xref: /openbmc/linux/security/security.c (revision eadb2f47)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
64 	[LOCKDOWN_KCORE] = "/proc/kcore access",
65 	[LOCKDOWN_KPROBES] = "use of kprobes",
66 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
67 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68 	[LOCKDOWN_PERF] = "unsafe use of perf",
69 	[LOCKDOWN_TRACEFS] = "use of tracefs",
70 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
71 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
72 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
73 };
74 
75 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
77 
78 static struct kmem_cache *lsm_file_cache;
79 static struct kmem_cache *lsm_inode_cache;
80 
81 char *lsm_names;
82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
83 
84 /* Boot-time LSM user choice */
85 static __initdata const char *chosen_lsm_order;
86 static __initdata const char *chosen_major_lsm;
87 
88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
89 
90 /* Ordered list of LSMs to initialize. */
91 static __initdata struct lsm_info **ordered_lsms;
92 static __initdata struct lsm_info *exclusive;
93 
94 static __initdata bool debug;
95 #define init_debug(...)						\
96 	do {							\
97 		if (debug)					\
98 			pr_info(__VA_ARGS__);			\
99 	} while (0)
100 
101 static bool __init is_enabled(struct lsm_info *lsm)
102 {
103 	if (!lsm->enabled)
104 		return false;
105 
106 	return *lsm->enabled;
107 }
108 
109 /* Mark an LSM's enabled flag. */
110 static int lsm_enabled_true __initdata = 1;
111 static int lsm_enabled_false __initdata = 0;
112 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
113 {
114 	/*
115 	 * When an LSM hasn't configured an enable variable, we can use
116 	 * a hard-coded location for storing the default enabled state.
117 	 */
118 	if (!lsm->enabled) {
119 		if (enabled)
120 			lsm->enabled = &lsm_enabled_true;
121 		else
122 			lsm->enabled = &lsm_enabled_false;
123 	} else if (lsm->enabled == &lsm_enabled_true) {
124 		if (!enabled)
125 			lsm->enabled = &lsm_enabled_false;
126 	} else if (lsm->enabled == &lsm_enabled_false) {
127 		if (enabled)
128 			lsm->enabled = &lsm_enabled_true;
129 	} else {
130 		*lsm->enabled = enabled;
131 	}
132 }
133 
134 /* Is an LSM already listed in the ordered LSMs list? */
135 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
136 {
137 	struct lsm_info **check;
138 
139 	for (check = ordered_lsms; *check; check++)
140 		if (*check == lsm)
141 			return true;
142 
143 	return false;
144 }
145 
146 /* Append an LSM to the list of ordered LSMs to initialize. */
147 static int last_lsm __initdata;
148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
149 {
150 	/* Ignore duplicate selections. */
151 	if (exists_ordered_lsm(lsm))
152 		return;
153 
154 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
155 		return;
156 
157 	/* Enable this LSM, if it is not already set. */
158 	if (!lsm->enabled)
159 		lsm->enabled = &lsm_enabled_true;
160 	ordered_lsms[last_lsm++] = lsm;
161 
162 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
163 		   is_enabled(lsm) ? "en" : "dis");
164 }
165 
166 /* Is an LSM allowed to be initialized? */
167 static bool __init lsm_allowed(struct lsm_info *lsm)
168 {
169 	/* Skip if the LSM is disabled. */
170 	if (!is_enabled(lsm))
171 		return false;
172 
173 	/* Not allowed if another exclusive LSM already initialized. */
174 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
175 		init_debug("exclusive disabled: %s\n", lsm->name);
176 		return false;
177 	}
178 
179 	return true;
180 }
181 
182 static void __init lsm_set_blob_size(int *need, int *lbs)
183 {
184 	int offset;
185 
186 	if (*need > 0) {
187 		offset = *lbs;
188 		*lbs += *need;
189 		*need = offset;
190 	}
191 }
192 
193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
194 {
195 	if (!needed)
196 		return;
197 
198 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
199 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
200 	/*
201 	 * The inode blob gets an rcu_head in addition to
202 	 * what the modules might need.
203 	 */
204 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
205 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
206 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
207 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
208 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
209 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
210 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
211 }
212 
213 /* Prepare LSM for initialization. */
214 static void __init prepare_lsm(struct lsm_info *lsm)
215 {
216 	int enabled = lsm_allowed(lsm);
217 
218 	/* Record enablement (to handle any following exclusive LSMs). */
219 	set_enabled(lsm, enabled);
220 
221 	/* If enabled, do pre-initialization work. */
222 	if (enabled) {
223 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
224 			exclusive = lsm;
225 			init_debug("exclusive chosen: %s\n", lsm->name);
226 		}
227 
228 		lsm_set_blob_sizes(lsm->blobs);
229 	}
230 }
231 
232 /* Initialize a given LSM, if it is enabled. */
233 static void __init initialize_lsm(struct lsm_info *lsm)
234 {
235 	if (is_enabled(lsm)) {
236 		int ret;
237 
238 		init_debug("initializing %s\n", lsm->name);
239 		ret = lsm->init();
240 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
241 	}
242 }
243 
244 /* Populate ordered LSMs list from comma-separated LSM name list. */
245 static void __init ordered_lsm_parse(const char *order, const char *origin)
246 {
247 	struct lsm_info *lsm;
248 	char *sep, *name, *next;
249 
250 	/* LSM_ORDER_FIRST is always first. */
251 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
252 		if (lsm->order == LSM_ORDER_FIRST)
253 			append_ordered_lsm(lsm, "first");
254 	}
255 
256 	/* Process "security=", if given. */
257 	if (chosen_major_lsm) {
258 		struct lsm_info *major;
259 
260 		/*
261 		 * To match the original "security=" behavior, this
262 		 * explicitly does NOT fallback to another Legacy Major
263 		 * if the selected one was separately disabled: disable
264 		 * all non-matching Legacy Major LSMs.
265 		 */
266 		for (major = __start_lsm_info; major < __end_lsm_info;
267 		     major++) {
268 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
269 			    strcmp(major->name, chosen_major_lsm) != 0) {
270 				set_enabled(major, false);
271 				init_debug("security=%s disabled: %s\n",
272 					   chosen_major_lsm, major->name);
273 			}
274 		}
275 	}
276 
277 	sep = kstrdup(order, GFP_KERNEL);
278 	next = sep;
279 	/* Walk the list, looking for matching LSMs. */
280 	while ((name = strsep(&next, ",")) != NULL) {
281 		bool found = false;
282 
283 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
284 			if (lsm->order == LSM_ORDER_MUTABLE &&
285 			    strcmp(lsm->name, name) == 0) {
286 				append_ordered_lsm(lsm, origin);
287 				found = true;
288 			}
289 		}
290 
291 		if (!found)
292 			init_debug("%s ignored: %s\n", origin, name);
293 	}
294 
295 	/* Process "security=", if given. */
296 	if (chosen_major_lsm) {
297 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
298 			if (exists_ordered_lsm(lsm))
299 				continue;
300 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
301 				append_ordered_lsm(lsm, "security=");
302 		}
303 	}
304 
305 	/* Disable all LSMs not in the ordered list. */
306 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
307 		if (exists_ordered_lsm(lsm))
308 			continue;
309 		set_enabled(lsm, false);
310 		init_debug("%s disabled: %s\n", origin, lsm->name);
311 	}
312 
313 	kfree(sep);
314 }
315 
316 static void __init lsm_early_cred(struct cred *cred);
317 static void __init lsm_early_task(struct task_struct *task);
318 
319 static int lsm_append(const char *new, char **result);
320 
321 static void __init ordered_lsm_init(void)
322 {
323 	struct lsm_info **lsm;
324 
325 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
326 				GFP_KERNEL);
327 
328 	if (chosen_lsm_order) {
329 		if (chosen_major_lsm) {
330 			pr_info("security= is ignored because it is superseded by lsm=\n");
331 			chosen_major_lsm = NULL;
332 		}
333 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
334 	} else
335 		ordered_lsm_parse(builtin_lsm_order, "builtin");
336 
337 	for (lsm = ordered_lsms; *lsm; lsm++)
338 		prepare_lsm(*lsm);
339 
340 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
341 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
342 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
343 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
344 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
345 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
346 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
347 
348 	/*
349 	 * Create any kmem_caches needed for blobs
350 	 */
351 	if (blob_sizes.lbs_file)
352 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
353 						   blob_sizes.lbs_file, 0,
354 						   SLAB_PANIC, NULL);
355 	if (blob_sizes.lbs_inode)
356 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
357 						    blob_sizes.lbs_inode, 0,
358 						    SLAB_PANIC, NULL);
359 
360 	lsm_early_cred((struct cred *) current->cred);
361 	lsm_early_task(current);
362 	for (lsm = ordered_lsms; *lsm; lsm++)
363 		initialize_lsm(*lsm);
364 
365 	kfree(ordered_lsms);
366 }
367 
368 int __init early_security_init(void)
369 {
370 	int i;
371 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
372 	struct lsm_info *lsm;
373 
374 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
375 	     i++)
376 		INIT_HLIST_HEAD(&list[i]);
377 
378 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
379 		if (!lsm->enabled)
380 			lsm->enabled = &lsm_enabled_true;
381 		prepare_lsm(lsm);
382 		initialize_lsm(lsm);
383 	}
384 
385 	return 0;
386 }
387 
388 /**
389  * security_init - initializes the security framework
390  *
391  * This should be called early in the kernel initialization sequence.
