xref: /openbmc/linux/security/security.c (revision c6993e4a)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28 
29 #define MAX_LSM_EVM_XATTR	2
30 
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33 	CONFIG_DEFAULT_SECURITY;
34 
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37 	.name	= "default",
38 };
39 
40 static inline int __init verify(struct security_operations *ops)
41 {
42 	/* verify the security_operations structure exists */
43 	if (!ops)
44 		return -EINVAL;
45 	security_fixup_ops(ops);
46 	return 0;
47 }
48 
49 static void __init do_security_initcalls(void)
50 {
51 	initcall_t *call;
52 	call = __security_initcall_start;
53 	while (call < __security_initcall_end) {
54 		(*call) ();
55 		call++;
56 	}
57 }
58 
59 /**
60  * security_init - initializes the security framework
61  *
62  * This should be called early in the kernel initialization sequence.
63  */
64 int __init security_init(void)
65 {
66 	printk(KERN_INFO "Security Framework initialized\n");
67 
68 	security_fixup_ops(&default_security_ops);
69 	security_ops = &default_security_ops;
70 	do_security_initcalls();
71 
72 	return 0;
73 }
74 
75 void reset_security_ops(void)
76 {
77 	security_ops = &default_security_ops;
78 }
79 
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84 	return 1;
85 }
86 __setup("security=", choose_lsm);
87 
88 /**
89  * security_module_enable - Load given security module on boot ?
90  * @ops: a pointer to the struct security_operations that is to be checked.
91  *
92  * Each LSM must pass this method before registering its own operations
93  * to avoid security registration races. This method may also be used
94  * to check if your LSM is currently loaded during kernel initialization.
95  *
96  * Return true if:
97  *	-The passed LSM is the one chosen by user at boot time,
98  *	-or the passed LSM is configured as the default and the user did not
99  *	 choose an alternate LSM at boot time.
100  * Otherwise, return false.
101  */
102 int __init security_module_enable(struct security_operations *ops)
103 {
104 	return !strcmp(ops->name, chosen_lsm);
105 }
106 
107 /**
108  * register_security - registers a security framework with the kernel
109  * @ops: a pointer to the struct security_options that is to be registered
110  *
111  * This function allows a security module to register itself with the
112  * kernel security subsystem.  Some rudimentary checking is done on the @ops
113  * value passed to this function. You'll need to check first if your LSM
114  * is allowed to register its @ops by calling security_module_enable(@ops).
115  *
116  * If there is already a security module registered with the kernel,
117  * an error will be returned.  Otherwise %0 is returned on success.
118  */
119 int __init register_security(struct security_operations *ops)
120 {
121 	if (verify(ops)) {
122 		printk(KERN_DEBUG "%s could not verify "
123 		       "security_operations structure.\n", __func__);
124 		return -EINVAL;
125 	}
126 
127 	if (security_ops != &default_security_ops)
128 		return -EAGAIN;
129 
130 	security_ops = ops;
131 
132 	return 0;
133 }
134 
135 /* Security operations */
136 
137 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138 {
139 #ifdef CONFIG_SECURITY_YAMA_STACKED
140 	int rc;
141 	rc = yama_ptrace_access_check(child, mode);
142 	if (rc)
143 		return rc;
144 #endif
145 	return security_ops->ptrace_access_check(child, mode);
146 }
147 
148 int security_ptrace_traceme(struct task_struct *parent)
149 {
150 #ifdef CONFIG_SECURITY_YAMA_STACKED
151 	int rc;
152 	rc = yama_ptrace_traceme(parent);
153 	if (rc)
154 		return rc;
155 #endif
156 	return security_ops->ptrace_traceme(parent);
157 }
158 
159 int security_capget(struct task_struct *target,
160 		     kernel_cap_t *effective,
161 		     kernel_cap_t *inheritable,
162 		     kernel_cap_t *permitted)
163 {
164 	return security_ops->capget(target, effective, inheritable, permitted);
165 }
166 
167 int security_capset(struct cred *new, const struct cred *old,
168 		    const kernel_cap_t *effective,
169 		    const kernel_cap_t *inheritable,
170 		    const kernel_cap_t *permitted)
171 {
172 	return security_ops->capset(new, old,
173 				    effective, inheritable, permitted);
174 }
175 
176 int security_capable(const struct cred *cred, struct user_namespace *ns,
177 		     int cap)
178 {
179 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
180 }
181 
182 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
183 			     int cap)
184 {
185 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
186 }
187 
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190 	return security_ops->quotactl(cmds, type, id, sb);
