xref: /openbmc/linux/security/security.c (revision d0bd7f2a)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29 
30 #define MAX_LSM_EVM_XATTR	2
31 
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 	CONFIG_DEFAULT_SECURITY;
35 
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38 	.name	= "default",
39 };
40 
41 static inline int __init verify(struct security_operations *ops)
42 {
43 	/* verify the security_operations structure exists */
44 	if (!ops)
45 		return -EINVAL;
46 	security_fixup_ops(ops);
47 	return 0;
48 }
49 
50 static void __init do_security_initcalls(void)
51 {
52 	initcall_t *call;
53 	call = __security_initcall_start;
54 	while (call < __security_initcall_end) {
55 		(*call) ();
56 		call++;
57 	}
58 }
59 
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67 	printk(KERN_INFO "Security Framework initialized\n");
68 
69 	security_fixup_ops(&default_security_ops);
70 	security_ops = &default_security_ops;
71 	do_security_initcalls();
72 
73 	return 0;
74 }
75 
76 void reset_security_ops(void)
77 {
78 	security_ops = &default_security_ops;
79 }
80 
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 	return 1;
86 }
87 __setup("security=", choose_lsm);
88 
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *	-The passed LSM is the one chosen by user at boot time,
99  *	-or the passed LSM is configured as the default and the user did not
100  *	 choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105 	return !strcmp(ops->name, chosen_lsm);
106 }
107 
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122 	if (verify(ops)) {
123 		printk(KERN_DEBUG "%s could not verify "
124 		       "security_operations structure.\n", __func__);
125 		return -EINVAL;
126 	}
127 
128 	if (security_ops != &default_security_ops)
129 		return -EAGAIN;
130 
131 	security_ops = ops;
132 
133 	return 0;
134 }
135 
136 /* Security operations */
137 
138 int security_binder_set_context_mgr(struct task_struct *mgr)
139 {
140 	return security_ops->binder_set_context_mgr(mgr);
141 }
142 
143 int security_binder_transaction(struct task_struct *from,
144 				struct task_struct *to)
145 {
146 	return security_ops->binder_transaction(from, to);
147 }
148 
149 int security_binder_transfer_binder(struct task_struct *from,
150 				    struct task_struct *to)
151 {
152 	return security_ops->binder_transfer_binder(from, to);
153 }
154 
155 int security_binder_transfer_file(struct task_struct *from,
156 				  struct task_struct *to, struct file *file)
157 {
158 	return security_ops->binder_transfer_file(from, to, file);
159 }
160 
161 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
162 {
163 #ifdef CONFIG_SECURITY_YAMA_STACKED
164 	int rc;
165 	rc = yama_ptrace_access_check(child, mode);
166 	if (rc)
167 		return rc;
168 #endif
169 	return security_ops->ptrace_access_check(child, mode);
170 }
171 
172 int security_ptrace_traceme(struct task_struct *parent)
173 {
174 #ifdef CONFIG_SECURITY_YAMA_STACKED
175 	int rc;
176 	rc = yama_ptrace_traceme(parent);
177 	if (rc)
178 		return rc;
179 #endif
180 	return security_ops->ptrace_traceme(parent);
181 }
182 
183 int security_capget(struct task_struct *target,
184 		     kernel_cap_t *effective,
185 		     kernel_cap_t *inheritable,
186 		     kernel_cap_t *permitted)
187 {
188 	return security_ops->capget(target, effective, inheritable, permitted);
189 }
190 
191 int security_capset(struct cred *new, const struct cred *old,
192 		    const kernel_cap_t *effective,
193 		    const kernel_cap_t *inheritable,
194 		    const kernel_cap_t *permitted)
195 {
196 	return security_ops->capset(new, old,
197 				    effective, inheritable, permitted);
198 }
199 
200 int security_capable(const struct cred *cred, struct user_namespace *ns,
201 		     int cap)
202 {
203 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
204 }
205 
206 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
207 			     int cap)
208 {
209 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
210 }
211 
212 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
213 {
214 	return security_ops->quotactl(cmds, type, id, sb);
215 }
216 
217 int security_quota_on(struct dentry *dentry)
218 {
219 	return security_ops->quota_on(dentry);
220 }
221 
222 int security_syslog(int type)
223 {
224 	return security_ops->syslog(type);
225 }
226 
227 int security_settime(const struct timespec *ts, const struct timezone *tz)
228 {
229 	return security_ops->settime(ts, tz);
230 }
231 
232 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
233 {
234 	return security_ops->vm_enough_memory(mm, pages);
235 }
236 
237 int security_bprm_set_creds(struct linux_binprm *bprm)
238 {
239 	return security_ops->bprm_set_creds(bprm);
240 }
241 
242 int security_bprm_check(struct linux_binprm *bprm)
243 {
244 	int ret;
245 
