xref: /openbmc/linux/security/security.c (revision e2bc445b)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #define pr_fmt(fmt) "LSM: " fmt
16 
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <net/flow.h>
34 
35 #define MAX_LSM_EVM_XATTR	2
36 
37 /* How many LSMs were built into the kernel? */
38 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
39 
40 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42 
43 char *lsm_names;
44 /* Boot-time LSM user choice */
45 static __initdata const char *chosen_lsm_order;
46 static __initdata const char *chosen_major_lsm;
47 
48 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
49 
50 /* Ordered list of LSMs to initialize. */
51 static __initdata struct lsm_info **ordered_lsms;
52 static __initdata struct lsm_info *exclusive;
53 
54 static __initdata bool debug;
55 #define init_debug(...)						\
56 	do {							\
57 		if (debug)					\
58 			pr_info(__VA_ARGS__);			\
59 	} while (0)
60 
61 static bool __init is_enabled(struct lsm_info *lsm)
62 {
63 	if (!lsm->enabled)
64 		return false;
65 
66 	return *lsm->enabled;
67 }
68 
69 /* Mark an LSM's enabled flag. */
70 static int lsm_enabled_true __initdata = 1;
71 static int lsm_enabled_false __initdata = 0;
72 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
73 {
74 	/*
75 	 * When an LSM hasn't configured an enable variable, we can use
76 	 * a hard-coded location for storing the default enabled state.
77 	 */
78 	if (!lsm->enabled) {
79 		if (enabled)
80 			lsm->enabled = &lsm_enabled_true;
81 		else
82 			lsm->enabled = &lsm_enabled_false;
83 	} else if (lsm->enabled == &lsm_enabled_true) {
84 		if (!enabled)
85 			lsm->enabled = &lsm_enabled_false;
86 	} else if (lsm->enabled == &lsm_enabled_false) {
87 		if (enabled)
88 			lsm->enabled = &lsm_enabled_true;
89 	} else {
90 		*lsm->enabled = enabled;
91 	}
92 }
93 
94 /* Is an LSM already listed in the ordered LSMs list? */
95 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
96 {
97 	struct lsm_info **check;
98 
99 	for (check = ordered_lsms; *check; check++)
100 		if (*check == lsm)
101 			return true;
102 
103 	return false;
104 }
105 
106 /* Append an LSM to the list of ordered LSMs to initialize. */
107 static int last_lsm __initdata;
108 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
109 {
110 	/* Ignore duplicate selections. */
111 	if (exists_ordered_lsm(lsm))
112 		return;
113 
114 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
115 		return;
116 
117 	/* Enable this LSM, if it is not already set. */
118 	if (!lsm->enabled)
119 		lsm->enabled = &lsm_enabled_true;
120 	ordered_lsms[last_lsm++] = lsm;
121 
122 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
123 		   is_enabled(lsm) ? "en" : "dis");
124 }
125 
126 /* Is an LSM allowed to be initialized? */
127 static bool __init lsm_allowed(struct lsm_info *lsm)
128 {
129 	/* Skip if the LSM is disabled. */
130 	if (!is_enabled(lsm))
131 		return false;
132 
133 	/* Not allowed if another exclusive LSM already initialized. */
134 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
135 		init_debug("exclusive disabled: %s\n", lsm->name);
136 		return false;
137 	}
138 
139 	return true;
140 }
141 
142 /* Prepare LSM for initialization. */
143 static void __init prepare_lsm(struct lsm_info *lsm)
144 {
145 	int enabled = lsm_allowed(lsm);
146 
147 	/* Record enablement (to handle any following exclusive LSMs). */
148 	set_enabled(lsm, enabled);
149 
150 	/* If enabled, do pre-initialization work. */
151 	if (enabled) {
152 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
153 			exclusive = lsm;
154 			init_debug("exclusive chosen: %s\n", lsm->name);
155 		}
156 	}
157 }
158 
159 /* Initialize a given LSM, if it is enabled. */
160 static void __init initialize_lsm(struct lsm_info *lsm)
161 {
162 	if (is_enabled(lsm)) {
163 		int ret;
164 
165 		init_debug("initializing %s\n", lsm->name);
166 		ret = lsm->init();
167 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
168 	}
169 }
170 
171 /* Populate ordered LSMs list from comma-separated LSM name list. */
172 static void __init ordered_lsm_parse(const char *order, const char *origin)
173 {
174 	struct lsm_info *lsm;
175 	char *sep, *name, *next;
176 
177 	/* LSM_ORDER_FIRST is always first. */
178 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
179 		if (lsm->order == LSM_ORDER_FIRST)
180 			append_ordered_lsm(lsm, "first");
181 	}
182 
183 	/* Process "security=", if given. */
184 	if (chosen_major_lsm) {
185 		struct lsm_info *major;
186 
187 		/*
188 		 * To match the original "security=" behavior, this
189 		 * explicitly does NOT fallback to another Legacy Major
190 		 * if the selected one was separately disabled: disable
191 		 * all non-matching Legacy Major LSMs.
192 		 */
193 		for (major = __start_lsm_info; major < __end_lsm_info;
194 		     major++) {
195 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
196 			    strcmp(major->name, chosen_major_lsm) != 0) {
197 				set_enabled(major, false);
198 				init_debug("security=%s disabled: %s\n",
199 					   chosen_major_lsm, major->name);
200 			}
201 		}
202 	}
203 
204 	sep = kstrdup(order, GFP_KERNEL);
205 	next = sep;
206 	/* Walk the list, looking for matching LSMs. */
207 	while ((name = strsep(&next, ",")) != NULL) {
208 		bool found = false;
209 
210 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
211 			if (lsm->order == LSM_ORDER_MUTABLE &&
212 			    strcmp(lsm->name, name) == 0) {
213 				append_ordered_lsm(lsm, origin);
214 				found = true;
215 			}
216 		}
217 
218 		if (!found)
219 			init_debug("%s ignored: %s\n", origin, name);
220 	}
221 
222 	/* Process "security=", if given. */
223 	if (chosen_major_lsm) {
224 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
225 			if (exists_ordered_lsm(lsm))
226 				continue;
227 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
228 				append_ordered_lsm(lsm, "security=");
229 		}
230 	}
231 
232 	/* Disable all LSMs not in the ordered list. */
233 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
234 		if (exists_ordered_lsm(lsm))
235 			continue;
236 		set_enabled(lsm, false);
237 		init_debug("%s disabled: %s\n", origin, lsm->name);
238 	}
239 
240 	kfree(sep);
241 }
242 
243 static void __init ordered_lsm_init(void)
244 {
245 	struct lsm_info **lsm;
246 
247 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
248 				GFP_KERNEL);
249 
250 	if (chosen_lsm_order)
251 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
252 	else
253 		ordered_lsm_parse(builtin_lsm_order, "builtin");
254 
255 	for (lsm = ordered_lsms; *lsm; lsm++)
256 		prepare_lsm(*lsm);
257 
258 	for (lsm = ordered_lsms; *lsm; lsm++)
259 		initialize_lsm(*lsm);
260 
261 	kfree(ordered_lsms);
262 }
263 
264 /**
265  * security_init - initializes the security framework
266  *
267  * This should be called early in the kernel initialization sequence.
