1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <linux/msg.h> 34 #include <net/flow.h> 35 36 #define MAX_LSM_EVM_XATTR 2 37 38 /* How many LSMs were built into the kernel? */ 39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 40 41 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 43 44 static struct kmem_cache *lsm_file_cache; 45 static struct kmem_cache *lsm_inode_cache; 46 47 char *lsm_names; 48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 49 50 /* Boot-time LSM user choice */ 51 static __initdata const char *chosen_lsm_order; 52 static __initdata const char *chosen_major_lsm; 53 54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 55 56 /* Ordered list of LSMs to initialize. */ 57 static __initdata struct lsm_info **ordered_lsms; 58 static __initdata struct lsm_info *exclusive; 59 60 static __initdata bool debug; 61 #define init_debug(...) \ 62 do { \ 63 if (debug) \ 64 pr_info(__VA_ARGS__); \ 65 } while (0) 66 67 static bool __init is_enabled(struct lsm_info *lsm) 68 { 69 if (!lsm->enabled) 70 return false; 71 72 return *lsm->enabled; 73 } 74 75 /* Mark an LSM's enabled flag. */ 76 static int lsm_enabled_true __initdata = 1; 77 static int lsm_enabled_false __initdata = 0; 78 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 79 { 80 /* 81 * When an LSM hasn't configured an enable variable, we can use 82 * a hard-coded location for storing the default enabled state. 83 */ 84 if (!lsm->enabled) { 85 if (enabled) 86 lsm->enabled = &lsm_enabled_true; 87 else 88 lsm->enabled = &lsm_enabled_false; 89 } else if (lsm->enabled == &lsm_enabled_true) { 90 if (!enabled) 91 lsm->enabled = &lsm_enabled_false; 92 } else if (lsm->enabled == &lsm_enabled_false) { 93 if (enabled) 94 lsm->enabled = &lsm_enabled_true; 95 } else { 96 *lsm->enabled = enabled; 97 } 98 } 99 100 /* Is an LSM already listed in the ordered LSMs list? */ 101 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 102 { 103 struct lsm_info **check; 104 105 for (check = ordered_lsms; *check; check++) 106 if (*check == lsm) 107 return true; 108 109 return false; 110 } 111 112 /* Append an LSM to the list of ordered LSMs to initialize. */ 113 static int last_lsm __initdata; 114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 115 { 116 /* Ignore duplicate selections. */ 117 if (exists_ordered_lsm(lsm)) 118 return; 119 120 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 121 return; 122 123 /* Enable this LSM, if it is not already set. */ 124 if (!lsm->enabled) 125 lsm->enabled = &lsm_enabled_true; 126 ordered_lsms[last_lsm++] = lsm; 127 128 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 129 is_enabled(lsm) ? "en" : "dis"); 130 } 131 132 /* Is an LSM allowed to be initialized? */ 133 static bool __init lsm_allowed(struct lsm_info *lsm) 134 { 135 /* Skip if the LSM is disabled. */ 136 if (!is_enabled(lsm)) 137 return false; 138 139 /* Not allowed if another exclusive LSM already initialized. */ 140 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 141 init_debug("exclusive disabled: %s\n", lsm->name); 142 return false; 143 } 144 145 return true; 146 } 147 148 static void __init lsm_set_blob_size(int *need, int *lbs) 149 { 150 int offset; 151 152 if (*need > 0) { 153 offset = *lbs; 154 *lbs += *need; 155 *need = offset; 156 } 157 } 158 159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 160 { 161 if (!needed) 162 return; 163 164 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 165 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 166 /* 167 * The inode blob gets an rcu_head in addition to 168 * what the modules might need. 169 */ 170 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 171 blob_sizes.lbs_inode = sizeof(struct rcu_head); 172 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 173 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 174 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 175 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 176 } 177 178 /* Prepare LSM for initialization. */ 179 static void __init prepare_lsm(struct lsm_info *lsm) 180 { 181 int enabled = lsm_allowed(lsm); 182 183 /* Record enablement (to handle any following exclusive LSMs). */ 184 set_enabled(lsm, enabled); 185 186 /* If enabled, do pre-initialization work. */ 187 if (enabled) { 188 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 189 exclusive = lsm; 190 init_debug("exclusive chosen: %s\n", lsm->name); 191 } 192 193 lsm_set_blob_sizes(lsm->blobs); 194 } 195 } 196 197 /* Initialize a given LSM, if it is enabled. */ 198 static void __init initialize_lsm(struct lsm_info *lsm) 199 { 200 if (is_enabled(lsm)) { 201 int ret; 202 203 init_debug("initializing %s\n", lsm->name); 204 ret = lsm->init(); 205 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 206 } 207 } 208 209 /* Populate ordered LSMs list from comma-separated LSM name list. */ 210 static void __init ordered_lsm_parse(const char *order, const char *origin) 211 { 212 struct lsm_info *lsm; 213 char *sep, *name, *next; 214 215 /* LSM_ORDER_FIRST is always first. */ 216 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 217 if (lsm->order == LSM_ORDER_FIRST) 218 append_ordered_lsm(lsm, "first"); 219 } 220 221 /* Process "security=", if given. */ 222 if (chosen_major_lsm) { 223 struct lsm_info *major; 224 225 /* 226 * To match the original "security=" behavior, this 227 * explicitly does NOT fallback to another Legacy Major 228 * if the selected one was separately disabled: disable 229 * all non-matching Legacy Major LSMs. 230 */ 231 for (major = __start_lsm_info; major < __end_lsm_info; 232 major++) { 233 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 234 strcmp(major->name, chosen_major_lsm) != 0) { 235 set_enabled(major, false); 236 init_debug("security=%s disabled: %s\n", 237 chosen_major_lsm, major->name); 238 } 239 } 240 } 241 242 sep = kstrdup(order, GFP_KERNEL); 243 next = sep; 244 /* Walk the list, looking for matching LSMs. */ 245 while ((name = strsep(&next, ",")) != NULL) { 246 bool found = false; 247 248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 249 if (lsm->order == LSM_ORDER_MUTABLE && 250 strcmp(lsm->name, name) == 0) { 251 append_ordered_lsm(lsm, origin); 252 found = true; 253 } 254 } 255 256 if (!found) 257 init_debug("%s ignored: %s\n", origin, name); 258 } 259 260 /* Process "security=", if given. */ 261 if (chosen_major_lsm) { 262 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 263 if (exists_ordered_lsm(lsm)) 264 continue; 265 if (strcmp(lsm->name, chosen_major_lsm) == 0) 266 append_ordered_lsm(lsm, "security="); 267 } 268 } 269 270 /* Disable all LSMs not in the ordered list. */ 271 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 272 if (exists_ordered_lsm(lsm)) 273 continue; 274 set_enabled(lsm, false); 275 init_debug("%s disabled: %s\n", origin, lsm->name); 276 } 277 278 kfree(sep); 279 } 280 281 static void __init lsm_early_cred(struct cred *cred); 282 static void __init lsm_early_task(struct task_struct *task); 283 284 static void __init ordered_lsm_init(void) 285 { 286 struct lsm_info **lsm; 287 288 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 289 GFP_KERNEL); 290 291 if (chosen_lsm_order) { 292 if (chosen_major_lsm) { 293 pr_info("security= is ignored because it is superseded by lsm=\n"); 294 chosen_major_lsm = NULL; 295 } 296 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 297 } else 298 ordered_lsm_parse(builtin_lsm_order, "builtin"); 299 300 for (lsm = ordered_lsms; *lsm; lsm++) 301 prepare_lsm(*lsm); 302 303 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 304 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 305 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 306 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 307 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 308 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 309 310 /* 311 * Create any kmem_caches needed for blobs 312 */ 313 if (blob_sizes.lbs_file) 314 lsm_file_cache = kmem_cache_create("lsm_file_cache", 315 blob_sizes.lbs_file, 0, 316 SLAB_PANIC, NULL); 317 if (blob_sizes.lbs_inode) 318 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 319 blob_sizes.lbs_inode, 0, 320 SLAB_PANIC, NULL); 321 322 lsm_early_cred((struct cred *) current->cred); 323 lsm_early_task(current); 324 for (lsm = ordered_lsms; *lsm; lsm++) 325 initialize_lsm(*lsm); 326 327 kfree(ordered_lsms); 328 } 329 330 /** 331 * security_init - initializes the security framework 332 * 333 * This should be called early in the kernel initialization sequence. 