1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <linux/msg.h> 34 #include <net/flow.h> 35 36 #define MAX_LSM_EVM_XATTR 2 37 38 /* How many LSMs were built into the kernel? */ 39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 40 41 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 43 44 static struct kmem_cache *lsm_file_cache; 45 static struct kmem_cache *lsm_inode_cache; 46 47 char *lsm_names; 48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 49 50 /* Boot-time LSM user choice */ 51 static __initdata const char *chosen_lsm_order; 52 static __initdata const char *chosen_major_lsm; 53 54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 55 56 /* Ordered list of LSMs to initialize. */ 57 static __initdata struct lsm_info **ordered_lsms; 58 static __initdata struct lsm_info *exclusive; 59 60 static __initdata bool debug; 61 #define init_debug(...) \ 62 do { \ 63 if (debug) \ 64 pr_info(__VA_ARGS__); \ 65 } while (0) 66 67 static bool __init is_enabled(struct lsm_info *lsm) 68 { 69 if (!lsm->enabled) 70 return false; 71 72 return *lsm->enabled; 73 } 74 75 /* Mark an LSM's enabled flag. */ 76 static int lsm_enabled_true __initdata = 1; 77 static int lsm_enabled_false __initdata = 0; 78 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 79 { 80 /* 81 * When an LSM hasn't configured an enable variable, we can use 82 * a hard-coded location for storing the default enabled state. 83 */ 84 if (!lsm->enabled) { 85 if (enabled) 86 lsm->enabled = &lsm_enabled_true; 87 else 88 lsm->enabled = &lsm_enabled_false; 89 } else if (lsm->enabled == &lsm_enabled_true) { 90 if (!enabled) 91 lsm->enabled = &lsm_enabled_false; 92 } else if (lsm->enabled == &lsm_enabled_false) { 93 if (enabled) 94 lsm->enabled = &lsm_enabled_true; 95 } else { 96 *lsm->enabled = enabled; 97 } 98 } 99 100 /* Is an LSM already listed in the ordered LSMs list? */ 101 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 102 { 103 struct lsm_info **check; 104 105 for (check = ordered_lsms; *check; check++) 106 if (*check == lsm) 107 return true; 108 109 return false; 110 } 111 112 /* Append an LSM to the list of ordered LSMs to initialize. */ 113 static int last_lsm __initdata; 114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 115 { 116 /* Ignore duplicate selections. */ 117 if (exists_ordered_lsm(lsm)) 118 return; 119 120 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 121 return; 122 123 /* Enable this LSM, if it is not already set. */ 124 if (!lsm->enabled) 125 lsm->enabled = &lsm_enabled_true; 126 ordered_lsms[last_lsm++] = lsm; 127 128 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 129 is_enabled(lsm) ? "en" : "dis"); 130 } 131 132 /* Is an LSM allowed to be initialized? */ 133 static bool __init lsm_allowed(struct lsm_info *lsm) 134 { 135 /* Skip if the LSM is disabled. */ 136 if (!is_enabled(lsm)) 137 return false; 138 139 /* Not allowed if another exclusive LSM already initialized. */ 140 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 141 init_debug("exclusive disabled: %s\n", lsm->name); 142 return false; 143 } 144 145 return true; 146 } 147 148 static void __init lsm_set_blob_size(int *need, int *lbs) 149 { 150 int offset; 151 152 if (*need > 0) { 153 offset = *lbs; 154 *lbs += *need; 155 *need = offset; 156 } 157 } 158 159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 160 { 161 if (!needed) 162 return; 163 164 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 165 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 166 /* 167 * The inode blob gets an rcu_head in addition to 168 * what the modules might need. 169 */ 170 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 171 blob_sizes.lbs_inode = sizeof(struct rcu_head); 172 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 173 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 174 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 175 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 176 } 177 178 /* Prepare LSM for initialization. */ 179 static void __init prepare_lsm(struct lsm_info *lsm) 180 { 181 int enabled = lsm_allowed(lsm); 182 183 /* Record enablement (to handle any following exclusive LSMs). */ 184 set_enabled(lsm, enabled); 185 186 /* If enabled, do pre-initialization work. */ 187 if (enabled) { 188 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 189 exclusive = lsm; 190 init_debug("exclusive chosen: %s\n", lsm->name); 191 } 192 193 lsm_set_blob_sizes(lsm->blobs); 194 } 195 } 196 197 /* Initialize a given LSM, if it is enabled. */ 198 static void __init initialize_lsm(struct lsm_info *lsm) 199 { 200 if (is_enabled(lsm)) { 201 int ret; 202 203 init_debug("initializing %s\n", lsm->name); 204 ret = lsm->init(); 205 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 206 } 207 } 208 209 /* Populate ordered LSMs list from comma-separated LSM name list. */ 210 static void __init ordered_lsm_parse(const char *order, const char *origin) 211 { 212 struct lsm_info *lsm; 213 char *sep, *name, *next; 214 215 /* LSM_ORDER_FIRST is always first. */ 216 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 217 if (lsm->order == LSM_ORDER_FIRST) 218 append_ordered_lsm(lsm, "first"); 219 } 220 221 /* Process "security=", if given. */ 222 if (chosen_major_lsm) { 223 struct lsm_info *major; 224 225 /* 226 * To match the original "security=" behavior, this 227 * explicitly does NOT fallback to another Legacy Major 228 * if the selected one was separately disabled: disable 229 * all non-matching Legacy Major LSMs. 230 */ 231 for (major = __start_lsm_info; major < __end_lsm_info; 232 major++) { 233 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 234 strcmp(major->name, chosen_major_lsm) != 0) { 235 set_enabled(major, false); 236 init_debug("security=%s disabled: %s\n", 237 chosen_major_lsm, major->name); 238 } 239 } 240 } 241 242 sep = kstrdup(order, GFP_KERNEL); 243 next = sep; 244 /* Walk the list, looking for matching LSMs. */ 245 while ((name = strsep(&next, ",")) != NULL) { 246 bool found = false; 247 248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 249 if (lsm->order == LSM_ORDER_MUTABLE && 250 strcmp(lsm->name, name) == 0) { 251 append_ordered_lsm(lsm, origin); 252 found = true; 253 } 254 } 255 256 if (!found) 257 init_debug("%s ignored: %s\n", origin, name); 258 } 259 260 /* Process "security=", if given. */ 261 if (chosen_major_lsm) { 262 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 263 if (exists_ordered_lsm(lsm)) 264 continue; 265 if (strcmp(lsm->name, chosen_major_lsm) == 0) 266 append_ordered_lsm(lsm, "security="); 267 } 268 } 269 270 /* Disable all LSMs not in the ordered list. */ 271 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 272 if (exists_ordered_lsm(lsm)) 273 continue; 274 set_enabled(lsm, false); 275 init_debug("%s disabled: %s\n", origin, lsm->name); 276 } 277 278 kfree(sep); 279 } 280 281 static void __init lsm_early_cred(struct cred *cred); 282 static void __init lsm_early_task(struct task_struct *task); 283 284 static void __init ordered_lsm_init(void) 285 { 286 struct lsm_info **lsm; 287 288 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 289 GFP_KERNEL); 290 291 if (chosen_lsm_order) { 292 if (chosen_major_lsm) { 293 pr_info("security= is ignored because it is superseded by lsm=\n"); 294 chosen_major_lsm = NULL; 295 } 296 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 297 } else 298 ordered_lsm_parse(builtin_lsm_order, "builtin"); 299 300 for (lsm = ordered_lsms; *lsm; lsm++) 301 prepare_lsm(*lsm); 302 303 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 304 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 305 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 306 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 307 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 308 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 309 310 /* 311 * Create any kmem_caches needed for blobs 312 */ 313 if (blob_sizes.lbs_file) 314 lsm_file_cache = kmem_cache_create("lsm_file_cache", 315 blob_sizes.lbs_file, 0, 316 SLAB_PANIC, NULL); 317 if (blob_sizes.lbs_inode) 318 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 319 blob_sizes.lbs_inode, 0, 320 SLAB_PANIC, NULL); 321 322 lsm_early_cred((struct cred *) current->cred); 323 lsm_early_task(current); 324 for (lsm = ordered_lsms; *lsm; lsm++) 325 initialize_lsm(*lsm); 326 327 kfree(ordered_lsms); 328 } 329 330 /** 331 * security_init - initializes the security framework 332 * 333 * This should be called early in the kernel initialization sequence. 