1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25 /* things that live in capability.c */ 26 extern void __init security_fixup_ops(struct security_operations *ops); 27 28 static struct security_operations *security_ops; 29 static struct security_operations default_security_ops = { 30 .name = "default", 31 }; 32 33 static inline int __init verify(struct security_operations *ops) 34 { 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40 } 41 42 static void __init do_security_initcalls(void) 43 { 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50 } 51 52 /** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57 int __init security_init(void) 58 { 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66 } 67 68 void reset_security_ops(void) 69 { 70 security_ops = &default_security_ops; 71 } 72 73 /* Save user chosen LSM */ 74 static int __init choose_lsm(char *str) 75 { 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78 } 79 __setup("security=", choose_lsm); 80 81 /** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time. 93 * Otherwise, return false. 94 */ 95 int __init security_module_enable(struct security_operations *ops) 96 { 97 return !strcmp(ops->name, chosen_lsm); 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int __init register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_access_check(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152 { 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155 } 156 157 int security_capable(int cap) 158 { 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161 } 162 163 int security_real_capable(struct task_struct *tsk, int cap) 164 { 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172 } 173 174 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175 { 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183 } 184 185 int security_sysctl(struct ctl_table *table, int op) 186 { 187 return security_ops->sysctl(table, op); 188 } 189 190 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 191 { 192 return security_ops->quotactl(cmds, type, id, sb); 193 } 194 195 int security_quota_on(struct dentry *dentry) 196 { 197 return security_ops->quota_on(dentry); 198 } 199 200 int security_syslog(int type) 201 { 202 return security_ops->syslog(type); 203 } 204 205 int security_settime(struct timespec *ts, struct timezone *tz) 206 { 207 return security_ops->settime(ts, tz); 208 } 209 210 int security_vm_enough_memory(long pages) 211 { 212 WARN_ON(current->mm == NULL); 213 return security_ops->vm_enough_memory(current->mm, pages); 214 } 215 216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 217 { 218 WARN_ON(mm == NULL); 219 return security_ops->vm_enough_memory(mm, pages); 220 } 221 222 int security_vm_enough_memory_kern(long pages) 223 { 224 /* If current->mm is a kernel thread then we will pass NULL, 225 for this specific case that is fine */ 226 return security_ops->vm_enough_memory(current->mm, pages); 227 } 228 229 int security_bprm_set_creds(struct linux_binprm *bprm) 230 { 231 return security_ops->bprm_set_creds(bprm); 232 } 233 234 int security_bprm_check(struct linux_binprm *bprm) 235 { 236 int ret; 237 238 ret = security_ops->bprm_check_security(bprm); 239 if (ret) 240 return ret; 241 return ima_bprm_check(bprm); 242 } 243 244 void security_bprm_committing_creds(struct linux_binprm *bprm) 245 { 246 security_ops->bprm_committing_creds(bprm); 247 } 248 249 void security_bprm_committed_creds(struct linux_binprm *bprm) 250 { 251 security_ops->bprm_committed_creds(bprm); 252 } 253 254 int security_bprm_secureexec(struct linux_binprm *bprm) 255 { 256 return security_ops->bprm_secureexec(bprm); 257 } 258 259 int security_sb_alloc(struct super_block *sb) 260 { 261 return security_ops->sb_alloc_security(sb); 262 } 263 264 void security_sb_free(struct super_block *sb) 265 { 266 security_ops->sb_free_security(sb); 267 } 268 269 int security_sb_copy_data(char *orig, char *copy) 270 { 271 return security_ops->sb_copy_data(orig, copy); 272 } 273 EXPORT_SYMBOL(security_sb_copy_data); 274 275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276 { 277 return security_ops->sb_kern_mount(sb, flags, data); 278 } 279 280 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281 { 282 return security_ops->sb_show_options(m, sb); 283 } 284 285 int security_sb_statfs(struct dentry *dentry) 286 { 287 return security_ops->sb_statfs(dentry); 288 } 289 290 int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292 { 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294 } 295 