1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/security.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <net/flow.h> 29 30 #define MAX_LSM_EVM_XATTR 2 31 32 /* Boot-time LSM user choice */ 33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 34 CONFIG_DEFAULT_SECURITY; 35 36 static struct security_operations *security_ops; 37 static struct security_operations default_security_ops = { 38 .name = "default", 39 }; 40 41 static inline int __init verify(struct security_operations *ops) 42 { 43 /* verify the security_operations structure exists */ 44 if (!ops) 45 return -EINVAL; 46 security_fixup_ops(ops); 47 return 0; 48 } 49 50 static void __init do_security_initcalls(void) 51 { 52 initcall_t *call; 53 call = __security_initcall_start; 54 while (call < __security_initcall_end) { 55 (*call) (); 56 call++; 57 } 58 } 59 60 /** 61 * security_init - initializes the security framework 62 * 63 * This should be called early in the kernel initialization sequence. 64 */ 65 int __init security_init(void) 66 { 67 printk(KERN_INFO "Security Framework initialized\n"); 68 69 security_fixup_ops(&default_security_ops); 70 security_ops = &default_security_ops; 71 do_security_initcalls(); 72 73 return 0; 74 } 75 76 void reset_security_ops(void) 77 { 78 security_ops = &default_security_ops; 79 } 80 81 /* Save user chosen LSM */ 82 static int __init choose_lsm(char *str) 83 { 84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 85 return 1; 86 } 87 __setup("security=", choose_lsm); 88 89 /** 90 * security_module_enable - Load given security module on boot ? 91 * @ops: a pointer to the struct security_operations that is to be checked. 92 * 93 * Each LSM must pass this method before registering its own operations 94 * to avoid security registration races. This method may also be used 95 * to check if your LSM is currently loaded during kernel initialization. 96 * 97 * Return true if: 98 * -The passed LSM is the one chosen by user at boot time, 99 * -or the passed LSM is configured as the default and the user did not 100 * choose an alternate LSM at boot time. 101 * Otherwise, return false. 102 */ 103 int __init security_module_enable(struct security_operations *ops) 104 { 105 return !strcmp(ops->name, chosen_lsm); 106 } 107 108 /** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120 int __init register_security(struct security_operations *ops) 121 { 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134 } 135 136 /* Security operations */ 137 138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139 { 140 #ifdef CONFIG_SECURITY_YAMA_STACKED 141 int rc; 142 rc = yama_ptrace_access_check(child, mode); 143 if (rc) 144 return rc; 145 #endif 146 return security_ops->ptrace_access_check(child, mode); 147 } 148 149 int security_ptrace_traceme(struct task_struct *parent) 150 { 151 #ifdef CONFIG_SECURITY_YAMA_STACKED 152 int rc; 153 rc = yama_ptrace_traceme(parent); 154 if (rc) 155 return rc; 156 #endif 157 return security_ops->ptrace_traceme(parent); 158 } 159 160 int security_capget(struct task_struct *target, 161 kernel_cap_t *effective, 162 kernel_cap_t *inheritable, 163 kernel_cap_t *permitted) 164 { 165 return security_ops->capget(target, effective, inheritable, permitted); 166 } 167 168 int security_capset(struct cred *new, const struct cred *old, 169 const kernel_cap_t *effective, 170 const kernel_cap_t *inheritable, 171 const kernel_cap_t *permitted) 172 { 173 return security_ops->capset(new, old, 174 effective, inheritable, permitted); 175 } 176 177 int security_capable(const struct cred *cred, struct user_namespace *ns, 178 int cap) 179 { 180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 181 } 182 183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 184 int cap) 185 { 186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 187 } 188 189 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190 { 191 return security_ops->quotactl(cmds, type, id, sb); 192 } 193 194 int security_quota_on(struct dentry *dentry) 195 { 196 return security_ops->quota_on(dentry); 197 } 198 199 int security_syslog(int type) 200 { 201 return security_ops->syslog(type); 202 } 203 204 int security_settime(const struct timespec *ts, const struct timezone *tz) 205 { 206 return security_ops->settime(ts, tz); 207 } 208 209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 210 { 211 return security_ops->vm_enough_memory(mm, pages); 212 } 213 214 int security_bprm_set_creds(struct linux_binprm *bprm) 215 { 216 return security_ops->bprm_set_creds(bprm); 217 } 218 219 int security_bprm_check(struct linux_binprm *bprm) 220 { 221 int ret; 222 223 ret = security_ops->bprm_check_security(bprm); 224 if (ret) 225 return ret; 226 return ima_bprm_check(bprm); 227 } 228 229 void security_bprm_committing_creds(struct