334 */ 335 int __init security_init(void) 336 { 337 int i; 338 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 339 340 pr_info("Security Framework initializing\n"); 341 342 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 343 i++) 344 INIT_HLIST_HEAD(&list[i]); 345 346 /* Load LSMs in specified order. */ 347 ordered_lsm_init(); 348 349 return 0; 350 } 351 352 /* Save user chosen LSM */ 353 static int __init choose_major_lsm(char *str) 354 { 355 chosen_major_lsm = str; 356 return 1; 357 } 358 __setup("security=", choose_major_lsm); 359 360 /* Explicitly choose LSM initialization order. */ 361 static int __init choose_lsm_order(char *str) 362 { 363 chosen_lsm_order = str; 364 return 1; 365 } 366 __setup("lsm=", choose_lsm_order); 367 368 /* Enable LSM order debugging. */ 369 static int __init enable_debug(char *str) 370 { 371 debug = true; 372 return 1; 373 } 374 __setup("lsm.debug", enable_debug); 375 376 static bool match_last_lsm(const char *list, const char *lsm) 377 { 378 const char *last; 379 380 if (WARN_ON(!list || !lsm)) 381 return false; 382 last = strrchr(list, ','); 383 if (last) 384 /* Pass the comma, strcmp() will check for '\0' */ 385 last++; 386 else 387 last = list; 388 return !strcmp(last, lsm); 389 } 390 391 static int lsm_append(char *new, char **result) 392 { 393 char *cp; 394 395 if (*result == NULL) { 396 *result = kstrdup(new, GFP_KERNEL); 397 if (*result == NULL) 398 return -ENOMEM; 399 } else { 400 /* Check if it is the last registered name */ 401 if (match_last_lsm(*result, new)) 402 return 0; 403 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 404 if (cp == NULL) 405 return -ENOMEM; 406 kfree(*result); 407 *result = cp; 408 } 409 return 0; 410 } 411 412 /** 413 * security_add_hooks - Add a modules hooks to the hook lists. 414 * @hooks: the hooks to add 415 * @count: the number of hooks to add 416 * @lsm: the name of the security module 417 * 418 * Each LSM has to register its hooks with the infrastructure. 419 */ 420 void __init security_add_hooks(struct security_hook_list *hooks, int count, 421 char *lsm) 422 { 423 int i; 424 425 for (i = 0; i < count; i++) { 426 hooks[i].lsm = lsm; 427 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 428 } 429 if (lsm_append(lsm, &lsm_names) < 0) 430 panic("%s - Cannot get early memory.\n", __func__); 431 } 432 433 int call_lsm_notifier(enum lsm_event event, void *data) 434 { 435 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 436 } 437 EXPORT_SYMBOL(call_lsm_notifier); 438 439 int register_lsm_notifier(struct notifier_block *nb) 440 { 441 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 442 } 443 EXPORT_SYMBOL(register_lsm_notifier); 444 445 int unregister_lsm_notifier(struct notifier_block *nb) 446 { 447 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 448 } 449 EXPORT_SYMBOL(unregister_lsm_notifier); 450 451 /** 452 * lsm_cred_alloc - allocate a composite cred blob 453 * @cred: the cred that needs a blob 454 * @gfp: allocation type 455 * 456 * Allocate the cred blob for all the modules 457 * 458 * Returns 0, or -ENOMEM if memory can't be allocated. 459 */ 460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 461 { 462 if (blob_sizes.lbs_cred == 0) { 463 cred->security = NULL; 464 return 0; 465 } 466 467 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 468 if (cred->security == NULL) 469 return -ENOMEM; 470 return 0; 471 } 472 473 /** 474 * lsm_early_cred - during initialization allocate a composite cred blob 475 * @cred: the cred that needs a blob 476 * 477 * Allocate the cred blob for all the modules 478 */ 479 static void __init lsm_early_cred(struct cred *cred) 480 { 481 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 482 483 if (rc) 484 panic("%s: Early cred alloc failed.\n", __func__); 485 } 486 487 /** 488 * lsm_file_alloc - allocate a composite file blob 489 * @file: the file that needs a blob 490 * 491 * Allocate the file blob for all the modules 492 * 493 * Returns 0, or -ENOMEM if memory can't be allocated. 494 */ 495 static int lsm_file_alloc(struct file *file) 496 { 497 if (!lsm_file_cache) { 498 file->f_security = NULL; 499 return 0; 500 } 501 502 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 503 if (file->f_security == NULL) 504 return -ENOMEM; 505 return 0; 506 } 507 508 /** 509 * lsm_inode_alloc - allocate a composite inode blob 510 * @inode: the inode that needs a blob 511 * 512 * Allocate the inode blob for all the modules 513 * 514 * Returns 0, or -ENOMEM if memory can't be allocated. 515 */ 516 int lsm_inode_alloc(struct inode *inode) 517 { 518 if (!lsm_inode_cache) { 519 inode->i_security = NULL; 520 return 0; 521 } 522 523 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 524 if (inode->i_security == NULL) 525 return -ENOMEM; 526 return 0; 527 } 528 529 /** 530 * lsm_task_alloc - allocate a composite task blob 531 * @task: the task that needs a blob 532 * 533 * Allocate the task blob for all the modules 534 * 535 * Returns 0, or -ENOMEM if memory can't be allocated. 536 */ 537 static int lsm_task_alloc(struct task_struct *task) 538 { 539 if (blob_sizes.lbs_task == 0) { 540 task->security = NULL; 541 return 0; 542 } 543 544 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 545 if (task->security == NULL) 546 return -ENOMEM; 547 return 0; 548 } 549 550 /** 551 * lsm_ipc_alloc - allocate a composite ipc blob 552 * @kip: the ipc that needs a blob 553 * 554 * Allocate the ipc blob for all the modules 555 * 556 * Returns 0, or -ENOMEM if memory can't be allocated. 557 */ 558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 559 { 560 if (blob_sizes.lbs_ipc == 0) { 561 kip->security = NULL; 562 return 0; 563 } 564 565 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 566 if (kip->security == NULL) 567 return -ENOMEM; 568 return 0; 569 } 570 571 /** 572 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 573 * @mp: the msg_msg that needs a blob 574 * 575 * Allocate the ipc blob for all the modules 576 * 577 * Returns 0, or -ENOMEM if memory can't be allocated. 578 */ 579 static int lsm_msg_msg_alloc(struct msg_msg *mp) 580 { 581 if (blob_sizes.lbs_msg_msg == 0) { 582 mp->security = NULL; 583 return 0; 584 } 585 586 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 587 if (mp->security == NULL) 588 return -ENOMEM; 589 return 0; 590 } 591 592 /** 593 * lsm_early_task - during initialization allocate a composite task blob 594 * @task: the task that needs a blob 595 * 596 * Allocate the task blob for all the modules 597 */ 598 static void __init lsm_early_task(struct task_struct *task) 599 { 600 int rc = lsm_task_alloc(task); 601 602 if (rc) 603 panic("%s: Early task alloc failed.\n", __func__); 604 } 605 606 /* 607 * Hook list operation macros. 608 * 609 * call_void_hook: 610 * This is a hook that does not return a value. 611 * 612 * call_int_hook: 613 * This is a hook that returns a value. 