392  */
393 int __init security_init(void)
394 {
395 	struct lsm_info *lsm;
396 
397 	pr_info("Security Framework initializing\n");
398 
399 	/*
400 	 * Append the names of the early LSM modules now that kmalloc() is
401 	 * available
402 	 */
403 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
404 		if (lsm->enabled)
405 			lsm_append(lsm->name, &lsm_names);
406 	}
407 
408 	/* Load LSMs in specified order. */
409 	ordered_lsm_init();
410 
411 	return 0;
412 }
413 
414 /* Save user chosen LSM */
415 static int __init choose_major_lsm(char *str)
416 {
417 	chosen_major_lsm = str;
418 	return 1;
419 }
420 __setup("security=", choose_major_lsm);
421 
422 /* Explicitly choose LSM initialization order. */
423 static int __init choose_lsm_order(char *str)
424 {
425 	chosen_lsm_order = str;
426 	return 1;
427 }
428 __setup("lsm=", choose_lsm_order);
429 
430 /* Enable LSM order debugging. */
431 static int __init enable_debug(char *str)
432 {
433 	debug = true;
434 	return 1;
435 }
436 __setup("lsm.debug", enable_debug);
437 
438 static bool match_last_lsm(const char *list, const char *lsm)
439 {
440 	const char *last;
441 
442 	if (WARN_ON(!list || !lsm))
443 		return false;
444 	last = strrchr(list, ',');
445 	if (last)
446 		/* Pass the comma, strcmp() will check for '\0' */
447 		last++;
448 	else
449 		last = list;
450 	return !strcmp(last, lsm);
451 }
452 
453 static int lsm_append(const char *new, char **result)
454 {
455 	char *cp;
456 
457 	if (*result == NULL) {
458 		*result = kstrdup(new, GFP_KERNEL);
459 		if (*result == NULL)
460 			return -ENOMEM;
461 	} else {
462 		/* Check if it is the last registered name */
463 		if (match_last_lsm(*result, new))
464 			return 0;
465 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
466 		if (cp == NULL)
467 			return -ENOMEM;
468 		kfree(*result);
469 		*result = cp;
470 	}
471 	return 0;
472 }
473 
474 /**
475  * security_add_hooks - Add a modules hooks to the hook lists.
476  * @hooks: the hooks to add
477  * @count: the number of hooks to add
478  * @lsm: the name of the security module
479  *
480  * Each LSM has to register its hooks with the infrastructure.
481  */
482 void __init security_add_hooks(struct security_hook_list *hooks, int count,
483 				char *lsm)
484 {
485 	int i;
486 
487 	for (i = 0; i < count; i++) {
488 		hooks[i].lsm = lsm;
489 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
490 	}
491 
492 	/*
493 	 * Don't try to append during early_security_init(), we'll come back
494 	 * and fix this up afterwards.
495 	 */
496 	if (slab_is_available()) {
497 		if (lsm_append(lsm, &lsm_names) < 0)
498 			panic("%s - Cannot get early memory.\n", __func__);
499 	}
500 }
501 
502 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
503 {
504 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
505 					    event, data);
506 }
507 EXPORT_SYMBOL(call_blocking_lsm_notifier);
508 
509 int register_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
512 						nb);
513 }
514 EXPORT_SYMBOL(register_blocking_lsm_notifier);
515 
516 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
517 {
518 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
519 						  nb);
520 }
521 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
522 
523 /**
524  * lsm_cred_alloc - allocate a composite cred blob
525  * @cred: the cred that needs a blob
526  * @gfp: allocation type
527  *
528  * Allocate the cred blob for all the modules
529  *
530  * Returns 0, or -ENOMEM if memory can't be allocated.
531  */
532 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
533 {
534 	if (blob_sizes.lbs_cred == 0) {
535 		cred->security = NULL;
536 		return 0;
537 	}
538 
539 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
540 	if (cred->security == NULL)
541 		return -ENOMEM;
542 	return 0;
543 }
544 
545 /**
546  * lsm_early_cred - during initialization allocate a composite cred blob
547  * @cred: the cred that needs a blob
548  *
549  * Allocate the cred blob for all the modules
550  */
551 static void __init lsm_early_cred(struct cred *cred)
552 {
553 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
554 
555 	if (rc)
556 		panic("%s: Early cred alloc failed.\n", __func__);
557 }
558 
559 /**
560  * lsm_file_alloc - allocate a composite file blob
561  * @file: the file that needs a blob
562  *
563  * Allocate the file blob for all the modules
564  *
565  * Returns 0, or -ENOMEM if memory can't be allocated.
566  */
567 static int lsm_file_alloc(struct file *file)
568 {
569 	if (!lsm_file_cache) {
570 		file->f_security = NULL;
571 		return 0;
572 	}
573 
574 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
575 	if (file->f_security == NULL)
576 		return -ENOMEM;
577 	return 0;
578 }
579 
580 /**
581  * lsm_inode_alloc - allocate a composite inode blob
582  * @inode: the inode that needs a blob
583  *
584  * Allocate the inode blob for all the modules
585  *
586  * Returns 0, or -ENOMEM if memory can't be allocated.
587  */
588 int lsm_inode_alloc(struct inode *inode)
589 {
590 	if (!lsm_inode_cache) {
591 		inode->i_security = NULL;
592 		return 0;
593 	}
594 
595 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
596 	if (inode->i_security == NULL)
597 		return -ENOMEM;
598 	return 0;
599 }
600 
601 /**
602  * lsm_task_alloc - allocate a composite task blob
603  * @task: the task that needs a blob
604  *
605  * Allocate the task blob for all the modules
606  *
607  * Returns 0, or -ENOMEM if memory can't be allocated.
608  */
609 static int lsm_task_alloc(struct task_struct *task)
610 {
611 	if (blob_sizes.lbs_task == 0) {
612 		task->security = NULL;
613 		return 0;
614 	}
615 
616 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
617 	if (task->security == NULL)
618 		return -ENOMEM;
619 	return 0;
620 }
621 
622 /**
623  * lsm_ipc_alloc - allocate a composite ipc blob
624  * @kip: the ipc that needs a blob
625  *
626  * Allocate the ipc blob for all the modules
627  *
628  * Returns 0, or -ENOMEM if memory can't be allocated.
629  */
630 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
631 {
632 	if (blob_sizes.lbs_ipc == 0) {
633 		kip->security = NULL;
634 		return 0;
635 	}
636 
637 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
638 	if (kip->security == NULL)
639 		return -ENOMEM;
640 	return 0;
641 }
642 
643 /**
644  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
645  * @mp: the msg_msg that needs a blob
646  *
647  * Allocate the ipc blob for all the modules
648  *
649  * Returns 0, or -ENOMEM if memory can't be allocated.
650  */
651 static int lsm_msg_msg_alloc(struct msg_msg *mp)
652 {
653 	if (blob_sizes.lbs_msg_msg == 0) {
654 		mp->security = NULL;
655 		return 0;
656 	}
657 
658 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
659 	if (mp->security == NULL)
660 		return -ENOMEM;
661 	return 0;
662 }
663 
664 /**
665  * lsm_early_task - during initialization allocate a composite task blob
666  * @task: the task that needs a blob
667  *
668  * Allocate the task blob for all the modules
669  */
670 static void __init lsm_early_task(struct task_struct *task)
671 {
672 	int rc = lsm_task_alloc(task);
673 
674 	if (rc)
675 		panic("%s: Early task alloc failed.\n", __func__);
676 }
677 
678 /**
679  * lsm_superblock_alloc - allocate a composite superblock blob
680  * @sb: the superblock that needs a blob
681  *
682  * Allocate the superblock blob for all the modules
683  *
684  * Returns 0, or -ENOMEM if memory can't be allocated.
685  */
686 static int lsm_superblock_alloc(struct super_block *sb)
687 {
688 	if (blob_sizes.lbs_superblock == 0) {
689 		sb->s_security = NULL;
690 		return 0;
691 	}
692 
693 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
694 	if (sb->s_security == NULL)
695 		return -ENOMEM;
696 	return 0;
697 }
698 
699 /*
700  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
701  * can be accessed with:
702  *
703  *	LSM_RET_DEFAULT(<hook_name>)
704  *
705  * The macros below define static constants for the default value of each
706  * LSM hook.
