1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_may_access(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152 { 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155 } 156 157 int security_capable(int cap) 158 { 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161 } 162 163 int security_real_capable(struct task_struct *tsk, int cap) 164 { 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172 } 173 174 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175 { 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183 } 184 185 int security_acct(struct file *file) 186 { 187 return security_ops->acct(file); 188 } 189 190 int security_sysctl(struct ctl_table *table, int op) 191 { 192 return security_ops->sysctl(table, op); 193 } 194 195 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 196 { 197 return security_ops->quotactl(cmds, type, id, sb); 198 } 199 200 int security_quota_on(struct dentry *dentry) 201 { 202 return security_ops->quota_on(dentry); 203 } 204 205 int security_syslog(int type) 206 { 207 return security_ops->syslog(type); 208 } 209 210 int security_settime(struct timespec *ts, struct timezone *tz) 211 { 212 return security_ops->settime(ts, tz); 213 } 214 215 int security_vm_enough_memory(long pages) 216 { 217 WARN_ON(current->mm == NULL); 218 return security_ops->vm_enough_memory(current->mm, pages); 219 } 220 221 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 222 { 223 WARN_ON(mm == NULL); 224 return security_ops->vm_enough_memory(mm, pages); 225 } 226 227 int security_vm_enough_memory_kern(long pages) 228 { 229 /* If current->mm is a kernel thread then we will pass NULL, 230 for this specific case that is fine */ 231 return security_ops->vm_enough_memory(current->mm, pages); 232 } 233 234 int security_bprm_set_creds(struct linux_binprm *bprm) 235 { 236 return security_ops->bprm_set_creds(bprm); 237 } 238 239 int security_bprm_check(struct linux_binprm *bprm) 240 { 241 return security_ops->bprm_check_security(bprm); 242 } 243 244 void security_bprm_committing_creds(struct linux_binprm *bprm) 245 { 246 security_ops->bprm_committing_creds(bprm); 247 } 248 249 void security_bprm_committed_creds(struct linux_binprm *bprm) 250 { 251 security_ops->bprm_committed_creds(bprm); 252 } 253 254 int security_bprm_secureexec(struct linux_binprm *bprm) 255 { 256 return security_ops->bprm_secureexec(bprm); 257 } 258 259 int security_sb_alloc(struct super_block *sb) 260 { 261 return security_ops->sb_alloc_security(sb); 262 } 263 264 void security_sb_free(struct super_block *sb) 265 { 266 security_ops->sb_free_security(sb); 267 } 268 269 int security_sb_copy_data(char *orig, char *copy) 270 { 271 return security_ops->sb_copy_data(orig, copy); 272 } 273 EXPORT_SYMBOL(security_sb_copy_data); 274 275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276 { 277 return security_ops->sb_kern_mount(sb, flags, data); 278 } 279 280 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281 { 282 return security_ops->sb_show_options(m, sb); 283 } 284 285 int security_sb_statfs(struct dentry *dentry) 286 { 287 return security_ops->sb_statfs(dentry); 288 } 289 290 int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292 { 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294 } 295 296 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 297 { 298 return security_ops->sb_check_sb(mnt, path); 299 } 300 301 int security_sb_umount(struct vfsmount *mnt, int flags) 302 { 303 return security_ops->sb_umount(mnt, flags); 304 } 305 306 void security_sb_umount_close(struct vfsmount *mnt) 307 { 308 security_ops->sb_umount_close(mnt); 309 } 310 311 void security_sb_umount_busy(struct vfsmount *mnt) 312 { 313 security_ops->sb_umount_busy(mnt); 314 } 315 316 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 317 { 318 security_ops->sb_post_remount(mnt, flags, data); 319 } 320 321 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 322 { 323 security_ops->sb_post_addmount(mnt, mountpoint); 324 } 325 326 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 327 { 328 return security_ops->sb_pivotroot(old_path, new_path); 329 } 330 331 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 