296 int security_sb_umount(struct vfsmount *mnt, int flags) 297 { 298 return security_ops->sb_umount(mnt, flags); 299 } 300 301 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 302 { 303 return security_ops->sb_pivotroot(old_path, new_path); 304 } 305 306 int security_sb_set_mnt_opts(struct super_block *sb, 307 struct security_mnt_opts *opts) 308 { 309 return security_ops->sb_set_mnt_opts(sb, opts); 310 } 311 EXPORT_SYMBOL(security_sb_set_mnt_opts); 312 313 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 314 struct super_block *newsb) 315 { 316 security_ops->sb_clone_mnt_opts(oldsb, newsb); 317 } 318 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 319 320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 321 { 322 return security_ops->sb_parse_opts_str(options, opts); 323 } 324 EXPORT_SYMBOL(security_sb_parse_opts_str); 325 326 int security_inode_alloc(struct inode *inode) 327 { 328 inode->i_security = NULL; 329 return security_ops->inode_alloc_security(inode); 330 } 331 332 void security_inode_free(struct inode *inode) 333 { 334 ima_inode_free(inode); 335 security_ops->inode_free_security(inode); 336 } 337 338 int security_inode_init_security(struct inode *inode, struct inode *dir, 339 char **name, void **value, size_t *len) 340 { 341 if (unlikely(IS_PRIVATE(inode))) 342 return -EOPNOTSUPP; 343 return security_ops->inode_init_security(inode, dir, name, value, len); 344 } 345 EXPORT_SYMBOL(security_inode_init_security); 346 347 #ifdef CONFIG_SECURITY_PATH 348 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 349 unsigned int dev) 350 { 351 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 352 return 0; 353 return security_ops->path_mknod(dir, dentry, mode, dev); 354 } 355 EXPORT_SYMBOL(security_path_mknod); 356 357 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 358 { 359 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 360 return 0; 361 return security_ops->path_mkdir(dir, dentry, mode); 362 } 363 364 int security_path_rmdir(struct path *dir, struct dentry *dentry) 365 { 366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 367 return 0; 368 return security_ops->path_rmdir(dir, dentry); 369 } 370 371 int security_path_unlink(struct path *dir, struct dentry *dentry) 372 { 373 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 374 return 0; 375 return security_ops->path_unlink(dir, dentry); 376 } 377 378 int security_path_symlink(struct path *dir, struct dentry *dentry, 379 const char *old_name) 380 { 381 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 382 return 0; 383 return security_ops->path_symlink(dir, dentry, old_name); 384 } 385 386 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 387 struct dentry *new_dentry) 388 { 389 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 390 return 0; 391 return security_ops->path_link(old_dentry, new_dir, new_dentry); 392 } 393 394 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 395 struct path *new_dir, struct dentry *new_dentry) 396 { 397 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 398 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 399 return 0; 400 return security_ops->path_rename(old_dir, old_dentry, new_dir, 401 new_dentry); 402 } 403 404 int security_path_truncate(struct path *path) 405 { 406 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 407 return 0; 408 return security_ops->path_truncate(path); 409 } 410 411 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 412 mode_t mode) 413 { 414 if (unlikely(IS_PRIVATE(dentry->d_inode))) 415 return 0; 416 return security_ops->path_chmod(dentry, mnt, mode); 417 } 418 419 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 420 { 421 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 422 return 0; 423 return security_ops->path_chown(path, uid, gid); 424 } 425 426 int security_path_chroot(struct path *path) 427 { 428 return security_ops->path_chroot(path); 429 } 430 #endif 431 432 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 433 { 434 if (unlikely(IS_PRIVATE(dir))) 435 return 0; 436 return security_ops->inode_create(dir, dentry, mode); 437 } 438 EXPORT_SYMBOL_GPL(security_inode_create); 439 440 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 441 struct dentry *new_dentry) 442 { 443 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 444 return 0; 445 return security_ops->inode_link(old_dentry, dir, new_dentry); 446 } 447 448 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 449 { 450 if (unlikely(IS_PRIVATE(dentry->d_inode))) 451 return 0; 