1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/lsm_hooks.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/msg.h> 30 #include <net/flow.h> 31 32 #define MAX_LSM_EVM_XATTR 2 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 38 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 39 40 static struct kmem_cache *lsm_file_cache; 41 static struct kmem_cache *lsm_inode_cache; 42 43 char *lsm_names; 44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 45 46 /* Boot-time LSM user choice */ 47 static __initdata const char *chosen_lsm_order; 48 static __initdata const char *chosen_major_lsm; 49 50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 51 52 /* Ordered list of LSMs to initialize. */ 53 static __initdata struct lsm_info **ordered_lsms; 54 static __initdata struct lsm_info *exclusive; 55 56 static __initdata bool debug; 57 #define init_debug(...) \ 58 do { \ 59 if (debug) \ 60 pr_info(__VA_ARGS__); \ 61 } while (0) 62 63 static bool __init is_enabled(struct lsm_info *lsm) 64 { 65 if (!lsm->enabled) 66 return false; 67 68 return *lsm->enabled; 69 } 70 71 /* Mark an LSM's enabled flag. */ 72 static int lsm_enabled_true __initdata = 1; 73 static int lsm_enabled_false __initdata = 0; 74 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 75 { 76 /* 77 * When an LSM hasn't configured an enable variable, we can use 78 * a hard-coded location for storing the default enabled state. 79 */ 80 if (!lsm->enabled) { 81 if (enabled) 82 lsm->enabled = &lsm_enabled_true; 83 else 84 lsm->enabled = &lsm_enabled_false; 85 } else if (lsm->enabled == &lsm_enabled_true) { 86 if (!enabled) 87 lsm->enabled = &lsm_enabled_false; 88 } else if (lsm->enabled == &lsm_enabled_false) { 89 if (enabled) 90 lsm->enabled = &lsm_enabled_true; 91 } else { 92 *lsm->enabled = enabled; 93 } 94 } 95 96 /* Is an LSM already listed in the ordered LSMs list? */ 97 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 98 { 99 struct lsm_info **check; 100 101 for (check = ordered_lsms; *check; check++) 102 if (*check == lsm) 103 return true; 104 105 return false; 106 } 107 108 /* Append an LSM to the list of ordered LSMs to initialize. */ 109 static int last_lsm __initdata; 110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 111 { 112 /* Ignore duplicate selections. */ 113 if (exists_ordered_lsm(lsm)) 114 return; 115 116 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 117 return; 118 119 /* Enable this LSM, if it is not already set. */ 120 if (!lsm->enabled) 121 lsm->enabled = &lsm_enabled_true; 122 ordered_lsms[last_lsm++] = lsm; 123 124 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 125 is_enabled(lsm) ? "en" : "dis"); 126 } 127 128 /* Is an LSM allowed to be initialized? */ 129 static bool __init lsm_allowed(struct lsm_info *lsm) 130 { 131 /* Skip if the LSM is disabled. */ 132 if (!is_enabled(lsm)) 133 return false; 134 135 /* Not allowed if another exclusive LSM already initialized. */ 136 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 137 init_debug("exclusive disabled: %s\n", lsm->name); 138 return false; 139 } 140 141 return true; 142 } 143 144 static void __init lsm_set_blob_size(int *need, int *lbs) 145 { 146 int offset; 147 148 if (*need > 0) { 149 offset = *lbs; 150 *lbs += *need; 151 *need = offset; 152 } 153 } 154 155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 156 { 157 if (!needed) 158 return; 159 160 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 161 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 162 /* 163 * The inode blob gets an rcu_head in addition to 164 * what the modules might need. 165 */ 166 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 167 blob_sizes.lbs_inode = sizeof(struct rcu_head); 168 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 169 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 170 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 171 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 172 } 173 174 /* Prepare LSM for initialization. */ 175 static void __init prepare_lsm(struct lsm_info *lsm) 176 { 177 int enabled = lsm_allowed(lsm); 178 179 /* Record enablement (to handle any following exclusive LSMs). */ 180 set_enabled(lsm, enabled); 181 182 /* If enabled, do pre-initialization work. */ 183 if (enabled) { 184 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 185 exclusive = lsm; 186 init_debug("exclusive chosen: %s\n", lsm->name); 187 } 188 189 lsm_set_blob_sizes(lsm->blobs); 190 } 191 } 192 193 /* Initialize a given LSM, if it is enabled. */ 194 static void __init initialize_lsm(struct lsm_info *lsm) 195 { 196 if (is_enabled(lsm)) { 197 int ret; 198 199 init_debug("initializing %s\n", lsm->name); 200 ret = lsm->init(); 201 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 202 } 203 } 204 205 /* Populate ordered LSMs list from comma-separated LSM name list. */ 206 static void __init ordered_lsm_parse(const char *order, const char *origin) 207 { 208 struct lsm_info *lsm; 209 char *sep, *name, *next; 210 211 /* LSM_ORDER_FIRST is always first. */ 212 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 213 if (lsm->order == LSM_ORDER_FIRST) 214 append_ordered_lsm(lsm, "first"); 215 } 216 217 /* Process "security=", if given. */ 218 if (chosen_major_lsm) { 219 struct lsm_info *major; 220 221 /* 222 * To match the original "security=" behavior, this 223 * explicitly does NOT fallback to another Legacy Major 224 * if the selected one was separately disabled: disable 225 * all non-matching Legacy Major LSMs. 226 */ 227 for (major = __start_lsm_info; major < __end_lsm_info; 228 major++) { 229 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 230 strcmp(major->name, chosen_major_lsm) != 0) { 231 set_enabled(major, false); 232 init_debug("security=%s disabled: %s\n", 233 chosen_major_lsm, major->name); 234 } 235 } 236 } 237 238 sep = kstrdup(order, GFP_KERNEL); 239 next = sep; 240 /* Walk the list, looking for matching LSMs. */ 241 while ((name = strsep(&next, ",")) != NULL) { 242 bool found = false; 243 244 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 245 if (lsm->order == LSM_ORDER_MUTABLE && 246 strcmp(lsm->name, name) == 0) { 247 append_ordered_lsm(lsm, origin); 248 found = true; 249 } 250 } 251 252 if (!found) 253 init_debug("%s ignored: %s\n", origin, name); 254 } 255 256 /* Process "security=", if given. */ 257 if (chosen_major_lsm) { 258 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 259 if (exists_ordered_lsm(lsm)) 260 continue; 261 if (strcmp(lsm->name, chosen_major_lsm) == 0) 262 append_ordered_lsm(lsm, "security="); 263 } 264 } 265 266 /* Disable all LSMs not in the ordered list. */ 267 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 268 if (exists_ordered_lsm(lsm)) 269 continue; 270 set_enabled(lsm, false); 271 init_debug("%s disabled: %s\n", origin, lsm->name); 272 } 273 274 kfree(sep); 275 } 276 277 static void __init lsm_early_cred(struct cred *cred); 278 static void __init lsm_early_task(struct task_struct *task); 279 280 static void __init ordered_lsm_init(void) 281 { 282 struct lsm_info **lsm; 283 284 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 285 GFP_KERNEL); 286 287 if (chosen_lsm_order) { 288 if (chosen_major_lsm) { 289 pr_info("security= is ignored because it is superseded by lsm=\n"); 290 chosen_major_lsm = NULL; 291 } 292 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 293 } else 294 ordered_lsm_parse(builtin_lsm_order, "builtin"); 295 296 for (lsm = ordered_lsms; *lsm; lsm++) 297 prepare_lsm(*lsm); 298 299 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 300 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 301 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 302 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 303 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 304 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 305 306 /* 307 * Create any kmem_caches needed for blobs 308 */ 309 if (blob_sizes.lbs_file) 310 lsm_file_cache = kmem_cache_create("lsm_file_cache", 311 blob_sizes.lbs_file, 0, 312 SLAB_PANIC, NULL); 313 if (blob_sizes.lbs_inode) 314 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 315 blob_sizes.lbs_inode, 0, 316 SLAB_PANIC, NULL); 317 318 lsm_early_cred((struct cred *) current->cred); 319 lsm_early_task(current); 320 for (lsm = ordered_lsms; *lsm; lsm++) 321 initialize_lsm(*lsm); 322 323 kfree(ordered_lsms); 324 } 325 326 /** 327 * security_init - initializes the security framework 328 * 329 * This should be called early in the kernel initialization sequence. 