xref: /openbmc/linux/security/security.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didn't specify a specific LSM and we're the first to ask
86  *	 for registration permission,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_may_access(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset(struct cred *new, const struct cred *old,
149 		    const kernel_cap_t *effective,
150 		    const kernel_cap_t *inheritable,
151 		    const kernel_cap_t *permitted)
152 {
153 	return security_ops->capset(new, old,
154 				    effective, inheritable, permitted);
155 }
156 
157 int security_capable(int cap)
158 {
159 	return security_ops->capable(current, current_cred(), cap,
160 				     SECURITY_CAP_AUDIT);
161 }
162 
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165 	const struct cred *cred;
166 	int ret;
167 
168 	cred = get_task_cred(tsk);
169 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170 	put_cred(cred);
171 	return ret;
172 }
173 
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176 	const struct cred *cred;
177 	int ret;
178 
179 	cred = get_task_cred(tsk);
180 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181 	put_cred(cred);
182 	return ret;
183 }
184 
185 int security_acct(struct file *file)
186 {
187 	return security_ops->acct(file);
188 }
189 
190 int security_sysctl(struct ctl_table *table, int op)
191 {
192 	return security_ops->sysctl(table, op);
193 }
194 
195 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
196 {
197 	return security_ops->quotactl(cmds, type, id, sb);
198 }
199 
200 int security_quota_on(struct dentry *dentry)
201 {
202 	return security_ops->quota_on(dentry);
203 }
204 
205 int security_syslog(int type)
206 {
207 	return security_ops->syslog(type);
208 }
209 
210 int security_settime(struct timespec *ts, struct timezone *tz)
211 {
212 	return security_ops->settime(ts, tz);
213 }
214 
215 int security_vm_enough_memory(long pages)
216 {
217 	WARN_ON(current->mm == NULL);
218 	return security_ops->vm_enough_memory(current->mm, pages);
219 }
220 
221 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
222 {
223 	WARN_ON(mm == NULL);
224 	return security_ops->vm_enough_memory(mm, pages);
225 }
226 
227 int security_vm_enough_memory_kern(long pages)
228 {
229 	/* If current->mm is a kernel thread then we will pass NULL,
230 	   for this specific case that is fine */
231 	return security_ops->vm_enough_memory(current->mm, pages);
232 }
233 
234 int security_bprm_set_creds(struct linux_binprm *bprm)
235 {
236 	return security_ops->bprm_set_creds(bprm);
237 }
238 
239 int security_bprm_check(struct linux_binprm *bprm)
240 {
241 	return security_ops->bprm_check_security(bprm);
242 }
243 
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246 	security_ops->bprm_committing_creds(bprm);
247 }
248 
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251 	security_ops->bprm_committed_creds(bprm);
252 }
253 
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256 	return security_ops->bprm_secureexec(bprm);
257 }
258 
259 int security_sb_alloc(struct super_block *sb)
260 {
261 	return security_ops->sb_alloc_security(sb);
262 }
263 
264 void security_sb_free(struct super_block *sb)
265 {
266 	security_ops->sb_free_security(sb);
267 }
268 
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271 	return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274 
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277 	return security_ops->sb_kern_mount(sb, flags, data);
278 }
279 
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282 	return security_ops->sb_show_options(m, sb);
283 }
284 
285 int security_sb_statfs(struct dentry *dentry)
286 {
287 	return security_ops->sb_statfs(dentry);
288 }
289 
290 int security_sb_mount(char *dev_name, struct path *path,
291                        char *type, unsigned long flags, void *data)
292 {
293 	return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295 
296 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
297 {
298 	return security_ops->sb_check_sb(mnt, path);
299 }
300 
301 int security_sb_umount(struct vfsmount *mnt, int flags)
302 {
303 	return security_ops->sb_umount(mnt, flags);
304 }
305 
306 void security_sb_umount_close(struct vfsmount *mnt)
307 {
308 	security_ops->sb_umount_close(mnt);
309 }
310 
311 void security_sb_umount_busy(struct vfsmount *mnt)
312 {
313 	security_ops->sb_umount_busy(mnt);
314 }
315 
316 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
317 {
318 	security_ops->sb_post_remount(mnt, flags, data);
319 }
320 
321 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
322 {
323 	security_ops->sb_post_addmount(mnt, mountpoint);
324 }
325 
326 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
327 {
328 	return security_ops->sb_pivotroot(old_path, new_path);
329 }
330 
331 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
332 {
333 	security_ops->sb_post_pivotroot(old_path, new_path);
334 }
335 
336 int security_sb_set_mnt_opts(struct super_block *sb,
337 				struct security_mnt_opts *opts)
338 {
339 	return security_ops->sb_set_mnt_opts(sb, opts);
340 }
341 EXPORT_SYMBOL(security_sb_set_mnt_opts);
342 