614 */ 615 616 #define call_void_hook(FUNC, ...) \ 617 do { \ 618 struct security_hook_list *P; \ 619 \ 620 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 621 P->hook.FUNC(__VA_ARGS__); \ 622 } while (0) 623 624 #define call_int_hook(FUNC, IRC, ...) ({ \ 625 int RC = IRC; \ 626 do { \ 627 struct security_hook_list *P; \ 628 \ 629 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 630 RC = P->hook.FUNC(__VA_ARGS__); \ 631 if (RC != 0) \ 632 break; \ 633 } \ 634 } while (0); \ 635 RC; \ 636 }) 637 638 /* Security operations */ 639 640 int security_binder_set_context_mgr(struct task_struct *mgr) 641 { 642 return call_int_hook(binder_set_context_mgr, 0, mgr); 643 } 644 645 int security_binder_transaction(struct task_struct *from, 646 struct task_struct *to) 647 { 648 return call_int_hook(binder_transaction, 0, from, to); 649 } 650 651 int security_binder_transfer_binder(struct task_struct *from, 652 struct task_struct *to) 653 { 654 return call_int_hook(binder_transfer_binder, 0, from, to); 655 } 656 657 int security_binder_transfer_file(struct task_struct *from, 658 struct task_struct *to, struct file *file) 659 { 660 return call_int_hook(binder_transfer_file, 0, from, to, file); 661 } 662 663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 664 { 665 return call_int_hook(ptrace_access_check, 0, child, mode); 666 } 667 668 int security_ptrace_traceme(struct task_struct *parent) 669 { 670 return call_int_hook(ptrace_traceme, 0, parent); 671 } 672 673 int security_capget(struct task_struct *target, 674 kernel_cap_t *effective, 675 kernel_cap_t *inheritable, 676 kernel_cap_t *permitted) 677 { 678 return call_int_hook(capget, 0, target, 679 effective, inheritable, permitted); 680 } 681 682 int security_capset(struct cred *new, const struct cred *old, 683 const kernel_cap_t *effective, 684 const kernel_cap_t *inheritable, 685 const kernel_cap_t *permitted) 686 { 687 return call_int_hook(capset, 0, new, old, 688 effective, inheritable, permitted); 689 } 690 691 int security_capable(const struct cred *cred, 692 struct user_namespace *ns, 693 int cap, 694 unsigned int opts) 695 { 696 return call_int_hook(capable, 0, cred, ns, cap, opts); 697 } 698 699 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 700 { 701 return call_int_hook(quotactl, 0, cmds, type, id, sb); 702 } 703 704 int security_quota_on(struct dentry *dentry) 705 { 706 return call_int_hook(quota_on, 0, dentry); 707 } 708 709 int security_syslog(int type) 710 { 711 return call_int_hook(syslog, 0, type); 712 } 713 714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 715 { 716 return call_int_hook(settime, 0, ts, tz); 717 } 718 719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 720 { 721 struct security_hook_list *hp; 722 int cap_sys_admin = 1; 723 int rc; 724 725 /* 726 * The module will respond with a positive value if 727 * it thinks the __vm_enough_memory() call should be 728 * made with the cap_sys_admin set. If all of the modules 729 * agree that it should be set it will. If any module 730 * thinks it should not be set it won't. 731 */ 732 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 733 rc = hp->hook.vm_enough_memory(mm, pages); 734 if (rc <= 0) { 735 cap_sys_admin = 0; 736 break; 737 } 738 } 739 return __vm_enough_memory(mm, pages, cap_sys_admin); 740 } 741 742 int security_bprm_set_creds(struct linux_binprm *bprm) 743 { 744 return call_int_hook(bprm_set_creds, 0, bprm); 745 } 746 747 int security_bprm_check(struct linux_binprm *bprm) 748 { 749 int ret; 750 751 ret = call_int_hook(bprm_check_security, 0, bprm); 752 if (ret) 753 return ret; 754 return ima_bprm_check(bprm); 755 } 756 757 void security_bprm_committing_creds(struct linux_binprm *bprm) 758 { 759 call_void_hook(bprm_committing_creds, bprm); 760 } 761 762 void security_bprm_committed_creds(struct linux_binprm *bprm) 763 { 764 call_void_hook(bprm_committed_creds, bprm); 765 } 766 767 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 768 { 769 return call_int_hook(fs_context_dup, 0, fc, src_fc); 770 } 771 772 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 773 { 774 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 775 } 776 777 int security_sb_alloc(struct super_block *sb) 778 { 779 return call_int_hook(sb_alloc_security, 0, sb); 780 } 781 782 void security_sb_free(struct super_block *sb) 783 { 784 call_void_hook(sb_free_security, sb); 785 } 786 787 void security_free_mnt_opts(void **mnt_opts) 788 { 789 if (!*mnt_opts) 790 return; 791 call_void_hook(sb_free_mnt_opts, *mnt_opts); 792 *mnt_opts = NULL; 793 } 794 EXPORT_SYMBOL(security_free_mnt_opts); 795 796 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 797 { 798 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 799 } 800 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 801 802 int security_sb_remount(struct super_block *sb, 803 void *mnt_opts) 804 { 805 return call_int_hook(sb_remount, 0, sb, mnt_opts); 806 } 807 EXPORT_SYMBOL(security_sb_remount); 808 809 int security_sb_kern_mount(struct super_block *sb) 810 { 811 return call_int_hook(sb_kern_mount, 0, sb); 812 } 813 814 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 815 { 816 return call_int_hook(sb_show_options, 0, m, sb); 817 } 818 819 int security_sb_statfs(struct dentry *dentry) 820 { 821 return call_int_hook(sb_statfs, 0, dentry); 822 } 823 824 int security_sb_mount(const char *dev_name, const struct path *path, 825 const char *type, unsigned long flags, void *data) 826 { 827 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 828 } 829 830 int security_sb_umount(struct vfsmount *mnt, int flags) 831 { 832 return call_int_hook(sb_umount, 0, mnt, flags); 833 } 834 835 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 836 { 837 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 838 } 839 840 int security_sb_set_mnt_opts(struct super_block *sb, 841 void *mnt_opts, 842 unsigned long kern_flags, 843 unsigned long *set_kern_flags) 844 { 845 return call_int_hook(sb_set_mnt_opts, 846 mnt_opts ? -EOPNOTSUPP : 0, sb, 847 mnt_opts, kern_flags, set_kern_flags); 848 } 849 EXPORT_SYMBOL(security_sb_set_mnt_opts); 850 851 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 852 struct super_block *newsb, 853 unsigned long kern_flags, 854 unsigned long *set_kern_flags) 855 { 856 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 857 kern_flags, set_kern_flags); 858 } 859 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 860 861 int security_add_mnt_opt(const char *option, const char *val, int len, 862 void **mnt_opts) 863 { 864 return call_int_hook(sb_add_mnt_opt, -EINVAL, 865 option, val, len, mnt_opts); 866 } 867 EXPORT_SYMBOL(security_add_mnt_opt); 868 869 int security_inode_alloc(struct inode *inode) 870 { 871 int rc = lsm_inode_alloc(inode); 872 873 if (unlikely(rc)) 874 return rc; 875 rc = call_int_hook(inode_alloc_security, 0, inode); 876 if (unlikely(rc)) 877 security_inode_free(inode); 878 return rc; 879 } 880 881 static void inode_free_by_rcu(struct rcu_head *head) 882 { 883 /* 884 * The rcu head is at the start of the inode blob 885 */ 886 kmem_cache_free(lsm_inode_cache, head); 887 } 888 889 void security_inode_free(struct inode *inode) 890 { 891 integrity_inode_free(inode); 892 call_void_hook(inode_free_security, inode); 893 /* 894 * The inode may still be referenced in a path walk and 895 * a call to security_inode_permission() can be made 896 * after inode_free_security() is called. Ideally, the VFS 897 * wouldn't do this, but fixing that is a much harder 898 * job. For now, simply free the i_security via RCU, and 899 * leave the current inode->i_security pointer intact. 