334 */ 335 int __init security_init(void) 336 { 337 int i; 338 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 339 340 pr_info("Security Framework initializing\n"); 341 342 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 343 i++) 344 INIT_HLIST_HEAD(&list[i]); 345 346 /* Load LSMs in specified order. */ 347 ordered_lsm_init(); 348 349 return 0; 350 } 351 352 /* Save user chosen LSM */ 353 static int __init choose_major_lsm(char *str) 354 { 355 chosen_major_lsm = str; 356 return 1; 357 } 358 __setup("security=", choose_major_lsm); 359 360 /* Explicitly choose LSM initialization order. */ 361 static int __init choose_lsm_order(char *str) 362 { 363 chosen_lsm_order = str; 364 return 1; 365 } 366 __setup("lsm=", choose_lsm_order); 367 368 /* Enable LSM order debugging. */ 369 static int __init enable_debug(char *str) 370 { 371 debug = true; 372 return 1; 373 } 374 __setup("lsm.debug", enable_debug); 375 376 static bool match_last_lsm(const char *list, const char *lsm) 377 { 378 const char *last; 379 380 if (WARN_ON(!list || !lsm)) 381 return false; 382 last = strrchr(list, ','); 383 if (last) 384 /* Pass the comma, strcmp() will check for '\0' */ 385 last++; 386 else 387 last = list; 388 return !strcmp(last, lsm); 389 } 390 391 static int lsm_append(char *new, char **result) 392 { 393 char *cp; 394 395 if (*result == NULL) { 396 *result = kstrdup(new, GFP_KERNEL); 397 if (*result == NULL) 398 return -ENOMEM; 399 } else { 400 /* Check if it is the last registered name */ 401 if (match_last_lsm(*result, new)) 402 return 0; 403 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 404 if (cp == NULL) 405 return -ENOMEM; 406 kfree(*result); 407 *result = cp; 408 } 409 return 0; 410 } 411 412 /** 413 * security_add_hooks - Add a modules hooks to the hook lists. 414 * @hooks: the hooks to add 415 * @count: the number of hooks to add 416 * @lsm: the name of the security module 417 * 418 * Each LSM has to register its hooks with the infrastructure. 419 */ 420 void __init security_add_hooks(struct security_hook_list *hooks, int count, 421 char *lsm) 422 { 423 int i; 424 425 for (i = 0; i < count; i++) { 426 hooks[i].lsm = lsm; 427 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 428 } 429 if (lsm_append(lsm, &lsm_names) < 0) 430 panic("%s - Cannot get early memory.\n", __func__); 431 } 432 433 int call_lsm_notifier(enum lsm_event event, void *data) 434 { 435 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 436 } 437 EXPORT_SYMBOL(call_lsm_notifier); 438 439 int register_lsm_notifier(struct notifier_block *nb) 440 { 441 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 442 } 443 EXPORT_SYMBOL(register_lsm_notifier); 444 445 int unregister_lsm_notifier(struct notifier_block *nb) 446 { 447 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 448 } 449 EXPORT_SYMBOL(unregister_lsm_notifier); 450 451 /** 452 * lsm_cred_alloc - allocate a composite cred blob 453 * @cred: the cred that needs a blob 454 * @gfp: allocation type 455 * 456 * Allocate the cred blob for all the modules 457 * 458 * Returns 0, or -ENOMEM if memory can't be allocated. 459 */ 460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 461 { 462 if (blob_sizes.lbs_cred == 0) { 463 cred->security = NULL; 464 return 0; 465 } 466 467 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 468 if (cred->security == NULL) 469 return -ENOMEM; 470 return 0; 471 } 472 473 /** 474 * lsm_early_cred - during initialization allocate a composite cred blob 475 * @cred: the cred that needs a blob 476 * 477 * Allocate the cred blob for all the modules 478 */ 479 static void __init lsm_early_cred(struct cred *cred) 480 { 481 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 482 483 if (rc) 484 panic("%s: Early cred alloc failed.\n", __func__); 485 } 486 487 /** 488 * lsm_file_alloc - allocate a composite file blob 489 * @file: the file that needs a blob 490 * 491 * Allocate the file blob for all the modules 492 * 493 * Returns 0, or -ENOMEM if memory can't be allocated. 494 */ 495 static int lsm_file_alloc(struct file *file) 496 { 497 if (!lsm_file_cache) { 498 file->f_security = NULL; 499 return 0; 500 } 501 502 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 503 if (file->f_security == NULL) 504 return -ENOMEM; 505 return 0; 506 } 507 508 /** 509 * lsm_inode_alloc - allocate a composite inode blob 510 * @inode: the inode that needs a blob 511 * 512 * Allocate the inode blob for all the modules 513 * 514 * Returns 0, or -ENOMEM if memory can't be allocated. 515 */ 516 int lsm_inode_alloc(struct inode *inode) 517 { 518 if (!lsm_inode_cache) { 519 inode->i_security = NULL; 520 return 0; 521 } 522 523 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 524 if (inode->i_security == NULL) 525 return -ENOMEM; 526 return 0; 527 } 528 529 /** 530 * lsm_task_alloc - allocate a composite task blob 531 * @task: the task that needs a blob 532 * 533 * Allocate the task blob for all the modules 534 * 535 * Returns 0, or -ENOMEM if memory can't be allocated. 536 */ 537 static int lsm_task_alloc(struct task_struct *task) 538 { 539 if (blob_sizes.lbs_task == 0) { 540 task->security = NULL; 541 return 0; 542 } 543 544 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 545 if (task->security == NULL) 546 return -ENOMEM; 547 return 0; 548 } 549 550 /** 551 * lsm_ipc_alloc - allocate a composite ipc blob 552 * @kip: the ipc that needs a blob 553 * 554 * Allocate the ipc blob for all the modules 555 * 556 * Returns 0, or -ENOMEM if memory can't be allocated. 557 */ 558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 559 { 560 if (blob_sizes.lbs_ipc == 0) { 561 kip->security = NULL; 562 return 0; 563 } 564 565 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 566 if (kip->security == NULL) 567 return -ENOMEM; 568 return 0; 569 } 570 571 /** 572 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 573 * @mp: the msg_msg that needs a blob 574 * 575 * Allocate the ipc blob for all the modules 576 * 577 * Returns 0, or -ENOMEM if memory can't be allocated. 578 */ 579 static int lsm_msg_msg_alloc(struct msg_msg *mp) 580 { 581 if (blob_sizes.lbs_msg_msg == 0) { 582 mp->security = NULL; 583 return 0; 584 } 585 586 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 587 if (mp->security == NULL) 588 return -ENOMEM; 589 return 0; 590 } 591 592 /** 593 * lsm_early_task - during initialization allocate a composite task blob 594 * @task: the task that needs a blob 595 * 596 * Allocate the task blob for all the modules 597 */ 598 static void __init lsm_early_task(struct task_struct *task) 599 { 600 int rc = lsm_task_alloc(task); 601 602 if (rc) 603 panic("%s: Early task alloc failed.\n", __func__); 604 } 605 606 /* 607 * Hook list operation macros. 608 * 609 * call_void_hook: 610 * This is a hook that does not return a value. 611 * 612 * call_int_hook: 613 * This is a hook that returns a value. 