330 */ 331 int __init security_init(void) 332 { 333 int i; 334 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 335 336 pr_info("Security Framework initializing\n"); 337 338 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 339 i++) 340 INIT_HLIST_HEAD(&list[i]); 341 342 /* Load LSMs in specified order. */ 343 ordered_lsm_init(); 344 345 return 0; 346 } 347 348 /* Save user chosen LSM */ 349 static int __init choose_major_lsm(char *str) 350 { 351 chosen_major_lsm = str; 352 return 1; 353 } 354 __setup("security=", choose_major_lsm); 355 356 /* Explicitly choose LSM initialization order. */ 357 static int __init choose_lsm_order(char *str) 358 { 359 chosen_lsm_order = str; 360 return 1; 361 } 362 __setup("lsm=", choose_lsm_order); 363 364 /* Enable LSM order debugging. */ 365 static int __init enable_debug(char *str) 366 { 367 debug = true; 368 return 1; 369 } 370 __setup("lsm.debug", enable_debug); 371 372 static bool match_last_lsm(const char *list, const char *lsm) 373 { 374 const char *last; 375 376 if (WARN_ON(!list || !lsm)) 377 return false; 378 last = strrchr(list, ','); 379 if (last) 380 /* Pass the comma, strcmp() will check for '\0' */ 381 last++; 382 else 383 last = list; 384 return !strcmp(last, lsm); 385 } 386 387 static int lsm_append(char *new, char **result) 388 { 389 char *cp; 390 391 if (*result == NULL) { 392 *result = kstrdup(new, GFP_KERNEL); 393 if (*result == NULL) 394 return -ENOMEM; 395 } else { 396 /* Check if it is the last registered name */ 397 if (match_last_lsm(*result, new)) 398 return 0; 399 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 400 if (cp == NULL) 401 return -ENOMEM; 402 kfree(*result); 403 *result = cp; 404 } 405 return 0; 406 } 407 408 /** 409 * security_add_hooks - Add a modules hooks to the hook lists. 410 * @hooks: the hooks to add 411 * @count: the number of hooks to add 412 * @lsm: the name of the security module 413 * 414 * Each LSM has to register its hooks with the infrastructure. 415 */ 416 void __init security_add_hooks(struct security_hook_list *hooks, int count, 417 char *lsm) 418 { 419 int i; 420 421 for (i = 0; i < count; i++) { 422 hooks[i].lsm = lsm; 423 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 424 } 425 if (lsm_append(lsm, &lsm_names) < 0) 426 panic("%s - Cannot get early memory.\n", __func__); 427 } 428 429 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 430 { 431 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 432 event, data); 433 } 434 EXPORT_SYMBOL(call_blocking_lsm_notifier); 435 436 int register_blocking_lsm_notifier(struct notifier_block *nb) 437 { 438 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 439 nb); 440 } 441 EXPORT_SYMBOL(register_blocking_lsm_notifier); 442 443 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 444 { 445 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 446 nb); 447 } 448 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 449 450 /** 451 * lsm_cred_alloc - allocate a composite cred blob 452 * @cred: the cred that needs a blob 453 * @gfp: allocation type 454 * 455 * Allocate the cred blob for all the modules 456 * 457 * Returns 0, or -ENOMEM if memory can't be allocated. 458 */ 459 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 460 { 461 if (blob_sizes.lbs_cred == 0) { 462 cred->security = NULL; 463 return 0; 464 } 465 466 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 467 if (cred->security == NULL) 468 return -ENOMEM; 469 return 0; 470 } 471 472 /** 473 * lsm_early_cred - during initialization allocate a composite cred blob 474 * @cred: the cred that needs a blob 475 * 476 * Allocate the cred blob for all the modules 477 */ 478 static void __init lsm_early_cred(struct cred *cred) 479 { 480 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 481 482 if (rc) 483 panic("%s: Early cred alloc failed.\n", __func__); 484 } 485 486 /** 487 * lsm_file_alloc - allocate a composite file blob 488 * @file: the file that needs a blob 489 * 490 * Allocate the file blob for all the modules 491 * 492 * Returns 0, or -ENOMEM if memory can't be allocated. 493 */ 494 static int lsm_file_alloc(struct file *file) 495 { 496 if (!lsm_file_cache) { 497 file->f_security = NULL; 498 return 0; 499 } 500 501 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 502 if (file->f_security == NULL) 503 return -ENOMEM; 504 return 0; 505 } 506 507 /** 508 * lsm_inode_alloc - allocate a composite inode blob 509 * @inode: the inode that needs a blob 510 * 511 * Allocate the inode blob for all the modules 512 * 513 * Returns 0, or -ENOMEM if memory can't be allocated. 514 */ 515 int lsm_inode_alloc(struct inode *inode) 516 { 517 if (!lsm_inode_cache) { 518 inode->i_security = NULL; 519 return 0; 520 } 521 522 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 523 if (inode->i_security == NULL) 524 return -ENOMEM; 525 return 0; 526 } 527 528 /** 529 * lsm_task_alloc - allocate a composite task blob 530 * @task: the task that needs a blob 531 * 532 * Allocate the task blob for all the modules 533 * 534 * Returns 0, or -ENOMEM if memory can't be allocated. 535 */ 536 static int lsm_task_alloc(struct task_struct *task) 537 { 538 if (blob_sizes.lbs_task == 0) { 539 task->security = NULL; 540 return 0; 541 } 542 543 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 544 if (task->security == NULL) 545 return -ENOMEM; 546 return 0; 547 } 548 549 /** 550 * lsm_ipc_alloc - allocate a composite ipc blob 551 * @kip: the ipc that needs a blob 552 * 553 * Allocate the ipc blob for all the modules 554 * 555 * Returns 0, or -ENOMEM if memory can't be allocated. 556 */ 557 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 558 { 559 if (blob_sizes.lbs_ipc == 0) { 560 kip->security = NULL; 561 return 0; 562 } 563 564 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 565 if (kip->security == NULL) 566 return -ENOMEM; 567 return 0; 568 } 569 570 /** 571 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 572 * @mp: the msg_msg that needs a blob 573 * 574 * Allocate the ipc blob for all the modules 575 * 576 * Returns 0, or -ENOMEM if memory can't be allocated. 577 */ 578 static int lsm_msg_msg_alloc(struct msg_msg *mp) 579 { 580 if (blob_sizes.lbs_msg_msg == 0) { 581 mp->security = NULL; 582 return 0; 583 } 584 585 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 586 if (mp->security == NULL) 587 return -ENOMEM; 588 return 0; 589 } 590 591 /** 592 * lsm_early_task - during initialization allocate a composite task blob 593 * @task: the task that needs a blob 594 * 595 * Allocate the task blob for all the modules 596 */ 597 static void __init lsm_early_task(struct task_struct *task) 598 { 599 int rc = lsm_task_alloc(task); 600 601 if (rc) 602 panic("%s: Early task alloc failed.\n", __func__); 603 } 604 605 /* 606 * Hook list operation macros. 607 * 608 * call_void_hook: 609 * This is a hook that does not return a value. 610 * 611 * call_int_hook: 612 * This is a hook that returns a value. 