452 return security_ops->inode_unlink(dir, dentry); 453 } 454 455 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 456 const char *old_name) 457 { 458 if (unlikely(IS_PRIVATE(dir))) 459 return 0; 460 return security_ops->inode_symlink(dir, dentry, old_name); 461 } 462 463 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 464 { 465 if (unlikely(IS_PRIVATE(dir))) 466 return 0; 467 return security_ops->inode_mkdir(dir, dentry, mode); 468 } 469 EXPORT_SYMBOL_GPL(security_inode_mkdir); 470 471 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 472 { 473 if (unlikely(IS_PRIVATE(dentry->d_inode))) 474 return 0; 475 return security_ops->inode_rmdir(dir, dentry); 476 } 477 478 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 479 { 480 if (unlikely(IS_PRIVATE(dir))) 481 return 0; 482 return security_ops->inode_mknod(dir, dentry, mode, dev); 483 } 484 485 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 486 struct inode *new_dir, struct dentry *new_dentry) 487 { 488 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 489 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 490 return 0; 491 return security_ops->inode_rename(old_dir, old_dentry, 492 new_dir, new_dentry); 493 } 494 495 int security_inode_readlink(struct dentry *dentry) 496 { 497 if (unlikely(IS_PRIVATE(dentry->d_inode))) 498 return 0; 499 return security_ops->inode_readlink(dentry); 500 } 501 502 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 503 { 504 if (unlikely(IS_PRIVATE(dentry->d_inode))) 505 return 0; 506 return security_ops->inode_follow_link(dentry, nd); 507 } 508 509 int security_inode_permission(struct inode *inode, int mask) 510 { 511 if (unlikely(IS_PRIVATE(inode))) 512 return 0; 513 return security_ops->inode_permission(inode, mask); 514 } 515 516 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 517 { 518 if (unlikely(IS_PRIVATE(dentry->d_inode))) 519 return 0; 520 return security_ops->inode_setattr(dentry, attr); 521 } 522 EXPORT_SYMBOL_GPL(security_inode_setattr); 523 524 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 525 { 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_getattr(mnt, dentry); 529 } 530 531 int security_inode_setxattr(struct dentry *dentry, const char *name, 532 const void *value, size_t size, int flags) 533 { 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_setxattr(dentry, name, value, size, flags); 537 } 538 539 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 540 const void *value, size_t size, int flags) 541 { 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return; 544 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 545 } 546 547 int security_inode_getxattr(struct dentry *dentry, const char *name) 548 { 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_getxattr(dentry, name); 552 } 553 554 int security_inode_listxattr(struct dentry *dentry) 555 { 556 if (unlikely(IS_PRIVATE(dentry->d_inode))) 557 return 0; 558 return security_ops->inode_listxattr(dentry); 559 } 560 561 int security_inode_removexattr(struct dentry *dentry, const char *name) 562 { 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 return security_ops->inode_removexattr(dentry, name); 566 } 567 568 int security_inode_need_killpriv(struct dentry *dentry) 569 { 570 return security_ops->inode_need_killpriv(dentry); 571 } 572 573 int security_inode_killpriv(struct dentry *dentry) 574 { 575 return security_ops->inode_killpriv(dentry); 576 } 577 578 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 579 { 580 if (unlikely(IS_PRIVATE(inode))) 581 return -EOPNOTSUPP; 582 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 583 } 584 585 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 586 { 587 if (unlikely(IS_PRIVATE(inode))) 588 return -EOPNOTSUPP; 589 return security_ops->inode_setsecurity(inode, name, value, size, flags); 590 } 591 592 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 593 { 594 if (unlikely(IS_PRIVATE(inode))) 595 return 0; 596 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 597 } 598 599 void security_inode_getsecid(const struct inode *inode, u32 *secid) 600 { 601 security_ops->inode_getsecid(inode, secid); 602 } 603 604 int security_file_permission(struct file *file, int mask) 605 { 606 int ret; 607 608 ret = security_ops->file_permission(file, mask); 609 if (ret) 610 return ret; 611 612 return fsnotify_perm(file, mask); 613 } 614 615 int security_file_alloc(struct file *file) 616 { 617 return security_ops->file_alloc_security(file); 618 } 619 620 void security_file_free(struct file *file) 621 { 622 security_ops->file_free_security(file); 623 } 624 625 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 626 { 627 return security_ops->file_ioctl(file, cmd, arg); 628 } 629 630 int security_file_mmap(struct file *file, unsigned long reqprot, 631 unsigned long prot, unsigned long flags, 632 unsigned long addr, unsigned long addr_only) 633 { 634 int ret; 635 636 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 637 if (ret) 638 return ret; 639 return ima_file_mmap(file, prot); 640 } 641 642 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 643 unsigned long prot) 644 { 645 return security_ops->file_mprotect(vma, reqprot, prot); 646 } 647 648 int security_file_lock(struct file *file, unsigned int cmd) 649 { 650 return security_ops->file_lock(file, cmd); 651 } 652 653 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 654 { 655 return security_ops->file_fcntl(file, cmd, arg); 656 } 657 658 int security_file_set_fowner(struct file *file) 659 { 660 return security_ops->file_set_fowner(file); 661 } 662 663 int security_file_send_sigiotask(struct task_struct *tsk, 664 struct fown_struct *fown, int sig) 665 { 666 return security_ops->file_send_sigiotask(tsk, fown, sig); 667 } 668 669 int security_file_receive(struct file *file) 670 { 671 return security_ops->file_receive(file); 672 } 673 674 int security_dentry_open(struct file *file, const struct cred *cred) 675 { 676 int ret; 677 678 ret = security_ops->dentry_open(file, cred); 679 if (ret) 680 return ret; 681 682 return fsnotify_perm(file, MAY_OPEN); 683 } 684 685 int security_task_create(unsigned long clone_flags) 686 { 687 return security_ops->task_create(clone_flags); 688 } 689 690 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 691 { 692 return security_ops->cred_alloc_blank(cred, gfp); 693 } 694 695 void security_cred_free(struct cred *cred) 696 { 697 security_ops->cred_free(cred); 698 } 699 700 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 701 { 702 return security_ops->cred_prepare(new, old, gfp); 703 } 704 705 void security_transfer_creds(struct cred *new, const struct cred *old) 706 { 707 security_ops->cred_transfer(new, old); 708 } 709 710 int security_kernel_act_as(struct cred *new, u32 secid) 711 { 712 return security_ops->kernel_act_as(new, secid); 713 } 714 715 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 716 { 717 return security_ops->kernel_create_files_as(new, inode); 718 } 719 720 int security_kernel_module_request(char *kmod_name) 721 { 722 return security_ops->kernel_module_request(kmod_name); 723 } 724 725 int security_task_fix_setuid(struct cred *new, const struct cred *old, 726 int flags) 727 { 728 return security_ops->task_fix_setuid(new, old, flags); 729 } 730 731 int security_task_setpgid(struct task_struct *p, pid_t pgid) 732 { 733 return security_ops->task_setpgid(p, pgid); 734 } 735 736 int security_task_getpgid(struct task_struct *p) 737 { 738 return security_ops->task_getpgid(p); 739 } 740 741 int security_task_getsid(struct task_struct *p) 742 { 743 return security_ops->task_getsid(p); 744 } 745 746 void security_task_getsecid(struct task_struct *p, u32 *secid) 747 { 748 security_ops->task_getsecid(p, secid); 749 } 750 EXPORT_SYMBOL(security_task_getsecid); 751 752 int security_task_setnice(struct task_struct *p, int nice) 753 { 754 return security_ops->task_setnice(p, nice); 755 } 756 757 int security_task_setioprio(struct task_struct *p, int ioprio) 758 { 759 return security_ops->task_setioprio(p, ioprio); 760 } 761 762 int security_task_getioprio(struct task_struct *p) 763 { 764 return security_ops->task_getioprio(p); 765 } 766 767 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 768 struct rlimit *new_rlim) 769 { 770 return security_ops->task_setrlimit(p, resource, new_rlim); 771 } 772 773 int security_task_setscheduler(struct task_struct *p) 774 { 775 return security_ops->task_setscheduler(p); 776 } 777 778 int security_task_getscheduler(struct task_struct *p) 779 { 780 return security_ops->task_getscheduler(p); 781 } 782 783 int security_task_movememory(struct task_struct *p) 784 { 785 return security_ops->task_movememory(p); 786 } 787 788 int security_task_kill(struct task_struct *p, struct siginfo *info, 789 int sig, u32 secid) 790 { 791 return security_ops->task_kill(p, info, sig, secid); 792 } 793 794 int security_task_wait(struct task_struct *p) 795 { 796 return security_ops->task_wait(p); 797 } 798 799 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 800 unsigned long arg4, unsigned long