614 */ 615 616 #define call_void_hook(FUNC, ...) \ 617 do { \ 618 struct security_hook_list *P; \ 619 \ 620 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 621 P->hook.FUNC(__VA_ARGS__); \ 622 } while (0) 623 624 #define call_int_hook(FUNC, IRC, ...) ({ \ 625 int RC = IRC; \ 626 do { \ 627 struct security_hook_list *P; \ 628 \ 629 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 630 RC = P->hook.FUNC(__VA_ARGS__); \ 631 if (RC != 0) \ 632 break; \ 633 } \ 634 } while (0); \ 635 RC; \ 636 }) 637 638 /* Security operations */ 639 640 int security_binder_set_context_mgr(struct task_struct *mgr) 641 { 642 return call_int_hook(binder_set_context_mgr, 0, mgr); 643 } 644 645 int security_binder_transaction(struct task_struct *from, 646 struct task_struct *to) 647 { 648 return call_int_hook(binder_transaction, 0, from, to); 649 } 650 651 int security_binder_transfer_binder(struct task_struct *from, 652 struct task_struct *to) 653 { 654 return call_int_hook(binder_transfer_binder, 0, from, to); 655 } 656 657 int security_binder_transfer_file(struct task_struct *from, 658 struct task_struct *to, struct file *file) 659 { 660 return call_int_hook(binder_transfer_file, 0, from, to, file); 661 } 662 663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 664 { 665 return call_int_hook(ptrace_access_check, 0, child, mode); 666 } 667 668 int security_ptrace_traceme(struct task_struct *parent) 669 { 670 return call_int_hook(ptrace_traceme, 0, parent); 671 } 672 673 int security_capget(struct task_struct *target, 674 kernel_cap_t *effective, 675 kernel_cap_t *inheritable, 676 kernel_cap_t *permitted) 677 { 678 return call_int_hook(capget, 0, target, 679 effective, inheritable, permitted); 680 } 681 682 int security_capset(struct cred *new, const struct cred *old, 683 const kernel_cap_t *effective, 684 const kernel_cap_t *inheritable, 685 const kernel_cap_t *permitted) 686 { 687 return call_int_hook(capset, 0, new, old, 688 effective, inheritable, permitted); 689 } 690 691 int security_capable(const struct cred *cred, 692 struct user_namespace *ns, 693 int cap, 694 unsigned int opts) 695 { 696 return call_int_hook(capable, 0, cred, ns, cap, opts); 697 } 698 699 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 700 { 701 return call_int_hook(quotactl, 0, cmds, type, id, sb); 702 } 703 704 int security_quota_on(struct dentry *dentry) 705 { 706 return call_int_hook(quota_on, 0, dentry); 707 } 708 709 int security_syslog(int type) 710 { 711 return call_int_hook(syslog, 0, type); 712 } 713 714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 715 { 716 return call_int_hook(settime, 0, ts, tz); 717 } 718 719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 720 { 721 struct security_hook_list *hp; 722 int cap_sys_admin = 1; 723 int rc; 724 725 /* 726 * The module will respond with a positive value if 727 * it thinks the __vm_enough_memory() call should be 728 * made with the cap_sys_admin set. If all of the modules 729 * agree that it should be set it will. If any module 730 * thinks it should not be set it won't. 731 */ 732 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 733 rc = hp->hook.vm_enough_memory(mm, pages); 734 if (rc <= 0) { 735 cap_sys_admin = 0; 736 break; 737 } 738 } 739 return __vm_enough_memory(mm, pages, cap_sys_admin); 740 } 741 742 int security_bprm_set_creds(struct linux_binprm *bprm) 743 { 744 return call_int_hook(bprm_set_creds, 0, bprm); 745 } 746 747 int security_bprm_check(struct linux_binprm *bprm) 748 { 749 int ret; 750 751 ret = call_int_hook(bprm_check_security, 0, bprm); 752 if (ret) 753 return ret; 754 return ima_bprm_check(bprm); 755 } 756 757 void security_bprm_committing_creds(struct linux_binprm *bprm) 758 { 759 call_void_hook(bprm_committing_creds, bprm); 760 } 761 762 void security_bprm_committed_creds(struct linux_binprm *bprm) 763 { 764 call_void_hook(bprm_committed_creds, bprm); 765 } 766 767 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 768 { 769 return call_int_hook(fs_context_dup, 0, fc, src_fc); 770 } 771 772 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 773 { 774 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 775 } 776 777 int security_sb_alloc(struct super_block *sb) 778 { 779 return call_int_hook(sb_alloc_security, 0, sb); 780 } 781 782 void security_sb_free(struct super_block *sb) 783 { 784 call_void_hook(sb_free_security, sb); 785 } 786 787 void security_free_mnt_opts(void **mnt_opts) 788 { 789 if (!*mnt_opts) 790 return; 791 call_void_hook(sb_free_mnt_opts, *mnt_opts); 792 *mnt_opts = NULL; 793 } 794 EXPORT_SYMBOL(security_free_mnt_opts); 795 796 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 797 { 798 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 799 } 800 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 801 802 int security_sb_remount(struct super_block *sb, 803 void *mnt_opts) 804 { 805 return call_int_hook(sb_remount, 0, sb, mnt_opts); 806 } 807 EXPORT_SYMBOL(security_sb_remount); 808 809 int security_sb_kern_mount(struct super_block *sb) 810 { 811 return call_int_hook(sb_kern_mount, 0, sb); 812 } 813 814 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 815 { 816 return call_int_hook(sb_show_options, 0, m, sb); 817 } 818 819 int security_sb_statfs(struct dentry *dentry) 820 { 821 return call_int_hook(sb_statfs, 0, dentry); 822 } 823 824 int security_sb_mount(const char *dev_name, const struct path *path, 825 const char *type, unsigned long flags, void *data) 826 { 827 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 828 } 829 830 int security_sb_umount(struct vfsmount *mnt, int flags) 831 { 832 return call_int_hook(sb_umount, 0, mnt, flags); 833 } 834 835 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 836 { 837 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 838 } 839 840 int security_sb_set_mnt_opts(struct super_block *sb, 841 void *mnt_opts, 842 unsigned long kern_flags, 843 unsigned long *set_kern_flags) 844 { 845 return call_int_hook(sb_set_mnt_opts, 846 mnt_opts ? -EOPNOTSUPP : 0, sb, 847 mnt_opts, kern_flags, set_kern_flags); 848 } 849 EXPORT_SYMBOL(security_sb_set_mnt_opts); 850 851 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 852 struct super_block *newsb, 853 unsigned long kern_flags, 854 unsigned long *set_kern_flags) 855 { 856 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 857 kern_flags, set_kern_flags); 858 } 859 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 860 861 int security_add_mnt_opt(const char *option, const char *val, int len, 862 void **mnt_opts) 863 { 864 return call_int_hook(sb_add_mnt_opt, -EINVAL, 865 option, val, len, mnt_opts); 866 } 867 EXPORT_SYMBOL(security_add_mnt_opt); 868 869 int security_move_mount(const struct path *from_path, const struct path *to_path) 870 { 871 return call_int_hook(move_mount, 0, from_path, to_path); 872 } 873 874 int security_inode_alloc(struct inode *inode) 875 { 876 int rc = lsm_inode_alloc(inode); 877 878 if (unlikely(rc)) 879 return rc; 880 rc = call_int_hook(inode_alloc_security, 0, inode); 881 if (unlikely(rc)) 882 security_inode_free(inode); 883 return rc; 884 } 885 886 static void inode_free_by_rcu(struct rcu_head *head) 887 { 888 /* 889 * The rcu head is at the start of the inode blob 890 */ 891 kmem_cache_free(lsm_inode_cache, head); 892 } 893 894 void security_inode_free(struct inode *inode) 895 { 896 integrity_inode_free(inode); 897 call_void_hook(inode_free_security, inode); 898 /* 899 * The inode may still be referenced in a path walk and 900 * a call to security_inode_permission() can be made 901 * after inode_free_security() is called. Ideally, the VFS 902 * wouldn't do this, but fixing that is a much harder 903 * job. For now, simply free the i_security via RCU, and 904 * leave the current inode->i_security pointer intact. 