xref: /openbmc/linux/security/security.c (revision e23feb16)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29 
30 #define MAX_LSM_EVM_XATTR	2
31 
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 	CONFIG_DEFAULT_SECURITY;
35 
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38 	.name	= "default",
39 };
40 
41 static inline int __init verify(struct security_operations *ops)
42 {
43 	/* verify the security_operations structure exists */
44 	if (!ops)
45 		return -EINVAL;
46 	security_fixup_ops(ops);
47 	return 0;
48 }
49 
50 static void __init do_security_initcalls(void)
51 {
52 	initcall_t *call;
53 	call = __security_initcall_start;
54 	while (call < __security_initcall_end) {
55 		(*call) ();
56 		call++;
57 	}
58 }
59 
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67 	printk(KERN_INFO "Security Framework initialized\n");
68 
69 	security_fixup_ops(&default_security_ops);
70 	security_ops = &default_security_ops;
71 	do_security_initcalls();
72 
73 	return 0;
74 }
75 
76 void reset_security_ops(void)
77 {
78 	security_ops = &default_security_ops;
79 }
80 
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 	return 1;
86 }
87 __setup("security=", choose_lsm);
88 
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *	-The passed LSM is the one chosen by user at boot time,
99  *	-or the passed LSM is configured as the default and the user did not
100  *	 choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105 	return !strcmp(ops->name, chosen_lsm);
106 }
107 
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122 	if (verify(ops)) {
123 		printk(KERN_DEBUG "%s could not verify "
124 		       "security_operations structure.\n", __func__);
125 		return -EINVAL;
126 	}
127 
128 	if (security_ops != &default_security_ops)
129 		return -EAGAIN;
130 
131 	security_ops = ops;
132 
133 	return 0;
134 }
135 
136 /* Security operations */
137 
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 #ifdef CONFIG_SECURITY_YAMA_STACKED
141 	int rc;
142 	rc = yama_ptrace_access_check(child, mode);
143 	if (rc)
144 		return rc;
145 #endif
146 	return security_ops->ptrace_access_check(child, mode);
147 }
148 
149 int security_ptrace_traceme(struct task_struct *parent)
150 {
151 #ifdef CONFIG_SECURITY_YAMA_STACKED
152 	int rc;
153 	rc = yama_ptrace_traceme(parent);
154 	if (rc)
155 		return rc;
156 #endif
157 	return security_ops->ptrace_traceme(parent);
158 }
159 
160 int security_capget(struct task_struct *target,
161 		     kernel_cap_t *effective,
162 		     kernel_cap_t *inheritable,
163 		     kernel_cap_t *permitted)
164 {
165 	return security_ops->capget(target, effective, inheritable, permitted);
166 }
167 
168 int security_capset(struct cred *new, const struct cred *old,
169 		    const kernel_cap_t *effective,
170 		    const kernel_cap_t *inheritable,
171 		    const kernel_cap_t *permitted)
172 {
173 	return security_ops->capset(new, old,
174 				    effective, inheritable, permitted);
175 }
176 
177 int security_capable(const struct cred *cred, struct user_namespace *ns,
178 		     int cap)
179 {
180 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181 }
182 
183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184 			     int cap)
185 {
186 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187 }
188 
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 	return security_ops->quotactl(cmds, type, id, sb);
192 }
193 
194 int security_quota_on(struct dentry *dentry)
195 {
196 	return security_ops->quota_on(dentry);
197 }
198 
199 int security_syslog(int type)
200 {
201 	return security_ops->syslog(type);
202 }
203 
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206 	return security_ops->settime(ts, tz);
207 }
208 
209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210 {
211 	return security_ops->vm_enough_memory(mm, pages);
212 }
213 
214 int security_bprm_set_creds(struct linux_binprm *bprm)
215 {
216 	return security_ops->bprm_set_creds(bprm);
217 }
218 
219 int security_bprm_check(struct linux_binprm *bprm)
220 {
221 	int ret;
222 
223 	ret = security_ops->bprm_check_security(bprm);
224 	if (ret)
225 		return ret;
226 	return ima_bprm_check(bprm);
227 }
228 
229 void security_bprm_committing_creds(struct linux_binprm *bprm)
230 {
231 	security_ops->bprm_committing_creds(bprm);
232 }
233 
234 void security_bprm_committed_creds(struct linux_binprm *bprm)
235 {
236 	security_ops->bprm_committed_creds(bprm);
237 }
238 
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241 	return security_ops->bprm_secureexec(bprm);
242 }
243 
244 int security_sb_alloc(struct super_block *sb)
245 {
246 	return security_ops->sb_alloc_security(sb);
247 }
248 
249 void security_sb_free(struct super_block *sb)
250 {
251 	security_ops->sb_free_security(sb);
252 }
253 