900 * The inode will be freed after the RCU grace period too. 901 */ 902 if (inode->i_security) 903 call_rcu((struct rcu_head *)inode->i_security, 904 inode_free_by_rcu); 905 } 906 907 int security_dentry_init_security(struct dentry *dentry, int mode, 908 const struct qstr *name, void **ctx, 909 u32 *ctxlen) 910 { 911 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 912 name, ctx, ctxlen); 913 } 914 EXPORT_SYMBOL(security_dentry_init_security); 915 916 int security_dentry_create_files_as(struct dentry *dentry, int mode, 917 struct qstr *name, 918 const struct cred *old, struct cred *new) 919 { 920 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 921 name, old, new); 922 } 923 EXPORT_SYMBOL(security_dentry_create_files_as); 924 925 int security_inode_init_security(struct inode *inode, struct inode *dir, 926 const struct qstr *qstr, 927 const initxattrs initxattrs, void *fs_data) 928 { 929 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 930 struct xattr *lsm_xattr, *evm_xattr, *xattr; 931 int ret; 932 933 if (unlikely(IS_PRIVATE(inode))) 934 return 0; 935 936 if (!initxattrs) 937 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 938 dir, qstr, NULL, NULL, NULL); 939 memset(new_xattrs, 0, sizeof(new_xattrs)); 940 lsm_xattr = new_xattrs; 941 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 942 &lsm_xattr->name, 943 &lsm_xattr->value, 944 &lsm_xattr->value_len); 945 if (ret) 946 goto out; 947 948 evm_xattr = lsm_xattr + 1; 949 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 950 if (ret) 951 goto out; 952 ret = initxattrs(inode, new_xattrs, fs_data); 953 out: 954 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 955 kfree(xattr->value); 956 return (ret == -EOPNOTSUPP) ? 0 : ret; 957 } 958 EXPORT_SYMBOL(security_inode_init_security); 959 960 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 961 const struct qstr *qstr, const char **name, 962 void **value, size_t *len) 963 { 964 if (unlikely(IS_PRIVATE(inode))) 965 return -EOPNOTSUPP; 966 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 967 qstr, name, value, len); 968 } 969 EXPORT_SYMBOL(security_old_inode_init_security); 970 971 #ifdef CONFIG_SECURITY_PATH 972 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 973 unsigned int dev) 974 { 975 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 976 return 0; 977 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 978 } 979 EXPORT_SYMBOL(security_path_mknod); 980 981 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 982 { 983 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 984 return 0; 985 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 986 } 987 EXPORT_SYMBOL(security_path_mkdir); 988 989 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 990 { 991 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 992 return 0; 993 return call_int_hook(path_rmdir, 0, dir, dentry); 994 } 995 996 int security_path_unlink(const struct path *dir, struct dentry *dentry) 997 { 998 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 999 return 0; 1000 return call_int_hook(path_unlink, 0, dir, dentry); 1001 } 1002 EXPORT_SYMBOL(security_path_unlink); 1003 1004 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1005 const char *old_name) 1006 { 1007 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1008 return 0; 1009 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1010 } 1011 1012 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1013 struct dentry *new_dentry) 1014 { 1015 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1016 return 0; 1017 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1018 } 1019 1020 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1021 const struct path *new_dir, struct dentry *new_dentry, 1022 unsigned int flags) 1023 { 1024 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1025 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1026 return 0; 1027 1028 if (flags & RENAME_EXCHANGE) { 1029 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1030 old_dir, old_dentry); 1031 if (err) 1032 return err; 1033 } 1034 1035 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1036 new_dentry); 1037 } 1038 EXPORT_SYMBOL(security_path_rename); 1039 1040 int security_path_truncate(const struct path *path) 1041 { 1042 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1043 return 0; 1044 return call_int_hook(path_truncate, 0, path); 1045 } 1046 1047 int security_path_chmod(const struct path *path, umode_t mode) 1048 { 1049 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1050 return 0; 1051 return call_int_hook(path_chmod, 0, path, mode); 1052 } 1053 1054 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1055 { 1056 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1057 return 0; 1058 return call_int_hook(path_chown, 0, path, uid, gid); 1059 } 1060 1061 int security_path_chroot(const struct path *path) 1062 { 1063 return call_int_hook(path_chroot, 0, path); 1064 } 1065 #endif 1066 1067 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1068 { 1069 if (unlikely(IS_PRIVATE(dir))) 1070 return 0; 1071 return call_int_hook(inode_create, 0, dir, dentry, mode); 1072 } 1073 EXPORT_SYMBOL_GPL(security_inode_create); 1074 1075 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1076 struct dentry *new_dentry) 1077 { 1078 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1079 return 0; 1080 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1081 } 1082 1083 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1084 { 1085 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1086 return 0; 1087 return call_int_hook(inode_unlink, 0, dir, dentry); 1088 } 1089 1090 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1091 const char *old_name) 1092 { 1093 if (unlikely(IS_PRIVATE(dir))) 1094 return 0; 1095 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1096 } 1097 1098 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1099 { 1100 if (unlikely(IS_PRIVATE(dir))) 1101 return 0; 1102 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1103 } 1104 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1105 1106 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1107 { 1108 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1109 return 0; 1110 return call_int_hook(inode_rmdir, 0, dir, dentry); 1111 } 1112 1113 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1114 { 1115 if (unlikely(IS_PRIVATE(dir))) 1116 return 0; 1117 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1118 } 1119 1120 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1121 struct inode *new_dir, struct dentry *new_dentry, 1122 unsigned int flags) 1123 { 1124 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1125 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1126 return 0; 1127 1128 if (flags & RENAME_EXCHANGE) { 1129 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1130 old_dir, old_dentry); 1131 if (err) 1132 return err; 1133 } 1134 1135 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1136 new_dir, new_dentry); 1137 } 1138 1139 int security_inode_readlink(struct dentry *dentry) 1140 { 1141 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1142 return 0; 1143 return call_int_hook(inode_readlink, 0, dentry); 1144 } 1145 1146 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1147 bool rcu) 1148 { 1149 if (unlikely(IS_PRIVATE(inode))) 1150 return 0; 1151 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1152 } 1153 1154 int security_inode_permission(struct inode *inode, int mask) 1155 { 1156 if (unlikely(IS_PRIVATE(inode))) 1157 return 0; 1158 return call_int_hook(inode_permission, 0, inode, mask); 1159 } 1160 1161 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1162 { 1163 int ret; 1164 1165 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1166 return 0; 1167 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1168 if (ret) 1169 return ret; 1170 return evm_inode_setattr(dentry, attr); 1171 } 1172 EXPORT_SYMBOL_GPL(security_inode_setattr); 1173 1174 int security_inode_getattr(const struct path *path) 1175 { 1176 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1177 return 0; 1178 return call_int_hook(inode_getattr, 0, path); 1179 } 1180 1181 int security_inode_setxattr(struct dentry *dentry, const char *name, 1182 const void *value, size_t size, int flags) 1183 { 1184 int ret; 1185 1186 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1187 return 0; 1188 /* 1189 * SELinux and Smack integrate the