905 * The inode will be freed after the RCU grace period too. 906 */ 907 if (inode->i_security) 908 call_rcu((struct rcu_head *)inode->i_security, 909 inode_free_by_rcu); 910 } 911 912 int security_dentry_init_security(struct dentry *dentry, int mode, 913 const struct qstr *name, void **ctx, 914 u32 *ctxlen) 915 { 916 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 917 name, ctx, ctxlen); 918 } 919 EXPORT_SYMBOL(security_dentry_init_security); 920 921 int security_dentry_create_files_as(struct dentry *dentry, int mode, 922 struct qstr *name, 923 const struct cred *old, struct cred *new) 924 { 925 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 926 name, old, new); 927 } 928 EXPORT_SYMBOL(security_dentry_create_files_as); 929 930 int security_inode_init_security(struct inode *inode, struct inode *dir, 931 const struct qstr *qstr, 932 const initxattrs initxattrs, void *fs_data) 933 { 934 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 935 struct xattr *lsm_xattr, *evm_xattr, *xattr; 936 int ret; 937 938 if (unlikely(IS_PRIVATE(inode))) 939 return 0; 940 941 if (!initxattrs) 942 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 943 dir, qstr, NULL, NULL, NULL); 944 memset(new_xattrs, 0, sizeof(new_xattrs)); 945 lsm_xattr = new_xattrs; 946 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 947 &lsm_xattr->name, 948 &lsm_xattr->value, 949 &lsm_xattr->value_len); 950 if (ret) 951 goto out; 952 953 evm_xattr = lsm_xattr + 1; 954 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 955 if (ret) 956 goto out; 957 ret = initxattrs(inode, new_xattrs, fs_data); 958 out: 959 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 960 kfree(xattr->value); 961 return (ret == -EOPNOTSUPP) ? 0 : ret; 962 } 963 EXPORT_SYMBOL(security_inode_init_security); 964 965 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 966 const struct qstr *qstr, const char **name, 967 void **value, size_t *len) 968 { 969 if (unlikely(IS_PRIVATE(inode))) 970 return -EOPNOTSUPP; 971 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 972 qstr, name, value, len); 973 } 974 EXPORT_SYMBOL(security_old_inode_init_security); 975 976 #ifdef CONFIG_SECURITY_PATH 977 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 978 unsigned int dev) 979 { 980 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 981 return 0; 982 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 983 } 984 EXPORT_SYMBOL(security_path_mknod); 985 986 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 987 { 988 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 989 return 0; 990 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 991 } 992 EXPORT_SYMBOL(security_path_mkdir); 993 994 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 995 { 996 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 997 return 0; 998 return call_int_hook(path_rmdir, 0, dir, dentry); 999 } 1000 1001 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1002 { 1003 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1004 return 0; 1005 return call_int_hook(path_unlink, 0, dir, dentry); 1006 } 1007 EXPORT_SYMBOL(security_path_unlink); 1008 1009 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1010 const char *old_name) 1011 { 1012 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1013 return 0; 1014 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1015 } 1016 1017 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1018 struct dentry *new_dentry) 1019 { 1020 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1021 return 0; 1022 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1023 } 1024 1025 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1026 const struct path *new_dir, struct dentry *new_dentry, 1027 unsigned int flags) 1028 { 1029 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1030 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1031 return 0; 1032 1033 if (flags & RENAME_EXCHANGE) { 1034 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1035 old_dir, old_dentry); 1036 if (err) 1037 return err; 1038 } 1039 1040 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1041 new_dentry); 1042 } 1043 EXPORT_SYMBOL(security_path_rename); 1044 1045 int security_path_truncate(const struct path *path) 1046 { 1047 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1048 return 0; 1049 return call_int_hook(path_truncate, 0, path); 1050 } 1051 1052 int security_path_chmod(const struct path *path, umode_t mode) 1053 { 1054 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1055 return 0; 1056 return call_int_hook(path_chmod, 0, path, mode); 1057 } 1058 1059 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1060 { 1061 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1062 return 0; 1063 return call_int_hook(path_chown, 0, path, uid, gid); 1064 } 1065 1066 int security_path_chroot(const struct path *path) 1067 { 1068 return call_int_hook(path_chroot, 0, path); 1069 } 1070 #endif 1071 1072 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1073 { 1074 if (unlikely(IS_PRIVATE(dir))) 1075 return 0; 1076 return call_int_hook(inode_create, 0, dir, dentry, mode); 1077 } 1078 EXPORT_SYMBOL_GPL(security_inode_create); 1079 1080 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1081 struct dentry *new_dentry) 1082 { 1083 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1084 return 0; 1085 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1086 } 1087 1088 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1089 { 1090 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1091 return 0; 1092 return call_int_hook(inode_unlink, 0, dir, dentry); 1093 } 1094 1095 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1096 const char *old_name) 1097 { 1098 if (unlikely(IS_PRIVATE(dir))) 1099 return 0; 1100 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1101 } 1102 1103 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1104 { 1105 if (unlikely(IS_PRIVATE(dir))) 1106 return 0; 1107 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1108 } 1109 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1110 1111 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1112 { 1113 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1114 return 0; 1115 return call_int_hook(inode_rmdir, 0, dir, dentry); 1116 } 1117 1118 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1119 { 1120 if (unlikely(IS_PRIVATE(dir))) 1121 return 0; 1122 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1123 } 1124 1125 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1126 struct inode *new_dir, struct dentry *new_dentry, 1127 unsigned int flags) 1128 { 1129 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1130 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1131 return 0; 1132 1133 if (flags & RENAME_EXCHANGE) { 1134 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1135 old_dir, old_dentry); 1136 if (err) 1137 return err; 1138 } 1139 1140 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1141 new_dir, new_dentry); 1142 } 1143 1144 int security_inode_readlink(struct dentry *dentry) 1145 { 1146 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1147 return 0; 1148 return call_int_hook(inode_readlink, 0, dentry); 1149 } 1150 1151 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1152 bool rcu) 1153 { 1154 if (unlikely(IS_PRIVATE(inode))) 1155 return 0; 1156 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1157 } 1158 1159 int security_inode_permission(struct inode *inode, int mask) 1160 { 1161 if (unlikely(IS_PRIVATE(inode))) 1162 return 0; 1163 return call_int_hook(inode_permission, 0, inode, mask); 1164 } 1165 1166 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1167 { 1168 int ret; 1169 1170 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1171 return 0; 1172 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1173 if (ret) 1174 return ret; 1175 return evm_inode_setattr(dentry, attr); 1176 } 1177 EXPORT_SYMBOL_GPL(security_inode_setattr); 1178 1179 int security_inode_getattr(const struct path *path) 1180 { 1181 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1182 return 0; 1183 return call_int_hook(inode_getattr, 0, path); 1184 } 1185 1186 int security_inode_setxattr(struct dentry *dentry, const char *name, 1187 const void *value, size_t size, int flags) 1188 { 1189 int ret; 1190 1191 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1192 