332 { 333 security_ops->sb_post_pivotroot(old_path, new_path); 334 } 335 336 int security_sb_set_mnt_opts(struct super_block *sb, 337 struct security_mnt_opts *opts) 338 { 339 return security_ops->sb_set_mnt_opts(sb, opts); 340 } 341 EXPORT_SYMBOL(security_sb_set_mnt_opts); 342 343 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 344 struct super_block *newsb) 345 { 346 security_ops->sb_clone_mnt_opts(oldsb, newsb); 347 } 348 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 349 350 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 351 { 352 return security_ops->sb_parse_opts_str(options, opts); 353 } 354 EXPORT_SYMBOL(security_sb_parse_opts_str); 355 356 int security_inode_alloc(struct inode *inode) 357 { 358 inode->i_security = NULL; 359 return security_ops->inode_alloc_security(inode); 360 } 361 362 void security_inode_free(struct inode *inode) 363 { 364 security_ops->inode_free_security(inode); 365 } 366 367 int security_inode_init_security(struct inode *inode, struct inode *dir, 368 char **name, void **value, size_t *len) 369 { 370 if (unlikely(IS_PRIVATE(inode))) 371 return -EOPNOTSUPP; 372 return security_ops->inode_init_security(inode, dir, name, value, len); 373 } 374 EXPORT_SYMBOL(security_inode_init_security); 375 376 #ifdef CONFIG_SECURITY_PATH 377 int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 378 unsigned int dev) 379 { 380 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 381 return 0; 382 return security_ops->path_mknod(path, dentry, mode, dev); 383 } 384 EXPORT_SYMBOL(security_path_mknod); 385 386 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 387 { 388 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 389 return 0; 390 return security_ops->path_mkdir(path, dentry, mode); 391 } 392 393 int security_path_rmdir(struct path *path, struct dentry *dentry) 394 { 395 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 396 return 0; 397 return security_ops->path_rmdir(path, dentry); 398 } 399 400 int security_path_unlink(struct path *path, struct dentry *dentry) 401 { 402 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 403 return 0; 404 return security_ops->path_unlink(path, dentry); 405 } 406 407 int security_path_symlink(struct path *path, struct dentry *dentry, 408 const char *old_name) 409 { 410 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 411 return 0; 412 return security_ops->path_symlink(path, dentry, old_name); 413 } 414 415 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 416 struct dentry *new_dentry) 417 { 418 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 419 return 0; 420 return security_ops->path_link(old_dentry, new_dir, new_dentry); 421 } 422 423 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 424 struct path *new_dir, struct dentry *new_dentry) 425 { 426 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 427 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 428 return 0; 429 return security_ops->path_rename(old_dir, old_dentry, new_dir, 430 new_dentry); 431 } 432 433 int security_path_truncate(struct path *path, loff_t length, 434 unsigned int time_attrs) 435 { 436 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 437 return 0; 438 return security_ops->path_truncate(path, length, time_attrs); 439 } 440 #endif 441 442 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 443 { 444 if (unlikely(IS_PRIVATE(dir))) 445 return 0; 446 return security_ops->inode_create(dir, dentry, mode); 447 } 448 449 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 450 struct dentry *new_dentry) 451 { 452 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 453 return 0; 454 return security_ops->inode_link(old_dentry, dir, new_dentry); 455 } 456 457 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 458 { 459 if (unlikely(IS_PRIVATE(dentry->d_inode))) 460 return 0; 461 return security_ops->inode_unlink(dir, dentry); 462 } 463 464 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 465 const char *old_name) 466 { 467 if (unlikely(IS_PRIVATE(dir))) 468 return 0; 469 return security_ops->inode_symlink(dir, dentry, old_name); 470 } 471 472 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 