xref: /openbmc/linux/security/security.c (revision f1b5618e013af28b3c78daf424436a79674423c0)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #define pr_fmt(fmt) "LSM: " fmt
16 
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <linux/msg.h>
34 #include <net/flow.h>
35 
36 #define MAX_LSM_EVM_XATTR	2
37 
38 /* How many LSMs were built into the kernel? */
39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
40 
41 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
43 
44 static struct kmem_cache *lsm_file_cache;
45 static struct kmem_cache *lsm_inode_cache;
46 
47 char *lsm_names;
48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
49 
50 /* Boot-time LSM user choice */
51 static __initdata const char *chosen_lsm_order;
52 static __initdata const char *chosen_major_lsm;
53 
54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
55 
56 /* Ordered list of LSMs to initialize. */
57 static __initdata struct lsm_info **ordered_lsms;
58 static __initdata struct lsm_info *exclusive;
59 
60 static __initdata bool debug;
61 #define init_debug(...)						\
62 	do {							\
63 		if (debug)					\
64 			pr_info(__VA_ARGS__);			\
65 	} while (0)
66 
67 static bool __init is_enabled(struct lsm_info *lsm)
68 {
69 	if (!lsm->enabled)
70 		return false;
71 
72 	return *lsm->enabled;
73 }
74 
75 /* Mark an LSM's enabled flag. */
76 static int lsm_enabled_true __initdata = 1;
77 static int lsm_enabled_false __initdata = 0;
78 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
79 {
80 	/*
81 	 * When an LSM hasn't configured an enable variable, we can use
82 	 * a hard-coded location for storing the default enabled state.
83 	 */
84 	if (!lsm->enabled) {
85 		if (enabled)
86 			lsm->enabled = &lsm_enabled_true;
87 		else
88 			lsm->enabled = &lsm_enabled_false;
89 	} else if (lsm->enabled == &lsm_enabled_true) {
90 		if (!enabled)
91 			lsm->enabled = &lsm_enabled_false;
92 	} else if (lsm->enabled == &lsm_enabled_false) {
93 		if (enabled)
94 			lsm->enabled = &lsm_enabled_true;
95 	} else {
96 		*lsm->enabled = enabled;
97 	}
98 }
99 
100 /* Is an LSM already listed in the ordered LSMs list? */
101 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
102 {
103 	struct lsm_info **check;
104 
105 	for (check = ordered_lsms; *check; check++)
106 		if (*check == lsm)
107 			return true;
108 
109 	return false;
110 }
111 
112 /* Append an LSM to the list of ordered LSMs to initialize. */
113 static int last_lsm __initdata;
114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
115 {
116 	/* Ignore duplicate selections. */
117 	if (exists_ordered_lsm(lsm))
118 		return;
119 
120 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
121 		return;
122 
123 	/* Enable this LSM, if it is not already set. */
124 	if (!lsm->enabled)
125 		lsm->enabled = &lsm_enabled_true;
126 	ordered_lsms[last_lsm++] = lsm;
127 
128 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
129 		   is_enabled(lsm) ? "en" : "dis");
130 }
131 
132 /* Is an LSM allowed to be initialized? */
133 static bool __init lsm_allowed(struct lsm_info *lsm)
134 {
135 	/* Skip if the LSM is disabled. */
136 	if (!is_enabled(lsm))
137 		return false;
138 
139 	/* Not allowed if another exclusive LSM already initialized. */
140 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
141 		init_debug("exclusive disabled: %s\n", lsm->name);
142 		return false;
143 	}
144 
145 	return true;
146 }
147 
148 static void __init lsm_set_blob_size(int *need, int *lbs)
149 {
150 	int offset;
151 
152 	if (*need > 0) {
153 		offset = *lbs;
154 		*lbs += *need;
155 		*need = offset;
156 	}
157 }
158 
159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
160 {
161 	if (!needed)
162 		return;
163 
164 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
165 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
166 	/*
167 	 * The inode blob gets an rcu_head in addition to
168 	 * what the modules might need.
169 	 */
170 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
171 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
172 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
173 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
174 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
175 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
176 }
177 
178 /* Prepare LSM for initialization. */
179 static void __init prepare_lsm(struct lsm_info *lsm)
180 {
181 	int enabled = lsm_allowed(lsm);
182 
183 	/* Record enablement (to handle any following exclusive LSMs). */
184 	set_enabled(lsm, enabled);
185 
186 	/* If enabled, do pre-initialization work. */
187 	if (enabled) {
188 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
189 			exclusive = lsm;
190 			init_debug("exclusive chosen: %s\n", lsm->name);
191 		}
192 
193 		lsm_set_blob_sizes(lsm->blobs);
194 	}
195 }
196 
197 /* Initialize a given LSM, if it is enabled. */
198 static void __init initialize_lsm(struct lsm_info *lsm)
199 {
200 	if (is_enabled(lsm)) {
201 		int ret;
202 
203 		init_debug("initializing %s\n", lsm->name);
204 		ret = lsm->init();
205 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
206 	}
207 }
208 
209 /* Populate ordered LSMs list from comma-separated LSM name list. */
210 static void __init ordered_lsm_parse(const char *order, const char *origin)
211 {
212 	struct lsm_info *lsm;
213 	char *sep, *name, *next;
214 
215 	/* LSM_ORDER_FIRST is always first. */
216 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
217 		if (lsm->order == LSM_ORDER_FIRST)
218 			append_ordered_lsm(lsm, "first");
219 	}
220 
221 	/* Process "security=", if given. */
222 	if (chosen_major_lsm) {
223 		struct lsm_info *major;
224 
225 		/*
226 		 * To match the original "security=" behavior, this
227 		 * explicitly does NOT fallback to another Legacy Major
228 		 * if the selected one was separately disabled: disable
229 		 * all non-matching Legacy Major LSMs.
230 		 */
231 		for (major = __start_lsm_info; major < __end_lsm_info;
232 		     major++) {
233 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
234 			    strcmp(major->name, chosen_major_lsm) != 0) {
235 				set_enabled(major, false);
236 				init_debug("security=%s disabled: %s\n",
237 					   chosen_major_lsm, major->name);
238 			}
239 		}
240 	}
241 
242 	sep = kstrdup(order, GFP_KERNEL);
243 	next = sep;
244 	/* Walk the list, looking for matching LSMs. */
245 	while ((name = strsep(&next, ",")) != NULL) {
246 		bool found = false;
247 
248 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249 			if (lsm->order == LSM_ORDER_MUTABLE &&
250 			    strcmp(lsm->name, name) == 0) {
251 				append_ordered_lsm(lsm, origin);
252 				found = true;
253 			}
254 		}
255 
256 		if (!found)
257 			init_debug("%s ignored: %s\n", origin, name);
258 	}
259 
260 	/* Process "security=", if given. */
261 	if (chosen_major_lsm) {
262 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
263 			if (exists_ordered_lsm(lsm))
264 				continue;
265 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
266 				append_ordered_lsm(lsm, "security=");
267 		}
268 	}
269 
270 	/* Disable all LSMs not in the ordered list. */
271 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
272 		if (exists_ordered_lsm(lsm))
273 			continue;
274 		set_enabled(lsm, false);
275 		init_debug("%s disabled: %s\n", origin, lsm->name);
276 	}
277 
278 	kfree(sep);
279 }
280 
281 static void __init lsm_early_cred(struct cred *cred);
282 static void __init lsm_early_task(struct task_struct *task);
283 
284 static void __init ordered_lsm_init(void)
285 {
286 	struct lsm_info **lsm;
287 
288 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
289 				GFP_KERNEL);
290 
291 	if (chosen_lsm_order) {
292 		if (chosen_major_lsm) {
293 			pr_info("security= is ignored because it is superseded by lsm=\n");
294 			chosen_major_lsm = NULL;
295 		}
296 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
297 	} else
298 		ordered_lsm_parse(builtin_lsm_order, "builtin");
299 
300 	for (lsm = ordered_lsms; *lsm; lsm++)
301 		prepare_lsm(*lsm);
302 
303 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
304 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
305 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
306 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
307 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
308 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
309 
310 	/*
311 	 * Create any kmem_caches needed for blobs
312 	 */
313 	if (blob_sizes.lbs_file)
314 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
315 						   blob_sizes.lbs_file, 0,
316 						   SLAB_PANIC, NULL);
317 	if (blob_sizes.lbs_inode)
318 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
319 						    blob_sizes.lbs_inode, 0,
320 						    SLAB_PANIC, NULL);
321 
322 	lsm_early_cred((struct cred *) current->cred);
323 	lsm_early_task(current);
324 	for (lsm = ordered_lsms; *lsm; lsm++)
325 		initialize_lsm(*lsm);
326 
327 	kfree(ordered_lsms);
328 }
329 
330 /**
331  * security_init - initializes the security framework
332  *
333  * This should be called early in the kernel initialization sequence.
