xref: /openbmc/linux/security/security.c (revision ecff3057)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 	[LOCKDOWN_KCORE] = "/proc/kcore access",
64 	[LOCKDOWN_KPROBES] = "use of kprobes",
65 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 	[LOCKDOWN_PERF] = "unsafe use of perf",
67 	[LOCKDOWN_TRACEFS] = "use of tracefs",
68 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
69 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72 
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75 
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78 
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81 
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85 
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87 
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91 
92 static __initdata bool debug;
93 #define init_debug(...)						\
94 	do {							\
95 		if (debug)					\
96 			pr_info(__VA_ARGS__);			\
97 	} while (0)
98 
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101 	if (!lsm->enabled)
102 		return false;
103 
104 	return *lsm->enabled;
105 }
106 
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112 	/*
113 	 * When an LSM hasn't configured an enable variable, we can use
114 	 * a hard-coded location for storing the default enabled state.
115 	 */
116 	if (!lsm->enabled) {
117 		if (enabled)
118 			lsm->enabled = &lsm_enabled_true;
119 		else
120 			lsm->enabled = &lsm_enabled_false;
121 	} else if (lsm->enabled == &lsm_enabled_true) {
122 		if (!enabled)
123 			lsm->enabled = &lsm_enabled_false;
124 	} else if (lsm->enabled == &lsm_enabled_false) {
125 		if (enabled)
126 			lsm->enabled = &lsm_enabled_true;
127 	} else {
128 		*lsm->enabled = enabled;
129 	}
130 }
131 
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135 	struct lsm_info **check;
136 
137 	for (check = ordered_lsms; *check; check++)
138 		if (*check == lsm)
139 			return true;
140 
141 	return false;
142 }
143 
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148 	/* Ignore duplicate selections. */
149 	if (exists_ordered_lsm(lsm))
150 		return;
151 
152 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 		return;
154 
155 	/* Enable this LSM, if it is not already set. */
156 	if (!lsm->enabled)
157 		lsm->enabled = &lsm_enabled_true;
158 	ordered_lsms[last_lsm++] = lsm;
159 
160 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 		   is_enabled(lsm) ? "en" : "dis");
162 }
163 
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167 	/* Skip if the LSM is disabled. */
168 	if (!is_enabled(lsm))
169 		return false;
170 
171 	/* Not allowed if another exclusive LSM already initialized. */
172 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 		init_debug("exclusive disabled: %s\n", lsm->name);
174 		return false;
175 	}
176 
177 	return true;
178 }
179 
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182 	int offset;
183 
184 	if (*need > 0) {
185 		offset = *lbs;
186 		*lbs += *need;
187 		*need = offset;
188 	}
189 }
190 
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193 	if (!needed)
194 		return;
195 
196 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 	/*
199 	 * The inode blob gets an rcu_head in addition to
200 	 * what the modules might need.
201 	 */
202 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210 
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 	int enabled = lsm_allowed(lsm);
215 
216 	/* Record enablement (to handle any following exclusive LSMs). */
217 	set_enabled(lsm, enabled);
218 
219 	/* If enabled, do pre-initialization work. */
220 	if (enabled) {
221 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 			exclusive = lsm;
223 			init_debug("exclusive chosen: %s\n", lsm->name);
224 		}
225 
226 		lsm_set_blob_sizes(lsm->blobs);
227 	}
228 }
229 
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 	if (is_enabled(lsm)) {
234 		int ret;
235 
236 		init_debug("initializing %s\n", lsm->name);
237 		ret = lsm->init();
238 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 	}
240 }
241 
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 	struct lsm_info *lsm;
246 	char *sep, *name, *next;
247 
248 	/* LSM_ORDER_FIRST is always first. */
249 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 		if (lsm->order == LSM_ORDER_FIRST)
251 			append_ordered_lsm(lsm, "first");
252 	}
253 
254 	/* Process "security=", if given. */
255 	if (chosen_major_lsm) {
256 		struct lsm_info *major;
257 
258 		/*
259 		 * To match the original "security=" behavior, this
260 		 * explicitly does NOT fallback to another Legacy Major
261 		 * if the selected one was separately disabled: disable
262 		 * all non-matching Legacy Major LSMs.
263 		 */
264 		for (major = __start_lsm_info; major < __end_lsm_info;
265 		     major++) {
266 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 			    strcmp(major->name, chosen_major_lsm) != 0) {
268 				set_enabled(major, false);
269 				init_debug("security=%s disabled: %s\n",
270 					   chosen_major_lsm, major->name);
271 			}
272 		}
273 	}
274 
275 	sep = kstrdup(order, GFP_KERNEL);
276 	next = sep;
277 	/* Walk the list, looking for matching LSMs. */
278 	while ((name = strsep(&next, ",")) != NULL) {
279 		bool found = false;
280 
281 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 			if (lsm->order == LSM_ORDER_MUTABLE &&
283 			    strcmp(lsm->name, name) == 0) {
284 				append_ordered_lsm(lsm, origin);
285 				found = true;
286 			}
287 		}
288 
289 		if (!found)
290 			init_debug("%s ignored: %s\n", origin, name);
291 	}
292 
293 	/* Process "security=", if given. */
294 	if (chosen_major_lsm) {
295 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 			if (exists_ordered_lsm(lsm))
297 				continue;
298 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 				append_ordered_lsm(lsm, "security=");
300 		}
301 	}
302 
303 	/* Disable all LSMs not in the ordered list. */
304 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 		if (exists_ordered_lsm(lsm))
306 			continue;
307 		set_enabled(lsm, false);
308 		init_debug("%s disabled: %s\n", origin, lsm->name);
309 	}
310 
311 	kfree(sep);
312 }
313 
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316 
317 static int lsm_append(const char *new, char **result);
318 
319 static void __init ordered_lsm_init(void)
320 {
321 	struct lsm_info **lsm;
322 
323 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 				GFP_KERNEL);
325 
326 	if (chosen_lsm_order) {
327 		if (chosen_major_lsm) {
328 			pr_info("security= is ignored because it is superseded by lsm=\n");
329 			chosen_major_lsm = NULL;
330 		}
331 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 	} else
333 		ordered_lsm_parse(builtin_lsm_order, "builtin");
334 
335 	for (lsm = ordered_lsms; *lsm; lsm++)
336 		prepare_lsm(*lsm);
337 
338 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345 
346 	/*
347 	 * Create any kmem_caches needed for blobs
348 	 */
349 	if (blob_sizes.lbs_file)
350 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 						   blob_sizes.lbs_file, 0,
352 						   SLAB_PANIC, NULL);
353 	if (blob_sizes.lbs_inode)
354 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 						    blob_sizes.lbs_inode, 0,
356 						    SLAB_PANIC, NULL);
357 
358 	lsm_early_cred((struct cred *) current->cred);
359 	lsm_early_task(current);
360 	for (lsm = ordered_lsms; *lsm; lsm++)
361 		initialize_lsm(*lsm);
362 
363 	kfree(ordered_lsms);
364 }
365 
366 int __init early_security_init(void)
367 {
368 	int i;
369 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370 	struct lsm_info *lsm;
371 
372 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373 	     i++)
374 		INIT_HLIST_HEAD(&list[i]);
375 
376 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377 		if (!lsm->enabled)
378 			lsm->enabled = &lsm_enabled_true;
379 		prepare_lsm(lsm);
380 		initialize_lsm(lsm);
381 	}
382 
383 	return 0;
384 }
385 
386 /**
387  * security_init - initializes the security framework
388  *
389  * This should be called early in the kernel initialization sequence.