246 	ret = security_ops->bprm_check_security(bprm);
247 	if (ret)
248 		return ret;
249 	return ima_bprm_check(bprm);
250 }
251 
252 void security_bprm_committing_creds(struct linux_binprm *bprm)
253 {
254 	security_ops->bprm_committing_creds(bprm);
255 }
256 
257 void security_bprm_committed_creds(struct linux_binprm *bprm)
258 {
259 	security_ops->bprm_committed_creds(bprm);
260 }
261 
262 int security_bprm_secureexec(struct linux_binprm *bprm)
263 {
264 	return security_ops->bprm_secureexec(bprm);
265 }
266 
267 int security_sb_alloc(struct super_block *sb)
268 {
269 	return security_ops->sb_alloc_security(sb);
270 }
271 
272 void security_sb_free(struct super_block *sb)
273 {
274 	security_ops->sb_free_security(sb);
275 }
276 
277 int security_sb_copy_data(char *orig, char *copy)
278 {
279 	return security_ops->sb_copy_data(orig, copy);
280 }
281 EXPORT_SYMBOL(security_sb_copy_data);
282 
283 int security_sb_remount(struct super_block *sb, void *data)
284 {
285 	return security_ops->sb_remount(sb, data);
286 }
287 
288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289 {
290 	return security_ops->sb_kern_mount(sb, flags, data);
291 }
292 
293 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294 {
295 	return security_ops->sb_show_options(m, sb);
296 }
297 
298 int security_sb_statfs(struct dentry *dentry)
299 {
300 	return security_ops->sb_statfs(dentry);
301 }
302 
303 int security_sb_mount(const char *dev_name, struct path *path,
304                        const char *type, unsigned long flags, void *data)
305 {
306 	return security_ops->sb_mount(dev_name, path, type, flags, data);
307 }
308 
309 int security_sb_umount(struct vfsmount *mnt, int flags)
310 {
311 	return security_ops->sb_umount(mnt, flags);
312 }
313 
314 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
315 {
316 	return security_ops->sb_pivotroot(old_path, new_path);
317 }
318 
319 int security_sb_set_mnt_opts(struct super_block *sb,
320 				struct security_mnt_opts *opts,
321 				unsigned long kern_flags,
322 				unsigned long *set_kern_flags)
323 {
324 	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
325 						set_kern_flags);
326 }
327 EXPORT_SYMBOL(security_sb_set_mnt_opts);
328 
329 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
330 				struct super_block *newsb)
331 {
332 	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
333 }
334 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
335 
336 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
337 {
338 	return security_ops->sb_parse_opts_str(options, opts);
339 }
340 EXPORT_SYMBOL(security_sb_parse_opts_str);
341 
342 int security_inode_alloc(struct inode *inode)
343 {
344 	inode->i_security = NULL;
345 	return security_ops->inode_alloc_security(inode);
346 }
347 
348 void security_inode_free(struct inode *inode)
349 {
350 	integrity_inode_free(inode);
351 	security_ops->inode_free_security(inode);
352 }
353 
354 int security_dentry_init_security(struct dentry *dentry, int mode,
355 					struct qstr *name, void **ctx,
356 					u32 *ctxlen)
357 {
358 	return security_ops->dentry_init_security(dentry, mode, name,
359 							ctx, ctxlen);
360 }
361 EXPORT_SYMBOL(security_dentry_init_security);
362 
363 int security_inode_init_security(struct inode *inode, struct inode *dir,
364 				 const struct qstr *qstr,
365 				 const initxattrs initxattrs, void *fs_data)
366 {
367 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
368 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
369 	int ret;
370 
371 	if (unlikely(IS_PRIVATE(inode)))
372 		return 0;
373 
374 	if (!initxattrs)
375 		return security_ops->inode_init_security(inode, dir, qstr,
376 							 NULL, NULL, NULL);
377 	memset(new_xattrs, 0, sizeof(new_xattrs));
378 	lsm_xattr = new_xattrs;
379 	ret = security_ops->inode_init_security(inode, dir, qstr,
380 						&lsm_xattr->name,
381 						&lsm_xattr->value,
382 						&lsm_xattr->value_len);
383 	if (ret)
384 		goto out;
385 
386 	evm_xattr = lsm_xattr + 1;
387 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
388 	if (ret)
389 		goto out;
390 	ret = initxattrs(inode, new_xattrs, fs_data);
391 out:
392 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
393 		kfree(xattr->value);
394 	return (ret == -EOPNOTSUPP) ? 0 : ret;
395 }
396 EXPORT_SYMBOL(security_inode_init_security);
397 
398 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
399 				     const struct qstr *qstr, const char **name,
400 				     void **value, size_t *len)
401 {
402 	if (unlikely(IS_PRIVATE(inode)))
403 		return -EOPNOTSUPP;
404 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
405 						 len);
406 }
407 EXPORT_SYMBOL(security_old_inode_init_security);
408 
409 #ifdef CONFIG_SECURITY_PATH
410 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
411 			unsigned int dev)
