xref: /openbmc/linux/security/security.c (revision d47be3df)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29 
30 #define MAX_LSM_EVM_XATTR	2
31 
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 	CONFIG_DEFAULT_SECURITY;
35 
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38 	.name	= "default",
39 };
40 
41 static inline int __init verify(struct security_operations *ops)
42 {
43 	/* verify the security_operations structure exists */
44 	if (!ops)
45 		return -EINVAL;
46 	security_fixup_ops(ops);
47 	return 0;
48 }
49 
50 static void __init do_security_initcalls(void)
51 {
52 	initcall_t *call;
53 	call = __security_initcall_start;
54 	while (call < __security_initcall_end) {
55 		(*call) ();
56 		call++;
57 	}
58 }
59 
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67 	printk(KERN_INFO "Security Framework initialized\n");
68 
69 	security_fixup_ops(&default_security_ops);
70 	security_ops = &default_security_ops;
71 	do_security_initcalls();
72 
73 	return 0;
74 }
75 
76 void reset_security_ops(void)
77 {
78 	security_ops = &default_security_ops;
79 }
80 
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 	return 1;
86 }
87 __setup("security=", choose_lsm);
88 
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *	-The passed LSM is the one chosen by user at boot time,
99  *	-or the passed LSM is configured as the default and the user did not
100  *	 choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105 	return !strcmp(ops->name, chosen_lsm);
106 }
107 
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122 	if (verify(ops)) {
123 		printk(KERN_DEBUG "%s could not verify "
124 		       "security_operations structure.\n", __func__);
125 		return -EINVAL;
126 	}
127 
128 	if (security_ops != &default_security_ops)
129 		return -EAGAIN;
130 
131 	security_ops = ops;
132 
133 	return 0;
134 }
135 
136 /* Security operations */
137 
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 #ifdef CONFIG_SECURITY_YAMA_STACKED
141 	int rc;
142 	rc = yama_ptrace_access_check(child, mode);
143 	if (rc)
144 		return rc;
145 #endif
146 	return security_ops->ptrace_access_check(child, mode);
147 }
148 
149 int security_ptrace_traceme(struct task_struct *parent)
150 {
151 #ifdef CONFIG_SECURITY_YAMA_STACKED
152 	int rc;
153 	rc = yama_ptrace_traceme(parent);
154 	if (rc)
155 		return rc;
156 #endif
157 	return security_ops->ptrace_traceme(parent);
158 }
159 
160 int security_capget(struct task_struct *target,
161 		     kernel_cap_t *effective,
162 		     kernel_cap_t *inheritable,
163 		     kernel_cap_t *permitted)
164 {
165 	return security_ops->capget(target, effective, inheritable, permitted);
166 }
167 
168 int security_capset(struct cred *new, const struct cred *old,
169 		    const kernel_cap_t *effective,
170 		    const kernel_cap_t *inheritable,
171 		    const kernel_cap_t *permitted)
172 {
173 	return security_ops->capset(new, old,
174 				    effective, inheritable, permitted);
175 }
176 
177 int security_capable(const struct cred *cred, struct user_namespace *ns,
178 		     int cap)
179 {
180 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181 }
182 
183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184 			     int cap)
185 {
186 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187 }
188 
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 	return security_ops->quotactl(cmds, type, id, sb);
192 }
193 
194 int security_quota_on(struct dentry *dentry)
195 {
196 	return security_ops->quota_on(dentry);
197 }
198 
199 int security_syslog(int type)
200 {
201 	return security_ops->syslog(type);
202 }
203 
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206 	return security_ops->settime(ts, tz);
207 }
208 
209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210 {
211 	return security_ops->vm_enough_memory(mm, pages);
212 }
213 
214 int security_bprm_set_creds(struct linux_binprm *bprm)
215 {
216 	return security_ops->bprm_set_creds(bprm);
217 }
218 
219 int security_bprm_check(struct linux_binprm *bprm)
220 {
221 	int ret;
222 
223 	ret = security_ops->bprm_check_security(bprm);
224 	if (ret)
225 		return ret;
226 	return ima_bprm_check(bprm);
227 }
228 
229 void security_bprm_committing_creds(struct linux_binprm *bprm)
230 {
231 	security_ops->bprm_committing_creds(bprm);
232 }
233 
234 void security_bprm_committed_creds(struct linux_binprm *bprm)
235 {
236 	security_ops->bprm_committed_creds(bprm);
237 }
238 
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241 	return security_ops->bprm_secureexec(bprm);
242 }
243 
244 int security_sb_alloc(struct super_block *sb)
245 {
246 	return security_ops->sb_alloc_security(sb);
247 }
248 
249 void security_sb_free(struct super_block *sb)
250 {
251 	security_ops->sb_free_security(sb);