707  */
708 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
709 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
710 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
711 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
712 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
713 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
714 
715 #include <linux/lsm_hook_defs.h>
716 #undef LSM_HOOK
717 
718 /*
719  * Hook list operation macros.
720  *
721  * call_void_hook:
722  *	This is a hook that does not return a value.
723  *
724  * call_int_hook:
725  *	This is a hook that returns a value.
726  */
727 
728 #define call_void_hook(FUNC, ...)				\
729 	do {							\
730 		struct security_hook_list *P;			\
731 								\
732 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
733 			P->hook.FUNC(__VA_ARGS__);		\
734 	} while (0)
735 
736 #define call_int_hook(FUNC, IRC, ...) ({			\
737 	int RC = IRC;						\
738 	do {							\
739 		struct security_hook_list *P;			\
740 								\
741 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
742 			RC = P->hook.FUNC(__VA_ARGS__);		\
743 			if (RC != 0)				\
744 				break;				\
745 		}						\
746 	} while (0);						\
747 	RC;							\
748 })
749 
750 /* Security operations */
751 
752 int security_binder_set_context_mgr(const struct cred *mgr)
753 {
754 	return call_int_hook(binder_set_context_mgr, 0, mgr);
755 }
756 
757 int security_binder_transaction(const struct cred *from,
758 				const struct cred *to)
759 {
760 	return call_int_hook(binder_transaction, 0, from, to);
761 }
762 
763 int security_binder_transfer_binder(const struct cred *from,
764 				    const struct cred *to)
765 {
766 	return call_int_hook(binder_transfer_binder, 0, from, to);
767 }
768 
769 int security_binder_transfer_file(const struct cred *from,
770 				  const struct cred *to, struct file *file)
771 {
772 	return call_int_hook(binder_transfer_file, 0, from, to, file);
773 }
774 
775 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
776 {
777 	return call_int_hook(ptrace_access_check, 0, child, mode);
778 }
779 
780 int security_ptrace_traceme(struct task_struct *parent)
781 {
782 	return call_int_hook(ptrace_traceme, 0, parent);
783 }
784 
785 int security_capget(struct task_struct *target,
786 		     kernel_cap_t *effective,
787 		     kernel_cap_t *inheritable,
788 		     kernel_cap_t *permitted)
789 {
790 	return call_int_hook(capget, 0, target,
791 				effective, inheritable, permitted);
792 }
793 
794 int security_capset(struct cred *new, const struct cred *old,
795 		    const kernel_cap_t *effective,
796 		    const kernel_cap_t *inheritable,
797 		    const kernel_cap_t *permitted)
798 {
799 	return call_int_hook(capset, 0, new, old,
800 				effective, inheritable, permitted);
801 }
802 
803 int security_capable(const struct cred *cred,
804 		     struct user_namespace *ns,
805 		     int cap,
806 		     unsigned int opts)
807 {
808 	return call_int_hook(capable, 0, cred, ns, cap, opts);
809 }
810 
811 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
812 {
813 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
814 }
815 
816 int security_quota_on(struct dentry *dentry)
817 {
818 	return call_int_hook(quota_on, 0, dentry);
819 }
820 
821 int security_syslog(int type)
822 {
823 	return call_int_hook(syslog, 0, type);
824 }
825 
826 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
827 {
828 	return call_int_hook(settime, 0, ts, tz);
829 }
830 
831 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
832 {
833 	struct security_hook_list *hp;
834 	int cap_sys_admin = 1;
835 	int rc;
836 
837 	/*
838 	 * The module will respond with a positive value if
839 	 * it thinks the __vm_enough_memory() call should be
840 	 * made with the cap_sys_admin set. If all of the modules
841 	 * agree that it should be set it will. If any module
842 	 * thinks it should not be set it won't.
843 	 */
844 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
845 		rc = hp->hook.vm_enough_memory(mm, pages);
846 		if (rc <= 0) {
847 			cap_sys_admin = 0;
848 			break;
849 		}
850 	}
851 	return __vm_enough_memory(mm, pages, cap_sys_admin);
852 }
853 
854 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
855 {
856 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
857 }
858 
859 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
860 {
861 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
862 }
863 
864 int security_bprm_check(struct linux_binprm *bprm)
865 {
866 	int ret;
867 
868 	ret = call_int_hook(bprm_check_security, 0, bprm);
869 	if (ret)
870 		return ret;
871 	return ima_bprm_check(bprm);
872 }
873 
874 void security_bprm_committing_creds(struct linux_binprm *bprm)
875 {
876 	call_void_hook(bprm_committing_creds, bprm);
877 }
878 
879 void security_bprm_committed_creds(struct linux_binprm *bprm)
880 {
881 	call_void_hook(bprm_committed_creds, bprm);
882 }
883 
884 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
885 {
886 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
887 }
888 
889 int security_fs_context_parse_param(struct fs_context *fc,
890 				    struct fs_parameter *param)
891 {
892 	struct security_hook_list *hp;
893 	int trc;
894 	int rc = -ENOPARAM;
895 
896 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
897 			     list) {
898 		trc = hp->hook.fs_context_parse_param(fc, param);
899 		if (trc == 0)
900 			rc = 0;
901 		else if (trc != -ENOPARAM)
902 			return trc;
903 	}
904 	return rc;
905 }
906 
907 int security_sb_alloc(struct super_block *sb)
908 {
909 	int rc = lsm_superblock_alloc(sb);
910 
911 	if (unlikely(rc))
912 		return rc;
913 	rc = call_int_hook(sb_alloc_security, 0, sb);
914 	if (unlikely(rc))
915 		security_sb_free(sb);
916 	return rc;
917 }
918 
919 void security_sb_delete(struct super_block *sb)
920 {
921 	call_void_hook(sb_delete, sb);
922 }
923 
924 void security_sb_free(struct super_block *sb)
925 {
926 	call_void_hook(sb_free_security, sb);
927 	kfree(sb->s_security);
928 	sb->s_security = NULL;
929 }
930 
931 void security_free_mnt_opts(void **mnt_opts)
932 {
933 	if (!*mnt_opts)
934 		return;
935 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
936 	*mnt_opts = NULL;
937 }
938 EXPORT_SYMBOL(security_free_mnt_opts);
939 
940 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
941 {
942 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
943 }
944 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
945 
946 int security_sb_mnt_opts_compat(struct super_block *sb,
947 				void *mnt_opts)
948 {
949 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
950 }
951 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
952 
953 int security_sb_remount(struct super_block *sb,
954 			void *mnt_opts)
955 {
956 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
957 }
958 EXPORT_SYMBOL(security_sb_remount);
959 
960 int security_sb_kern_mount(struct super_block *sb)
961 {
962 	return call_int_hook(sb_kern_mount, 0, sb);
963 }
964 
965 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
966 {
967 	return call_int_hook(sb_show_options, 0, m, sb);
968 }
969 
970 int security_sb_statfs(struct dentry *dentry)
971 {
972 	return call_int_hook(sb_statfs, 0, dentry);
973 }
974 
975 int security_sb_mount(const char *dev_name, const struct path *path,
976                        const char *type, unsigned long flags, void *data)
977 {
978 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
979 }
980 
981 int security_sb_umount(struct vfsmount *mnt, int flags)
982 {
983 	return call_int_hook(sb_umount, 0, mnt, flags);
984 }
985 
986 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
987 {
988 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
989 }
990 
991 int security_sb_set_mnt_opts(struct super_block *sb,
992 				void *mnt_opts,
993 				unsigned long kern_flags,
994 				unsigned long *set_kern_flags)
995 {
996 	return call_int_hook(sb_set_mnt_opts,
997 				mnt_opts ? -EOPNOTSUPP : 0, sb,
998 				mnt_opts, kern_flags, set_kern_flags);
999 }
1000 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1001 
1002 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1003 				struct super_block *newsb,
1004 				unsigned long kern_flags,
1005 				unsigned long *set_kern_flags)
1006 {
1007 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1008 				kern_flags, set_kern_flags);
1009 }
1010 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1011 
1012 int security_move_mount(const struct path *from_path, const struct path *to_path)
1013 {
1014 	return call_int_hook(move_mount, 0, from_path, to_path);
1015 }
1016 
1017 int security_path_notify(const struct path *path, u64 mask,
1018 				unsigned int obj_type)
1019 {
1020 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1021 }
1022 
1023 int security_inode_alloc(struct inode *inode)
1024 {
1025 	int rc = lsm_inode_alloc(inode);
1026 
1027 	if (unlikely(rc))
1028 		return rc;
1029 	rc = call_int_hook(inode_alloc_security, 0, inode);
1030 	if (unlikely(rc))
1031 		security_inode_free(inode);
1032 	return rc;
1033 }
1034 
1035 static void inode_free_by_rcu(struct rcu_head *head)
1036 {
1037 	/*
1038 	 * The rcu head is at the start of the inode blob
1039 	 */
1040 	kmem_cache_free(lsm_inode_cache, head);
1041 }
1042 
1043 void security_inode_free(struct inode *inode)
1044 {
1045 	integrity_inode_free(inode);
1046 	call_void_hook(inode_free_security, inode);
1047 	/*
1048 	 * The inode may still be referenced in a path walk and
1049 	 * a call to security_inode_permission() can be made
1050 	 * after inode_free_security() is called. Ideally, the VFS
1051 	 * wouldn't do this, but fixing that is a much harder
1052 	 * job. For now, simply free the i_security via RCU, and
1053 	 * leave the current inode->i_security pointer intact.