return 0; 1193 /* 1194 * SELinux and Smack integrate the cap call, 1195 * so assume that all LSMs supplying this call do so. 1196 */ 1197 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1198 flags); 1199 1200 if (ret == 1) 1201 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1202 if (ret) 1203 return ret; 1204 ret = ima_inode_setxattr(dentry, name, value, size); 1205 if (ret) 1206 return ret; 1207 return evm_inode_setxattr(dentry, name, value, size); 1208 } 1209 1210 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1211 const void *value, size_t size, int flags) 1212 { 1213 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1214 return; 1215 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1216 evm_inode_post_setxattr(dentry, name, value, size); 1217 } 1218 1219 int security_inode_getxattr(struct dentry *dentry, const char *name) 1220 { 1221 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1222 return 0; 1223 return call_int_hook(inode_getxattr, 0, dentry, name); 1224 } 1225 1226 int security_inode_listxattr(struct dentry *dentry) 1227 { 1228 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1229 return 0; 1230 return call_int_hook(inode_listxattr, 0, dentry); 1231 } 1232 1233 int security_inode_removexattr(struct dentry *dentry, const char *name) 1234 { 1235 int ret; 1236 1237 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1238 return 0; 1239 /* 1240 * SELinux and Smack integrate the cap call, 1241 * so assume that all LSMs supplying this call do so. 1242 */ 1243 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1244 if (ret == 1) 1245 ret = cap_inode_removexattr(dentry, name); 1246 if (ret) 1247 return ret; 1248 ret = ima_inode_removexattr(dentry, name); 1249 if (ret) 1250 return ret; 1251 return evm_inode_removexattr(dentry, name); 1252 } 1253 1254 int security_inode_need_killpriv(struct dentry *dentry) 1255 { 1256 return call_int_hook(inode_need_killpriv, 0, dentry); 1257 } 1258 1259 int security_inode_killpriv(struct dentry *dentry) 1260 { 1261 return call_int_hook(inode_killpriv, 0, dentry); 1262 } 1263 1264 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1265 { 1266 struct security_hook_list *hp; 1267 int rc; 1268 1269 if (unlikely(IS_PRIVATE(inode))) 1270 return -EOPNOTSUPP; 1271 /* 1272 * Only one module will provide an attribute with a given name. 1273 */ 1274 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1275 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1276 if (rc != -EOPNOTSUPP) 1277 return rc; 1278 } 1279 return -EOPNOTSUPP; 1280 } 1281 1282 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1283 { 1284 struct security_hook_list *hp; 1285 int rc; 1286 1287 if (unlikely(IS_PRIVATE(inode))) 1288 return -EOPNOTSUPP; 1289 /* 1290 * Only one module will provide an attribute with a given name. 1291 */ 1292 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1293 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1294 flags); 1295 if (rc != -EOPNOTSUPP) 1296 return rc; 1297 } 1298 return -EOPNOTSUPP; 1299 } 1300 1301 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1302 { 1303 if (unlikely(IS_PRIVATE(inode))) 1304 return 0; 1305 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1306 } 1307 EXPORT_SYMBOL(security_inode_listsecurity); 1308 1309 void security_inode_getsecid(struct inode *inode, u32 *secid) 1310 { 1311 call_void_hook(inode_getsecid, inode, secid); 1312 } 1313 1314 int security_inode_copy_up(struct dentry *src, struct cred **new) 1315 { 1316 return call_int_hook(inode_copy_up, 0, src, new); 1317 } 1318 EXPORT_SYMBOL(security_inode_copy_up); 1319 1320 int security_inode_copy_up_xattr(const char *name) 1321 { 1322 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1323 } 1324 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1325 1326 int security_file_permission(struct file *file, int mask) 1327 { 1328 int ret; 1329 1330 ret = call_int_hook(file_permission, 0, file, mask); 1331 if (ret) 1332 return ret; 1333 1334 return fsnotify_perm(file, mask); 1335 } 1336 1337 int security_file_alloc(struct file *file) 1338 { 1339 int rc = lsm_file_alloc(file); 1340 1341 if (rc) 1342 return rc; 1343 rc = call_int_hook(file_alloc_security, 0, file); 1344 if (unlikely(rc)) 1345 security_file_free(file); 1346 return rc; 1347 } 1348 1349 void security_file_free(struct file *file) 1350 { 1351 void *blob; 1352 1353 call_void_hook(file_free_security, file); 1354 1355 blob = file->f_security; 1356 if (blob) { 1357 file->f_security = NULL; 1358 kmem_cache_free(lsm_file_cache, blob); 1359 } 1360 } 1361 1362 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1363 { 1364 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1365 } 1366 1367 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1368 { 1369 /* 1370 * Does we have PROT_READ and does the application expect 1371 * it to imply PROT_EXEC? If not, nothing to talk about... 1372 */ 1373 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1374 return prot; 1375 if (!(current->personality & READ_IMPLIES_EXEC)) 1376 return prot; 1377 /* 1378 * if that's an anonymous mapping, let it. 1379 */ 1380 if (!file) 1381 return prot | PROT_EXEC; 1382 /* 1383 * ditto if it's not on noexec mount, except that on !MMU we need 1384 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1385 */ 1386 if (!path_noexec(&file->f_path)) { 1387 #ifndef CONFIG_MMU 1388 if (file->f_op->mmap_capabilities) { 1389 unsigned caps = file->f_op->mmap_capabilities(file); 1390 if (!(caps & NOMMU_MAP_EXEC)) 1391 return prot; 1392 } 1393 #endif 1394 return prot | PROT_EXEC; 1395 } 1396 /* anything on noexec mount won't get PROT_EXEC */ 1397 return prot; 1398 } 1399 1400 int security_mmap_file(struct file *file, unsigned long prot, 1401 unsigned long flags) 1402 { 1403 int ret; 1404 ret = call_int_hook(mmap_file, 0, file, prot, 1405 mmap_prot(file, prot), flags); 1406 if (ret) 1407 return ret; 1408 return ima_file_mmap(file, prot); 1409 } 1410 1411 int security_mmap_addr(unsigned long addr) 1412 { 1413 return call_int_hook(mmap_addr, 0, addr); 1414 } 1415 1416 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1417 unsigned long prot) 1418 { 1419 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1420 } 1421 1422 int security_file_lock(struct file *file, unsigned int cmd) 1423 { 1424 return call_int_hook(file_lock, 0, file, cmd); 1425 } 1426 1427 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1428 { 1429 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1430 } 1431 1432 void security_file_set_fowner(struct file *file) 1433 { 1434 call_void_hook(file_set_fowner, file); 1435 } 1436 1437 int security_file_send_sigiotask(struct task_struct *tsk, 1438 struct fown_struct *fown, int sig) 1439 { 1440 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1441 } 1442 1443 int security_file_receive(struct file *file) 1444 { 1445 return call_int_hook(file_receive, 0, file); 1446 } 1447 1448 int security_file_open(struct file *file) 1449 { 1450 int ret; 1451 1452 ret = call_int_hook(file_open, 0, file); 1453 if (ret) 1454 return ret; 1455 1456 return fsnotify_perm(file, MAY_OPEN); 1457 } 1458 1459 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1460 { 1461 int rc = lsm_task_alloc(task); 1462 1463 if (rc) 1464 return rc; 1465 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1466 if (unlikely(rc)) 1467 security_task_free(task); 1468 return rc; 1469 } 1470 1471 void security_task_free(struct task_struct *task) 1472 { 1473 call_void_hook(task_free, task); 1474 1475 kfree(task->security); 1476 task->security = NULL; 1477 } 1478 1479 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1480 { 1481 int rc = lsm_cred_alloc(cred, gfp); 1482 1483 if (rc) 1484 return rc; 1485 1486 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1487 if (unlikely(rc)) 1488 security_cred_free(cred); 1489 return rc; 1490 } 1491 1492 void security_cred_free(struct