412 {
413 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
414 		return 0;
415 	return security_ops->path_mknod(dir, dentry, mode, dev);
416 }
417 EXPORT_SYMBOL(security_path_mknod);
418 
419 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
420 {
421 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
422 		return 0;
423 	return security_ops->path_mkdir(dir, dentry, mode);
424 }
425 EXPORT_SYMBOL(security_path_mkdir);
426 
427 int security_path_rmdir(struct path *dir, struct dentry *dentry)
428 {
429 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
430 		return 0;
431 	return security_ops->path_rmdir(dir, dentry);
432 }
433 
434 int security_path_unlink(struct path *dir, struct dentry *dentry)
435 {
436 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
437 		return 0;
438 	return security_ops->path_unlink(dir, dentry);
439 }
440 EXPORT_SYMBOL(security_path_unlink);
441 
442 int security_path_symlink(struct path *dir, struct dentry *dentry,
443 			  const char *old_name)
444 {
445 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
446 		return 0;
447 	return security_ops->path_symlink(dir, dentry, old_name);
448 }
449 
450 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
451 		       struct dentry *new_dentry)
452 {
453 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
454 		return 0;
455 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
456 }
457 
458 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
459 			 struct path *new_dir, struct dentry *new_dentry,
460 			 unsigned int flags)
461 {
462 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
463 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
464 		return 0;
465 
466 	if (flags & RENAME_EXCHANGE) {
467 		int err = security_ops->path_rename(new_dir, new_dentry,
468 						    old_dir, old_dentry);
469 		if (err)
470 			return err;
471 	}
472 
473 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
474 					 new_dentry);
475 }
476 EXPORT_SYMBOL(security_path_rename);
477 
478 int security_path_truncate(struct path *path)
479 {
480 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
481 		return 0;
482 	return security_ops->path_truncate(path);
483 }
484 
485 int security_path_chmod(struct path *path, umode_t mode)
486 {
487 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
488 		return 0;
489 	return security_ops->path_chmod(path, mode);
490 }
491 
492 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
493 {
494 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
495 		return 0;
496 	return security_ops->path_chown(path, uid, gid);
497 }
498 
499 int security_path_chroot(struct path *path)
500 {
501 	return security_ops->path_chroot(path);
502 }
503 #endif
504 
505 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
506 {
507 	if (unlikely(IS_PRIVATE(dir)))
508 		return 0;
509 	return security_ops->inode_create(dir, dentry, mode);
510 }
511 EXPORT_SYMBOL_GPL(security_inode_create);
512 
513 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
514 			 struct dentry *new_dentry)
515 {
516 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
517 		return 0;
518 	return security_ops->inode_link(old_dentry, dir, new_dentry);
519 }
520 
521 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
522 {
523 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
524 		return 0;
525 	return security_ops->inode_unlink(dir, dentry);
526 }
527 
528 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
529 			    const char *old_name)
530 {
531 	if (unlikely(IS_PRIVATE(dir)))
532 		return 0;
533 	return security_ops->inode_symlink(dir, dentry, old_name);
534 }
535 
536 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
537 {
538 	if (unlikely(IS_PRIVATE(dir)))
539 		return 0;
540 	return security_ops->inode_mkdir(dir, dentry, mode);
541 }
542 EXPORT_SYMBOL_GPL(security_inode_mkdir);
543 
544 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
545 {
546 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
547 		return 0;
548 	return security_ops->inode_rmdir(dir, dentry);
549 }
550 
551 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
552 {
553 	if (unlikely(IS_PRIVATE(dir)))
554 		return 0;
555 	return security_ops->inode_mknod(dir, dentry, mode, dev);
556 }
557 
558 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
559 			   struct inode *new_dir, struct dentry *new_dentry,
560 			   unsigned int flags)
561 {
562         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
563             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
564 		return 0;
565 
566 	if (flags & RENAME_EXCHANGE) {
567 		int err = security_ops->inode_rename(new_dir, new_dentry,
568 						     old_dir, old_dentry);
569 		if (err)
570 			return err;
571 	}
572 
573 	return security_ops->inode_rename(old_dir, old_dentry,