473 { 474 if (unlikely(IS_PRIVATE(dir))) 475 return 0; 476 return security_ops->inode_mkdir(dir, dentry, mode); 477 } 478 479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 480 { 481 if (unlikely(IS_PRIVATE(dentry->d_inode))) 482 return 0; 483 return security_ops->inode_rmdir(dir, dentry); 484 } 485 486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 487 { 488 if (unlikely(IS_PRIVATE(dir))) 489 return 0; 490 return security_ops->inode_mknod(dir, dentry, mode, dev); 491 } 492 493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 494 struct inode *new_dir, struct dentry *new_dentry) 495 { 496 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 497 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 498 return 0; 499 return security_ops->inode_rename(old_dir, old_dentry, 500 new_dir, new_dentry); 501 } 502 503 int security_inode_readlink(struct dentry *dentry) 504 { 505 if (unlikely(IS_PRIVATE(dentry->d_inode))) 506 return 0; 507 return security_ops->inode_readlink(dentry); 508 } 509 510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 511 { 512 if (unlikely(IS_PRIVATE(dentry->d_inode))) 513 return 0; 514 return security_ops->inode_follow_link(dentry, nd); 515 } 516 517 int security_inode_permission(struct inode *inode, int mask) 518 { 519 if (unlikely(IS_PRIVATE(inode))) 520 return 0; 521 return security_ops->inode_permission(inode, mask); 522 } 523 524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 525 { 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_setattr(dentry, attr); 529 } 530 EXPORT_SYMBOL_GPL(security_inode_setattr); 531 532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 533 { 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_getattr(mnt, dentry); 537 } 538 539 void security_inode_delete(struct inode *inode) 540 { 541 if (unlikely(IS_PRIVATE(inode))) 542 return; 543 security_ops->inode_delete(inode); 544 } 545 546 int security_inode_setxattr(struct dentry *dentry, const char *name, 547 const void *value, size_t size, int flags) 548 { 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_setxattr(dentry, name, value, size, flags); 552 } 553 554 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 555 const void *value, size_t size, int flags) 556 { 557 if (unlikely(IS_PRIVATE(dentry->d_inode))) 558 return; 559 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 560 } 561 562 int security_inode_getxattr(struct dentry *dentry, const char *name) 563 { 564 if (unlikely(IS_PRIVATE(dentry->d_inode))) 565 return 0; 566 return security_ops->inode_getxattr(dentry, name); 567 } 568 569 int security_inode_listxattr(struct dentry *dentry) 570 { 571 if (unlikely(IS_PRIVATE(dentry->d_inode))) 572 return 0; 573 return security_ops->inode_listxattr(dentry); 574 } 575 576 int security_inode_removexattr(struct dentry *dentry, const char *name) 577 { 578 if (unlikely(IS_PRIVATE(dentry->d_inode))) 579 return 0; 580 return security_ops->inode_removexattr(dentry, name); 581 } 582 583 int security_inode_need_killpriv(struct dentry *dentry) 584 { 585 return security_ops->inode_need_killpriv(dentry); 586 } 587 588 int security_inode_killpriv(struct dentry *dentry) 589 { 590 return security_ops->inode_killpriv(dentry); 591 } 592 593 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 594 { 595 if (unlikely(IS_PRIVATE(inode))) 596 return 0; 597 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 598 } 599 600 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 601 { 602 if (unlikely(IS_PRIVATE(inode))) 603 return 0; 604 return security_ops->inode_setsecurity(inode, name, value, size, flags); 605 } 606 607 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 608 { 609 if (unlikely(IS_PRIVATE(inode))) 610 return 0; 611 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 612 } 613 614 void security_inode_getsecid(const struct inode *inode, u32 *secid) 615 { 616 security_ops->inode_getsecid(inode, secid); 617 } 618 619 int security_file_permission(struct file *file, int mask) 620 { 621 return security_ops->file_permission(file, mask); 622 } 623 624 int security_file_alloc(struct file *file) 625 { 626 return security_ops->file_alloc_security(file); 