191 }
192 
193 int security_quota_on(struct dentry *dentry)
194 {
195 	return security_ops->quota_on(dentry);
196 }
197 
198 int security_syslog(int type)
199 {
200 	return security_ops->syslog(type);
201 }
202 
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205 	return security_ops->settime(ts, tz);
206 }
207 
208 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209 {
210 	return security_ops->vm_enough_memory(mm, pages);
211 }
212 
213 int security_bprm_set_creds(struct linux_binprm *bprm)
214 {
215 	return security_ops->bprm_set_creds(bprm);
216 }
217 
218 int security_bprm_check(struct linux_binprm *bprm)
219 {
220 	int ret;
221 
222 	ret = security_ops->bprm_check_security(bprm);
223 	if (ret)
224 		return ret;
225 	return ima_bprm_check(bprm);
226 }
227 
228 void security_bprm_committing_creds(struct linux_binprm *bprm)
229 {
230 	security_ops->bprm_committing_creds(bprm);
231 }
232 
233 void security_bprm_committed_creds(struct linux_binprm *bprm)
234 {
235 	security_ops->bprm_committed_creds(bprm);
236 }
237 
238 int security_bprm_secureexec(struct linux_binprm *bprm)
239 {
240 	return security_ops->bprm_secureexec(bprm);
241 }
242 
243 int security_sb_alloc(struct super_block *sb)
244 {
245 	return security_ops->sb_alloc_security(sb);
246 }
247 
248 void security_sb_free(struct super_block *sb)
249 {
250 	security_ops->sb_free_security(sb);
251 }
252 
253 int security_sb_copy_data(char *orig, char *copy)
254 {
255 	return security_ops->sb_copy_data(orig, copy);
256 }
257 EXPORT_SYMBOL(security_sb_copy_data);
258 
259 int security_sb_remount(struct super_block *sb, void *data)
260 {
261 	return security_ops->sb_remount(sb, data);
262 }
263 
264 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
265 {
266 	return security_ops->sb_kern_mount(sb, flags, data);
267 }
268 
269 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
270 {
271 	return security_ops->sb_show_options(m, sb);
272 }
273 
274 int security_sb_statfs(struct dentry *dentry)
275 {
276 	return security_ops->sb_statfs(dentry);
277 }
278 
279 int security_sb_mount(char *dev_name, struct path *path,
280                        char *type, unsigned long flags, void *data)
281 {
282 	return security_ops->sb_mount(dev_name, path, type, flags, data);
283 }
284 
285 int security_sb_umount(struct vfsmount *mnt, int flags)
286 {
287 	return security_ops->sb_umount(mnt, flags);
288 }
289 
290 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
291 {
292 	return security_ops->sb_pivotroot(old_path, new_path);
293 }
294 
295 int security_sb_set_mnt_opts(struct super_block *sb,
296 				struct security_mnt_opts *opts)
297 {
298 	return security_ops->sb_set_mnt_opts(sb, opts);
299 }
300 EXPORT_SYMBOL(security_sb_set_mnt_opts);
301 
302 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
303 				struct super_block *newsb)
304 {
305 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
306 }
307 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
308 
309 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
310 {
311 	return security_ops->sb_parse_opts_str(options, opts);
312 }
313 EXPORT_SYMBOL(security_sb_parse_opts_str);
314 
315 int security_inode_alloc(struct inode *inode)
316 {
317 	inode->i_security = NULL;
318 	return security_ops->inode_alloc_security(inode);
319 }
320 
321 void security_inode_free(struct inode *inode)
322 {
323 	integrity_inode_free(inode);
324 	security_ops->inode_free_security(inode);
325 }
326 
327 int security_inode_init_security(struct inode *inode, struct inode *dir,
328 				 const struct qstr *qstr,
329 				 const initxattrs initxattrs, void *fs_data)
330 {
331 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
332 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
333 	int ret;
334 
335 	if (unlikely(IS_PRIVATE(inode)))
336 		return 0;
337 
338 	memset(new_xattrs, 0, sizeof new_xattrs);
339 	if (!initxattrs)
340 		return security_ops->inode_init_security(inode, dir, qstr,
341 							 NULL, NULL, NULL);
342 	lsm_xattr = new_xattrs;
343 	ret = security_ops->inode_init_security(inode, dir, qstr,
344 						&lsm_xattr->name,
345 						&lsm_xattr->value,
346 						&lsm_xattr->value_len);
347 	if (ret)
348 		goto out;
349 
350 	evm_xattr = lsm_xattr + 1;
351 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
352 	if (ret)
353 		goto out;
354 	ret = initxattrs(inode, new_xattrs, fs_data);
355 out:
356 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
357 		kfree(xattr->name);
358 		kfree(xattr->value);
359 	}
360 	return (ret == -EOPNOTSUPP) ? 0 : ret;
361 }
362 EXPORT_SYMBOL(security_inode_init_security);