390  */
391 int __init security_init(void)
392 {
393 	struct lsm_info *lsm;
394 
395 	pr_info("Security Framework initializing\n");
396 
397 	/*
398 	 * Append the names of the early LSM modules now that kmalloc() is
399 	 * available
400 	 */
401 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402 		if (lsm->enabled)
403 			lsm_append(lsm->name, &lsm_names);
404 	}
405 
406 	/* Load LSMs in specified order. */
407 	ordered_lsm_init();
408 
409 	return 0;
410 }
411 
412 /* Save user chosen LSM */
413 static int __init choose_major_lsm(char *str)
414 {
415 	chosen_major_lsm = str;
416 	return 1;
417 }
418 __setup("security=", choose_major_lsm);
419 
420 /* Explicitly choose LSM initialization order. */
421 static int __init choose_lsm_order(char *str)
422 {
423 	chosen_lsm_order = str;
424 	return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427 
428 /* Enable LSM order debugging. */
429 static int __init enable_debug(char *str)
430 {
431 	debug = true;
432 	return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435 
436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438 	const char *last;
439 
440 	if (WARN_ON(!list || !lsm))
441 		return false;
442 	last = strrchr(list, ',');
443 	if (last)
444 		/* Pass the comma, strcmp() will check for '\0' */
445 		last++;
446 	else
447 		last = list;
448 	return !strcmp(last, lsm);
449 }
450 
451 static int lsm_append(const char *new, char **result)
452 {
453 	char *cp;
454 
455 	if (*result == NULL) {
456 		*result = kstrdup(new, GFP_KERNEL);
457 		if (*result == NULL)
458 			return -ENOMEM;
459 	} else {
460 		/* Check if it is the last registered name */
461 		if (match_last_lsm(*result, new))
462 			return 0;
463 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464 		if (cp == NULL)
465 			return -ENOMEM;
466 		kfree(*result);
467 		*result = cp;
468 	}
469 	return 0;
470 }
471 
472 /**
473  * security_add_hooks - Add a modules hooks to the hook lists.
474  * @hooks: the hooks to add
475  * @count: the number of hooks to add
476  * @lsm: the name of the security module
477  *
478  * Each LSM has to register its hooks with the infrastructure.
479  */
480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481 				char *lsm)
482 {
483 	int i;
484 
485 	for (i = 0; i < count; i++) {
486 		hooks[i].lsm = lsm;
487 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488 	}
489 
490 	/*
491 	 * Don't try to append during early_security_init(), we'll come back
492 	 * and fix this up afterwards.
493 	 */
494 	if (slab_is_available()) {
495 		if (lsm_append(lsm, &lsm_names) < 0)
496 			panic("%s - Cannot get early memory.\n", __func__);
497 	}
498 }
499 
500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503 					    event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506 
507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510 						nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513 
514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517 						  nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520 
521 /**
522  * lsm_cred_alloc - allocate a composite cred blob
523  * @cred: the cred that needs a blob
524  * @gfp: allocation type
525  *
526  * Allocate the cred blob for all the modules
527  *
528  * Returns 0, or -ENOMEM if memory can't be allocated.
529  */
530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532 	if (blob_sizes.lbs_cred == 0) {
533 		cred->security = NULL;
534 		return 0;
535 	}
536 
537 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538 	if (cred->security == NULL)
539 		return -ENOMEM;
540 	return 0;
541 }
542 
543 /**
544  * lsm_early_cred - during initialization allocate a composite cred blob
545  * @cred: the cred that needs a blob
546  *
547  * Allocate the cred blob for all the modules
548  */
549 static void __init lsm_early_cred(struct cred *cred)
550 {
551 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552 
553 	if (rc)
554 		panic("%s: Early cred alloc failed.\n", __func__);
555 }
556 
557 /**
558  * lsm_file_alloc - allocate a composite file blob
559  * @file: the file that needs a blob
560  *
561  * Allocate the file blob for all the modules
562  *
563  * Returns 0, or -ENOMEM if memory can't be allocated.
564  */
565 static int lsm_file_alloc(struct file *file)
566 {
567 	if (!lsm_file_cache) {
568 		file->f_security = NULL;
569 		return 0;
570 	}
571 
572 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573 	if (file->f_security == NULL)
574 		return -ENOMEM;
575 	return 0;
576 }
577 
578 /**
579  * lsm_inode_alloc - allocate a composite inode blob
580  * @inode: the inode that needs a blob
581  *
582  * Allocate the inode blob for all the modules
583  *
584  * Returns 0, or -ENOMEM if memory can't be allocated.
585  */
586 int lsm_inode_alloc(struct inode *inode)
587 {
588 	if (!lsm_inode_cache) {
589 		inode->i_security = NULL;
590 		return 0;
591 	}
592 
593 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594 	if (inode->i_security == NULL)
595 		return -ENOMEM;
596 	return 0;
597 }
598 
599 /**
600  * lsm_task_alloc - allocate a composite task blob
601  * @task: the task that needs a blob
602  *
603  * Allocate the task blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_task_alloc(struct task_struct *task)
608 {
609 	if (blob_sizes.lbs_task == 0) {
610 		task->security = NULL;
611 		return 0;
612 	}
613 
614 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615 	if (task->security == NULL)
616 		return -ENOMEM;
617 	return 0;
618 }
619 
620 /**
621  * lsm_ipc_alloc - allocate a composite ipc blob
622  * @kip: the ipc that needs a blob
623  *
624  * Allocate the ipc blob for all the modules
625  *
626  * Returns 0, or -ENOMEM if memory can't be allocated.
627  */
628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630 	if (blob_sizes.lbs_ipc == 0) {
631 		kip->security = NULL;
632 		return 0;
633 	}
634 
635 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636 	if (kip->security == NULL)
637 		return -ENOMEM;
638 	return 0;
639 }
640 
641 /**
642  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643  * @mp: the msg_msg that needs a blob
644  *
645  * Allocate the ipc blob for all the modules
646  *
647  * Returns 0, or -ENOMEM if memory can't be allocated.
648  */
649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651 	if (blob_sizes.lbs_msg_msg == 0) {
652 		mp->security = NULL;
653 		return 0;
654 	}
655 
656 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657 	if (mp->security == NULL)
658 		return -ENOMEM;
659 	return 0;
660 }
661 
662 /**
663  * lsm_early_task - during initialization allocate a composite task blob
664  * @task: the task that needs a blob
665  *
666  * Allocate the task blob for all the modules
667  */
668 static void __init lsm_early_task(struct task_struct *task)
669 {
670 	int rc = lsm_task_alloc(task);
671 
672 	if (rc)
673 		panic("%s: Early task alloc failed.\n", __func__);
674 }
675 
676 /**
677  * lsm_superblock_alloc - allocate a composite superblock blob
678  * @sb: the superblock that needs a blob
679  *
680  * Allocate the superblock blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686 	if (blob_sizes.lbs_superblock == 0) {
687 		sb->s_security = NULL;
688 		return 0;
689 	}
690 
691 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692 	if (sb->s_security == NULL)
693 		return -ENOMEM;
694 	return 0;
695 }
696 
697 /*
698  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699  * can be accessed with:
700  *
701  *	LSM_RET_DEFAULT(<hook_name>)
702  *
703  * The macros below define static constants for the default value of each
704  * LSM hook.
705  */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712 
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715 
716 /*
717  * Hook list operation macros.
718  *
719  * call_void_hook:
720  *	This is a hook that does not return a value.
721  *
722  * call_int_hook:
723  *	This is a hook that returns a value.
