1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/security.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <net/flow.h> 29 30 #define MAX_LSM_EVM_XATTR 2 31 32 /* Boot-time LSM user choice */ 33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 34 CONFIG_DEFAULT_SECURITY; 35 36 static struct security_operations *security_ops; 37 static struct security_operations default_security_ops = { 38 .name = "default", 39 }; 40 41 static inline int __init verify(struct security_operations *ops) 42 { 43 /* verify the security_operations structure exists */ 44 if (!ops) 45 return -EINVAL; 46 security_fixup_ops(ops); 47 return 0; 48 } 49 50 static void __init do_security_initcalls(void) 51 { 52 initcall_t *call; 53 call = __security_initcall_start; 54 while (call < __security_initcall_end) { 55 (*call) (); 56 call++; 57 } 58 } 59 60 /** 61 * security_init - initializes the security framework 62 * 63 * This should be called early in the kernel initialization sequence. 64 */ 65 int __init security_init(void) 66 { 67 printk(KERN_INFO "Security Framework initialized\n"); 68 69 security_fixup_ops(&default_security_ops); 70 security_ops = &default_security_ops; 71 do_security_initcalls(); 72 73 return 0; 74 } 75 76 void reset_security_ops(void) 77 { 78 security_ops = &default_security_ops; 79 } 80 81 /* Save user chosen LSM */ 82 static int __init choose_lsm(char *str) 83 { 84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 85 return 1; 86 } 87 __setup("security=", choose_lsm); 88 89 /** 90 * security_module_enable - Load given security module on boot ? 91 * @ops: a pointer to the struct security_operations that is to be checked. 92 * 93 * Each LSM must pass this method before registering its own operations 94 * to avoid security registration races. This method may also be used 95 * to check if your LSM is currently loaded during kernel initialization. 96 * 97 * Return true if: 98 * -The passed LSM is the one chosen by user at boot time, 99 * -or the passed LSM is configured as the default and the user did not 100 * choose an alternate LSM at boot time. 101 * Otherwise, return false. 102 */ 103 int __init security_module_enable(struct security_operations *ops) 104 { 105 return !strcmp(ops->name, chosen_lsm); 106 } 107 108 /** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120 int __init register_security(struct security_operations *ops) 121 { 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134 } 135 136 /* Security operations */ 137 138 int security_binder_set_context_mgr(struct task_struct *mgr) 139 { 140 return security_ops->binder_set_context_mgr(mgr); 141 } 142 143 int security_binder_transaction(struct task_struct *from, 144 struct task_struct *to) 145 { 146 return security_ops->binder_transaction(from, to); 147 } 148 149 int security_binder_transfer_binder(struct task_struct *from, 150 struct task_struct *to) 151 { 152 return security_ops->binder_transfer_binder(from, to); 153 } 154 155 int security_binder_transfer_file(struct task_struct *from, 156 struct task_struct *to, struct file *file) 157 { 158 return security_ops->binder_transfer_file(from, to, file); 159 } 160 161 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 162 { 163 #ifdef CONFIG_SECURITY_YAMA_STACKED 164 int rc; 165 rc = yama_ptrace_access_check(child, mode); 166 if (rc) 167 return rc; 168 #endif 169 return security_ops->ptrace_access_check(child, mode); 170 } 171 172 int security_ptrace_traceme(struct task_struct *parent) 173 { 174 #ifdef CONFIG_SECURITY_YAMA_STACKED 175 int rc; 176 rc = yama_ptrace_traceme(parent); 177 if (rc) 178 return rc; 179 #endif 180 return security_ops->ptrace_traceme(parent); 181 } 182 183 int security_capget(struct task_struct *target, 184 kernel_cap_t *effective, 185 kernel_cap_t *inheritable, 186 kernel_cap_t *permitted) 187 { 188 return security_ops->capget(target, effective, inheritable, permitted); 189 } 190 191 int security_capset(struct cred *new, const struct cred *old, 192 const kernel_cap_t *effective, 193 const kernel_cap_t *inheritable, 194 const kernel_cap_t *permitted) 195 { 196 return security_ops->capset(new, old, 197 effective, inheritable, permitted); 198 } 199 200 int security_capable(const struct cred *cred, struct user_namespace *ns, 201 int cap) 202 { 203 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 204 } 205 206 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 207 int cap) 208 { 209 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 210 } 211 212 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 213 { 214 return security_ops->quotactl(cmds, type, id, sb); 215 } 216 217 int security_quota_on(struct dentry *dentry) 218 { 219 return security_ops->quota_on(dentry); 220 } 221 222 int security_syslog(int type) 223 { 224 return security_ops->syslog(type); 225 } 226 227 int security_settime(const struct timespec *ts, const struct timezone *tz) 228 { 229 return security_ops->settime(ts, tz); 