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256 	return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259 
260 int security_sb_remount(struct super_block *sb, void *data)
261 {
262 	return security_ops->sb_remount(sb, data);
263 }
264 
265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266 {
267 	return security_ops->sb_kern_mount(sb, flags, data);
268 }
269 
270 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271 {
272 	return security_ops->sb_show_options(m, sb);
273 }
274 
275 int security_sb_statfs(struct dentry *dentry)
276 {
277 	return security_ops->sb_statfs(dentry);
278 }
279 
280 int security_sb_mount(const char *dev_name, struct path *path,
281                        const char *type, unsigned long flags, void *data)
282 {
283 	return security_ops->sb_mount(dev_name, path, type, flags, data);
284 }
285 
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288 	return security_ops->sb_umount(mnt, flags);
289 }
290 
291 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292 {
293 	return security_ops->sb_pivotroot(old_path, new_path);
294 }
295 
296 int security_sb_set_mnt_opts(struct super_block *sb,
297 				struct security_mnt_opts *opts,
298 				unsigned long kern_flags,
299 				unsigned long *set_kern_flags)
300 {
301 	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302 						set_kern_flags);
303 }
304 EXPORT_SYMBOL(security_sb_set_mnt_opts);
305 
306 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307 				struct super_block *newsb)
308 {
309 	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310 }
311 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312 
313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314 {
315 	return security_ops->sb_parse_opts_str(options, opts);
316 }
317 EXPORT_SYMBOL(security_sb_parse_opts_str);
318 
319 int security_inode_alloc(struct inode *inode)
320 {
321 	inode->i_security = NULL;
322 	return security_ops->inode_alloc_security(inode);
323 }
324 
325 void security_inode_free(struct inode *inode)
326 {
327 	integrity_inode_free(inode);
328 	security_ops->inode_free_security(inode);
329 }
330 
331 int security_dentry_init_security(struct dentry *dentry, int mode,
332 					struct qstr *name, void **ctx,
333 					u32 *ctxlen)
334 {
335 	return security_ops->dentry_init_security(dentry, mode, name,
336 							ctx, ctxlen);
337 }
338 EXPORT_SYMBOL(security_dentry_init_security);
339 
340 int security_inode_init_security(struct inode *inode, struct inode *dir,
341 				 const struct qstr *qstr,
342 				 const initxattrs initxattrs, void *fs_data)
343 {
344 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
346 	int ret;
347 
348 	if (unlikely(IS_PRIVATE(inode)))
349 		return 0;
350 
351 	if (!initxattrs)
352 		return security_ops->inode_init_security(inode, dir, qstr,
353 							 NULL, NULL, NULL);
354 	memset(new_xattrs, 0, sizeof(new_xattrs));
355 	lsm_xattr = new_xattrs;
356 	ret = security_ops->inode_init_security(inode, dir, qstr,
357 						&lsm_xattr->name,
358 						&lsm_xattr->value,
359 						&lsm_xattr->value_len);
360 	if (ret)
361 		goto out;
362 
363 	evm_xattr = lsm_xattr + 1;
364 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365 	if (ret)
366 		goto out;
367 	ret = initxattrs(inode, new_xattrs, fs_data);
368 out:
369 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
370 		kfree(xattr->value);
371 	return (ret == -EOPNOTSUPP) ? 0 : ret;
372 }
373 EXPORT_SYMBOL(security_inode_init_security);
374 
375 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
376 				     const struct qstr *qstr, const char **name,
377 				     void **value, size_t *len)
378 {
379 	if (unlikely(IS_PRIVATE(inode)))
380 		return -EOPNOTSUPP;
381 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
382 						 len);
383 }
384 EXPORT_SYMBOL(security_old_inode_init_security);
385 
386 #ifdef CONFIG_SECURITY_PATH
387 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
388 			unsigned int dev)
389 {
390 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391 		return 0;
392 	return security_ops->path_mknod(dir, dentry, mode, dev);
393 }
394 EXPORT_SYMBOL(security_path_mknod);
395 
396 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
397 {
398 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399 		return 0;
400 	return security_ops->path_mkdir(dir, dentry, mode);
401 }
402 EXPORT_SYMBOL(security_path_mkdir);
403 
404 int security_path_rmdir(struct path *dir, struct dentry *dentry)
405 {
406 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
407 		return 0;
408 	return security_ops->path_rmdir(dir, dentry);
409 }
410 
411 int security_path_unlink(struct path *dir, struct dentry *dentry)
412 {
413 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414 		return 0;
415 	return security_ops->path_unlink(dir, dentry);
416 }