268  */
269 int __init security_init(void)
270 {
271 	int i;
272 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
273 
274 	pr_info("Security Framework initializing\n");
275 
276 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
277 	     i++)
278 		INIT_HLIST_HEAD(&list[i]);
279 
280 	/*
281 	 * Load minor LSMs, with the capability module always first.
282 	 */
283 	capability_add_hooks();
284 
285 	/* Load LSMs in specified order. */
286 	ordered_lsm_init();
287 
288 	return 0;
289 }
290 
291 /* Save user chosen LSM */
292 static int __init choose_major_lsm(char *str)
293 {
294 	chosen_major_lsm = str;
295 	return 1;
296 }
297 __setup("security=", choose_major_lsm);
298 
299 /* Explicitly choose LSM initialization order. */
300 static int __init choose_lsm_order(char *str)
301 {
302 	chosen_lsm_order = str;
303 	return 1;
304 }
305 __setup("lsm=", choose_lsm_order);
306 
307 /* Enable LSM order debugging. */
308 static int __init enable_debug(char *str)
309 {
310 	debug = true;
311 	return 1;
312 }
313 __setup("lsm.debug", enable_debug);
314 
315 static bool match_last_lsm(const char *list, const char *lsm)
316 {
317 	const char *last;
318 
319 	if (WARN_ON(!list || !lsm))
320 		return false;
321 	last = strrchr(list, ',');
322 	if (last)
323 		/* Pass the comma, strcmp() will check for '\0' */
324 		last++;
325 	else
326 		last = list;
327 	return !strcmp(last, lsm);
328 }
329 
330 static int lsm_append(char *new, char **result)
331 {
332 	char *cp;
333 
334 	if (*result == NULL) {
335 		*result = kstrdup(new, GFP_KERNEL);
336 		if (*result == NULL)
337 			return -ENOMEM;
338 	} else {
339 		/* Check if it is the last registered name */
340 		if (match_last_lsm(*result, new))
341 			return 0;
342 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
343 		if (cp == NULL)
344 			return -ENOMEM;
345 		kfree(*result);
346 		*result = cp;
347 	}
348 	return 0;
349 }
350 
351 /**
352  * security_add_hooks - Add a modules hooks to the hook lists.
353  * @hooks: the hooks to add
354  * @count: the number of hooks to add
355  * @lsm: the name of the security module
356  *
357  * Each LSM has to register its hooks with the infrastructure.
358  */
359 void __init security_add_hooks(struct security_hook_list *hooks, int count,
360 				char *lsm)
361 {
362 	int i;
363 
364 	for (i = 0; i < count; i++) {
365 		hooks[i].lsm = lsm;
366 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
367 	}
368 	if (lsm_append(lsm, &lsm_names) < 0)
369 		panic("%s - Cannot get early memory.\n", __func__);
370 }
371 
372 int call_lsm_notifier(enum lsm_event event, void *data)
373 {
374 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
375 }
376 EXPORT_SYMBOL(call_lsm_notifier);
377 
378 int register_lsm_notifier(struct notifier_block *nb)
379 {
380 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
381 }
382 EXPORT_SYMBOL(register_lsm_notifier);
383 
384 int unregister_lsm_notifier(struct notifier_block *nb)
385 {
386 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
387 }
388 EXPORT_SYMBOL(unregister_lsm_notifier);
389 
390 /*
391  * Hook list operation macros.
392  *
393  * call_void_hook:
394  *	This is a hook that does not return a value.
395  *
396  * call_int_hook:
397  *	This is a hook that returns a value.
398  */
399 
400 #define call_void_hook(FUNC, ...)				\
401 	do {							\
402 		struct security_hook_list *P;			\
403 								\
404 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
405 			P->hook.FUNC(__VA_ARGS__);		\
406 	} while (0)
407 
408 #define call_int_hook(FUNC, IRC, ...) ({			\
409 	int RC = IRC;						\
410 	do {							\
411 		struct security_hook_list *P;			\
412 								\
413 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
414 			RC = P->hook.FUNC(__VA_ARGS__);		\
415 			if (RC != 0)				\
416 				break;				\
417 		}						\
418 	} while (0);						\
419 	RC;							\
420 })
421 
422 /* Security operations */
423 
424 int security_binder_set_context_mgr(struct task_struct *mgr)
425 {
426 	return call_int_hook(binder_set_context_mgr, 0, mgr);
427 }
428 
429 int security_binder_transaction(struct task_struct *from,
430 				struct task_struct *to)
431 {
432 	return call_int_hook(binder_transaction, 0, from, to);
433 }
434 
435 int security_binder_transfer_binder(struct task_struct *from,
436 				    struct task_struct *to)
437 {
438 	return call_int_hook(binder_transfer_binder, 0, from, to);
439 }
440 
441 int security_binder_transfer_file(struct task_struct *from,
442 				  struct task_struct *to, struct file *file)
443 {
444 	return call_int_hook(binder_transfer_file, 0, from, to, file);
445 }
446 
447 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
448 {
449 	return call_int_hook(ptrace_access_check, 0, child, mode);
450 }
451 
452 int security_ptrace_traceme(struct task_struct *parent)
453 {
454 	return call_int_hook(ptrace_traceme, 0, parent);
455 }
456 
457 int security_capget(struct task_struct *target,
458 		     kernel_cap_t *effective,
459 		     kernel_cap_t *inheritable,
460 		     kernel_cap_t *permitted)
461 {
462 	return call_int_hook(capget, 0, target,
463 				effective, inheritable, permitted);
464 }
465 
466 int security_capset(struct cred *new, const struct cred *old,
467 		    const kernel_cap_t *effective,
468 		    const kernel_cap_t *inheritable,
469 		    const kernel_cap_t *permitted)
470 {
471 	return call_int_hook(capset, 0, new, old,
472 				effective, inheritable, permitted);
473 }
474 
475 int security_capable(const struct cred *cred, struct user_namespace *ns,
476 		     int cap)
477 {
478 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
479 }
480 
481 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
482 			     int cap)
483 {
484 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
485 }
486 
487 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
488 {
489 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
490 }
491 
492 int security_quota_on(struct dentry *dentry)
493 {
494 	return call_int_hook(quota_on, 0, dentry);
495 }
496 
497 int security_syslog(int type)
498 {
499 	return call_int_hook(syslog, 0, type);
500 }
501 
502 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
503 {
504 	return call_int_hook(settime, 0, ts, tz);
505 }
506 
507 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
508 {
509 	struct security_hook_list *hp;
510 	int cap_sys_admin = 1;
511 	int rc;
512 
513 	/*
514 	 * The module will respond with a positive value if
515 	 * it thinks the __vm_enough_memory() call should be
516 	 * made with the cap_sys_admin set. If all of the modules
517 	 * agree that it should be set it will. If any module
518 	 * thinks it should not be set it won't.