334  */
335 int __init security_init(void)
336 {
337 	int i;
338 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
339 
340 	pr_info("Security Framework initializing\n");
341 
342 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
343 	     i++)
344 		INIT_HLIST_HEAD(&list[i]);
345 
346 	/* Load LSMs in specified order. */
347 	ordered_lsm_init();
348 
349 	return 0;
350 }
351 
352 /* Save user chosen LSM */
353 static int __init choose_major_lsm(char *str)
354 {
355 	chosen_major_lsm = str;
356 	return 1;
357 }
358 __setup("security=", choose_major_lsm);
359 
360 /* Explicitly choose LSM initialization order. */
361 static int __init choose_lsm_order(char *str)
362 {
363 	chosen_lsm_order = str;
364 	return 1;
365 }
366 __setup("lsm=", choose_lsm_order);
367 
368 /* Enable LSM order debugging. */
369 static int __init enable_debug(char *str)
370 {
371 	debug = true;
372 	return 1;
373 }
374 __setup("lsm.debug", enable_debug);
375 
376 static bool match_last_lsm(const char *list, const char *lsm)
377 {
378 	const char *last;
379 
380 	if (WARN_ON(!list || !lsm))
381 		return false;
382 	last = strrchr(list, ',');
383 	if (last)
384 		/* Pass the comma, strcmp() will check for '\0' */
385 		last++;
386 	else
387 		last = list;
388 	return !strcmp(last, lsm);
389 }
390 
391 static int lsm_append(char *new, char **result)
392 {
393 	char *cp;
394 
395 	if (*result == NULL) {
396 		*result = kstrdup(new, GFP_KERNEL);
397 		if (*result == NULL)
398 			return -ENOMEM;
399 	} else {
400 		/* Check if it is the last registered name */
401 		if (match_last_lsm(*result, new))
402 			return 0;
403 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
404 		if (cp == NULL)
405 			return -ENOMEM;
406 		kfree(*result);
407 		*result = cp;
408 	}
409 	return 0;
410 }
411 
412 /**
413  * security_add_hooks - Add a modules hooks to the hook lists.
414  * @hooks: the hooks to add
415  * @count: the number of hooks to add
416  * @lsm: the name of the security module
417  *
418  * Each LSM has to register its hooks with the infrastructure.
419  */
420 void __init security_add_hooks(struct security_hook_list *hooks, int count,
421 				char *lsm)
422 {
423 	int i;
424 
425 	for (i = 0; i < count; i++) {
426 		hooks[i].lsm = lsm;
427 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
428 	}
429 	if (lsm_append(lsm, &lsm_names) < 0)
430 		panic("%s - Cannot get early memory.\n", __func__);
431 }
432 
433 int call_lsm_notifier(enum lsm_event event, void *data)
434 {
435 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
436 }
437 EXPORT_SYMBOL(call_lsm_notifier);
438 
439 int register_lsm_notifier(struct notifier_block *nb)
440 {
441 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
442 }
443 EXPORT_SYMBOL(register_lsm_notifier);
444 
445 int unregister_lsm_notifier(struct notifier_block *nb)
446 {
447 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
448 }
449 EXPORT_SYMBOL(unregister_lsm_notifier);
450 
451 /**
452  * lsm_cred_alloc - allocate a composite cred blob
453  * @cred: the cred that needs a blob
454  * @gfp: allocation type
455  *
456  * Allocate the cred blob for all the modules
457  *
458  * Returns 0, or -ENOMEM if memory can't be allocated.
459  */
460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
461 {
462 	if (blob_sizes.lbs_cred == 0) {
463 		cred->security = NULL;
464 		return 0;
465 	}
466 
467 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
468 	if (cred->security == NULL)
469 		return -ENOMEM;
470 	return 0;
471 }
472 
473 /**
474  * lsm_early_cred - during initialization allocate a composite cred blob
475  * @cred: the cred that needs a blob
476  *
477  * Allocate the cred blob for all the modules
478  */
479 static void __init lsm_early_cred(struct cred *cred)
480 {
481 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
482 
483 	if (rc)
484 		panic("%s: Early cred alloc failed.\n", __func__);
485 }
486 
487 /**
488  * lsm_file_alloc - allocate a composite file blob
489  * @file: the file that needs a blob
490  *
491  * Allocate the file blob for all the modules
492  *
493  * Returns 0, or -ENOMEM if memory can't be allocated.
494  */
495 static int lsm_file_alloc(struct file *file)
496 {
497 	if (!lsm_file_cache) {
498 		file->f_security = NULL;
499 		return 0;
500 	}
501 
502 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
503 	if (file->f_security == NULL)
504 		return -ENOMEM;
505 	return 0;
506 }
507 
508 /**
509  * lsm_inode_alloc - allocate a composite inode blob
510  * @inode: the inode that needs a blob
511  *
512  * Allocate the inode blob for all the modules
513  *
514  * Returns 0, or -ENOMEM if memory can't be allocated.
515  */
516 int lsm_inode_alloc(struct inode *inode)
517 {
518 	if (!lsm_inode_cache) {
519 		inode->i_security = NULL;
520 		return 0;
521 	}
522 
523 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
524 	if (inode->i_security == NULL)
525 		return -ENOMEM;
526 	return 0;
527 }
528 
529 /**
530  * lsm_task_alloc - allocate a composite task blob
531  * @task: the task that needs a blob
532  *
533  * Allocate the task blob for all the modules
534  *
535  * Returns 0, or -ENOMEM if memory can't be allocated.
536  */
537 static int lsm_task_alloc(struct task_struct *task)
538 {
539 	if (blob_sizes.lbs_task == 0) {
540 		task->security = NULL;
541 		return 0;
542 	}
543 
544 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
545 	if (task->security == NULL)
546 		return -ENOMEM;
547 	return 0;
548 }
549 
550 /**
551  * lsm_ipc_alloc - allocate a composite ipc blob
552  * @kip: the ipc that needs a blob
553  *
554  * Allocate the ipc blob for all the modules
555  *
556  * Returns 0, or -ENOMEM if memory can't be allocated.
557  */
558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
559 {
560 	if (blob_sizes.lbs_ipc == 0) {
561 		kip->security = NULL;
562 		return 0;
563 	}
564 
565 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
566 	if (kip->security == NULL)
567 		return -ENOMEM;
568 	return 0;
569 }
570 
571 /**
572  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
573  * @mp: the msg_msg that needs a blob
574  *
575  * Allocate the ipc blob for all the modules
576  *
577  * Returns 0, or -ENOMEM if memory can't be allocated.