417 EXPORT_SYMBOL(security_path_unlink);
418 
419 int security_path_symlink(struct path *dir, struct dentry *dentry,
420 			  const char *old_name)
421 {
422 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423 		return 0;
424 	return security_ops->path_symlink(dir, dentry, old_name);
425 }
426 
427 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
428 		       struct dentry *new_dentry)
429 {
430 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
431 		return 0;
432 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
433 }
434 
435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
436 			 struct path *new_dir, struct dentry *new_dentry)
437 {
438 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
439 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
440 		return 0;
441 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
442 					 new_dentry);
443 }
444 EXPORT_SYMBOL(security_path_rename);
445 
446 int security_path_truncate(struct path *path)
447 {
448 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
449 		return 0;
450 	return security_ops->path_truncate(path);
451 }
452 
453 int security_path_chmod(struct path *path, umode_t mode)
454 {
455 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
456 		return 0;
457 	return security_ops->path_chmod(path, mode);
458 }
459 
460 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
461 {
462 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
463 		return 0;
464 	return security_ops->path_chown(path, uid, gid);
465 }
466 
467 int security_path_chroot(struct path *path)
468 {
469 	return security_ops->path_chroot(path);
470 }
471 #endif
472 
473 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
474 {
475 	if (unlikely(IS_PRIVATE(dir)))
476 		return 0;
477 	return security_ops->inode_create(dir, dentry, mode);
478 }
479 EXPORT_SYMBOL_GPL(security_inode_create);
480 
481 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
482 			 struct dentry *new_dentry)
483 {
484 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
485 		return 0;
486 	return security_ops->inode_link(old_dentry, dir, new_dentry);
487 }
488 
489 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
490 {
491 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
492 		return 0;
493 	return security_ops->inode_unlink(dir, dentry);
494 }
495 
496 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
497 			    const char *old_name)
498 {
499 	if (unlikely(IS_PRIVATE(dir)))
500 		return 0;
501 	return security_ops->inode_symlink(dir, dentry, old_name);
502 }
503 
504 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
505 {
506 	if (unlikely(IS_PRIVATE(dir)))
507 		return 0;
508 	return security_ops->inode_mkdir(dir, dentry, mode);
509 }
510 EXPORT_SYMBOL_GPL(security_inode_mkdir);
511 
512 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
513 {
514 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
515 		return 0;
516 	return security_ops->inode_rmdir(dir, dentry);
517 }
518 
519 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
520 {
521 	if (unlikely(IS_PRIVATE(dir)))
522 		return 0;
523 	return security_ops->inode_mknod(dir, dentry, mode, dev);
524 }
525 
526 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
527 			   struct inode *new_dir, struct dentry *new_dentry)
528 {
529         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
530             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
531 		return 0;
532 	return security_ops->inode_rename(old_dir, old_dentry,
533 					   new_dir, new_dentry);
534 }
535 
536 int security_inode_readlink(struct dentry *dentry)
537 {
538 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
539 		return 0;
540 	return security_ops->inode_readlink(dentry);
541 }
542 
543 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
544 {
545 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
546 		return 0;
547 	return security_ops->inode_follow_link(dentry, nd);
548 }
549 
550 int security_inode_permission(struct inode *inode, int mask)
551 {
552 	if (unlikely(IS_PRIVATE(inode)))
553 		return 0;
554 	return security_ops->inode_permission(inode, mask);
555 }
556 
557 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
558 {
559 	int ret;
560 
561 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
562 		return 0;
563 	ret = security_ops->inode_setattr(dentry, attr);
564 	if (ret)
565 		return ret;
566 	return evm_inode_setattr(dentry, attr);
567 }
568 EXPORT_SYMBOL_GPL(security_inode_setattr);
569 
570 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
571 {
572 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
573 		return 0;
574 	return security_ops->inode_getattr(mnt, dentry);
575 }
576 
577 int security_inode_setxattr(struct dentry *dentry, const char *name,