linux_binprm *bprm) 230 { 231 security_ops->bprm_committing_creds(bprm); 232 } 233 234 void security_bprm_committed_creds(struct linux_binprm *bprm) 235 { 236 security_ops->bprm_committed_creds(bprm); 237 } 238 239 int security_bprm_secureexec(struct linux_binprm *bprm) 240 { 241 return security_ops->bprm_secureexec(bprm); 242 } 243 244 int security_sb_alloc(struct super_block *sb) 245 { 246 return security_ops->sb_alloc_security(sb); 247 } 248 249 void security_sb_free(struct super_block *sb) 250 { 251 security_ops->sb_free_security(sb); 252 } 253 254 int security_sb_copy_data(char *orig, char *copy) 255 { 256 return security_ops->sb_copy_data(orig, copy); 257 } 258 EXPORT_SYMBOL(security_sb_copy_data); 259 260 int security_sb_remount(struct super_block *sb, void *data) 261 { 262 return security_ops->sb_remount(sb, data); 263 } 264 265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 266 { 267 return security_ops->sb_kern_mount(sb, flags, data); 268 } 269 270 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 271 { 272 return security_ops->sb_show_options(m, sb); 273 } 274 275 int security_sb_statfs(struct dentry *dentry) 276 { 277 return security_ops->sb_statfs(dentry); 278 } 279 280 int security_sb_mount(const char *dev_name, struct path *path, 281 const char *type, unsigned long flags, void *data) 282 { 283 return security_ops->sb_mount(dev_name, path, type, flags, data); 284 } 285 286 int security_sb_umount(struct vfsmount *mnt, int flags) 287 { 288 return security_ops->sb_umount(mnt, flags); 289 } 290 291 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 292 { 293 return security_ops->sb_pivotroot(old_path, new_path); 294 } 295 296 int security_sb_set_mnt_opts(struct super_block *sb, 297 struct security_mnt_opts *opts, 298 unsigned long kern_flags, 299 unsigned long *set_kern_flags) 300 { 301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags, 302 set_kern_flags); 303 } 304 EXPORT_SYMBOL(security_sb_set_mnt_opts); 305 306 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 307 struct super_block *newsb) 308 { 309 return security_ops->sb_clone_mnt_opts(oldsb, newsb); 310 } 311 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 312 313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 314 { 315 return security_ops->sb_parse_opts_str(options, opts); 316 } 317 EXPORT_SYMBOL(security_sb_parse_opts_str); 318 319 int security_inode_alloc(struct inode *inode) 320 { 321 inode->i_security = NULL; 322 return security_ops->inode_alloc_security(inode); 323 } 324 325 void security_inode_free(struct inode *inode) 326 { 327 integrity_inode_free(inode); 328 security_ops->inode_free_security(inode); 329 } 330 331 int security_dentry_init_security(struct dentry *dentry, int mode, 332 struct qstr *name, void **ctx, 333 u32 *ctxlen) 334 { 335 return security_ops->dentry_init_security(dentry, mode, name, 336 ctx, ctxlen); 337 } 338 EXPORT_SYMBOL(security_dentry_init_security); 339 340 int security_inode_init_security(struct inode *inode, struct inode *dir, 341 const struct qstr *qstr, 342 const initxattrs initxattrs, void *fs_data) 343 { 344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 345 struct xattr *lsm_xattr, *evm_xattr, *xattr; 346 int ret; 347 348 if (unlikely(IS_PRIVATE(inode))) 349 return 0; 350 351 if (!initxattrs) 352 return security_ops->inode_init_security(inode, dir, qstr, 353 NULL, NULL, NULL); 354 memset(new_xattrs, 0, sizeof(new_xattrs)); 355 lsm_xattr = new_xattrs; 356 ret = security_ops->inode_init_security(inode, dir, qstr, 357 &lsm_xattr->name, 358 &lsm_xattr->value, 359 &lsm_xattr->value_len); 360 if (ret) 361 goto out; 362 363 evm_xattr = lsm_xattr + 1; 364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 365 if (ret) 366 goto out; 367 ret = initxattrs(inode, new_xattrs, fs_data); 368 out: 369 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 370 kfree(xattr->value); 371 return (ret == -EOPNOTSUPP) ? 0 : ret; 372 } 373 EXPORT_SYMBOL(security_inode_init_security); 374 375 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 376 const struct qstr *qstr, const char **name, 377 void **value, size_t *len) 378 { 379 if (unlikely(IS_PRIVATE(inode))) 380 return -EOPNOTSUPP; 381 return security_ops->inode_init_security(inode, dir, qstr, name, value, 382 len); 383 } 384 EXPORT_SYMBOL(security_old_inode_init_security); 385 386 #ifdef CONFIG_SECURITY_PATH 387 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 388 unsigned int dev) 389 { 390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 391 return 0; 392 return security_ops->path_mknod(dir, dentry, mode, dev); 393 } 394 EXPORT_SYMBOL(security_path_mknod); 395 396 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 397 { 398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 