519 	 */
520 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
521 		rc = hp->hook.vm_enough_memory(mm, pages);
522 		if (rc <= 0) {
523 			cap_sys_admin = 0;
524 			break;
525 		}
526 	}
527 	return __vm_enough_memory(mm, pages, cap_sys_admin);
528 }
529 
530 int security_bprm_set_creds(struct linux_binprm *bprm)
531 {
532 	return call_int_hook(bprm_set_creds, 0, bprm);
533 }
534 
535 int security_bprm_check(struct linux_binprm *bprm)
536 {
537 	int ret;
538 
539 	ret = call_int_hook(bprm_check_security, 0, bprm);
540 	if (ret)
541 		return ret;
542 	return ima_bprm_check(bprm);
543 }
544 
545 void security_bprm_committing_creds(struct linux_binprm *bprm)
546 {
547 	call_void_hook(bprm_committing_creds, bprm);
548 }
549 
550 void security_bprm_committed_creds(struct linux_binprm *bprm)
551 {
552 	call_void_hook(bprm_committed_creds, bprm);
553 }
554 
555 int security_sb_alloc(struct super_block *sb)
556 {
557 	return call_int_hook(sb_alloc_security, 0, sb);
558 }
559 
560 void security_sb_free(struct super_block *sb)
561 {
562 	call_void_hook(sb_free_security, sb);
563 }
564 
565 void security_free_mnt_opts(void **mnt_opts)
566 {
567 	if (!*mnt_opts)
568 		return;
569 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
570 	*mnt_opts = NULL;
571 }
572 EXPORT_SYMBOL(security_free_mnt_opts);
573 
574 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
575 {
576 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
577 }
578 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
579 
580 int security_sb_remount(struct super_block *sb,
581 			void *mnt_opts)
582 {
583 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
584 }
585 EXPORT_SYMBOL(security_sb_remount);
586 
587 int security_sb_kern_mount(struct super_block *sb)
588 {
589 	return call_int_hook(sb_kern_mount, 0, sb);
590 }
591 
592 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
593 {
594 	return call_int_hook(sb_show_options, 0, m, sb);
595 }
596 
597 int security_sb_statfs(struct dentry *dentry)
598 {
599 	return call_int_hook(sb_statfs, 0, dentry);
600 }
601 
602 int security_sb_mount(const char *dev_name, const struct path *path,
603                        const char *type, unsigned long flags, void *data)
604 {
605 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
606 }
607 
608 int security_sb_umount(struct vfsmount *mnt, int flags)
609 {
610 	return call_int_hook(sb_umount, 0, mnt, flags);
611 }
612 
613 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
614 {
615 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
616 }
617 
618 int security_sb_set_mnt_opts(struct super_block *sb,
619 				void *mnt_opts,
620 				unsigned long kern_flags,
621 				unsigned long *set_kern_flags)
622 {
623 	return call_int_hook(sb_set_mnt_opts,
624 				mnt_opts ? -EOPNOTSUPP : 0, sb,
625 				mnt_opts, kern_flags, set_kern_flags);
626 }
627 EXPORT_SYMBOL(security_sb_set_mnt_opts);
628 
629 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
630 				struct super_block *newsb,
631 				unsigned long kern_flags,
632 				unsigned long *set_kern_flags)
633 {
634 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
635 				kern_flags, set_kern_flags);
636 }
637 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
638 
639 int security_add_mnt_opt(const char *option, const char *val, int len,
640 			 void **mnt_opts)
641 {
642 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
643 					option, val, len, mnt_opts);
644 }
645 EXPORT_SYMBOL(security_add_mnt_opt);
646 
647 int security_inode_alloc(struct inode *inode)
648 {
649 	inode->i_security = NULL;
650 	return call_int_hook(inode_alloc_security, 0, inode);
651 }
652 
653 void security_inode_free(struct inode *inode)
654 {
655 	integrity_inode_free(inode);
656 	call_void_hook(inode_free_security, inode);
657 }
658 
659 int security_dentry_init_security(struct dentry *dentry, int mode,
660 					const struct qstr *name, void **ctx,
661 					u32 *ctxlen)
662 {
663 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
664 				name, ctx, ctxlen);
665 }
666 EXPORT_SYMBOL(security_dentry_init_security);
667 
668 int security_dentry_create_files_as(struct dentry *dentry, int mode,
669 				    struct qstr *name,
670 				    const struct cred *old, struct cred *new)
671 {
672 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
673 				name, old, new);
674 }
675 EXPORT_SYMBOL(security_dentry_create_files_as);
676 
677 int security_inode_init_security(struct inode *inode, struct inode *dir,
678 				 const struct qstr *qstr,
679 				 const initxattrs initxattrs, void *fs_data)
680 {
681 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
682 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
683 	int ret;
684 
685 	if (unlikely(IS_PRIVATE(inode)))
686 		return 0;
687 
688 	if (!initxattrs)
689 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
690 				     dir, qstr, NULL, NULL, NULL);
691 	memset(new_xattrs, 0, sizeof(new_xattrs));
692 	lsm_xattr = new_xattrs;
693 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
694 						&lsm_xattr->name,
695 						&lsm_xattr->value,
696 						&lsm_xattr->value_len);
697 	if (ret)
698 		goto out;
699 
700 	evm_xattr = lsm_xattr + 1;
701 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
702 	if (ret)
703 		goto out;
704 	ret = initxattrs(inode, new_xattrs, fs_data);
705 out:
706 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
707 		kfree(xattr->value);
708 	return (ret == -EOPNOTSUPP) ? 0 : ret;
709 }
710 EXPORT_SYMBOL(security_inode_init_security);
711 
712 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
713 				     const struct qstr *qstr, const char **name,
714 				     void **value, size_t *len)
715 {
716 	if (unlikely(IS_PRIVATE(inode)))
717 		return -EOPNOTSUPP;
718 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
719 			     qstr, name, value, len);
720 }
721 EXPORT_SYMBOL(security_old_inode_init_security);
722 
723 #ifdef CONFIG_SECURITY_PATH
724 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
725 			unsigned int dev)
726 {
727 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
728 		return 0;
729 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
730 }
731 EXPORT_SYMBOL(security_path_mknod);
732 
733 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
734 {
735 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
736 		return 0;
737 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
738 }
739 EXPORT_SYMBOL(security_path_mkdir);
740 
741 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
742 {
743 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
744 		return 0;
745 	return call_int_hook(path_rmdir, 0, dir, dentry);
746 }
747 
748 int security_path_unlink(const struct path *dir, struct dentry *dentry)
749 {
750 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
751 		return 0;
752 	return call_int_hook(path_unlink, 0, dir, dentry);
753 }