574 					   new_dir, new_dentry);
575 }
576 
577 int security_inode_readlink(struct dentry *dentry)
578 {
579 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
580 		return 0;
581 	return security_ops->inode_readlink(dentry);
582 }
583 
584 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
585 {
586 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
587 		return 0;
588 	return security_ops->inode_follow_link(dentry, nd);
589 }
590 
591 int security_inode_permission(struct inode *inode, int mask)
592 {
593 	if (unlikely(IS_PRIVATE(inode)))
594 		return 0;
595 	return security_ops->inode_permission(inode, mask);
596 }
597 
598 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
599 {
600 	int ret;
601 
602 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
603 		return 0;
604 	ret = security_ops->inode_setattr(dentry, attr);
605 	if (ret)
606 		return ret;
607 	return evm_inode_setattr(dentry, attr);
608 }
609 EXPORT_SYMBOL_GPL(security_inode_setattr);
610 
611 int security_inode_getattr(const struct path *path)
612 {
613 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
614 		return 0;
615 	return security_ops->inode_getattr(path);
616 }
617 
618 int security_inode_setxattr(struct dentry *dentry, const char *name,
619 			    const void *value, size_t size, int flags)
620 {
621 	int ret;
622 
623 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
624 		return 0;
625 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
626 	if (ret)
627 		return ret;
628 	ret = ima_inode_setxattr(dentry, name, value, size);
629 	if (ret)
630 		return ret;
631 	return evm_inode_setxattr(dentry, name, value, size);
632 }
633 
634 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
635 				  const void *value, size_t size, int flags)
636 {
637 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
638 		return;
639 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
640 	evm_inode_post_setxattr(dentry, name, value, size);
641 }
642 
643 int security_inode_getxattr(struct dentry *dentry, const char *name)
644 {
645 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
646 		return 0;
647 	return security_ops->inode_getxattr(dentry, name);
648 }
649 
650 int security_inode_listxattr(struct dentry *dentry)
651 {
652 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
653 		return 0;
654 	return security_ops->inode_listxattr(dentry);
655 }
656 
657 int security_inode_removexattr(struct dentry *dentry, const char *name)
658 {
659 	int ret;
660 
661 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
662 		return 0;
663 	ret = security_ops->inode_removexattr(dentry, name);
664 	if (ret)
665 		return ret;
666 	ret = ima_inode_removexattr(dentry, name);
667 	if (ret)
668 		return ret;
669 	return evm_inode_removexattr(dentry, name);
670 }
671 
672 int security_inode_need_killpriv(struct dentry *dentry)
673 {
674 	return security_ops->inode_need_killpriv(dentry);
675 }
676 
677 int security_inode_killpriv(struct dentry *dentry)
678 {
679 	return security_ops->inode_killpriv(dentry);
680 }
681 
682 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
683 {
684 	if (unlikely(IS_PRIVATE(inode)))
685 		return -EOPNOTSUPP;
686 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
687 }
688 
689 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
690 {
691 	if (unlikely(IS_PRIVATE(inode)))
692 		return -EOPNOTSUPP;
693 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
694 }
695 
696 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
697 {
698 	if (unlikely(IS_PRIVATE(inode)))
699 		return 0;
700 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
701 }
702 EXPORT_SYMBOL(security_inode_listsecurity);
703 
704 void security_inode_getsecid(const struct inode *inode, u32 *secid)
705 {
706 	security_ops->inode_getsecid(inode, secid);
707 }
708 
709 int security_file_permission(struct file *file, int mask)
710 {
711 	int ret;
712 
713 	ret = security_ops->file_permission(file, mask);
714 	if (ret)
715 		return ret;
716 
717 	return fsnotify_perm(file, mask);
718 }
719 
720 int security_file_alloc(struct file *file)
721 {
722 	return security_ops->file_alloc_security(file);
723 }
724 
725 void security_file_free(struct file *file)
726 {
727 	security_ops->file_free_security(file);
728 }
729 
730 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
731 {
732 	return security_ops->file_ioctl(file, cmd, arg);
733 }
734 
735 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
736 {
737 	/*
738 	 * Does we have PROT_READ and does the application expect
739 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
740 	 */
741 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
742 		return prot;
743 	if (!(current->personality & READ_IMPLIES_EXEC))
744 		return prot;
745 	/*
746 	 * if that's an anonymous mapping, let it.