230 } 231 232 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 233 { 234 return security_ops->vm_enough_memory(mm, pages); 235 } 236 237 int security_bprm_set_creds(struct linux_binprm *bprm) 238 { 239 return security_ops->bprm_set_creds(bprm); 240 } 241 242 int security_bprm_check(struct linux_binprm *bprm) 243 { 244 int ret; 245 246 ret = security_ops->bprm_check_security(bprm); 247 if (ret) 248 return ret; 249 return ima_bprm_check(bprm); 250 } 251 252 void security_bprm_committing_creds(struct linux_binprm *bprm) 253 { 254 security_ops->bprm_committing_creds(bprm); 255 } 256 257 void security_bprm_committed_creds(struct linux_binprm *bprm) 258 { 259 security_ops->bprm_committed_creds(bprm); 260 } 261 262 int security_bprm_secureexec(struct linux_binprm *bprm) 263 { 264 return security_ops->bprm_secureexec(bprm); 265 } 266 267 int security_sb_alloc(struct super_block *sb) 268 { 269 return security_ops->sb_alloc_security(sb); 270 } 271 272 void security_sb_free(struct super_block *sb) 273 { 274 security_ops->sb_free_security(sb); 275 } 276 277 int security_sb_copy_data(char *orig, char *copy) 278 { 279 return security_ops->sb_copy_data(orig, copy); 280 } 281 EXPORT_SYMBOL(security_sb_copy_data); 282 283 int security_sb_remount(struct super_block *sb, void *data) 284 { 285 return security_ops->sb_remount(sb, data); 286 } 287 288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 289 { 290 return security_ops->sb_kern_mount(sb, flags, data); 291 } 292 293 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 294 { 295 return security_ops->sb_show_options(m, sb); 296 } 297 298 int security_sb_statfs(struct dentry *dentry) 299 { 300 return security_ops->sb_statfs(dentry); 301 } 302 303 int security_sb_mount(const char *dev_name, struct path *path, 304 const char *type, unsigned long flags, void *data) 305 { 306 return security_ops->sb_mount(dev_name, path, type, flags, data); 307 } 308 309 int security_sb_umount(struct vfsmount *mnt, int flags) 310 { 311 return security_ops->sb_umount(mnt, flags); 312 } 313 314 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 315 { 316 return security_ops->sb_pivotroot(old_path, new_path); 317 } 318 319 int security_sb_set_mnt_opts(struct super_block *sb, 320 struct security_mnt_opts *opts, 321 unsigned long kern_flags, 322 unsigned long *set_kern_flags) 323 { 324 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags, 325 set_kern_flags); 326 } 327 EXPORT_SYMBOL(security_sb_set_mnt_opts); 328 329 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 330 struct super_block *newsb) 331 { 332 return security_ops->sb_clone_mnt_opts(oldsb, newsb); 333 } 334 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 335 336 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 337 { 338 return security_ops->sb_parse_opts_str(options, opts); 339 } 340 EXPORT_SYMBOL(security_sb_parse_opts_str); 341 342 int security_inode_alloc(struct inode *inode) 343 { 344 inode->i_security = NULL; 345 return security_ops->inode_alloc_security(inode); 346 } 347 348 void security_inode_free(struct inode *inode) 349 { 350 integrity_inode_free(inode); 351 security_ops->inode_free_security(inode); 352 } 353 354 int security_dentry_init_security(struct dentry *dentry, int mode, 355 struct qstr *name, void **ctx, 356 u32 *ctxlen) 357 { 358 return security_ops->dentry_init_security(dentry, mode, name, 359 ctx, ctxlen); 360 } 361 EXPORT_SYMBOL(security_dentry_init_security); 362 363 int security_inode_init_security(struct inode *inode, struct inode *dir, 364 const struct qstr *qstr, 365 const initxattrs initxattrs, void *fs_data) 366 { 367 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 368 struct xattr *lsm_xattr, *evm_xattr, *xattr; 369 int ret; 370 371 if (unlikely(IS_PRIVATE(inode))) 372 return 0; 373 374 if (!initxattrs) 375 return security_ops->inode_init_security(inode, dir, qstr, 376 NULL, NULL, NULL); 377 memset(new_xattrs, 0, sizeof(new_xattrs)); 378 lsm_xattr = new_xattrs; 379 ret = security_ops->inode_init_security(inode, dir, qstr, 380 &lsm_xattr->name, 381 &lsm_xattr->value, 382 &lsm_xattr->value_len); 383 if (ret) 384 goto out; 385 386 evm_xattr = lsm_xattr + 1; 387 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 388 if (ret) 389 goto out; 390 ret = initxattrs(inode, new_xattrs, fs_data); 391 out: 392 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 393 kfree(xattr->value); 394 return (ret == -EOPNOTSUPP) ? 