252 }
253 
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256 	return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259 
260 int security_sb_remount(struct super_block *sb, void *data)
261 {
262 	return security_ops->sb_remount(sb, data);
263 }
264 
265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266 {
267 	return security_ops->sb_kern_mount(sb, flags, data);
268 }
269 
270 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271 {
272 	return security_ops->sb_show_options(m, sb);
273 }
274 
275 int security_sb_statfs(struct dentry *dentry)
276 {
277 	return security_ops->sb_statfs(dentry);
278 }
279 
280 int security_sb_mount(const char *dev_name, struct path *path,
281                        const char *type, unsigned long flags, void *data)
282 {
283 	return security_ops->sb_mount(dev_name, path, type, flags, data);
284 }
285 
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288 	return security_ops->sb_umount(mnt, flags);
289 }
290 
291 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292 {
293 	return security_ops->sb_pivotroot(old_path, new_path);
294 }
295 
296 int security_sb_set_mnt_opts(struct super_block *sb,
297 				struct security_mnt_opts *opts)
298 {
299 	return security_ops->sb_set_mnt_opts(sb, opts);
300 }
301 EXPORT_SYMBOL(security_sb_set_mnt_opts);
302 
303 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
304 				struct super_block *newsb)
305 {
306 	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
307 }
308 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
309 
310 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
311 {
312 	return security_ops->sb_parse_opts_str(options, opts);
313 }
314 EXPORT_SYMBOL(security_sb_parse_opts_str);
315 
316 int security_inode_alloc(struct inode *inode)
317 {
318 	inode->i_security = NULL;
319 	return security_ops->inode_alloc_security(inode);
320 }
321 
322 void security_inode_free(struct inode *inode)
323 {
324 	integrity_inode_free(inode);
325 	security_ops->inode_free_security(inode);
326 }
327 
328 int security_dentry_init_security(struct dentry *dentry, int mode,
329 					struct qstr *name, void **ctx,
330 					u32 *ctxlen)
331 {
332 	return security_ops->dentry_init_security(dentry, mode, name,
333 							ctx, ctxlen);
334 }
335 EXPORT_SYMBOL(security_dentry_init_security);
336 
337 int security_inode_init_security(struct inode *inode, struct inode *dir,
338 				 const struct qstr *qstr,
339 				 const initxattrs initxattrs, void *fs_data)
340 {
341 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
342 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
343 	int ret;
344 
345 	if (unlikely(IS_PRIVATE(inode)))
346 		return 0;
347 
348 	memset(new_xattrs, 0, sizeof new_xattrs);
349 	if (!initxattrs)
350 		return security_ops->inode_init_security(inode, dir, qstr,
351 							 NULL, NULL, NULL);
352 	lsm_xattr = new_xattrs;
353 	ret = security_ops->inode_init_security(inode, dir, qstr,
354 						&lsm_xattr->name,
355 						&lsm_xattr->value,
356 						&lsm_xattr->value_len);
357 	if (ret)
358 		goto out;
359 
360 	evm_xattr = lsm_xattr + 1;
361 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
362 	if (ret)
363 		goto out;
364 	ret = initxattrs(inode, new_xattrs, fs_data);
365 out:
366 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
367 		kfree(xattr->name);
368 		kfree(xattr->value);
369 	}
370 	return (ret == -EOPNOTSUPP) ? 0 : ret;
371 }
372 EXPORT_SYMBOL(security_inode_init_security);
373 
374 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
375 				     const struct qstr *qstr, char **name,
376 				     void **value, size_t *len)
377 {
378 	if (unlikely(IS_PRIVATE(inode)))
379 		return -EOPNOTSUPP;
380 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
381 						 len);
382 }
383 EXPORT_SYMBOL(security_old_inode_init_security);
384 
385 #ifdef CONFIG_SECURITY_PATH
386 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
387 			unsigned int dev)
388 {
389 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390 		return 0;
391 	return security_ops->path_mknod(dir, dentry, mode, dev);
392 }
393 EXPORT_SYMBOL(security_path_mknod);
394 
395 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
396 {
397 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398 		return 0;
399 	return security_ops->path_mkdir(dir, dentry, mode);
400 }
401 EXPORT_SYMBOL(security_path_mkdir);
402 
403 int security_path_rmdir(struct path *dir, struct dentry *dentry)
404 {
405 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
406 		return 0;
407 	return security_ops->path_rmdir(dir, dentry);
408 }
409 
410 int security_path_unlink(struct path *dir, struct dentry *dentry)
411 {
412 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
413 		return 0;