747 	 */
748 	if (!file)
749 		return prot | PROT_EXEC;
750 	/*
751 	 * ditto if it's not on noexec mount, except that on !MMU we need
752 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
753 	 */
754 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
755 #ifndef CONFIG_MMU
756 		if (file->f_op->mmap_capabilities) {
757 			unsigned caps = file->f_op->mmap_capabilities(file);
758 			if (!(caps & NOMMU_MAP_EXEC))
759 				return prot;
760 		}
761 #endif
762 		return prot | PROT_EXEC;
763 	}
764 	/* anything on noexec mount won't get PROT_EXEC */
765 	return prot;
766 }
767 
768 int security_mmap_file(struct file *file, unsigned long prot,
769 			unsigned long flags)
770 {
771 	int ret;
772 	ret = security_ops->mmap_file(file, prot,
773 					mmap_prot(file, prot), flags);
774 	if (ret)
775 		return ret;
776 	return ima_file_mmap(file, prot);
777 }
778 
779 int security_mmap_addr(unsigned long addr)
780 {
781 	return security_ops->mmap_addr(addr);
782 }
783 
784 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
785 			    unsigned long prot)
786 {
787 	return security_ops->file_mprotect(vma, reqprot, prot);
788 }
789 
790 int security_file_lock(struct file *file, unsigned int cmd)
791 {
792 	return security_ops->file_lock(file, cmd);
793 }
794 
795 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
796 {
797 	return security_ops->file_fcntl(file, cmd, arg);
798 }
799 
800 void security_file_set_fowner(struct file *file)
801 {
802 	security_ops->file_set_fowner(file);
803 }
804 
805 int security_file_send_sigiotask(struct task_struct *tsk,
806 				  struct fown_struct *fown, int sig)
807 {
808 	return security_ops->file_send_sigiotask(tsk, fown, sig);
809 }
810 
811 int security_file_receive(struct file *file)
812 {
813 	return security_ops->file_receive(file);
814 }
815 
816 int security_file_open(struct file *file, const struct cred *cred)
817 {
818 	int ret;
819 
820 	ret = security_ops->file_open(file, cred);
821 	if (ret)
822 		return ret;
823 
824 	return fsnotify_perm(file, MAY_OPEN);
825 }
826 
827 int security_task_create(unsigned long clone_flags)
828 {
829 	return security_ops->task_create(clone_flags);
830 }
831 
832 void security_task_free(struct task_struct *task)
833 {
834 #ifdef CONFIG_SECURITY_YAMA_STACKED
835 	yama_task_free(task);
836 #endif
837 	security_ops->task_free(task);
838 }
839 
840 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
841 {
842 	return security_ops->cred_alloc_blank(cred, gfp);
843 }
844 
845 void security_cred_free(struct cred *cred)
846 {
847 	security_ops->cred_free(cred);
848 }
849 
850 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
851 {
852 	return security_ops->cred_prepare(new, old, gfp);
853 }
854 
855 void security_transfer_creds(struct cred *new, const struct cred *old)
856 {
857 	security_ops->cred_transfer(new, old);
858 }
859 
860 int security_kernel_act_as(struct cred *new, u32 secid)
861 {
862 	return security_ops->kernel_act_as(new, secid);
863 }
864 
865 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
866 {
867 	return security_ops->kernel_create_files_as(new, inode);
868 }
869 
870 int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
871 {
872 	int ret;
873 
874 	ret = security_ops->kernel_fw_from_file(file, buf, size);
875 	if (ret)
876 		return ret;
877 	return ima_fw_from_file(file, buf, size);
878 }
879 EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
880 
881 int security_kernel_module_request(char *kmod_name)
882 {
883 	return security_ops->kernel_module_request(kmod_name);
884 }
885 
886 int security_kernel_module_from_file(struct file *file)
887 {
888 	int ret;
889 
890 	ret = security_ops->kernel_module_from_file(file);
891 	if (ret)
892 		return ret;
893 	return ima_module_check(file);
894 }
895 
896 int security_task_fix_setuid(struct cred *new, const struct cred *old,
897 			     int flags)
898 {
899 	return security_ops->task_fix_setuid(new, old, flags);
900 }
901 
902 int security_task_setpgid(struct task_struct *p, pid_t pgid)
903 {
904 	return security_ops->task_setpgid(p, pgid);
905 }
906 
907 int security_task_getpgid(struct task_struct *p)
908 {
909 	return security_ops->task_getpgid(p);
910 }
911 
912 int security_task_getsid(struct task_struct *p)
913 {
914 	return security_ops->task_getsid(p);
915 }
916 
917 void security_task_getsecid(struct task_struct *p, u32 *secid)
918 {
919 	security_ops->task_getsecid(p, secid);
920 }
921 EXPORT_SYMBOL(security_task_getsecid);
922 
923 int security_task_setnice(struct task_struct *p, int nice)
924 {
925 	return security_ops->task_setnice(p, nice);
926 }
927 
928 int security_task_setioprio(struct task_struct *p, int ioprio)
929 {
930 	return security_ops->task_setioprio(p, ioprio);
931 }
932 
933 int security_task_getioprio(struct task_struct *p)
934 {
935 	return security_ops->task_getioprio(p);
936 }
937 
938 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
939 		struct rlimit *new_rlim)
940 {
941 	return security_ops->task_setrlimit(p, resource, new_rlim);
942 }
943 
944 int security_task_setscheduler(struct task_struct *p)
945 {
946 	return security_ops->task_setscheduler(p);