363 
364 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
365 				     const struct qstr *qstr, char **name,
366 				     void **value, size_t *len)
367 {
368 	if (unlikely(IS_PRIVATE(inode)))
369 		return -EOPNOTSUPP;
370 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
371 						 len);
372 }
373 EXPORT_SYMBOL(security_old_inode_init_security);
374 
375 #ifdef CONFIG_SECURITY_PATH
376 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
377 			unsigned int dev)
378 {
379 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380 		return 0;
381 	return security_ops->path_mknod(dir, dentry, mode, dev);
382 }
383 EXPORT_SYMBOL(security_path_mknod);
384 
385 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
386 {
387 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388 		return 0;
389 	return security_ops->path_mkdir(dir, dentry, mode);
390 }
391 EXPORT_SYMBOL(security_path_mkdir);
392 
393 int security_path_rmdir(struct path *dir, struct dentry *dentry)
394 {
395 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_rmdir(dir, dentry);
398 }
399 
400 int security_path_unlink(struct path *dir, struct dentry *dentry)
401 {
402 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403 		return 0;
404 	return security_ops->path_unlink(dir, dentry);
405 }
406 EXPORT_SYMBOL(security_path_unlink);
407 
408 int security_path_symlink(struct path *dir, struct dentry *dentry,
409 			  const char *old_name)
410 {
411 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
412 		return 0;
413 	return security_ops->path_symlink(dir, dentry, old_name);
414 }
415 
416 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
417 		       struct dentry *new_dentry)
418 {
419 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
420 		return 0;
421 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
422 }
423 
424 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
425 			 struct path *new_dir, struct dentry *new_dentry)
426 {
427 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429 		return 0;
430 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
431 					 new_dentry);
432 }
433 EXPORT_SYMBOL(security_path_rename);
434 
435 int security_path_truncate(struct path *path)
436 {
437 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438 		return 0;
439 	return security_ops->path_truncate(path);
440 }
441 
442 int security_path_chmod(struct path *path, umode_t mode)
443 {
444 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
445 		return 0;
446 	return security_ops->path_chmod(path, mode);
447 }
448 
449 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
450 {
451 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452 		return 0;
453 	return security_ops->path_chown(path, uid, gid);
454 }
455 
456 int security_path_chroot(struct path *path)
457 {
458 	return security_ops->path_chroot(path);
459 }
460 #endif
461 
462 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
463 {
464 	if (unlikely(IS_PRIVATE(dir)))
465 		return 0;
466 	return security_ops->inode_create(dir, dentry, mode);
467 }
468 EXPORT_SYMBOL_GPL(security_inode_create);
469 
470 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
471 			 struct dentry *new_dentry)
472 {
473 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
474 		return 0;
475 	return security_ops->inode_link(old_dentry, dir, new_dentry);
476 }
477 
478 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
479 {
480 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
481 		return 0;
482 	return security_ops->inode_unlink(dir, dentry);
483 }
484 
485 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
486 			    const char *old_name)
487 {
488 	if (unlikely(IS_PRIVATE(dir)))
489 		return 0;
490 	return security_ops->inode_symlink(dir, dentry, old_name);
491 }
492 
493 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
494 {
495 	if (unlikely(IS_PRIVATE(dir)))
496 		return 0;
497 	return security_ops->inode_mkdir(dir, dentry, mode);
498 }
499 EXPORT_SYMBOL_GPL(security_inode_mkdir);
500 
501 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
502 {
503 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
504 		return 0;
505 	return security_ops->inode_rmdir(dir, dentry);
506 }
507 
508 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
509 {
510 	if (unlikely(IS_PRIVATE(dir)))
511 		return 0;
512 	return security_ops->inode_mknod(dir, dentry, mode, dev);
513 }
514 
515 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
516 			   struct inode *new_dir, struct dentry *new_dentry)
517 {
518         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