578  */
579 static int lsm_msg_msg_alloc(struct msg_msg *mp)
580 {
581 	if (blob_sizes.lbs_msg_msg == 0) {
582 		mp->security = NULL;
583 		return 0;
584 	}
585 
586 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
587 	if (mp->security == NULL)
588 		return -ENOMEM;
589 	return 0;
590 }
591 
592 /**
593  * lsm_early_task - during initialization allocate a composite task blob
594  * @task: the task that needs a blob
595  *
596  * Allocate the task blob for all the modules
597  */
598 static void __init lsm_early_task(struct task_struct *task)
599 {
600 	int rc = lsm_task_alloc(task);
601 
602 	if (rc)
603 		panic("%s: Early task alloc failed.\n", __func__);
604 }
605 
606 /*
607  * Hook list operation macros.
608  *
609  * call_void_hook:
610  *	This is a hook that does not return a value.
611  *
612  * call_int_hook:
613  *	This is a hook that returns a value.
614  */
615 
616 #define call_void_hook(FUNC, ...)				\
617 	do {							\
618 		struct security_hook_list *P;			\
619 								\
620 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
621 			P->hook.FUNC(__VA_ARGS__);		\
622 	} while (0)
623 
624 #define call_int_hook(FUNC, IRC, ...) ({			\
625 	int RC = IRC;						\
626 	do {							\
627 		struct security_hook_list *P;			\
628 								\
629 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
630 			RC = P->hook.FUNC(__VA_ARGS__);		\
631 			if (RC != 0)				\
632 				break;				\
633 		}						\
634 	} while (0);						\
635 	RC;							\
636 })
637 
638 /* Security operations */
639 
640 int security_binder_set_context_mgr(struct task_struct *mgr)
641 {
642 	return call_int_hook(binder_set_context_mgr, 0, mgr);
643 }
644 
645 int security_binder_transaction(struct task_struct *from,
646 				struct task_struct *to)
647 {
648 	return call_int_hook(binder_transaction, 0, from, to);
649 }
650 
651 int security_binder_transfer_binder(struct task_struct *from,
652 				    struct task_struct *to)
653 {
654 	return call_int_hook(binder_transfer_binder, 0, from, to);
655 }
656 
657 int security_binder_transfer_file(struct task_struct *from,
658 				  struct task_struct *to, struct file *file)
659 {
660 	return call_int_hook(binder_transfer_file, 0, from, to, file);
661 }
662 
663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
664 {
665 	return call_int_hook(ptrace_access_check, 0, child, mode);
666 }
667 
668 int security_ptrace_traceme(struct task_struct *parent)
669 {
670 	return call_int_hook(ptrace_traceme, 0, parent);
671 }
672 
673 int security_capget(struct task_struct *target,
674 		     kernel_cap_t *effective,
675 		     kernel_cap_t *inheritable,
676 		     kernel_cap_t *permitted)
677 {
678 	return call_int_hook(capget, 0, target,
679 				effective, inheritable, permitted);
680 }
681 
682 int security_capset(struct cred *new, const struct cred *old,
683 		    const kernel_cap_t *effective,
684 		    const kernel_cap_t *inheritable,
685 		    const kernel_cap_t *permitted)
686 {
687 	return call_int_hook(capset, 0, new, old,
688 				effective, inheritable, permitted);
689 }
690 
691 int security_capable(const struct cred *cred,
692 		     struct user_namespace *ns,
693 		     int cap,
694 		     unsigned int opts)
695 {
696 	return call_int_hook(capable, 0, cred, ns, cap, opts);
697 }
698 
699 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
700 {
701 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
702 }
703 
704 int security_quota_on(struct dentry *dentry)
705 {
706 	return call_int_hook(quota_on, 0, dentry);
707 }
708 
709 int security_syslog(int type)
710 {
711 	return call_int_hook(syslog, 0, type);
712 }
713 
714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
715 {
716 	return call_int_hook(settime, 0, ts, tz);
717 }
718 
719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
720 {
721 	struct security_hook_list *hp;
722 	int cap_sys_admin = 1;
723 	int rc;
724 
725 	/*
726 	 * The module will respond with a positive value if
727 	 * it thinks the __vm_enough_memory() call should be
728 	 * made with the cap_sys_admin set. If all of the modules
729 	 * agree that it should be set it will. If any module
730 	 * thinks it should not be set it won't.
731 	 */
732 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
733 		rc = hp->hook.vm_enough_memory(mm, pages);
734 		if (rc <= 0) {
735 			cap_sys_admin = 0;
736 			break;
737 		}
738 	}
739 	return __vm_enough_memory(mm, pages, cap_sys_admin);
740 }
741 
742 int security_bprm_set_creds(struct linux_binprm *bprm)
743 {
744 	return call_int_hook(bprm_set_creds, 0, bprm);
745 }
746 
747 int security_bprm_check(struct linux_binprm *bprm)
748 {
749 	int ret;
750 
751 	ret = call_int_hook(bprm_check_security, 0, bprm);
752 	if (ret)
753 		return ret;
754 	return ima_bprm_check(bprm);
755 }
756 
757 void security_bprm_committing_creds(struct linux_binprm *bprm)
758 {
759 	call_void_hook(bprm_committing_creds, bprm);
760 }
761 
762 void security_bprm_committed_creds(struct linux_binprm *bprm)
763 {
764 	call_void_hook(bprm_committed_creds, bprm);
765 }
766 
767 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
768 {
769 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
770 }
771 
772 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
773 {
774 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
775 }
776 
777 int security_sb_alloc(struct super_block *sb)
778 {
779 	return call_int_hook(sb_alloc_security, 0, sb);
780 }
781 
782 void security_sb_free(struct super_block *sb)
783 {
784 	call_void_hook(sb_free_security, sb);
785 }
786 
787 void security_free_mnt_opts(void **mnt_opts)
788 {
789 	if (!*mnt_opts)
790 		return;
791 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
792 	*mnt_opts = NULL;
793 }
794 EXPORT_SYMBOL(security_free_mnt_opts);
795 
796 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
797 {
798 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
799 }
800 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
801 
802 int security_sb_remount(struct super_block *sb,
803 			void *mnt_opts)
804 {
805 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
806 }
807 EXPORT_SYMBOL(security_sb_remount);
808 
809 int security_sb_kern_mount(struct super_block *sb)
810 {
811 	return call_int_hook(sb_kern_mount, 0, sb);
812 }
813 
814 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
815 {
816 	return call_int_hook(sb_show_options, 0, m, sb);
817 }
818 
819 int security_sb_statfs(struct dentry *dentry)
820 {
821 	return call_int_hook(sb_statfs, 0, dentry);
822 }
823 
824 int security_sb_mount(const char *dev_name, const struct path *path,
825                        const char *type, unsigned long flags, void *data)
826 {
827 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
828 }
829 
830 int security_sb_umount(struct vfsmount *mnt, int flags)
831 {
832 	return call_int_hook(sb_umount, 0, mnt, flags);
833 }
834 
835 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
836 {
837 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
838 }
839 
840 int security_sb_set_mnt_opts(struct super_block *sb,
841 				void *mnt_opts,
842 				unsigned long kern_flags,
843 				unsigned long *set_kern_flags)
844 {
845 	return call_int_hook(sb_set_mnt_opts,
846 				mnt_opts ? -EOPNOTSUPP : 0, sb,
847 				mnt_opts, kern_flags, set_kern_flags);
848 }
849 EXPORT_SYMBOL(security_sb_set_mnt_opts);
850 
851 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
852 				struct super_block *newsb,
853 				unsigned long kern_flags,
854 				unsigned long *set_kern_flags)
855 {
856 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
857 				kern_flags, set_kern_flags);
858 }
859 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
860 
861 int security_add_mnt_opt(const char *option, const char *val, int len,
862 			 void **mnt_opts)
863 {
864 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
865 					option, val, len, mnt_opts);
866 }
867 EXPORT_SYMBOL(security_add_mnt_opt);
868 
869 int security_move_mount(const struct path *from_path, const struct path *to_path)
870 {
871 	return call_int_hook(move_mount, 0, from_path, to_path);
872 }
873 
874 int security_inode_alloc(struct inode *inode)
875 {
876 	int rc = lsm_inode_alloc(inode);
877 
878 	if (unlikely(rc))
879 		return rc;
880 	rc = call_int_hook(inode_alloc_security, 0, inode);
881 	if (unlikely(rc))
882 		security_inode_free(inode);
883 	return rc;
884 }
885 
886 static void inode_free_by_rcu(struct rcu_head *head)
887 {
888 	/*
889 	 * The rcu head is at the start of the inode blob
890 	 */
891 	kmem_cache_free(lsm_inode_cache, head);
892 }
893 
894 void security_inode_free(struct inode *inode)
895 {
896 	integrity_inode_free(inode);
897 	call_void_hook(inode_free_security, inode);
898 	/*
899 	 * The inode may still be referenced in a path walk and
900 	 * a call to security_inode_permission() can be made
901 	 * after inode_free_security() is called. Ideally, the VFS
902 	 * wouldn't do this, but fixing that is a much harder
903 	 * job. For now, simply free the i_security via RCU, and
904 	 * leave the current inode->i_security pointer intact.