1054 	 * The inode will be freed after the RCU grace period too.
1055 	 */
1056 	if (inode->i_security)
1057 		call_rcu((struct rcu_head *)inode->i_security,
1058 				inode_free_by_rcu);
1059 }
1060 
1061 int security_dentry_init_security(struct dentry *dentry, int mode,
1062 				  const struct qstr *name,
1063 				  const char **xattr_name, void **ctx,
1064 				  u32 *ctxlen)
1065 {
1066 	struct security_hook_list *hp;
1067 	int rc;
1068 
1069 	/*
1070 	 * Only one module will provide a security context.
1071 	 */
1072 	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1073 		rc = hp->hook.dentry_init_security(dentry, mode, name,
1074 						   xattr_name, ctx, ctxlen);
1075 		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1076 			return rc;
1077 	}
1078 	return LSM_RET_DEFAULT(dentry_init_security);
1079 }
1080 EXPORT_SYMBOL(security_dentry_init_security);
1081 
1082 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1083 				    struct qstr *name,
1084 				    const struct cred *old, struct cred *new)
1085 {
1086 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1087 				name, old, new);
1088 }
1089 EXPORT_SYMBOL(security_dentry_create_files_as);
1090 
1091 int security_inode_init_security(struct inode *inode, struct inode *dir,
1092 				 const struct qstr *qstr,
1093 				 const initxattrs initxattrs, void *fs_data)
1094 {
1095 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1096 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1097 	int ret;
1098 
1099 	if (unlikely(IS_PRIVATE(inode)))
1100 		return 0;
1101 
1102 	if (!initxattrs)
1103 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1104 				     dir, qstr, NULL, NULL, NULL);
1105 	memset(new_xattrs, 0, sizeof(new_xattrs));
1106 	lsm_xattr = new_xattrs;
1107 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1108 						&lsm_xattr->name,
1109 						&lsm_xattr->value,
1110 						&lsm_xattr->value_len);
1111 	if (ret)
1112 		goto out;
1113 
1114 	evm_xattr = lsm_xattr + 1;
1115 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1116 	if (ret)
1117 		goto out;
1118 	ret = initxattrs(inode, new_xattrs, fs_data);
1119 out:
1120 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1121 		kfree(xattr->value);
1122 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1123 }
1124 EXPORT_SYMBOL(security_inode_init_security);
1125 
1126 int security_inode_init_security_anon(struct inode *inode,
1127 				      const struct qstr *name,
1128 				      const struct inode *context_inode)
1129 {
1130 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1131 			     context_inode);
1132 }
1133 
1134 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1135 				     const struct qstr *qstr, const char **name,
1136 				     void **value, size_t *len)
1137 {
1138 	if (unlikely(IS_PRIVATE(inode)))
1139 		return -EOPNOTSUPP;
1140 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1141 			     qstr, name, value, len);
1142 }
1143 EXPORT_SYMBOL(security_old_inode_init_security);
1144 
1145 #ifdef CONFIG_SECURITY_PATH
1146 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1147 			unsigned int dev)
1148 {
1149 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1150 		return 0;
1151 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1152 }
1153 EXPORT_SYMBOL(security_path_mknod);
1154 
1155 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1156 {
1157 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1158 		return 0;
1159 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1160 }
1161 EXPORT_SYMBOL(security_path_mkdir);
1162 
1163 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1164 {
1165 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1166 		return 0;
1167 	return call_int_hook(path_rmdir, 0, dir, dentry);
1168 }
1169 
1170 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1171 {
1172 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1173 		return 0;
1174 	return call_int_hook(path_unlink, 0, dir, dentry);
1175 }
1176 EXPORT_SYMBOL(security_path_unlink);
1177 
1178 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1179 			  const char *old_name)
1180 {
1181 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1182 		return 0;
1183 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1184 }
1185 
1186 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1187 		       struct dentry *new_dentry)
1188 {
1189 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1190 		return 0;
1191 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1192 }
1193 
1194 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1195 			 const struct path *new_dir, struct dentry *new_dentry,
1196 			 unsigned int flags)
1197 {
1198 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1199 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1200 		return 0;
1201 
1202 	if (flags & RENAME_EXCHANGE) {
1203 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1204 					old_dir, old_dentry);
1205 		if (err)
1206 			return err;
1207 	}
1208 
1209 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1210 				new_dentry);
1211 }
1212 EXPORT_SYMBOL(security_path_rename);
1213 
1214 int security_path_truncate(const struct path *path)
1215 {
1216 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1217 		return 0;
1218 	return call_int_hook(path_truncate, 0, path);
1219 }
1220 
1221 int security_path_chmod(const struct path *path, umode_t mode)
1222 {
1223 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1224 		return 0;
1225 	return call_int_hook(path_chmod, 0, path, mode);
1226 }
1227 
1228 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1229 {
1230 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1231 		return 0;
1232 	return call_int_hook(path_chown, 0, path, uid, gid);
1233 }
1234 
1235 int security_path_chroot(const struct path *path)
1236 {
1237 	return call_int_hook(path_chroot, 0, path);
1238 }
1239 #endif
1240 
1241 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1242 {
1243 	if (unlikely(IS_PRIVATE(dir)))
1244 		return 0;
1245 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1246 }
1247 EXPORT_SYMBOL_GPL(security_inode_create);
1248 
1249 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1250 			 struct dentry *new_dentry)
1251 {
1252 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1253 		return 0;
1254 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1255 }
1256 
1257 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1258 {
1259 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1260 		return 0;
1261 	return call_int_hook(inode_unlink, 0, dir, dentry);
1262 }
1263 
1264 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1265 			    const char *old_name)
1266 {
1267 	if (unlikely(IS_PRIVATE(dir)))
1268 		return 0;
1269 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1270 }
1271 
1272 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1273 {
1274 	if (unlikely(IS_PRIVATE(dir)))
1275 		return 0;
1276 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1277 }
1278 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1279 
1280 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1281 {
1282 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1283 		return 0;
1284 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1285 }
1286 
1287 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1288 {
1289 	if (unlikely(IS_PRIVATE(dir)))
1290 		return 0;
1291 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1292 }
1293 
1294 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1295 			   struct inode *new_dir, struct dentry *new_dentry,
1296 			   unsigned int flags)
1297 {
1298         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1299             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1300 		return 0;
1301 
1302 	if (flags & RENAME_EXCHANGE) {
1303 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1304 						     old_dir, old_dentry);
1305 		if (err)
1306 			return err;
1307 	}
1308 
1309 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1310 					   new_dir, new_dentry);
1311 }
1312 
1313 int security_inode_readlink(struct dentry *dentry)
1314 {
1315 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1316 		return 0;
1317 	return call_int_hook(inode_readlink, 0, dentry);
1318 }
1319 
1320 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1321 			       bool rcu)
1322 {
1323 	if (unlikely(IS_PRIVATE(inode)))
1324 		return 0;
1325 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1326 }
1327 
1328 int security_inode_permission(struct inode *inode, int mask)
1329 {
1330 	if (unlikely(IS_PRIVATE(inode)))
1331 		return 0;
1332 	return call_int_hook(inode_permission, 0, inode, mask);
1333 }
1334 
1335 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1336 {
1337 	int ret;
1338 
1339 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1340 		return 0;
1341 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1342 	if (ret)
1343 		return ret;
1344 	return evm_inode_setattr(dentry, attr);
1345 }
1346 EXPORT_SYMBOL_GPL(security_inode_setattr);
1347 
1348 int security_inode_getattr(const struct path *path)
1349 {
1350 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1351 		return 0;
1352 	return call_int_hook(inode_getattr, 0, path);
1353 }
1354 
1355 int security_inode_setxattr(struct user_namespace *mnt_userns,
1356 			    struct dentry *dentry, const char *name,
1357 			    const void *value, size_t size, int flags)
1358 {
1359 	int ret;
1360 
1361 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1362 		return 0;
1363 	/*
1364 	 * SELinux and Smack integrate the cap call,
1365 	 * so assume that all LSMs supplying this call do so.