627 } 628 629 void security_file_free(struct file *file) 630 { 631 security_ops->file_free_security(file); 632 } 633 634 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 635 { 636 return security_ops->file_ioctl(file, cmd, arg); 637 } 638 639 int security_file_mmap(struct file *file, unsigned long reqprot, 640 unsigned long prot, unsigned long flags, 641 unsigned long addr, unsigned long addr_only) 642 { 643 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 644 } 645 646 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 647 unsigned long prot) 648 { 649 return security_ops->file_mprotect(vma, reqprot, prot); 650 } 651 652 int security_file_lock(struct file *file, unsigned int cmd) 653 { 654 return security_ops->file_lock(file, cmd); 655 } 656 657 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 658 { 659 return security_ops->file_fcntl(file, cmd, arg); 660 } 661 662 int security_file_set_fowner(struct file *file) 663 { 664 return security_ops->file_set_fowner(file); 665 } 666 667 int security_file_send_sigiotask(struct task_struct *tsk, 668 struct fown_struct *fown, int sig) 669 { 670 return security_ops->file_send_sigiotask(tsk, fown, sig); 671 } 672 673 int security_file_receive(struct file *file) 674 { 675 return security_ops->file_receive(file); 676 } 677 678 int security_dentry_open(struct file *file, const struct cred *cred) 679 { 680 return security_ops->dentry_open(file, cred); 681 } 682 683 int security_task_create(unsigned long clone_flags) 684 { 685 return security_ops->task_create(clone_flags); 686 } 687 688 void security_cred_free(struct cred *cred) 689 { 690 security_ops->cred_free(cred); 691 } 692 693 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 694 { 695 return security_ops->cred_prepare(new, old, gfp); 696 } 697 698 void security_commit_creds(struct cred *new, const struct cred *old) 699 { 700 security_ops->cred_commit(new, old); 701 } 702 703 int security_kernel_act_as(struct cred *new, u32 secid) 704 { 705 return security_ops->kernel_act_as(new, secid); 706 } 707 708 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 709 { 710 return security_ops->kernel_create_files_as(new, inode); 711 } 712 713 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 714 { 715 return security_ops->task_setuid(id0, id1, id2, flags); 716 } 717 718 int security_task_fix_setuid(struct cred *new, const struct cred *old, 719 int flags) 720 { 721 return security_ops->task_fix_setuid(new, old, flags); 722 } 723 724 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 725 { 726 return security_ops->task_setgid(id0, id1, id2, flags); 727 } 728 729 int security_task_setpgid(struct task_struct *p, pid_t pgid) 730 { 731 return security_ops->task_setpgid(p, pgid); 732 } 733 734 int security_task_getpgid(struct task_struct *p) 735 { 736 return security_ops->task_getpgid(p); 737 } 738 739 int security_task_getsid(struct task_struct *p) 740 { 741 return security_ops->task_getsid(p); 742 } 743 744 void security_task_getsecid(struct task_struct *p, u32 *secid) 745 { 746 security_ops->task_getsecid(p, secid); 747 } 748 EXPORT_SYMBOL(security_task_getsecid); 749 750 int security_task_setgroups(struct group_info *group_info) 751 { 752 return security_ops->task_setgroups(group_info); 753 } 754 755 int security_task_setnice(struct task_struct *p, int nice) 756 { 757 return security_ops->task_setnice(p, nice); 758 } 759 760 int security_task_setioprio(struct task_struct *p, int ioprio) 761 { 762 return security_ops->task_setioprio(p, ioprio); 763 } 764 765 int security_task_getioprio(struct task_struct *p) 766 { 767 return security_ops->task_getioprio(p); 768 } 769 770 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 771 { 772 return security_ops->task_setrlimit(resource, new_rlim); 773 } 774 775 int security_task_setscheduler(struct task_struct *p, 776 int policy, struct sched_param *lp) 777 { 778 return security_ops->task_setscheduler(p, policy, lp); 779 } 780 781 int security_task_getscheduler(struct task_struct *p) 782 { 783 return security_ops->task_getscheduler(p); 784 } 785 786 int security_task_movememory(struct task_struct *p) 787 { 788 return security_ops->task_movememory(p); 