cred *cred) 1493 { 1494 /* 1495 * There is a failure case in prepare_creds() that 1496 * may result in a call here with ->security being NULL. 1497 */ 1498 if (unlikely(cred->security == NULL)) 1499 return; 1500 1501 call_void_hook(cred_free, cred); 1502 1503 kfree(cred->security); 1504 cred->security = NULL; 1505 } 1506 1507 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1508 { 1509 int rc = lsm_cred_alloc(new, gfp); 1510 1511 if (rc) 1512 return rc; 1513 1514 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1515 if (unlikely(rc)) 1516 security_cred_free(new); 1517 return rc; 1518 } 1519 1520 void security_transfer_creds(struct cred *new, const struct cred *old) 1521 { 1522 call_void_hook(cred_transfer, new, old); 1523 } 1524 1525 void security_cred_getsecid(const struct cred *c, u32 *secid) 1526 { 1527 *secid = 0; 1528 call_void_hook(cred_getsecid, c, secid); 1529 } 1530 EXPORT_SYMBOL(security_cred_getsecid); 1531 1532 int security_kernel_act_as(struct cred *new, u32 secid) 1533 { 1534 return call_int_hook(kernel_act_as, 0, new, secid); 1535 } 1536 1537 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1538 { 1539 return call_int_hook(kernel_create_files_as, 0, new, inode); 1540 } 1541 1542 int security_kernel_module_request(char *kmod_name) 1543 { 1544 int ret; 1545 1546 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1547 if (ret) 1548 return ret; 1549 return integrity_kernel_module_request(kmod_name); 1550 } 1551 1552 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1553 { 1554 int ret; 1555 1556 ret = call_int_hook(kernel_read_file, 0, file, id); 1557 if (ret) 1558 return ret; 1559 return ima_read_file(file, id); 1560 } 1561 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1562 1563 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1564 enum kernel_read_file_id id) 1565 { 1566 int ret; 1567 1568 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1569 if (ret) 1570 return ret; 1571 return ima_post_read_file(file, buf, size, id); 1572 } 1573 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1574 1575 int security_kernel_load_data(enum kernel_load_data_id id) 1576 { 1577 int ret; 1578 1579 ret = call_int_hook(kernel_load_data, 0, id); 1580 if (ret) 1581 return ret; 1582 return ima_load_data(id); 1583 } 1584 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1585 1586 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1587 int flags) 1588 { 1589 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1590 } 1591 1592 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1593 { 1594 return call_int_hook(task_setpgid, 0, p, pgid); 1595 } 1596 1597 int security_task_getpgid(struct task_struct *p) 1598 { 1599 return call_int_hook(task_getpgid, 0, p); 1600 } 1601 1602 int security_task_getsid(struct task_struct *p) 1603 { 1604 return call_int_hook(task_getsid, 0, p); 1605 } 1606 1607 void security_task_getsecid(struct task_struct *p, u32 *secid) 1608 { 1609 *secid = 0; 1610 call_void_hook(task_getsecid, p, secid); 1611 } 1612 EXPORT_SYMBOL(security_task_getsecid); 1613 1614 int security_task_setnice(struct task_struct *p, int nice) 1615 { 1616 return call_int_hook(task_setnice, 0, p, nice); 1617 } 1618 1619 int security_task_setioprio(struct task_struct *p, int ioprio) 1620 { 1621 return call_int_hook(task_setioprio, 0, p, ioprio); 1622 } 1623 1624 int security_task_getioprio(struct task_struct *p) 1625 { 1626 return call_int_hook(task_getioprio, 0, p); 1627 } 1628 1629 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1630 unsigned int flags) 1631 { 1632 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1633 } 1634 1635 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1636 struct rlimit *new_rlim) 1637 { 1638 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1639 } 1640 1641 int security_task_setscheduler(struct task_struct *p) 1642 { 1643 return call_int_hook(task_setscheduler, 0, p); 1644 } 1645 1646 int security_task_getscheduler(struct task_struct *p) 1647 { 1648 return call_int_hook(task_getscheduler, 0, p); 1649 } 1650 1651 int security_task_movememory(struct task_struct *p) 1652 { 1653 return call_int_hook(task_movememory, 0, p); 1654 } 1655 1656 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1657 int sig, const struct cred *cred) 1658 { 1659 return call_int_hook(task_kill, 0, p, info, sig, cred); 1660 } 1661 1662 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1663 unsigned long arg4, unsigned long arg5) 1664 { 1665 int thisrc; 1666 int rc = -ENOSYS; 1667 struct security_hook_list *hp; 1668 1669 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1670 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1671 if (thisrc != -ENOSYS) { 1672 rc = thisrc; 1673 if (thisrc != 0) 1674 break; 1675 } 1676 } 1677 return rc; 1678 } 1679 1680 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1681 { 1682 call_void_hook(task_to_inode, p, inode); 1683 } 1684 1685 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1686 { 1687 return call_int_hook(ipc_permission, 0, ipcp, flag); 1688 } 1689 1690 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1691 { 1692 *secid = 0; 1693 call_void_hook(ipc_getsecid, ipcp, secid); 1694 } 1695 1696 int security_msg_msg_alloc(struct msg_msg *msg) 1697 { 1698 int rc = lsm_msg_msg_alloc(msg); 1699 1700 if (unlikely(rc)) 1701 return rc; 1702 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1703 if (unlikely(rc)) 1704 security_msg_msg_free(msg); 1705 return rc; 1706 } 1707 1708 void security_msg_msg_free(struct msg_msg *msg) 1709 { 1710 call_void_hook(msg_msg_free_security, msg); 1711 kfree(msg->security); 1712 msg->security = NULL; 1713 } 1714 1715 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1716 { 1717 int rc = lsm_ipc_alloc(msq); 1718 1719 if (unlikely(rc)) 1720 return rc; 1721 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1722 if (unlikely(rc)) 1723 security_msg_queue_free(msq); 1724 return rc; 1725 } 1726 1727 void security_msg_queue_free(struct kern_ipc_perm *msq) 1728 { 1729 call_void_hook(msg_queue_free_security, msq); 1730 kfree(msq->security); 1731 msq->security = NULL; 1732 } 1733 1734 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1735 { 1736 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1737 } 1738 1739 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1740 { 1741 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1742 } 1743 1744 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1745 struct msg_msg *msg, int msqflg) 1746 { 1747 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1748 } 1749 1750 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1751 struct task_struct *target, long type, int mode) 1752 { 1753 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1754 } 1755 1756 int security_shm_alloc(struct kern_ipc_perm *shp) 1757 { 1758 int rc = lsm_ipc_alloc(shp); 1759 1760 if (unlikely(rc)) 1761 return rc; 1762 rc = call_int_hook(shm_alloc_security, 0, shp); 1763 if (unlikely(rc)) 1764 security_shm_free(shp); 1765 return rc; 1766 } 1767 1768 void security_shm_free(struct kern_ipc_perm *shp) 1769 { 1770 call_void_hook(shm_free_security, shp); 1771 kfree(shp->security); 1772 shp->security = NULL; 1773 } 1774 1775 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1776 { 1777 return call_int_hook(shm_associate, 0, shp, shmflg); 1778 } 1779 1780 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1781 { 1782 return call_int_hook(shm_shmctl, 0, shp, cmd); 1783 } 1784 1785 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1786 { 1787 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1788 } 1789 1790 int security_sem_alloc(struct kern_ipc_perm *sma) 1791 { 1792 int rc = lsm_ipc_alloc(sma); 1793 1794 if (unlikely(rc)) 1795 return rc; 1796 rc = call_int_hook(sem_alloc_security, 0, sma); 1797 if (unlikely(rc)) 1798 security_sem_free(sma); 1799 return rc; 1800 } 1801 1802 void security_sem_free(struct