414 	return security_ops->path_unlink(dir, dentry);
415 }
416 EXPORT_SYMBOL(security_path_unlink);
417 
418 int security_path_symlink(struct path *dir, struct dentry *dentry,
419 			  const char *old_name)
420 {
421 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
422 		return 0;
423 	return security_ops->path_symlink(dir, dentry, old_name);
424 }
425 
426 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
427 		       struct dentry *new_dentry)
428 {
429 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
430 		return 0;
431 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
432 }
433 
434 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
435 			 struct path *new_dir, struct dentry *new_dentry)
436 {
437 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
438 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
439 		return 0;
440 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
441 					 new_dentry);
442 }
443 EXPORT_SYMBOL(security_path_rename);
444 
445 int security_path_truncate(struct path *path)
446 {
447 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
448 		return 0;
449 	return security_ops->path_truncate(path);
450 }
451 
452 int security_path_chmod(struct path *path, umode_t mode)
453 {
454 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
455 		return 0;
456 	return security_ops->path_chmod(path, mode);
457 }
458 
459 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
460 {
461 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
462 		return 0;
463 	return security_ops->path_chown(path, uid, gid);
464 }
465 
466 int security_path_chroot(struct path *path)
467 {
468 	return security_ops->path_chroot(path);
469 }
470 #endif
471 
472 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
473 {
474 	if (unlikely(IS_PRIVATE(dir)))
475 		return 0;
476 	return security_ops->inode_create(dir, dentry, mode);
477 }
478 EXPORT_SYMBOL_GPL(security_inode_create);
479 
480 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
481 			 struct dentry *new_dentry)
482 {
483 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
484 		return 0;
485 	return security_ops->inode_link(old_dentry, dir, new_dentry);
486 }
487 
488 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
489 {
490 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 		return 0;
492 	return security_ops->inode_unlink(dir, dentry);
493 }
494 
495 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
496 			    const char *old_name)
497 {
498 	if (unlikely(IS_PRIVATE(dir)))
499 		return 0;
500 	return security_ops->inode_symlink(dir, dentry, old_name);
501 }
502 
503 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
504 {
505 	if (unlikely(IS_PRIVATE(dir)))
506 		return 0;
507 	return security_ops->inode_mkdir(dir, dentry, mode);
508 }
509 EXPORT_SYMBOL_GPL(security_inode_mkdir);
510 
511 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
512 {
513 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
514 		return 0;
515 	return security_ops->inode_rmdir(dir, dentry);
516 }
517 
518 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
519 {
520 	if (unlikely(IS_PRIVATE(dir)))
521 		return 0;
522 	return security_ops->inode_mknod(dir, dentry, mode, dev);
523 }
524 
525 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
526 			   struct inode *new_dir, struct dentry *new_dentry)
527 {
528         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
529             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
530 		return 0;
531 	return security_ops->inode_rename(old_dir, old_dentry,
532 					   new_dir, new_dentry);
533 }
534 
535 int security_inode_readlink(struct dentry *dentry)
536 {
537 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
538 		return 0;
539 	return security_ops->inode_readlink(dentry);
540 }
541 
542 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
543 {
544 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
545 		return 0;
546 	return security_ops->inode_follow_link(dentry, nd);
547 }
548 
549 int security_inode_permission(struct inode *inode, int mask)
550 {
551 	if (unlikely(IS_PRIVATE(inode)))
552 		return 0;
553 	return security_ops->inode_permission(inode, mask);
554 }
555 
556 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
557 {
558 	int ret;
559 
560 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
561 		return 0;
562 	ret = security_ops->inode_setattr(dentry, attr);
563 	if (ret)
564 		return ret;
565 	return evm_inode_setattr(dentry, attr);
566 }
567 EXPORT_SYMBOL_GPL(security_inode_setattr);
568 
569 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
570 {
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	return security_ops->inode_getattr(mnt, dentry);
574 }
575 
576 int security_inode_setxattr(struct dentry *dentry, const char *name,