cap call, 1190 * so assume that all LSMs supplying this call do so. 1191 */ 1192 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1193 flags); 1194 1195 if (ret == 1) 1196 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1197 if (ret) 1198 return ret; 1199 ret = ima_inode_setxattr(dentry, name, value, size); 1200 if (ret) 1201 return ret; 1202 return evm_inode_setxattr(dentry, name, value, size); 1203 } 1204 1205 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1206 const void *value, size_t size, int flags) 1207 { 1208 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1209 return; 1210 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1211 evm_inode_post_setxattr(dentry, name, value, size); 1212 } 1213 1214 int security_inode_getxattr(struct dentry *dentry, const char *name) 1215 { 1216 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1217 return 0; 1218 return call_int_hook(inode_getxattr, 0, dentry, name); 1219 } 1220 1221 int security_inode_listxattr(struct dentry *dentry) 1222 { 1223 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1224 return 0; 1225 return call_int_hook(inode_listxattr, 0, dentry); 1226 } 1227 1228 int security_inode_removexattr(struct dentry *dentry, const char *name) 1229 { 1230 int ret; 1231 1232 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1233 return 0; 1234 /* 1235 * SELinux and Smack integrate the cap call, 1236 * so assume that all LSMs supplying this call do so. 1237 */ 1238 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1239 if (ret == 1) 1240 ret = cap_inode_removexattr(dentry, name); 1241 if (ret) 1242 return ret; 1243 ret = ima_inode_removexattr(dentry, name); 1244 if (ret) 1245 return ret; 1246 return evm_inode_removexattr(dentry, name); 1247 } 1248 1249 int security_inode_need_killpriv(struct dentry *dentry) 1250 { 1251 return call_int_hook(inode_need_killpriv, 0, dentry); 1252 } 1253 1254 int security_inode_killpriv(struct dentry *dentry) 1255 { 1256 return call_int_hook(inode_killpriv, 0, dentry); 1257 } 1258 1259 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1260 { 1261 struct security_hook_list *hp; 1262 int rc; 1263 1264 if (unlikely(IS_PRIVATE(inode))) 1265 return -EOPNOTSUPP; 1266 /* 1267 * Only one module will provide an attribute with a given name. 1268 */ 1269 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1270 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1271 if (rc != -EOPNOTSUPP) 1272 return rc; 1273 } 1274 return -EOPNOTSUPP; 1275 } 1276 1277 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1278 { 1279 struct security_hook_list *hp; 1280 int rc; 1281 1282 if (unlikely(IS_PRIVATE(inode))) 1283 return -EOPNOTSUPP; 1284 /* 1285 * Only one module will provide an attribute with a given name. 1286 */ 1287 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1288 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1289 flags); 1290 if (rc != -EOPNOTSUPP) 1291 return rc; 1292 } 1293 return -EOPNOTSUPP; 1294 } 1295 1296 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1297 { 1298 if (unlikely(IS_PRIVATE(inode))) 1299 return 0; 1300 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1301 } 1302 EXPORT_SYMBOL(security_inode_listsecurity); 1303 1304 void security_inode_getsecid(struct inode *inode, u32 *secid) 1305 { 1306 call_void_hook(inode_getsecid, inode, secid); 1307 } 1308 1309 int security_inode_copy_up(struct dentry *src, struct cred **new) 1310 { 1311 return call_int_hook(inode_copy_up, 0, src, new); 1312 } 1313 EXPORT_SYMBOL(security_inode_copy_up); 1314 1315 int security_inode_copy_up_xattr(const char *name) 1316 { 1317 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1318 } 1319 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1320 1321 int security_file_permission(struct file *file, int mask) 1322 { 1323 int ret; 1324 1325 ret = call_int_hook(file_permission, 0, file, mask); 1326 if (ret) 1327 return ret; 1328 1329 return fsnotify_perm(file, mask); 1330 } 1331 1332 int security_file_alloc(struct file *file) 1333 { 1334 int rc = lsm_file_alloc(file); 1335 1336 if (rc) 1337 return rc; 1338 rc = call_int_hook(file_alloc_security, 0, file); 1339 if (unlikely(rc)) 1340 security_file_free(file); 1341 return rc; 1342 } 1343 1344 void security_file_free(struct file *file) 1345 { 1346 void *blob; 1347 1348 call_void_hook(file_free_security, file); 1349 1350 blob = file->f_security; 1351 if (blob) { 1352 file->f_security = NULL; 1353 kmem_cache_free(lsm_file_cache, blob); 1354 } 1355 } 1356 1357 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1358 { 1359 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1360 } 1361 1362 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1363 { 1364 /* 1365 * Does we have PROT_READ and does the application expect 1366 * it to imply PROT_EXEC? If not, nothing to talk about... 1367 */ 1368 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1369 return prot; 1370 if (!(current->personality & READ_IMPLIES_EXEC)) 1371 return prot; 1372 /* 1373 * if that's an anonymous mapping, let it. 1374 */ 1375 if (!file) 1376 return prot | PROT_EXEC; 1377 /* 1378 * ditto if it's not on noexec mount, except that on !MMU we need 1379 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1380 */ 1381 if (!path_noexec(&file->f_path)) { 1382 #ifndef CONFIG_MMU 1383 if (file->f_op->mmap_capabilities) { 1384 unsigned caps = file->f_op->mmap_capabilities(file); 1385 if (!(caps & NOMMU_MAP_EXEC)) 1386 return prot; 1387 } 1388 #endif 1389 return prot | PROT_EXEC; 1390 } 1391 /* anything on noexec mount won't get PROT_EXEC */ 1392 return prot; 1393 } 1394 1395 int security_mmap_file(struct file *file, unsigned long prot, 1396 unsigned long flags) 1397 { 1398 int ret; 1399 ret = call_int_hook(mmap_file, 0, file, prot, 1400 mmap_prot(file, prot), flags); 1401 if (ret) 1402 return ret; 1403 return ima_file_mmap(file, prot); 1404 } 1405 1406 int security_mmap_addr(unsigned long addr) 1407 { 1408 return call_int_hook(mmap_addr, 0, addr); 1409 } 1410 1411 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1412 unsigned long prot) 1413 { 1414 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1415 } 1416 1417 int security_file_lock(struct file *file, unsigned int cmd) 1418 { 1419 return call_int_hook(file_lock, 0, file, cmd); 1420 } 1421 1422 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1423 { 1424 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1425 } 1426 1427 void security_file_set_fowner(struct file *file) 1428 { 1429 call_void_hook(file_set_fowner, file); 1430 } 1431 1432 int security_file_send_sigiotask(struct task_struct *tsk, 1433 struct fown_struct *fown, int sig) 1434 { 1435 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1436 } 1437 1438 int security_file_receive(struct file *file) 1439 { 1440 return call_int_hook(file_receive, 0, file); 1441 } 1442 1443 int security_file_open(struct file *file) 1444 { 1445 int ret; 1446 1447 ret = call_int_hook(file_open, 0, file); 1448 if (ret) 1449 return ret; 1450 1451 return fsnotify_perm(file, MAY_OPEN); 1452 } 1453 1454 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1455 { 1456 int rc = lsm_task_alloc(task); 1457 1458 if (rc) 1459 return rc; 1460 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1461 if (unlikely(rc)) 1462 security_task_free(task); 1463 return rc; 1464 } 1465 1466 void security_task_free(struct task_struct *task) 1467 { 1468 call_void_hook(task_free, task); 1469 1470 kfree(task->security); 1471 task->security = NULL; 1472 } 1473 1474 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1475 { 1476 int rc = lsm_cred_alloc(cred, gfp); 1477 1478 if (rc) 1479 return rc; 1480 1481 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1482 if (unlikely(rc)) 1483 security_cred_free(cred); 1484 return rc; 1485 } 1486 1487 void security_cred_free(struct cred *cred) 1488 { 1489 /* 1490 * There is a failure case