578 			    const void *value, size_t size, int flags)
579 {
580 	int ret;
581 
582 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
583 		return 0;
584 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
585 	if (ret)
586 		return ret;
587 	ret = ima_inode_setxattr(dentry, name, value, size);
588 	if (ret)
589 		return ret;
590 	return evm_inode_setxattr(dentry, name, value, size);
591 }
592 
593 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
594 				  const void *value, size_t size, int flags)
595 {
596 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
597 		return;
598 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
599 	evm_inode_post_setxattr(dentry, name, value, size);
600 }
601 
602 int security_inode_getxattr(struct dentry *dentry, const char *name)
603 {
604 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
605 		return 0;
606 	return security_ops->inode_getxattr(dentry, name);
607 }
608 
609 int security_inode_listxattr(struct dentry *dentry)
610 {
611 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
612 		return 0;
613 	return security_ops->inode_listxattr(dentry);
614 }
615 
616 int security_inode_removexattr(struct dentry *dentry, const char *name)
617 {
618 	int ret;
619 
620 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
621 		return 0;
622 	ret = security_ops->inode_removexattr(dentry, name);
623 	if (ret)
624 		return ret;
625 	ret = ima_inode_removexattr(dentry, name);
626 	if (ret)
627 		return ret;
628 	return evm_inode_removexattr(dentry, name);
629 }
630 
631 int security_inode_need_killpriv(struct dentry *dentry)
632 {
633 	return security_ops->inode_need_killpriv(dentry);
634 }
635 
636 int security_inode_killpriv(struct dentry *dentry)
637 {
638 	return security_ops->inode_killpriv(dentry);
639 }
640 
641 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
642 {
643 	if (unlikely(IS_PRIVATE(inode)))
644 		return -EOPNOTSUPP;
645 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
646 }
647 
648 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
649 {
650 	if (unlikely(IS_PRIVATE(inode)))
651 		return -EOPNOTSUPP;
652 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
653 }
654 
655 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
656 {
657 	if (unlikely(IS_PRIVATE(inode)))
658 		return 0;
659 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
660 }
661 EXPORT_SYMBOL(security_inode_listsecurity);
662 
663 void security_inode_getsecid(const struct inode *inode, u32 *secid)
664 {
665 	security_ops->inode_getsecid(inode, secid);
666 }
667 
668 int security_file_permission(struct file *file, int mask)
669 {
670 	int ret;
671 
672 	ret = security_ops->file_permission(file, mask);
673 	if (ret)
674 		return ret;
675 
676 	return fsnotify_perm(file, mask);
677 }
678 
679 int security_file_alloc(struct file *file)
680 {
681 	return security_ops->file_alloc_security(file);
682 }
683 
684 void security_file_free(struct file *file)
685 {
686 	security_ops->file_free_security(file);
687 }
688 
689 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
690 {
691 	return security_ops->file_ioctl(file, cmd, arg);
692 }
693 
694 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
695 {
696 	/*
697 	 * Does we have PROT_READ and does the application expect
698 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
699 	 */
700 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
701 		return prot;
702 	if (!(current->personality & READ_IMPLIES_EXEC))
703 		return prot;
704 	/*
705 	 * if that's an anonymous mapping, let it.
706 	 */
707 	if (!file)
708 		return prot | PROT_EXEC;
709 	/*
710 	 * ditto if it's not on noexec mount, except that on !MMU we need
711 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
712 	 */
713 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
714 #ifndef CONFIG_MMU
715 		unsigned long caps = 0;
716 		struct address_space *mapping = file->f_mapping;
717 		if (mapping && mapping->backing_dev_info)
718 			caps = mapping->backing_dev_info->capabilities;
719 		if (!(caps & BDI_CAP_EXEC_MAP))
720 			return prot;
721 #endif
722 		return prot | PROT_EXEC;
723 	}
724 	/* anything on noexec mount won't get PROT_EXEC */
725 	return prot;
726 }
727 
728 int security_mmap_file(struct file *file, unsigned long prot,
729 			unsigned long flags)
730 {
731 	int ret;
732 	ret = security_ops->mmap_file(file, prot,
733 					mmap_prot(file, prot), flags);
734 	if (ret)
735 		return ret;
736 	return ima_file_mmap(file, prot);
737 }
738 
739 int security_mmap_addr(unsigned long addr)
740 {
741 	return security_ops->mmap_addr(addr);
742 }
743 
744 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
745 			    unsigned long prot)
746 {
747 	return security_ops->file_mprotect(vma, reqprot, prot);
748 }
749 
750 int security_file_lock(struct file *file, unsigned int cmd)