577 			    const void *value, size_t size, int flags)
578 {
579 	int ret;
580 
581 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
582 		return 0;
583 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
584 	if (ret)
585 		return ret;
586 	ret = ima_inode_setxattr(dentry, name, value, size);
587 	if (ret)
588 		return ret;
589 	return evm_inode_setxattr(dentry, name, value, size);
590 }
591 
592 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
593 				  const void *value, size_t size, int flags)
594 {
595 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
596 		return;
597 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
598 	evm_inode_post_setxattr(dentry, name, value, size);
599 }
600 
601 int security_inode_getxattr(struct dentry *dentry, const char *name)
602 {
603 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
604 		return 0;
605 	return security_ops->inode_getxattr(dentry, name);
606 }
607 
608 int security_inode_listxattr(struct dentry *dentry)
609 {
610 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
611 		return 0;
612 	return security_ops->inode_listxattr(dentry);
613 }
614 
615 int security_inode_removexattr(struct dentry *dentry, const char *name)
616 {
617 	int ret;
618 
619 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
620 		return 0;
621 	ret = security_ops->inode_removexattr(dentry, name);
622 	if (ret)
623 		return ret;
624 	ret = ima_inode_removexattr(dentry, name);
625 	if (ret)
626 		return ret;
627 	return evm_inode_removexattr(dentry, name);
628 }
629 
630 int security_inode_need_killpriv(struct dentry *dentry)
631 {
632 	return security_ops->inode_need_killpriv(dentry);
633 }
634 
635 int security_inode_killpriv(struct dentry *dentry)
636 {
637 	return security_ops->inode_killpriv(dentry);
638 }
639 
640 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
641 {
642 	if (unlikely(IS_PRIVATE(inode)))
643 		return -EOPNOTSUPP;
644 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
645 }
646 
647 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
648 {
649 	if (unlikely(IS_PRIVATE(inode)))
650 		return -EOPNOTSUPP;
651 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
652 }
653 
654 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
655 {
656 	if (unlikely(IS_PRIVATE(inode)))
657 		return 0;
658 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
659 }
660 
661 void security_inode_getsecid(const struct inode *inode, u32 *secid)
662 {
663 	security_ops->inode_getsecid(inode, secid);
664 }
665 
666 int security_file_permission(struct file *file, int mask)
667 {
668 	int ret;
669 
670 	ret = security_ops->file_permission(file, mask);
671 	if (ret)
672 		return ret;
673 
674 	return fsnotify_perm(file, mask);
675 }
676 
677 int security_file_alloc(struct file *file)
678 {
679 	return security_ops->file_alloc_security(file);
680 }
681 
682 void security_file_free(struct file *file)
683 {
684 	security_ops->file_free_security(file);
685 }
686 
687 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
688 {
689 	return security_ops->file_ioctl(file, cmd, arg);
690 }
691 
692 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
693 {
694 	/*
695 	 * Does we have PROT_READ and does the application expect
696 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
697 	 */
698 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
699 		return prot;
700 	if (!(current->personality & READ_IMPLIES_EXEC))
701 		return prot;
702 	/*
703 	 * if that's an anonymous mapping, let it.
704 	 */
705 	if (!file)
706 		return prot | PROT_EXEC;
707 	/*
708 	 * ditto if it's not on noexec mount, except that on !MMU we need
709 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
710 	 */
711 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
712 #ifndef CONFIG_MMU
713 		unsigned long caps = 0;
714 		struct address_space *mapping = file->f_mapping;
715 		if (mapping && mapping->backing_dev_info)
716 			caps = mapping->backing_dev_info->capabilities;
717 		if (!(caps & BDI_CAP_EXEC_MAP))
718 			return prot;
719 #endif
720 		return prot | PROT_EXEC;
721 	}
722 	/* anything on noexec mount won't get PROT_EXEC */
723 	return prot;
724 }
725 
726 int security_mmap_file(struct file *file, unsigned long prot,
727 			unsigned long flags)
728 {
729 	int ret;
730 	ret = security_ops->mmap_file(file, prot,
731 					mmap_prot(file, prot), flags);
732 	if (ret)
733 		return ret;
734 	return ima_file_mmap(file, prot);
735 }
736 
737 int security_mmap_addr(unsigned long addr)
738 {
739 	return security_ops->mmap_addr(addr);
740 }
741 
742 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
743 			    unsigned long prot)
744 {
745 	return security_ops->file_mprotect(vma, reqprot, prot);
746 }
747 