arg5) 801 { 802 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 803 } 804 805 void security_task_to_inode(struct task_struct *p, struct inode *inode) 806 { 807 security_ops->task_to_inode(p, inode); 808 } 809 810 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 811 { 812 return security_ops->ipc_permission(ipcp, flag); 813 } 814 815 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 816 { 817 security_ops->ipc_getsecid(ipcp, secid); 818 } 819 820 int security_msg_msg_alloc(struct msg_msg *msg) 821 { 822 return security_ops->msg_msg_alloc_security(msg); 823 } 824 825 void security_msg_msg_free(struct msg_msg *msg) 826 { 827 security_ops->msg_msg_free_security(msg); 828 } 829 830 int security_msg_queue_alloc(struct msg_queue *msq) 831 { 832 return security_ops->msg_queue_alloc_security(msq); 833 } 834 835 void security_msg_queue_free(struct msg_queue *msq) 836 { 837 security_ops->msg_queue_free_security(msq); 838 } 839 840 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 841 { 842 return security_ops->msg_queue_associate(msq, msqflg); 843 } 844 845 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 846 { 847 return security_ops->msg_queue_msgctl(msq, cmd); 848 } 849 850 int security_msg_queue_msgsnd(struct msg_queue *msq, 851 struct msg_msg *msg, int msqflg) 852 { 853 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 854 } 855 856 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 857 struct task_struct *target, long type, int mode) 858 { 859 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 860 } 861 862 int security_shm_alloc(struct shmid_kernel *shp) 863 { 864 return security_ops->shm_alloc_security(shp); 865 } 866 867 void security_shm_free(struct shmid_kernel *shp) 868 { 869 security_ops->shm_free_security(shp); 870 } 871 872 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 873 { 874 return security_ops->shm_associate(shp, shmflg); 875 } 876 877 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 878 { 879 return security_ops->shm_shmctl(shp, cmd); 880 } 881 882 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 883 { 884 return security_ops->shm_shmat(shp, shmaddr, shmflg); 885 } 886 887 int security_sem_alloc(struct sem_array *sma) 888 { 889 return security_ops->sem_alloc_security(sma); 890 } 891 892 void security_sem_free(struct sem_array *sma) 893 { 894 security_ops->sem_free_security(sma); 895 } 896 897 int security_sem_associate(struct sem_array *sma, int semflg) 898 { 899 return security_ops->sem_associate(sma, semflg); 900 } 901 902 int security_sem_semctl(struct sem_array *sma, int cmd) 903 { 904 return security_ops->sem_semctl(sma, cmd); 905 } 906 907 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 908 unsigned nsops, int alter) 909 { 910 return security_ops->sem_semop(sma, sops, nsops, alter); 911 } 912 913 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 914 { 915 if (unlikely(inode && IS_PRIVATE(inode))) 916 return; 917 security_ops->d_instantiate(dentry, inode); 918 } 919 EXPORT_SYMBOL(security_d_instantiate); 920 921 int security_getprocattr(struct task_struct *p, char *name, char **value) 922 { 923 return security_ops->getprocattr(p, name, value); 924 } 925 926 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 927 { 928 return security_ops->setprocattr(p, name, value, size); 929 } 930 931 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 932 { 933 return security_ops->netlink_send(sk, skb); 934 } 935 936 int security_netlink_recv(struct sk_buff *skb, int cap) 937 { 938 return security_ops->netlink_recv(skb, cap); 939 } 940 EXPORT_SYMBOL(security_netlink_recv); 941 942 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 943 { 944 return security_ops->secid_to_secctx(secid, secdata, seclen); 945 } 946 EXPORT_SYMBOL(security_secid_to_secctx); 947 948 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 949 { 950 return security_ops->secctx_to_secid(secdata, seclen, secid); 951 } 952 EXPORT_SYMBOL(security_secctx_to_secid); 953 954 void security_release_secctx(char *secdata, u32 seclen) 955 { 956 security_ops->release_secctx(secdata, seclen); 957 } 958 EXPORT_SYMBOL(security_release_secctx); 959 960 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 961 { 962 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 963 } 964 EXPORT_SYMBOL(security_inode_notifysecctx); 965 966 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 967 { 968 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 969 } 970 EXPORT_SYMBOL(security_inode_setsecctx); 971 972 