751 {
752 	return security_ops->file_lock(file, cmd);
753 }
754 
755 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
756 {
757 	return security_ops->file_fcntl(file, cmd, arg);
758 }
759 
760 int security_file_set_fowner(struct file *file)
761 {
762 	return security_ops->file_set_fowner(file);
763 }
764 
765 int security_file_send_sigiotask(struct task_struct *tsk,
766 				  struct fown_struct *fown, int sig)
767 {
768 	return security_ops->file_send_sigiotask(tsk, fown, sig);
769 }
770 
771 int security_file_receive(struct file *file)
772 {
773 	return security_ops->file_receive(file);
774 }
775 
776 int security_file_open(struct file *file, const struct cred *cred)
777 {
778 	int ret;
779 
780 	ret = security_ops->file_open(file, cred);
781 	if (ret)
782 		return ret;
783 
784 	return fsnotify_perm(file, MAY_OPEN);
785 }
786 
787 int security_task_create(unsigned long clone_flags)
788 {
789 	return security_ops->task_create(clone_flags);
790 }
791 
792 void security_task_free(struct task_struct *task)
793 {
794 #ifdef CONFIG_SECURITY_YAMA_STACKED
795 	yama_task_free(task);
796 #endif
797 	security_ops->task_free(task);
798 }
799 
800 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
801 {
802 	return security_ops->cred_alloc_blank(cred, gfp);
803 }
804 
805 void security_cred_free(struct cred *cred)
806 {
807 	security_ops->cred_free(cred);
808 }
809 
810 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
811 {
812 	return security_ops->cred_prepare(new, old, gfp);
813 }
814 
815 void security_transfer_creds(struct cred *new, const struct cred *old)
816 {
817 	security_ops->cred_transfer(new, old);
818 }
819 
820 int security_kernel_act_as(struct cred *new, u32 secid)
821 {
822 	return security_ops->kernel_act_as(new, secid);
823 }
824 
825 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
826 {
827 	return security_ops->kernel_create_files_as(new, inode);
828 }
829 
830 int security_kernel_module_request(char *kmod_name)
831 {
832 	return security_ops->kernel_module_request(kmod_name);
833 }
834 
835 int security_kernel_module_from_file(struct file *file)
836 {
837 	int ret;
838 
839 	ret = security_ops->kernel_module_from_file(file);
840 	if (ret)
841 		return ret;
842 	return ima_module_check(file);
843 }
844 
845 int security_task_fix_setuid(struct cred *new, const struct cred *old,
846 			     int flags)
847 {
848 	return security_ops->task_fix_setuid(new, old, flags);
849 }
850 
851 int security_task_setpgid(struct task_struct *p, pid_t pgid)
852 {
853 	return security_ops->task_setpgid(p, pgid);
854 }
855 
856 int security_task_getpgid(struct task_struct *p)
857 {
858 	return security_ops->task_getpgid(p);
859 }
860 
861 int security_task_getsid(struct task_struct *p)
862 {
863 	return security_ops->task_getsid(p);
864 }
865 
866 void security_task_getsecid(struct task_struct *p, u32 *secid)
867 {
868 	security_ops->task_getsecid(p, secid);
869 }
870 EXPORT_SYMBOL(security_task_getsecid);
871 
872 int security_task_setnice(struct task_struct *p, int nice)
873 {
874 	return security_ops->task_setnice(p, nice);
875 }
876 
877 int security_task_setioprio(struct task_struct *p, int ioprio)
878 {
879 	return security_ops->task_setioprio(p, ioprio);
880 }
881 
882 int security_task_getioprio(struct task_struct *p)
883 {
884 	return security_ops->task_getioprio(p);
885 }
886 
887 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
888 		struct rlimit *new_rlim)
889 {
890 	return security_ops->task_setrlimit(p, resource, new_rlim);
891 }
892 
893 int security_task_setscheduler(struct task_struct *p)
894 {
895 	return security_ops->task_setscheduler(p);
896 }
897 
898 int security_task_getscheduler(struct task_struct *p)
899 {
900 	return security_ops->task_getscheduler(p);
901 }
902 
903 int security_task_movememory(struct task_struct *p)
904 {
905 	return security_ops->task_movememory(p);
906 }
907 
908 int security_task_kill(struct task_struct *p, struct siginfo *info,
909 			int sig, u32 secid)
910 {
911 	return security_ops->task_kill(p, info, sig, secid);
912 }
913 
914 int security_task_wait(struct task_struct *p)
915 {
916 	return security_ops->task_wait(p);
917 }
918 
919 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
920 			 unsigned long arg4, unsigned long arg5)
921 {
922 #ifdef CONFIG_SECURITY_YAMA_STACKED
923 	int rc;
924 	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
925 	if (rc != -ENOSYS)
926 		return rc;
927 #endif
928 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
929 }
930 
931 void security_task_to_inode(struct task_struct *p, struct inode *inode)
932 {
933 	security_ops->task_to_inode(p, inode);
934 }
935 
936 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
937 {
938 	return security_ops->ipc_permission(ipcp, flag);