754 EXPORT_SYMBOL(security_path_unlink);
755 
756 int security_path_symlink(const struct path *dir, struct dentry *dentry,
757 			  const char *old_name)
758 {
759 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
760 		return 0;
761 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
762 }
763 
764 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
765 		       struct dentry *new_dentry)
766 {
767 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
768 		return 0;
769 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
770 }
771 
772 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
773 			 const struct path *new_dir, struct dentry *new_dentry,
774 			 unsigned int flags)
775 {
776 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
777 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
778 		return 0;
779 
780 	if (flags & RENAME_EXCHANGE) {
781 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
782 					old_dir, old_dentry);
783 		if (err)
784 			return err;
785 	}
786 
787 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
788 				new_dentry);
789 }
790 EXPORT_SYMBOL(security_path_rename);
791 
792 int security_path_truncate(const struct path *path)
793 {
794 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
795 		return 0;
796 	return call_int_hook(path_truncate, 0, path);
797 }
798 
799 int security_path_chmod(const struct path *path, umode_t mode)
800 {
801 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
802 		return 0;
803 	return call_int_hook(path_chmod, 0, path, mode);
804 }
805 
806 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
807 {
808 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
809 		return 0;
810 	return call_int_hook(path_chown, 0, path, uid, gid);
811 }
812 
813 int security_path_chroot(const struct path *path)
814 {
815 	return call_int_hook(path_chroot, 0, path);
816 }
817 #endif
818 
819 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
820 {
821 	if (unlikely(IS_PRIVATE(dir)))
822 		return 0;
823 	return call_int_hook(inode_create, 0, dir, dentry, mode);
824 }
825 EXPORT_SYMBOL_GPL(security_inode_create);
826 
827 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
828 			 struct dentry *new_dentry)
829 {
830 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
831 		return 0;
832 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
833 }
834 
835 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
836 {
837 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
838 		return 0;
839 	return call_int_hook(inode_unlink, 0, dir, dentry);
840 }
841 
842 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
843 			    const char *old_name)
844 {
845 	if (unlikely(IS_PRIVATE(dir)))
846 		return 0;
847 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
848 }
849 
850 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
851 {
852 	if (unlikely(IS_PRIVATE(dir)))
853 		return 0;
854 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
855 }
856 EXPORT_SYMBOL_GPL(security_inode_mkdir);
857 
858 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
859 {
860 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
861 		return 0;
862 	return call_int_hook(inode_rmdir, 0, dir, dentry);
863 }
864 
865 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
866 {
867 	if (unlikely(IS_PRIVATE(dir)))
868 		return 0;
869 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
870 }
871 
872 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
873 			   struct inode *new_dir, struct dentry *new_dentry,
874 			   unsigned int flags)
875 {
876         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
877             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
878 		return 0;
879 
880 	if (flags & RENAME_EXCHANGE) {
881 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
882 						     old_dir, old_dentry);
883 		if (err)
884 			return err;
885 	}
886 
887 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
888 					   new_dir, new_dentry);
889 }
890 
891 int security_inode_readlink(struct dentry *dentry)
892 {
893 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
894 		return 0;
895 	return call_int_hook(inode_readlink, 0, dentry);
896 }
897 
898 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
899 			       bool rcu)
900 {
901 	if (unlikely(IS_PRIVATE(inode)))
902 		return 0;
903 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
904 }
905 
906 int security_inode_permission(struct inode *inode, int mask)
907 {
908 	if (unlikely(IS_PRIVATE(inode)))
909 		return 0;
910 	return call_int_hook(inode_permission, 0, inode, mask);
911 }
912 
913 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
914 {
915 	int ret;
916 
917 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
918 		return 0;
919 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
920 	if (ret)
921 		return ret;
922 	return evm_inode_setattr(dentry, attr);
923 }
924 EXPORT_SYMBOL_GPL(security_inode_setattr);
925 
926 int security_inode_getattr(const struct path *path)
927 {
928 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
929 		return 0;
930 	return call_int_hook(inode_getattr, 0, path);
931 }
932 
933 int security_inode_setxattr(struct dentry *dentry, const char *name,
934 			    const void *value, size_t size, int flags)
935 {
936 	int ret;
937 
938 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
939 		return 0;
940 	/*
941 	 * SELinux and Smack integrate the cap call,
942 	 * so assume that all LSMs supplying this call do so.
943 	 */
944 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
945 				flags);
946 
947 	if (ret == 1)
948 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
949 	if (ret)
950 		return ret;
951 	ret = ima_inode_setxattr(dentry, name, value, size);
952 	if (ret)
953 		return ret;
954 	return evm_inode_setxattr(dentry, name, value, size);
955 }
956 
957 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
958 				  const void *value, size_t size, int flags)
959 {
960 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
961 		return;
962 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
963 	evm_inode_post_setxattr(dentry, name, value, size);
964 }
965 
966 int security_inode_getxattr(struct dentry *dentry, const char *name)
967 {
968 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
969 		return 0;
970 	return call_int_hook(inode_getxattr, 0, dentry, name);
971 }
972 
973 int security_inode_listxattr(struct dentry *dentry)
974 {
975 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
976 		return 0;
977 	return call_int_hook(inode_listxattr, 0, dentry);
978 }
979 
980 int security_inode_removexattr(struct dentry *dentry, const char *name)
981 {
982 	int ret;
983 
984 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
985 		return 0;
986 	/*
987 	 * SELinux and Smack integrate the cap call,
988 	 * so assume that all LSMs supplying this call do so.
