clone(struct sock *newsk, 2314 const struct request_sock *req) 2315 { 2316 call_void_hook(inet_csk_clone, newsk, req); 2317 } 2318 2319 void security_inet_conn_established(struct sock *sk, 2320 struct sk_buff *skb) 2321 { 2322 call_void_hook(inet_conn_established, sk, skb); 2323 } 2324 EXPORT_SYMBOL(security_inet_conn_established); 2325 2326 int security_secmark_relabel_packet(u32 secid) 2327 { 2328 return call_int_hook(secmark_relabel_packet, 0, secid); 2329 } 2330 EXPORT_SYMBOL(security_secmark_relabel_packet); 2331 2332 void security_secmark_refcount_inc(void) 2333 { 2334 call_void_hook(secmark_refcount_inc); 2335 } 2336 EXPORT_SYMBOL(security_secmark_refcount_inc); 2337 2338 void security_secmark_refcount_dec(void) 2339 { 2340 call_void_hook(secmark_refcount_dec); 2341 } 2342 EXPORT_SYMBOL(security_secmark_refcount_dec); 2343 2344 int security_tun_dev_alloc_security(void **security) 2345 { 2346 return call_int_hook(tun_dev_alloc_security, 0, security); 2347 } 2348 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2349 2350 void security_tun_dev_free_security(void *security) 2351 { 2352 call_void_hook(tun_dev_free_security, security); 2353 } 2354 EXPORT_SYMBOL(security_tun_dev_free_security); 2355 2356 int security_tun_dev_create(void) 2357 { 2358 return call_int_hook(tun_dev_create, 0); 2359 } 2360 EXPORT_SYMBOL(security_tun_dev_create); 2361 2362 int security_tun_dev_attach_queue(void *security) 2363 { 2364 return call_int_hook(tun_dev_attach_queue, 0, security); 2365 } 2366 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2367 2368 int security_tun_dev_attach(struct sock *sk, void *security) 2369 { 2370 return call_int_hook(tun_dev_attach, 0, sk, security); 2371 } 2372 EXPORT_SYMBOL(security_tun_dev_attach); 2373 2374 int security_tun_dev_open(void *security) 2375 { 2376 return call_int_hook(tun_dev_open, 0, security); 2377 } 2378 EXPORT_SYMBOL(security_tun_dev_open); 2379 2380 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2381 { 2382 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2383 } 2384 EXPORT_SYMBOL(security_sctp_assoc_request); 2385 2386 int security_sctp_bind_connect(struct sock *sk, int optname, 2387 struct sockaddr *address, int addrlen) 2388 { 2389 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2390 address, addrlen); 2391 } 2392 EXPORT_SYMBOL(security_sctp_bind_connect); 2393 2394 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2395 struct sock *newsk) 2396 { 2397 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2398 } 2399 EXPORT_SYMBOL(security_sctp_sk_clone); 2400 2401 int security_sctp_assoc_established(struct sctp_association *asoc, 2402 struct sk_buff *skb) 2403 { 2404 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2405 } 2406 EXPORT_SYMBOL(security_sctp_assoc_established); 2407 2408 #endif /* CONFIG_SECURITY_NETWORK */ 2409 2410 #ifdef CONFIG_SECURITY_INFINIBAND 2411 2412 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2413 { 2414 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2415 } 2416 EXPORT_SYMBOL(security_ib_pkey_access); 2417 2418 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2419 { 2420 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2421 } 2422 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2423 2424 int security_ib_alloc_security(void **sec) 2425 { 2426 return call_int_hook(ib_alloc_security, 0, sec); 2427 } 2428 EXPORT_SYMBOL(security_ib_alloc_security); 2429 2430 void security_ib_free_security(void *sec) 2431 { 2432 call_void_hook(ib_free_security, sec); 2433 } 2434 EXPORT_SYMBOL(security_ib_free_security); 2435 #endif /* CONFIG_SECURITY_INFINIBAND */ 2436 2437 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2438 2439 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2440 struct xfrm_user_sec_ctx *sec_ctx, 2441 gfp_t gfp) 2442 { 2443 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2444 } 2445 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2446 2447 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2448 struct xfrm_sec_ctx **new_ctxp) 2449 { 2450 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2451 } 2452 2453 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2454 { 2455 call_void_hook(xfrm_policy_free_security, ctx); 2456 } 2457 EXPORT_SYMBOL(security_xfrm_policy_free); 2458 2459 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2460 { 2461 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2462 } 2463 2464 int security_xfrm_state_alloc(struct xfrm_state *x, 2465 struct xfrm_user_sec_ctx *sec_ctx) 2466 { 2467 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2468 } 2469 EXPORT_SYMBOL(security_xfrm_state_alloc); 2470 2471 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2472 struct xfrm_sec_ctx *polsec, u32 secid) 2473 { 2474 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2475 } 2476 2477 int security_xfrm_state_delete(struct xfrm_state *x) 2478 { 2479 return call_int_hook(xfrm_state_delete_security, 