724  */
725 
726 #define call_void_hook(FUNC, ...)				\
727 	do {							\
728 		struct security_hook_list *P;			\
729 								\
730 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731 			P->hook.FUNC(__VA_ARGS__);		\
732 	} while (0)
733 
734 #define call_int_hook(FUNC, IRC, ...) ({			\
735 	int RC = IRC;						\
736 	do {							\
737 		struct security_hook_list *P;			\
738 								\
739 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740 			RC = P->hook.FUNC(__VA_ARGS__);		\
741 			if (RC != 0)				\
742 				break;				\
743 		}						\
744 	} while (0);						\
745 	RC;							\
746 })
747 
748 /* Security operations */
749 
750 int security_binder_set_context_mgr(const struct cred *mgr)
751 {
752 	return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754 
755 int security_binder_transaction(const struct cred *from,
756 				const struct cred *to)
757 {
758 	return call_int_hook(binder_transaction, 0, from, to);
759 }
760 
761 int security_binder_transfer_binder(const struct cred *from,
762 				    const struct cred *to)
763 {
764 	return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766 
767 int security_binder_transfer_file(const struct cred *from,
768 				  const struct cred *to, struct file *file)
769 {
770 	return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772 
773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775 	return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777 
778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780 	return call_int_hook(ptrace_traceme, 0, parent);
781 }
782 
783 int security_capget(struct task_struct *target,
784 		     kernel_cap_t *effective,
785 		     kernel_cap_t *inheritable,
786 		     kernel_cap_t *permitted)
787 {
788 	return call_int_hook(capget, 0, target,
789 				effective, inheritable, permitted);
790 }
791 
792 int security_capset(struct cred *new, const struct cred *old,
793 		    const kernel_cap_t *effective,
794 		    const kernel_cap_t *inheritable,
795 		    const kernel_cap_t *permitted)
796 {
797 	return call_int_hook(capset, 0, new, old,
798 				effective, inheritable, permitted);
799 }
800 
801 int security_capable(const struct cred *cred,
802 		     struct user_namespace *ns,
803 		     int cap,
804 		     unsigned int opts)
805 {
806 	return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808 
809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813 
814 int security_quota_on(struct dentry *dentry)
815 {
816 	return call_int_hook(quota_on, 0, dentry);
817 }
818 
819 int security_syslog(int type)
820 {
821 	return call_int_hook(syslog, 0, type);
822 }
823 
824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826 	return call_int_hook(settime, 0, ts, tz);
827 }
828 
829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831 	struct security_hook_list *hp;
832 	int cap_sys_admin = 1;
833 	int rc;
834 
835 	/*
836 	 * The module will respond with a positive value if
837 	 * it thinks the __vm_enough_memory() call should be
838 	 * made with the cap_sys_admin set. If all of the modules
839 	 * agree that it should be set it will. If any module
840 	 * thinks it should not be set it won't.
841 	 */
842 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843 		rc = hp->hook.vm_enough_memory(mm, pages);
844 		if (rc <= 0) {
845 			cap_sys_admin = 0;
846 			break;
847 		}
848 	}
849 	return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851 
852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856 
857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861 
862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864 	int ret;
865 
866 	ret = call_int_hook(bprm_check_security, 0, bprm);
867 	if (ret)
868 		return ret;
869 	return ima_bprm_check(bprm);
870 }
871 
872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874 	call_void_hook(bprm_committing_creds, bprm);
875 }
876 
877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879 	call_void_hook(bprm_committed_creds, bprm);
880 }
881 
882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886 
887 int security_fs_context_parse_param(struct fs_context *fc,
888 				    struct fs_parameter *param)
889 {
890 	struct security_hook_list *hp;
891 	int trc;
892 	int rc = -ENOPARAM;
893 
894 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
895 			     list) {
896 		trc = hp->hook.fs_context_parse_param(fc, param);
897 		if (trc == 0)
898 			rc = 0;
899 		else if (trc != -ENOPARAM)
900 			return trc;
901 	}
902 	return rc;
903 }
904 
905 int security_sb_alloc(struct super_block *sb)
906 {
907 	int rc = lsm_superblock_alloc(sb);
908 
909 	if (unlikely(rc))
910 		return rc;
911 	rc = call_int_hook(sb_alloc_security, 0, sb);
912 	if (unlikely(rc))
913 		security_sb_free(sb);
914 	return rc;
915 }
916 
917 void security_sb_delete(struct super_block *sb)
918 {
919 	call_void_hook(sb_delete, sb);
920 }
921 
922 void security_sb_free(struct super_block *sb)
923 {
924 	call_void_hook(sb_free_security, sb);
925 	kfree(sb->s_security);
926 	sb->s_security = NULL;
927 }
928 
929 void security_free_mnt_opts(void **mnt_opts)
930 {
931 	if (!*mnt_opts)
932 		return;
933 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
934 	*mnt_opts = NULL;
935 }
936 EXPORT_SYMBOL(security_free_mnt_opts);
937 
938 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
939 {
940 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
941 }
942 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
943 
944 int security_sb_mnt_opts_compat(struct super_block *sb,
945 				void *mnt_opts)
946 {
947 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
948 }
949 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
950 
951 int security_sb_remount(struct super_block *sb,
952 			void *mnt_opts)
953 {
954 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
955 }
956 EXPORT_SYMBOL(security_sb_remount);
957 
958 int security_sb_kern_mount(struct super_block *sb)
959 {
960 	return call_int_hook(sb_kern_mount, 0, sb);
961 }
962 
963 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
964 {
965 	return call_int_hook(sb_show_options, 0, m, sb);
966 }
967 
968 int security_sb_statfs(struct dentry *dentry)
969 {
970 	return call_int_hook(sb_statfs, 0, dentry);
971 }
972 
973 int security_sb_mount(const char *dev_name, const struct path *path,
974                        const char *type, unsigned long flags, void *data)
975 {
976 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
977 }
978 
979 int security_sb_umount(struct vfsmount *mnt, int flags)
980 {
981 	return call_int_hook(sb_umount, 0, mnt, flags);
982 }
983 
984 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
985 {
986 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
987 }
988 
989 int security_sb_set_mnt_opts(struct super_block *sb,
990 				void *mnt_opts,
991 				unsigned long kern_flags,
992 				unsigned long *set_kern_flags)
993 {
994 	return call_int_hook(sb_set_mnt_opts,
995 				mnt_opts ? -EOPNOTSUPP : 0, sb,
996 				mnt_opts, kern_flags, set_kern_flags);
997 }
998 EXPORT_SYMBOL(security_sb_set_mnt_opts);
999 
1000 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1001 				struct super_block *newsb,
1002 				unsigned long kern_flags,
1003 				unsigned long *set_kern_flags)
1004 {
1005 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1006 				kern_flags, set_kern_flags);
1007 }
1008 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1009 
1010 int security_move_mount(const struct path *from_path, const struct path *to_path)
1011 {
1012 	return call_int_hook(move_mount, 0, from_path, to_path);
1013 }
1014 
1015 int security_path_notify(const struct path *path, u64 mask,
1016 				unsigned int obj_type)
1017 {
1018 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1019 }
1020 
1021 int security_inode_alloc(struct inode *inode)
1022 {
1023 	int rc = lsm_inode_alloc(inode);
1024 
1025 	if (unlikely(rc))
1026 		return rc;
1027 	rc = call_int_hook(inode_alloc_security, 0, inode);
1028 	if (unlikely(rc))
1029 		security_inode_free(inode);
1030 	return rc;
1031 }
1032 
1033 static void inode_free_by_rcu(struct rcu_head *head)
1034 {
1035 	/*
1036 	 * The rcu head is at the start of the inode blob
1037 	 */
1038 	kmem_cache_free(lsm_inode_cache, head);
1039 }
1040 
1041 void security_inode_free(struct inode *inode)
1042 {
1043 	integrity_inode_free(inode);
1044 	call_void_hook(inode_free_security, inode);
1045 	/*
1046 	 * The inode may still be referenced in a path walk and
1047 	 * a call to security_inode_permission() can be made
1048 	 * after inode_free_security() is called. Ideally, the VFS
1049 	 * wouldn't do this, but fixing that is a much harder
1050 	 * job. For now, simply free the i_security via RCU, and
1051 	 * leave the current inode->i_security pointer intact.
1052 	 * The inode will be freed after the RCU grace period too.