789 } 790 791 int security_task_kill(struct task_struct *p, struct siginfo *info, 792 int sig, u32 secid) 793 { 794 return security_ops->task_kill(p, info, sig, secid); 795 } 796 797 int security_task_wait(struct task_struct *p) 798 { 799 return security_ops->task_wait(p); 800 } 801 802 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 803 unsigned long arg4, unsigned long arg5) 804 { 805 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 806 } 807 808 void security_task_to_inode(struct task_struct *p, struct inode *inode) 809 { 810 security_ops->task_to_inode(p, inode); 811 } 812 813 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 814 { 815 return security_ops->ipc_permission(ipcp, flag); 816 } 817 818 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 819 { 820 security_ops->ipc_getsecid(ipcp, secid); 821 } 822 823 int security_msg_msg_alloc(struct msg_msg *msg) 824 { 825 return security_ops->msg_msg_alloc_security(msg); 826 } 827 828 void security_msg_msg_free(struct msg_msg *msg) 829 { 830 security_ops->msg_msg_free_security(msg); 831 } 832 833 int security_msg_queue_alloc(struct msg_queue *msq) 834 { 835 return security_ops->msg_queue_alloc_security(msq); 836 } 837 838 void security_msg_queue_free(struct msg_queue *msq) 839 { 840 security_ops->msg_queue_free_security(msq); 841 } 842 843 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 844 { 845 return security_ops->msg_queue_associate(msq, msqflg); 846 } 847 848 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 849 { 850 return security_ops->msg_queue_msgctl(msq, cmd); 851 } 852 853 int security_msg_queue_msgsnd(struct msg_queue *msq, 854 struct msg_msg *msg, int msqflg) 855 { 856 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 857 } 858 859 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 860 struct task_struct *target, long type, int mode) 861 { 862 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 863 } 864 865 int security_shm_alloc(struct shmid_kernel *shp) 866 { 867 return security_ops->shm_alloc_security(shp); 868 } 869 870 void security_shm_free(struct shmid_kernel *shp) 871 { 872 security_ops->shm_free_security(shp); 873 } 874 875 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 876 { 877 return security_ops->shm_associate(shp, shmflg); 878 } 879 880 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 881 { 882 return security_ops->shm_shmctl(shp, cmd); 883 } 884 885 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 886 { 887 return security_ops->shm_shmat(shp, shmaddr, shmflg); 888 } 889 890 int security_sem_alloc(struct sem_array *sma) 891 { 892 return security_ops->sem_alloc_security(sma); 893 } 894 895 void security_sem_free(struct sem_array *sma) 896 { 897 security_ops->sem_free_security(sma); 898 } 899 900 int security_sem_associate(struct sem_array *sma, int semflg) 901 { 902 return security_ops->sem_associate(sma, semflg); 903 } 904 905 int security_sem_semctl(struct sem_array *sma, int cmd) 906 { 907 return security_ops->sem_semctl(sma, cmd); 908 } 909 910 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 911 unsigned nsops, int alter) 912 { 913 return security_ops->sem_semop(sma, sops, nsops, alter); 914 } 915 916 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 917 { 918 if (unlikely(inode && IS_PRIVATE(inode))) 919 return; 920 security_ops->d_instantiate(dentry, inode); 921 } 922 EXPORT_SYMBOL(security_d_instantiate); 923 924 int security_getprocattr(struct task_struct *p, char *name, char **value) 925 { 926 return security_ops->getprocattr(p, name, value); 927 } 928 929 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 930 { 931 return security_ops->setprocattr(p, name, value, size); 932 } 933 934 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 935 { 936 return security_ops->netlink_send(sk, skb); 937 } 938 939 int security_netlink_recv(struct sk_buff *skb, int cap) 940 { 941 return security_ops->netlink_recv(skb, cap); 942 } 943 EXPORT_SYMBOL(security_netlink_recv); 944 945 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 946 { 947 return security_ops->secid_to_secctx(secid, secdata, seclen); 948 } 949 EXPORT_SYMBOL(security_secid_to_secctx); 