748 int security_file_lock(struct file *file, unsigned int cmd)
749 {
750 	return security_ops->file_lock(file, cmd);
751 }
752 
753 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
754 {
755 	return security_ops->file_fcntl(file, cmd, arg);
756 }
757 
758 int security_file_set_fowner(struct file *file)
759 {
760 	return security_ops->file_set_fowner(file);
761 }
762 
763 int security_file_send_sigiotask(struct task_struct *tsk,
764 				  struct fown_struct *fown, int sig)
765 {
766 	return security_ops->file_send_sigiotask(tsk, fown, sig);
767 }
768 
769 int security_file_receive(struct file *file)
770 {
771 	return security_ops->file_receive(file);
772 }
773 
774 int security_file_open(struct file *file, const struct cred *cred)
775 {
776 	int ret;
777 
778 	ret = security_ops->file_open(file, cred);
779 	if (ret)
780 		return ret;
781 
782 	return fsnotify_perm(file, MAY_OPEN);
783 }
784 
785 int security_task_create(unsigned long clone_flags)
786 {
787 	return security_ops->task_create(clone_flags);
788 }
789 
790 void security_task_free(struct task_struct *task)
791 {
792 #ifdef CONFIG_SECURITY_YAMA_STACKED
793 	yama_task_free(task);
794 #endif
795 	security_ops->task_free(task);
796 }
797 
798 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
799 {
800 	return security_ops->cred_alloc_blank(cred, gfp);
801 }
802 
803 void security_cred_free(struct cred *cred)
804 {
805 	security_ops->cred_free(cred);
806 }
807 
808 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
809 {
810 	return security_ops->cred_prepare(new, old, gfp);
811 }
812 
813 void security_transfer_creds(struct cred *new, const struct cred *old)
814 {
815 	security_ops->cred_transfer(new, old);
816 }
817 
818 int security_kernel_act_as(struct cred *new, u32 secid)
819 {
820 	return security_ops->kernel_act_as(new, secid);
821 }
822 
823 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
824 {
825 	return security_ops->kernel_create_files_as(new, inode);
826 }
827 
828 int security_kernel_module_request(char *kmod_name)
829 {
830 	return security_ops->kernel_module_request(kmod_name);
831 }
832 
833 int security_kernel_module_from_file(struct file *file)
834 {
835 	int ret;
836 
837 	ret = security_ops->kernel_module_from_file(file);
838 	if (ret)
839 		return ret;
840 	return ima_module_check(file);
841 }
842 
843 int security_task_fix_setuid(struct cred *new, const struct cred *old,
844 			     int flags)
845 {
846 	return security_ops->task_fix_setuid(new, old, flags);
847 }
848 
849 int security_task_setpgid(struct task_struct *p, pid_t pgid)
850 {
851 	return security_ops->task_setpgid(p, pgid);
852 }
853 
854 int security_task_getpgid(struct task_struct *p)
855 {
856 	return security_ops->task_getpgid(p);
857 }
858 
859 int security_task_getsid(struct task_struct *p)
860 {
861 	return security_ops->task_getsid(p);
862 }
863 
864 void security_task_getsecid(struct task_struct *p, u32 *secid)
865 {
866 	security_ops->task_getsecid(p, secid);
867 }
868 EXPORT_SYMBOL(security_task_getsecid);
869 
870 int security_task_setnice(struct task_struct *p, int nice)
871 {
872 	return security_ops->task_setnice(p, nice);
873 }
874 
875 int security_task_setioprio(struct task_struct *p, int ioprio)
876 {
877 	return security_ops->task_setioprio(p, ioprio);
878 }
879 
880 int security_task_getioprio(struct task_struct *p)
881 {
882 	return security_ops->task_getioprio(p);
883 }
884 
885 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
886 		struct rlimit *new_rlim)
887 {
888 	return security_ops->task_setrlimit(p, resource, new_rlim);
889 }
890 
891 int security_task_setscheduler(struct task_struct *p)
892 {
893 	return security_ops->task_setscheduler(p);
894 }
895 
896 int security_task_getscheduler(struct task_struct *p)
897 {
898 	return security_ops->task_getscheduler(p);
899 }
900 
901 int security_task_movememory(struct task_struct *p)
902 {
903 	return security_ops->task_movememory(p);
904 }
905 
906 int security_task_kill(struct task_struct *p, struct siginfo *info,
907 			int sig, u32 secid)
908 {
909 	return security_ops->task_kill(p, info, sig, secid);
910 }
911 
912 int security_task_wait(struct task_struct *p)
913 {
914 	return security_ops->task_wait(p);
915 }
916 
917 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
918 			 unsigned long arg4, unsigned long arg5)
919 {
920 #ifdef CONFIG_SECURITY_YAMA_STACKED
921 	int rc;
922 	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
923 	if (rc != -ENOSYS)
924 		return rc;
925 #endif
926 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
927 }
928 
929 void security_task_to_inode(struct task_struct *p, struct inode *inode)
930 {
931 	security_ops->task_to_inode(p, inode);
932 }
933 
934 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