1366 	 */
1367 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1368 			    size, flags);
1369 
1370 	if (ret == 1)
1371 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1372 	if (ret)
1373 		return ret;
1374 	ret = ima_inode_setxattr(dentry, name, value, size);
1375 	if (ret)
1376 		return ret;
1377 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1378 }
1379 
1380 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1381 				  const void *value, size_t size, int flags)
1382 {
1383 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1384 		return;
1385 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1386 	evm_inode_post_setxattr(dentry, name, value, size);
1387 }
1388 
1389 int security_inode_getxattr(struct dentry *dentry, const char *name)
1390 {
1391 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1392 		return 0;
1393 	return call_int_hook(inode_getxattr, 0, dentry, name);
1394 }
1395 
1396 int security_inode_listxattr(struct dentry *dentry)
1397 {
1398 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1399 		return 0;
1400 	return call_int_hook(inode_listxattr, 0, dentry);
1401 }
1402 
1403 int security_inode_removexattr(struct user_namespace *mnt_userns,
1404 			       struct dentry *dentry, const char *name)
1405 {
1406 	int ret;
1407 
1408 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1409 		return 0;
1410 	/*
1411 	 * SELinux and Smack integrate the cap call,
1412 	 * so assume that all LSMs supplying this call do so.
1413 	 */
1414 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1415 	if (ret == 1)
1416 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1417 	if (ret)
1418 		return ret;
1419 	ret = ima_inode_removexattr(dentry, name);
1420 	if (ret)
1421 		return ret;
1422 	return evm_inode_removexattr(mnt_userns, dentry, name);
1423 }
1424 
1425 int security_inode_need_killpriv(struct dentry *dentry)
1426 {
1427 	return call_int_hook(inode_need_killpriv, 0, dentry);
1428 }
1429 
1430 int security_inode_killpriv(struct user_namespace *mnt_userns,
1431 			    struct dentry *dentry)
1432 {
1433 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1434 }
1435 
1436 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1437 			       struct inode *inode, const char *name,
1438 			       void **buffer, bool alloc)
1439 {
1440 	struct security_hook_list *hp;
1441 	int rc;
1442 
1443 	if (unlikely(IS_PRIVATE(inode)))
1444 		return LSM_RET_DEFAULT(inode_getsecurity);
1445 	/*
1446 	 * Only one module will provide an attribute with a given name.
1447 	 */
1448 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1449 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1450 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1451 			return rc;
1452 	}
1453 	return LSM_RET_DEFAULT(inode_getsecurity);
1454 }
1455 
1456 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1457 {
1458 	struct security_hook_list *hp;
1459 	int rc;
1460 
1461 	if (unlikely(IS_PRIVATE(inode)))
1462 		return LSM_RET_DEFAULT(inode_setsecurity);
1463 	/*
1464 	 * Only one module will provide an attribute with a given name.
1465 	 */
1466 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1467 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1468 								flags);
1469 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1470 			return rc;
1471 	}
1472 	return LSM_RET_DEFAULT(inode_setsecurity);
1473 }
1474 
1475 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1476 {
1477 	if (unlikely(IS_PRIVATE(inode)))
1478 		return 0;
1479 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1480 }
1481 EXPORT_SYMBOL(security_inode_listsecurity);
1482 
1483 void security_inode_getsecid(struct inode *inode, u32 *secid)
1484 {
1485 	call_void_hook(inode_getsecid, inode, secid);
1486 }
1487 
1488 int security_inode_copy_up(struct dentry *src, struct cred **new)
1489 {
1490 	return call_int_hook(inode_copy_up, 0, src, new);
1491 }
1492 EXPORT_SYMBOL(security_inode_copy_up);
1493 
1494 int security_inode_copy_up_xattr(const char *name)
1495 {
1496 	struct security_hook_list *hp;
1497 	int rc;
1498 
1499 	/*
1500 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1501 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1502 	 * any other error code incase of an error.
1503 	 */
1504 	hlist_for_each_entry(hp,
1505 		&security_hook_heads.inode_copy_up_xattr, list) {
1506 		rc = hp->hook.inode_copy_up_xattr(name);
1507 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1508 			return rc;
1509 	}
1510 
1511 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1512 }
1513 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1514 
1515 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1516 				  struct kernfs_node *kn)
1517 {
1518 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1519 }
1520 
1521 int security_file_permission(struct file *file, int mask)
1522 {
1523 	int ret;
1524 
1525 	ret = call_int_hook(file_permission, 0, file, mask);
1526 	if (ret)
1527 		return ret;
1528 
1529 	return fsnotify_perm(file, mask);
1530 }
1531 
1532 int security_file_alloc(struct file *file)
1533 {
1534 	int rc = lsm_file_alloc(file);
1535 
1536 	if (rc)
1537 		return rc;
1538 	rc = call_int_hook(file_alloc_security, 0, file);
1539 	if (unlikely(rc))
1540 		security_file_free(file);
1541 	return rc;
1542 }
1543 
1544 void security_file_free(struct file *file)
1545 {
1546 	void *blob;
1547 
1548 	call_void_hook(file_free_security, file);
1549 
1550 	blob = file->f_security;
1551 	if (blob) {
1552 		file->f_security = NULL;
1553 		kmem_cache_free(lsm_file_cache, blob);
1554 	}
1555 }
1556 
1557 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1558 {
1559 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1560 }
1561 EXPORT_SYMBOL_GPL(security_file_ioctl);
1562 
1563 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1564 {
1565 	/*
1566 	 * Does we have PROT_READ and does the application expect
1567 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1568 	 */
1569 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1570 		return prot;
1571 	if (!(current->personality & READ_IMPLIES_EXEC))
1572 		return prot;
1573 	/*
1574 	 * if that's an anonymous mapping, let it.
1575 	 */
1576 	if (!file)
1577 		return prot | PROT_EXEC;
1578 	/*
1579 	 * ditto if it's not on noexec mount, except that on !MMU we need
1580 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1581 	 */
1582 	if (!path_noexec(&file->f_path)) {
1583 #ifndef CONFIG_MMU
1584 		if (file->f_op->mmap_capabilities) {
1585 			unsigned caps = file->f_op->mmap_capabilities(file);
1586 			if (!(caps & NOMMU_MAP_EXEC))
1587 				return prot;
1588 		}
1589 #endif
1590 		return prot | PROT_EXEC;
1591 	}
1592 	/* anything on noexec mount won't get PROT_EXEC */
1593 	return prot;
1594 }
1595 
1596 int security_mmap_file(struct file *file, unsigned long prot,
1597 			unsigned long flags)
1598 {
1599 	int ret;
1600 	ret = call_int_hook(mmap_file, 0, file, prot,
1601 					mmap_prot(file, prot), flags);
1602 	if (ret)
1603 		return ret;
1604 	return ima_file_mmap(file, prot);
1605 }
1606 
1607 int security_mmap_addr(unsigned long addr)
1608 {
1609 	return call_int_hook(mmap_addr, 0, addr);
1610 }
1611 
1612 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1613 			    unsigned long prot)
1614 {
1615 	int ret;
1616 
1617 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1618 	if (ret)
1619 		return ret;
1620 	return ima_file_mprotect(vma, prot);
1621 }
1622 
1623 int security_file_lock(struct file *file, unsigned int cmd)
1624 {
1625 	return call_int_hook(file_lock, 0, file, cmd);
1626 }
1627 
1628 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1629 {
1630 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1631 }
1632 
1633 void security_file_set_fowner(struct file *file)
1634 {
1635 	call_void_hook(file_set_fowner, file);
1636 }
1637 
1638 int security_file_send_sigiotask(struct task_struct *tsk,
1639 				  struct fown_struct *fown, int sig)
1640 {
1641 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1642 }
1643 
1644 int security_file_receive(struct file *file)
1645 {
1646 	return call_int_hook(file_receive, 0, file);
1647 }
1648 
1649 int security_file_open(struct file *file)
1650 {
1651 	int ret;
1652 
1653 	ret = call_int_hook(file_open, 0, file);
1654 	if (ret)
1655 		return ret;
1656 
1657 	return fsnotify_perm(file, MAY_OPEN);
1658 }
1659 
1660 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1661 {
1662 	int rc = lsm_task_alloc(task);
1663 
1664 	if (rc)
1665 		return rc;
1666 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1667 	if (unlikely(rc))
1668 		security_task_free(task);
1669 	return rc;
1670 }
1671 
1672 void security_task_free(struct task_struct *task)
1673 {
1674 	call_void_hook(task_free, task);
1675 
1676 	kfree(task->security);
1677 	task->security = NULL;
1678 }
1679 
1680 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1681 {
1682 	int rc = lsm_cred_alloc(cred, gfp);
1683 
1684 	if (rc)
1685 		return rc;
1686 
1687 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1688 	if (unlikely(rc))
1689 		security_cred_free(cred);
1690 	return rc;
1691 }
1692 
1693 void security_cred_free(struct cred *cred)
1694 {
1695 	/*
1696 	 * There is a failure case in prepare_creds() that
1697 	 * may result in a call here with ->security being NULL.