613 */ 614 615 #define call_void_hook(FUNC, ...) \ 616 do { \ 617 struct security_hook_list *P; \ 618 \ 619 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 620 P->hook.FUNC(__VA_ARGS__); \ 621 } while (0) 622 623 #define call_int_hook(FUNC, IRC, ...) ({ \ 624 int RC = IRC; \ 625 do { \ 626 struct security_hook_list *P; \ 627 \ 628 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 629 RC = P->hook.FUNC(__VA_ARGS__); \ 630 if (RC != 0) \ 631 break; \ 632 } \ 633 } while (0); \ 634 RC; \ 635 }) 636 637 /* Security operations */ 638 639 int security_binder_set_context_mgr(struct task_struct *mgr) 640 { 641 return call_int_hook(binder_set_context_mgr, 0, mgr); 642 } 643 644 int security_binder_transaction(struct task_struct *from, 645 struct task_struct *to) 646 { 647 return call_int_hook(binder_transaction, 0, from, to); 648 } 649 650 int security_binder_transfer_binder(struct task_struct *from, 651 struct task_struct *to) 652 { 653 return call_int_hook(binder_transfer_binder, 0, from, to); 654 } 655 656 int security_binder_transfer_file(struct task_struct *from, 657 struct task_struct *to, struct file *file) 658 { 659 return call_int_hook(binder_transfer_file, 0, from, to, file); 660 } 661 662 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 663 { 664 return call_int_hook(ptrace_access_check, 0, child, mode); 665 } 666 667 int security_ptrace_traceme(struct task_struct *parent) 668 { 669 return call_int_hook(ptrace_traceme, 0, parent); 670 } 671 672 int security_capget(struct task_struct *target, 673 kernel_cap_t *effective, 674 kernel_cap_t *inheritable, 675 kernel_cap_t *permitted) 676 { 677 return call_int_hook(capget, 0, target, 678 effective, inheritable, permitted); 679 } 680 681 int security_capset(struct cred *new, const struct cred *old, 682 const kernel_cap_t *effective, 683 const kernel_cap_t *inheritable, 684 const kernel_cap_t *permitted) 685 { 686 return call_int_hook(capset, 0, new, old, 687 effective, inheritable, permitted); 688 } 689 690 int security_capable(const struct cred *cred, 691 struct user_namespace *ns, 692 int cap, 693 unsigned int opts) 694 { 695 return call_int_hook(capable, 0, cred, ns, cap, opts); 696 } 697 698 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 699 { 700 return call_int_hook(quotactl, 0, cmds, type, id, sb); 701 } 702 703 int security_quota_on(struct dentry *dentry) 704 { 705 return call_int_hook(quota_on, 0, dentry); 706 } 707 708 int security_syslog(int type) 709 { 710 return call_int_hook(syslog, 0, type); 711 } 712 713 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 714 { 715 return call_int_hook(settime, 0, ts, tz); 716 } 717 718 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 719 { 720 struct security_hook_list *hp; 721 int cap_sys_admin = 1; 722 int rc; 723 724 /* 725 * The module will respond with a positive value if 726 * it thinks the __vm_enough_memory() call should be 727 * made with the cap_sys_admin set. If all of the modules 728 * agree that it should be set it will. If any module 729 * thinks it should not be set it won't. 730 */ 731 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 732 rc = hp->hook.vm_enough_memory(mm, pages); 733 if (rc <= 0) { 734 cap_sys_admin = 0; 735 break; 736 } 737 } 738 return __vm_enough_memory(mm, pages, cap_sys_admin); 739 } 740 741 int security_bprm_set_creds(struct linux_binprm *bprm) 742 { 743 return call_int_hook(bprm_set_creds, 0, bprm); 744 } 745 746 int security_bprm_check(struct linux_binprm *bprm) 747 { 748 int ret; 749 750 ret = call_int_hook(bprm_check_security, 0, bprm); 751 if (ret) 752 return ret; 753 return ima_bprm_check(bprm); 754 } 755 756 void security_bprm_committing_creds(struct linux_binprm *bprm) 757 { 758 call_void_hook(bprm_committing_creds, bprm); 759 } 760 761 void security_bprm_committed_creds(struct linux_binprm *bprm) 762 { 763 call_void_hook(bprm_committed_creds, bprm); 764 } 765 766 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 767 { 768 return call_int_hook(fs_context_dup, 0, fc, src_fc); 769 } 770 771 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 772 { 773 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 774 } 775 776 int security_sb_alloc(struct super_block *sb) 777 { 778 return call_int_hook(sb_alloc_security, 0, sb); 779 } 780 781 void security_sb_free(struct super_block *sb) 782 { 783 call_void_hook(sb_free_security, sb); 784 } 785 786 void security_free_mnt_opts(void **mnt_opts) 787 { 788 if (!*mnt_opts) 789 return; 790 call_void_hook(sb_free_mnt_opts, *mnt_opts); 791 *mnt_opts = NULL; 792 } 793 EXPORT_SYMBOL(security_free_mnt_opts); 794 795 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 796 { 797 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 798 } 799 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 800 801 int security_sb_remount(struct super_block *sb, 802 void *mnt_opts) 803 { 804 return call_int_hook(sb_remount, 0, sb, mnt_opts); 805 } 806 EXPORT_SYMBOL(security_sb_remount); 807 808 int security_sb_kern_mount(struct super_block *sb) 809 { 810 return call_int_hook(sb_kern_mount, 0, sb); 811 } 812 813 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 814 { 815 return call_int_hook(sb_show_options, 0, m, sb); 816 } 817 818 int security_sb_statfs(struct dentry *dentry) 819 { 820 return call_int_hook(sb_statfs, 0, dentry); 821 } 822 823 int security_sb_mount(const char *dev_name, const struct path *path, 824 const char *type, unsigned long flags, void *data) 825 { 826 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 827 } 828 829 int security_sb_umount(struct vfsmount *mnt, int flags) 830 { 831 return call_int_hook(sb_umount, 0, mnt, flags); 832 } 833 834 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 835 { 836 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 837 } 838 839 int security_sb_set_mnt_opts(struct super_block *sb, 840 void *mnt_opts, 841 unsigned long kern_flags, 842 unsigned long *set_kern_flags) 843 { 844 return call_int_hook(sb_set_mnt_opts, 845 mnt_opts ? -EOPNOTSUPP : 0, sb, 846 mnt_opts, kern_flags, set_kern_flags); 847 } 848 EXPORT_SYMBOL(security_sb_set_mnt_opts); 849 850 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 851 struct super_block *newsb, 852 unsigned long kern_flags, 853 unsigned long *set_kern_flags) 854 { 855 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 856 kern_flags, set_kern_flags); 857 } 858 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 859 860 int security_add_mnt_opt(const char *option, const char *val, int len, 861 void **mnt_opts) 862 { 863 return call_int_hook(sb_add_mnt_opt, -EINVAL, 864 option, val, len, mnt_opts); 865 } 866 EXPORT_SYMBOL(security_add_mnt_opt); 867 868 int security_move_mount(const struct path *from_path, const struct path *to_path) 869 { 870 return call_int_hook(move_mount, 0, from_path, to_path); 871 } 872 873 int security_path_notify(const struct path *path, u64 mask, 874 unsigned int obj_type) 875 { 876 return call_int_hook(path_notify, 0, path, mask, obj_type); 877 } 878 879 int security_inode_alloc(struct inode *inode) 880 { 881 int rc = lsm_inode_alloc(inode); 882 883 if (unlikely(rc)) 884 return rc; 885 rc = call_int_hook(inode_alloc_security, 0, inode); 886 if (unlikely(rc)) 887 security_inode_free(inode); 888 return rc; 889 } 890 891 static void inode_free_by_rcu(struct rcu_head *head) 892 { 893 /* 894 * The rcu head is at the start of the inode blob 895 */ 896 kmem_cache_free(lsm_inode_cache, head); 897 } 898 899 void security_inode_free(struct inode *inode) 900 { 901 integrity_inode_free(inode); 902 call_void_hook(inode_free_security, inode); 903 /* 904 * The inode may still be referenced in a path walk and 905 * a call to security_inode_permission() can be made 906 * after inode_free_security() is called. Ideally, the VFS 907 * wouldn't do this, but fixing that is a much harder 908 * job. For now, simply free the i_security via RCU, and 909 * leave the current inode->i_security pointer intact. 