519             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
520 		return 0;
521 	return security_ops->inode_rename(old_dir, old_dentry,
522 					   new_dir, new_dentry);
523 }
524 
525 int security_inode_readlink(struct dentry *dentry)
526 {
527 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
528 		return 0;
529 	return security_ops->inode_readlink(dentry);
530 }
531 
532 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
533 {
534 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 		return 0;
536 	return security_ops->inode_follow_link(dentry, nd);
537 }
538 
539 int security_inode_permission(struct inode *inode, int mask)
540 {
541 	if (unlikely(IS_PRIVATE(inode)))
542 		return 0;
543 	return security_ops->inode_permission(inode, mask);
544 }
545 
546 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548 	int ret;
549 
550 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
551 		return 0;
552 	ret = security_ops->inode_setattr(dentry, attr);
553 	if (ret)
554 		return ret;
555 	return evm_inode_setattr(dentry, attr);
556 }
557 EXPORT_SYMBOL_GPL(security_inode_setattr);
558 
559 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
560 {
561 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
562 		return 0;
563 	return security_ops->inode_getattr(mnt, dentry);
564 }
565 
566 int security_inode_setxattr(struct dentry *dentry, const char *name,
567 			    const void *value, size_t size, int flags)
568 {
569 	int ret;
570 
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
574 	if (ret)
575 		return ret;
576 	return evm_inode_setxattr(dentry, name, value, size);
577 }
578 
579 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
580 				  const void *value, size_t size, int flags)
581 {
582 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
583 		return;
584 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
585 	evm_inode_post_setxattr(dentry, name, value, size);
586 }
587 
588 int security_inode_getxattr(struct dentry *dentry, const char *name)
589 {
590 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
591 		return 0;
592 	return security_ops->inode_getxattr(dentry, name);
593 }
594 
595 int security_inode_listxattr(struct dentry *dentry)
596 {
597 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
598 		return 0;
599 	return security_ops->inode_listxattr(dentry);
600 }
601 
602 int security_inode_removexattr(struct dentry *dentry, const char *name)
603 {
604 	int ret;
605 
606 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
607 		return 0;
608 	ret = security_ops->inode_removexattr(dentry, name);
609 	if (ret)
610 		return ret;
611 	return evm_inode_removexattr(dentry, name);
612 }
613 
614 int security_inode_need_killpriv(struct dentry *dentry)
615 {
616 	return security_ops->inode_need_killpriv(dentry);
617 }
618 
619 int security_inode_killpriv(struct dentry *dentry)
620 {
621 	return security_ops->inode_killpriv(dentry);
622 }
623 
624 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
625 {
626 	if (unlikely(IS_PRIVATE(inode)))
627 		return -EOPNOTSUPP;
628 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
629 }
630 
631 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
632 {
633 	if (unlikely(IS_PRIVATE(inode)))
634 		return -EOPNOTSUPP;
635 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
636 }
637 
638 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
639 {
640 	if (unlikely(IS_PRIVATE(inode)))
641 		return 0;
642 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
643 }
644 
645 void security_inode_getsecid(const struct inode *inode, u32 *secid)
646 {
647 	security_ops->inode_getsecid(inode, secid);
648 }
649 
650 int security_file_permission(struct file *file, int mask)
651 {
652 	int ret;
653 
654 	ret = security_ops->file_permission(file, mask);
655 	if (ret)
656 		return ret;
657 
658 	return fsnotify_perm(file, mask);
659 }
660 
661 int security_file_alloc(struct file *file)
662 {
663 	return security_ops->file_alloc_security(file);
664 }
665 
666 void security_file_free(struct file *file)
667 {
668 	security_ops->file_free_security(file);
669 }
670 
671 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
672 {
673 	return security_ops->file_ioctl(file, cmd, arg);
674 }
675 
676 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
677 {
678 	/*
679 	 * Does we have PROT_READ and does the application expect
680 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
681 	 */
682 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
683 		return prot;
684 	if (!(current->personality & READ_IMPLIES_EXEC))
685 		return prot;
686 	/*
687 	 * if that's an anonymous mapping, let it.