399 return 0; 400 return security_ops->path_mkdir(dir, dentry, mode); 401 } 402 EXPORT_SYMBOL(security_path_mkdir); 403 404 int security_path_rmdir(struct path *dir, struct dentry *dentry) 405 { 406 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 407 return 0; 408 return security_ops->path_rmdir(dir, dentry); 409 } 410 411 int security_path_unlink(struct path *dir, struct dentry *dentry) 412 { 413 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 414 return 0; 415 return security_ops->path_unlink(dir, dentry); 416 } 417 EXPORT_SYMBOL(security_path_unlink); 418 419 int security_path_symlink(struct path *dir, struct dentry *dentry, 420 const char *old_name) 421 { 422 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 423 return 0; 424 return security_ops->path_symlink(dir, dentry, old_name); 425 } 426 427 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 428 struct dentry *new_dentry) 429 { 430 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 431 return 0; 432 return security_ops->path_link(old_dentry, new_dir, new_dentry); 433 } 434 435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 436 struct path *new_dir, struct dentry *new_dentry) 437 { 438 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 439 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 440 return 0; 441 return security_ops->path_rename(old_dir, old_dentry, new_dir, 442 new_dentry); 443 } 444 EXPORT_SYMBOL(security_path_rename); 445 446 int security_path_truncate(struct path *path) 447 { 448 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 449 return 0; 450 return security_ops->path_truncate(path); 451 } 452 453 int security_path_chmod(struct path *path, umode_t mode) 454 { 455 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 456 return 0; 457 return security_ops->path_chmod(path, mode); 458 } 459 460 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 461 { 462 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 463 return 0; 464 return security_ops->path_chown(path, uid, gid); 465 } 466 467 int security_path_chroot(struct path *path) 468 { 469 return security_ops->path_chroot(path); 470 } 471 #endif 472 473 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 474 { 475 if (unlikely(IS_PRIVATE(dir))) 476 return 0; 477 return security_ops->inode_create(dir, dentry, mode); 478 } 479 EXPORT_SYMBOL_GPL(security_inode_create); 480 481 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 482 struct dentry *new_dentry) 483 { 484 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 485 return 0; 486 return security_ops->inode_link(old_dentry, dir, new_dentry); 487 } 488 489 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 490 { 491 if (unlikely(IS_PRIVATE(dentry->d_inode))) 492 return 0; 493 return security_ops->inode_unlink(dir, dentry); 494 } 495 496 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 497 const char *old_name) 498 { 499 if (unlikely(IS_PRIVATE(dir))) 500 return 0; 501 return security_ops->inode_symlink(dir, dentry, old_name); 502 } 503 504 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 505 { 506 if (unlikely(IS_PRIVATE(dir))) 507 return 0; 508 return security_ops->inode_mkdir(dir, dentry, mode); 509 } 510 EXPORT_SYMBOL_GPL(security_inode_mkdir); 511 512 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 513 { 514 if (unlikely(IS_PRIVATE(dentry->d_inode))) 515 return 0; 516 return security_ops->inode_rmdir(dir, dentry); 517 } 518 519 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 520 { 521 if (unlikely(IS_PRIVATE(dir))) 522 return 0; 523 return security_ops->inode_mknod(dir, dentry, mode, dev); 524 } 525 526 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 527 struct inode *new_dir, struct dentry *new_dentry) 528 { 529 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 530 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 531 return 0; 532 return security_ops->inode_rename(old_dir, old_dentry, 533 new_dir, new_dentry); 534 } 535 536 int security_inode_readlink(struct dentry *dentry) 537 { 538 if (unlikely(IS_PRIVATE(dentry->d_inode))) 539 return 0; 540 return security_ops->inode_readlink(dentry); 541 } 542 543 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 544 { 545 if (unlikely(IS_PRIVATE(dentry->d_inode))) 546 return 0; 547 return security_ops->inode_follow_link(dentry, nd); 548 } 549 550 int security_inode_permission(struct inode *inode, int mask) 551 { 552 if (unlikely(IS_PRIVATE(inode))) 553 return 0; 554 return security_ops->inode_permission(inode, mask); 555 } 556 557 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 558 { 559 int ret; 560 561 if (unlikely(IS_PRIVATE(dentry->d_inode))) 562 return 0; 563 ret = security_ops->inode_setattr(dentry, attr); 564 if (ret) 565 return