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 973 { 974 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 975 } 976 EXPORT_SYMBOL(security_inode_getsecctx); 977 978 #ifdef CONFIG_SECURITY_NETWORK 979 980 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 981 { 982 return security_ops->unix_stream_connect(sock, other, newsk); 983 } 984 EXPORT_SYMBOL(security_unix_stream_connect); 985 986 int security_unix_may_send(struct socket *sock, struct socket *other) 987 { 988 return security_ops->unix_may_send(sock, other); 989 } 990 EXPORT_SYMBOL(security_unix_may_send); 991 992 int security_socket_create(int family, int type, int protocol, int kern) 993 { 994 return security_ops->socket_create(family, type, protocol, kern); 995 } 996 997 int security_socket_post_create(struct socket *sock, int family, 998 int type, int protocol, int kern) 999 { 1000 return security_ops->socket_post_create(sock, family, type, 1001 protocol, kern); 1002 } 1003 1004 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1005 { 1006 return security_ops->socket_bind(sock, address, addrlen); 1007 } 1008 1009 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1010 { 1011 return security_ops->socket_connect(sock, address, addrlen); 1012 } 1013 1014 int security_socket_listen(struct socket *sock, int backlog) 1015 { 1016 return security_ops->socket_listen(sock, backlog); 1017 } 1018 1019 int security_socket_accept(struct socket *sock, struct socket *newsock) 1020 { 1021 return security_ops->socket_accept(sock, newsock); 1022 } 1023 1024 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1025 { 1026 return security_ops->socket_sendmsg(sock, msg, size); 1027 } 1028 1029 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1030 int size, int flags) 1031 { 1032 return security_ops->socket_recvmsg(sock, msg, size, flags); 1033 } 1034 1035 int security_socket_getsockname(struct socket *sock) 1036 { 1037 return security_ops->socket_getsockname(sock); 1038 } 1039 1040 int security_socket_getpeername(struct socket *sock) 1041 { 1042 return security_ops->socket_getpeername(sock); 1043 } 1044 1045 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1046 { 1047 return security_ops->socket_getsockopt(sock, level, optname); 1048 } 1049 1050 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1051 { 1052 return security_ops->socket_setsockopt(sock, level, optname); 1053 } 1054 1055 int security_socket_shutdown(struct socket *sock, int how) 1056 { 1057 return security_ops->socket_shutdown(sock, how); 1058 } 1059 1060 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1061 { 1062 return security_ops->socket_sock_rcv_skb(sk, skb); 1063 } 1064 EXPORT_SYMBOL(security_sock_rcv_skb); 1065 1066 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1067 int __user *optlen, unsigned len) 1068 { 1069 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1070 } 1071 1072 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1073 { 1074 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1075 } 1076 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1077 1078 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1079 { 1080 return security_ops->sk_alloc_security(sk, family, priority); 1081 } 1082 1083 void security_sk_free(struct sock *sk) 1084 { 1085 security_ops->sk_free_security(sk); 1086 } 1087 1088 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1089 { 1090 security_ops->sk_clone_security(sk, newsk); 1091 } 1092 1093 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1094 { 1095 security_ops->sk_getsecid(sk, &fl->secid); 1096 } 1097 EXPORT_SYMBOL(security_sk_classify_flow); 1098 1099 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1100 { 1101 security_ops->req_classify_flow(req, fl); 1102 } 1103 EXPORT_SYMBOL(security_req_classify_flow); 1104 1105 void security_sock_graft(struct sock *sk, struct socket *parent) 1106 { 1107 security_ops->sock_graft(sk, parent); 1108 } 1109 EXPORT_SYMBOL(security_sock_graft); 1110 1111 int security_inet_conn_request(struct sock *sk, 1112 struct sk_buff *skb, struct request_sock *req) 1113 { 1114 return security_ops->inet_conn_request(sk, skb, req); 1115 } 1116 EXPORT_SYMBOL(security_inet_conn_request); 1117 1118 void security_inet_csk_clone(struct sock *newsk, 1119 const struct request_sock *req) 1120 { 1121 security_ops->inet_csk_clone(newsk, req); 1122 } 1123 1124 void security_inet_conn_established(struct sock *sk, 1125 struct sk_buff *skb) 1126 { 1127 security_ops->inet_conn_established(sk, skb); 1128 } 1129 1130 int security_secmark_relabel_packet(u32 