905 	 * The inode will be freed after the RCU grace period too.
906 	 */
907 	if (inode->i_security)
908 		call_rcu((struct rcu_head *)inode->i_security,
909 				inode_free_by_rcu);
910 }
911 
912 int security_dentry_init_security(struct dentry *dentry, int mode,
913 					const struct qstr *name, void **ctx,
914 					u32 *ctxlen)
915 {
916 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
917 				name, ctx, ctxlen);
918 }
919 EXPORT_SYMBOL(security_dentry_init_security);
920 
921 int security_dentry_create_files_as(struct dentry *dentry, int mode,
922 				    struct qstr *name,
923 				    const struct cred *old, struct cred *new)
924 {
925 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
926 				name, old, new);
927 }
928 EXPORT_SYMBOL(security_dentry_create_files_as);
929 
930 int security_inode_init_security(struct inode *inode, struct inode *dir,
931 				 const struct qstr *qstr,
932 				 const initxattrs initxattrs, void *fs_data)
933 {
934 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
935 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
936 	int ret;
937 
938 	if (unlikely(IS_PRIVATE(inode)))
939 		return 0;
940 
941 	if (!initxattrs)
942 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
943 				     dir, qstr, NULL, NULL, NULL);
944 	memset(new_xattrs, 0, sizeof(new_xattrs));
945 	lsm_xattr = new_xattrs;
946 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
947 						&lsm_xattr->name,
948 						&lsm_xattr->value,
949 						&lsm_xattr->value_len);
950 	if (ret)
951 		goto out;
952 
953 	evm_xattr = lsm_xattr + 1;
954 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
955 	if (ret)
956 		goto out;
957 	ret = initxattrs(inode, new_xattrs, fs_data);
958 out:
959 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
960 		kfree(xattr->value);
961 	return (ret == -EOPNOTSUPP) ? 0 : ret;
962 }
963 EXPORT_SYMBOL(security_inode_init_security);
964 
965 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
966 				     const struct qstr *qstr, const char **name,
967 				     void **value, size_t *len)
968 {
969 	if (unlikely(IS_PRIVATE(inode)))
970 		return -EOPNOTSUPP;
971 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
972 			     qstr, name, value, len);
973 }
974 EXPORT_SYMBOL(security_old_inode_init_security);
975 
976 #ifdef CONFIG_SECURITY_PATH
977 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
978 			unsigned int dev)
979 {
980 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
981 		return 0;
982 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
983 }
984 EXPORT_SYMBOL(security_path_mknod);
985 
986 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
987 {
988 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
989 		return 0;
990 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
991 }
992 EXPORT_SYMBOL(security_path_mkdir);
993 
994 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
995 {
996 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
997 		return 0;
998 	return call_int_hook(path_rmdir, 0, dir, dentry);
999 }
1000 
1001 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1002 {
1003 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1004 		return 0;
1005 	return call_int_hook(path_unlink, 0, dir, dentry);
1006 }
1007 EXPORT_SYMBOL(security_path_unlink);
1008 
1009 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1010 			  const char *old_name)
1011 {
1012 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1013 		return 0;
1014 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1015 }
1016 
1017 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1018 		       struct dentry *new_dentry)
1019 {
1020 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1021 		return 0;
1022 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1023 }
1024 
1025 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1026 			 const struct path *new_dir, struct dentry *new_dentry,
1027 			 unsigned int flags)
1028 {
1029 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1030 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1031 		return 0;
1032 
1033 	if (flags & RENAME_EXCHANGE) {
1034 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1035 					old_dir, old_dentry);
1036 		if (err)
1037 			return err;
1038 	}
1039 
1040 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1041 				new_dentry);
1042 }
1043 EXPORT_SYMBOL(security_path_rename);
1044 
1045 int security_path_truncate(const struct path *path)
1046 {
1047 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1048 		return 0;
1049 	return call_int_hook(path_truncate, 0, path);
1050 }
1051 
1052 int security_path_chmod(const struct path *path, umode_t mode)
1053 {
1054 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1055 		return 0;
1056 	return call_int_hook(path_chmod, 0, path, mode);
1057 }
1058 
1059 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1060 {
1061 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1062 		return 0;
1063 	return call_int_hook(path_chown, 0, path, uid, gid);
1064 }
1065 
1066 int security_path_chroot(const struct path *path)
1067 {
1068 	return call_int_hook(path_chroot, 0, path);
1069 }
1070 #endif
1071 
1072 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1073 {
1074 	if (unlikely(IS_PRIVATE(dir)))
1075 		return 0;
1076 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1077 }
1078 EXPORT_SYMBOL_GPL(security_inode_create);
1079 
1080 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1081 			 struct dentry *new_dentry)
1082 {
1083 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1084 		return 0;
1085 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1086 }
1087 
1088 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1089 {
1090 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1091 		return 0;
1092 	return call_int_hook(inode_unlink, 0, dir, dentry);
1093 }
1094 
1095 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1096 			    const char *old_name)
1097 {
1098 	if (unlikely(IS_PRIVATE(dir)))
1099 		return 0;
1100 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1101 }
1102 
1103 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1104 {
1105 	if (unlikely(IS_PRIVATE(dir)))
1106 		return 0;
1107 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1108 }
1109 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1110 
1111 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1112 {
1113 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1114 		return 0;
1115 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1116 }
1117 
1118 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1119 {
1120 	if (unlikely(IS_PRIVATE(dir)))
1121 		return 0;
1122 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1123 }
1124 
1125 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1126 			   struct inode *new_dir, struct dentry *new_dentry,
1127 			   unsigned int flags)
1128 {
1129         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1130             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1131 		return 0;
1132 
1133 	if (flags & RENAME_EXCHANGE) {
1134 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1135 						     old_dir, old_dentry);
1136 		if (err)
1137 			return err;
1138 	}
1139 
1140 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1141 					   new_dir, new_dentry);
1142 }
1143 
1144 int security_inode_readlink(struct dentry *dentry)
1145 {
1146 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1147 		return 0;
1148 	return call_int_hook(inode_readlink, 0, dentry);
1149 }
1150 
1151 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1152 			       bool rcu)
1153 {
1154 	if (unlikely(IS_PRIVATE(inode)))
1155 		return 0;
1156 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1157 }
1158 
1159 int security_inode_permission(struct inode *inode, int mask)
1160 {
1161 	if (unlikely(IS_PRIVATE(inode)))
1162 		return 0;
1163 	return call_int_hook(inode_permission, 0, inode, mask);
1164 }
1165 
1166 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1167 {
1168 	int ret;
1169 
1170 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1171 		return 0;
1172 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1173 	if (ret)
1174 		return ret;
1175 	return evm_inode_setattr(dentry, attr);
1176 }
1177 EXPORT_SYMBOL_GPL(security_inode_setattr);
1178 
1179 int security_inode_getattr(const struct path *path)
1180 {
1181 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1182 		return 0;
1183 	return call_int_hook(inode_getattr, 0, path);
1184 }
1185 
1186 int security_inode_setxattr(struct dentry *dentry, const char *name,
1187 			    const void *value, size_t size, int flags)
1188 {
1189 	int ret;
1190 
1191 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1192 		return 0;
1193 	/*
1194 	 * SELinux and Smack integrate the cap call,
1195 	 * so assume that all LSMs supplying this call do so.