ret; 566 return evm_inode_setattr(dentry, attr); 567 } 568 EXPORT_SYMBOL_GPL(security_inode_setattr); 569 570 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 571 { 572 if (unlikely(IS_PRIVATE(dentry->d_inode))) 573 return 0; 574 return security_ops->inode_getattr(mnt, dentry); 575 } 576 577 int security_inode_setxattr(struct dentry *dentry, const char *name, 578 const void *value, size_t size, int flags) 579 { 580 int ret; 581 582 if (unlikely(IS_PRIVATE(dentry->d_inode))) 583 return 0; 584 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 585 if (ret) 586 return ret; 587 ret = ima_inode_setxattr(dentry, name, value, size); 588 if (ret) 589 return ret; 590 return evm_inode_setxattr(dentry, name, value, size); 591 } 592 593 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 594 const void *value, size_t size, int flags) 595 { 596 if (unlikely(IS_PRIVATE(dentry->d_inode))) 597 return; 598 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 599 evm_inode_post_setxattr(dentry, name, value, size); 600 } 601 602 int security_inode_getxattr(struct dentry *dentry, const char *name) 603 { 604 if (unlikely(IS_PRIVATE(dentry->d_inode))) 605 return 0; 606 return security_ops->inode_getxattr(dentry, name); 607 } 608 609 int security_inode_listxattr(struct dentry *dentry) 610 { 611 if (unlikely(IS_PRIVATE(dentry->d_inode))) 612 return 0; 613 return security_ops->inode_listxattr(dentry); 614 } 615 616 int security_inode_removexattr(struct dentry *dentry, const char *name) 617 { 618 int ret; 619 620 if (unlikely(IS_PRIVATE(dentry->d_inode))) 621 return 0; 622 ret = security_ops->inode_removexattr(dentry, name); 623 if (ret) 624 return ret; 625 ret = ima_inode_removexattr(dentry, name); 626 if (ret) 627 return ret; 628 return evm_inode_removexattr(dentry, name); 629 } 630 631 int security_inode_need_killpriv(struct dentry *dentry) 632 { 633 return security_ops->inode_need_killpriv(dentry); 634 } 635 636 int security_inode_killpriv(struct dentry *dentry) 637 { 638 return security_ops->inode_killpriv(dentry); 639 } 640 641 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 642 { 643 if (unlikely(IS_PRIVATE(inode))) 644 return -EOPNOTSUPP; 645 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 646 } 647 648 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 649 { 650 if (unlikely(IS_PRIVATE(inode))) 651 return -EOPNOTSUPP; 652 return security_ops->inode_setsecurity(inode, name, value, size, flags); 653 } 654 655 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 656 { 657 if (unlikely(IS_PRIVATE(inode))) 658 return 0; 659 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 660 } 661 EXPORT_SYMBOL(security_inode_listsecurity); 662 663 void security_inode_getsecid(const struct inode *inode, u32 *secid) 664 { 665 security_ops->inode_getsecid(inode, secid); 666 } 667 668 int security_file_permission(struct file *file, int mask) 669 { 670 int ret; 671 672 ret = security_ops->file_permission(file, mask); 673 if (ret) 674 return ret; 675 676 return fsnotify_perm(file, mask); 677 } 678 679 int security_file_alloc(struct file *file) 680 { 681 return security_ops->file_alloc_security(file); 682 } 683 684 void security_file_free(struct file *file) 685 { 686 security_ops->file_free_security(file); 687 } 688 689 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 690 { 691 return security_ops->file_ioctl(file, cmd, arg); 692 } 693 694 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 695 { 696 /* 697 * Does we have PROT_READ and does the application expect 698 * it to imply PROT_EXEC? If not, nothing to talk about... 699 */ 700 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 701 return prot; 702 if (!(current->personality & READ_IMPLIES_EXEC)) 703 return prot; 704 /* 705 * if that's an anonymous mapping, let it. 706 */ 707 if (!file) 708 return prot | PROT_EXEC; 709 /* 710 * ditto if it's not on noexec mount, except that on !MMU we need 711 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 712 */ 713 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 714 #ifndef CONFIG_MMU 715 unsigned long caps = 0; 716 struct address_space *mapping = file->f_mapping; 717 if (mapping && mapping->backing_dev_info) 718 caps = mapping->backing_dev_info->capabilities; 719 if (!