989 	 */
990 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
991 	if (ret == 1)
992 		ret = cap_inode_removexattr(dentry, name);
993 	if (ret)
994 		return ret;
995 	ret = ima_inode_removexattr(dentry, name);
996 	if (ret)
997 		return ret;
998 	return evm_inode_removexattr(dentry, name);
999 }
1000 
1001 int security_inode_need_killpriv(struct dentry *dentry)
1002 {
1003 	return call_int_hook(inode_need_killpriv, 0, dentry);
1004 }
1005 
1006 int security_inode_killpriv(struct dentry *dentry)
1007 {
1008 	return call_int_hook(inode_killpriv, 0, dentry);
1009 }
1010 
1011 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1012 {
1013 	struct security_hook_list *hp;
1014 	int rc;
1015 
1016 	if (unlikely(IS_PRIVATE(inode)))
1017 		return -EOPNOTSUPP;
1018 	/*
1019 	 * Only one module will provide an attribute with a given name.
1020 	 */
1021 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1022 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1023 		if (rc != -EOPNOTSUPP)
1024 			return rc;
1025 	}
1026 	return -EOPNOTSUPP;
1027 }
1028 
1029 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1030 {
1031 	struct security_hook_list *hp;
1032 	int rc;
1033 
1034 	if (unlikely(IS_PRIVATE(inode)))
1035 		return -EOPNOTSUPP;
1036 	/*
1037 	 * Only one module will provide an attribute with a given name.
1038 	 */
1039 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1040 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1041 								flags);
1042 		if (rc != -EOPNOTSUPP)
1043 			return rc;
1044 	}
1045 	return -EOPNOTSUPP;
1046 }
1047 
1048 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1049 {
1050 	if (unlikely(IS_PRIVATE(inode)))
1051 		return 0;
1052 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1053 }
1054 EXPORT_SYMBOL(security_inode_listsecurity);
1055 
1056 void security_inode_getsecid(struct inode *inode, u32 *secid)
1057 {
1058 	call_void_hook(inode_getsecid, inode, secid);
1059 }
1060 
1061 int security_inode_copy_up(struct dentry *src, struct cred **new)
1062 {
1063 	return call_int_hook(inode_copy_up, 0, src, new);
1064 }
1065 EXPORT_SYMBOL(security_inode_copy_up);
1066 
1067 int security_inode_copy_up_xattr(const char *name)
1068 {
1069 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1070 }
1071 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1072 
1073 int security_file_permission(struct file *file, int mask)
1074 {
1075 	int ret;
1076 
1077 	ret = call_int_hook(file_permission, 0, file, mask);
1078 	if (ret)
1079 		return ret;
1080 
1081 	return fsnotify_perm(file, mask);
1082 }
1083 
1084 int security_file_alloc(struct file *file)
1085 {
1086 	return call_int_hook(file_alloc_security, 0, file);
1087 }
1088 
1089 void security_file_free(struct file *file)
1090 {
1091 	call_void_hook(file_free_security, file);
1092 }
1093 
1094 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1095 {
1096 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1097 }
1098 
1099 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1100 {
1101 	/*
1102 	 * Does we have PROT_READ and does the application expect
1103 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1104 	 */
1105 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1106 		return prot;
1107 	if (!(current->personality & READ_IMPLIES_EXEC))
1108 		return prot;
1109 	/*
1110 	 * if that's an anonymous mapping, let it.
1111 	 */
1112 	if (!file)
1113 		return prot | PROT_EXEC;
1114 	/*
1115 	 * ditto if it's not on noexec mount, except that on !MMU we need
1116 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1117 	 */
1118 	if (!path_noexec(&file->f_path)) {
1119 #ifndef CONFIG_MMU
1120 		if (file->f_op->mmap_capabilities) {
1121 			unsigned caps = file->f_op->mmap_capabilities(file);
1122 			if (!(caps & NOMMU_MAP_EXEC))
1123 				return prot;
1124 		}
1125 #endif
1126 		return prot | PROT_EXEC;
1127 	}
1128 	/* anything on noexec mount won't get PROT_EXEC */
1129 	return prot;
1130 }
1131 
1132 int security_mmap_file(struct file *file, unsigned long prot,
1133 			unsigned long flags)
1134 {
1135 	int ret;
1136 	ret = call_int_hook(mmap_file, 0, file, prot,
1137 					mmap_prot(file, prot), flags);
1138 	if (ret)
1139 		return ret;
1140 	return ima_file_mmap(file, prot);
1141 }
1142 
1143 int security_mmap_addr(unsigned long addr)
1144 {
1145 	return call_int_hook(mmap_addr, 0, addr);
1146 }
1147 
1148 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1149 			    unsigned long prot)
1150 {
1151 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1152 }
1153 
1154 int security_file_lock(struct file *file, unsigned int cmd)
1155 {
1156 	return call_int_hook(file_lock, 0, file, cmd);
1157 }
1158 
1159 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1160 {
1161 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1162 }
1163 
1164 void security_file_set_fowner(struct file *file)
1165 {
1166 	call_void_hook(file_set_fowner, file);
1167 }
1168 
1169 int security_file_send_sigiotask(struct task_struct *tsk,
1170 				  struct fown_struct *fown, int sig)
1171 {
1172 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1173 }
1174 
1175 int security_file_receive(struct file *file)
1176 {
1177 	return call_int_hook(file_receive, 0, file);
1178 }
1179 
1180 int security_file_open(struct file *file)
1181 {
1182 	int ret;
1183 
1184 	ret = call_int_hook(file_open, 0, file);
1185 	if (ret)
1186 		return ret;
1187 
1188 	return fsnotify_perm(file, MAY_OPEN);
1189 }
1190 
1191 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1192 {
1193 	return call_int_hook(task_alloc, 0, task, clone_flags);
1194 }
1195 
1196 void security_task_free(struct task_struct *task)
1197 {
1198 	call_void_hook(task_free, task);
1199 }
1200 
1201 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1202 {
1203 	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1204 }
1205 
1206 void security_cred_free(struct cred *cred)
1207 {
1208 	call_void_hook(cred_free, cred);
1209 }
1210 
1211 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1212 {
1213 	return call_int_hook(cred_prepare, 0, new, old, gfp);
1214 }
1215 
1216 void security_transfer_creds(struct cred *new, const struct cred *old)
1217 {
1218 	call_void_hook(cred_transfer, new, old);
1219 }
1220 
1221 void security_cred_getsecid(const struct cred *c, u32 *secid)
1222 {
1223 	*secid = 0;
1224 	call_void_hook(cred_getsecid, c, secid);
1225 }
1226 EXPORT_SYMBOL(security_cred_getsecid);
1227 
1228 int security_kernel_act_as(struct cred *new, u32 secid)
1229 {
1230 	return call_int_hook(kernel_act_as, 0, new, secid);
1231 }
1232 
1233 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1234 {
1235 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1236 }
1237 
1238 int security_kernel_module_request(char *kmod_name)
1239 {
1240 	int ret;
1241 
1242 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1243 	if (ret)
1244 		return ret;
1245 	return integrity_kernel_module_request(kmod_name);
1246 }
1247 
1248 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1249 {
1250 	int ret;
1251 
1252 	ret = call_int_hook(kernel_read_file, 0, file, id);
1253 	if (ret)