343 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
344 				struct super_block *newsb)
345 {
346 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
347 }
348 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
349 
350 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
351 {
352 	return security_ops->sb_parse_opts_str(options, opts);
353 }
354 EXPORT_SYMBOL(security_sb_parse_opts_str);
355 
356 int security_inode_alloc(struct inode *inode)
357 {
358 	inode->i_security = NULL;
359 	return security_ops->inode_alloc_security(inode);
360 }
361 
362 void security_inode_free(struct inode *inode)
363 {
364 	security_ops->inode_free_security(inode);
365 }
366 
367 int security_inode_init_security(struct inode *inode, struct inode *dir,
368 				  char **name, void **value, size_t *len)
369 {
370 	if (unlikely(IS_PRIVATE(inode)))
371 		return -EOPNOTSUPP;
372 	return security_ops->inode_init_security(inode, dir, name, value, len);
373 }
374 EXPORT_SYMBOL(security_inode_init_security);
375 
376 #ifdef CONFIG_SECURITY_PATH
377 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
378 			unsigned int dev)
379 {
380 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
381 		return 0;
382 	return security_ops->path_mknod(path, dentry, mode, dev);
383 }
384 EXPORT_SYMBOL(security_path_mknod);
385 
386 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
387 {
388 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
389 		return 0;
390 	return security_ops->path_mkdir(path, dentry, mode);
391 }
392 
393 int security_path_rmdir(struct path *path, struct dentry *dentry)
394 {
395 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_rmdir(path, dentry);
398 }
399 
400 int security_path_unlink(struct path *path, struct dentry *dentry)
401 {
402 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
403 		return 0;
404 	return security_ops->path_unlink(path, dentry);
405 }
406 
407 int security_path_symlink(struct path *path, struct dentry *dentry,
408 			  const char *old_name)
409 {
410 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411 		return 0;
412 	return security_ops->path_symlink(path, dentry, old_name);
413 }
414 
415 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
416 		       struct dentry *new_dentry)
417 {
418 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
419 		return 0;
420 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
421 }
422 
423 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
424 			 struct path *new_dir, struct dentry *new_dentry)
425 {
426 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
427 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
428 		return 0;
429 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
430 					 new_dentry);
431 }
432 
433 int security_path_truncate(struct path *path, loff_t length,
434 			   unsigned int time_attrs)
435 {
436 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
437 		return 0;
438 	return security_ops->path_truncate(path, length, time_attrs);
439 }
440 #endif
441 
442 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
443 {
444 	if (unlikely(IS_PRIVATE(dir)))
445 		return 0;
446 	return security_ops->inode_create(dir, dentry, mode);
447 }
448 
449 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
450 			 struct dentry *new_dentry)
451 {
452 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
453 		return 0;
454 	return security_ops->inode_link(old_dentry, dir, new_dentry);
455 }
456 
457 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
458 {
459 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
460 		return 0;
461 	return security_ops->inode_unlink(dir, dentry);
462 }
463 
464 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
465 			    const char *old_name)
466 {
467 	if (unlikely(IS_PRIVATE(dir)))
468 		return 0;
469 	return security_ops->inode_symlink(dir, dentry, old_name);
470 }
471 
472 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
473 {
474 	if (unlikely(IS_PRIVATE(dir)))
475 		return 0;
476 	return security_ops->inode_mkdir(dir, dentry, mode);
477 }
478 
479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480 {
481 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
482 		return 0;
483 	return security_ops->inode_rmdir(dir, dentry);
484 }
485 
486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487 {
488 	if (unlikely(IS_PRIVATE(dir)))
489 		return 0;
490 	return security_ops->inode_mknod(dir, dentry, mode, dev);
491 }
492 
493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494 			   struct inode *new_dir, struct dentry *new_dentry)
495 {
496         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498 		return 0;
499 	return security_ops->inode_rename(old_dir, old_dentry,
500 					   new_dir, new_dentry);
501 }
502 
503 int security_inode_readlink(struct dentry *dentry)
504 {
505 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
506 		return 0;
507 	return security_ops->inode_readlink(dentry);
508 }
509 
510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511 {
512 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
513 		return 0;
514 	return security_ops->inode_follow_link(dentry, nd);
515 }
516 