939 }
940 
941 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
942 {
943 	security_ops->ipc_getsecid(ipcp, secid);
944 }
945 
946 int security_msg_msg_alloc(struct msg_msg *msg)
947 {
948 	return security_ops->msg_msg_alloc_security(msg);
949 }
950 
951 void security_msg_msg_free(struct msg_msg *msg)
952 {
953 	security_ops->msg_msg_free_security(msg);
954 }
955 
956 int security_msg_queue_alloc(struct msg_queue *msq)
957 {
958 	return security_ops->msg_queue_alloc_security(msq);
959 }
960 
961 void security_msg_queue_free(struct msg_queue *msq)
962 {
963 	security_ops->msg_queue_free_security(msq);
964 }
965 
966 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
967 {
968 	return security_ops->msg_queue_associate(msq, msqflg);
969 }
970 
971 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
972 {
973 	return security_ops->msg_queue_msgctl(msq, cmd);
974 }
975 
976 int security_msg_queue_msgsnd(struct msg_queue *msq,
977 			       struct msg_msg *msg, int msqflg)
978 {
979 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
980 }
981 
982 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
983 			       struct task_struct *target, long type, int mode)
984 {
985 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
986 }
987 
988 int security_shm_alloc(struct shmid_kernel *shp)
989 {
990 	return security_ops->shm_alloc_security(shp);
991 }
992 
993 void security_shm_free(struct shmid_kernel *shp)
994 {
995 	security_ops->shm_free_security(shp);
996 }
997 
998 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
999 {
1000 	return security_ops->shm_associate(shp, shmflg);
1001 }
1002 
1003 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1004 {
1005 	return security_ops->shm_shmctl(shp, cmd);
1006 }
1007 
1008 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1009 {
1010 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1011 }
1012 
1013 int security_sem_alloc(struct sem_array *sma)
1014 {
1015 	return security_ops->sem_alloc_security(sma);
1016 }
1017 
1018 void security_sem_free(struct sem_array *sma)
1019 {
1020 	security_ops->sem_free_security(sma);
1021 }
1022 
1023 int security_sem_associate(struct sem_array *sma, int semflg)
1024 {
1025 	return security_ops->sem_associate(sma, semflg);
1026 }
1027 
1028 int security_sem_semctl(struct sem_array *sma, int cmd)
1029 {
1030 	return security_ops->sem_semctl(sma, cmd);
1031 }
1032 
1033 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1034 			unsigned nsops, int alter)
1035 {
1036 	return security_ops->sem_semop(sma, sops, nsops, alter);
1037 }
1038 
1039 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1040 {
1041 	if (unlikely(inode && IS_PRIVATE(inode)))
1042 		return;
1043 	security_ops->d_instantiate(dentry, inode);
1044 }
1045 EXPORT_SYMBOL(security_d_instantiate);
1046 
1047 int security_getprocattr(struct task_struct *p, char *name, char **value)
1048 {
1049 	return security_ops->getprocattr(p, name, value);
1050 }
1051 
1052 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1053 {
1054 	return security_ops->setprocattr(p, name, value, size);
1055 }
1056 
1057 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1058 {
1059 	return security_ops->netlink_send(sk, skb);
1060 }
1061 
1062 int security_ismaclabel(const char *name)
1063 {
1064 	return security_ops->ismaclabel(name);
1065 }
1066 EXPORT_SYMBOL(security_ismaclabel);
1067 
1068 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1069 {
1070 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1071 }
1072 EXPORT_SYMBOL(security_secid_to_secctx);
1073 
1074 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1075 {
1076 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1077 }
1078 EXPORT_SYMBOL(security_secctx_to_secid);
1079 
1080 void security_release_secctx(char *secdata, u32 seclen)
1081 {
1082 	security_ops->release_secctx(secdata, seclen);
1083 }
1084 EXPORT_SYMBOL(security_release_secctx);
1085 
1086 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1087 {
1088 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1089 }
1090 EXPORT_SYMBOL(security_inode_notifysecctx);
1091 
1092 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1093 {
1094 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1095 }
1096 EXPORT_SYMBOL(security_inode_setsecctx);
1097 
1098 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1099 {
1100 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1101 }
1102 EXPORT_SYMBOL(security_inode_getsecctx);
1103 
1104 #ifdef CONFIG_SECURITY_NETWORK
1105 
1106 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1107 {
1108 	return security_ops->unix_stream_connect(sock, other, newsk);
1109 }
1110 EXPORT_SYMBOL(security_unix_stream_connect);
1111 
1112 int security_unix_may_send(struct socket *sock,  struct socket *other)