0 : ret; 395 } 396 EXPORT_SYMBOL(security_inode_init_security); 397 398 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 399 const struct qstr *qstr, const char **name, 400 void **value, size_t *len) 401 { 402 if (unlikely(IS_PRIVATE(inode))) 403 return -EOPNOTSUPP; 404 return security_ops->inode_init_security(inode, dir, qstr, name, value, 405 len); 406 } 407 EXPORT_SYMBOL(security_old_inode_init_security); 408 409 #ifdef CONFIG_SECURITY_PATH 410 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 411 unsigned int dev) 412 { 413 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 414 return 0; 415 return security_ops->path_mknod(dir, dentry, mode, dev); 416 } 417 EXPORT_SYMBOL(security_path_mknod); 418 419 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 420 { 421 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 422 return 0; 423 return security_ops->path_mkdir(dir, dentry, mode); 424 } 425 EXPORT_SYMBOL(security_path_mkdir); 426 427 int security_path_rmdir(struct path *dir, struct dentry *dentry) 428 { 429 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 430 return 0; 431 return security_ops->path_rmdir(dir, dentry); 432 } 433 434 int security_path_unlink(struct path *dir, struct dentry *dentry) 435 { 436 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 437 return 0; 438 return security_ops->path_unlink(dir, dentry); 439 } 440 EXPORT_SYMBOL(security_path_unlink); 441 442 int security_path_symlink(struct path *dir, struct dentry *dentry, 443 const char *old_name) 444 { 445 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 446 return 0; 447 return security_ops->path_symlink(dir, dentry, old_name); 448 } 449 450 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 451 struct dentry *new_dentry) 452 { 453 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 454 return 0; 455 return security_ops->path_link(old_dentry, new_dir, new_dentry); 456 } 457 458 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 459 struct path *new_dir, struct dentry *new_dentry, 460 unsigned int flags) 461 { 462 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 463 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 464 return 0; 465 466 if (flags & RENAME_EXCHANGE) { 467 int err = security_ops->path_rename(new_dir, new_dentry, 468 old_dir, old_dentry); 469 if (err) 470 return err; 471 } 472 473 return security_ops->path_rename(old_dir, old_dentry, new_dir, 474 new_dentry); 475 } 476 EXPORT_SYMBOL(security_path_rename); 477 478 int security_path_truncate(struct path *path) 479 { 480 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 481 return 0; 482 return security_ops->path_truncate(path); 483 } 484 485 int security_path_chmod(struct path *path, umode_t mode) 486 { 487 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 488 return 0; 489 return security_ops->path_chmod(path, mode); 490 } 491 492 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 493 { 494 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 495 return 0; 496 return security_ops->path_chown(path, uid, gid); 497 } 498 499 int security_path_chroot(struct path *path) 500 { 501 return security_ops->path_chroot(path); 502 } 503 #endif 504 505 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 506 { 507 if (unlikely(IS_PRIVATE(dir))) 508 return 0; 509 return security_ops->inode_create(dir, dentry, mode); 510 } 511 EXPORT_SYMBOL_GPL(security_inode_create); 512 513 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 514 struct dentry *new_dentry) 515 { 516 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 517 return 0; 518 return security_ops->inode_link(old_dentry, dir, new_dentry); 519 } 520 521 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 522 { 523 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 524 return 0; 525 return security_ops->inode_unlink(dir, dentry); 526 } 527 528 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 529 const char *old_name) 530 { 531 if (unlikely(IS_PRIVATE(dir))) 532 return 0; 533 return security_ops->inode_symlink(dir, dentry, old_name); 534 } 535 536 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 537 { 538 if (unlikely(IS_PRIVATE(dir))) 539 return 0; 540 return security_ops->inode_mkdir(dir, dentry, mode); 541 } 542 EXPORT_SYMBOL_GPL(security_inode_mkdir); 543 544 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 545 { 546 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 547 return 0; 548 return security_ops->inode_rmdir(dir, dentry); 549 } 550 551 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 552 { 553 if (unlikely(IS_PRIVATE(dir))) 554 return 0; 555 return security_ops->inode_mknod(dir, dentry, mode, dev); 556 } 557 558 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 559 struct inode *new_dir, struct dentry *new_dentry, 560 unsigned int flags) 561 { 562 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 563 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 564 return 0; 565 566 if (flags & RENAME_EXCHANGE) { 567 int err = security_ops->inode_rename(new_dir, new_dentry, 568 old_dir, old_dentry); 569 if (err) 570 return err; 571 } 572 573 return security_ops->inode_rename(old_dir, old_dentry, 574 new_dir, new_dentry); 575 } 576 577 int security_inode_readlink(struct dentry *dentry) 578 { 579 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 580 return 0; 581 return security_ops->inode_readlink(dentry); 582 } 583 584 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 585 { 586 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 587 return 0; 588 return security_ops->inode_follow_link(dentry, nd); 589 } 590 591 int security_inode_permission(struct inode *inode, int mask) 592 { 593 if (unlikely(IS_PRIVATE(inode))) 594 return 0; 595 return security_ops->inode_permission(inode, mask); 596 } 597 598 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 599 { 600 int ret; 601 602 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 603 return 0; 604 ret = security_ops->inode_setattr(dentry, attr); 605 if (ret) 606 return ret; 607 return evm_inode_setattr(dentry, attr); 608 } 609 EXPORT_SYMBOL_GPL(security_inode_setattr); 610 611 int security_inode_getattr(const struct path *path) 612 { 613 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 614 return 0; 615 return security_ops->inode_getattr(path); 616 } 617 618 int security_inode_setxattr(struct dentry *dentry, const char *name, 619 const void *value, size_t size, int flags) 620 { 621 int ret; 622 623 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 624 return 0; 625 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 626 if (ret) 627 return ret; 628 ret = ima_inode_setxattr(dentry, name, value, size); 629 if (ret) 630 return ret; 631 return evm_inode_setxattr(dentry, name, value, size); 632 } 633 634 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 635 const void *value, size_t size, int flags) 636 { 637 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 638 return; 639 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 640 evm_inode_post_setxattr(dentry, name, value, size); 641 } 642 643 int security_inode_getxattr(struct dentry *dentry, const char *name) 644 { 645 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 646 return 0; 647 return security_ops->inode_getxattr(dentry, name); 648 } 649 650 int security_inode_listxattr(struct dentry *dentry) 651 { 652 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 653 return 0; 654 return security_ops->inode_listxattr(dentry); 655 } 656 657 int security_inode_removexattr(struct dentry *dentry, const char *name) 658 { 659 int ret; 660 661 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 662 return 0; 663 ret = security_ops->inode_removexattr(dentry, name); 664 if (ret) 665 return ret; 666 ret = ima_inode_removexattr(dentry, name); 667 if (ret) 668 return ret; 669 return evm_inode_removexattr(dentry, name); 670 } 671 672 int security_inode_need_killpriv(struct dentry *dentry) 673 { 674 return security_ops->inode_need_killpriv(dentry); 675 } 676 677 int security_inode_killpriv(struct dentry *dentry) 678 { 679 return security_ops->inode_killpriv(dentry); 680 } 681 682 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 683 { 684 if (unlikely(IS_PRIVATE(inode))) 685 return -EOPNOTSUPP; 686 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 687 } 688 689 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 690 { 691 if (unlikely(IS_PRIVATE(inode))) 692 return -EOPNOTSUPP; 693 return security_ops->inode_setsecurity(inode, name, value, size, flags); 694 } 695 696 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 697 { 698 if (unlikely(IS_PRIVATE(inode))) 699 return 0; 700 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 701 } 702 EXPORT_SYMBOL(security_inode_listsecurity); 703 704 void security_inode_getsecid(const struct inode *inode, u32 *secid) 705 { 706 security_ops->inode_getsecid(inode, secid); 707 } 708 709 int security_file_permission(struct file *file, int mask) 710 { 711 int ret; 712 713 ret = security_ops->file_permission(file, mask); 714 if (ret) 715 return ret; 716 717 return fsnotify_perm(file, mask); 718 } 719 720 int security_file_alloc(struct file *file) 721 { 722 return security_ops->file_alloc_security(file); 723 } 724 725 void security_file_free(struct file *file) 726 { 727 security_ops->file_free_security(file); 728 } 729 730 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 731 { 732 return security_ops->file_ioctl(file, cmd, arg); 733 } 734 735 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 736 { 737 /* 738 * Does we have PROT_READ and does the application expect 739 * it to imply PROT_EXEC? If not, nothing to talk about... 740 */ 741 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 742 return prot; 743 if (!(current->personality & READ_IMPLIES_EXEC)) 744 return prot; 745 /* 746 * if that's an anonymous mapping, let it. 747 */ 748 if (!file) 749 return prot | PROT_EXEC; 750 /* 751 * ditto if it's not on noexec mount, except that on !MMU we need 752 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 753 */ 754 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 755 #ifndef CONFIG_MMU 756 if (file->f_op->mmap_capabilities) { 757 unsigned caps = file->f_op->mmap_capabilities(file); 758 if (!