kern_ipc_perm *sma) 1803 { 1804 call_void_hook(sem_free_security, sma); 1805 kfree(sma->security); 1806 sma->security = NULL; 1807 } 1808 1809 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1810 { 1811 return call_int_hook(sem_associate, 0, sma, semflg); 1812 } 1813 1814 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1815 { 1816 return call_int_hook(sem_semctl, 0, sma, cmd); 1817 } 1818 1819 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1820 unsigned nsops, int alter) 1821 { 1822 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1823 } 1824 1825 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1826 { 1827 if (unlikely(inode && IS_PRIVATE(inode))) 1828 return; 1829 call_void_hook(d_instantiate, dentry, inode); 1830 } 1831 EXPORT_SYMBOL(security_d_instantiate); 1832 1833 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1834 char **value) 1835 { 1836 struct security_hook_list *hp; 1837 1838 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1839 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1840 continue; 1841 return hp->hook.getprocattr(p, name, value); 1842 } 1843 return -EINVAL; 1844 } 1845 1846 int security_setprocattr(const char *lsm, const char *name, void *value, 1847 size_t size) 1848 { 1849 struct security_hook_list *hp; 1850 1851 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1852 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1853 continue; 1854 return hp->hook.setprocattr(name, value, size); 1855 } 1856 return -EINVAL; 1857 } 1858 1859 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1860 { 1861 return call_int_hook(netlink_send, 0, sk, skb); 1862 } 1863 1864 int security_ismaclabel(const char *name) 1865 { 1866 return call_int_hook(ismaclabel, 0, name); 1867 } 1868 EXPORT_SYMBOL(security_ismaclabel); 1869 1870 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1871 { 1872 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1873 seclen); 1874 } 1875 EXPORT_SYMBOL(security_secid_to_secctx); 1876 1877 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1878 { 1879 *secid = 0; 1880 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1881 } 1882 EXPORT_SYMBOL(security_secctx_to_secid); 1883 1884 void security_release_secctx(char *secdata, u32 seclen) 1885 { 1886 call_void_hook(release_secctx, secdata, seclen); 1887 } 1888 EXPORT_SYMBOL(security_release_secctx); 1889 1890 void security_inode_invalidate_secctx(struct inode *inode) 1891 { 1892 call_void_hook(inode_invalidate_secctx, inode); 1893 } 1894 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1895 1896 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1897 { 1898 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1899 } 1900 EXPORT_SYMBOL(security_inode_notifysecctx); 1901 1902 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1903 { 1904 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1905 } 1906 EXPORT_SYMBOL(security_inode_setsecctx); 1907 1908 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1909 { 1910 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1911 } 1912 EXPORT_SYMBOL(security_inode_getsecctx); 1913 1914 #ifdef CONFIG_SECURITY_NETWORK 1915 1916 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1917 { 1918 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1919 } 1920 EXPORT_SYMBOL(security_unix_stream_connect); 1921 1922 int security_unix_may_send(struct socket *sock, struct socket *other) 1923 { 1924 return call_int_hook(unix_may_send, 0, sock, other); 1925 } 1926 EXPORT_SYMBOL(security_unix_may_send); 1927 1928 int security_socket_create(int family, int type, int protocol, int kern) 1929 { 1930 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1931 } 1932 1933 int security_socket_post_create(struct socket *sock, int family, 1934 int type, int protocol, int kern) 1935 { 1936 return call_int_hook(socket_post_create, 0, sock, family, type, 1937 protocol, kern); 1938 } 1939 1940 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1941 { 1942 return call_int_hook(socket_socketpair, 0, socka, sockb); 1943 } 1944 EXPORT_SYMBOL(security_socket_socketpair); 1945 1946 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1947 { 1948 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1949 } 1950 1951 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1952 { 1953 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1954 } 1955 1956 int security_socket_listen(struct socket *sock, int backlog) 1957 { 1958 return call_int_hook(socket_listen, 0, sock, backlog); 1959 } 1960 1961 int security_socket_accept(struct socket *sock, struct socket *newsock) 1962 { 1963 return call_int_hook(socket_accept, 0, sock, newsock); 1964 } 1965 1966 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1967 { 1968 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1969 } 1970 1971 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1972 int size, int flags) 1973 { 1974 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1975 } 1976 1977 int security_socket_getsockname(struct socket *sock) 1978 { 1979 return call_int_hook(socket_getsockname, 0, sock); 1980 } 1981 1982 int security_socket_getpeername(struct socket *sock) 1983 { 1984 return call_int_hook(socket_getpeername, 0, sock); 1985 } 1986 1987 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1988 { 1989 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1990 } 1991 1992 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1993 { 1994 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1995 } 1996 1997 int security_socket_shutdown(struct socket *sock, int how) 1998 { 1999 return call_int_hook(socket_shutdown, 0, sock, how); 2000 } 2001 2002 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2003 { 2004 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2005 } 2006 EXPORT_SYMBOL(security_sock_rcv_skb); 2007 2008 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2009 int __user *optlen, unsigned len) 2010 { 2011 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2012 optval, optlen, len); 2013 } 2014 2015 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2016 { 2017 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2018 skb, secid); 2019 } 2020 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2021 2022 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2023 { 2024 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2025 } 2026 2027 void security_sk_free(struct sock *sk) 2028 { 2029 call_void_hook(sk_free_security, sk); 2030 } 2031 2032 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2033 { 2034 call_void_hook(sk_clone_security, sk, newsk); 2035 } 2036 EXPORT_SYMBOL(security_sk_clone); 2037 2038 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2039 { 2040 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2041 } 2042 EXPORT_SYMBOL(security_sk_classify_flow); 2043 2044 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2045 { 2046 call_void_hook(req_classify_flow, req, fl); 2047 } 2048 EXPORT_SYMBOL(security_req_classify_flow); 2049 2050 void security_sock_graft(struct sock *sk, struct socket *parent) 2051 { 2052 call_void_hook(sock_graft, sk, parent); 2053 } 2054 EXPORT_SYMBOL(security_sock_graft); 2055 2056 int security_inet_conn_request(struct sock *sk, 2057 struct sk_buff *skb, struct request_sock *req) 2058 { 2059 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2060 } 2061 EXPORT_SYMBOL(security_inet_conn_request); 2062 2063 void security_inet_csk_clone(struct sock *newsk, 2064 const struct request_sock *req) 2065 { 2066 call_void_hook(inet_csk_clone, newsk, req); 2067 } 2068 2069 void security_inet_conn_established(struct sock *sk, 2070 struct sk_buff *skb) 2071 { 2072 call_void_hook(inet_conn_established, sk, skb); 2073 } 2074 EXPORT_SYMBOL(security_inet_conn_established); 2075 2076 int security_secmark_relabel_packet(u32 secid) 2077 { 2078 return call_int_hook(secmark_relabel_packet, 0, secid); 2079 } 2080 