0, x); 2480 } 2481 EXPORT_SYMBOL(security_xfrm_state_delete); 2482 2483 void security_xfrm_state_free(struct xfrm_state *x) 2484 { 2485 call_void_hook(xfrm_state_free_security, x); 2486 } 2487 2488 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2489 { 2490 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2491 } 2492 2493 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2494 struct xfrm_policy *xp, 2495 const struct flowi_common *flic) 2496 { 2497 struct security_hook_list *hp; 2498 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2499 2500 /* 2501 * Since this function is expected to return 0 or 1, the judgment 2502 * becomes difficult if multiple LSMs supply this call. Fortunately, 2503 * we can use the first LSM's judgment because currently only SELinux 2504 * supplies this call. 2505 * 2506 * For speed optimization, we explicitly break the loop rather than 2507 * using the macro 2508 */ 2509 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2510 list) { 2511 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2512 break; 2513 } 2514 return rc; 2515 } 2516 2517 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2518 { 2519 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2520 } 2521 2522 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2523 { 2524 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2525 0); 2526 2527 BUG_ON(rc); 2528 } 2529 EXPORT_SYMBOL(security_skb_classify_flow); 2530 2531 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2532 2533 #ifdef CONFIG_KEYS 2534 2535 int security_key_alloc(struct key *key, const struct cred *cred, 2536 unsigned long flags) 2537 { 2538 return call_int_hook(key_alloc, 0, key, cred, flags); 2539 } 2540 2541 void security_key_free(struct key *key) 2542 { 2543 call_void_hook(key_free, key); 2544 } 2545 2546 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2547 enum key_need_perm need_perm) 2548 { 2549 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2550 } 2551 2552 int security_key_getsecurity(struct key *key, char **_buffer) 2553 { 2554 *_buffer = NULL; 2555 return call_int_hook(key_getsecurity, 0, key, _buffer); 2556 } 2557 2558 #endif /* CONFIG_KEYS */ 2559 2560 #ifdef CONFIG_AUDIT 2561 2562 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2563 { 2564 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2565 } 2566 2567 int security_audit_rule_known(struct audit_krule *krule) 2568 { 2569 return call_int_hook(audit_rule_known, 0, krule); 2570 } 2571 2572 void security_audit_rule_free(void *lsmrule) 2573 { 2574 call_void_hook(audit_rule_free, lsmrule); 2575 } 2576 2577 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2578 { 2579 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2580 } 2581 #endif /* CONFIG_AUDIT */ 2582 2583 #ifdef CONFIG_BPF_SYSCALL 2584 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2585 { 2586 return call_int_hook(bpf, 0, cmd, attr, size); 2587 } 2588 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2589 { 2590 return call_int_hook(bpf_map, 0, map, fmode); 2591 } 2592 int security_bpf_prog(struct bpf_prog *prog) 2593 { 2594 return call_int_hook(bpf_prog, 0, prog); 2595 } 2596 int security_bpf_map_alloc(struct bpf_map *map) 2597 { 2598 return call_int_hook(bpf_map_alloc_security, 0, map); 2599 } 2600 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2601 { 2602 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2603 } 2604 void security_bpf_map_free(struct bpf_map *map) 2605 { 2606 call_void_hook(bpf_map_free_security, map); 2607 } 2608 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2609 { 2610 call_void_hook(bpf_prog_free_security, aux); 2611 } 2612 #endif /* CONFIG_BPF_SYSCALL */ 2613 2614 int security_locked_down(enum lockdown_reason what) 2615 { 2616 return call_int_hook(locked_down, 0, what); 2617 } 2618 EXPORT_SYMBOL(security_locked_down); 2619 2620 #ifdef CONFIG_PERF_EVENTS 2621 int security_perf_event_open(struct perf_event_attr *attr, int type) 2622 { 2623 return call_int_hook(perf_event_open, 0, attr, type); 2624 } 2625 2626 int security_perf_event_alloc(struct perf_event *event) 2627 { 2628 return call_int_hook(perf_event_alloc, 0, event); 2629 } 2630 2631 void security_perf_event_free(struct perf_event *event) 2632 { 2633 call_void_hook(perf_event_free, event); 2634 } 2635 2636 int security_perf_event_read(struct perf_event *event) 2637 { 2638 return call_int_hook(perf_event_read, 0, event); 2639 } 2640 2641 int security_perf_event_write(struct perf_event *event) 2642 { 2643 return call_int_hook(perf_event_write, 0, event); 2644 } 2645 #endif /* CONFIG_PERF_EVENTS */ 2646 2647 #ifdef CONFIG_IO_URING 2648 int security_uring_override_creds(const struct cred *new) 2649 { 2650 return call_int_hook(uring_override_creds, 0, new); 2651 } 2652 2653 int security_uring_sqpoll(void) 2654 { 2655 return call_int_hook(uring_sqpoll, 0); 2656 } 2657 #endif /* CONFIG_IO_URING */ 2658