910 * The inode will be freed after the RCU grace period too. 911 */ 912 if (inode->i_security) 913 call_rcu((struct rcu_head *)inode->i_security, 914 inode_free_by_rcu); 915 } 916 917 int security_dentry_init_security(struct dentry *dentry, int mode, 918 const struct qstr *name, void **ctx, 919 u32 *ctxlen) 920 { 921 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 922 name, ctx, ctxlen); 923 } 924 EXPORT_SYMBOL(security_dentry_init_security); 925 926 int security_dentry_create_files_as(struct dentry *dentry, int mode, 927 struct qstr *name, 928 const struct cred *old, struct cred *new) 929 { 930 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 931 name, old, new); 932 } 933 EXPORT_SYMBOL(security_dentry_create_files_as); 934 935 int security_inode_init_security(struct inode *inode, struct inode *dir, 936 const struct qstr *qstr, 937 const initxattrs initxattrs, void *fs_data) 938 { 939 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 940 struct xattr *lsm_xattr, *evm_xattr, *xattr; 941 int ret; 942 943 if (unlikely(IS_PRIVATE(inode))) 944 return 0; 945 946 if (!initxattrs) 947 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 948 dir, qstr, NULL, NULL, NULL); 949 memset(new_xattrs, 0, sizeof(new_xattrs)); 950 lsm_xattr = new_xattrs; 951 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 952 &lsm_xattr->name, 953 &lsm_xattr->value, 954 &lsm_xattr->value_len); 955 if (ret) 956 goto out; 957 958 evm_xattr = lsm_xattr + 1; 959 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 960 if (ret) 961 goto out; 962 ret = initxattrs(inode, new_xattrs, fs_data); 963 out: 964 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 965 kfree(xattr->value); 966 return (ret == -EOPNOTSUPP) ? 0 : ret; 967 } 968 EXPORT_SYMBOL(security_inode_init_security); 969 970 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 971 const struct qstr *qstr, const char **name, 972 void **value, size_t *len) 973 { 974 if (unlikely(IS_PRIVATE(inode))) 975 return -EOPNOTSUPP; 976 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 977 qstr, name, value, len); 978 } 979 EXPORT_SYMBOL(security_old_inode_init_security); 980 981 #ifdef CONFIG_SECURITY_PATH 982 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 983 unsigned int dev) 984 { 985 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 986 return 0; 987 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 988 } 989 EXPORT_SYMBOL(security_path_mknod); 990 991 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 992 { 993 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 994 return 0; 995 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 996 } 997 EXPORT_SYMBOL(security_path_mkdir); 998 999 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1000 { 1001 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1002 return 0; 1003 return call_int_hook(path_rmdir, 0, dir, dentry); 1004 } 1005 1006 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1007 { 1008 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1009 return 0; 1010 return call_int_hook(path_unlink, 0, dir, dentry); 1011 } 1012 EXPORT_SYMBOL(security_path_unlink); 1013 1014 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1015 const char *old_name) 1016 { 1017 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1018 return 0; 1019 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1020 } 1021 1022 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1023 struct dentry *new_dentry) 1024 { 1025 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1026 return 0; 1027 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1028 } 1029 1030 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1031 const struct path *new_dir, struct dentry *new_dentry, 1032 unsigned int flags) 1033 { 1034 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1035 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1036 return 0; 1037 1038 if (flags & RENAME_EXCHANGE) { 1039 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1040 old_dir, old_dentry); 1041 if (err) 1042 return err; 1043 } 1044 1045 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1046 new_dentry); 1047 } 1048 EXPORT_SYMBOL(security_path_rename); 1049 1050 int security_path_truncate(const struct path *path) 1051 { 1052 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1053 return 0; 1054 return call_int_hook(path_truncate, 0, path); 1055 } 1056 1057 int security_path_chmod(const struct path *path, umode_t mode) 1058 { 1059 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1060 return 0; 1061 return call_int_hook(path_chmod, 0, path, mode); 1062 } 1063 1064 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1065 { 1066 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1067 return 0; 1068 return call_int_hook(path_chown, 0, path, uid, gid); 1069 } 1070 1071 int security_path_chroot(const struct path *path) 1072 { 1073 return call_int_hook(path_chroot, 0, path); 1074 } 1075 #endif 1076 1077 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1078 { 1079 if (unlikely(IS_PRIVATE(dir))) 1080 return 0; 1081 return call_int_hook(inode_create, 0, dir, dentry, mode); 1082 } 1083 EXPORT_SYMBOL_GPL(security_inode_create); 1084 1085 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1086 struct dentry *new_dentry) 1087 { 1088 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1089 return 0; 1090 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1091 } 1092 1093 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1094 { 1095 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1096 return 0; 1097 return call_int_hook(inode_unlink, 0, dir, dentry); 1098 } 1099 1100 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1101 const char *old_name) 1102 { 1103 if (unlikely(IS_PRIVATE(dir))) 1104 return 0; 1105 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1106 } 1107 1108 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1109 { 1110 if (unlikely(IS_PRIVATE(dir))) 1111 return 0; 1112 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1113 } 1114 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1115 1116 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1117 { 1118 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1119 return 0; 1120 return call_int_hook(inode_rmdir, 0, dir, dentry); 1121 } 1122 1123 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1124 { 1125 if (unlikely(IS_PRIVATE(dir))) 1126 return 0; 1127 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1128 } 1129 1130 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1131 struct inode *new_dir, struct dentry *new_dentry, 1132 unsigned int flags) 1133 { 1134 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1135 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1136 return 0; 1137 1138 if (flags & RENAME_EXCHANGE) { 1139 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1140 old_dir, old_dentry); 1141 if (err) 1142 return err; 1143 } 1144 1145 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1146 new_dir, new_dentry); 1147 } 1148 1149 int security_inode_readlink(struct dentry *dentry) 1150 { 1151 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1152 return 0; 1153 return call_int_hook(inode_readlink, 0, dentry); 1154 } 1155 1156 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1157 bool rcu) 1158 { 1159 if (unlikely(IS_PRIVATE(inode))) 1160 return 0; 1161 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1162 } 1163 1164 int security_inode_permission(struct inode *inode, int mask) 1165 { 1166 if (unlikely(IS_PRIVATE(inode))) 1167 return 0; 1168 return call_int_hook(inode_permission, 0, inode, mask); 1169 } 1170 1171 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1172 { 1173 int ret; 1174 1175 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1176 return 0; 1177 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1178 if (ret) 1179 return ret; 1180 return evm_inode_setattr(dentry, attr); 1181 } 1182 EXPORT_SYMBOL_GPL(security_inode_setattr); 1183 1184 int security_inode_getattr(const struct path *path) 1185 { 1186 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1187 return 0; 1188 return call_int_hook(inode_getattr, 0, path); 1189 } 1190 1191 int security_inode_setxattr(struct dentry *dentry, const char *name, 1192 const void *value, size_t size, int flags) 1193 { 1194 int ret; 1195 1196 