935 {
936 	return security_ops->ipc_permission(ipcp, flag);
937 }
938 
939 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
940 {
941 	security_ops->ipc_getsecid(ipcp, secid);
942 }
943 
944 int security_msg_msg_alloc(struct msg_msg *msg)
945 {
946 	return security_ops->msg_msg_alloc_security(msg);
947 }
948 
949 void security_msg_msg_free(struct msg_msg *msg)
950 {
951 	security_ops->msg_msg_free_security(msg);
952 }
953 
954 int security_msg_queue_alloc(struct msg_queue *msq)
955 {
956 	return security_ops->msg_queue_alloc_security(msq);
957 }
958 
959 void security_msg_queue_free(struct msg_queue *msq)
960 {
961 	security_ops->msg_queue_free_security(msq);
962 }
963 
964 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
965 {
966 	return security_ops->msg_queue_associate(msq, msqflg);
967 }
968 
969 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
970 {
971 	return security_ops->msg_queue_msgctl(msq, cmd);
972 }
973 
974 int security_msg_queue_msgsnd(struct msg_queue *msq,
975 			       struct msg_msg *msg, int msqflg)
976 {
977 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
978 }
979 
980 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
981 			       struct task_struct *target, long type, int mode)
982 {
983 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
984 }
985 
986 int security_shm_alloc(struct shmid_kernel *shp)
987 {
988 	return security_ops->shm_alloc_security(shp);
989 }
990 
991 void security_shm_free(struct shmid_kernel *shp)
992 {
993 	security_ops->shm_free_security(shp);
994 }
995 
996 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
997 {
998 	return security_ops->shm_associate(shp, shmflg);
999 }
1000 
1001 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1002 {
1003 	return security_ops->shm_shmctl(shp, cmd);
1004 }
1005 
1006 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1007 {
1008 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1009 }
1010 
1011 int security_sem_alloc(struct sem_array *sma)
1012 {
1013 	return security_ops->sem_alloc_security(sma);
1014 }
1015 
1016 void security_sem_free(struct sem_array *sma)
1017 {
1018 	security_ops->sem_free_security(sma);
1019 }
1020 
1021 int security_sem_associate(struct sem_array *sma, int semflg)
1022 {
1023 	return security_ops->sem_associate(sma, semflg);
1024 }
1025 
1026 int security_sem_semctl(struct sem_array *sma, int cmd)
1027 {
1028 	return security_ops->sem_semctl(sma, cmd);
1029 }
1030 
1031 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1032 			unsigned nsops, int alter)
1033 {
1034 	return security_ops->sem_semop(sma, sops, nsops, alter);
1035 }
1036 
1037 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1038 {
1039 	if (unlikely(inode && IS_PRIVATE(inode)))
1040 		return;
1041 	security_ops->d_instantiate(dentry, inode);
1042 }
1043 EXPORT_SYMBOL(security_d_instantiate);
1044 
1045 int security_getprocattr(struct task_struct *p, char *name, char **value)
1046 {
1047 	return security_ops->getprocattr(p, name, value);
1048 }
1049 
1050 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1051 {
1052 	return security_ops->setprocattr(p, name, value, size);
1053 }
1054 
1055 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1056 {
1057 	return security_ops->netlink_send(sk, skb);
1058 }
1059 
1060 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1061 {
1062 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1063 }
1064 EXPORT_SYMBOL(security_secid_to_secctx);
1065 
1066 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1067 {
1068 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1069 }
1070 EXPORT_SYMBOL(security_secctx_to_secid);
1071 
1072 void security_release_secctx(char *secdata, u32 seclen)
1073 {
1074 	security_ops->release_secctx(secdata, seclen);
1075 }
1076 EXPORT_SYMBOL(security_release_secctx);
1077 
1078 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1079 {
1080 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1081 }
1082 EXPORT_SYMBOL(security_inode_notifysecctx);
1083 
1084 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1085 {
1086 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1087 }
1088 EXPORT_SYMBOL(security_inode_setsecctx);
1089 
1090 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1091 {
1092 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1093 }
1094 EXPORT_SYMBOL(security_inode_getsecctx);
1095 
1096 #ifdef CONFIG_SECURITY_NETWORK
1097 
1098 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1099 {
1100 	return security_ops->unix_stream_connect(sock, other, newsk);
1101 }
1102 EXPORT_SYMBOL(security_unix_stream_connect);
1103 
1104 int security_unix_may_send(struct socket *sock,  struct socket *other)
1105 {
1106 	return security_ops->unix_may_send(sock, other);