1113 {
1114 	return security_ops->unix_may_send(sock, other);
1115 }
1116 EXPORT_SYMBOL(security_unix_may_send);
1117 
1118 int security_socket_create(int family, int type, int protocol, int kern)
1119 {
1120 	return security_ops->socket_create(family, type, protocol, kern);
1121 }
1122 
1123 int security_socket_post_create(struct socket *sock, int family,
1124 				int type, int protocol, int kern)
1125 {
1126 	return security_ops->socket_post_create(sock, family, type,
1127 						protocol, kern);
1128 }
1129 
1130 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1131 {
1132 	return security_ops->socket_bind(sock, address, addrlen);
1133 }
1134 
1135 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1136 {
1137 	return security_ops->socket_connect(sock, address, addrlen);
1138 }
1139 
1140 int security_socket_listen(struct socket *sock, int backlog)
1141 {
1142 	return security_ops->socket_listen(sock, backlog);
1143 }
1144 
1145 int security_socket_accept(struct socket *sock, struct socket *newsock)
1146 {
1147 	return security_ops->socket_accept(sock, newsock);
1148 }
1149 
1150 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1151 {
1152 	return security_ops->socket_sendmsg(sock, msg, size);
1153 }
1154 
1155 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1156 			    int size, int flags)
1157 {
1158 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1159 }
1160 
1161 int security_socket_getsockname(struct socket *sock)
1162 {
1163 	return security_ops->socket_getsockname(sock);
1164 }
1165 
1166 int security_socket_getpeername(struct socket *sock)
1167 {
1168 	return security_ops->socket_getpeername(sock);
1169 }
1170 
1171 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1172 {
1173 	return security_ops->socket_getsockopt(sock, level, optname);
1174 }
1175 
1176 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1177 {
1178 	return security_ops->socket_setsockopt(sock, level, optname);
1179 }
1180 
1181 int security_socket_shutdown(struct socket *sock, int how)
1182 {
1183 	return security_ops->socket_shutdown(sock, how);
1184 }
1185 
1186 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1187 {
1188 	return security_ops->socket_sock_rcv_skb(sk, skb);
1189 }
1190 EXPORT_SYMBOL(security_sock_rcv_skb);
1191 
1192 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1193 				      int __user *optlen, unsigned len)
1194 {
1195 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1196 }
1197 
1198 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1199 {
1200 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1201 }
1202 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1203 
1204 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1205 {
1206 	return security_ops->sk_alloc_security(sk, family, priority);
1207 }
1208 
1209 void security_sk_free(struct sock *sk)
1210 {
1211 	security_ops->sk_free_security(sk);
1212 }
1213 
1214 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1215 {
1216 	security_ops->sk_clone_security(sk, newsk);
1217 }
1218 EXPORT_SYMBOL(security_sk_clone);
1219 
1220 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1221 {
1222 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1223 }
1224 EXPORT_SYMBOL(security_sk_classify_flow);
1225 
1226 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1227 {
1228 	security_ops->req_classify_flow(req, fl);
1229 }
1230 EXPORT_SYMBOL(security_req_classify_flow);
1231 
1232 void security_sock_graft(struct sock *sk, struct socket *parent)
1233 {
1234 	security_ops->sock_graft(sk, parent);
1235 }
1236 EXPORT_SYMBOL(security_sock_graft);
1237 
1238 int security_inet_conn_request(struct sock *sk,
1239 			struct sk_buff *skb, struct request_sock *req)
1240 {
1241 	return security_ops->inet_conn_request(sk, skb, req);
1242 }
1243 EXPORT_SYMBOL(security_inet_conn_request);
1244 
1245 void security_inet_csk_clone(struct sock *newsk,
1246 			const struct request_sock *req)
1247 {
1248 	security_ops->inet_csk_clone(newsk, req);
1249 }
1250 
1251 void security_inet_conn_established(struct sock *sk,
1252 			struct sk_buff *skb)
1253 {
1254 	security_ops->inet_conn_established(sk, skb);
1255 }
1256 
1257 int security_secmark_relabel_packet(u32 secid)
1258 {
1259 	return security_ops->secmark_relabel_packet(secid);
1260 }
1261 EXPORT_SYMBOL(security_secmark_relabel_packet);
1262 
1263 void security_secmark_refcount_inc(void)
1264 {
1265 	security_ops->secmark_refcount_inc();
1266 }
1267 EXPORT_SYMBOL(security_secmark_refcount_inc);
1268 
1269 void security_secmark_refcount_dec(void)
1270 {
1271 	security_ops->secmark_refcount_dec();
1272 }
1273 EXPORT_SYMBOL(security_secmark_refcount_dec);
1274 
1275 int security_tun_dev_alloc_security(void **security)
1276 {
1277 	return security_ops->tun_dev_alloc_security(security);