950 951 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 952 { 953 return security_ops->secctx_to_secid(secdata, seclen, secid); 954 } 955 EXPORT_SYMBOL(security_secctx_to_secid); 956 957 void security_release_secctx(char *secdata, u32 seclen) 958 { 959 security_ops->release_secctx(secdata, seclen); 960 } 961 EXPORT_SYMBOL(security_release_secctx); 962 963 #ifdef CONFIG_SECURITY_NETWORK 964 965 int security_unix_stream_connect(struct socket *sock, struct socket *other, 966 struct sock *newsk) 967 { 968 return security_ops->unix_stream_connect(sock, other, newsk); 969 } 970 EXPORT_SYMBOL(security_unix_stream_connect); 971 972 int security_unix_may_send(struct socket *sock, struct socket *other) 973 { 974 return security_ops->unix_may_send(sock, other); 975 } 976 EXPORT_SYMBOL(security_unix_may_send); 977 978 int security_socket_create(int family, int type, int protocol, int kern) 979 { 980 return security_ops->socket_create(family, type, protocol, kern); 981 } 982 983 int security_socket_post_create(struct socket *sock, int family, 984 int type, int protocol, int kern) 985 { 986 return security_ops->socket_post_create(sock, family, type, 987 protocol, kern); 988 } 989 990 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 991 { 992 return security_ops->socket_bind(sock, address, addrlen); 993 } 994 995 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 996 { 997 return security_ops->socket_connect(sock, address, addrlen); 998 } 999 1000 int security_socket_listen(struct socket *sock, int backlog) 1001 { 1002 return security_ops->socket_listen(sock, backlog); 1003 } 1004 1005 int security_socket_accept(struct socket *sock, struct socket *newsock) 1006 { 1007 return security_ops->socket_accept(sock, newsock); 1008 } 1009 1010 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1011 { 1012 return security_ops->socket_sendmsg(sock, msg, size); 1013 } 1014 1015 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1016 int size, int flags) 1017 { 1018 return security_ops->socket_recvmsg(sock, msg, size, flags); 1019 } 1020 1021 int security_socket_getsockname(struct socket *sock) 1022 { 1023 return security_ops->socket_getsockname(sock); 1024 } 1025 1026 int security_socket_getpeername(struct socket *sock) 1027 { 1028 return security_ops->socket_getpeername(sock); 1029 } 1030 1031 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1032 { 1033 return security_ops->socket_getsockopt(sock, level, optname); 1034 } 1035 1036 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1037 { 1038 return security_ops->socket_setsockopt(sock, level, optname); 1039 } 1040 1041 int security_socket_shutdown(struct socket *sock, int how) 1042 { 1043 return security_ops->socket_shutdown(sock, how); 1044 } 1045 1046 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1047 { 1048 return security_ops->socket_sock_rcv_skb(sk, skb); 1049 } 1050 EXPORT_SYMBOL(security_sock_rcv_skb); 1051 1052 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1053 int __user *optlen, unsigned len) 1054 { 1055 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1056 } 1057 1058 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1059 { 1060 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1061 } 1062 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1063 1064 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1065 { 1066 return security_ops->sk_alloc_security(sk, family, priority); 1067 } 1068 1069 void security_sk_free(struct sock *sk) 1070 { 1071 security_ops->sk_free_security(sk); 1072 } 1073 1074 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1075 { 1076 security_ops->sk_clone_security(sk, newsk); 1077 } 1078 1079 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1080 { 1081 security_ops->sk_getsecid(sk, &fl->secid); 1082 } 1083 EXPORT_SYMBOL(security_sk_classify_flow); 1084 1085 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1086 { 1087 security_ops->req_classify_flow(req, fl); 1088 } 1089 EXPORT_SYMBOL(security_req_classify_flow); 1090 1091 void security_sock_graft(struct sock *sk, struct socket *parent) 1092 { 1093 security_ops->sock_graft(sk, parent); 1094 } 1095 