1698 	 */
1699 	if (unlikely(cred->security == NULL))
1700 		return;
1701 
1702 	call_void_hook(cred_free, cred);
1703 
1704 	kfree(cred->security);
1705 	cred->security = NULL;
1706 }
1707 
1708 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1709 {
1710 	int rc = lsm_cred_alloc(new, gfp);
1711 
1712 	if (rc)
1713 		return rc;
1714 
1715 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1716 	if (unlikely(rc))
1717 		security_cred_free(new);
1718 	return rc;
1719 }
1720 
1721 void security_transfer_creds(struct cred *new, const struct cred *old)
1722 {
1723 	call_void_hook(cred_transfer, new, old);
1724 }
1725 
1726 void security_cred_getsecid(const struct cred *c, u32 *secid)
1727 {
1728 	*secid = 0;
1729 	call_void_hook(cred_getsecid, c, secid);
1730 }
1731 EXPORT_SYMBOL(security_cred_getsecid);
1732 
1733 int security_kernel_act_as(struct cred *new, u32 secid)
1734 {
1735 	return call_int_hook(kernel_act_as, 0, new, secid);
1736 }
1737 
1738 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1739 {
1740 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1741 }
1742 
1743 int security_kernel_module_request(char *kmod_name)
1744 {
1745 	int ret;
1746 
1747 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1748 	if (ret)
1749 		return ret;
1750 	return integrity_kernel_module_request(kmod_name);
1751 }
1752 
1753 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1754 			      bool contents)
1755 {
1756 	int ret;
1757 
1758 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1759 	if (ret)
1760 		return ret;
1761 	return ima_read_file(file, id, contents);
1762 }
1763 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1764 
1765 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1766 				   enum kernel_read_file_id id)
1767 {
1768 	int ret;
1769 
1770 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1771 	if (ret)
1772 		return ret;
1773 	return ima_post_read_file(file, buf, size, id);
1774 }
1775 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1776 
1777 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1778 {
1779 	int ret;
1780 
1781 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1782 	if (ret)
1783 		return ret;
1784 	return ima_load_data(id, contents);
1785 }
1786 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1787 
1788 int security_kernel_post_load_data(char *buf, loff_t size,
1789 				   enum kernel_load_data_id id,
1790 				   char *description)
1791 {
1792 	int ret;
1793 
1794 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1795 			    description);
1796 	if (ret)
1797 		return ret;
1798 	return ima_post_load_data(buf, size, id, description);
1799 }
1800 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1801 
1802 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1803 			     int flags)
1804 {
1805 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1806 }
1807 
1808 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1809 				 int flags)
1810 {
1811 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1812 }
1813 
1814 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1815 {
1816 	return call_int_hook(task_setpgid, 0, p, pgid);
1817 }
1818 
1819 int security_task_getpgid(struct task_struct *p)
1820 {
1821 	return call_int_hook(task_getpgid, 0, p);
1822 }
1823 
1824 int security_task_getsid(struct task_struct *p)
1825 {
1826 	return call_int_hook(task_getsid, 0, p);
1827 }
1828 
1829 void security_current_getsecid_subj(u32 *secid)
1830 {
1831 	*secid = 0;
1832 	call_void_hook(current_getsecid_subj, secid);
1833 }
1834 EXPORT_SYMBOL(security_current_getsecid_subj);
1835 
1836 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1837 {
1838 	*secid = 0;
1839 	call_void_hook(task_getsecid_obj, p, secid);
1840 }
1841 EXPORT_SYMBOL(security_task_getsecid_obj);
1842 
1843 int security_task_setnice(struct task_struct *p, int nice)
1844 {
1845 	return call_int_hook(task_setnice, 0, p, nice);
1846 }
1847 
1848 int security_task_setioprio(struct task_struct *p, int ioprio)
1849 {
1850 	return call_int_hook(task_setioprio, 0, p, ioprio);
1851 }
1852 
1853 int security_task_getioprio(struct task_struct *p)
1854 {
1855 	return call_int_hook(task_getioprio, 0, p);
1856 }
1857 
1858 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1859 			  unsigned int flags)
1860 {
1861 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1862 }
1863 
1864 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1865 		struct rlimit *new_rlim)
1866 {
1867 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1868 }
1869 
1870 int security_task_setscheduler(struct task_struct *p)
1871 {
1872 	return call_int_hook(task_setscheduler, 0, p);
1873 }
1874 
1875 int security_task_getscheduler(struct task_struct *p)
1876 {
1877 	return call_int_hook(task_getscheduler, 0, p);
1878 }
1879 
1880 int security_task_movememory(struct task_struct *p)
1881 {
1882 	return call_int_hook(task_movememory, 0, p);
1883 }
1884 
1885 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1886 			int sig, const struct cred *cred)
1887 {
1888 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1889 }
1890 
1891 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1892 			 unsigned long arg4, unsigned long arg5)
1893 {
1894 	int thisrc;
1895 	int rc = LSM_RET_DEFAULT(task_prctl);
1896 	struct security_hook_list *hp;
1897 
1898 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1899 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1900 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1901 			rc = thisrc;
1902 			if (thisrc != 0)
1903 				break;
1904 		}
1905 	}
1906 	return rc;
1907 }
1908 
1909 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1910 {
1911 	call_void_hook(task_to_inode, p, inode);
1912 }
1913 
1914 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1915 {
1916 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1917 }
1918 
1919 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1920 {
1921 	*secid = 0;
1922 	call_void_hook(ipc_getsecid, ipcp, secid);
1923 }
1924 
1925 int security_msg_msg_alloc(struct msg_msg *msg)
1926 {
1927 	int rc = lsm_msg_msg_alloc(msg);
1928 
1929 	if (unlikely(rc))
1930 		return rc;
1931 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1932 	if (unlikely(rc))
1933 		security_msg_msg_free(msg);
1934 	return rc;
1935 }
1936 
1937 void security_msg_msg_free(struct msg_msg *msg)
1938 {
1939 	call_void_hook(msg_msg_free_security, msg);
1940 	kfree(msg->security);
1941 	msg->security = NULL;
1942 }
1943 
1944 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1945 {
1946 	int rc = lsm_ipc_alloc(msq);
1947 
1948 	if (unlikely(rc))
1949 		return rc;
1950 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1951 	if (unlikely(rc))
1952 		security_msg_queue_free(msq);
1953 	return rc;
1954 }
1955 
1956 void security_msg_queue_free(struct kern_ipc_perm *msq)
1957 {
1958 	call_void_hook(msg_queue_free_security, msq);
1959 	kfree(msq->security);
1960 	msq->security = NULL;
1961 }
1962 
1963 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1964 {
1965 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1966 }
1967 
1968 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1969 {
1970 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1971 }
1972 
1973 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1974 			       struct msg_msg *msg, int msqflg)
1975 {
1976 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1977 }
1978 
1979 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1980 			       struct task_struct *target, long type, int mode)
1981 {
1982 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1983 }
1984 
1985 int security_shm_alloc(struct kern_ipc_perm *shp)
1986 {
1987 	int rc = lsm_ipc_alloc(shp);
1988 
1989 	if (unlikely(rc))
1990 		return rc;
1991 	rc = call_int_hook(shm_alloc_security, 0, shp);
1992 	if (unlikely(rc))
1993 		security_shm_free(shp);
1994 	return rc;
1995 }
1996 
1997 void security_shm_free(struct kern_ipc_perm *shp)
1998 {
1999 	call_void_hook(shm_free_security, shp);
2000 	kfree(shp->security);
2001 	shp->security = NULL;
2002 }
2003 
2004 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2005 {
2006 	return call_int_hook(shm_associate, 0, shp, shmflg);
2007 }
2008 
2009 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2010 {
2011 	return call_int_hook(shm_shmctl, 0, shp, cmd);
2012 }
2013 
2014 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2015 {
2016 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2017 }
2018 
2019 int security_sem_alloc(struct kern_ipc_perm *sma)
2020 {
2021 	int rc = lsm_ipc_alloc(sma);
2022 
2023 	if (unlikely(rc))
2024 		return rc;
2025 	rc = call_int_hook(sem_alloc_security, 0, sma);
2026 	if (unlikely(rc))
2027 		security_sem_free(sma);
2028 	return rc;
2029 }
2030 
2031 void security_sem_free(struct kern_ipc_perm *sma)
2032 {
2033 	call_void_hook(sem_free_security, sma);
2034 	kfree(sma->security);
2035 	sma->security = NULL;
2036 }
2037 
2038 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2039 {
2040 	return call_int_hook(sem_associate, 0, sma, semflg);
2041 }
2042 
2043 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2044 {
2045 	return call_int_hook(sem_semctl, 0, sma, cmd);
2046 }
2047 
2048 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2049 			unsigned nsops, int alter)
2050 {
2051 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2052 }
2053 
2054 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2055 {
2056 	if (unlikely(inode && IS_PRIVATE(inode)))
2057 		return;
2058 	call_void_hook(d_instantiate, dentry, inode);
2059 }
2060 EXPORT_SYMBOL(security_d_instantiate);
2061 
2062 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2063 				char **value)
2064 {
2065 	struct security_hook_list *hp;
2066 
2067 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2068 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2069 			continue;
2070 		return hp->hook.getprocattr(p, name, value);
2071 	}
2072 	return LSM_RET_DEFAULT(getprocattr);
2073 }
2074 
2075 int security_setprocattr(const char *lsm, const char *name, void *value,
2076 			 size_t size)
2077 {
2078 	struct security_hook_list *hp;
2079 
2080 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2081 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2082 			continue;
2083 		return hp->hook.setprocattr(name, value, size);
2084 	}
2085 	return LSM_RET_DEFAULT(setprocattr);
2086 }
2087 
2088 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2089 {
2090 	return call_int_hook(netlink_send, 0, sk, skb);
2091 }
2092 
2093 int security_ismaclabel(const char *name)
2094 {
2095 	return call_int_hook(ismaclabel, 0, name);
2096 }
2097 EXPORT_SYMBOL(security_ismaclabel);
2098 
2099 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2100 {
2101 	struct security_hook_list *hp;
2102 	int rc;
2103 
2104 	/*
2105 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2106 	 * LSM hook is not "stackable").