688 	 */
689 	if (!file)
690 		return prot | PROT_EXEC;
691 	/*
692 	 * ditto if it's not on noexec mount, except that on !MMU we need
693 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
694 	 */
695 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
696 #ifndef CONFIG_MMU
697 		unsigned long caps = 0;
698 		struct address_space *mapping = file->f_mapping;
699 		if (mapping && mapping->backing_dev_info)
700 			caps = mapping->backing_dev_info->capabilities;
701 		if (!(caps & BDI_CAP_EXEC_MAP))
702 			return prot;
703 #endif
704 		return prot | PROT_EXEC;
705 	}
706 	/* anything on noexec mount won't get PROT_EXEC */
707 	return prot;
708 }
709 
710 int security_mmap_file(struct file *file, unsigned long prot,
711 			unsigned long flags)
712 {
713 	int ret;
714 	ret = security_ops->mmap_file(file, prot,
715 					mmap_prot(file, prot), flags);
716 	if (ret)
717 		return ret;
718 	return ima_file_mmap(file, prot);
719 }
720 
721 int security_mmap_addr(unsigned long addr)
722 {
723 	return security_ops->mmap_addr(addr);
724 }
725 
726 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
727 			    unsigned long prot)
728 {
729 	return security_ops->file_mprotect(vma, reqprot, prot);
730 }
731 
732 int security_file_lock(struct file *file, unsigned int cmd)
733 {
734 	return security_ops->file_lock(file, cmd);
735 }
736 
737 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
738 {
739 	return security_ops->file_fcntl(file, cmd, arg);
740 }
741 
742 int security_file_set_fowner(struct file *file)
743 {
744 	return security_ops->file_set_fowner(file);
745 }
746 
747 int security_file_send_sigiotask(struct task_struct *tsk,
748 				  struct fown_struct *fown, int sig)
749 {
750 	return security_ops->file_send_sigiotask(tsk, fown, sig);
751 }
752 
753 int security_file_receive(struct file *file)
754 {
755 	return security_ops->file_receive(file);
756 }
757 
758 int security_file_open(struct file *file, const struct cred *cred)
759 {
760 	int ret;
761 
762 	ret = security_ops->file_open(file, cred);
763 	if (ret)
764 		return ret;
765 
766 	return fsnotify_perm(file, MAY_OPEN);
767 }
768 
769 int security_task_create(unsigned long clone_flags)
770 {
771 	return security_ops->task_create(clone_flags);
772 }
773 
774 void security_task_free(struct task_struct *task)
775 {
776 #ifdef CONFIG_SECURITY_YAMA_STACKED
777 	yama_task_free(task);
778 #endif
779 	security_ops->task_free(task);
780 }
781 
782 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
783 {
784 	return security_ops->cred_alloc_blank(cred, gfp);
785 }
786 
787 void security_cred_free(struct cred *cred)
788 {
789 	security_ops->cred_free(cred);
790 }
791 
792 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
793 {
794 	return security_ops->cred_prepare(new, old, gfp);
795 }
796 
797 void security_transfer_creds(struct cred *new, const struct cred *old)
798 {
799 	security_ops->cred_transfer(new, old);
800 }
801 
802 int security_kernel_act_as(struct cred *new, u32 secid)
803 {
804 	return security_ops->kernel_act_as(new, secid);
805 }
806 
807 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
808 {
809 	return security_ops->kernel_create_files_as(new, inode);
810 }
811 
812 int security_kernel_module_request(char *kmod_name)
813 {
814 	return security_ops->kernel_module_request(kmod_name);
815 }
816 
817 int security_task_fix_setuid(struct cred *new, const struct cred *old,
818 			     int flags)
819 {
820 	return security_ops->task_fix_setuid(new, old, flags);
821 }
822 
823 int security_task_setpgid(struct task_struct *p, pid_t pgid)
824 {
825 	return security_ops->task_setpgid(p, pgid);
826 }
827 
828 int security_task_getpgid(struct task_struct *p)
829 {
830 	return security_ops->task_getpgid(p);
831 }
832 
833 int security_task_getsid(struct task_struct *p)
834 {
835 	return security_ops->task_getsid(p);
836 }
837 
838 void security_task_getsecid(struct task_struct *p, u32 *secid)
839 {
840 	security_ops->task_getsecid(p, secid);
841 }
842 EXPORT_SYMBOL(security_task_getsecid);
843 
844 int security_task_setnice(struct task_struct *p, int nice)
845 {
846 	return security_ops->task_setnice(p, nice);
847 }
848 
849 int security_task_setioprio(struct task_struct *p, int ioprio)
850 {
851 	return security_ops->task_setioprio(p, ioprio);
852 }
853 
854 int security_task_getioprio(struct task_struct *p)
855 {
856 	return security_ops->task_getioprio(p);
857 }
858 
859 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
860 		struct rlimit *new_rlim)
861 {
862 	return security_ops->task_setrlimit(p, resource, new_rlim);
863 }
864 
865 int security_task_setscheduler(struct task_struct *p)
866 {
867 	return security_ops->task_setscheduler(p);
868 }
869 
870 int security_task_getscheduler(struct task_struct *p)
871 {
872 	return security_ops->task_getscheduler(p);
873 }