(caps & BDI_CAP_EXEC_MAP)) 720 return prot; 721 #endif 722 return prot | PROT_EXEC; 723 } 724 /* anything on noexec mount won't get PROT_EXEC */ 725 return prot; 726 } 727 728 int security_mmap_file(struct file *file, unsigned long prot, 729 unsigned long flags) 730 { 731 int ret; 732 ret = security_ops->mmap_file(file, prot, 733 mmap_prot(file, prot), flags); 734 if (ret) 735 return ret; 736 return ima_file_mmap(file, prot); 737 } 738 739 int security_mmap_addr(unsigned long addr) 740 { 741 return security_ops->mmap_addr(addr); 742 } 743 744 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 745 unsigned long prot) 746 { 747 return security_ops->file_mprotect(vma, reqprot, prot); 748 } 749 750 int security_file_lock(struct file *file, unsigned int cmd) 751 { 752 return security_ops->file_lock(file, cmd); 753 } 754 755 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 756 { 757 return security_ops->file_fcntl(file, cmd, arg); 758 } 759 760 int security_file_set_fowner(struct file *file) 761 { 762 return security_ops->file_set_fowner(file); 763 } 764 765 int security_file_send_sigiotask(struct task_struct *tsk, 766 struct fown_struct *fown, int sig) 767 { 768 return security_ops->file_send_sigiotask(tsk, fown, sig); 769 } 770 771 int security_file_receive(struct file *file) 772 { 773 return security_ops->file_receive(file); 774 } 775 776 int security_file_open(struct file *file, const struct cred *cred) 777 { 778 int ret; 779 780 ret = security_ops->file_open(file, cred); 781 if (ret) 782 return ret; 783 784 return fsnotify_perm(file, MAY_OPEN); 785 } 786 787 int security_task_create(unsigned long clone_flags) 788 { 789 return security_ops->task_create(clone_flags); 790 } 791 792 void security_task_free(struct task_struct *task) 793 { 794 #ifdef CONFIG_SECURITY_YAMA_STACKED 795 yama_task_free(task); 796 #endif 797 security_ops->task_free(task); 798 } 799 800 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 801 { 802 return security_ops->cred_alloc_blank(cred, gfp); 803 } 804 805 void security_cred_free(struct cred *cred) 806 { 807 security_ops->cred_free(cred); 808 } 809 810 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 811 { 812 return security_ops->cred_prepare(new, old, gfp); 813 } 814 815 void security_transfer_creds(struct cred *new, const struct cred *old) 816 { 817 security_ops->cred_transfer(new, old); 818 } 819 820 int security_kernel_act_as(struct cred *new, u32 secid) 821 { 822 return security_ops->kernel_act_as(new, secid); 823 } 824 825 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 826 { 827 return security_ops->kernel_create_files_as(new, inode); 828 } 829 830 int security_kernel_module_request(char *kmod_name) 831 { 832 return security_ops->kernel_module_request(kmod_name); 833 } 834 835 int security_kernel_module_from_file(struct file *file) 836 { 837 int ret; 838 839 ret = security_ops->kernel_module_from_file(file); 840 if (ret) 841 return ret; 842 return ima_module_check(file); 843 } 844 845 int security_task_fix_setuid(struct cred *new, const struct cred *old, 846 int flags) 847 { 848 return security_ops->task_fix_setuid(new, old, flags); 849 } 850 851 int security_task_setpgid(struct task_struct *p, pid_t pgid) 852 { 853 return security_ops->task_setpgid(p, pgid); 854 } 855 856 int security_task_getpgid(struct task_struct *p) 857 { 858 return security_ops->task_getpgid(p); 859 } 860 861 int security_task_getsid(struct task_struct *p) 862 { 863 return security_ops->task_getsid(p); 864 } 865 866 void security_task_getsecid(struct task_struct *p, u32 *secid) 867 { 868 security_ops->task_getsecid(p, secid); 869 } 870 EXPORT_SYMBOL(security_task_getsecid); 871 872 int security_task_setnice(struct task_struct *p, int nice) 873 { 874 return security_ops->task_setnice(p, nice); 875 } 876 877 int security_task_setioprio(struct task_struct *p, int ioprio) 878 { 879 return security_ops->task_setioprio(p, ioprio); 880 } 881 882 int security_task_getioprio(struct task_struct *p) 883 { 884 return security_ops->task_getioprio(p); 885 } 886 887 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 888 struct rlimit *new_rlim) 889 { 890 return security_ops->task_setrlimit(p, resource, new_rlim); 891 } 892 893 int security_task_setscheduler(struct task_struct *p) 894 { 895 return security_ops->task_setscheduler(p); 896 } 897 898 int security_task_getscheduler(struct task_struct *p) 899 { 900 return security_ops->task_getscheduler(p); 901 } 902 903 int security_task_movememory(struct task_struct *p) 904 { 905 return security_ops->task_movememory(p); 906 } 907 908 int security_task_kill(struct task_struct *p, struct siginfo *info, 909 int sig, u32 secid) 910 { 911 return security_ops->task_kill(p, info, sig, secid); 912 } 913 914 int security_task_wait(struct task_struct *p) 915 { 916 return security_ops->task_wait(p); 917 } 918 919 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 920 unsigned long arg4, unsigned long arg5) 921 { 922 #ifdef CONFIG_SECURITY_YAMA_STACKED 923 int rc; 924 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5); 925 if (rc != -ENOSYS) 926 return rc; 927 #endif 928 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 929 } 930 931 void security_task_to_inode(struct task_struct *p, struct inode *inode) 