1196 	 */
1197 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1198 				flags);
1199 
1200 	if (ret == 1)
1201 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1202 	if (ret)
1203 		return ret;
1204 	ret = ima_inode_setxattr(dentry, name, value, size);
1205 	if (ret)
1206 		return ret;
1207 	return evm_inode_setxattr(dentry, name, value, size);
1208 }
1209 
1210 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1211 				  const void *value, size_t size, int flags)
1212 {
1213 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1214 		return;
1215 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1216 	evm_inode_post_setxattr(dentry, name, value, size);
1217 }
1218 
1219 int security_inode_getxattr(struct dentry *dentry, const char *name)
1220 {
1221 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1222 		return 0;
1223 	return call_int_hook(inode_getxattr, 0, dentry, name);
1224 }
1225 
1226 int security_inode_listxattr(struct dentry *dentry)
1227 {
1228 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1229 		return 0;
1230 	return call_int_hook(inode_listxattr, 0, dentry);
1231 }
1232 
1233 int security_inode_removexattr(struct dentry *dentry, const char *name)
1234 {
1235 	int ret;
1236 
1237 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1238 		return 0;
1239 	/*
1240 	 * SELinux and Smack integrate the cap call,
1241 	 * so assume that all LSMs supplying this call do so.
1242 	 */
1243 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1244 	if (ret == 1)
1245 		ret = cap_inode_removexattr(dentry, name);
1246 	if (ret)
1247 		return ret;
1248 	ret = ima_inode_removexattr(dentry, name);
1249 	if (ret)
1250 		return ret;
1251 	return evm_inode_removexattr(dentry, name);
1252 }
1253 
1254 int security_inode_need_killpriv(struct dentry *dentry)
1255 {
1256 	return call_int_hook(inode_need_killpriv, 0, dentry);
1257 }
1258 
1259 int security_inode_killpriv(struct dentry *dentry)
1260 {
1261 	return call_int_hook(inode_killpriv, 0, dentry);
1262 }
1263 
1264 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1265 {
1266 	struct security_hook_list *hp;
1267 	int rc;
1268 
1269 	if (unlikely(IS_PRIVATE(inode)))
1270 		return -EOPNOTSUPP;
1271 	/*
1272 	 * Only one module will provide an attribute with a given name.
1273 	 */
1274 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1275 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1276 		if (rc != -EOPNOTSUPP)
1277 			return rc;
1278 	}
1279 	return -EOPNOTSUPP;
1280 }
1281 
1282 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1283 {
1284 	struct security_hook_list *hp;
1285 	int rc;
1286 
1287 	if (unlikely(IS_PRIVATE(inode)))
1288 		return -EOPNOTSUPP;
1289 	/*
1290 	 * Only one module will provide an attribute with a given name.
1291 	 */
1292 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1293 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1294 								flags);
1295 		if (rc != -EOPNOTSUPP)
1296 			return rc;
1297 	}
1298 	return -EOPNOTSUPP;
1299 }
1300 
1301 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1302 {
1303 	if (unlikely(IS_PRIVATE(inode)))
1304 		return 0;
1305 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1306 }
1307 EXPORT_SYMBOL(security_inode_listsecurity);
1308 
1309 void security_inode_getsecid(struct inode *inode, u32 *secid)
1310 {
1311 	call_void_hook(inode_getsecid, inode, secid);
1312 }
1313 
1314 int security_inode_copy_up(struct dentry *src, struct cred **new)
1315 {
1316 	return call_int_hook(inode_copy_up, 0, src, new);
1317 }
1318 EXPORT_SYMBOL(security_inode_copy_up);
1319 
1320 int security_inode_copy_up_xattr(const char *name)
1321 {
1322 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1323 }
1324 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1325 
1326 int security_file_permission(struct file *file, int mask)
1327 {
1328 	int ret;
1329 
1330 	ret = call_int_hook(file_permission, 0, file, mask);
1331 	if (ret)
1332 		return ret;
1333 
1334 	return fsnotify_perm(file, mask);
1335 }
1336 
1337 int security_file_alloc(struct file *file)
1338 {
1339 	int rc = lsm_file_alloc(file);
1340 
1341 	if (rc)
1342 		return rc;
1343 	rc = call_int_hook(file_alloc_security, 0, file);
1344 	if (unlikely(rc))
1345 		security_file_free(file);
1346 	return rc;
1347 }
1348 
1349 void security_file_free(struct file *file)
1350 {
1351 	void *blob;
1352 
1353 	call_void_hook(file_free_security, file);
1354 
1355 	blob = file->f_security;
1356 	if (blob) {
1357 		file->f_security = NULL;
1358 		kmem_cache_free(lsm_file_cache, blob);
1359 	}
1360 }
1361 
1362 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1363 {
1364 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1365 }
1366 
1367 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1368 {
1369 	/*
1370 	 * Does we have PROT_READ and does the application expect
1371 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1372 	 */
1373 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1374 		return prot;
1375 	if (!(current->personality & READ_IMPLIES_EXEC))
1376 		return prot;
1377 	/*
1378 	 * if that's an anonymous mapping, let it.
1379 	 */
1380 	if (!file)
1381 		return prot | PROT_EXEC;
1382 	/*
1383 	 * ditto if it's not on noexec mount, except that on !MMU we need
1384 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1385 	 */
1386 	if (!path_noexec(&file->f_path)) {
1387 #ifndef CONFIG_MMU
1388 		if (file->f_op->mmap_capabilities) {
1389 			unsigned caps = file->f_op->mmap_capabilities(file);
1390 			if (!(caps & NOMMU_MAP_EXEC))
1391 				return prot;
1392 		}
1393 #endif
1394 		return prot | PROT_EXEC;
1395 	}
1396 	/* anything on noexec mount won't get PROT_EXEC */
1397 	return prot;
1398 }
1399 
1400 int security_mmap_file(struct file *file, unsigned long prot,
1401 			unsigned long flags)
1402 {
1403 	int ret;
1404 	ret = call_int_hook(mmap_file, 0, file, prot,
1405 					mmap_prot(file, prot), flags);
1406 	if (ret)
1407 		return ret;
1408 	return ima_file_mmap(file, prot);
1409 }
1410 
1411 int security_mmap_addr(unsigned long addr)
1412 {
1413 	return call_int_hook(mmap_addr, 0, addr);
1414 }
1415 
1416 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1417 			    unsigned long prot)
1418 {
1419 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1420 }
1421 
1422 int security_file_lock(struct file *file, unsigned int cmd)
1423 {
1424 	return call_int_hook(file_lock, 0, file, cmd);
1425 }
1426 
1427 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1428 {
1429 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1430 }
1431 
1432 void security_file_set_fowner(struct file *file)
1433 {
1434 	call_void_hook(file_set_fowner, file);
1435 }
1436 
1437 int security_file_send_sigiotask(struct task_struct *tsk,
1438 				  struct fown_struct *fown, int sig)
1439 {
1440 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1441 }
1442 
1443 int security_file_receive(struct file *file)
1444 {
1445 	return call_int_hook(file_receive, 0, file);
1446 }
1447 
1448 int security_file_open(struct file *file)
1449 {
1450 	int ret;
1451 
1452 	ret = call_int_hook(file_open, 0, file);
1453 	if (ret)
1454 		return ret;
1455 
1456 	return fsnotify_perm(file, MAY_OPEN);
1457 }
1458 
1459 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1460 {
1461 	int rc = lsm_task_alloc(task);
1462 
1463 	if (rc)
1464 		return rc;
1465 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1466 	if (unlikely(rc))
1467 		security_task_free(task);
1468 	return rc;
1469 }
1470 
1471 void security_task_free(struct task_struct *task)
1472 {
1473 	call_void_hook(task_free, task);
1474 
1475 	kfree(task->security);
1476 	task->security = NULL;
1477 }
1478 
1479 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1480 {
1481 	int rc = lsm_cred_alloc(cred, gfp);
1482 
1483 	if (rc)
1484 		return rc;
1485 
1486 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1487 	if (unlikely(rc))
1488 		security_cred_free(cred);
1489 	return rc;
1490 }
1491 
1492 void security_cred_free(struct cred *cred)
1493 {
1494 	/*
1495 	 * There is a failure case in prepare_creds() that
1496 	 * may result in a call here with ->security being NULL.