947 }
948 
949 int security_task_getscheduler(struct task_struct *p)
950 {
951 	return security_ops->task_getscheduler(p);
952 }
953 
954 int security_task_movememory(struct task_struct *p)
955 {
956 	return security_ops->task_movememory(p);
957 }
958 
959 int security_task_kill(struct task_struct *p, struct siginfo *info,
960 			int sig, u32 secid)
961 {
962 	return security_ops->task_kill(p, info, sig, secid);
963 }
964 
965 int security_task_wait(struct task_struct *p)
966 {
967 	return security_ops->task_wait(p);
968 }
969 
970 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
971 			 unsigned long arg4, unsigned long arg5)
972 {
973 #ifdef CONFIG_SECURITY_YAMA_STACKED
974 	int rc;
975 	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
976 	if (rc != -ENOSYS)
977 		return rc;
978 #endif
979 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
980 }
981 
982 void security_task_to_inode(struct task_struct *p, struct inode *inode)
983 {
984 	security_ops->task_to_inode(p, inode);
985 }
986 
987 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
988 {
989 	return security_ops->ipc_permission(ipcp, flag);
990 }
991 
992 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
993 {
994 	security_ops->ipc_getsecid(ipcp, secid);
995 }
996 
997 int security_msg_msg_alloc(struct msg_msg *msg)
998 {
999 	return security_ops->msg_msg_alloc_security(msg);
1000 }
1001 
1002 void security_msg_msg_free(struct msg_msg *msg)
1003 {
1004 	security_ops->msg_msg_free_security(msg);
1005 }
1006 
1007 int security_msg_queue_alloc(struct msg_queue *msq)
1008 {
1009 	return security_ops->msg_queue_alloc_security(msq);
1010 }
1011 
1012 void security_msg_queue_free(struct msg_queue *msq)
1013 {
1014 	security_ops->msg_queue_free_security(msq);
1015 }
1016 
1017 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1018 {
1019 	return security_ops->msg_queue_associate(msq, msqflg);
1020 }
1021 
1022 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1023 {
1024 	return security_ops->msg_queue_msgctl(msq, cmd);
1025 }
1026 
1027 int security_msg_queue_msgsnd(struct msg_queue *msq,
1028 			       struct msg_msg *msg, int msqflg)
1029 {
1030 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
1031 }
1032 
1033 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1034 			       struct task_struct *target, long type, int mode)
1035 {
1036 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1037 }
1038 
1039 int security_shm_alloc(struct shmid_kernel *shp)
1040 {
1041 	return security_ops->shm_alloc_security(shp);
1042 }
1043 
1044 void security_shm_free(struct shmid_kernel *shp)
1045 {
1046 	security_ops->shm_free_security(shp);
1047 }
1048 
1049 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1050 {
1051 	return security_ops->shm_associate(shp, shmflg);
1052 }
1053 
1054 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1055 {
1056 	return security_ops->shm_shmctl(shp, cmd);
1057 }
1058 
1059 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1060 {
1061 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1062 }
1063 
1064 int security_sem_alloc(struct sem_array *sma)
1065 {
1066 	return security_ops->sem_alloc_security(sma);
1067 }
1068 
1069 void security_sem_free(struct sem_array *sma)
1070 {
1071 	security_ops->sem_free_security(sma);
1072 }
1073 
1074 int security_sem_associate(struct sem_array *sma, int semflg)
1075 {
1076 	return security_ops->sem_associate(sma, semflg);
1077 }
1078 
1079 int security_sem_semctl(struct sem_array *sma, int cmd)
1080 {
1081 	return security_ops->sem_semctl(sma, cmd);
1082 }
1083 
1084 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1085 			unsigned nsops, int alter)
1086 {
1087 	return security_ops->sem_semop(sma, sops, nsops, alter);
1088 }
1089 
1090 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1091 {
1092 	if (unlikely(inode && IS_PRIVATE(inode)))
1093 		return;
1094 	security_ops->d_instantiate(dentry, inode);
1095 }
1096 EXPORT_SYMBOL(security_d_instantiate);
1097 
1098 int security_getprocattr(struct task_struct *p, char *name, char **value)
1099 {
1100 	return security_ops->getprocattr(p, name, value);
1101 }
1102 
1103 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1104 {
1105 	return security_ops->setprocattr(p, name, value, size);
1106 }
1107 
1108 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1109 {
1110 	return security_ops->netlink_send(sk, skb);
1111 }
1112 
1113 int security_ismaclabel(const char *name)
1114 {
1115 	return security_ops->ismaclabel(name);
1116 }
1117 EXPORT_SYMBOL(security_ismaclabel);
1118 
1119 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1120 {
1121 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1122 }
1123 EXPORT_SYMBOL(security_secid_to_secctx);
1124 
1125 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1126 {
1127 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1128 }
1129 EXPORT_SYMBOL(security_secctx_to_secid);
1130 
1131 void security_release_secctx(char *secdata, u32 seclen)
1132 {
1133 	security_ops->release_secctx(secdata, seclen);
1134 }
1135 EXPORT_SYMBOL(security_release_secctx);
1136 