1254 		return ret;
1255 	return ima_read_file(file, id);
1256 }
1257 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1258 
1259 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1260 				   enum kernel_read_file_id id)
1261 {
1262 	int ret;
1263 
1264 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1265 	if (ret)
1266 		return ret;
1267 	return ima_post_read_file(file, buf, size, id);
1268 }
1269 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1270 
1271 int security_kernel_load_data(enum kernel_load_data_id id)
1272 {
1273 	int ret;
1274 
1275 	ret = call_int_hook(kernel_load_data, 0, id);
1276 	if (ret)
1277 		return ret;
1278 	return ima_load_data(id);
1279 }
1280 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1281 
1282 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1283 			     int flags)
1284 {
1285 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1286 }
1287 
1288 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1289 {
1290 	return call_int_hook(task_setpgid, 0, p, pgid);
1291 }
1292 
1293 int security_task_getpgid(struct task_struct *p)
1294 {
1295 	return call_int_hook(task_getpgid, 0, p);
1296 }
1297 
1298 int security_task_getsid(struct task_struct *p)
1299 {
1300 	return call_int_hook(task_getsid, 0, p);
1301 }
1302 
1303 void security_task_getsecid(struct task_struct *p, u32 *secid)
1304 {
1305 	*secid = 0;
1306 	call_void_hook(task_getsecid, p, secid);
1307 }
1308 EXPORT_SYMBOL(security_task_getsecid);
1309 
1310 int security_task_setnice(struct task_struct *p, int nice)
1311 {
1312 	return call_int_hook(task_setnice, 0, p, nice);
1313 }
1314 
1315 int security_task_setioprio(struct task_struct *p, int ioprio)
1316 {
1317 	return call_int_hook(task_setioprio, 0, p, ioprio);
1318 }
1319 
1320 int security_task_getioprio(struct task_struct *p)
1321 {
1322 	return call_int_hook(task_getioprio, 0, p);
1323 }
1324 
1325 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1326 			  unsigned int flags)
1327 {
1328 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1329 }
1330 
1331 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1332 		struct rlimit *new_rlim)
1333 {
1334 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1335 }
1336 
1337 int security_task_setscheduler(struct task_struct *p)
1338 {
1339 	return call_int_hook(task_setscheduler, 0, p);
1340 }
1341 
1342 int security_task_getscheduler(struct task_struct *p)
1343 {
1344 	return call_int_hook(task_getscheduler, 0, p);
1345 }
1346 
1347 int security_task_movememory(struct task_struct *p)
1348 {
1349 	return call_int_hook(task_movememory, 0, p);
1350 }
1351 
1352 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1353 			int sig, const struct cred *cred)
1354 {
1355 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1356 }
1357 
1358 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1359 			 unsigned long arg4, unsigned long arg5)
1360 {
1361 	int thisrc;
1362 	int rc = -ENOSYS;
1363 	struct security_hook_list *hp;
1364 
1365 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1366 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1367 		if (thisrc != -ENOSYS) {
1368 			rc = thisrc;
1369 			if (thisrc != 0)
1370 				break;
1371 		}
1372 	}
1373 	return rc;
1374 }
1375 
1376 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1377 {
1378 	call_void_hook(task_to_inode, p, inode);
1379 }
1380 
1381 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1382 {
1383 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1384 }
1385 
1386 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1387 {
1388 	*secid = 0;
1389 	call_void_hook(ipc_getsecid, ipcp, secid);
1390 }
1391 
1392 int security_msg_msg_alloc(struct msg_msg *msg)
1393 {
1394 	return call_int_hook(msg_msg_alloc_security, 0, msg);
1395 }
1396 
1397 void security_msg_msg_free(struct msg_msg *msg)
1398 {
1399 	call_void_hook(msg_msg_free_security, msg);
1400 }
1401 
1402 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1403 {
1404 	return call_int_hook(msg_queue_alloc_security, 0, msq);
1405 }
1406 
1407 void security_msg_queue_free(struct kern_ipc_perm *msq)
1408 {
1409 	call_void_hook(msg_queue_free_security, msq);
1410 }
1411 
1412 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1413 {
1414 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1415 }
1416 
1417 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1418 {
1419 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1420 }
1421 
1422 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1423 			       struct msg_msg *msg, int msqflg)
1424 {
1425 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1426 }
1427 
1428 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1429 			       struct task_struct *target, long type, int mode)
1430 {
1431 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1432 }
1433 
1434 int security_shm_alloc(struct kern_ipc_perm *shp)
1435 {
1436 	return call_int_hook(shm_alloc_security, 0, shp);
1437 }
1438 
1439 void security_shm_free(struct kern_ipc_perm *shp)
1440 {
1441 	call_void_hook(shm_free_security, shp);
1442 }
1443 
1444 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1445 {
1446 	return call_int_hook(shm_associate, 0, shp, shmflg);
1447 }
1448 
1449 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1450 {
1451 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1452 }
1453 
1454 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1455 {
1456 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1457 }
1458 
1459 int security_sem_alloc(struct kern_ipc_perm *sma)
1460 {
1461 	return call_int_hook(sem_alloc_security, 0, sma);
1462 }
1463 
1464 void security_sem_free(struct kern_ipc_perm *sma)
1465 {
1466 	call_void_hook(sem_free_security, sma);
1467 }
1468 
1469 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1470 {
1471 	return call_int_hook(sem_associate, 0, sma, semflg);
1472 }
1473 
1474 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1475 {
1476 	return call_int_hook(sem_semctl, 0, sma, cmd);
1477 }
1478 
1479 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1480 			unsigned nsops, int alter)
1481 {
1482 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1483 }
1484 
1485 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1486 {
1487 	if (unlikely(inode && IS_PRIVATE(inode)))
1488 		return;
1489 	call_void_hook(d_instantiate, dentry, inode);
1490 }
1491 EXPORT_SYMBOL(security_d_instantiate);
1492 
1493 int security_getprocattr(struct task_struct *p, char *name, char **value)
1494 {
1495 	return call_int_hook(getprocattr, -EINVAL, p, name, value);
1496 }
1497 
1498 int security_setprocattr(const char *name, void *value, size_t size)
1499 {
1500 	return call_int_hook(setprocattr, -EINVAL, name, value, size);
1501 }
1502 
1503 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1504 {
1505 	return call_int_hook(netlink_send, 0, sk, skb);
1506 }
1507 
1508 int security_ismaclabel(const char *name)
1509 {
1510 	return call_int_hook(ismaclabel, 0, name);
1511 }
1512 EXPORT_SYMBOL(security_ismaclabel);
1513 
1514 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1515 {