932 { 933 security_ops->task_to_inode(p, inode); 934 } 935 936 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 937 { 938 return security_ops->ipc_permission(ipcp, flag); 939 } 940 941 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 942 { 943 security_ops->ipc_getsecid(ipcp, secid); 944 } 945 946 int security_msg_msg_alloc(struct msg_msg *msg) 947 { 948 return security_ops->msg_msg_alloc_security(msg); 949 } 950 951 void security_msg_msg_free(struct msg_msg *msg) 952 { 953 security_ops->msg_msg_free_security(msg); 954 } 955 956 int security_msg_queue_alloc(struct msg_queue *msq) 957 { 958 return security_ops->msg_queue_alloc_security(msq); 959 } 960 961 void security_msg_queue_free(struct msg_queue *msq) 962 { 963 security_ops->msg_queue_free_security(msq); 964 } 965 966 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 967 { 968 return security_ops->msg_queue_associate(msq, msqflg); 969 } 970 971 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 972 { 973 return security_ops->msg_queue_msgctl(msq, cmd); 974 } 975 976 int security_msg_queue_msgsnd(struct msg_queue *msq, 977 struct msg_msg *msg, int msqflg) 978 { 979 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 980 } 981 982 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 983 struct task_struct *target, long type, int mode) 984 { 985 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 986 } 987 988 int security_shm_alloc(struct shmid_kernel *shp) 989 { 990 return security_ops->shm_alloc_security(shp); 991 } 992 993 void security_shm_free(struct shmid_kernel *shp) 994 { 995 security_ops->shm_free_security(shp); 996 } 997 998 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 999 { 1000 return security_ops->shm_associate(shp, shmflg); 1001 } 1002 1003 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 1004 { 1005 return security_ops->shm_shmctl(shp, cmd); 1006 } 1007 1008 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 1009 { 1010 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1011 } 1012 1013 int security_sem_alloc(struct sem_array *sma) 1014 { 1015 return security_ops->sem_alloc_security(sma); 1016 } 1017 1018 void security_sem_free(struct sem_array *sma) 1019 { 1020 security_ops->sem_free_security(sma); 1021 } 1022 1023 int security_sem_associate(struct sem_array *sma, int semflg) 1024 { 1025 return security_ops->sem_associate(sma, semflg); 1026 } 1027 1028 int security_sem_semctl(struct sem_array *sma, int cmd) 1029 { 1030 return security_ops->sem_semctl(sma, cmd); 1031 } 1032 1033 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1034 unsigned nsops, int alter) 1035 { 1036 return security_ops->sem_semop(sma, sops, nsops, alter); 1037 } 1038 1039 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1040 { 1041 if (unlikely(inode && IS_PRIVATE(inode))) 1042 return; 1043 security_ops->d_instantiate(dentry, inode); 1044 } 1045 EXPORT_SYMBOL(security_d_instantiate); 1046 1047 int security_getprocattr(struct task_struct *p, char *name, char **value) 1048 { 1049 return security_ops->getprocattr(p, name, value); 1050 } 1051 1052 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1053 { 1054 return security_ops->setprocattr(p, name, value, size); 1055 } 1056 1057 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1058 { 1059 return security_ops->netlink_send(sk, skb); 1060 } 1061 1062 int security_ismaclabel(const char *name) 1063 { 1064 return security_ops->ismaclabel(name); 1065 } 1066 EXPORT_SYMBOL(security_ismaclabel); 1067 1068 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1069 { 1070 return security_ops->secid_to_secctx(secid, secdata, seclen); 1071 } 1072 EXPORT_SYMBOL(security_secid_to_secctx); 1073 1074 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1075 { 1076 return security_ops->secctx_to_secid(secdata, seclen, secid); 1077 } 1078 EXPORT_SYMBOL(security_secctx_to_secid); 1079 1080 void security_release_secctx(char *secdata, u32 seclen) 1081 { 1082 security_ops->release_secctx(secdata, seclen); 1083 } 1084 EXPORT_SYMBOL(security_release_secctx); 1085 1086 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1087 { 1088 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1089 } 1090 EXPORT_SYMBOL(security_inode_notifysecctx); 1091 1092 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1093 { 1094 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1095 } 1096 EXPORT_SYMBOL(security_inode_setsecctx); 1097 1098 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1099 { 1100 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1101 } 1102 EXPORT_SYMBOL(security_inode_getsecctx); 1103 1104 #ifdef CONFIG_SECURITY_NETWORK 1105 1106 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1107 { 1108 return security_ops->unix_stream_connect(sock, other, newsk); 