1053 	 */
1054 	if (inode->i_security)
1055 		call_rcu((struct rcu_head *)inode->i_security,
1056 				inode_free_by_rcu);
1057 }
1058 
1059 int security_dentry_init_security(struct dentry *dentry, int mode,
1060 				  const struct qstr *name,
1061 				  const char **xattr_name, void **ctx,
1062 				  u32 *ctxlen)
1063 {
1064 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1065 				name, xattr_name, ctx, ctxlen);
1066 }
1067 EXPORT_SYMBOL(security_dentry_init_security);
1068 
1069 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1070 				    struct qstr *name,
1071 				    const struct cred *old, struct cred *new)
1072 {
1073 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1074 				name, old, new);
1075 }
1076 EXPORT_SYMBOL(security_dentry_create_files_as);
1077 
1078 int security_inode_init_security(struct inode *inode, struct inode *dir,
1079 				 const struct qstr *qstr,
1080 				 const initxattrs initxattrs, void *fs_data)
1081 {
1082 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1083 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1084 	int ret;
1085 
1086 	if (unlikely(IS_PRIVATE(inode)))
1087 		return 0;
1088 
1089 	if (!initxattrs)
1090 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1091 				     dir, qstr, NULL, NULL, NULL);
1092 	memset(new_xattrs, 0, sizeof(new_xattrs));
1093 	lsm_xattr = new_xattrs;
1094 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1095 						&lsm_xattr->name,
1096 						&lsm_xattr->value,
1097 						&lsm_xattr->value_len);
1098 	if (ret)
1099 		goto out;
1100 
1101 	evm_xattr = lsm_xattr + 1;
1102 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1103 	if (ret)
1104 		goto out;
1105 	ret = initxattrs(inode, new_xattrs, fs_data);
1106 out:
1107 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1108 		kfree(xattr->value);
1109 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1110 }
1111 EXPORT_SYMBOL(security_inode_init_security);
1112 
1113 int security_inode_init_security_anon(struct inode *inode,
1114 				      const struct qstr *name,
1115 				      const struct inode *context_inode)
1116 {
1117 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1118 			     context_inode);
1119 }
1120 
1121 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1122 				     const struct qstr *qstr, const char **name,
1123 				     void **value, size_t *len)
1124 {
1125 	if (unlikely(IS_PRIVATE(inode)))
1126 		return -EOPNOTSUPP;
1127 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1128 			     qstr, name, value, len);
1129 }
1130 EXPORT_SYMBOL(security_old_inode_init_security);
1131 
1132 #ifdef CONFIG_SECURITY_PATH
1133 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1134 			unsigned int dev)
1135 {
1136 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1137 		return 0;
1138 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1139 }
1140 EXPORT_SYMBOL(security_path_mknod);
1141 
1142 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1143 {
1144 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1145 		return 0;
1146 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1147 }
1148 EXPORT_SYMBOL(security_path_mkdir);
1149 
1150 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1151 {
1152 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1153 		return 0;
1154 	return call_int_hook(path_rmdir, 0, dir, dentry);
1155 }
1156 
1157 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1158 {
1159 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1160 		return 0;
1161 	return call_int_hook(path_unlink, 0, dir, dentry);
1162 }
1163 EXPORT_SYMBOL(security_path_unlink);
1164 
1165 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1166 			  const char *old_name)
1167 {
1168 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1169 		return 0;
1170 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1171 }
1172 
1173 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1174 		       struct dentry *new_dentry)
1175 {
1176 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1177 		return 0;
1178 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1179 }
1180 
1181 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1182 			 const struct path *new_dir, struct dentry *new_dentry,
1183 			 unsigned int flags)
1184 {
1185 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1186 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1187 		return 0;
1188 
1189 	if (flags & RENAME_EXCHANGE) {
1190 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1191 					old_dir, old_dentry);
1192 		if (err)
1193 			return err;
1194 	}
1195 
1196 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1197 				new_dentry);
1198 }
1199 EXPORT_SYMBOL(security_path_rename);
1200 
1201 int security_path_truncate(const struct path *path)
1202 {
1203 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1204 		return 0;
1205 	return call_int_hook(path_truncate, 0, path);
1206 }
1207 
1208 int security_path_chmod(const struct path *path, umode_t mode)
1209 {
1210 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1211 		return 0;
1212 	return call_int_hook(path_chmod, 0, path, mode);
1213 }
1214 
1215 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1216 {
1217 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1218 		return 0;
1219 	return call_int_hook(path_chown, 0, path, uid, gid);
1220 }
1221 
1222 int security_path_chroot(const struct path *path)
1223 {
1224 	return call_int_hook(path_chroot, 0, path);
1225 }
1226 #endif
1227 
1228 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1229 {
1230 	if (unlikely(IS_PRIVATE(dir)))
1231 		return 0;
1232 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1233 }
1234 EXPORT_SYMBOL_GPL(security_inode_create);
1235 
1236 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1237 			 struct dentry *new_dentry)
1238 {
1239 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1240 		return 0;
1241 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1242 }
1243 
1244 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1245 {
1246 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1247 		return 0;
1248 	return call_int_hook(inode_unlink, 0, dir, dentry);
1249 }
1250 
1251 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1252 			    const char *old_name)
1253 {
1254 	if (unlikely(IS_PRIVATE(dir)))
1255 		return 0;
1256 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1257 }
1258 
1259 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1260 {
1261 	if (unlikely(IS_PRIVATE(dir)))
1262 		return 0;
1263 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1264 }
1265 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1266 
1267 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1268 {
1269 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1270 		return 0;
1271 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1272 }
1273 
1274 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1275 {
1276 	if (unlikely(IS_PRIVATE(dir)))
1277 		return 0;
1278 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1279 }
1280 
1281 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1282 			   struct inode *new_dir, struct dentry *new_dentry,
1283 			   unsigned int flags)
1284 {
1285         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1286             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1287 		return 0;
1288 
1289 	if (flags & RENAME_EXCHANGE) {
1290 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1291 						     old_dir, old_dentry);
1292 		if (err)
1293 			return err;
1294 	}
1295 
1296 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1297 					   new_dir, new_dentry);
1298 }
1299 
1300 int security_inode_readlink(struct dentry *dentry)
1301 {
1302 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1303 		return 0;
1304 	return call_int_hook(inode_readlink, 0, dentry);
1305 }
1306 
1307 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1308 			       bool rcu)
1309 {
1310 	if (unlikely(IS_PRIVATE(inode)))
1311 		return 0;
1312 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1313 }
1314 
1315 int security_inode_permission(struct inode *inode, int mask)
1316 {
1317 	if (unlikely(IS_PRIVATE(inode)))
1318 		return 0;
1319 	return call_int_hook(inode_permission, 0, inode, mask);
1320 }
1321 
1322 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1323 {
1324 	int ret;
1325 
1326 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1327 		return 0;
1328 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1329 	if (ret)
1330 		return ret;
1331 	return evm_inode_setattr(dentry, attr);
1332 }
1333 EXPORT_SYMBOL_GPL(security_inode_setattr);
1334 
1335 int security_inode_getattr(const struct path *path)
1336 {
1337 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1338 		return 0;
1339 	return call_int_hook(inode_getattr, 0, path);
1340 }
1341 
1342 int security_inode_setxattr(struct user_namespace *mnt_userns,
1343 			    struct dentry *dentry, const char *name,
1344 			    const void *value, size_t size, int flags)
1345 {
1346 	int ret;
1347 
1348 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1349 		return 0;
1350 	/*
1351 	 * SELinux and Smack integrate the cap call,
1352 	 * so assume that all LSMs supplying this call do so.
1353 	 */
1354 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1355 			    size, flags);
1356 
1357 	if (ret == 1)
1358 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1359 	if (ret)
1360 		return ret;
1361 	ret = ima_inode_setxattr(dentry, name, value, size);
1362 	if (ret)
1363 		return ret;
1364 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1365 }
1366 
1367 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1368 				  const void *value, size_t size, int flags)
1369 {
1370 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1371 		return;
1372 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1373 	evm_inode_post_setxattr(dentry, name, value, size);
1374 }
1375 
1376 int security_inode_getxattr(struct dentry *dentry, const char *name)
1377 {
1378 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1379 		return 0;
1380 	return call_int_hook(inode_getxattr, 0, dentry, name);
1381 }
1382 
1383 int security_inode_listxattr(struct dentry *dentry)
1384 {
1385 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1386 		return 0;
1387 	return call_int_hook(inode_listxattr, 0, dentry);
1388 }
1389 
1390 int security_inode_removexattr(struct user_namespace *mnt_userns,
1391 			       struct dentry *dentry, const char *name)
1392 {
1393 	int ret;
1394 
1395 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1396 		return 0;
1397 	/*
1398 	 * SELinux and Smack integrate the cap call,
1399 	 * so assume that all LSMs supplying this call do so.