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1197 return 0; 1198 /* 1199 * SELinux and Smack integrate the cap call, 1200 * so assume that all LSMs supplying this call do so. 1201 */ 1202 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1203 flags); 1204 1205 if (ret == 1) 1206 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1207 if (ret) 1208 return ret; 1209 ret = ima_inode_setxattr(dentry, name, value, size); 1210 if (ret) 1211 return ret; 1212 return evm_inode_setxattr(dentry, name, value, size); 1213 } 1214 1215 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1216 const void *value, size_t size, int flags) 1217 { 1218 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1219 return; 1220 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1221 evm_inode_post_setxattr(dentry, name, value, size); 1222 } 1223 1224 int security_inode_getxattr(struct dentry *dentry, const char *name) 1225 { 1226 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1227 return 0; 1228 return call_int_hook(inode_getxattr, 0, dentry, name); 1229 } 1230 1231 int security_inode_listxattr(struct dentry *dentry) 1232 { 1233 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1234 return 0; 1235 return call_int_hook(inode_listxattr, 0, dentry); 1236 } 1237 1238 int security_inode_removexattr(struct dentry *dentry, const char *name) 1239 { 1240 int ret; 1241 1242 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1243 return 0; 1244 /* 1245 * SELinux and Smack integrate the cap call, 1246 * so assume that all LSMs supplying this call do so. 1247 */ 1248 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1249 if (ret == 1) 1250 ret = cap_inode_removexattr(dentry, name); 1251 if (ret) 1252 return ret; 1253 ret = ima_inode_removexattr(dentry, name); 1254 if (ret) 1255 return ret; 1256 return evm_inode_removexattr(dentry, name); 1257 } 1258 1259 int security_inode_need_killpriv(struct dentry *dentry) 1260 { 1261 return call_int_hook(inode_need_killpriv, 0, dentry); 1262 } 1263 1264 int security_inode_killpriv(struct dentry *dentry) 1265 { 1266 return call_int_hook(inode_killpriv, 0, dentry); 1267 } 1268 1269 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1270 { 1271 struct security_hook_list *hp; 1272 int rc; 1273 1274 if (unlikely(IS_PRIVATE(inode))) 1275 return -EOPNOTSUPP; 1276 /* 1277 * Only one module will provide an attribute with a given name. 1278 */ 1279 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1280 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1281 if (rc != -EOPNOTSUPP) 1282 return rc; 1283 } 1284 return -EOPNOTSUPP; 1285 } 1286 1287 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1288 { 1289 struct security_hook_list *hp; 1290 int rc; 1291 1292 if (unlikely(IS_PRIVATE(inode))) 1293 return -EOPNOTSUPP; 1294 /* 1295 * Only one module will provide an attribute with a given name. 1296 */ 1297 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1298 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1299 flags); 1300 if (rc != -EOPNOTSUPP) 1301 return rc; 1302 } 1303 return -EOPNOTSUPP; 1304 } 1305 1306 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1307 { 1308 if (unlikely(IS_PRIVATE(inode))) 1309 return 0; 1310 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1311 } 1312 EXPORT_SYMBOL(security_inode_listsecurity); 1313 1314 void security_inode_getsecid(struct inode *inode, u32 *secid) 1315 { 1316 call_void_hook(inode_getsecid, inode, secid); 1317 } 1318 1319 int security_inode_copy_up(struct dentry *src, struct cred **new) 1320 { 1321 return call_int_hook(inode_copy_up, 0, src, new); 1322 } 1323 EXPORT_SYMBOL(security_inode_copy_up); 1324 1325 int security_inode_copy_up_xattr(const char *name) 1326 { 1327 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1328 } 1329 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1330 1331 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1332 struct kernfs_node *kn) 1333 { 1334 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1335 } 1336 1337 int security_file_permission(struct file *file, int mask) 1338 { 1339 int ret; 1340 1341 ret = call_int_hook(file_permission, 0, file, mask); 1342 if (ret) 1343 return ret; 1344 1345 return fsnotify_perm(file, mask); 1346 } 1347 1348 int security_file_alloc(struct file *file) 1349 { 1350 int rc = lsm_file_alloc(file); 1351 1352 if (rc) 1353 return rc; 1354 rc = call_int_hook(file_alloc_security, 0, file); 1355 if (unlikely(rc)) 1356 security_file_free(file); 1357 return rc; 1358 } 1359 1360 void security_file_free(struct file *file) 1361 { 1362 void *blob; 1363 1364 call_void_hook(file_free_security, file); 1365 1366 blob = file->f_security; 1367 if (blob) { 1368 file->f_security = NULL; 1369 kmem_cache_free(lsm_file_cache, blob); 1370 } 1371 } 1372 1373 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1374 { 1375 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1376 } 1377 1378 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1379 { 1380 /* 1381 * Does we have PROT_READ and does the application expect 1382 * it to imply PROT_EXEC? If not, nothing to talk about... 1383 */ 1384 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1385 return prot; 1386 if (!(current->personality & READ_IMPLIES_EXEC)) 1387 return prot; 1388 /* 1389 * if that's an anonymous mapping, let it. 1390 */ 1391 if (!file) 1392 return prot | PROT_EXEC; 1393 /* 1394 * ditto if it's not on noexec mount, except that on !MMU we need 1395 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1396 */ 1397 if (!path_noexec(&file->f_path)) { 1398 #ifndef CONFIG_MMU 1399 if (file->f_op->mmap_capabilities) { 1400 unsigned caps = file->f_op->mmap_capabilities(file); 1401 if (!(caps & NOMMU_MAP_EXEC)) 1402 return prot; 1403 } 1404 #endif 1405 return prot | PROT_EXEC; 1406 } 1407 /* anything on noexec mount won't get PROT_EXEC */ 1408 return prot; 1409 } 1410 1411 int security_mmap_file(struct file *file, unsigned long prot, 1412 unsigned long flags) 1413 { 1414 int ret; 1415 ret = call_int_hook(mmap_file, 0, file, prot, 1416 mmap_prot(file, prot), flags); 1417 if (ret) 1418 return ret; 1419 return ima_file_mmap(file, prot); 1420 } 1421 1422 int security_mmap_addr(unsigned long addr) 1423 { 1424 return call_int_hook(mmap_addr, 0, addr); 1425 } 1426 1427 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1428 unsigned long prot) 1429 { 1430 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1431 } 1432 1433 int security_file_lock(struct file *file, unsigned int cmd) 1434 { 1435 return call_int_hook(file_lock, 0, file, cmd); 1436 } 1437 1438 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1439 { 1440 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1441 } 1442 1443 void security_file_set_fowner(struct file *file) 1444 { 1445 call_void_hook(file_set_fowner, file); 1446 } 1447 1448 int security_file_send_sigiotask(struct task_struct *tsk, 1449 struct fown_struct *fown, int sig) 1450 { 1451 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1452 } 1453 1454 int security_file_receive(struct file *file) 1455 { 1456 return call_int_hook(file_receive, 0, file); 1457 } 1458 1459 int security_file_open(struct file *file) 1460 { 1461 int ret; 1462 1463 ret = call_int_hook(file_open, 0, file); 1464 if (ret) 1465 return ret; 1466 1467 return fsnotify_perm(file, MAY_OPEN); 1468 } 1469 1470 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1471 { 1472 int rc = lsm_task_alloc(task); 1473 1474 if (rc) 1475 return rc; 1476 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1477 if (unlikely(rc)) 1478 security_task_free(task); 1479 return rc; 1480 } 1481 1482 void security_task_free(struct task_struct *task) 1483 { 1484 call_void_hook(task_free, task); 1485 1486 kfree(task->security); 1487 task->security = NULL; 1488 } 1489 1490 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1491 { 1492 int rc = lsm_cred_alloc(cred, gfp); 1493 1494 if (rc) 1495 return rc; 1496 1497 