1497 	 */
1498 	if (unlikely(cred->security == NULL))
1499 		return;
1500 
1501 	call_void_hook(cred_free, cred);
1502 
1503 	kfree(cred->security);
1504 	cred->security = NULL;
1505 }
1506 
1507 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1508 {
1509 	int rc = lsm_cred_alloc(new, gfp);
1510 
1511 	if (rc)
1512 		return rc;
1513 
1514 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1515 	if (unlikely(rc))
1516 		security_cred_free(new);
1517 	return rc;
1518 }
1519 
1520 void security_transfer_creds(struct cred *new, const struct cred *old)
1521 {
1522 	call_void_hook(cred_transfer, new, old);
1523 }
1524 
1525 void security_cred_getsecid(const struct cred *c, u32 *secid)
1526 {
1527 	*secid = 0;
1528 	call_void_hook(cred_getsecid, c, secid);
1529 }
1530 EXPORT_SYMBOL(security_cred_getsecid);
1531 
1532 int security_kernel_act_as(struct cred *new, u32 secid)
1533 {
1534 	return call_int_hook(kernel_act_as, 0, new, secid);
1535 }
1536 
1537 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1538 {
1539 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1540 }
1541 
1542 int security_kernel_module_request(char *kmod_name)
1543 {
1544 	int ret;
1545 
1546 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1547 	if (ret)
1548 		return ret;
1549 	return integrity_kernel_module_request(kmod_name);
1550 }
1551 
1552 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1553 {
1554 	int ret;
1555 
1556 	ret = call_int_hook(kernel_read_file, 0, file, id);
1557 	if (ret)
1558 		return ret;
1559 	return ima_read_file(file, id);
1560 }
1561 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1562 
1563 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1564 				   enum kernel_read_file_id id)
1565 {
1566 	int ret;
1567 
1568 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1569 	if (ret)
1570 		return ret;
1571 	return ima_post_read_file(file, buf, size, id);
1572 }
1573 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1574 
1575 int security_kernel_load_data(enum kernel_load_data_id id)
1576 {
1577 	int ret;
1578 
1579 	ret = call_int_hook(kernel_load_data, 0, id);
1580 	if (ret)
1581 		return ret;
1582 	return ima_load_data(id);
1583 }
1584 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1585 
1586 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1587 			     int flags)
1588 {
1589 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1590 }
1591 
1592 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1593 {
1594 	return call_int_hook(task_setpgid, 0, p, pgid);
1595 }
1596 
1597 int security_task_getpgid(struct task_struct *p)
1598 {
1599 	return call_int_hook(task_getpgid, 0, p);
1600 }
1601 
1602 int security_task_getsid(struct task_struct *p)
1603 {
1604 	return call_int_hook(task_getsid, 0, p);
1605 }
1606 
1607 void security_task_getsecid(struct task_struct *p, u32 *secid)
1608 {
1609 	*secid = 0;
1610 	call_void_hook(task_getsecid, p, secid);
1611 }
1612 EXPORT_SYMBOL(security_task_getsecid);
1613 
1614 int security_task_setnice(struct task_struct *p, int nice)
1615 {
1616 	return call_int_hook(task_setnice, 0, p, nice);
1617 }
1618 
1619 int security_task_setioprio(struct task_struct *p, int ioprio)
1620 {
1621 	return call_int_hook(task_setioprio, 0, p, ioprio);
1622 }
1623 
1624 int security_task_getioprio(struct task_struct *p)
1625 {
1626 	return call_int_hook(task_getioprio, 0, p);
1627 }
1628 
1629 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1630 			  unsigned int flags)
1631 {
1632 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1633 }
1634 
1635 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1636 		struct rlimit *new_rlim)
1637 {
1638 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1639 }
1640 
1641 int security_task_setscheduler(struct task_struct *p)
1642 {
1643 	return call_int_hook(task_setscheduler, 0, p);
1644 }
1645 
1646 int security_task_getscheduler(struct task_struct *p)
1647 {
1648 	return call_int_hook(task_getscheduler, 0, p);
1649 }
1650 
1651 int security_task_movememory(struct task_struct *p)
1652 {
1653 	return call_int_hook(task_movememory, 0, p);
1654 }
1655 
1656 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1657 			int sig, const struct cred *cred)
1658 {
1659 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1660 }
1661 
1662 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1663 			 unsigned long arg4, unsigned long arg5)
1664 {
1665 	int thisrc;
1666 	int rc = -ENOSYS;
1667 	struct security_hook_list *hp;
1668 
1669 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1670 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1671 		if (thisrc != -ENOSYS) {
1672 			rc = thisrc;
1673 			if (thisrc != 0)
1674 				break;
1675 		}
1676 	}
1677 	return rc;
1678 }
1679 
1680 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1681 {
1682 	call_void_hook(task_to_inode, p, inode);
1683 }
1684 
1685 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1686 {
1687 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1688 }
1689 
1690 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1691 {
1692 	*secid = 0;
1693 	call_void_hook(ipc_getsecid, ipcp, secid);
1694 }
1695 
1696 int security_msg_msg_alloc(struct msg_msg *msg)
1697 {
1698 	int rc = lsm_msg_msg_alloc(msg);
1699 
1700 	if (unlikely(rc))
1701 		return rc;
1702 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1703 	if (unlikely(rc))
1704 		security_msg_msg_free(msg);
1705 	return rc;
1706 }
1707 
1708 void security_msg_msg_free(struct msg_msg *msg)
1709 {
1710 	call_void_hook(msg_msg_free_security, msg);
1711 	kfree(msg->security);
1712 	msg->security = NULL;
1713 }
1714 
1715 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1716 {
1717 	int rc = lsm_ipc_alloc(msq);
1718 
1719 	if (unlikely(rc))
1720 		return rc;
1721 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1722 	if (unlikely(rc))
1723 		security_msg_queue_free(msq);
1724 	return rc;
1725 }
1726 
1727 void security_msg_queue_free(struct kern_ipc_perm *msq)
1728 {
1729 	call_void_hook(msg_queue_free_security, msq);
1730 	kfree(msq->security);
1731 	msq->security = NULL;
1732 }
1733 
1734 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1735 {
1736 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1737 }
1738 
1739 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1740 {
1741 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1742 }
1743 
1744 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1745 			       struct msg_msg *msg, int msqflg)
1746 {
1747 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1748 }
1749 
1750 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1751 			       struct task_struct *target, long type, int mode)
1752 {
1753 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1754 }
1755 
1756 int security_shm_alloc(struct kern_ipc_perm *shp)
1757 {
1758 	int rc = lsm_ipc_alloc(shp);
1759 
1760 	if (unlikely(rc))
1761 		return rc;
1762 	rc = call_int_hook(shm_alloc_security, 0, shp);
1763 	if (unlikely(rc))
1764 		security_shm_free(shp);
1765 	return rc;
1766 }
1767 
1768 void security_shm_free(struct kern_ipc_perm *shp)
1769 {
1770 	call_void_hook(shm_free_security, shp);
1771 	kfree(shp->security);
1772 	shp->security = NULL;
1773 }
1774 
1775 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1776 {
1777 	return call_int_hook(shm_associate, 0, shp, shmflg);
1778 }
1779 
1780 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1781 {
1782 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1783 }
1784 
1785 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1786 {
1787 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1788 }
1789 
1790 int security_sem_alloc(struct kern_ipc_perm *sma)
1791 {
1792 	int rc = lsm_ipc_alloc(sma);
1793 
1794 	if (unlikely(rc))
1795 		return rc;
1796 	rc = call_int_hook(sem_alloc_security, 0, sma);
1797 	if (unlikely(rc))
1798 		security_sem_free(sma);
1799 	return rc;
1800 }
1801 
1802 void security_sem_free(struct kern_ipc_perm *sma)
1803 {
1804 	call_void_hook(sem_free_security, sma);