2107 	 */
2108 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2109 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2110 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2111 			return rc;
2112 	}
2113 
2114 	return LSM_RET_DEFAULT(secid_to_secctx);
2115 }
2116 EXPORT_SYMBOL(security_secid_to_secctx);
2117 
2118 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2119 {
2120 	*secid = 0;
2121 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2122 }
2123 EXPORT_SYMBOL(security_secctx_to_secid);
2124 
2125 void security_release_secctx(char *secdata, u32 seclen)
2126 {
2127 	call_void_hook(release_secctx, secdata, seclen);
2128 }
2129 EXPORT_SYMBOL(security_release_secctx);
2130 
2131 void security_inode_invalidate_secctx(struct inode *inode)
2132 {
2133 	call_void_hook(inode_invalidate_secctx, inode);
2134 }
2135 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2136 
2137 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2138 {
2139 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2140 }
2141 EXPORT_SYMBOL(security_inode_notifysecctx);
2142 
2143 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2144 {
2145 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2146 }
2147 EXPORT_SYMBOL(security_inode_setsecctx);
2148 
2149 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2150 {
2151 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2152 }
2153 EXPORT_SYMBOL(security_inode_getsecctx);
2154 
2155 #ifdef CONFIG_WATCH_QUEUE
2156 int security_post_notification(const struct cred *w_cred,
2157 			       const struct cred *cred,
2158 			       struct watch_notification *n)
2159 {
2160 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2161 }
2162 #endif /* CONFIG_WATCH_QUEUE */
2163 
2164 #ifdef CONFIG_KEY_NOTIFICATIONS
2165 int security_watch_key(struct key *key)
2166 {
2167 	return call_int_hook(watch_key, 0, key);
2168 }
2169 #endif
2170 
2171 #ifdef CONFIG_SECURITY_NETWORK
2172 
2173 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2174 {
2175 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2176 }
2177 EXPORT_SYMBOL(security_unix_stream_connect);
2178 
2179 int security_unix_may_send(struct socket *sock,  struct socket *other)
2180 {
2181 	return call_int_hook(unix_may_send, 0, sock, other);
2182 }
2183 EXPORT_SYMBOL(security_unix_may_send);
2184 
2185 int security_socket_create(int family, int type, int protocol, int kern)
2186 {
2187 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2188 }
2189 
2190 int security_socket_post_create(struct socket *sock, int family,
2191 				int type, int protocol, int kern)
2192 {
2193 	return call_int_hook(socket_post_create, 0, sock, family, type,
2194 						protocol, kern);
2195 }
2196 
2197 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2198 {
2199 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2200 }
2201 EXPORT_SYMBOL(security_socket_socketpair);
2202 
2203 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2204 {
2205 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2206 }
2207 
2208 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2209 {
2210 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2211 }
2212 
2213 int security_socket_listen(struct socket *sock, int backlog)
2214 {
2215 	return call_int_hook(socket_listen, 0, sock, backlog);
2216 }
2217 
2218 int security_socket_accept(struct socket *sock, struct socket *newsock)
2219 {
2220 	return call_int_hook(socket_accept, 0, sock, newsock);
2221 }
2222 
2223 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2224 {
2225 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2226 }
2227 
2228 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2229 			    int size, int flags)
2230 {
2231 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2232 }
2233 
2234 int security_socket_getsockname(struct socket *sock)
2235 {
2236 	return call_int_hook(socket_getsockname, 0, sock);
2237 }
2238 
2239 int security_socket_getpeername(struct socket *sock)
2240 {
2241 	return call_int_hook(socket_getpeername, 0, sock);
2242 }
2243 
2244 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2245 {
2246 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2247 }
2248 
2249 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2250 {
2251 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2252 }
2253 
2254 int security_socket_shutdown(struct socket *sock, int how)
2255 {
2256 	return call_int_hook(socket_shutdown, 0, sock, how);
2257 }
2258 
2259 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2260 {
2261 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2262 }
2263 EXPORT_SYMBOL(security_sock_rcv_skb);
2264 
2265 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2266 				      int __user *optlen, unsigned len)
2267 {
2268 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2269 				optval, optlen, len);
2270 }
2271 
2272 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2273 {
2274 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2275 			     skb, secid);
2276 }
2277 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2278 
2279 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2280 {
2281 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2282 }
2283 
2284 void security_sk_free(struct sock *sk)
2285 {
2286 	call_void_hook(sk_free_security, sk);
2287 }
2288 
2289 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2290 {
2291 	call_void_hook(sk_clone_security, sk, newsk);
2292 }
2293 EXPORT_SYMBOL(security_sk_clone);
2294 
2295 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2296 {
2297 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2298 }
2299 EXPORT_SYMBOL(security_sk_classify_flow);
2300 
2301 void security_req_classify_flow(const struct request_sock *req,
2302 				struct flowi_common *flic)
2303 {
2304 	call_void_hook(req_classify_flow, req, flic);
2305 }
2306 EXPORT_SYMBOL(security_req_classify_flow);
2307 
2308 void security_sock_graft(struct sock *sk, struct socket *parent)
2309 {
2310 	call_void_hook(sock_graft, sk, parent);
2311 }
2312 EXPORT_SYMBOL(security_sock_graft);
2313 
2314 int security_inet_conn_request(const struct sock *sk,
2315 			struct sk_buff *skb, struct request_sock *req)
2316 {
2317 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2318 }
2319 EXPORT_SYMBOL(security_inet_conn_request);
2320 
2321 void security_inet_csk_clone(struct sock *newsk,
2322 			const struct request_sock *req)
2323 {
2324 	call_void_hook(inet_csk_clone, newsk, req);
2325 }
2326 
2327 void security_inet_conn_established(struct sock *sk,
2328 			struct sk_buff *skb)
2329 {
2330 	call_void_hook(inet_conn_established, sk, skb);
2331 }
2332 EXPORT_SYMBOL(security_inet_conn_established);
2333 
2334 int security_secmark_relabel_packet(u32 secid)
2335 {
2336 	return call_int_hook(secmark_relabel_packet, 0, secid);
2337 }
2338 EXPORT_SYMBOL(security_secmark_relabel_packet);
2339 
2340 void security_secmark_refcount_inc(void)
2341 {
2342 	call_void_hook(secmark_refcount_inc);
2343 }
2344 EXPORT_SYMBOL(security_secmark_refcount_inc);
2345 
2346 void security_secmark_refcount_dec(void)
2347 {
2348 	call_void_hook(secmark_refcount_dec);
2349 }
2350 EXPORT_SYMBOL(security_secmark_refcount_dec);
2351 
2352 int security_tun_dev_alloc_security(void **security)
2353 {
2354 	return call_int_hook(tun_dev_alloc_security, 0, security);
2355 }
2356 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2357 
2358 void security_tun_dev_free_security(void *security)
2359 {
2360 	call_void_hook(tun_dev_free_security, security);
2361 }
2362 EXPORT_SYMBOL(security_tun_dev_free_security);
2363 
2364 int security_tun_dev_create(void)
2365 {
2366 	return call_int_hook(tun_dev_create, 0);
2367 }
2368 EXPORT_SYMBOL(security_tun_dev_create);
2369 
2370 int security_tun_dev_attach_queue(void *security)
2371 {
2372 	return call_int_hook(tun_dev_attach_queue, 0, security);
2373 }
2374 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2375 
2376 int security_tun_dev_attach(struct sock *sk, void *security)
2377 {
2378 	return call_int_hook(tun_dev_attach, 0, sk, security);
2379 }
2380 EXPORT_SYMBOL(security_tun_dev_attach);
2381 
2382 int security_tun_dev_open(void *security)
2383 {
2384 	return call_int_hook(tun_dev_open, 0, security);