(caps & NOMMU_MAP_EXEC)) 759 return prot; 760 } 761 #endif 762 return prot | PROT_EXEC; 763 } 764 /* anything on noexec mount won't get PROT_EXEC */ 765 return prot; 766 } 767 768 int security_mmap_file(struct file *file, unsigned long prot, 769 unsigned long flags) 770 { 771 int ret; 772 ret = security_ops->mmap_file(file, prot, 773 mmap_prot(file, prot), flags); 774 if (ret) 775 return ret; 776 return ima_file_mmap(file, prot); 777 } 778 779 int security_mmap_addr(unsigned long addr) 780 { 781 return security_ops->mmap_addr(addr); 782 } 783 784 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 785 unsigned long prot) 786 { 787 return security_ops->file_mprotect(vma, reqprot, prot); 788 } 789 790 int security_file_lock(struct file *file, unsigned int cmd) 791 { 792 return security_ops->file_lock(file, cmd); 793 } 794 795 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 796 { 797 return security_ops->file_fcntl(file, cmd, arg); 798 } 799 800 void security_file_set_fowner(struct file *file) 801 { 802 security_ops->file_set_fowner(file); 803 } 804 805 int security_file_send_sigiotask(struct task_struct *tsk, 806 struct fown_struct *fown, int sig) 807 { 808 return security_ops->file_send_sigiotask(tsk, fown, sig); 809 } 810 811 int security_file_receive(struct file *file) 812 { 813 return security_ops->file_receive(file); 814 } 815 816 int security_file_open(struct file *file, const struct cred *cred) 817 { 818 int ret; 819 820 ret = security_ops->file_open(file, cred); 821 if (ret) 822 return ret; 823 824 return fsnotify_perm(file, MAY_OPEN); 825 } 826 827 int security_task_create(unsigned long clone_flags) 828 { 829 return security_ops->task_create(clone_flags); 830 } 831 832 void security_task_free(struct task_struct *task) 833 { 834 #ifdef CONFIG_SECURITY_YAMA_STACKED 835 yama_task_free(task); 836 #endif 837 security_ops->task_free(task); 838 } 839 840 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 841 { 842 return security_ops->cred_alloc_blank(cred, gfp); 843 } 844 845 void security_cred_free(struct cred *cred) 846 { 847 security_ops->cred_free(cred); 848 } 849 850 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 851 { 852 return security_ops->cred_prepare(new, old, gfp); 853 } 854 855 void security_transfer_creds(struct cred *new, const struct cred *old) 856 { 857 security_ops->cred_transfer(new, old); 858 } 859 860 int security_kernel_act_as(struct cred *new, u32 secid) 861 { 862 return security_ops->kernel_act_as(new, secid); 863 } 864 865 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 866 { 867 return security_ops->kernel_create_files_as(new, inode); 868 } 869 870 int security_kernel_fw_from_file(struct file *file, char *buf, size_t size) 871 { 872 int ret; 873 874 ret = security_ops->kernel_fw_from_file(file, buf, size); 875 if (ret) 876 return ret; 877 return ima_fw_from_file(file, buf, size); 878 } 879 EXPORT_SYMBOL_GPL(security_kernel_fw_from_file); 880 881 int security_kernel_module_request(char *kmod_name) 882 { 883 return security_ops->kernel_module_request(kmod_name); 884 } 885 886 int security_kernel_module_from_file(struct file *file) 887 { 888 int ret; 889 890 ret = security_ops->kernel_module_from_file(file); 891 if (ret) 892 return ret; 893 return ima_module_check(file); 894 } 895 896 int security_task_fix_setuid(struct cred *new, const struct cred *old, 897 int flags) 898 { 899 return security_ops->task_fix_setuid(new, old, flags); 900 } 901 902 int security_task_setpgid(struct task_struct *p, pid_t pgid) 903 { 904 return security_ops->task_setpgid(p, pgid); 905 } 906 907 int security_task_getpgid(struct task_struct *p) 908 { 909 return security_ops->task_getpgid(p); 910 } 911 912 int security_task_getsid(struct task_struct *p) 913 { 914 return security_ops->task_getsid(p); 915 } 916 917 void security_task_getsecid(struct task_struct *p, u32 *secid) 918 { 919 security_ops->task_getsecid(p, secid); 920 } 921 EXPORT_SYMBOL(security_task_getsecid); 922 923 int security_task_setnice(struct task_struct *p, int nice) 924 { 925 return security_ops->task_setnice(p, nice); 926 } 927 928 int security_task_setioprio(struct task_struct *p, int ioprio) 929 { 930 return security_ops->task_setioprio(p, ioprio); 931 } 932 933 int security_task_getioprio(struct task_struct *p) 934 { 935 return security_ops->task_getioprio(p); 936 } 937 938 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 939 struct rlimit *new_rlim) 940 { 941 return security_ops->task_setrlimit(p, resource, new_rlim); 942 } 943 944 int security_task_setscheduler(struct task_struct *p) 945 { 946 return security_ops->task_setscheduler(p); 947 } 948 949 int security_task_getscheduler(struct task_struct *p) 950 { 951 return security_ops->task_getscheduler(p); 952 } 953 954 int security_task_movememory(struct task_struct *p) 955 { 956 return security_ops->task_movememory(p); 957 } 958 959 int security_task_kill(struct task_struct *p, struct siginfo *info, 960 int sig, u32 secid) 961 { 962 