secid) 1131 { 1132 return security_ops->secmark_relabel_packet(secid); 1133 } 1134 EXPORT_SYMBOL(security_secmark_relabel_packet); 1135 1136 void security_secmark_refcount_inc(void) 1137 { 1138 security_ops->secmark_refcount_inc(); 1139 } 1140 EXPORT_SYMBOL(security_secmark_refcount_inc); 1141 1142 void security_secmark_refcount_dec(void) 1143 { 1144 security_ops->secmark_refcount_dec(); 1145 } 1146 EXPORT_SYMBOL(security_secmark_refcount_dec); 1147 1148 int security_tun_dev_create(void) 1149 { 1150 return security_ops->tun_dev_create(); 1151 } 1152 EXPORT_SYMBOL(security_tun_dev_create); 1153 1154 void security_tun_dev_post_create(struct sock *sk) 1155 { 1156 return security_ops->tun_dev_post_create(sk); 1157 } 1158 EXPORT_SYMBOL(security_tun_dev_post_create); 1159 1160 int security_tun_dev_attach(struct sock *sk) 1161 { 1162 return security_ops->tun_dev_attach(sk); 1163 } 1164 EXPORT_SYMBOL(security_tun_dev_attach); 1165 1166 #endif /* CONFIG_SECURITY_NETWORK */ 1167 1168 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1169 1170 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1171 { 1172 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1173 } 1174 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1175 1176 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1177 struct xfrm_sec_ctx **new_ctxp) 1178 { 1179 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1180 } 1181 1182 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1183 { 1184 security_ops->xfrm_policy_free_security(ctx); 1185 } 1186 EXPORT_SYMBOL(security_xfrm_policy_free); 1187 1188 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1189 { 1190 return security_ops->xfrm_policy_delete_security(ctx); 1191 } 1192 1193 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1194 { 1195 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1196 } 1197 EXPORT_SYMBOL(security_xfrm_state_alloc); 1198 1199 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1200 struct xfrm_sec_ctx *polsec, u32 secid) 1201 { 1202 if (!polsec) 1203 return 0; 1204 /* 1205 * We want the context to be taken from secid which is usually 1206 * from the sock. 1207 */ 1208 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1209 } 1210 1211 int security_xfrm_state_delete(struct xfrm_state *x) 1212 { 1213 return security_ops->xfrm_state_delete_security(x); 1214 } 1215 EXPORT_SYMBOL(security_xfrm_state_delete); 1216 1217 void security_xfrm_state_free(struct xfrm_state *x) 1218 { 1219 security_ops->xfrm_state_free_security(x); 1220 } 1221 1222 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1223 { 1224 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1225 } 1226 1227 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1228 struct xfrm_policy *xp, struct flowi *fl) 1229 { 1230 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1231 } 1232 1233 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1234 { 1235 return security_ops->xfrm_decode_session(skb, secid, 1); 1236 } 1237 1238 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1239 { 1240 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1241 1242 BUG_ON(rc); 1243 } 1244 EXPORT_SYMBOL(security_skb_classify_flow); 1245 1246 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1247 1248 #ifdef CONFIG_KEYS 1249 1250 int security_key_alloc(struct key *key, const struct cred *cred, 1251 unsigned long flags) 1252 { 1253 return security_ops->key_alloc(key, cred, flags); 1254 } 1255 1256 void security_key_free(struct key *key) 1257 { 1258 security_ops->key_free(key); 1259 } 1260 1261 int security_key_permission(key_ref_t key_ref, 1262 const struct cred *cred, key_perm_t perm) 1263 { 1264 return security_ops->key_permission(key_ref, cred, perm); 1265 } 1266 1267 int security_key_getsecurity(struct key *key, char **_buffer) 1268 { 1269 return security_ops->key_getsecurity(key, _buffer); 1270 } 1271 1272 #endif /* CONFIG_KEYS */ 1273 1274 #ifdef CONFIG_AUDIT 1275 1276 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1277 { 1278 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1279 } 1280 1281 int security_audit_rule_known(struct audit_krule *krule) 1282 { 1283 return security_ops->audit_rule_known(krule); 1284 } 1285 1286 void security_audit_rule_free(void *lsmrule) 1287 { 1288 security_ops->audit_rule_free(lsmrule); 1289 } 1290 1291 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1292 struct audit_context *actx) 1293 { 1294 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1295 } 1296 1297 #endif /* CONFIG_AUDIT */ 1298