EXPORT_SYMBOL(security_secmark_relabel_packet); 2081 2082 void security_secmark_refcount_inc(void) 2083 { 2084 call_void_hook(secmark_refcount_inc); 2085 } 2086 EXPORT_SYMBOL(security_secmark_refcount_inc); 2087 2088 void security_secmark_refcount_dec(void) 2089 { 2090 call_void_hook(secmark_refcount_dec); 2091 } 2092 EXPORT_SYMBOL(security_secmark_refcount_dec); 2093 2094 int security_tun_dev_alloc_security(void **security) 2095 { 2096 return call_int_hook(tun_dev_alloc_security, 0, security); 2097 } 2098 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2099 2100 void security_tun_dev_free_security(void *security) 2101 { 2102 call_void_hook(tun_dev_free_security, security); 2103 } 2104 EXPORT_SYMBOL(security_tun_dev_free_security); 2105 2106 int security_tun_dev_create(void) 2107 { 2108 return call_int_hook(tun_dev_create, 0); 2109 } 2110 EXPORT_SYMBOL(security_tun_dev_create); 2111 2112 int security_tun_dev_attach_queue(void *security) 2113 { 2114 return call_int_hook(tun_dev_attach_queue, 0, security); 2115 } 2116 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2117 2118 int security_tun_dev_attach(struct sock *sk, void *security) 2119 { 2120 return call_int_hook(tun_dev_attach, 0, sk, security); 2121 } 2122 EXPORT_SYMBOL(security_tun_dev_attach); 2123 2124 int security_tun_dev_open(void *security) 2125 { 2126 return call_int_hook(tun_dev_open, 0, security); 2127 } 2128 EXPORT_SYMBOL(security_tun_dev_open); 2129 2130 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2131 { 2132 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2133 } 2134 EXPORT_SYMBOL(security_sctp_assoc_request); 2135 2136 int security_sctp_bind_connect(struct sock *sk, int optname, 2137 struct sockaddr *address, int addrlen) 2138 { 2139 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2140 address, addrlen); 2141 } 2142 EXPORT_SYMBOL(security_sctp_bind_connect); 2143 2144 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2145 struct sock *newsk) 2146 { 2147 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2148 } 2149 EXPORT_SYMBOL(security_sctp_sk_clone); 2150 2151 #endif /* CONFIG_SECURITY_NETWORK */ 2152 2153 #ifdef CONFIG_SECURITY_INFINIBAND 2154 2155 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2156 { 2157 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2158 } 2159 EXPORT_SYMBOL(security_ib_pkey_access); 2160 2161 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2162 { 2163 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2164 } 2165 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2166 2167 int security_ib_alloc_security(void **sec) 2168 { 2169 return call_int_hook(ib_alloc_security, 0, sec); 2170 } 2171 EXPORT_SYMBOL(security_ib_alloc_security); 2172 2173 void security_ib_free_security(void *sec) 2174 { 2175 call_void_hook(ib_free_security, sec); 2176 } 2177 EXPORT_SYMBOL(security_ib_free_security); 2178 #endif /* CONFIG_SECURITY_INFINIBAND */ 2179 2180 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2181 2182 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2183 struct xfrm_user_sec_ctx *sec_ctx, 2184 gfp_t gfp) 2185 { 2186 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2187 } 2188 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2189 2190 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2191 struct xfrm_sec_ctx **new_ctxp) 2192 { 2193 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2194 } 2195 2196 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2197 { 2198 call_void_hook(xfrm_policy_free_security, ctx); 2199 } 2200 EXPORT_SYMBOL(security_xfrm_policy_free); 2201 2202 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2203 { 2204 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2205 } 2206 2207 int security_xfrm_state_alloc(struct xfrm_state *x, 2208 struct xfrm_user_sec_ctx *sec_ctx) 2209 { 2210 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2211 } 2212 EXPORT_SYMBOL(security_xfrm_state_alloc); 2213 2214 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2215 struct xfrm_sec_ctx *polsec, u32 secid) 2216 { 2217 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2218 } 2219 2220 int security_xfrm_state_delete(struct xfrm_state *x) 2221 { 2222 return call_int_hook(xfrm_state_delete_security, 0, x); 2223 } 2224 EXPORT_SYMBOL(security_xfrm_state_delete); 2225 2226 void security_xfrm_state_free(struct xfrm_state *x) 2227 { 2228 call_void_hook(xfrm_state_free_security, x); 2229 } 2230 2231 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2232 { 2233 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2234 } 2235 2236 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2237 struct xfrm_policy *xp, 2238 const struct flowi *fl) 2239 { 2240 struct security_hook_list *hp; 2241 int rc = 1; 2242 2243 /* 2244 * Since this function is expected to return 0 or 1, the judgment 2245 * becomes difficult if multiple LSMs supply this call. Fortunately, 2246 * we can use the first LSM's judgment because currently only SELinux 2247 * supplies this call. 2248 * 2249 * For speed optimization, we explicitly break the loop rather than 2250 * using the macro 2251 */ 2252 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2253 list) { 2254 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2255 break; 2256 } 2257 return rc; 2258 } 2259 2260 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2261 { 2262 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2263 } 2264 2265 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2266 { 2267 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2268 0); 2269 2270 BUG_ON(rc); 2271 } 2272 EXPORT_SYMBOL(security_skb_classify_flow); 2273 2274 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2275 2276 #ifdef CONFIG_KEYS 2277 2278 int security_key_alloc(struct key *key, const struct cred *cred, 2279 unsigned long flags) 2280 { 2281 return call_int_hook(key_alloc, 0, key, cred, flags); 2282 } 2283 2284 void security_key_free(struct key *key) 2285 { 2286 call_void_hook(key_free, key); 2287 } 2288 2289 int security_key_permission(key_ref_t key_ref, 2290 const struct cred *cred, unsigned perm) 2291 { 2292 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2293 } 2294 2295 int security_key_getsecurity(struct key *key, char **_buffer) 2296 { 2297 *_buffer = NULL; 2298 return call_int_hook(key_getsecurity, 0, key, _buffer); 2299 } 2300 2301 #endif /* CONFIG_KEYS */ 2302 2303 #ifdef CONFIG_AUDIT 2304 2305 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2306 { 2307 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2308 } 2309 2310 int security_audit_rule_known(struct audit_krule *krule) 2311 { 2312 return call_int_hook(audit_rule_known, 0, krule); 2313 } 2314 2315 void security_audit_rule_free(void *lsmrule) 2316 { 2317 call_void_hook(audit_rule_free, lsmrule); 2318 } 2319 2320 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2321 { 2322 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2323 } 2324 #endif /* CONFIG_AUDIT */ 2325 2326 #ifdef CONFIG_BPF_SYSCALL 2327 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2328 { 2329 return call_int_hook(bpf, 0, cmd, attr, size); 2330 } 2331 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2332 { 2333 return call_int_hook(bpf_map, 0, map, fmode); 2334 } 2335 int security_bpf_prog(struct bpf_prog *prog) 2336 { 2337 return call_int_hook(bpf_prog, 0, prog); 2338 } 2339 int security_bpf_map_alloc(struct bpf_map *map) 2340 { 2341 return call_int_hook(bpf_map_alloc_security, 0, map); 2342 } 2343 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2344 { 2345 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2346 } 2347 void security_bpf_map_free(struct bpf_map *map) 2348 { 2349 call_void_hook(bpf_map_free_security, map); 2350 } 2351 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2352 { 2353 call_void_hook(bpf_prog_free_security, aux); 2354 } 2355 #endif /* CONFIG_BPF_SYSCALL */ 2356