517 int security_inode_permission(struct inode *inode, int mask)
518 {
519 	if (unlikely(IS_PRIVATE(inode)))
520 		return 0;
521 	return security_ops->inode_permission(inode, mask);
522 }
523 
524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
525 {
526 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
527 		return 0;
528 	return security_ops->inode_setattr(dentry, attr);
529 }
530 EXPORT_SYMBOL_GPL(security_inode_setattr);
531 
532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
533 {
534 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 		return 0;
536 	return security_ops->inode_getattr(mnt, dentry);
537 }
538 
539 void security_inode_delete(struct inode *inode)
540 {
541 	if (unlikely(IS_PRIVATE(inode)))
542 		return;
543 	security_ops->inode_delete(inode);
544 }
545 
546 int security_inode_setxattr(struct dentry *dentry, const char *name,
547 			    const void *value, size_t size, int flags)
548 {
549 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 		return 0;
551 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
552 }
553 
554 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
555 				  const void *value, size_t size, int flags)
556 {
557 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
558 		return;
559 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
560 }
561 
562 int security_inode_getxattr(struct dentry *dentry, const char *name)
563 {
564 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
565 		return 0;
566 	return security_ops->inode_getxattr(dentry, name);
567 }
568 
569 int security_inode_listxattr(struct dentry *dentry)
570 {
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	return security_ops->inode_listxattr(dentry);
574 }
575 
576 int security_inode_removexattr(struct dentry *dentry, const char *name)
577 {
578 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
579 		return 0;
580 	return security_ops->inode_removexattr(dentry, name);
581 }
582 
583 int security_inode_need_killpriv(struct dentry *dentry)
584 {
585 	return security_ops->inode_need_killpriv(dentry);
586 }
587 
588 int security_inode_killpriv(struct dentry *dentry)
589 {
590 	return security_ops->inode_killpriv(dentry);
591 }
592 
593 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
594 {
595 	if (unlikely(IS_PRIVATE(inode)))
596 		return 0;
597 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
598 }
599 
600 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
601 {
602 	if (unlikely(IS_PRIVATE(inode)))
603 		return 0;
604 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
605 }
606 
607 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
608 {
609 	if (unlikely(IS_PRIVATE(inode)))
610 		return 0;
611 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
612 }
613 
614 void security_inode_getsecid(const struct inode *inode, u32 *secid)
615 {
616 	security_ops->inode_getsecid(inode, secid);
617 }
618 
619 int security_file_permission(struct file *file, int mask)
620 {
621 	return security_ops->file_permission(file, mask);
622 }
623 
624 int security_file_alloc(struct file *file)
625 {
626 	return security_ops->file_alloc_security(file);
627 }
628 
629 void security_file_free(struct file *file)
630 {
631 	security_ops->file_free_security(file);
632 }
633 
634 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
635 {
636 	return security_ops->file_ioctl(file, cmd, arg);
637 }
638 
639 int security_file_mmap(struct file *file, unsigned long reqprot,
640 			unsigned long prot, unsigned long flags,
641 			unsigned long addr, unsigned long addr_only)
642 {
643 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
644 }
645 
646 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
647 			    unsigned long prot)
648 {
649 	return security_ops->file_mprotect(vma, reqprot, prot);
650 }
651 
652 int security_file_lock(struct file *file, unsigned int cmd)
653 {
654 	return security_ops->file_lock(file, cmd);
655 }
656 
657 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
658 {
659 	return security_ops->file_fcntl(file, cmd, arg);
660 }
661 
662 int security_file_set_fowner(struct file *file)
663 {
664 	return security_ops->file_set_fowner(file);
665 }
666 
667 int security_file_send_sigiotask(struct task_struct *tsk,
668 				  struct fown_struct *fown, int sig)
669 {
670 	return security_ops->file_send_sigiotask(tsk, fown, sig);
671 }
672 
673 int security_file_receive(struct file *file)
674 {
675 	return security_ops->file_receive(file);
676 }
677 
678 int security_dentry_open(struct file *file, const struct cred *cred)
679 {
680 	return security_ops->dentry_open(file, cred);
681 }
682 
683 int security_task_create(unsigned long clone_flags)
684 {
685 	return security_ops->task_create(clone_flags);
686 }
687 
688 void security_cred_free(struct cred *cred)
689 {
690 	security_ops->cred_free(cred);
691 }
692 
693 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
694 {
695 	return security_ops->cred_prepare(new, old, gfp);
696 }
697 
698 void security_commit_creds(struct cred *new, const struct cred *old)
699 {
700 	security_ops->cred_commit(new, old);
701 }
702 
703 int security_kernel_act_as(struct cred *new, u32 secid)