1516 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1517 				seclen);
1518 }
1519 EXPORT_SYMBOL(security_secid_to_secctx);
1520 
1521 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1522 {
1523 	*secid = 0;
1524 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1525 }
1526 EXPORT_SYMBOL(security_secctx_to_secid);
1527 
1528 void security_release_secctx(char *secdata, u32 seclen)
1529 {
1530 	call_void_hook(release_secctx, secdata, seclen);
1531 }
1532 EXPORT_SYMBOL(security_release_secctx);
1533 
1534 void security_inode_invalidate_secctx(struct inode *inode)
1535 {
1536 	call_void_hook(inode_invalidate_secctx, inode);
1537 }
1538 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1539 
1540 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1541 {
1542 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1543 }
1544 EXPORT_SYMBOL(security_inode_notifysecctx);
1545 
1546 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1547 {
1548 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1549 }
1550 EXPORT_SYMBOL(security_inode_setsecctx);
1551 
1552 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1553 {
1554 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1555 }
1556 EXPORT_SYMBOL(security_inode_getsecctx);
1557 
1558 #ifdef CONFIG_SECURITY_NETWORK
1559 
1560 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1561 {
1562 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1563 }
1564 EXPORT_SYMBOL(security_unix_stream_connect);
1565 
1566 int security_unix_may_send(struct socket *sock,  struct socket *other)
1567 {
1568 	return call_int_hook(unix_may_send, 0, sock, other);
1569 }
1570 EXPORT_SYMBOL(security_unix_may_send);
1571 
1572 int security_socket_create(int family, int type, int protocol, int kern)
1573 {
1574 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1575 }
1576 
1577 int security_socket_post_create(struct socket *sock, int family,
1578 				int type, int protocol, int kern)
1579 {
1580 	return call_int_hook(socket_post_create, 0, sock, family, type,
1581 						protocol, kern);
1582 }
1583 
1584 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1585 {
1586 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1587 }
1588 EXPORT_SYMBOL(security_socket_socketpair);
1589 
1590 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1591 {
1592 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1593 }
1594 
1595 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1596 {
1597 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1598 }
1599 
1600 int security_socket_listen(struct socket *sock, int backlog)
1601 {
1602 	return call_int_hook(socket_listen, 0, sock, backlog);
1603 }
1604 
1605 int security_socket_accept(struct socket *sock, struct socket *newsock)
1606 {
1607 	return call_int_hook(socket_accept, 0, sock, newsock);
1608 }
1609 
1610 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1611 {
1612 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1613 }
1614 
1615 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1616 			    int size, int flags)
1617 {
1618 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1619 }
1620 
1621 int security_socket_getsockname(struct socket *sock)
1622 {
1623 	return call_int_hook(socket_getsockname, 0, sock);
1624 }
1625 
1626 int security_socket_getpeername(struct socket *sock)
1627 {
1628 	return call_int_hook(socket_getpeername, 0, sock);
1629 }
1630 
1631 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1632 {
1633 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1634 }
1635 
1636 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1637 {
1638 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1639 }
1640 
1641 int security_socket_shutdown(struct socket *sock, int how)
1642 {
1643 	return call_int_hook(socket_shutdown, 0, sock, how);
1644 }
1645 
1646 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1647 {
1648 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1649 }
1650 EXPORT_SYMBOL(security_sock_rcv_skb);
1651 
1652 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1653 				      int __user *optlen, unsigned len)
1654 {
1655 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1656 				optval, optlen, len);
1657 }
1658 
1659 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1660 {
1661 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1662 			     skb, secid);
1663 }
1664 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1665 
1666 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1667 {
1668 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1669 }
1670 
1671 void security_sk_free(struct sock *sk)
1672 {
1673 	call_void_hook(sk_free_security, sk);
1674 }
1675 
1676 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1677 {
1678 	call_void_hook(sk_clone_security, sk, newsk);
1679 }
1680 EXPORT_SYMBOL(security_sk_clone);
1681 
1682 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1683 {
1684 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1685 }
1686 EXPORT_SYMBOL(security_sk_classify_flow);
1687 
1688 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1689 {
1690 	call_void_hook(req_classify_flow, req, fl);
1691 }
1692 EXPORT_SYMBOL(security_req_classify_flow);
1693 
1694 void security_sock_graft(struct sock *sk, struct socket *parent)
1695 {
1696 	call_void_hook(sock_graft, sk, parent);
1697 }
1698 EXPORT_SYMBOL(security_sock_graft);
1699 
1700 int security_inet_conn_request(struct sock *sk,
1701 			struct sk_buff *skb, struct request_sock *req)
1702 {
1703 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1704 }
1705 EXPORT_SYMBOL(security_inet_conn_request);
1706 
1707 void security_inet_csk_clone(struct sock *newsk,
1708 			const struct request_sock *req)
1709 {
1710 	call_void_hook(inet_csk_clone, newsk, req);
1711 }
1712 
1713 void security_inet_conn_established(struct sock *sk,
1714 			struct sk_buff *skb)
1715 {
1716 	call_void_hook(inet_conn_established, sk, skb);
1717 }
1718 EXPORT_SYMBOL(security_inet_conn_established);
1719 
1720 int security_secmark_relabel_packet(u32 secid)
1721 {
1722 	return call_int_hook(secmark_relabel_packet, 0, secid);
1723 }
1724 EXPORT_SYMBOL(security_secmark_relabel_packet);
1725 
1726 void security_secmark_refcount_inc(void)
1727 {
1728 	call_void_hook(secmark_refcount_inc);
1729 }
1730 EXPORT_SYMBOL(security_secmark_refcount_inc);
1731 
1732 void security_secmark_refcount_dec(void)
1733 {
1734 	call_void_hook(secmark_refcount_dec);
1735 }
1736 EXPORT_SYMBOL(security_secmark_refcount_dec);
1737 
1738 int security_tun_dev_alloc_security(void **security)
1739 {
1740 	return call_int_hook(tun_dev_alloc_security, 0, security);
1741 }
1742 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1743 
1744 void security_tun_dev_free_security(void *security)
1745 {
1746 	call_void_hook(tun_dev_free_security, security);
1747 }
1748 EXPORT_SYMBOL(security_tun_dev_free_security);
1749 
1750 int security_tun_dev_create(void)
1751 {
1752 	return call_int_hook(tun_dev_create, 0);
1753 }
1754 EXPORT_SYMBOL(security_tun_dev_create);
1755 
1756 int security_tun_dev_attach_queue(void *security)
1757 {
1758 	return call_int_hook(tun_dev_attach_queue, 0, security);