1400 	 */
1401 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1402 	if (ret == 1)
1403 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1404 	if (ret)
1405 		return ret;
1406 	ret = ima_inode_removexattr(dentry, name);
1407 	if (ret)
1408 		return ret;
1409 	return evm_inode_removexattr(mnt_userns, dentry, name);
1410 }
1411 
1412 int security_inode_need_killpriv(struct dentry *dentry)
1413 {
1414 	return call_int_hook(inode_need_killpriv, 0, dentry);
1415 }
1416 
1417 int security_inode_killpriv(struct user_namespace *mnt_userns,
1418 			    struct dentry *dentry)
1419 {
1420 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1421 }
1422 
1423 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1424 			       struct inode *inode, const char *name,
1425 			       void **buffer, bool alloc)
1426 {
1427 	struct security_hook_list *hp;
1428 	int rc;
1429 
1430 	if (unlikely(IS_PRIVATE(inode)))
1431 		return LSM_RET_DEFAULT(inode_getsecurity);
1432 	/*
1433 	 * Only one module will provide an attribute with a given name.
1434 	 */
1435 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1436 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1437 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1438 			return rc;
1439 	}
1440 	return LSM_RET_DEFAULT(inode_getsecurity);
1441 }
1442 
1443 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1444 {
1445 	struct security_hook_list *hp;
1446 	int rc;
1447 
1448 	if (unlikely(IS_PRIVATE(inode)))
1449 		return LSM_RET_DEFAULT(inode_setsecurity);
1450 	/*
1451 	 * Only one module will provide an attribute with a given name.
1452 	 */
1453 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1454 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1455 								flags);
1456 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1457 			return rc;
1458 	}
1459 	return LSM_RET_DEFAULT(inode_setsecurity);
1460 }
1461 
1462 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1463 {
1464 	if (unlikely(IS_PRIVATE(inode)))
1465 		return 0;
1466 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1467 }
1468 EXPORT_SYMBOL(security_inode_listsecurity);
1469 
1470 void security_inode_getsecid(struct inode *inode, u32 *secid)
1471 {
1472 	call_void_hook(inode_getsecid, inode, secid);
1473 }
1474 
1475 int security_inode_copy_up(struct dentry *src, struct cred **new)
1476 {
1477 	return call_int_hook(inode_copy_up, 0, src, new);
1478 }
1479 EXPORT_SYMBOL(security_inode_copy_up);
1480 
1481 int security_inode_copy_up_xattr(const char *name)
1482 {
1483 	struct security_hook_list *hp;
1484 	int rc;
1485 
1486 	/*
1487 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1488 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1489 	 * any other error code incase of an error.
1490 	 */
1491 	hlist_for_each_entry(hp,
1492 		&security_hook_heads.inode_copy_up_xattr, list) {
1493 		rc = hp->hook.inode_copy_up_xattr(name);
1494 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1495 			return rc;
1496 	}
1497 
1498 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1499 }
1500 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1501 
1502 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1503 				  struct kernfs_node *kn)
1504 {
1505 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1506 }
1507 
1508 int security_file_permission(struct file *file, int mask)
1509 {
1510 	int ret;
1511 
1512 	ret = call_int_hook(file_permission, 0, file, mask);
1513 	if (ret)
1514 		return ret;
1515 
1516 	return fsnotify_perm(file, mask);
1517 }
1518 
1519 int security_file_alloc(struct file *file)
1520 {
1521 	int rc = lsm_file_alloc(file);
1522 
1523 	if (rc)
1524 		return rc;
1525 	rc = call_int_hook(file_alloc_security, 0, file);
1526 	if (unlikely(rc))
1527 		security_file_free(file);
1528 	return rc;
1529 }
1530 
1531 void security_file_free(struct file *file)
1532 {
1533 	void *blob;
1534 
1535 	call_void_hook(file_free_security, file);
1536 
1537 	blob = file->f_security;
1538 	if (blob) {
1539 		file->f_security = NULL;
1540 		kmem_cache_free(lsm_file_cache, blob);
1541 	}
1542 }
1543 
1544 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1545 {
1546 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1547 }
1548 EXPORT_SYMBOL_GPL(security_file_ioctl);
1549 
1550 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1551 {
1552 	/*
1553 	 * Does we have PROT_READ and does the application expect
1554 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1555 	 */
1556 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1557 		return prot;
1558 	if (!(current->personality & READ_IMPLIES_EXEC))
1559 		return prot;
1560 	/*
1561 	 * if that's an anonymous mapping, let it.
1562 	 */
1563 	if (!file)
1564 		return prot | PROT_EXEC;
1565 	/*
1566 	 * ditto if it's not on noexec mount, except that on !MMU we need
1567 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1568 	 */
1569 	if (!path_noexec(&file->f_path)) {
1570 #ifndef CONFIG_MMU
1571 		if (file->f_op->mmap_capabilities) {
1572 			unsigned caps = file->f_op->mmap_capabilities(file);
1573 			if (!(caps & NOMMU_MAP_EXEC))
1574 				return prot;
1575 		}
1576 #endif
1577 		return prot | PROT_EXEC;
1578 	}
1579 	/* anything on noexec mount won't get PROT_EXEC */
1580 	return prot;
1581 }
1582 
1583 int security_mmap_file(struct file *file, unsigned long prot,
1584 			unsigned long flags)
1585 {
1586 	int ret;
1587 	ret = call_int_hook(mmap_file, 0, file, prot,
1588 					mmap_prot(file, prot), flags);
1589 	if (ret)
1590 		return ret;
1591 	return ima_file_mmap(file, prot);
1592 }
1593 
1594 int security_mmap_addr(unsigned long addr)
1595 {
1596 	return call_int_hook(mmap_addr, 0, addr);
1597 }
1598 
1599 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1600 			    unsigned long prot)
1601 {
1602 	int ret;
1603 
1604 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1605 	if (ret)
1606 		return ret;
1607 	return ima_file_mprotect(vma, prot);
1608 }
1609 
1610 int security_file_lock(struct file *file, unsigned int cmd)
1611 {
1612 	return call_int_hook(file_lock, 0, file, cmd);
1613 }
1614 
1615 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1616 {
1617 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1618 }
1619 
1620 void security_file_set_fowner(struct file *file)
1621 {
1622 	call_void_hook(file_set_fowner, file);
1623 }
1624 
1625 int security_file_send_sigiotask(struct task_struct *tsk,
1626 				  struct fown_struct *fown, int sig)
1627 {
1628 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1629 }
1630 
1631 int security_file_receive(struct file *file)
1632 {
1633 	return call_int_hook(file_receive, 0, file);
1634 }
1635 
1636 int security_file_open(struct file *file)
1637 {
1638 	int ret;
1639 
1640 	ret = call_int_hook(file_open, 0, file);
1641 	if (ret)
1642 		return ret;
1643 
1644 	return fsnotify_perm(file, MAY_OPEN);
1645 }
1646 
1647 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1648 {
1649 	int rc = lsm_task_alloc(task);
1650 
1651 	if (rc)
1652 		return rc;
1653 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1654 	if (unlikely(rc))
1655 		security_task_free(task);
1656 	return rc;
1657 }
1658 
1659 void security_task_free(struct task_struct *task)
1660 {
1661 	call_void_hook(task_free, task);
1662 
1663 	kfree(task->security);
1664 	task->security = NULL;
1665 }
1666 
1667 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1668 {
1669 	int rc = lsm_cred_alloc(cred, gfp);
1670 
1671 	if (rc)
1672 		return rc;
1673 
1674 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1675 	if (unlikely(rc))
1676 		security_cred_free(cred);
1677 	return rc;
1678 }
1679 
1680 void security_cred_free(struct cred *cred)
1681 {
1682 	/*
1683 	 * There is a failure case in prepare_creds() that
1684 	 * may result in a call here with ->security being NULL.