1805 	kfree(sma->security);
1806 	sma->security = NULL;
1807 }
1808 
1809 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1810 {
1811 	return call_int_hook(sem_associate, 0, sma, semflg);
1812 }
1813 
1814 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1815 {
1816 	return call_int_hook(sem_semctl, 0, sma, cmd);
1817 }
1818 
1819 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1820 			unsigned nsops, int alter)
1821 {
1822 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1823 }
1824 
1825 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1826 {
1827 	if (unlikely(inode && IS_PRIVATE(inode)))
1828 		return;
1829 	call_void_hook(d_instantiate, dentry, inode);
1830 }
1831 EXPORT_SYMBOL(security_d_instantiate);
1832 
1833 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1834 				char **value)
1835 {
1836 	struct security_hook_list *hp;
1837 
1838 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1839 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1840 			continue;
1841 		return hp->hook.getprocattr(p, name, value);
1842 	}
1843 	return -EINVAL;
1844 }
1845 
1846 int security_setprocattr(const char *lsm, const char *name, void *value,
1847 			 size_t size)
1848 {
1849 	struct security_hook_list *hp;
1850 
1851 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1852 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1853 			continue;
1854 		return hp->hook.setprocattr(name, value, size);
1855 	}
1856 	return -EINVAL;
1857 }
1858 
1859 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1860 {
1861 	return call_int_hook(netlink_send, 0, sk, skb);
1862 }
1863 
1864 int security_ismaclabel(const char *name)
1865 {
1866 	return call_int_hook(ismaclabel, 0, name);
1867 }
1868 EXPORT_SYMBOL(security_ismaclabel);
1869 
1870 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1871 {
1872 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1873 				seclen);
1874 }
1875 EXPORT_SYMBOL(security_secid_to_secctx);
1876 
1877 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1878 {
1879 	*secid = 0;
1880 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1881 }
1882 EXPORT_SYMBOL(security_secctx_to_secid);
1883 
1884 void security_release_secctx(char *secdata, u32 seclen)
1885 {
1886 	call_void_hook(release_secctx, secdata, seclen);
1887 }
1888 EXPORT_SYMBOL(security_release_secctx);
1889 
1890 void security_inode_invalidate_secctx(struct inode *inode)
1891 {
1892 	call_void_hook(inode_invalidate_secctx, inode);
1893 }
1894 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1895 
1896 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1897 {
1898 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1899 }
1900 EXPORT_SYMBOL(security_inode_notifysecctx);
1901 
1902 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1903 {
1904 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1905 }
1906 EXPORT_SYMBOL(security_inode_setsecctx);
1907 
1908 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1909 {
1910 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1911 }
1912 EXPORT_SYMBOL(security_inode_getsecctx);
1913 
1914 #ifdef CONFIG_SECURITY_NETWORK
1915 
1916 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1917 {
1918 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1919 }
1920 EXPORT_SYMBOL(security_unix_stream_connect);
1921 
1922 int security_unix_may_send(struct socket *sock,  struct socket *other)
1923 {
1924 	return call_int_hook(unix_may_send, 0, sock, other);
1925 }
1926 EXPORT_SYMBOL(security_unix_may_send);
1927 
1928 int security_socket_create(int family, int type, int protocol, int kern)
1929 {
1930 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1931 }
1932 
1933 int security_socket_post_create(struct socket *sock, int family,
1934 				int type, int protocol, int kern)
1935 {
1936 	return call_int_hook(socket_post_create, 0, sock, family, type,
1937 						protocol, kern);
1938 }
1939 
1940 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1941 {
1942 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1943 }
1944 EXPORT_SYMBOL(security_socket_socketpair);
1945 
1946 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1947 {
1948 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1949 }
1950 
1951 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1952 {
1953 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1954 }
1955 
1956 int security_socket_listen(struct socket *sock, int backlog)
1957 {
1958 	return call_int_hook(socket_listen, 0, sock, backlog);
1959 }
1960 
1961 int security_socket_accept(struct socket *sock, struct socket *newsock)
1962 {
1963 	return call_int_hook(socket_accept, 0, sock, newsock);
1964 }
1965 
1966 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1967 {
1968 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1969 }
1970 
1971 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1972 			    int size, int flags)
1973 {
1974 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1975 }
1976 
1977 int security_socket_getsockname(struct socket *sock)
1978 {
1979 	return call_int_hook(socket_getsockname, 0, sock);
1980 }
1981 
1982 int security_socket_getpeername(struct socket *sock)
1983 {
1984 	return call_int_hook(socket_getpeername, 0, sock);
1985 }
1986 
1987 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1988 {
1989 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1990 }
1991 
1992 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1993 {
1994 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1995 }
1996 
1997 int security_socket_shutdown(struct socket *sock, int how)
1998 {
1999 	return call_int_hook(socket_shutdown, 0, sock, how);
2000 }
2001 
2002 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2003 {
2004 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2005 }
2006 EXPORT_SYMBOL(security_sock_rcv_skb);
2007 
2008 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2009 				      int __user *optlen, unsigned len)
2010 {
2011 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2012 				optval, optlen, len);
2013 }
2014 
2015 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2016 {
2017 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2018 			     skb, secid);
2019 }
2020 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2021 
2022 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2023 {
2024 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2025 }
2026 
2027 void security_sk_free(struct sock *sk)
2028 {
2029 	call_void_hook(sk_free_security, sk);
2030 }
2031 
2032 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2033 {
2034 	call_void_hook(sk_clone_security, sk, newsk);
2035 }
2036 EXPORT_SYMBOL(security_sk_clone);
2037 
2038 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2039 {
2040 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2041 }
2042 EXPORT_SYMBOL(security_sk_classify_flow);
2043 
2044 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2045 {
2046 	call_void_hook(req_classify_flow, req, fl);
2047 }
2048 EXPORT_SYMBOL(security_req_classify_flow);
2049 
2050 void security_sock_graft(struct sock *sk, struct socket *parent)
2051 {
2052 	call_void_hook(sock_graft, sk, parent);
2053 }
2054 EXPORT_SYMBOL(security_sock_graft);
2055 
2056 int security_inet_conn_request(struct sock *sk,
2057 			struct sk_buff *skb, struct request_sock *req)
2058 {
2059 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2060 }
2061 EXPORT_SYMBOL(security_inet_conn_request);
2062 
2063 void security_inet_csk_clone(struct sock *newsk,
2064 			const struct request_sock *req)
2065 {
2066 	call_void_hook(inet_csk_clone, newsk, req);
2067 }
2068 
2069 void security_inet_conn_established(struct sock *sk,
2070 			struct sk_buff *skb)
2071 {
2072 	call_void_hook(inet_conn_established, sk, skb);
2073 }
2074 EXPORT_SYMBOL(security_inet_conn_established);
2075 
2076 int security_secmark_relabel_packet(u32 secid)
2077 {
2078 	return call_int_hook(secmark_relabel_packet, 0, secid);
2079 }
2080 EXPORT_SYMBOL(security_secmark_relabel_packet);