return security_ops->task_kill(p, info, sig, secid); 963 } 964 965 int security_task_wait(struct task_struct *p) 966 { 967 return security_ops->task_wait(p); 968 } 969 970 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 971 unsigned long arg4, unsigned long arg5) 972 { 973 #ifdef CONFIG_SECURITY_YAMA_STACKED 974 int rc; 975 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5); 976 if (rc != -ENOSYS) 977 return rc; 978 #endif 979 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 980 } 981 982 void security_task_to_inode(struct task_struct *p, struct inode *inode) 983 { 984 security_ops->task_to_inode(p, inode); 985 } 986 987 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 988 { 989 return security_ops->ipc_permission(ipcp, flag); 990 } 991 992 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 993 { 994 security_ops->ipc_getsecid(ipcp, secid); 995 } 996 997 int security_msg_msg_alloc(struct msg_msg *msg) 998 { 999 return security_ops->msg_msg_alloc_security(msg); 1000 } 1001 1002 void security_msg_msg_free(struct msg_msg *msg) 1003 { 1004 security_ops->msg_msg_free_security(msg); 1005 } 1006 1007 int security_msg_queue_alloc(struct msg_queue *msq) 1008 { 1009 return security_ops->msg_queue_alloc_security(msq); 1010 } 1011 1012 void security_msg_queue_free(struct msg_queue *msq) 1013 { 1014 security_ops->msg_queue_free_security(msq); 1015 } 1016 1017 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 1018 { 1019 return security_ops->msg_queue_associate(msq, msqflg); 1020 } 1021 1022 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 1023 { 1024 return security_ops->msg_queue_msgctl(msq, cmd); 1025 } 1026 1027 int security_msg_queue_msgsnd(struct msg_queue *msq, 1028 struct msg_msg *msg, int msqflg) 1029 { 1030 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 1031 } 1032 1033 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1034 struct task_struct *target, long type, int mode) 1035 { 1036 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 1037 } 1038 1039 int security_shm_alloc(struct shmid_kernel *shp) 1040 { 1041 return security_ops->shm_alloc_security(shp); 1042 } 1043 1044 void security_shm_free(struct shmid_kernel *shp) 1045 { 1046 security_ops->shm_free_security(shp); 1047 } 1048 1049 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 1050 { 1051 return security_ops->shm_associate(shp, shmflg); 1052 } 1053 1054 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 1055 { 1056 return security_ops->shm_shmctl(shp, cmd); 1057 } 1058 1059 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 1060 { 1061 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1062 } 1063 1064 int security_sem_alloc(struct sem_array *sma) 1065 { 1066 return security_ops->sem_alloc_security(sma); 1067 } 1068 1069 void security_sem_free(struct sem_array *sma) 1070 { 1071 security_ops->sem_free_security(sma); 1072 } 1073 1074 int security_sem_associate(struct sem_array *sma, int semflg) 1075 { 1076 return security_ops->sem_associate(sma, semflg); 1077 } 1078 1079 int security_sem_semctl(struct sem_array *sma, int cmd) 1080 { 1081 return security_ops->sem_semctl(sma, cmd); 1082 } 1083 1084 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1085 unsigned nsops, int alter) 1086 { 1087 return security_ops->sem_semop(sma, sops, nsops, alter); 1088 } 1089 1090 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1091 { 1092 if (unlikely(inode && IS_PRIVATE(inode))) 1093 return; 1094 security_ops->d_instantiate(dentry, inode); 1095 } 1096 EXPORT_SYMBOL(security_d_instantiate); 1097 1098 int security_getprocattr(struct task_struct *p, char *name, char **value) 1099 { 1100 return security_ops->getprocattr(p, name, value); 1101 } 1102 1103 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1104 { 1105 return security_ops->setprocattr(p, name, value, size); 1106 } 1107 1108 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1109 { 1110 return security_ops->netlink_send(sk, skb); 1111 } 1112 1113 int security_ismaclabel(const char *name) 1114 { 1115 return security_ops->ismaclabel(name); 1116 } 1117 EXPORT_SYMBOL(security_ismaclabel); 1118 1119 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1120 { 1121 return security_ops->secid_to_secctx(secid, secdata, seclen); 1122 } 1123 EXPORT_SYMBOL(security_secid_to_secctx); 1124 1125 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1126 { 1127 return security_ops->secctx_to_secid(secdata, seclen, secid); 1128 } 1129 EXPORT_SYMBOL(security_secctx_to_secid); 1130 1131 void security_release_secctx(char *secdata, u32 seclen) 1132 { 1133 security_ops->release_secctx(secdata, seclen); 1134 } 1135 EXPORT_SYMBOL(security_release_secctx); 1136 1137 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1138 { 1139 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1140 } 1141 EXPORT_SYMBOL(security_inode_notifysecctx); 1142 1143 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1144 { 1145 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1146 } 1147 EXPORT_SYMBOL(security_inode_setsecctx); 1148 1149 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1150 { 1151 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1152 } 1153 EXPORT_SYMBOL(security_inode_getsecctx); 1154 1155 #ifdef CONFIG_SECURITY_NETWORK 1156 1157 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1158 { 1159 return security_ops->unix_stream_connect(sock, other, newsk); 1160 } 1161 EXPORT_SYMBOL(security_unix_stream_connect); 1162 1163 int security_unix_may_send(struct socket *sock, struct socket *other) 1164 { 1165 return security_ops->unix_may_send(sock, other); 1166 } 1167 EXPORT_SYMBOL(security_unix_may_send); 1168 1169 int security_socket_create(int family, int type, int protocol, int kern) 1170 { 1171 return security_ops->socket_create(family, type, protocol, kern); 1172 } 1173 1174 int security_socket_post_create(struct socket *sock, int family, 1175 int type, int protocol, int kern) 1176 { 1177 return security_ops->socket_post_create(sock, family, type, 1178 protocol, kern); 1179 } 1180 1181 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1182 { 1183 return security_ops->socket_bind(sock, address, addrlen); 1184 } 1185 1186 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1187 { 1188 return security_ops->socket_connect(sock, address, addrlen); 1189 } 1190 1191 int security_socket_listen(struct socket *sock, int backlog) 1192 { 1193 return security_ops->socket_listen(sock, backlog); 1194 } 1195 1196 int security_socket_accept(struct socket *sock, struct socket *newsock) 1197 { 1198 return security_ops->socket_accept(sock, newsock); 1199 } 1200 1201 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1202 { 1203 return security_ops->socket_sendmsg(sock, msg, size); 1204 } 1205 1206 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1207 int size, int flags) 1208 { 1209 return security_ops->socket_recvmsg(sock, msg, size, flags); 1210 } 1211 1212 int security_socket_getsockname(struct socket *sock) 1213 { 1214 return security_ops->socket_getsockname(sock); 1215 } 1216 1217 int security_socket_getpeername(struct socket *sock) 1218 { 1219 return security_ops->socket_getpeername(sock); 1220 } 1221 1222 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1223 { 1224 return security_ops->socket_getsockopt(sock, level, optname); 1225 } 1226 1227 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1228 { 1229 return security_ops->socket_setsockopt(sock, level, optname); 1230 } 1231 1232 int security_socket_shutdown(struct socket *sock, int how) 1233 { 1234 return security_ops->socket_shutdown(sock, how); 1235 } 1236 1237 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1238 { 1239 return security_ops->socket_sock_rcv_skb(sk, skb); 1240 } 1241 EXPORT_SYMBOL(security_sock_rcv_skb); 1242 1243 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1244 int __user *optlen, unsigned len) 1245 { 1246 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1247 } 1248 1249 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1250 { 1251 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1252 } 1253 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1254 1255 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1256 { 1257 return security_ops->sk_alloc_security(sk, family, priority); 1258 } 1259 1260 void security_sk_free(struct sock *sk) 1261 { 1262 security_ops->sk_free_security(sk); 1263 } 1264 1265 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1266 { 1267 security_ops->sk_clone_security(sk, newsk); 1268 } 1269 EXPORT_SYMBOL(security_sk_clone); 1270 1271 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1272 { 1273 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1274 } 1275 EXPORT_SYMBOL(security_sk_classify_flow); 1276 1277 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1278 { 1279 security_ops->req_classify_flow(req, fl); 1280 } 1281 EXPORT_SYMBOL(security_req_classify_flow); 1282 1283 void security_sock_graft(struct sock *sk, struct socket *parent) 1284 { 1285 security_ops->sock_graft(sk, parent); 1286 } 1287 EXPORT_SYMBOL(security_sock_graft); 1288 1289 int security_inet_conn_request(struct sock *sk, 1290 struct sk_buff *skb, struct request_sock *req) 1291 { 1292 return security_ops->inet_conn_request(sk, skb, req); 1293 } 1294 EXPORT_SYMBOL(security_inet_conn_request); 1295 1296 void security_inet_csk_clone(struct sock *newsk, 1297 const struct request_sock *req) 1298 { 1299 security_ops->inet_csk_clone(newsk, req); 1300 } 1301 1302 void security_inet_conn_established(struct sock *sk, 1303 struct sk_buff *skb) 1304 { 1305 security_ops->inet_conn_established(sk, skb); 1306 } 1307 1308 int security_secmark_relabel_packet(u32 secid) 1309 { 1310 return security_ops->secmark_relabel_packet(secid); 1311 } 1312 EXPORT_SYMBOL(security_secmark_relabel_packet); 1313 1314 void