1685 	 */
1686 	if (unlikely(cred->security == NULL))
1687 		return;
1688 
1689 	call_void_hook(cred_free, cred);
1690 
1691 	kfree(cred->security);
1692 	cred->security = NULL;
1693 }
1694 
1695 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1696 {
1697 	int rc = lsm_cred_alloc(new, gfp);
1698 
1699 	if (rc)
1700 		return rc;
1701 
1702 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1703 	if (unlikely(rc))
1704 		security_cred_free(new);
1705 	return rc;
1706 }
1707 
1708 void security_transfer_creds(struct cred *new, const struct cred *old)
1709 {
1710 	call_void_hook(cred_transfer, new, old);
1711 }
1712 
1713 void security_cred_getsecid(const struct cred *c, u32 *secid)
1714 {
1715 	*secid = 0;
1716 	call_void_hook(cred_getsecid, c, secid);
1717 }
1718 EXPORT_SYMBOL(security_cred_getsecid);
1719 
1720 int security_kernel_act_as(struct cred *new, u32 secid)
1721 {
1722 	return call_int_hook(kernel_act_as, 0, new, secid);
1723 }
1724 
1725 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1726 {
1727 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1728 }
1729 
1730 int security_kernel_module_request(char *kmod_name)
1731 {
1732 	int ret;
1733 
1734 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1735 	if (ret)
1736 		return ret;
1737 	return integrity_kernel_module_request(kmod_name);
1738 }
1739 
1740 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1741 			      bool contents)
1742 {
1743 	int ret;
1744 
1745 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1746 	if (ret)
1747 		return ret;
1748 	return ima_read_file(file, id, contents);
1749 }
1750 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1751 
1752 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1753 				   enum kernel_read_file_id id)
1754 {
1755 	int ret;
1756 
1757 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1758 	if (ret)
1759 		return ret;
1760 	return ima_post_read_file(file, buf, size, id);
1761 }
1762 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1763 
1764 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1765 {
1766 	int ret;
1767 
1768 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1769 	if (ret)
1770 		return ret;
1771 	return ima_load_data(id, contents);
1772 }
1773 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1774 
1775 int security_kernel_post_load_data(char *buf, loff_t size,
1776 				   enum kernel_load_data_id id,
1777 				   char *description)
1778 {
1779 	int ret;
1780 
1781 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1782 			    description);
1783 	if (ret)
1784 		return ret;
1785 	return ima_post_load_data(buf, size, id, description);
1786 }
1787 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1788 
1789 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1790 			     int flags)
1791 {
1792 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1793 }
1794 
1795 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1796 				 int flags)
1797 {
1798 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1799 }
1800 
1801 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1802 {
1803 	return call_int_hook(task_setpgid, 0, p, pgid);
1804 }
1805 
1806 int security_task_getpgid(struct task_struct *p)
1807 {
1808 	return call_int_hook(task_getpgid, 0, p);
1809 }
1810 
1811 int security_task_getsid(struct task_struct *p)
1812 {
1813 	return call_int_hook(task_getsid, 0, p);
1814 }
1815 
1816 void security_current_getsecid_subj(u32 *secid)
1817 {
1818 	*secid = 0;
1819 	call_void_hook(current_getsecid_subj, secid);
1820 }
1821 EXPORT_SYMBOL(security_current_getsecid_subj);
1822 
1823 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1824 {
1825 	*secid = 0;
1826 	call_void_hook(task_getsecid_obj, p, secid);
1827 }
1828 EXPORT_SYMBOL(security_task_getsecid_obj);
1829 
1830 int security_task_setnice(struct task_struct *p, int nice)
1831 {
1832 	return call_int_hook(task_setnice, 0, p, nice);
1833 }
1834 
1835 int security_task_setioprio(struct task_struct *p, int ioprio)
1836 {
1837 	return call_int_hook(task_setioprio, 0, p, ioprio);
1838 }
1839 
1840 int security_task_getioprio(struct task_struct *p)
1841 {
1842 	return call_int_hook(task_getioprio, 0, p);
1843 }
1844 
1845 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1846 			  unsigned int flags)
1847 {
1848 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1849 }
1850 
1851 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1852 		struct rlimit *new_rlim)
1853 {
1854 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1855 }
1856 
1857 int security_task_setscheduler(struct task_struct *p)
1858 {
1859 	return call_int_hook(task_setscheduler, 0, p);
1860 }
1861 
1862 int security_task_getscheduler(struct task_struct *p)
1863 {
1864 	return call_int_hook(task_getscheduler, 0, p);
1865 }
1866 
1867 int security_task_movememory(struct task_struct *p)
1868 {
1869 	return call_int_hook(task_movememory, 0, p);
1870 }
1871 
1872 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1873 			int sig, const struct cred *cred)
1874 {
1875 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1876 }
1877 
1878 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1879 			 unsigned long arg4, unsigned long arg5)
1880 {
1881 	int thisrc;
1882 	int rc = LSM_RET_DEFAULT(task_prctl);
1883 	struct security_hook_list *hp;
1884 
1885 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1886 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1887 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1888 			rc = thisrc;
1889 			if (thisrc != 0)
1890 				break;
1891 		}
1892 	}
1893 	return rc;
1894 }
1895 
1896 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1897 {
1898 	call_void_hook(task_to_inode, p, inode);
1899 }
1900 
1901 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1902 {
1903 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1904 }
1905 
1906 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1907 {
1908 	*secid = 0;
1909 	call_void_hook(ipc_getsecid, ipcp, secid);
1910 }
1911 
1912 int security_msg_msg_alloc(struct msg_msg *msg)
1913 {
1914 	int rc = lsm_msg_msg_alloc(msg);
1915 
1916 	if (unlikely(rc))
1917 		return rc;
1918 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1919 	if (unlikely(rc))
1920 		security_msg_msg_free(msg);
1921 	return rc;
1922 }
1923 
1924 void security_msg_msg_free(struct msg_msg *msg)
1925 {
1926 	call_void_hook(msg_msg_free_security, msg);
1927 	kfree(msg->security);
1928 	msg->security = NULL;
1929 }
1930 
1931 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1932 {
1933 	int rc = lsm_ipc_alloc(msq);
1934 
1935 	if (unlikely(rc))
1936 		return rc;
1937 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1938 	if (unlikely(rc))
1939 		security_msg_queue_free(msq);
1940 	return rc;
1941 }
1942 
1943 void security_msg_queue_free(struct kern_ipc_perm *msq)
1944 {
1945 	call_void_hook(msg_queue_free_security, msq);
1946 	kfree(msq->security);
1947 	msq->security = NULL;
1948 }
1949 
1950 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1951 {
1952 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1953 }
1954 
1955 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1956 {
1957 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1958 }
1959 
1960 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1961 			       struct msg_msg *msg, int msqflg)
1962 {
1963 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1964 }
1965 
1966 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1967 			       struct task_struct *target, long type, int mode)
1968 {
1969 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1970 }
1971 
1972 int security_shm_alloc(struct kern_ipc_perm *shp)
1973 {
1974 	int rc = lsm_ipc_alloc(shp);
1975 
1976 	if (unlikely(rc))
1977 		return rc;
1978 	rc = call_int_hook(shm_alloc_security, 0, shp);
1979 	if (unlikely(rc))
1980 		security_shm_free(shp);
1981 	return rc;
1982 }
1983 
1984 void security_shm_free(struct kern_ipc_perm *shp)
1985 {
1986 	call_void_hook(shm_free_security, shp);
1987 	kfree(shp->security);
1988 	shp->security = NULL;
1989 }
1990 
1991 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1992 {
1993 	return call_int_hook(shm_associate, 0, shp, shmflg);
1994 }
1995 
1996 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1997 {
1998 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1999 }
2000 
2001 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2002 {
2003 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2004 }
2005 
2006 int security_sem_alloc(struct kern_ipc_perm *sma)
2007 {
2008 	int rc = lsm_ipc_alloc(sma);
2009 
2010 	if (unlikely(rc))
2011 		return rc;
2012 	rc = call_int_hook(sem_alloc_security, 0, sma);
2013 	if (unlikely(rc))
2014 		security_sem_free(sma);
2015 	return rc;
2016 }
2017 
2018 void security_sem_free(struct kern_ipc_perm *sma)
2019 {
2020 	call_void_hook(sem_free_security, sma);
2021 	kfree(sma->security);
2022 	sma->security = NULL;
2023 }
2024 
2025 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2026 {
2027 	return call_int_hook(sem_associate, 0, sma, semflg);
2028 }
2029 
2030 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2031 {
2032 	return call_int_hook(sem_semctl, 0, sma, cmd);
2033 }
2034 
2035 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2036 			unsigned nsops, int alter)
2037 {
2038 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2039 }
2040 
2041 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2042 {
2043 	if (unlikely(inode && IS_PRIVATE(inode)))
2044 		return;
2045 	call_void_hook(d_instantiate, dentry, inode);
2046 }
2047 EXPORT_SYMBOL(security_d_instantiate);
2048 
2049 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2050 				char **value)
2051 {
2052 	struct security_hook_list *hp;
2053 
2054 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2055 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2056 			continue;
2057 		return hp->hook.getprocattr(p, name, value);
2058 	}
2059 	return LSM_RET_DEFAULT(getprocattr);
2060 }
2061 
2062 int security_setprocattr(const char *lsm, const char *name, void *value,
2063 			 size_t size)
2064 {
2065 	struct security_hook_list *hp;
2066 
2067 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2068 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2069 			continue;
2070 		return hp->hook.setprocattr(name, value, size);
2071 	}
2072 	return LSM_RET_DEFAULT(setprocattr);
2073 }
2074 
2075 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2076 {
2077 	return call_int_hook(netlink_send, 0, sk, skb);
2078 }
2079 
2080 int security_ismaclabel(const char *name)
2081 {
2082 	return call_int_hook(ismaclabel, 0, name);
2083 }
2084 EXPORT_SYMBOL(security_ismaclabel);
2085 
2086 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2087 {
2088 	struct security_hook_list *hp;
2089 	int rc;
2090 
2091 	/*
2092 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2093 	 * LSM hook is not "stackable").