in prepare_creds() that 1491 * may result in a call here with ->security being NULL. 1492 */ 1493 if (unlikely(cred->security == NULL)) 1494 return; 1495 1496 call_void_hook(cred_free, cred); 1497 1498 kfree(cred->security); 1499 cred->security = NULL; 1500 } 1501 1502 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1503 { 1504 int rc = lsm_cred_alloc(new, gfp); 1505 1506 if (rc) 1507 return rc; 1508 1509 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1510 if (unlikely(rc)) 1511 security_cred_free(new); 1512 return rc; 1513 } 1514 1515 void security_transfer_creds(struct cred *new, const struct cred *old) 1516 { 1517 call_void_hook(cred_transfer, new, old); 1518 } 1519 1520 void security_cred_getsecid(const struct cred *c, u32 *secid) 1521 { 1522 *secid = 0; 1523 call_void_hook(cred_getsecid, c, secid); 1524 } 1525 EXPORT_SYMBOL(security_cred_getsecid); 1526 1527 int security_kernel_act_as(struct cred *new, u32 secid) 1528 { 1529 return call_int_hook(kernel_act_as, 0, new, secid); 1530 } 1531 1532 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1533 { 1534 return call_int_hook(kernel_create_files_as, 0, new, inode); 1535 } 1536 1537 int security_kernel_module_request(char *kmod_name) 1538 { 1539 int ret; 1540 1541 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1542 if (ret) 1543 return ret; 1544 return integrity_kernel_module_request(kmod_name); 1545 } 1546 1547 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1548 { 1549 int ret; 1550 1551 ret = call_int_hook(kernel_read_file, 0, file, id); 1552 if (ret) 1553 return ret; 1554 return ima_read_file(file, id); 1555 } 1556 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1557 1558 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1559 enum kernel_read_file_id id) 1560 { 1561 int ret; 1562 1563 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1564 if (ret) 1565 return ret; 1566 return ima_post_read_file(file, buf, size, id); 1567 } 1568 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1569 1570 int security_kernel_load_data(enum kernel_load_data_id id) 1571 { 1572 int ret; 1573 1574 ret = call_int_hook(kernel_load_data, 0, id); 1575 if (ret) 1576 return ret; 1577 return ima_load_data(id); 1578 } 1579 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1580 1581 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1582 int flags) 1583 { 1584 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1585 } 1586 1587 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1588 { 1589 return call_int_hook(task_setpgid, 0, p, pgid); 1590 } 1591 1592 int security_task_getpgid(struct task_struct *p) 1593 { 1594 return call_int_hook(task_getpgid, 0, p); 1595 } 1596 1597 int security_task_getsid(struct task_struct *p) 1598 { 1599 return call_int_hook(task_getsid, 0, p); 1600 } 1601 1602 void security_task_getsecid(struct task_struct *p, u32 *secid) 1603 { 1604 *secid = 0; 1605 call_void_hook(task_getsecid, p, secid); 1606 } 1607 EXPORT_SYMBOL(security_task_getsecid); 1608 1609 int security_task_setnice(struct task_struct *p, int nice) 1610 { 1611 return call_int_hook(task_setnice, 0, p, nice); 1612 } 1613 1614 int security_task_setioprio(struct task_struct *p, int ioprio) 1615 { 1616 return call_int_hook(task_setioprio, 0, p, ioprio); 1617 } 1618 1619 int security_task_getioprio(struct task_struct *p) 1620 { 1621 return call_int_hook(task_getioprio, 0, p); 1622 } 1623 1624 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1625 unsigned int flags) 1626 { 1627 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1628 } 1629 1630 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1631 struct rlimit *new_rlim) 1632 { 1633 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1634 } 1635 1636 int security_task_setscheduler(struct task_struct *p) 1637 { 1638 return call_int_hook(task_setscheduler, 0, p); 1639 } 1640 1641 int security_task_getscheduler(struct task_struct *p) 1642 { 1643 return call_int_hook(task_getscheduler, 0, p); 1644 } 1645 1646 int security_task_movememory(struct task_struct *p) 1647 { 1648 return call_int_hook(task_movememory, 0, p); 1649 } 1650 1651 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1652 int sig, const struct cred *cred) 1653 { 1654 return call_int_hook(task_kill, 0, p, info, sig, cred); 1655 } 1656 1657 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1658 unsigned long arg4, unsigned long arg5) 1659 { 1660 int thisrc; 1661 int rc = -ENOSYS; 1662 struct security_hook_list *hp; 1663 1664 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1665 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1666 if (thisrc != -ENOSYS) { 1667 rc = thisrc; 1668 if (thisrc != 0) 1669 break; 1670 } 1671 } 1672 return rc; 1673 } 1674 1675 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1676 { 1677 call_void_hook(task_to_inode, p, inode); 1678 } 1679 1680 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1681 { 1682 return call_int_hook(ipc_permission, 0, ipcp, flag); 1683 } 1684 1685 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1686 { 1687 *secid = 0; 1688 call_void_hook(ipc_getsecid, ipcp, secid); 1689 } 1690 1691 int security_msg_msg_alloc(struct msg_msg *msg) 1692 { 1693 int rc = lsm_msg_msg_alloc(msg); 1694 1695 if (unlikely(rc)) 1696 return rc; 1697 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1698 if (unlikely(rc)) 1699 security_msg_msg_free(msg); 1700 return rc; 1701 } 1702 1703 void security_msg_msg_free(struct msg_msg *msg) 1704 { 1705 call_void_hook(msg_msg_free_security, msg); 1706 kfree(msg->security); 1707 msg->security = NULL; 1708 } 1709 1710 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1711 { 1712 int rc = lsm_ipc_alloc(msq); 1713 1714 if (unlikely(rc)) 1715 return rc; 1716 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1717 if (unlikely(rc)) 1718 security_msg_queue_free(msq); 1719 return rc; 1720 } 1721 1722 void security_msg_queue_free(struct kern_ipc_perm *msq) 1723 { 1724 call_void_hook(msg_queue_free_security, msq); 1725 kfree(msq->security); 1726 msq->security = NULL; 1727 } 1728 1729 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1730 { 1731 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1732 } 1733 1734 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1735 { 1736 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1737 } 1738 1739 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1740 struct msg_msg *msg, int msqflg) 1741 { 1742 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1743 } 1744 1745 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1746 struct task_struct *target, long type, int mode) 1747 { 1748 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1749 } 1750 1751 int security_shm_alloc(struct kern_ipc_perm *shp) 1752 { 1753 int rc = lsm_ipc_alloc(shp); 1754 1755 if (unlikely(rc)) 1756 return rc; 1757 rc = call_int_hook(shm_alloc_security, 0, shp); 1758 if (unlikely(rc)) 1759 security_shm_free(shp); 1760 return rc; 1761 } 1762 1763 void security_shm_free(struct kern_ipc_perm *shp) 1764 { 1765 call_void_hook(shm_free_security, shp); 1766 kfree(shp->security); 1767 shp->security = NULL; 1768 } 1769 1770 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1771 { 1772 return call_int_hook(shm_associate, 0, shp, shmflg); 1773 } 1774 1775 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1776 { 1777 return call_int_hook(shm_shmctl, 0, shp, cmd); 1778 } 1779 1780 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1781 { 1782 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1783 } 1784 1785 int security_sem_alloc(struct kern_ipc_perm *sma) 1786 { 1787 int rc = lsm_ipc_alloc(sma); 1788 1789 if (unlikely(rc)) 1790 return rc; 1791 rc = call_int_hook(sem_alloc_security, 0, sma); 1792 if (unlikely(rc)) 1793 security_sem_free(sma); 1794 return rc; 1795 } 1796 1797 void security_sem_free(struct kern_ipc_perm *sma) 1798 { 1799 