1759 }
1760 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1761 
1762 int security_tun_dev_attach(struct sock *sk, void *security)
1763 {
1764 	return call_int_hook(tun_dev_attach, 0, sk, security);
1765 }
1766 EXPORT_SYMBOL(security_tun_dev_attach);
1767 
1768 int security_tun_dev_open(void *security)
1769 {
1770 	return call_int_hook(tun_dev_open, 0, security);
1771 }
1772 EXPORT_SYMBOL(security_tun_dev_open);
1773 
1774 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1775 {
1776 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
1777 }
1778 EXPORT_SYMBOL(security_sctp_assoc_request);
1779 
1780 int security_sctp_bind_connect(struct sock *sk, int optname,
1781 			       struct sockaddr *address, int addrlen)
1782 {
1783 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
1784 			     address, addrlen);
1785 }
1786 EXPORT_SYMBOL(security_sctp_bind_connect);
1787 
1788 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1789 			    struct sock *newsk)
1790 {
1791 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
1792 }
1793 EXPORT_SYMBOL(security_sctp_sk_clone);
1794 
1795 #endif	/* CONFIG_SECURITY_NETWORK */
1796 
1797 #ifdef CONFIG_SECURITY_INFINIBAND
1798 
1799 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1800 {
1801 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1802 }
1803 EXPORT_SYMBOL(security_ib_pkey_access);
1804 
1805 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1806 {
1807 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1808 }
1809 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1810 
1811 int security_ib_alloc_security(void **sec)
1812 {
1813 	return call_int_hook(ib_alloc_security, 0, sec);
1814 }
1815 EXPORT_SYMBOL(security_ib_alloc_security);
1816 
1817 void security_ib_free_security(void *sec)
1818 {
1819 	call_void_hook(ib_free_security, sec);
1820 }
1821 EXPORT_SYMBOL(security_ib_free_security);
1822 #endif	/* CONFIG_SECURITY_INFINIBAND */
1823 
1824 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1825 
1826 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1827 			       struct xfrm_user_sec_ctx *sec_ctx,
1828 			       gfp_t gfp)
1829 {
1830 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1831 }
1832 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1833 
1834 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1835 			      struct xfrm_sec_ctx **new_ctxp)
1836 {
1837 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1838 }
1839 
1840 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1841 {
1842 	call_void_hook(xfrm_policy_free_security, ctx);
1843 }
1844 EXPORT_SYMBOL(security_xfrm_policy_free);
1845 
1846 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1847 {
1848 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1849 }
1850 
1851 int security_xfrm_state_alloc(struct xfrm_state *x,
1852 			      struct xfrm_user_sec_ctx *sec_ctx)
1853 {
1854 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1855 }
1856 EXPORT_SYMBOL(security_xfrm_state_alloc);
1857 
1858 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1859 				      struct xfrm_sec_ctx *polsec, u32 secid)
1860 {
1861 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1862 }
1863 
1864 int security_xfrm_state_delete(struct xfrm_state *x)
1865 {
1866 	return call_int_hook(xfrm_state_delete_security, 0, x);
1867 }
1868 EXPORT_SYMBOL(security_xfrm_state_delete);
1869 
1870 void security_xfrm_state_free(struct xfrm_state *x)
1871 {
1872 	call_void_hook(xfrm_state_free_security, x);
1873 }
1874 
1875 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1876 {
1877 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1878 }
1879 
1880 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1881 				       struct xfrm_policy *xp,
1882 				       const struct flowi *fl)
1883 {
1884 	struct security_hook_list *hp;
1885 	int rc = 1;
1886 
1887 	/*
1888 	 * Since this function is expected to return 0 or 1, the judgment
1889 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1890 	 * we can use the first LSM's judgment because currently only SELinux
1891 	 * supplies this call.
1892 	 *
1893 	 * For speed optimization, we explicitly break the loop rather than
1894 	 * using the macro
1895 	 */
1896 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1897 				list) {
1898 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1899 		break;
1900 	}
1901 	return rc;
1902 }
1903 
1904 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1905 {
1906 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1907 }
1908 
1909 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1910 {
1911 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1912 				0);
1913 
1914 	BUG_ON(rc);
1915 }
1916 EXPORT_SYMBOL(security_skb_classify_flow);
1917 
1918 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1919 
1920 #ifdef CONFIG_KEYS
1921 
1922 int security_key_alloc(struct key *key, const struct cred *cred,
1923 		       unsigned long flags)
1924 {
1925 	return call_int_hook(key_alloc, 0, key, cred, flags);
1926 }
1927 
1928 void security_key_free(struct key *key)
1929 {
1930 	call_void_hook(key_free, key);
1931 }
1932 
1933 int security_key_permission(key_ref_t key_ref,
1934 			    const struct cred *cred, unsigned perm)
1935 {
1936 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1937 }
1938 
1939 int security_key_getsecurity(struct key *key, char **_buffer)
1940 {
1941 	*_buffer = NULL;
1942 	return call_int_hook(key_getsecurity, 0, key, _buffer);
1943 }
1944 
1945 #endif	/* CONFIG_KEYS */
1946 
1947 #ifdef CONFIG_AUDIT
1948 
1949 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1950 {
1951 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1952 }
1953 
1954 int security_audit_rule_known(struct audit_krule *krule)
1955 {
1956 	return call_int_hook(audit_rule_known, 0, krule);
1957 }
1958 
1959 void security_audit_rule_free(void *lsmrule)
1960 {
1961 	call_void_hook(audit_rule_free, lsmrule);
1962 }
1963 
1964 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1965 			      struct audit_context *actx)
1966 {
1967 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1968 				actx);
1969 }
1970 #endif /* CONFIG_AUDIT */
1971 
1972 #ifdef CONFIG_BPF_SYSCALL
1973 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1974 {
1975 	return call_int_hook(bpf, 0, cmd, attr, size);
1976 }
1977 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1978 {
1979 	return call_int_hook(bpf_map, 0, map, fmode);
1980 }
1981 int security_bpf_prog(struct bpf_prog *prog)
1982 {
1983 	return call_int_hook(bpf_prog, 0, prog);
1984 }
1985 int security_bpf_map_alloc(struct bpf_map *map)
1986 {
1987 	return call_int_hook(bpf_map_alloc_security, 0, map);
1988 }
1989 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1990 {
1991 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
1992 }
1993 void security_bpf_map_free(struct bpf_map *map)
1994 {
1995 	call_void_hook(bpf_map_free_security, map);
1996 }
1997 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1998 {
1999 	call_void_hook(bpf_prog_free_security, aux);
2000 }
2001 #endif /* CONFIG_BPF_SYSCALL */
2002