1109 } 1110 EXPORT_SYMBOL(security_unix_stream_connect); 1111 1112 int security_unix_may_send(struct socket *sock, struct socket *other) 1113 { 1114 return security_ops->unix_may_send(sock, other); 1115 } 1116 EXPORT_SYMBOL(security_unix_may_send); 1117 1118 int security_socket_create(int family, int type, int protocol, int kern) 1119 { 1120 return security_ops->socket_create(family, type, protocol, kern); 1121 } 1122 1123 int security_socket_post_create(struct socket *sock, int family, 1124 int type, int protocol, int kern) 1125 { 1126 return security_ops->socket_post_create(sock, family, type, 1127 protocol, kern); 1128 } 1129 1130 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1131 { 1132 return security_ops->socket_bind(sock, address, addrlen); 1133 } 1134 1135 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1136 { 1137 return security_ops->socket_connect(sock, address, addrlen); 1138 } 1139 1140 int security_socket_listen(struct socket *sock, int backlog) 1141 { 1142 return security_ops->socket_listen(sock, backlog); 1143 } 1144 1145 int security_socket_accept(struct socket *sock, struct socket *newsock) 1146 { 1147 return security_ops->socket_accept(sock, newsock); 1148 } 1149 1150 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1151 { 1152 return security_ops->socket_sendmsg(sock, msg, size); 1153 } 1154 1155 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1156 int size, int flags) 1157 { 1158 return security_ops->socket_recvmsg(sock, msg, size, flags); 1159 } 1160 1161 int security_socket_getsockname(struct socket *sock) 1162 { 1163 return security_ops->socket_getsockname(sock); 1164 } 1165 1166 int security_socket_getpeername(struct socket *sock) 1167 { 1168 return security_ops->socket_getpeername(sock); 1169 } 1170 1171 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1172 { 1173 return security_ops->socket_getsockopt(sock, level, optname); 1174 } 1175 1176 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1177 { 1178 return security_ops->socket_setsockopt(sock, level, optname); 1179 } 1180 1181 int security_socket_shutdown(struct socket *sock, int how) 1182 { 1183 return security_ops->socket_shutdown(sock, how); 1184 } 1185 1186 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1187 { 1188 return security_ops->socket_sock_rcv_skb(sk, skb); 1189 } 1190 EXPORT_SYMBOL(security_sock_rcv_skb); 1191 1192 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1193 int __user *optlen, unsigned len) 1194 { 1195 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1196 } 1197 1198 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1199 { 1200 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1201 } 1202 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1203 1204 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1205 { 1206 return security_ops->sk_alloc_security(sk, family, priority); 1207 } 1208 1209 void security_sk_free(struct sock *sk) 1210 { 1211 security_ops->sk_free_security(sk); 1212 } 1213 1214 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1215 { 1216 security_ops->sk_clone_security(sk, newsk); 1217 } 1218 EXPORT_SYMBOL(security_sk_clone); 1219 1220 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1221 { 1222 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1223 } 1224 EXPORT_SYMBOL(security_sk_classify_flow); 1225 1226 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1227 { 1228 security_ops->req_classify_flow(req, fl); 1229 } 1230 EXPORT_SYMBOL(security_req_classify_flow); 1231 1232 void security_sock_graft(struct sock *sk, struct socket *parent) 1233 { 1234 security_ops->sock_graft(sk, parent); 1235 } 1236 EXPORT_SYMBOL(security_sock_graft); 1237 1238 int security_inet_conn_request(struct sock *sk, 1239 struct sk_buff *skb, struct request_sock *req) 1240 { 1241 return security_ops->inet_conn_request(sk, skb, req); 1242 } 1243 EXPORT_SYMBOL(security_inet_conn_request); 1244 1245 void security_inet_csk_clone(struct sock *newsk, 1246 const struct request_sock *req) 1247 { 1248 security_ops->inet_csk_clone(newsk, req); 1249 } 1250 1251 void security_inet_conn_established(struct sock *sk, 1252 struct sk_buff *skb) 1253 { 1254 security_ops->inet_conn_established(sk, skb); 1255 } 1256 1257 int security_secmark_relabel_packet(u32 secid) 1258 { 1259 return security_ops->secmark_relabel_packet(secid); 1260 } 1261 EXPORT_SYMBOL(security_secmark_relabel_packet); 1262 1263 void security_secmark_refcount_inc(void) 1264 { 1265 security_ops->secmark_refcount_inc(); 1266 } 1267 EXPORT_SYMBOL(security_secmark_refcount_inc); 1268 1269 void security_secmark_refcount_dec(void) 1270 { 1271 security_ops->secmark_refcount_dec(); 1272 } 1273 EXPORT_SYMBOL(security_secmark_refcount_dec); 1274 1275 int