874 
875 int security_task_movememory(struct task_struct *p)
876 {
877 	return security_ops->task_movememory(p);
878 }
879 
880 int security_task_kill(struct task_struct *p, struct siginfo *info,
881 			int sig, u32 secid)
882 {
883 	return security_ops->task_kill(p, info, sig, secid);
884 }
885 
886 int security_task_wait(struct task_struct *p)
887 {
888 	return security_ops->task_wait(p);
889 }
890 
891 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
892 			 unsigned long arg4, unsigned long arg5)
893 {
894 #ifdef CONFIG_SECURITY_YAMA_STACKED
895 	int rc;
896 	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
897 	if (rc != -ENOSYS)
898 		return rc;
899 #endif
900 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
901 }
902 
903 void security_task_to_inode(struct task_struct *p, struct inode *inode)
904 {
905 	security_ops->task_to_inode(p, inode);
906 }
907 
908 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
909 {
910 	return security_ops->ipc_permission(ipcp, flag);
911 }
912 
913 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
914 {
915 	security_ops->ipc_getsecid(ipcp, secid);
916 }
917 
918 int security_msg_msg_alloc(struct msg_msg *msg)
919 {
920 	return security_ops->msg_msg_alloc_security(msg);
921 }
922 
923 void security_msg_msg_free(struct msg_msg *msg)
924 {
925 	security_ops->msg_msg_free_security(msg);
926 }
927 
928 int security_msg_queue_alloc(struct msg_queue *msq)
929 {
930 	return security_ops->msg_queue_alloc_security(msq);
931 }
932 
933 void security_msg_queue_free(struct msg_queue *msq)
934 {
935 	security_ops->msg_queue_free_security(msq);
936 }
937 
938 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
939 {
940 	return security_ops->msg_queue_associate(msq, msqflg);
941 }
942 
943 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
944 {
945 	return security_ops->msg_queue_msgctl(msq, cmd);
946 }
947 
948 int security_msg_queue_msgsnd(struct msg_queue *msq,
949 			       struct msg_msg *msg, int msqflg)
950 {
951 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
952 }
953 
954 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
955 			       struct task_struct *target, long type, int mode)
956 {
957 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
958 }
959 
960 int security_shm_alloc(struct shmid_kernel *shp)
961 {
962 	return security_ops->shm_alloc_security(shp);
963 }
964 
965 void security_shm_free(struct shmid_kernel *shp)
966 {
967 	security_ops->shm_free_security(shp);
968 }
969 
970 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
971 {
972 	return security_ops->shm_associate(shp, shmflg);
973 }
974 
975 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
976 {
977 	return security_ops->shm_shmctl(shp, cmd);
978 }
979 
980 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
981 {
982 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
983 }
984 
985 int security_sem_alloc(struct sem_array *sma)
986 {
987 	return security_ops->sem_alloc_security(sma);
988 }
989 
990 void security_sem_free(struct sem_array *sma)
991 {
992 	security_ops->sem_free_security(sma);
993 }
994 
995 int security_sem_associate(struct sem_array *sma, int semflg)
996 {
997 	return security_ops->sem_associate(sma, semflg);
998 }
999 
1000 int security_sem_semctl(struct sem_array *sma, int cmd)
1001 {
1002 	return security_ops->sem_semctl(sma, cmd);
1003 }
1004 
1005 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1006 			unsigned nsops, int alter)
1007 {
1008 	return security_ops->sem_semop(sma, sops, nsops, alter);
1009 }
1010 
1011 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1012 {
1013 	if (unlikely(inode && IS_PRIVATE(inode)))
1014 		return;
1015 	security_ops->d_instantiate(dentry, inode);
1016 }
1017 EXPORT_SYMBOL(security_d_instantiate);
1018 
1019 int security_getprocattr(struct task_struct *p, char *name, char **value)
1020 {
1021 	return security_ops->getprocattr(p, name, value);
1022 }
1023 
1024 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1025 {
1026 	return security_ops->setprocattr(p, name, value, size);
1027 }
1028 
1029 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1030 {
1031 	return security_ops->netlink_send(sk, skb);
1032 }
1033 
1034 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1035 {
1036 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1037 }
1038 EXPORT_SYMBOL(security_secid_to_secctx);
1039 
1040 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1041 {
1042 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1043 }
1044 EXPORT_SYMBOL(security_secctx_to_secid);
1045 
1046 void security_release_secctx(char *secdata, u32 seclen)
1047 {
1048 	security_ops->release_secctx(secdata, seclen);
1049 }
1050 EXPORT_SYMBOL(security_release_secctx);
1051 
1052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1053 {