EXPORT_SYMBOL(security_sock_graft); 1096 1097 int security_inet_conn_request(struct sock *sk, 1098 struct sk_buff *skb, struct request_sock *req) 1099 { 1100 return security_ops->inet_conn_request(sk, skb, req); 1101 } 1102 EXPORT_SYMBOL(security_inet_conn_request); 1103 1104 void security_inet_csk_clone(struct sock *newsk, 1105 const struct request_sock *req) 1106 { 1107 security_ops->inet_csk_clone(newsk, req); 1108 } 1109 1110 void security_inet_conn_established(struct sock *sk, 1111 struct sk_buff *skb) 1112 { 1113 security_ops->inet_conn_established(sk, skb); 1114 } 1115 1116 #endif /* CONFIG_SECURITY_NETWORK */ 1117 1118 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1119 1120 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1121 { 1122 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1123 } 1124 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1125 1126 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1127 struct xfrm_sec_ctx **new_ctxp) 1128 { 1129 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1130 } 1131 1132 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1133 { 1134 security_ops->xfrm_policy_free_security(ctx); 1135 } 1136 EXPORT_SYMBOL(security_xfrm_policy_free); 1137 1138 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1139 { 1140 return security_ops->xfrm_policy_delete_security(ctx); 1141 } 1142 1143 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1144 { 1145 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1146 } 1147 EXPORT_SYMBOL(security_xfrm_state_alloc); 1148 1149 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1150 struct xfrm_sec_ctx *polsec, u32 secid) 1151 { 1152 if (!polsec) 1153 return 0; 1154 /* 1155 * We want the context to be taken from secid which is usually 1156 * from the sock. 1157 */ 1158 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1159 } 1160 1161 int security_xfrm_state_delete(struct xfrm_state *x) 1162 { 1163 return security_ops->xfrm_state_delete_security(x); 1164 } 1165 EXPORT_SYMBOL(security_xfrm_state_delete); 1166 1167 void security_xfrm_state_free(struct xfrm_state *x) 1168 { 1169 security_ops->xfrm_state_free_security(x); 1170 } 1171 1172 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1173 { 1174 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1175 } 1176 1177 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1178 struct xfrm_policy *xp, struct flowi *fl) 1179 { 1180 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1181 } 1182 1183 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1184 { 1185 return security_ops->xfrm_decode_session(skb, secid, 1); 1186 } 1187 1188 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1189 { 1190 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1191 1192 BUG_ON(rc); 1193 } 1194 EXPORT_SYMBOL(security_skb_classify_flow); 1195 1196 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1197 1198 #ifdef CONFIG_KEYS 1199 1200 int security_key_alloc(struct key *key, const struct cred *cred, 1201 unsigned long flags) 1202 { 1203 return security_ops->key_alloc(key, cred, flags); 1204 } 1205 1206 void security_key_free(struct key *key) 1207 { 1208 security_ops->key_free(key); 1209 } 1210 1211 int security_key_permission(key_ref_t key_ref, 1212 const struct cred *cred, key_perm_t perm) 1213 { 1214 return security_ops->key_permission(key_ref, cred, perm); 1215 } 1216 1217 int security_key_getsecurity(struct key *key, char **_buffer) 1218 { 1219 return security_ops->key_getsecurity(key, _buffer); 1220 } 1221 1222 #endif /* CONFIG_KEYS */ 1223 1224 #ifdef CONFIG_AUDIT 1225 1226 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1227 { 1228 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1229 } 1230 1231 int security_audit_rule_known(struct audit_krule *krule) 1232 { 1233 return security_ops->audit_rule_known(krule); 1234 } 1235 1236 void security_audit_rule_free(void *lsmrule) 1237 { 1238 security_ops->audit_rule_free(lsmrule); 1239 } 1240 1241 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1242 struct audit_context *actx) 1243 { 1244 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1245 } 1246 1247 #endif /* CONFIG_AUDIT */ 1248