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1498 if (unlikely(rc)) 1499 security_cred_free(cred); 1500 return rc; 1501 } 1502 1503 void security_cred_free(struct cred *cred) 1504 { 1505 /* 1506 * There is a failure case in prepare_creds() that 1507 * may result in a call here with ->security being NULL. 1508 */ 1509 if (unlikely(cred->security == NULL)) 1510 return; 1511 1512 call_void_hook(cred_free, cred); 1513 1514 kfree(cred->security); 1515 cred->security = NULL; 1516 } 1517 1518 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1519 { 1520 int rc = lsm_cred_alloc(new, gfp); 1521 1522 if (rc) 1523 return rc; 1524 1525 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1526 if (unlikely(rc)) 1527 security_cred_free(new); 1528 return rc; 1529 } 1530 1531 void security_transfer_creds(struct cred *new, const struct cred *old) 1532 { 1533 call_void_hook(cred_transfer, new, old); 1534 } 1535 1536 void security_cred_getsecid(const struct cred *c, u32 *secid) 1537 { 1538 *secid = 0; 1539 call_void_hook(cred_getsecid, c, secid); 1540 } 1541 EXPORT_SYMBOL(security_cred_getsecid); 1542 1543 int security_kernel_act_as(struct cred *new, u32 secid) 1544 { 1545 return call_int_hook(kernel_act_as, 0, new, secid); 1546 } 1547 1548 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1549 { 1550 return call_int_hook(kernel_create_files_as, 0, new, inode); 1551 } 1552 1553 int security_kernel_module_request(char *kmod_name) 1554 { 1555 int ret; 1556 1557 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1558 if (ret) 1559 return ret; 1560 return integrity_kernel_module_request(kmod_name); 1561 } 1562 1563 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1564 { 1565 int ret; 1566 1567 ret = call_int_hook(kernel_read_file, 0, file, id); 1568 if (ret) 1569 return ret; 1570 return ima_read_file(file, id); 1571 } 1572 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1573 1574 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1575 enum kernel_read_file_id id) 1576 { 1577 int ret; 1578 1579 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1580 if (ret) 1581 return ret; 1582 return ima_post_read_file(file, buf, size, id); 1583 } 1584 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1585 1586 int security_kernel_load_data(enum kernel_load_data_id id) 1587 { 1588 int ret; 1589 1590 ret = call_int_hook(kernel_load_data, 0, id); 1591 if (ret) 1592 return ret; 1593 return ima_load_data(id); 1594 } 1595 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1596 1597 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1598 int flags) 1599 { 1600 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1601 } 1602 1603 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1604 { 1605 return call_int_hook(task_setpgid, 0, p, pgid); 1606 } 1607 1608 int security_task_getpgid(struct task_struct *p) 1609 { 1610 return call_int_hook(task_getpgid, 0, p); 1611 } 1612 1613 int security_task_getsid(struct task_struct *p) 1614 { 1615 return call_int_hook(task_getsid, 0, p); 1616 } 1617 1618 void security_task_getsecid(struct task_struct *p, u32 *secid) 1619 { 1620 *secid = 0; 1621 call_void_hook(task_getsecid, p, secid); 1622 } 1623 EXPORT_SYMBOL(security_task_getsecid); 1624 1625 int security_task_setnice(struct task_struct *p, int nice) 1626 { 1627 return call_int_hook(task_setnice, 0, p, nice); 1628 } 1629 1630 int security_task_setioprio(struct task_struct *p, int ioprio) 1631 { 1632 return call_int_hook(task_setioprio, 0, p, ioprio); 1633 } 1634 1635 int security_task_getioprio(struct task_struct *p) 1636 { 1637 return call_int_hook(task_getioprio, 0, p); 1638 } 1639 1640 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1641 unsigned int flags) 1642 { 1643 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1644 } 1645 1646 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1647 struct rlimit *new_rlim) 1648 { 1649 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1650 } 1651 1652 int security_task_setscheduler(struct task_struct *p) 1653 { 1654 return call_int_hook(task_setscheduler, 0, p); 1655 } 1656 1657 int security_task_getscheduler(struct task_struct *p) 1658 { 1659 return call_int_hook(task_getscheduler, 0, p); 1660 } 1661 1662 int security_task_movememory(struct task_struct *p) 1663 { 1664 return call_int_hook(task_movememory, 0, p); 1665 } 1666 1667 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1668 int sig, const struct cred *cred) 1669 { 1670 return call_int_hook(task_kill, 0, p, info, sig, cred); 1671 } 1672 1673 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1674 unsigned long arg4, unsigned long arg5) 1675 { 1676 int thisrc; 1677 int rc = -ENOSYS; 1678 struct security_hook_list *hp; 1679 1680 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1681 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1682 if (thisrc != -ENOSYS) { 1683 rc = thisrc; 1684 if (thisrc != 0) 1685 break; 1686 } 1687 } 1688 return rc; 1689 } 1690 1691 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1692 { 1693 call_void_hook(task_to_inode, p, inode); 1694 } 1695 1696 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1697 { 1698 return call_int_hook(ipc_permission, 0, ipcp, flag); 1699 } 1700 1701 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1702 { 1703 *secid = 0; 1704 call_void_hook(ipc_getsecid, ipcp, secid); 1705 } 1706 1707 int security_msg_msg_alloc(struct msg_msg *msg) 1708 { 1709 int rc = lsm_msg_msg_alloc(msg); 1710 1711 if (unlikely(rc)) 1712 return rc; 1713 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1714 if (unlikely(rc)) 1715 security_msg_msg_free(msg); 1716 return rc; 1717 } 1718 1719 void security_msg_msg_free(struct msg_msg *msg) 1720 { 1721 call_void_hook(msg_msg_free_security, msg); 1722 kfree(msg->security); 1723 msg->security = NULL; 1724 } 1725 1726 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1727 { 1728 int rc = lsm_ipc_alloc(msq); 1729 1730 if (unlikely(rc)) 1731 return rc; 1732 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1733 if (unlikely(rc)) 1734 security_msg_queue_free(msq); 1735 return rc; 1736 } 1737 1738 void security_msg_queue_free(struct kern_ipc_perm *msq) 1739 { 1740 call_void_hook(msg_queue_free_security, msq); 1741 kfree(msq->security); 1742 msq->security = NULL; 1743 } 1744 1745 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1746 { 1747 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1748 } 1749 1750 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1751 { 1752 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1753 } 1754 1755 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1756 struct msg_msg *msg, int msqflg) 1757 { 1758 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1759 } 1760 1761 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1762 struct task_struct *target, long type, int mode) 1763 { 1764 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1765 } 1766 1767 int security_shm_alloc(struct kern_ipc_perm *shp) 1768 { 1769 int rc = lsm_ipc_alloc(shp); 1770 1771 if (unlikely(rc)) 1772 return rc; 1773 rc = call_int_hook(shm_alloc_security, 0, shp); 1774 if (unlikely(rc)) 1775 security_shm_free(shp); 1776 return rc; 1777 } 1778 1779 void security_shm_free(struct kern_ipc_perm *shp) 1780 { 1781 call_void_hook(shm_free_security, shp); 1782 kfree(shp->security); 1783 shp->security = NULL; 1784 } 1785 1786 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1787 { 1788 return call_int_hook(shm_associate, 0, shp, shmflg); 1789 } 1790 1791 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1792 { 1793 return call_int_hook(shm_shmctl, 0, shp, cmd); 1794 } 1795 1796 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1797 { 1798 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1799 } 1800 1801 int security_sem_alloc(struct kern_ipc_perm *sma) 1802 { 1803 int rc = lsm_ipc_alloc(sma); 1804 1805 if (unlikely(rc)) 1806 return rc; 1807 rc = call_int_hook(sem_alloc_security, 0, sma); 1808 if (unlikely(rc)) 1809 security_sem_free(sma); 1810 return rc; 1811 } 1812 1813 void security_sem_free(struct kern_ipc_perm *sma) 1814 { 1815 call_void_hook(sem_free_security, sma); 1816 kfree(sma->security); 1817 sma->security = NULL; 1818 } 1819 1820 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1821 { 1822 return call_int_hook(sem_associate, 0, sma, semflg); 1823 } 1824 1825 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1826 { 1827 return call_int_hook(sem_semctl, 0, sma, cmd); 1828 } 1829 1830 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1831 unsigned nsops, int alter) 1832 { 1833 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1834 } 1835 1836 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1837 { 1838 if (unlikely(inode && IS_PRIVATE(inode))) 1839 return; 1840 call_void_hook(d_instantiate, dentry, inode); 1841 } 1842 EXPORT_SYMBOL(security_d_instantiate); 1843 1844 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1845 char **value) 1846 { 1847 struct security_hook_list *hp; 1848 1849 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1850 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1851 continue; 1852 return hp->hook.getprocattr(p, name, value); 1853 } 1854 return -EINVAL; 1855 } 1856 1857 int security_setprocattr(const char *lsm, const char *name, void *value, 1858 size_t size) 1859 { 1860 struct security_hook_list *hp; 1861 1862 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1863 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1864 continue; 1865 return hp->hook.setprocattr(name, value, size); 1866 } 1867 return -EINVAL; 1868 } 1869 1870 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1871 { 1872 return call_int_hook(netlink_send, 0, sk, skb); 1873 } 1874 1875 int security_ismaclabel(const char *name) 1876 { 1877 return call_int_hook(ismaclabel, 0, name); 1878 } 1879 EXPORT_SYMBOL(security_ismaclabel); 1880 1881 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1882 { 1883 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1884 seclen); 1885 } 1886 EXPORT_SYMBOL(security_secid_to_secctx); 1887 1888 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1889 { 1890 *secid = 0; 1891 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1892 } 1893 EXPORT_SYMBOL(security_secctx_to_secid); 1894 1895 void security_release_secctx(char *secdata, u32 seclen) 1896 { 1897 call_void_hook(release_secctx, secdata, seclen); 1898 } 1899 EXPORT_SYMBOL(security_release_secctx); 1900 1901 void security_inode_invalidate_secctx(struct inode *inode) 1902 { 1903 call_void_hook(inode_invalidate_secctx, inode); 1904 } 1905 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1906 1907 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1908 { 1909 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1910 } 1911 EXPORT_SYMBOL(security_inode_notifysecctx); 1912 1913 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1914 { 1915 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1916 } 1917 EXPORT_SYMBOL(security_inode_setsecctx); 1918 1919 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1920 { 1921 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1922 } 1923 EXPORT_SYMBOL(security_inode_getsecctx); 1924 1925 #ifdef CONFIG_SECURITY_NETWORK 1926 1927 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1928 { 1929 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1930 } 1931 EXPORT_SYMBOL(security_unix_stream_connect); 1932 1933 int security_unix_may_send(struct socket *sock, struct socket *other) 1934 { 1935 return call_int_hook(unix_may_send, 0, sock, other); 1936 } 1937 EXPORT_SYMBOL(security_unix_may_send); 1938 1939 int security_socket_create(int family, int type, int protocol, int kern) 1940 { 1941 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1942 } 1943 1944 int security_socket_post_create(struct socket *sock, int family, 1945 int type, int protocol, int kern) 1946 { 1947 return call_int_hook(socket_post_create, 0, sock, family, type, 1948 protocol, kern); 1949 } 1950 1951 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1952 { 1953 return call_int_hook(socket_socketpair, 0, socka, sockb); 1954 } 1955 EXPORT_SYMBOL(security_socket_socketpair); 1956 1957 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1958 { 1959 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1960 } 1961 1962 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1963 { 1964 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1965 } 1966 1967 int security_socket_listen(struct socket *sock, int backlog) 1968 { 1969 return call_int_hook(socket_listen, 0, sock, backlog); 1970 } 1971 1972 int security_socket_accept(struct socket *sock, struct socket *newsock) 1973 { 1974 return call_int_hook(socket_accept, 0, sock, newsock); 1975 } 1976 1977 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1978 { 1979 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1980 } 1981 1982 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1983 int size, int flags) 1984 { 1985 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1986 } 1987 1988 int security_socket_getsockname(struct socket *sock) 1989 { 1990 return call_int_hook(socket_getsockname, 0, sock); 1991 } 1992 1993 int security_socket_getpeername(struct socket *sock) 1994 { 1995 return call_int_hook(socket_getpeername, 0, sock); 1996 } 1997 1998 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1999 { 2000 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2001 } 2002 2003 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2004 { 2005 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2006 } 2007 2008 int security_socket_shutdown(struct socket *sock, int how) 2009 { 2010 return call_int_hook(socket_shutdown, 0, sock, how); 2011 } 2012 2013 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2014 { 2015 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2016 } 2017 EXPORT_SYMBOL(security_sock_rcv_skb); 2018 2019 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2020 int __user *optlen, unsigned len) 2021 { 2022 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2023 optval, optlen, len); 2024 } 2025 2026 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2027 { 2028 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2029 skb, secid); 2030 } 2031 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2032 2033 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2034 { 2035 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2036 } 2037 2038 void security_sk_free(struct sock *sk) 2039 { 2040 call_void_hook(sk_free_security, sk); 2041 } 2042 2043 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2044 { 2045 call_void_hook(sk_clone_security, sk, newsk); 2046 } 2047 EXPORT_SYMBOL(security_sk_clone); 2048 2049 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2050 { 2051 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2052 } 2053 EXPORT_SYMBOL(security_sk_classify_flow); 2054 2055 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2056 { 2057 call_void_hook(req_classify_flow, req, fl); 2058 } 2059 EXPORT_SYMBOL(security_req_classify_flow); 2060 2061 void security_sock_graft(struct sock *sk, struct socket *parent) 2062 { 2063 call_void_hook(sock_graft, sk, parent); 2064 } 2065 EXPORT_SYMBOL(security_sock_graft); 2066 2067 int security_inet_conn_request(struct sock *sk, 2068 struct sk_buff *skb, struct request_sock *req) 2069 { 2070 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2071 } 2072 EXPORT_SYMBOL(security_inet_conn_request); 2073 2074 void security_inet_csk_clone(struct sock *newsk, 2075 const struct request_sock *req) 2076 { 2077 call_void_hook(inet_csk_clone, newsk, req); 2078 } 2079 2080 void security_inet_conn_established(struct sock *sk, 2081 struct sk_buff *skb) 2082 { 2083 call_void_hook(inet_conn_established, sk, skb); 2084 } 2085 EXPORT_SYMBOL(security_inet_conn_established); 2086 2087 int security_secmark_relabel_packet(u32 secid) 2088 { 2089 return