2094 	 */
2095 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2096 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2097 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2098 			return rc;
2099 	}
2100 
2101 	return LSM_RET_DEFAULT(secid_to_secctx);
2102 }
2103 EXPORT_SYMBOL(security_secid_to_secctx);
2104 
2105 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2106 {
2107 	*secid = 0;
2108 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2109 }
2110 EXPORT_SYMBOL(security_secctx_to_secid);
2111 
2112 void security_release_secctx(char *secdata, u32 seclen)
2113 {
2114 	call_void_hook(release_secctx, secdata, seclen);
2115 }
2116 EXPORT_SYMBOL(security_release_secctx);
2117 
2118 void security_inode_invalidate_secctx(struct inode *inode)
2119 {
2120 	call_void_hook(inode_invalidate_secctx, inode);
2121 }
2122 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2123 
2124 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2125 {
2126 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2127 }
2128 EXPORT_SYMBOL(security_inode_notifysecctx);
2129 
2130 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2131 {
2132 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2133 }
2134 EXPORT_SYMBOL(security_inode_setsecctx);
2135 
2136 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2137 {
2138 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2139 }
2140 EXPORT_SYMBOL(security_inode_getsecctx);
2141 
2142 #ifdef CONFIG_WATCH_QUEUE
2143 int security_post_notification(const struct cred *w_cred,
2144 			       const struct cred *cred,
2145 			       struct watch_notification *n)
2146 {
2147 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2148 }
2149 #endif /* CONFIG_WATCH_QUEUE */
2150 
2151 #ifdef CONFIG_KEY_NOTIFICATIONS
2152 int security_watch_key(struct key *key)
2153 {
2154 	return call_int_hook(watch_key, 0, key);
2155 }
2156 #endif
2157 
2158 #ifdef CONFIG_SECURITY_NETWORK
2159 
2160 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2161 {
2162 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2163 }
2164 EXPORT_SYMBOL(security_unix_stream_connect);
2165 
2166 int security_unix_may_send(struct socket *sock,  struct socket *other)
2167 {
2168 	return call_int_hook(unix_may_send, 0, sock, other);
2169 }
2170 EXPORT_SYMBOL(security_unix_may_send);
2171 
2172 int security_socket_create(int family, int type, int protocol, int kern)
2173 {
2174 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2175 }
2176 
2177 int security_socket_post_create(struct socket *sock, int family,
2178 				int type, int protocol, int kern)
2179 {
2180 	return call_int_hook(socket_post_create, 0, sock, family, type,
2181 						protocol, kern);
2182 }
2183 
2184 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2185 {
2186 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2187 }
2188 EXPORT_SYMBOL(security_socket_socketpair);
2189 
2190 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2191 {
2192 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2193 }
2194 
2195 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2196 {
2197 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2198 }
2199 
2200 int security_socket_listen(struct socket *sock, int backlog)
2201 {
2202 	return call_int_hook(socket_listen, 0, sock, backlog);
2203 }
2204 
2205 int security_socket_accept(struct socket *sock, struct socket *newsock)
2206 {
2207 	return call_int_hook(socket_accept, 0, sock, newsock);
2208 }
2209 
2210 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2211 {
2212 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2213 }
2214 
2215 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2216 			    int size, int flags)
2217 {
2218 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2219 }
2220 
2221 int security_socket_getsockname(struct socket *sock)
2222 {
2223 	return call_int_hook(socket_getsockname, 0, sock);
2224 }
2225 
2226 int security_socket_getpeername(struct socket *sock)
2227 {
2228 	return call_int_hook(socket_getpeername, 0, sock);
2229 }
2230 
2231 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2232 {
2233 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2234 }
2235 
2236 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2237 {
2238 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2239 }
2240 
2241 int security_socket_shutdown(struct socket *sock, int how)
2242 {
2243 	return call_int_hook(socket_shutdown, 0, sock, how);
2244 }
2245 
2246 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2247 {
2248 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2249 }
2250 EXPORT_SYMBOL(security_sock_rcv_skb);
2251 
2252 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2253 				      int __user *optlen, unsigned len)
2254 {
2255 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2256 				optval, optlen, len);
2257 }
2258 
2259 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2260 {
2261 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2262 			     skb, secid);
2263 }
2264 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2265 
2266 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2267 {
2268 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2269 }
2270 
2271 void security_sk_free(struct sock *sk)
2272 {
2273 	call_void_hook(sk_free_security, sk);
2274 }
2275 
2276 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2277 {
2278 	call_void_hook(sk_clone_security, sk, newsk);
2279 }
2280 EXPORT_SYMBOL(security_sk_clone);
2281 
2282 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2283 {
2284 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2285 }
2286 EXPORT_SYMBOL(security_sk_classify_flow);
2287 
2288 void security_req_classify_flow(const struct request_sock *req,
2289 				struct flowi_common *flic)
2290 {
2291 	call_void_hook(req_classify_flow, req, flic);
2292 }
2293 EXPORT_SYMBOL(security_req_classify_flow);
2294 
2295 void security_sock_graft(struct sock *sk, struct socket *parent)
2296 {
2297 	call_void_hook(sock_graft, sk, parent);
2298 }
2299 EXPORT_SYMBOL(security_sock_graft);
2300 
2301 int security_inet_conn_request(const struct sock *sk,
2302 			struct sk_buff *skb, struct request_sock *req)
2303 {
2304 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2305 }
2306 EXPORT_SYMBOL(security_inet_conn_request);
2307 
2308 void security_inet_csk_clone(struct sock *newsk,
2309 			const struct request_sock *req)
2310 {
2311 	call_void_hook(inet_csk_clone, newsk, req);
2312 }
2313 
2314 void security_inet_conn_established(struct sock *sk,
2315 			struct sk_buff *skb)
2316 {
2317 	call_void_hook(inet_conn_established, sk, skb);
2318 }
2319 EXPORT_SYMBOL(security_inet_conn_established);
2320 
2321 int security_secmark_relabel_packet(u32 secid)
2322 {
2323 	return call_int_hook(secmark_relabel_packet, 0, secid);
2324 }
2325 EXPORT_SYMBOL(security_secmark_relabel_packet);
2326 
2327 void security_secmark_refcount_inc(void)
2328 {
2329 	call_void_hook(secmark_refcount_inc);
2330 }
2331 EXPORT_SYMBOL(security_secmark_refcount_inc);
2332 
2333 void security_secmark_refcount_dec(void)
2334 {
2335 	call_void_hook(secmark_refcount_dec);
2336 }
2337 EXPORT_SYMBOL(security_secmark_refcount_dec);
2338 
2339 int security_tun_dev_alloc_security(void **security)
2340 {
2341 	return call_int_hook(tun_dev_alloc_security, 0, security);
2342 }
2343 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2344 
2345 void security_tun_dev_free_security(void *security)
2346 {
2347 	call_void_hook(tun_dev_free_security, security);
2348 }
2349 EXPORT_SYMBOL(security_tun_dev_free_security);
2350 
2351 int security_tun_dev_create(void)
2352 {
2353 	return call_int_hook(tun_dev_create, 0);
2354 }
2355 EXPORT_SYMBOL(security_tun_dev_create);
2356 
2357 int security_tun_dev_attach_queue(void *security)
2358 {
2359 	return call_int_hook(tun_dev_attach_queue, 0, security);
2360 }
2361 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2362 
2363 int security_tun_dev_attach(struct sock *sk, void *security)
2364 {
2365 	return call_int_hook(tun_dev_attach, 0, sk, security);
2366 }