2081 
2082 void security_secmark_refcount_inc(void)
2083 {
2084 	call_void_hook(secmark_refcount_inc);
2085 }
2086 EXPORT_SYMBOL(security_secmark_refcount_inc);
2087 
2088 void security_secmark_refcount_dec(void)
2089 {
2090 	call_void_hook(secmark_refcount_dec);
2091 }
2092 EXPORT_SYMBOL(security_secmark_refcount_dec);
2093 
2094 int security_tun_dev_alloc_security(void **security)
2095 {
2096 	return call_int_hook(tun_dev_alloc_security, 0, security);
2097 }
2098 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2099 
2100 void security_tun_dev_free_security(void *security)
2101 {
2102 	call_void_hook(tun_dev_free_security, security);
2103 }
2104 EXPORT_SYMBOL(security_tun_dev_free_security);
2105 
2106 int security_tun_dev_create(void)
2107 {
2108 	return call_int_hook(tun_dev_create, 0);
2109 }
2110 EXPORT_SYMBOL(security_tun_dev_create);
2111 
2112 int security_tun_dev_attach_queue(void *security)
2113 {
2114 	return call_int_hook(tun_dev_attach_queue, 0, security);
2115 }
2116 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2117 
2118 int security_tun_dev_attach(struct sock *sk, void *security)
2119 {
2120 	return call_int_hook(tun_dev_attach, 0, sk, security);
2121 }
2122 EXPORT_SYMBOL(security_tun_dev_attach);
2123 
2124 int security_tun_dev_open(void *security)
2125 {
2126 	return call_int_hook(tun_dev_open, 0, security);
2127 }
2128 EXPORT_SYMBOL(security_tun_dev_open);
2129 
2130 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2131 {
2132 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2133 }
2134 EXPORT_SYMBOL(security_sctp_assoc_request);
2135 
2136 int security_sctp_bind_connect(struct sock *sk, int optname,
2137 			       struct sockaddr *address, int addrlen)
2138 {
2139 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2140 			     address, addrlen);
2141 }
2142 EXPORT_SYMBOL(security_sctp_bind_connect);
2143 
2144 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2145 			    struct sock *newsk)
2146 {
2147 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2148 }
2149 EXPORT_SYMBOL(security_sctp_sk_clone);
2150 
2151 #endif	/* CONFIG_SECURITY_NETWORK */
2152 
2153 #ifdef CONFIG_SECURITY_INFINIBAND
2154 
2155 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2156 {
2157 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2158 }
2159 EXPORT_SYMBOL(security_ib_pkey_access);
2160 
2161 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2162 {
2163 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2164 }
2165 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2166 
2167 int security_ib_alloc_security(void **sec)
2168 {
2169 	return call_int_hook(ib_alloc_security, 0, sec);
2170 }
2171 EXPORT_SYMBOL(security_ib_alloc_security);
2172 
2173 void security_ib_free_security(void *sec)
2174 {
2175 	call_void_hook(ib_free_security, sec);
2176 }
2177 EXPORT_SYMBOL(security_ib_free_security);
2178 #endif	/* CONFIG_SECURITY_INFINIBAND */
2179 
2180 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2181 
2182 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2183 			       struct xfrm_user_sec_ctx *sec_ctx,
2184 			       gfp_t gfp)
2185 {
2186 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2187 }
2188 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2189 
2190 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2191 			      struct xfrm_sec_ctx **new_ctxp)
2192 {
2193 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2194 }
2195 
2196 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2197 {
2198 	call_void_hook(xfrm_policy_free_security, ctx);
2199 }
2200 EXPORT_SYMBOL(security_xfrm_policy_free);
2201 
2202 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2203 {
2204 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2205 }
2206 
2207 int security_xfrm_state_alloc(struct xfrm_state *x,
2208 			      struct xfrm_user_sec_ctx *sec_ctx)
2209 {
2210 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2211 }
2212 EXPORT_SYMBOL(security_xfrm_state_alloc);
2213 
2214 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2215 				      struct xfrm_sec_ctx *polsec, u32 secid)
2216 {
2217 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2218 }
2219 
2220 int security_xfrm_state_delete(struct xfrm_state *x)
2221 {
2222 	return call_int_hook(xfrm_state_delete_security, 0, x);
2223 }
2224 EXPORT_SYMBOL(security_xfrm_state_delete);
2225 
2226 void security_xfrm_state_free(struct xfrm_state *x)
2227 {
2228 	call_void_hook(xfrm_state_free_security, x);
2229 }
2230 
2231 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2232 {
2233 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2234 }
2235 
2236 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2237 				       struct xfrm_policy *xp,
2238 				       const struct flowi *fl)
2239 {
2240 	struct security_hook_list *hp;
2241 	int rc = 1;
2242 
2243 	/*
2244 	 * Since this function is expected to return 0 or 1, the judgment
2245 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2246 	 * we can use the first LSM's judgment because currently only SELinux
2247 	 * supplies this call.
2248 	 *
2249 	 * For speed optimization, we explicitly break the loop rather than
2250 	 * using the macro
2251 	 */
2252 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2253 				list) {
2254 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2255 		break;
2256 	}
2257 	return rc;
2258 }
2259 
2260 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2261 {
2262 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2263 }
2264 
2265 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2266 {
2267 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2268 				0);
2269 
2270 	BUG_ON(rc);
2271 }
2272 EXPORT_SYMBOL(security_skb_classify_flow);
2273 
2274 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2275 
2276 #ifdef CONFIG_KEYS
2277 
2278 int security_key_alloc(struct key *key, const struct cred *cred,
2279 		       unsigned long flags)
2280 {
2281 	return call_int_hook(key_alloc, 0, key, cred, flags);
2282 }
2283 
2284 void security_key_free(struct key *key)
2285 {
2286 	call_void_hook(key_free, key);
2287 }
2288 
2289 int security_key_permission(key_ref_t key_ref,
2290 			    const struct cred *cred, unsigned perm)
2291 {
2292 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2293 }
2294 
2295 int security_key_getsecurity(struct key *key, char **_buffer)
2296 {
2297 	*_buffer = NULL;
2298 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2299 }
2300 
2301 #endif	/* CONFIG_KEYS */
2302 
2303 #ifdef CONFIG_AUDIT
2304 
2305 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2306 {
2307 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2308 }
2309 
2310 int security_audit_rule_known(struct audit_krule *krule)
2311 {
2312 	return call_int_hook(audit_rule_known, 0, krule);
2313 }
2314 
2315 void security_audit_rule_free(void *lsmrule)
2316 {
2317 	call_void_hook(audit_rule_free, lsmrule);
2318 }
2319 
2320 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2321 {
2322 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2323 }
2324 #endif /* CONFIG_AUDIT */
2325 
2326 #ifdef CONFIG_BPF_SYSCALL
2327 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2328 {
2329 	return call_int_hook(bpf, 0, cmd, attr, size);
2330 }
2331 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2332 {
2333 	return call_int_hook(bpf_map, 0, map, fmode);
2334 }
2335 int security_bpf_prog(struct bpf_prog *prog)
2336 {
2337 	return call_int_hook(bpf_prog, 0, prog);
2338 }
2339 int security_bpf_map_alloc(struct bpf_map *map)
2340 {
2341 	return call_int_hook(bpf_map_alloc_security, 0, map);
2342 }
2343 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2344 {
2345 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2346 }
2347 void security_bpf_map_free(struct bpf_map *map)
2348 {
2349 	call_void_hook(bpf_map_free_security, map);
2350 }
2351 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2352 {
2353 	call_void_hook(bpf_prog_free_security, aux);
2354 }
2355 #endif /* CONFIG_BPF_SYSCALL */
2356