1107 }
1108 EXPORT_SYMBOL(security_unix_may_send);
1109 
1110 int security_socket_create(int family, int type, int protocol, int kern)
1111 {
1112 	return security_ops->socket_create(family, type, protocol, kern);
1113 }
1114 
1115 int security_socket_post_create(struct socket *sock, int family,
1116 				int type, int protocol, int kern)
1117 {
1118 	return security_ops->socket_post_create(sock, family, type,
1119 						protocol, kern);
1120 }
1121 
1122 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1123 {
1124 	return security_ops->socket_bind(sock, address, addrlen);
1125 }
1126 
1127 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1128 {
1129 	return security_ops->socket_connect(sock, address, addrlen);
1130 }
1131 
1132 int security_socket_listen(struct socket *sock, int backlog)
1133 {
1134 	return security_ops->socket_listen(sock, backlog);
1135 }
1136 
1137 int security_socket_accept(struct socket *sock, struct socket *newsock)
1138 {
1139 	return security_ops->socket_accept(sock, newsock);
1140 }
1141 
1142 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1143 {
1144 	return security_ops->socket_sendmsg(sock, msg, size);
1145 }
1146 
1147 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1148 			    int size, int flags)
1149 {
1150 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1151 }
1152 
1153 int security_socket_getsockname(struct socket *sock)
1154 {
1155 	return security_ops->socket_getsockname(sock);
1156 }
1157 
1158 int security_socket_getpeername(struct socket *sock)
1159 {
1160 	return security_ops->socket_getpeername(sock);
1161 }
1162 
1163 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1164 {
1165 	return security_ops->socket_getsockopt(sock, level, optname);
1166 }
1167 
1168 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1169 {
1170 	return security_ops->socket_setsockopt(sock, level, optname);
1171 }
1172 
1173 int security_socket_shutdown(struct socket *sock, int how)
1174 {
1175 	return security_ops->socket_shutdown(sock, how);
1176 }
1177 
1178 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1179 {
1180 	return security_ops->socket_sock_rcv_skb(sk, skb);
1181 }
1182 EXPORT_SYMBOL(security_sock_rcv_skb);
1183 
1184 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1185 				      int __user *optlen, unsigned len)
1186 {
1187 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1188 }
1189 
1190 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1191 {
1192 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1193 }
1194 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1195 
1196 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1197 {
1198 	return security_ops->sk_alloc_security(sk, family, priority);
1199 }
1200 
1201 void security_sk_free(struct sock *sk)
1202 {
1203 	security_ops->sk_free_security(sk);
1204 }
1205 
1206 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1207 {
1208 	security_ops->sk_clone_security(sk, newsk);
1209 }
1210 EXPORT_SYMBOL(security_sk_clone);
1211 
1212 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1213 {
1214 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1215 }
1216 EXPORT_SYMBOL(security_sk_classify_flow);
1217 
1218 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1219 {
1220 	security_ops->req_classify_flow(req, fl);
1221 }
1222 EXPORT_SYMBOL(security_req_classify_flow);
1223 
1224 void security_sock_graft(struct sock *sk, struct socket *parent)
1225 {
1226 	security_ops->sock_graft(sk, parent);
1227 }
1228 EXPORT_SYMBOL(security_sock_graft);
1229 
1230 int security_inet_conn_request(struct sock *sk,
1231 			struct sk_buff *skb, struct request_sock *req)
1232 {
1233 	return security_ops->inet_conn_request(sk, skb, req);
1234 }
1235 EXPORT_SYMBOL(security_inet_conn_request);
1236 
1237 void security_inet_csk_clone(struct sock *newsk,
1238 			const struct request_sock *req)
1239 {
1240 	security_ops->inet_csk_clone(newsk, req);
1241 }
1242 
1243 void security_inet_conn_established(struct sock *sk,
1244 			struct sk_buff *skb)
1245 {
1246 	security_ops->inet_conn_established(sk, skb);
1247 }
1248 
1249 int security_secmark_relabel_packet(u32 secid)
1250 {
1251 	return security_ops->secmark_relabel_packet(secid);
1252 }
1253 EXPORT_SYMBOL(security_secmark_relabel_packet);
1254 
1255 void security_secmark_refcount_inc(void)
1256 {
1257 	security_ops->secmark_refcount_inc();
1258 }
1259 EXPORT_SYMBOL(security_secmark_refcount_inc);
1260 
1261 void security_secmark_refcount_dec(void)
1262 {
1263 	security_ops->secmark_refcount_dec();
1264 }
1265 EXPORT_SYMBOL(security_secmark_refcount_dec);
1266 
1267 int security_tun_dev_alloc_security(void **security)
1268 {
1269 	return security_ops->tun_dev_alloc_security(security);
1270 }