2385 }
2386 EXPORT_SYMBOL(security_tun_dev_open);
2387 
2388 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2389 {
2390 	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2391 }
2392 EXPORT_SYMBOL(security_sctp_assoc_request);
2393 
2394 int security_sctp_bind_connect(struct sock *sk, int optname,
2395 			       struct sockaddr *address, int addrlen)
2396 {
2397 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2398 			     address, addrlen);
2399 }
2400 EXPORT_SYMBOL(security_sctp_bind_connect);
2401 
2402 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2403 			    struct sock *newsk)
2404 {
2405 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2406 }
2407 EXPORT_SYMBOL(security_sctp_sk_clone);
2408 
2409 int security_sctp_assoc_established(struct sctp_association *asoc,
2410 				    struct sk_buff *skb)
2411 {
2412 	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2413 }
2414 EXPORT_SYMBOL(security_sctp_assoc_established);
2415 
2416 #endif	/* CONFIG_SECURITY_NETWORK */
2417 
2418 #ifdef CONFIG_SECURITY_INFINIBAND
2419 
2420 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2421 {
2422 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2423 }
2424 EXPORT_SYMBOL(security_ib_pkey_access);
2425 
2426 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2427 {
2428 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2429 }
2430 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2431 
2432 int security_ib_alloc_security(void **sec)
2433 {
2434 	return call_int_hook(ib_alloc_security, 0, sec);
2435 }
2436 EXPORT_SYMBOL(security_ib_alloc_security);
2437 
2438 void security_ib_free_security(void *sec)
2439 {
2440 	call_void_hook(ib_free_security, sec);
2441 }
2442 EXPORT_SYMBOL(security_ib_free_security);
2443 #endif	/* CONFIG_SECURITY_INFINIBAND */
2444 
2445 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2446 
2447 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2448 			       struct xfrm_user_sec_ctx *sec_ctx,
2449 			       gfp_t gfp)
2450 {
2451 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2452 }
2453 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2454 
2455 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2456 			      struct xfrm_sec_ctx **new_ctxp)
2457 {
2458 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2459 }
2460 
2461 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2462 {
2463 	call_void_hook(xfrm_policy_free_security, ctx);
2464 }
2465 EXPORT_SYMBOL(security_xfrm_policy_free);
2466 
2467 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2468 {
2469 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2470 }
2471 
2472 int security_xfrm_state_alloc(struct xfrm_state *x,
2473 			      struct xfrm_user_sec_ctx *sec_ctx)
2474 {
2475 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2476 }
2477 EXPORT_SYMBOL(security_xfrm_state_alloc);
2478 
2479 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2480 				      struct xfrm_sec_ctx *polsec, u32 secid)
2481 {
2482 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2483 }
2484 
2485 int security_xfrm_state_delete(struct xfrm_state *x)
2486 {
2487 	return call_int_hook(xfrm_state_delete_security, 0, x);
2488 }
2489 EXPORT_SYMBOL(security_xfrm_state_delete);
2490 
2491 void security_xfrm_state_free(struct xfrm_state *x)
2492 {
2493 	call_void_hook(xfrm_state_free_security, x);
2494 }
2495 
2496 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2497 {
2498 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2499 }
2500 
2501 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2502 				       struct xfrm_policy *xp,
2503 				       const struct flowi_common *flic)
2504 {
2505 	struct security_hook_list *hp;
2506 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2507 
2508 	/*
2509 	 * Since this function is expected to return 0 or 1, the judgment
2510 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2511 	 * we can use the first LSM's judgment because currently only SELinux
2512 	 * supplies this call.
2513 	 *
2514 	 * For speed optimization, we explicitly break the loop rather than
2515 	 * using the macro
2516 	 */
2517 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2518 				list) {
2519 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2520 		break;
2521 	}
2522 	return rc;
2523 }
2524 
2525 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2526 {
2527 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2528 }
2529 
2530 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2531 {
2532 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2533 				0);
2534 
2535 	BUG_ON(rc);
2536 }
2537 EXPORT_SYMBOL(security_skb_classify_flow);
2538 
2539 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2540 
2541 #ifdef CONFIG_KEYS
2542 
2543 int security_key_alloc(struct key *key, const struct cred *cred,
2544 		       unsigned long flags)
2545 {
2546 	return call_int_hook(key_alloc, 0, key, cred, flags);
2547 }
2548 
2549 void security_key_free(struct key *key)
2550 {
2551 	call_void_hook(key_free, key);
2552 }
2553 
2554 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2555 			    enum key_need_perm need_perm)
2556 {
2557 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2558 }
2559 
2560 int security_key_getsecurity(struct key *key, char **_buffer)
2561 {
2562 	*_buffer = NULL;
2563 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2564 }
2565 
2566 #endif	/* CONFIG_KEYS */
2567 
2568 #ifdef CONFIG_AUDIT
2569 
2570 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2571 {
2572 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2573 }
2574 
2575 int security_audit_rule_known(struct audit_krule *krule)
2576 {
2577 	return call_int_hook(audit_rule_known, 0, krule);
2578 }
2579 
2580 void security_audit_rule_free(void *lsmrule)
2581 {
2582 	call_void_hook(audit_rule_free, lsmrule);
2583 }
2584 
2585 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2586 {
2587 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2588 }
2589 #endif /* CONFIG_AUDIT */
2590 
2591 #ifdef CONFIG_BPF_SYSCALL
2592 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2593 {
2594 	return call_int_hook(bpf, 0, cmd, attr, size);
2595 }
2596 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2597 {
2598 	return call_int_hook(bpf_map, 0, map, fmode);
2599 }
2600 int security_bpf_prog(struct bpf_prog *prog)
2601 {
2602 	return call_int_hook(bpf_prog, 0, prog);
2603 }
2604 int security_bpf_map_alloc(struct bpf_map *map)
2605 {
2606 	return call_int_hook(bpf_map_alloc_security, 0, map);
2607 }
2608 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2609 {
2610 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2611 }
2612 void security_bpf_map_free(struct bpf_map *map)
2613 {
2614 	call_void_hook(bpf_map_free_security, map);
2615 }
2616 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2617 {
2618 	call_void_hook(bpf_prog_free_security, aux);
2619 }
2620 #endif /* CONFIG_BPF_SYSCALL */
2621 
2622 int security_locked_down(enum lockdown_reason what)
2623 {
2624 	return call_int_hook(locked_down, 0, what);
2625 }
2626 EXPORT_SYMBOL(security_locked_down);
2627 
2628 #ifdef CONFIG_PERF_EVENTS
2629 int security_perf_event_open(struct perf_event_attr *attr, int type)
2630 {
2631 	return call_int_hook(perf_event_open, 0, attr, type);
2632 }
2633 
2634 int security_perf_event_alloc(struct perf_event *event)
2635 {
2636 	return call_int_hook(perf_event_alloc, 0, event);
2637 }
2638 
2639 void security_perf_event_free(struct perf_event *event)
2640 {
2641 	call_void_hook(perf_event_free, event);
2642 }
2643 
2644 int security_perf_event_read(struct perf_event *event)
2645 {
2646 	return call_int_hook(perf_event_read, 0, event);
2647 }
2648 
2649 int security_perf_event_write(struct perf_event *event)
2650 {
2651 	return call_int_hook(perf_event_write, 0, event);
2652 }
2653 #endif /* CONFIG_PERF_EVENTS */
2654 
2655 #ifdef CONFIG_IO_URING
2656 int security_uring_override_creds(const struct cred *new)
2657 {
2658 	return call_int_hook(uring_override_creds, 0, new);
2659 }
2660 
2661 int security_uring_sqpoll(void)
2662 {
2663 	return call_int_hook(uring_sqpoll, 0);
2664 }
2665 #endif /* CONFIG_IO_URING */
2666