1278 }
1279 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1280 
1281 void security_tun_dev_free_security(void *security)
1282 {
1283 	security_ops->tun_dev_free_security(security);
1284 }
1285 EXPORT_SYMBOL(security_tun_dev_free_security);
1286 
1287 int security_tun_dev_create(void)
1288 {
1289 	return security_ops->tun_dev_create();
1290 }
1291 EXPORT_SYMBOL(security_tun_dev_create);
1292 
1293 int security_tun_dev_attach_queue(void *security)
1294 {
1295 	return security_ops->tun_dev_attach_queue(security);
1296 }
1297 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1298 
1299 int security_tun_dev_attach(struct sock *sk, void *security)
1300 {
1301 	return security_ops->tun_dev_attach(sk, security);
1302 }
1303 EXPORT_SYMBOL(security_tun_dev_attach);
1304 
1305 int security_tun_dev_open(void *security)
1306 {
1307 	return security_ops->tun_dev_open(security);
1308 }
1309 EXPORT_SYMBOL(security_tun_dev_open);
1310 
1311 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1312 {
1313 	security_ops->skb_owned_by(skb, sk);
1314 }
1315 
1316 #endif	/* CONFIG_SECURITY_NETWORK */
1317 
1318 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1319 
1320 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1321 {
1322 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1323 }
1324 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1325 
1326 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1327 			      struct xfrm_sec_ctx **new_ctxp)
1328 {
1329 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1330 }
1331 
1332 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1333 {
1334 	security_ops->xfrm_policy_free_security(ctx);
1335 }
1336 EXPORT_SYMBOL(security_xfrm_policy_free);
1337 
1338 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1339 {
1340 	return security_ops->xfrm_policy_delete_security(ctx);
1341 }
1342 
1343 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1344 {
1345 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1346 }
1347 EXPORT_SYMBOL(security_xfrm_state_alloc);
1348 
1349 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1350 				      struct xfrm_sec_ctx *polsec, u32 secid)
1351 {
1352 	if (!polsec)
1353 		return 0;
1354 	/*
1355 	 * We want the context to be taken from secid which is usually
1356 	 * from the sock.
1357 	 */
1358 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1359 }
1360 
1361 int security_xfrm_state_delete(struct xfrm_state *x)
1362 {
1363 	return security_ops->xfrm_state_delete_security(x);
1364 }
1365 EXPORT_SYMBOL(security_xfrm_state_delete);
1366 
1367 void security_xfrm_state_free(struct xfrm_state *x)
1368 {
1369 	security_ops->xfrm_state_free_security(x);
1370 }
1371 
1372 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1373 {
1374 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1375 }
1376 
1377 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1378 				       struct xfrm_policy *xp,
1379 				       const struct flowi *fl)
1380 {
1381 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1382 }
1383 
1384 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1385 {
1386 	return security_ops->xfrm_decode_session(skb, secid, 1);
1387 }
1388 
1389 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1390 {
1391 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1392 
1393 	BUG_ON(rc);
1394 }
1395 EXPORT_SYMBOL(security_skb_classify_flow);
1396 
1397 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1398 
1399 #ifdef CONFIG_KEYS
1400 
1401 int security_key_alloc(struct key *key, const struct cred *cred,
1402 		       unsigned long flags)
1403 {
1404 	return security_ops->key_alloc(key, cred, flags);
1405 }
1406 
1407 void security_key_free(struct key *key)
1408 {
1409 	security_ops->key_free(key);
1410 }
1411 
1412 int security_key_permission(key_ref_t key_ref,
1413 			    const struct cred *cred, key_perm_t perm)
1414 {
1415 	return security_ops->key_permission(key_ref, cred, perm);
1416 }
1417 
1418 int security_key_getsecurity(struct key *key, char **_buffer)
1419 {
1420 	return security_ops->key_getsecurity(key, _buffer);
1421 }
1422 
1423 #endif	/* CONFIG_KEYS */
1424 
1425 #ifdef CONFIG_AUDIT
1426 
1427 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1428 {
1429 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1430 }
1431 
1432 int security_audit_rule_known(struct audit_krule *krule)
1433 {
1434 	return security_ops->audit_rule_known(krule);
1435 }
1436 
1437 void security_audit_rule_free(void *lsmrule)
1438 {
1439 	security_ops->audit_rule_free(lsmrule);
1440 }
1441 
1442 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1443 			      struct audit_context *actx)
1444 {
1445 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1446 }
1447 
1448 #endif /* CONFIG_AUDIT */
1449