security_tun_dev_alloc_security(void **security) 1276 { 1277 return security_ops->tun_dev_alloc_security(security); 1278 } 1279 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1280 1281 void security_tun_dev_free_security(void *security) 1282 { 1283 security_ops->tun_dev_free_security(security); 1284 } 1285 EXPORT_SYMBOL(security_tun_dev_free_security); 1286 1287 int security_tun_dev_create(void) 1288 { 1289 return security_ops->tun_dev_create(); 1290 } 1291 EXPORT_SYMBOL(security_tun_dev_create); 1292 1293 int security_tun_dev_attach_queue(void *security) 1294 { 1295 return security_ops->tun_dev_attach_queue(security); 1296 } 1297 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1298 1299 int security_tun_dev_attach(struct sock *sk, void *security) 1300 { 1301 return security_ops->tun_dev_attach(sk, security); 1302 } 1303 EXPORT_SYMBOL(security_tun_dev_attach); 1304 1305 int security_tun_dev_open(void *security) 1306 { 1307 return security_ops->tun_dev_open(security); 1308 } 1309 EXPORT_SYMBOL(security_tun_dev_open); 1310 1311 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk) 1312 { 1313 security_ops->skb_owned_by(skb, sk); 1314 } 1315 1316 #endif /* CONFIG_SECURITY_NETWORK */ 1317 1318 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1319 1320 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1321 { 1322 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1323 } 1324 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1325 1326 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1327 struct xfrm_sec_ctx **new_ctxp) 1328 { 1329 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1330 } 1331 1332 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1333 { 1334 security_ops->xfrm_policy_free_security(ctx); 1335 } 1336 EXPORT_SYMBOL(security_xfrm_policy_free); 1337 1338 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1339 { 1340 return security_ops->xfrm_policy_delete_security(ctx); 1341 } 1342 1343 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1344 { 1345 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1346 } 1347 EXPORT_SYMBOL(security_xfrm_state_alloc); 1348 1349 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1350 struct xfrm_sec_ctx *polsec, u32 secid) 1351 { 1352 if (!polsec) 1353 return 0; 1354 /* 1355 * We want the context to be taken from secid which is usually 1356 * from the sock. 1357 */ 1358 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1359 } 1360 1361 int security_xfrm_state_delete(struct xfrm_state *x) 1362 { 1363 return security_ops->xfrm_state_delete_security(x); 1364 } 1365 EXPORT_SYMBOL(security_xfrm_state_delete); 1366 1367 void security_xfrm_state_free(struct xfrm_state *x) 1368 { 1369 security_ops->xfrm_state_free_security(x); 1370 } 1371 1372 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1373 { 1374 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1375 } 1376 1377 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1378 struct xfrm_policy *xp, 1379 const struct flowi *fl) 1380 { 1381 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1382 } 1383 1384 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1385 { 1386 return security_ops->xfrm_decode_session(skb, secid, 1); 1387 } 1388 1389 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1390 { 1391 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1392 1393 BUG_ON(rc); 1394 } 1395 EXPORT_SYMBOL(security_skb_classify_flow); 1396 1397 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1398 1399 #ifdef CONFIG_KEYS 1400 1401 int security_key_alloc(struct key *key, const struct cred *cred, 1402 unsigned long flags) 1403 { 1404 return security_ops->key_alloc(key, cred, flags); 1405 } 1406 1407 void security_key_free(struct key *key) 1408 { 1409 security_ops->key_free(key); 1410 } 1411 1412 int security_key_permission(key_ref_t key_ref, 1413 const struct cred *cred, key_perm_t perm) 1414 { 1415 return security_ops->key_permission(key_ref, cred, perm); 1416 } 1417 1418 int security_key_getsecurity(struct key *key, char **_buffer) 1419 { 1420 return security_ops->key_getsecurity(key, _buffer); 1421 } 1422 1423 #endif /* CONFIG_KEYS */ 1424 1425 #ifdef CONFIG_AUDIT 1426 1427 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1428 { 1429 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1430 } 1431 1432 int security_audit_rule_known(struct audit_krule *krule) 1433 { 1434 return security_ops->audit_rule_known(krule); 1435 } 1436 1437 void security_audit_rule_free(void *lsmrule) 1438 { 1439 security_ops->audit_rule_free(lsmrule); 1440 } 1441 1442 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1443 struct audit_context *actx) 1444 { 1445 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1446 } 1447 1448 #endif /* CONFIG_AUDIT */ 1449