1054 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1055 }
1056 EXPORT_SYMBOL(security_inode_notifysecctx);
1057 
1058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1059 {
1060 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1061 }
1062 EXPORT_SYMBOL(security_inode_setsecctx);
1063 
1064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1065 {
1066 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1067 }
1068 EXPORT_SYMBOL(security_inode_getsecctx);
1069 
1070 #ifdef CONFIG_SECURITY_NETWORK
1071 
1072 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1073 {
1074 	return security_ops->unix_stream_connect(sock, other, newsk);
1075 }
1076 EXPORT_SYMBOL(security_unix_stream_connect);
1077 
1078 int security_unix_may_send(struct socket *sock,  struct socket *other)
1079 {
1080 	return security_ops->unix_may_send(sock, other);
1081 }
1082 EXPORT_SYMBOL(security_unix_may_send);
1083 
1084 int security_socket_create(int family, int type, int protocol, int kern)
1085 {
1086 	return security_ops->socket_create(family, type, protocol, kern);
1087 }
1088 
1089 int security_socket_post_create(struct socket *sock, int family,
1090 				int type, int protocol, int kern)
1091 {
1092 	return security_ops->socket_post_create(sock, family, type,
1093 						protocol, kern);
1094 }
1095 
1096 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1097 {
1098 	return security_ops->socket_bind(sock, address, addrlen);
1099 }
1100 
1101 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1102 {
1103 	return security_ops->socket_connect(sock, address, addrlen);
1104 }
1105 
1106 int security_socket_listen(struct socket *sock, int backlog)
1107 {
1108 	return security_ops->socket_listen(sock, backlog);
1109 }
1110 
1111 int security_socket_accept(struct socket *sock, struct socket *newsock)
1112 {
1113 	return security_ops->socket_accept(sock, newsock);
1114 }
1115 
1116 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1117 {
1118 	return security_ops->socket_sendmsg(sock, msg, size);
1119 }
1120 
1121 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1122 			    int size, int flags)
1123 {
1124 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1125 }
1126 
1127 int security_socket_getsockname(struct socket *sock)
1128 {
1129 	return security_ops->socket_getsockname(sock);
1130 }
1131 
1132 int security_socket_getpeername(struct socket *sock)
1133 {
1134 	return security_ops->socket_getpeername(sock);
1135 }
1136 
1137 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1138 {
1139 	return security_ops->socket_getsockopt(sock, level, optname);
1140 }
1141 
1142 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1143 {
1144 	return security_ops->socket_setsockopt(sock, level, optname);
1145 }
1146 
1147 int security_socket_shutdown(struct socket *sock, int how)
1148 {
1149 	return security_ops->socket_shutdown(sock, how);
1150 }
1151 
1152 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1153 {
1154 	return security_ops->socket_sock_rcv_skb(sk, skb);
1155 }
1156 EXPORT_SYMBOL(security_sock_rcv_skb);
1157 
1158 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1159 				      int __user *optlen, unsigned len)
1160 {
1161 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1162 }
1163 
1164 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1165 {
1166 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1167 }
1168 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1169 
1170 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1171 {
1172 	return security_ops->sk_alloc_security(sk, family, priority);
1173 }
1174 
1175 void security_sk_free(struct sock *sk)
1176 {
1177 	security_ops->sk_free_security(sk);
1178 }
1179 
1180 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1181 {
1182 	security_ops->sk_clone_security(sk, newsk);
1183 }
1184 EXPORT_SYMBOL(security_sk_clone);
1185 
1186 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1187 {
1188 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1189 }
1190 EXPORT_SYMBOL(security_sk_classify_flow);
1191 
1192 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1193 {
1194 	security_ops->req_classify_flow(req, fl);
1195 }
1196 EXPORT_SYMBOL(security_req_classify_flow);
1197 
1198 void security_sock_graft(struct sock *sk, struct socket *parent)
1199 {
1200 	security_ops->sock_graft(sk, parent);
1201 }
1202 EXPORT_SYMBOL(security_sock_graft);
1203 
1204 int security_inet_conn_request(struct sock *sk,
1205 			struct sk_buff *skb, struct request_sock *req)
1206 {
1207 	return security_ops->inet_conn_request(sk, skb, req);
1208 }
1209 EXPORT_SYMBOL(security_inet_conn_request);
1210 
1211 void security_inet_csk_clone(struct sock *newsk,
1212 			const struct request_sock *req)
1213 {
1214 	security_ops->inet_csk_clone(newsk, req);
1215 }
1216 
1217 void security_inet_conn_established(struct sock *sk,