2367 EXPORT_SYMBOL(security_tun_dev_attach);
2368 
2369 int security_tun_dev_open(void *security)
2370 {
2371 	return call_int_hook(tun_dev_open, 0, security);
2372 }
2373 EXPORT_SYMBOL(security_tun_dev_open);
2374 
2375 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2376 {
2377 	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2378 }
2379 EXPORT_SYMBOL(security_sctp_assoc_request);
2380 
2381 int security_sctp_bind_connect(struct sock *sk, int optname,
2382 			       struct sockaddr *address, int addrlen)
2383 {
2384 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2385 			     address, addrlen);
2386 }
2387 EXPORT_SYMBOL(security_sctp_bind_connect);
2388 
2389 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2390 			    struct sock *newsk)
2391 {
2392 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2393 }
2394 EXPORT_SYMBOL(security_sctp_sk_clone);
2395 
2396 #endif	/* CONFIG_SECURITY_NETWORK */
2397 
2398 #ifdef CONFIG_SECURITY_INFINIBAND
2399 
2400 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2401 {
2402 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2403 }
2404 EXPORT_SYMBOL(security_ib_pkey_access);
2405 
2406 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2407 {
2408 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2409 }
2410 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2411 
2412 int security_ib_alloc_security(void **sec)
2413 {
2414 	return call_int_hook(ib_alloc_security, 0, sec);
2415 }
2416 EXPORT_SYMBOL(security_ib_alloc_security);
2417 
2418 void security_ib_free_security(void *sec)
2419 {
2420 	call_void_hook(ib_free_security, sec);
2421 }
2422 EXPORT_SYMBOL(security_ib_free_security);
2423 #endif	/* CONFIG_SECURITY_INFINIBAND */
2424 
2425 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2426 
2427 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2428 			       struct xfrm_user_sec_ctx *sec_ctx,
2429 			       gfp_t gfp)
2430 {
2431 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2432 }
2433 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2434 
2435 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2436 			      struct xfrm_sec_ctx **new_ctxp)
2437 {
2438 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2439 }
2440 
2441 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2442 {
2443 	call_void_hook(xfrm_policy_free_security, ctx);
2444 }
2445 EXPORT_SYMBOL(security_xfrm_policy_free);
2446 
2447 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2448 {
2449 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2450 }
2451 
2452 int security_xfrm_state_alloc(struct xfrm_state *x,
2453 			      struct xfrm_user_sec_ctx *sec_ctx)
2454 {
2455 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2456 }
2457 EXPORT_SYMBOL(security_xfrm_state_alloc);
2458 
2459 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2460 				      struct xfrm_sec_ctx *polsec, u32 secid)
2461 {
2462 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2463 }
2464 
2465 int security_xfrm_state_delete(struct xfrm_state *x)
2466 {
2467 	return call_int_hook(xfrm_state_delete_security, 0, x);
2468 }
2469 EXPORT_SYMBOL(security_xfrm_state_delete);
2470 
2471 void security_xfrm_state_free(struct xfrm_state *x)
2472 {
2473 	call_void_hook(xfrm_state_free_security, x);
2474 }
2475 
2476 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2477 {
2478 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2479 }
2480 
2481 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2482 				       struct xfrm_policy *xp,
2483 				       const struct flowi_common *flic)
2484 {
2485 	struct security_hook_list *hp;
2486 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2487 
2488 	/*
2489 	 * Since this function is expected to return 0 or 1, the judgment
2490 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2491 	 * we can use the first LSM's judgment because currently only SELinux
2492 	 * supplies this call.
2493 	 *
2494 	 * For speed optimization, we explicitly break the loop rather than
2495 	 * using the macro
2496 	 */
2497 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2498 				list) {
2499 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2500 		break;
2501 	}
2502 	return rc;
2503 }
2504 
2505 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2506 {
2507 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2508 }
2509 
2510 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2511 {
2512 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2513 				0);
2514 
2515 	BUG_ON(rc);
2516 }
2517 EXPORT_SYMBOL(security_skb_classify_flow);
2518 
2519 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2520 
2521 #ifdef CONFIG_KEYS
2522 
2523 int security_key_alloc(struct key *key, const struct cred *cred,
2524 		       unsigned long flags)
2525 {
2526 	return call_int_hook(key_alloc, 0, key, cred, flags);
2527 }
2528 
2529 void security_key_free(struct key *key)
2530 {
2531 	call_void_hook(key_free, key);
2532 }
2533 
2534 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2535 			    enum key_need_perm need_perm)
2536 {
2537 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2538 }
2539 
2540 int security_key_getsecurity(struct key *key, char **_buffer)
2541 {
2542 	*_buffer = NULL;
2543 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2544 }
2545 
2546 #endif	/* CONFIG_KEYS */
2547 
2548 #ifdef CONFIG_AUDIT
2549 
2550 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2551 {
2552 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2553 }
2554 
2555 int security_audit_rule_known(struct audit_krule *krule)
2556 {
2557 	return call_int_hook(audit_rule_known, 0, krule);
2558 }
2559 
2560 void security_audit_rule_free(void *lsmrule)
2561 {
2562 	call_void_hook(audit_rule_free, lsmrule);
2563 }
2564 
2565 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2566 {
2567 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2568 }
2569 #endif /* CONFIG_AUDIT */
2570 
2571 #ifdef CONFIG_BPF_SYSCALL
2572 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2573 {
2574 	return call_int_hook(bpf, 0, cmd, attr, size);
2575 }
2576 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2577 {
2578 	return call_int_hook(bpf_map, 0, map, fmode);
2579 }
2580 int security_bpf_prog(struct bpf_prog *prog)
2581 {
2582 	return call_int_hook(bpf_prog, 0, prog);
2583 }
2584 int security_bpf_map_alloc(struct bpf_map *map)
2585 {
2586 	return call_int_hook(bpf_map_alloc_security, 0, map);
2587 }
2588 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2589 {
2590 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2591 }
2592 void security_bpf_map_free(struct bpf_map *map)
2593 {
2594 	call_void_hook(bpf_map_free_security, map);
2595 }
2596 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2597 {
2598 	call_void_hook(bpf_prog_free_security, aux);
2599 }
2600 #endif /* CONFIG_BPF_SYSCALL */
2601 
2602 int security_locked_down(enum lockdown_reason what)
2603 {
2604 	return call_int_hook(locked_down, 0, what);
2605 }
2606 EXPORT_SYMBOL(security_locked_down);
2607 
2608 #ifdef CONFIG_PERF_EVENTS
2609 int security_perf_event_open(struct perf_event_attr *attr, int type)
2610 {
2611 	return call_int_hook(perf_event_open, 0, attr, type);
2612 }
2613 
2614 int security_perf_event_alloc(struct perf_event *event)
2615 {
2616 	return call_int_hook(perf_event_alloc, 0, event);
2617 }
2618 
2619 void security_perf_event_free(struct perf_event *event)
2620 {
2621 	call_void_hook(perf_event_free, event);
2622 }
2623 
2624 int security_perf_event_read(struct perf_event *event)
2625 {
2626 	return call_int_hook(perf_event_read, 0, event);
2627 }
2628 
2629 int security_perf_event_write(struct perf_event *event)
2630 {
2631 	return call_int_hook(perf_event_write, 0, event);
2632 }
2633 #endif /* CONFIG_PERF_EVENTS */
2634 
2635 #ifdef CONFIG_IO_URING
2636 int security_uring_override_creds(const struct cred *new)
2637 {
2638 	return call_int_hook(uring_override_creds, 0, new);
2639 }
2640 
2641 int security_uring_sqpoll(void)
2642 {
2643 	return call_int_hook(uring_sqpoll, 0);
2644 }
2645 #endif /* CONFIG_IO_URING */
2646