call_void_hook(sem_free_security, sma); 1800 kfree(sma->security); 1801 sma->security = NULL; 1802 } 1803 1804 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1805 { 1806 return call_int_hook(sem_associate, 0, sma, semflg); 1807 } 1808 1809 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1810 { 1811 return call_int_hook(sem_semctl, 0, sma, cmd); 1812 } 1813 1814 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1815 unsigned nsops, int alter) 1816 { 1817 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1818 } 1819 1820 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1821 { 1822 if (unlikely(inode && IS_PRIVATE(inode))) 1823 return; 1824 call_void_hook(d_instantiate, dentry, inode); 1825 } 1826 EXPORT_SYMBOL(security_d_instantiate); 1827 1828 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1829 char **value) 1830 { 1831 struct security_hook_list *hp; 1832 1833 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1834 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1835 continue; 1836 return hp->hook.getprocattr(p, name, value); 1837 } 1838 return -EINVAL; 1839 } 1840 1841 int security_setprocattr(const char *lsm, const char *name, void *value, 1842 size_t size) 1843 { 1844 struct security_hook_list *hp; 1845 1846 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1847 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1848 continue; 1849 return hp->hook.setprocattr(name, value, size); 1850 } 1851 return -EINVAL; 1852 } 1853 1854 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1855 { 1856 return call_int_hook(netlink_send, 0, sk, skb); 1857 } 1858 1859 int security_ismaclabel(const char *name) 1860 { 1861 return call_int_hook(ismaclabel, 0, name); 1862 } 1863 EXPORT_SYMBOL(security_ismaclabel); 1864 1865 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1866 { 1867 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1868 seclen); 1869 } 1870 EXPORT_SYMBOL(security_secid_to_secctx); 1871 1872 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1873 { 1874 *secid = 0; 1875 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1876 } 1877 EXPORT_SYMBOL(security_secctx_to_secid); 1878 1879 void security_release_secctx(char *secdata, u32 seclen) 1880 { 1881 call_void_hook(release_secctx, secdata, seclen); 1882 } 1883 EXPORT_SYMBOL(security_release_secctx); 1884 1885 void security_inode_invalidate_secctx(struct inode *inode) 1886 { 1887 call_void_hook(inode_invalidate_secctx, inode); 1888 } 1889 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1890 1891 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1892 { 1893 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1894 } 1895 EXPORT_SYMBOL(security_inode_notifysecctx); 1896 1897 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1898 { 1899 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1900 } 1901 EXPORT_SYMBOL(security_inode_setsecctx); 1902 1903 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1904 { 1905 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1906 } 1907 EXPORT_SYMBOL(security_inode_getsecctx); 1908 1909 #ifdef CONFIG_SECURITY_NETWORK 1910 1911 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1912 { 1913 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1914 } 1915 EXPORT_SYMBOL(security_unix_stream_connect); 1916 1917 int security_unix_may_send(struct socket *sock, struct socket *other) 1918 { 1919 return call_int_hook(unix_may_send, 0, sock, other); 1920 } 1921 EXPORT_SYMBOL(security_unix_may_send); 1922 1923 int security_socket_create(int family, int type, int protocol, int kern) 1924 { 1925 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1926 } 1927 1928 int security_socket_post_create(struct socket *sock, int family, 1929 int type, int protocol, int kern) 1930 { 1931 return call_int_hook(socket_post_create, 0, sock, family, type, 1932 protocol, kern); 1933 } 1934 1935 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1936 { 1937 return call_int_hook(socket_socketpair, 0, socka, sockb); 1938 } 1939 EXPORT_SYMBOL(security_socket_socketpair); 1940 1941 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1942 { 1943 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1944 } 1945 1946 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1947 { 1948 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1949 } 1950 1951 int security_socket_listen(struct socket *sock, int backlog) 1952 { 1953 return call_int_hook(socket_listen, 0, sock, backlog); 1954 } 1955 1956 int security_socket_accept(struct socket *sock, struct socket *newsock) 1957 { 1958 return call_int_hook(socket_accept, 0, sock, newsock); 1959 } 1960 1961 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1962 { 1963 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1964 } 1965 1966 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1967 int size, int flags) 1968 { 1969 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1970 } 1971 1972 int security_socket_getsockname(struct socket *sock) 1973 { 1974 return call_int_hook(socket_getsockname, 0, sock); 1975 } 1976 1977 int security_socket_getpeername(struct socket *sock) 1978 { 1979 return call_int_hook(socket_getpeername, 0, sock); 1980 } 1981 1982 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1983 { 1984 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1985 } 1986 1987 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1988 { 1989 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1990 } 1991 1992 int security_socket_shutdown(struct socket *sock, int how) 1993 { 1994 return call_int_hook(socket_shutdown, 0, sock, how); 1995 } 1996 1997 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1998 { 1999 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2000 } 2001 EXPORT_SYMBOL(security_sock_rcv_skb); 2002 2003 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2004 int __user *optlen, unsigned len) 2005 { 2006 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2007 optval, optlen, len); 2008 } 2009 2010 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2011 { 2012 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2013 skb, secid); 2014 } 2015 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2016 2017 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2018 { 2019 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2020 } 2021 2022 void security_sk_free(struct sock *sk) 2023 { 2024 call_void_hook(sk_free_security, sk); 2025 } 2026 2027 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2028 { 2029 call_void_hook(sk_clone_security, sk, newsk); 2030 } 2031 EXPORT_SYMBOL(security_sk_clone); 2032 2033 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2034 { 2035 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2036 } 2037 EXPORT_SYMBOL(security_sk_classify_flow); 2038 2039 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2040 { 2041 call_void_hook(req_classify_flow, req, fl); 2042 } 2043 EXPORT_SYMBOL(security_req_classify_flow); 2044 2045 void security_sock_graft(struct sock *sk, struct socket *parent) 2046 { 2047 call_void_hook(sock_graft, sk, parent); 2048 } 2049 EXPORT_SYMBOL(security_sock_graft); 2050 2051 int security_inet_conn_request(struct sock *sk, 2052 struct sk_buff *skb, struct request_sock *req) 2053 { 2054 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2055 } 2056 EXPORT_SYMBOL(security_inet_conn_request); 2057 2058 void security_inet_csk_clone(struct sock *newsk, 2059 const struct request_sock *req) 2060 { 2061 call_void_hook(inet_csk_clone, newsk, req); 2062 } 2063 2064 void security_inet_conn_established(struct sock *sk, 2065 struct sk_buff *skb) 2066 { 2067 call_void_hook(inet_conn_established, sk, skb); 2068 } 2069 EXPORT_SYMBOL(security_inet_conn_established); 2070 2071 int security_secmark_relabel_packet(u32 secid) 2072 { 2073 return call_int_hook(secmark_relabel_packet, 0, secid); 2074 } 2075 