1218 			struct sk_buff *skb)
1219 {
1220 	security_ops->inet_conn_established(sk, skb);
1221 }
1222 
1223 int security_secmark_relabel_packet(u32 secid)
1224 {
1225 	return security_ops->secmark_relabel_packet(secid);
1226 }
1227 EXPORT_SYMBOL(security_secmark_relabel_packet);
1228 
1229 void security_secmark_refcount_inc(void)
1230 {
1231 	security_ops->secmark_refcount_inc();
1232 }
1233 EXPORT_SYMBOL(security_secmark_refcount_inc);
1234 
1235 void security_secmark_refcount_dec(void)
1236 {
1237 	security_ops->secmark_refcount_dec();
1238 }
1239 EXPORT_SYMBOL(security_secmark_refcount_dec);
1240 
1241 int security_tun_dev_create(void)
1242 {
1243 	return security_ops->tun_dev_create();
1244 }
1245 EXPORT_SYMBOL(security_tun_dev_create);
1246 
1247 void security_tun_dev_post_create(struct sock *sk)
1248 {
1249 	return security_ops->tun_dev_post_create(sk);
1250 }
1251 EXPORT_SYMBOL(security_tun_dev_post_create);
1252 
1253 int security_tun_dev_attach(struct sock *sk)
1254 {
1255 	return security_ops->tun_dev_attach(sk);
1256 }
1257 EXPORT_SYMBOL(security_tun_dev_attach);
1258 
1259 #endif	/* CONFIG_SECURITY_NETWORK */
1260 
1261 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1262 
1263 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1264 {
1265 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1266 }
1267 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1268 
1269 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1270 			      struct xfrm_sec_ctx **new_ctxp)
1271 {
1272 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1273 }
1274 
1275 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1276 {
1277 	security_ops->xfrm_policy_free_security(ctx);
1278 }
1279 EXPORT_SYMBOL(security_xfrm_policy_free);
1280 
1281 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1282 {
1283 	return security_ops->xfrm_policy_delete_security(ctx);
1284 }
1285 
1286 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1287 {
1288 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1289 }
1290 EXPORT_SYMBOL(security_xfrm_state_alloc);
1291 
1292 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1293 				      struct xfrm_sec_ctx *polsec, u32 secid)
1294 {
1295 	if (!polsec)
1296 		return 0;
1297 	/*
1298 	 * We want the context to be taken from secid which is usually
1299 	 * from the sock.
1300 	 */
1301 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1302 }
1303 
1304 int security_xfrm_state_delete(struct xfrm_state *x)
1305 {
1306 	return security_ops->xfrm_state_delete_security(x);
1307 }
1308 EXPORT_SYMBOL(security_xfrm_state_delete);
1309 
1310 void security_xfrm_state_free(struct xfrm_state *x)
1311 {
1312 	security_ops->xfrm_state_free_security(x);
1313 }
1314 
1315 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1316 {
1317 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1318 }
1319 
1320 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1321 				       struct xfrm_policy *xp,
1322 				       const struct flowi *fl)
1323 {
1324 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1325 }
1326 
1327 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1328 {
1329 	return security_ops->xfrm_decode_session(skb, secid, 1);
1330 }
1331 
1332 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1333 {
1334 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1335 
1336 	BUG_ON(rc);
1337 }
1338 EXPORT_SYMBOL(security_skb_classify_flow);
1339 
1340 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1341 
1342 #ifdef CONFIG_KEYS
1343 
1344 int security_key_alloc(struct key *key, const struct cred *cred,
1345 		       unsigned long flags)
1346 {
1347 	return security_ops->key_alloc(key, cred, flags);
1348 }
1349 
1350 void security_key_free(struct key *key)
1351 {
1352 	security_ops->key_free(key);
1353 }
1354 
1355 int security_key_permission(key_ref_t key_ref,
1356 			    const struct cred *cred, key_perm_t perm)
1357 {
1358 	return security_ops->key_permission(key_ref, cred, perm);
1359 }
1360 
1361 int security_key_getsecurity(struct key *key, char **_buffer)
1362 {
1363 	return security_ops->key_getsecurity(key, _buffer);
1364 }
1365 
1366 #endif	/* CONFIG_KEYS */
1367 
1368 #ifdef CONFIG_AUDIT
1369 
1370 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1371 {
1372 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1373 }
1374 
1375 int security_audit_rule_known(struct audit_krule *krule)
1376 {
1377 	return security_ops->audit_rule_known(krule);
1378 }
1379 
1380 void security_audit_rule_free(void *lsmrule)
1381 {
1382 	security_ops->audit_rule_free(lsmrule);
1383 }
1384 
1385 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1386 			      struct audit_context *actx)
1387 {
1388 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1389 }
1390 
1391 #endif /* CONFIG_AUDIT */
1392