call_int_hook(secmark_relabel_packet, 0, secid); 2090 } 2091 EXPORT_SYMBOL(security_secmark_relabel_packet); 2092 2093 void security_secmark_refcount_inc(void) 2094 { 2095 call_void_hook(secmark_refcount_inc); 2096 } 2097 EXPORT_SYMBOL(security_secmark_refcount_inc); 2098 2099 void security_secmark_refcount_dec(void) 2100 { 2101 call_void_hook(secmark_refcount_dec); 2102 } 2103 EXPORT_SYMBOL(security_secmark_refcount_dec); 2104 2105 int security_tun_dev_alloc_security(void **security) 2106 { 2107 return call_int_hook(tun_dev_alloc_security, 0, security); 2108 } 2109 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2110 2111 void security_tun_dev_free_security(void *security) 2112 { 2113 call_void_hook(tun_dev_free_security, security); 2114 } 2115 EXPORT_SYMBOL(security_tun_dev_free_security); 2116 2117 int security_tun_dev_create(void) 2118 { 2119 return call_int_hook(tun_dev_create, 0); 2120 } 2121 EXPORT_SYMBOL(security_tun_dev_create); 2122 2123 int security_tun_dev_attach_queue(void *security) 2124 { 2125 return call_int_hook(tun_dev_attach_queue, 0, security); 2126 } 2127 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2128 2129 int security_tun_dev_attach(struct sock *sk, void *security) 2130 { 2131 return call_int_hook(tun_dev_attach, 0, sk, security); 2132 } 2133 EXPORT_SYMBOL(security_tun_dev_attach); 2134 2135 int security_tun_dev_open(void *security) 2136 { 2137 return call_int_hook(tun_dev_open, 0, security); 2138 } 2139 EXPORT_SYMBOL(security_tun_dev_open); 2140 2141 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2142 { 2143 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2144 } 2145 EXPORT_SYMBOL(security_sctp_assoc_request); 2146 2147 int security_sctp_bind_connect(struct sock *sk, int optname, 2148 struct sockaddr *address, int addrlen) 2149 { 2150 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2151 address, addrlen); 2152 } 2153 EXPORT_SYMBOL(security_sctp_bind_connect); 2154 2155 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2156 struct sock *newsk) 2157 { 2158 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2159 } 2160 EXPORT_SYMBOL(security_sctp_sk_clone); 2161 2162 #endif /* CONFIG_SECURITY_NETWORK */ 2163 2164 #ifdef CONFIG_SECURITY_INFINIBAND 2165 2166 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2167 { 2168 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2169 } 2170 EXPORT_SYMBOL(security_ib_pkey_access); 2171 2172 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2173 { 2174 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2175 } 2176 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2177 2178 int security_ib_alloc_security(void **sec) 2179 { 2180 return call_int_hook(ib_alloc_security, 0, sec); 2181 } 2182 EXPORT_SYMBOL(security_ib_alloc_security); 2183 2184 void security_ib_free_security(void *sec) 2185 { 2186 call_void_hook(ib_free_security, sec); 2187 } 2188 EXPORT_SYMBOL(security_ib_free_security); 2189 #endif /* CONFIG_SECURITY_INFINIBAND */ 2190 2191 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2192 2193 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2194 struct xfrm_user_sec_ctx *sec_ctx, 2195 gfp_t gfp) 2196 { 2197 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2198 } 2199 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2200 2201 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2202 struct xfrm_sec_ctx **new_ctxp) 2203 { 2204 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2205 } 2206 2207 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2208 { 2209 call_void_hook(xfrm_policy_free_security, ctx); 2210 } 2211 EXPORT_SYMBOL(security_xfrm_policy_free); 2212 2213 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2214 { 2215 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2216 } 2217 2218 int security_xfrm_state_alloc(struct xfrm_state *x, 2219 struct xfrm_user_sec_ctx *sec_ctx) 2220 { 2221 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2222 } 2223 EXPORT_SYMBOL(security_xfrm_state_alloc); 2224 2225 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2226 struct xfrm_sec_ctx *polsec, u32 secid) 2227 { 2228 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2229 } 2230 2231 int security_xfrm_state_delete(struct xfrm_state *x) 2232 { 2233 return call_int_hook(xfrm_state_delete_security, 0, x); 2234 } 2235 EXPORT_SYMBOL(security_xfrm_state_delete); 2236 2237 void security_xfrm_state_free(struct xfrm_state *x) 2238 { 2239 call_void_hook(xfrm_state_free_security, x); 2240 } 2241 2242 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2243 { 2244 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2245 } 2246 2247 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2248 struct xfrm_policy *xp, 2249 const struct flowi *fl) 2250 { 2251 struct security_hook_list *hp; 2252 int rc = 1; 2253 2254 /* 2255 * Since this function is expected to return 0 or 1, the judgment 2256 * becomes difficult if multiple LSMs supply this call. Fortunately, 2257 * we can use the first LSM's judgment because currently only SELinux 2258 * supplies this call. 2259 * 2260 * For speed optimization, we explicitly break the loop rather than 2261 * using the macro 2262 */ 2263 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2264 list) { 2265 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2266 break; 2267 } 2268 return rc; 2269 } 2270 2271 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2272 { 2273 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2274 } 2275 2276 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2277 { 2278 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2279 0); 2280 2281 BUG_ON(rc); 2282 } 2283 EXPORT_SYMBOL(security_skb_classify_flow); 2284 2285 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2286 2287 #ifdef CONFIG_KEYS 2288 2289 int security_key_alloc(struct key *key, const struct cred *cred, 2290 unsigned long flags) 2291 { 2292 return call_int_hook(key_alloc, 0, key, cred, flags); 2293 } 2294 2295 void security_key_free(struct key *key) 2296 { 2297 call_void_hook(key_free, key); 2298 } 2299 2300 int security_key_permission(key_ref_t key_ref, 2301 const struct cred *cred, unsigned perm) 2302 { 2303 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2304 } 2305 2306 int security_key_getsecurity(struct key *key, char **_buffer) 2307 { 2308 *_buffer = NULL; 2309 return call_int_hook(key_getsecurity, 0, key, _buffer); 2310 } 2311 2312 #endif /* CONFIG_KEYS */ 2313 2314 #ifdef CONFIG_AUDIT 2315 2316 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2317 { 2318 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2319 } 2320 2321 int security_audit_rule_known(struct audit_krule *krule) 2322 { 2323 return call_int_hook(audit_rule_known, 0, krule); 2324 } 2325 2326 void security_audit_rule_free(void *lsmrule) 2327 { 2328 call_void_hook(audit_rule_free, lsmrule); 2329 } 2330 2331 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2332 { 2333 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2334 } 2335 #endif /* CONFIG_AUDIT */ 2336 2337 #ifdef CONFIG_BPF_SYSCALL 2338 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2339 { 2340 return call_int_hook(bpf, 0, cmd, attr, size); 2341 } 2342 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2343 { 2344 return call_int_hook(bpf_map, 0, map, fmode); 2345 } 2346 int security_bpf_prog(struct bpf_prog *prog) 2347 { 2348 return call_int_hook(bpf_prog, 0, prog); 2349 } 2350 int security_bpf_map_alloc(struct bpf_map *map) 2351 { 2352 return call_int_hook(bpf_map_alloc_security, 0, map); 2353 } 2354 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2355 { 2356 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2357 } 2358 void security_bpf_map_free(struct bpf_map *map) 2359 { 2360 call_void_hook(bpf_map_free_security, map); 2361 } 2362 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2363 { 2364 call_void_hook(bpf_prog_free_security, aux); 2365 } 2366 #endif /* CONFIG_BPF_SYSCALL */ 2367