EXPORT_SYMBOL(security_secmark_relabel_packet); 2076 2077 void security_secmark_refcount_inc(void) 2078 { 2079 call_void_hook(secmark_refcount_inc); 2080 } 2081 EXPORT_SYMBOL(security_secmark_refcount_inc); 2082 2083 void security_secmark_refcount_dec(void) 2084 { 2085 call_void_hook(secmark_refcount_dec); 2086 } 2087 EXPORT_SYMBOL(security_secmark_refcount_dec); 2088 2089 int security_tun_dev_alloc_security(void **security) 2090 { 2091 return call_int_hook(tun_dev_alloc_security, 0, security); 2092 } 2093 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2094 2095 void security_tun_dev_free_security(void *security) 2096 { 2097 call_void_hook(tun_dev_free_security, security); 2098 } 2099 EXPORT_SYMBOL(security_tun_dev_free_security); 2100 2101 int security_tun_dev_create(void) 2102 { 2103 return call_int_hook(tun_dev_create, 0); 2104 } 2105 EXPORT_SYMBOL(security_tun_dev_create); 2106 2107 int security_tun_dev_attach_queue(void *security) 2108 { 2109 return call_int_hook(tun_dev_attach_queue, 0, security); 2110 } 2111 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2112 2113 int security_tun_dev_attach(struct sock *sk, void *security) 2114 { 2115 return call_int_hook(tun_dev_attach, 0, sk, security); 2116 } 2117 EXPORT_SYMBOL(security_tun_dev_attach); 2118 2119 int security_tun_dev_open(void *security) 2120 { 2121 return call_int_hook(tun_dev_open, 0, security); 2122 } 2123 EXPORT_SYMBOL(security_tun_dev_open); 2124 2125 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2126 { 2127 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2128 } 2129 EXPORT_SYMBOL(security_sctp_assoc_request); 2130 2131 int security_sctp_bind_connect(struct sock *sk, int optname, 2132 struct sockaddr *address, int addrlen) 2133 { 2134 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2135 address, addrlen); 2136 } 2137 EXPORT_SYMBOL(security_sctp_bind_connect); 2138 2139 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2140 struct sock *newsk) 2141 { 2142 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2143 } 2144 EXPORT_SYMBOL(security_sctp_sk_clone); 2145 2146 #endif /* CONFIG_SECURITY_NETWORK */ 2147 2148 #ifdef CONFIG_SECURITY_INFINIBAND 2149 2150 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2151 { 2152 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2153 } 2154 EXPORT_SYMBOL(security_ib_pkey_access); 2155 2156 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2157 { 2158 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2159 } 2160 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2161 2162 int security_ib_alloc_security(void **sec) 2163 { 2164 return call_int_hook(ib_alloc_security, 0, sec); 2165 } 2166 EXPORT_SYMBOL(security_ib_alloc_security); 2167 2168 void security_ib_free_security(void *sec) 2169 { 2170 call_void_hook(ib_free_security, sec); 2171 } 2172 EXPORT_SYMBOL(security_ib_free_security); 2173 #endif /* CONFIG_SECURITY_INFINIBAND */ 2174 2175 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2176 2177 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2178 struct xfrm_user_sec_ctx *sec_ctx, 2179 gfp_t gfp) 2180 { 2181 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2182 } 2183 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2184 2185 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2186 struct xfrm_sec_ctx **new_ctxp) 2187 { 2188 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2189 } 2190 2191 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2192 { 2193 call_void_hook(xfrm_policy_free_security, ctx); 2194 } 2195 EXPORT_SYMBOL(security_xfrm_policy_free); 2196 2197 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2198 { 2199 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2200 } 2201 2202 int security_xfrm_state_alloc(struct xfrm_state *x, 2203 struct xfrm_user_sec_ctx *sec_ctx) 2204 { 2205 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2206 } 2207 EXPORT_SYMBOL(security_xfrm_state_alloc); 2208 2209 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2210 struct xfrm_sec_ctx *polsec, u32 secid) 2211 { 2212 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2213 } 2214 2215 int security_xfrm_state_delete(struct xfrm_state *x) 2216 { 2217 return call_int_hook(xfrm_state_delete_security, 0, x); 2218 } 2219 EXPORT_SYMBOL(security_xfrm_state_delete); 2220 2221 void security_xfrm_state_free(struct xfrm_state *x) 2222 { 2223 call_void_hook(xfrm_state_free_security, x); 2224 } 2225 2226 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2227 { 2228 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2229 } 2230 2231 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2232 struct xfrm_policy *xp, 2233 const struct flowi *fl) 2234 { 2235 struct security_hook_list *hp; 2236 int rc = 1; 2237 2238 /* 2239 * Since this function is expected to return 0 or 1, the judgment 2240 * becomes difficult if multiple LSMs supply this call. Fortunately, 2241 * we can use the first LSM's judgment because currently only SELinux 2242 * supplies this call. 2243 * 2244 * For speed optimization, we explicitly break the loop rather than 2245 * using the macro 2246 */ 2247 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2248 list) { 2249 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2250 break; 2251 } 2252 return rc; 2253 } 2254 2255 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2256 { 2257 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2258 } 2259 2260 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2261 { 2262 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2263 0); 2264 2265 BUG_ON(rc); 2266 } 2267 EXPORT_SYMBOL(security_skb_classify_flow); 2268 2269 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2270 2271 #ifdef CONFIG_KEYS 2272 2273 int security_key_alloc(struct key *key, const struct cred *cred, 2274 unsigned long flags) 2275 { 2276 return call_int_hook(key_alloc, 0, key, cred, flags); 2277 } 2278 2279 void security_key_free(struct key *key) 2280 { 2281 call_void_hook(key_free, key); 2282 } 2283 2284 int security_key_permission(key_ref_t key_ref, 2285 const struct cred *cred, unsigned perm) 2286 { 2287 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2288 } 2289 2290 int security_key_getsecurity(struct key *key, char **_buffer) 2291 { 2292 *_buffer = NULL; 2293 return call_int_hook(key_getsecurity, 0, key, _buffer); 2294 } 2295 2296 #endif /* CONFIG_KEYS */ 2297 2298 #ifdef CONFIG_AUDIT 2299 2300 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2301 { 2302 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2303 } 2304 2305 int security_audit_rule_known(struct audit_krule *krule) 2306 { 2307 return call_int_hook(audit_rule_known, 0, krule); 2308 } 2309 2310 void security_audit_rule_free(void *lsmrule) 2311 { 2312 call_void_hook(audit_rule_free, lsmrule); 2313 } 2314 2315 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2316 { 2317 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2318 } 2319 #endif /* CONFIG_AUDIT */ 2320 2321 #ifdef CONFIG_BPF_SYSCALL 2322 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2323 { 2324 return call_int_hook(bpf, 0, cmd, attr, size); 2325 } 2326 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2327 { 2328 return call_int_hook(bpf_map, 0, map, fmode); 2329 } 2330 int security_bpf_prog(struct bpf_prog *prog) 2331 { 2332 return call_int_hook(bpf_prog, 0, prog); 2333 } 2334 int security_bpf_map_alloc(struct bpf_map *map) 2335 { 2336 return call_int_hook(bpf_map_alloc_security, 0, map); 2337 } 2338 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2339 { 2340 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2341 } 2342 void security_bpf_map_free(struct bpf_map *map) 2343 { 2344 call_void_hook(bpf_map_free_security, map); 2345 } 2346 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2347 { 2348 call_void_hook(bpf_prog_free_security, aux); 2349 } 2350 #endif /* CONFIG_BPF_SYSCALL */ 2351