1137 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1138 {
1139 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1140 }
1141 EXPORT_SYMBOL(security_inode_notifysecctx);
1142 
1143 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1144 {
1145 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1146 }
1147 EXPORT_SYMBOL(security_inode_setsecctx);
1148 
1149 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1150 {
1151 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1152 }
1153 EXPORT_SYMBOL(security_inode_getsecctx);
1154 
1155 #ifdef CONFIG_SECURITY_NETWORK
1156 
1157 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1158 {
1159 	return security_ops->unix_stream_connect(sock, other, newsk);
1160 }
1161 EXPORT_SYMBOL(security_unix_stream_connect);
1162 
1163 int security_unix_may_send(struct socket *sock,  struct socket *other)
1164 {
1165 	return security_ops->unix_may_send(sock, other);
1166 }
1167 EXPORT_SYMBOL(security_unix_may_send);
1168 
1169 int security_socket_create(int family, int type, int protocol, int kern)
1170 {
1171 	return security_ops->socket_create(family, type, protocol, kern);
1172 }
1173 
1174 int security_socket_post_create(struct socket *sock, int family,
1175 				int type, int protocol, int kern)
1176 {
1177 	return security_ops->socket_post_create(sock, family, type,
1178 						protocol, kern);
1179 }
1180 
1181 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1182 {
1183 	return security_ops->socket_bind(sock, address, addrlen);
1184 }
1185 
1186 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1187 {
1188 	return security_ops->socket_connect(sock, address, addrlen);
1189 }
1190 
1191 int security_socket_listen(struct socket *sock, int backlog)
1192 {
1193 	return security_ops->socket_listen(sock, backlog);
1194 }
1195 
1196 int security_socket_accept(struct socket *sock, struct socket *newsock)
1197 {
1198 	return security_ops->socket_accept(sock, newsock);
1199 }
1200 
1201 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1202 {
1203 	return security_ops->socket_sendmsg(sock, msg, size);
1204 }
1205 
1206 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1207 			    int size, int flags)
1208 {
1209 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1210 }
1211 
1212 int security_socket_getsockname(struct socket *sock)
1213 {
1214 	return security_ops->socket_getsockname(sock);
1215 }
1216 
1217 int security_socket_getpeername(struct socket *sock)
1218 {
1219 	return security_ops->socket_getpeername(sock);
1220 }
1221 
1222 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1223 {
1224 	return security_ops->socket_getsockopt(sock, level, optname);
1225 }
1226 
1227 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1228 {
1229 	return security_ops->socket_setsockopt(sock, level, optname);
1230 }
1231 
1232 int security_socket_shutdown(struct socket *sock, int how)
1233 {
1234 	return security_ops->socket_shutdown(sock, how);
1235 }
1236 
1237 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1238 {
1239 	return security_ops->socket_sock_rcv_skb(sk, skb);
1240 }
1241 EXPORT_SYMBOL(security_sock_rcv_skb);
1242 
1243 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1244 				      int __user *optlen, unsigned len)
1245 {
1246 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1247 }
1248 
1249 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1250 {
1251 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1252 }
1253 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1254 
1255 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1256 {
1257 	return security_ops->sk_alloc_security(sk, family, priority);
1258 }
1259 
1260 void security_sk_free(struct sock *sk)
1261 {
1262 	security_ops->sk_free_security(sk);
1263 }
1264 
1265 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1266 {
1267 	security_ops->sk_clone_security(sk, newsk);
1268 }
1269 EXPORT_SYMBOL(security_sk_clone);
1270 
1271 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1272 {
1273 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1274 }
1275 EXPORT_SYMBOL(security_sk_classify_flow);
1276 
1277 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1278 {
1279 	security_ops->req_classify_flow(req, fl);
1280 }
1281 EXPORT_SYMBOL(security_req_classify_flow);
1282 
1283 void security_sock_graft(struct sock *sk, struct socket *parent)
1284 {
1285 	security_ops->sock_graft(sk, parent);
1286 }
1287 EXPORT_SYMBOL(security_sock_graft);
1288 
1289 int security_inet_conn_request(struct sock *sk,
1290 			struct sk_buff *skb, struct request_sock *req)
1291 {
1292 	return security_ops->inet_conn_request(sk, skb, req);
1293 }
1294 EXPORT_SYMBOL(security_inet_conn_request);
1295 
1296 void security_inet_csk_clone(struct sock *newsk,
1297 			const struct request_sock *req)
1298 {
1299 	security_ops->inet_csk_clone(newsk, req);
1300 }
1301 
1302 void security_inet_conn_established(struct sock *sk,
1303 			struct sk_buff *skb)
1304 {
1305 	security_ops->inet_conn_established(sk, skb);
1306 }
1307 
1308 int security_secmark_relabel_packet(u32 secid)
1309 {
1310 	return security_ops->secmark_relabel_packet(secid);
1311 }