1271 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1272 
1273 void security_tun_dev_free_security(void *security)
1274 {
1275 	security_ops->tun_dev_free_security(security);
1276 }
1277 EXPORT_SYMBOL(security_tun_dev_free_security);
1278 
1279 int security_tun_dev_create(void)
1280 {
1281 	return security_ops->tun_dev_create();
1282 }
1283 EXPORT_SYMBOL(security_tun_dev_create);
1284 
1285 int security_tun_dev_attach_queue(void *security)
1286 {
1287 	return security_ops->tun_dev_attach_queue(security);
1288 }
1289 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1290 
1291 int security_tun_dev_attach(struct sock *sk, void *security)
1292 {
1293 	return security_ops->tun_dev_attach(sk, security);
1294 }
1295 EXPORT_SYMBOL(security_tun_dev_attach);
1296 
1297 int security_tun_dev_open(void *security)
1298 {
1299 	return security_ops->tun_dev_open(security);
1300 }
1301 EXPORT_SYMBOL(security_tun_dev_open);
1302 
1303 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1304 {
1305 	security_ops->skb_owned_by(skb, sk);
1306 }
1307 
1308 #endif	/* CONFIG_SECURITY_NETWORK */
1309 
1310 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1311 
1312 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1313 {
1314 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1315 }
1316 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1317 
1318 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1319 			      struct xfrm_sec_ctx **new_ctxp)
1320 {
1321 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1322 }
1323 
1324 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1325 {
1326 	security_ops->xfrm_policy_free_security(ctx);
1327 }
1328 EXPORT_SYMBOL(security_xfrm_policy_free);
1329 
1330 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1331 {
1332 	return security_ops->xfrm_policy_delete_security(ctx);
1333 }
1334 
1335 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1336 {
1337 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1338 }
1339 EXPORT_SYMBOL(security_xfrm_state_alloc);
1340 
1341 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1342 				      struct xfrm_sec_ctx *polsec, u32 secid)
1343 {
1344 	if (!polsec)
1345 		return 0;
1346 	/*
1347 	 * We want the context to be taken from secid which is usually
1348 	 * from the sock.
1349 	 */
1350 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1351 }
1352 
1353 int security_xfrm_state_delete(struct xfrm_state *x)
1354 {
1355 	return security_ops->xfrm_state_delete_security(x);
1356 }
1357 EXPORT_SYMBOL(security_xfrm_state_delete);
1358 
1359 void security_xfrm_state_free(struct xfrm_state *x)
1360 {
1361 	security_ops->xfrm_state_free_security(x);
1362 }
1363 
1364 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1365 {
1366 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1367 }
1368 
1369 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1370 				       struct xfrm_policy *xp,
1371 				       const struct flowi *fl)
1372 {
1373 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1374 }
1375 
1376 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1377 {
1378 	return security_ops->xfrm_decode_session(skb, secid, 1);
1379 }
1380 
1381 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1382 {
1383 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1384 
1385 	BUG_ON(rc);
1386 }
1387 EXPORT_SYMBOL(security_skb_classify_flow);
1388 
1389 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1390 
1391 #ifdef CONFIG_KEYS
1392 
1393 int security_key_alloc(struct key *key, const struct cred *cred,
1394 		       unsigned long flags)
1395 {
1396 	return security_ops->key_alloc(key, cred, flags);
1397 }
1398 
1399 void security_key_free(struct key *key)
1400 {
1401 	security_ops->key_free(key);
1402 }
1403 
1404 int security_key_permission(key_ref_t key_ref,
1405 			    const struct cred *cred, key_perm_t perm)
1406 {
1407 	return security_ops->key_permission(key_ref, cred, perm);
1408 }
1409 
1410 int security_key_getsecurity(struct key *key, char **_buffer)
1411 {
1412 	return security_ops->key_getsecurity(key, _buffer);
1413 }
1414 
1415 #endif	/* CONFIG_KEYS */
1416 
1417 #ifdef CONFIG_AUDIT
1418 
1419 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1420 {
1421 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1422 }
1423 
1424 int security_audit_rule_known(struct audit_krule *krule)
1425 {
1426 	return security_ops->audit_rule_known(krule);
1427 }
1428 
1429 void security_audit_rule_free(void *lsmrule)
1430 {
1431 	security_ops->audit_rule_free(lsmrule);
1432 }
1433 
1434 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1435 			      struct audit_context *actx)
1436 {
1437 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1438 }
1439 
1440 #endif /* CONFIG_AUDIT */
1441