security_secmark_refcount_inc(void) 1315 { 1316 security_ops->secmark_refcount_inc(); 1317 } 1318 EXPORT_SYMBOL(security_secmark_refcount_inc); 1319 1320 void security_secmark_refcount_dec(void) 1321 { 1322 security_ops->secmark_refcount_dec(); 1323 } 1324 EXPORT_SYMBOL(security_secmark_refcount_dec); 1325 1326 int security_tun_dev_alloc_security(void **security) 1327 { 1328 return security_ops->tun_dev_alloc_security(security); 1329 } 1330 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1331 1332 void security_tun_dev_free_security(void *security) 1333 { 1334 security_ops->tun_dev_free_security(security); 1335 } 1336 EXPORT_SYMBOL(security_tun_dev_free_security); 1337 1338 int security_tun_dev_create(void) 1339 { 1340 return security_ops->tun_dev_create(); 1341 } 1342 EXPORT_SYMBOL(security_tun_dev_create); 1343 1344 int security_tun_dev_attach_queue(void *security) 1345 { 1346 return security_ops->tun_dev_attach_queue(security); 1347 } 1348 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1349 1350 int security_tun_dev_attach(struct sock *sk, void *security) 1351 { 1352 return security_ops->tun_dev_attach(sk, security); 1353 } 1354 EXPORT_SYMBOL(security_tun_dev_attach); 1355 1356 int security_tun_dev_open(void *security) 1357 { 1358 return security_ops->tun_dev_open(security); 1359 } 1360 EXPORT_SYMBOL(security_tun_dev_open); 1361 1362 #endif /* CONFIG_SECURITY_NETWORK */ 1363 1364 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1365 1366 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1367 struct xfrm_user_sec_ctx *sec_ctx, 1368 gfp_t gfp) 1369 { 1370 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp); 1371 } 1372 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1373 1374 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1375 struct xfrm_sec_ctx **new_ctxp) 1376 { 1377 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1378 } 1379 1380 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1381 { 1382 security_ops->xfrm_policy_free_security(ctx); 1383 } 1384 EXPORT_SYMBOL(security_xfrm_policy_free); 1385 1386 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1387 { 1388 return security_ops->xfrm_policy_delete_security(ctx); 1389 } 1390 1391 int security_xfrm_state_alloc(struct xfrm_state *x, 1392 struct xfrm_user_sec_ctx *sec_ctx) 1393 { 1394 return security_ops->xfrm_state_alloc(x, sec_ctx); 1395 } 1396 EXPORT_SYMBOL(security_xfrm_state_alloc); 1397 1398 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1399 struct xfrm_sec_ctx *polsec, u32 secid) 1400 { 1401 return security_ops->xfrm_state_alloc_acquire(x, polsec, secid); 1402 } 1403 1404 int security_xfrm_state_delete(struct xfrm_state *x) 1405 { 1406 return security_ops->xfrm_state_delete_security(x); 1407 } 1408 EXPORT_SYMBOL(security_xfrm_state_delete); 1409 1410 void security_xfrm_state_free(struct xfrm_state *x) 1411 { 1412 security_ops->xfrm_state_free_security(x); 1413 } 1414 1415 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1416 { 1417 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1418 } 1419 1420 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1421 struct xfrm_policy *xp, 1422 const struct flowi *fl) 1423 { 1424 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1425 } 1426 1427 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1428 { 1429 return security_ops->xfrm_decode_session(skb, secid, 1); 1430 } 1431 1432 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1433 { 1434 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1435 1436 BUG_ON(rc); 1437 } 1438 EXPORT_SYMBOL(security_skb_classify_flow); 1439 1440 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1441 1442 #ifdef CONFIG_KEYS 1443 1444 int security_key_alloc(struct key *key, const struct cred *cred, 1445 unsigned long flags) 1446 { 1447 return security_ops->key_alloc(key, cred, flags); 1448 } 1449 1450 void security_key_free(struct key *key) 1451 { 1452 security_ops->key_free(key); 1453 } 1454 1455 int security_key_permission(key_ref_t key_ref, 1456 const struct cred *cred, unsigned perm) 1457 { 1458 return security_ops->key_permission(key_ref, cred, perm); 1459 } 1460 1461 int security_key_getsecurity(struct key *key, char **_buffer) 1462 { 1463 return security_ops->key_getsecurity(key, _buffer); 1464 } 1465 1466 #endif /* CONFIG_KEYS */ 1467 1468 #ifdef CONFIG_AUDIT 1469 1470 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1471 { 1472 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1473 } 1474 1475 int security_audit_rule_known(struct audit_krule *krule) 1476 { 1477 return security_ops->audit_rule_known(krule); 1478 } 1479 1480 void security_audit_rule_free(void *lsmrule) 1481 { 1482 security_ops->audit_rule_free(lsmrule); 1483 } 1484 1485 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1486 struct audit_context *actx) 1487 { 1488 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1489 } 1490 1491 #endif /* CONFIG_AUDIT */ 1492