1312 EXPORT_SYMBOL(security_secmark_relabel_packet);
1313 
1314 void security_secmark_refcount_inc(void)
1315 {
1316 	security_ops->secmark_refcount_inc();
1317 }
1318 EXPORT_SYMBOL(security_secmark_refcount_inc);
1319 
1320 void security_secmark_refcount_dec(void)
1321 {
1322 	security_ops->secmark_refcount_dec();
1323 }
1324 EXPORT_SYMBOL(security_secmark_refcount_dec);
1325 
1326 int security_tun_dev_alloc_security(void **security)
1327 {
1328 	return security_ops->tun_dev_alloc_security(security);
1329 }
1330 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1331 
1332 void security_tun_dev_free_security(void *security)
1333 {
1334 	security_ops->tun_dev_free_security(security);
1335 }
1336 EXPORT_SYMBOL(security_tun_dev_free_security);
1337 
1338 int security_tun_dev_create(void)
1339 {
1340 	return security_ops->tun_dev_create();
1341 }
1342 EXPORT_SYMBOL(security_tun_dev_create);
1343 
1344 int security_tun_dev_attach_queue(void *security)
1345 {
1346 	return security_ops->tun_dev_attach_queue(security);
1347 }
1348 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1349 
1350 int security_tun_dev_attach(struct sock *sk, void *security)
1351 {
1352 	return security_ops->tun_dev_attach(sk, security);
1353 }
1354 EXPORT_SYMBOL(security_tun_dev_attach);
1355 
1356 int security_tun_dev_open(void *security)
1357 {
1358 	return security_ops->tun_dev_open(security);
1359 }
1360 EXPORT_SYMBOL(security_tun_dev_open);
1361 
1362 #endif	/* CONFIG_SECURITY_NETWORK */
1363 
1364 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1365 
1366 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1367 			       struct xfrm_user_sec_ctx *sec_ctx,
1368 			       gfp_t gfp)
1369 {
1370 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1371 }
1372 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1373 
1374 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1375 			      struct xfrm_sec_ctx **new_ctxp)
1376 {
1377 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1378 }
1379 
1380 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1381 {
1382 	security_ops->xfrm_policy_free_security(ctx);
1383 }
1384 EXPORT_SYMBOL(security_xfrm_policy_free);
1385 
1386 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1387 {
1388 	return security_ops->xfrm_policy_delete_security(ctx);
1389 }
1390 
1391 int security_xfrm_state_alloc(struct xfrm_state *x,
1392 			      struct xfrm_user_sec_ctx *sec_ctx)
1393 {
1394 	return security_ops->xfrm_state_alloc(x, sec_ctx);
1395 }
1396 EXPORT_SYMBOL(security_xfrm_state_alloc);
1397 
1398 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1399 				      struct xfrm_sec_ctx *polsec, u32 secid)
1400 {
1401 	return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1402 }
1403 
1404 int security_xfrm_state_delete(struct xfrm_state *x)
1405 {
1406 	return security_ops->xfrm_state_delete_security(x);
1407 }
1408 EXPORT_SYMBOL(security_xfrm_state_delete);
1409 
1410 void security_xfrm_state_free(struct xfrm_state *x)
1411 {
1412 	security_ops->xfrm_state_free_security(x);
1413 }
1414 
1415 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1416 {
1417 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1418 }
1419 
1420 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1421 				       struct xfrm_policy *xp,
1422 				       const struct flowi *fl)
1423 {
1424 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1425 }
1426 
1427 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1428 {
1429 	return security_ops->xfrm_decode_session(skb, secid, 1);
1430 }
1431 
1432 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1433 {
1434 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1435 
1436 	BUG_ON(rc);
1437 }
1438 EXPORT_SYMBOL(security_skb_classify_flow);
1439 
1440 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1441 
1442 #ifdef CONFIG_KEYS
1443 
1444 int security_key_alloc(struct key *key, const struct cred *cred,
1445 		       unsigned long flags)
1446 {
1447 	return security_ops->key_alloc(key, cred, flags);
1448 }
1449 
1450 void security_key_free(struct key *key)
1451 {
1452 	security_ops->key_free(key);
1453 }
1454 
1455 int security_key_permission(key_ref_t key_ref,
1456 			    const struct cred *cred, unsigned perm)
1457 {
1458 	return security_ops->key_permission(key_ref, cred, perm);
1459 }
1460 
1461 int security_key_getsecurity(struct key *key, char **_buffer)
1462 {
1463 	return security_ops->key_getsecurity(key, _buffer);
1464 }
1465 
1466 #endif	/* CONFIG_KEYS */
1467 
1468 #ifdef CONFIG_AUDIT
1469 
1470 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1471 {
1472 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1473 }
1474 
1475 int security_audit_rule_known(struct audit_krule *krule)
1476 {
1477 	return security_ops->audit_rule_known(krule);
1478 }
1479 
1480 void security_audit_rule_free(void *lsmrule)
1481 {
1482 	security_ops->audit_rule_free(lsmrule);
1483 }
1484 
1485 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1486 			      struct audit_context *actx)
1487 {
1488 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1489 }
1490 
1491 #endif /* CONFIG_AUDIT */
1492