704 {
705 	return security_ops->kernel_act_as(new, secid);
706 }
707 
708 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
709 {
710 	return security_ops->kernel_create_files_as(new, inode);
711 }
712 
713 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
714 {
715 	return security_ops->task_setuid(id0, id1, id2, flags);
716 }
717 
718 int security_task_fix_setuid(struct cred *new, const struct cred *old,
719 			     int flags)
720 {
721 	return security_ops->task_fix_setuid(new, old, flags);
722 }
723 
724 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
725 {
726 	return security_ops->task_setgid(id0, id1, id2, flags);
727 }
728 
729 int security_task_setpgid(struct task_struct *p, pid_t pgid)
730 {
731 	return security_ops->task_setpgid(p, pgid);
732 }
733 
734 int security_task_getpgid(struct task_struct *p)
735 {
736 	return security_ops->task_getpgid(p);
737 }
738 
739 int security_task_getsid(struct task_struct *p)
740 {
741 	return security_ops->task_getsid(p);
742 }
743 
744 void security_task_getsecid(struct task_struct *p, u32 *secid)
745 {
746 	security_ops->task_getsecid(p, secid);
747 }
748 EXPORT_SYMBOL(security_task_getsecid);
749 
750 int security_task_setgroups(struct group_info *group_info)
751 {
752 	return security_ops->task_setgroups(group_info);
753 }
754 
755 int security_task_setnice(struct task_struct *p, int nice)
756 {
757 	return security_ops->task_setnice(p, nice);
758 }
759 
760 int security_task_setioprio(struct task_struct *p, int ioprio)
761 {
762 	return security_ops->task_setioprio(p, ioprio);
763 }
764 
765 int security_task_getioprio(struct task_struct *p)
766 {
767 	return security_ops->task_getioprio(p);
768 }
769 
770 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
771 {
772 	return security_ops->task_setrlimit(resource, new_rlim);
773 }
774 
775 int security_task_setscheduler(struct task_struct *p,
776 				int policy, struct sched_param *lp)
777 {
778 	return security_ops->task_setscheduler(p, policy, lp);
779 }
780 
781 int security_task_getscheduler(struct task_struct *p)
782 {
783 	return security_ops->task_getscheduler(p);
784 }
785 
786 int security_task_movememory(struct task_struct *p)
787 {
788 	return security_ops->task_movememory(p);
789 }
790 
791 int security_task_kill(struct task_struct *p, struct siginfo *info,
792 			int sig, u32 secid)
793 {
794 	return security_ops->task_kill(p, info, sig, secid);
795 }
796 
797 int security_task_wait(struct task_struct *p)
798 {
799 	return security_ops->task_wait(p);
800 }
801 
802 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
803 			 unsigned long arg4, unsigned long arg5)
804 {
805 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
806 }
807 
808 void security_task_to_inode(struct task_struct *p, struct inode *inode)
809 {
810 	security_ops->task_to_inode(p, inode);
811 }
812 
813 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
814 {
815 	return security_ops->ipc_permission(ipcp, flag);
816 }
817 
818 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
819 {
820 	security_ops->ipc_getsecid(ipcp, secid);
821 }
822 
823 int security_msg_msg_alloc(struct msg_msg *msg)
824 {
825 	return security_ops->msg_msg_alloc_security(msg);
826 }
827 
828 void security_msg_msg_free(struct msg_msg *msg)
829 {
830 	security_ops->msg_msg_free_security(msg);
831 }
832 
833 int security_msg_queue_alloc(struct msg_queue *msq)
834 {
835 	return security_ops->msg_queue_alloc_security(msq);
836 }
837 
838 void security_msg_queue_free(struct msg_queue *msq)
839 {
840 	security_ops->msg_queue_free_security(msq);
841 }
842 
843 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
844 {
845 	return security_ops->msg_queue_associate(msq, msqflg);
846 }
847 
848 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
849 {
850 	return security_ops->msg_queue_msgctl(msq, cmd);
851 }
852 
853 int security_msg_queue_msgsnd(struct msg_queue *msq,
854 			       struct msg_msg *msg, int msqflg)
855 {
856 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
857 }
858 
859 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
860 			       struct task_struct *target, long type, int mode)
861 {
862 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
863 }
864 
865 int security_shm_alloc(struct shmid_kernel *shp)
866 {
867 	return security_ops->shm_alloc_security(shp);
868 }
869 
870 void security_shm_free(struct shmid_kernel *shp)
871 {
872 	security_ops->shm_free_security(shp);
873 }
874 
875 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
876 {
877 	return security_ops->shm_associate(shp, shmflg);
878 }
879 
880 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
881 {
882 	return security_ops->shm_shmctl(shp, cmd);
883 }
884 
885 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
886 {
887 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
888 }
889 
890 int security_sem_alloc(struct sem_array *sma)
891 {
892 	return security_ops->sem_alloc_security(sma);
893 }
894 
895 void security_sem_free(struct sem_array *sma)
896 {
897 	security_ops->sem_free_security(sma);
898 }
899 
900 int security_sem_associate(struct sem_array *sma, int semflg)
901 {
902 	return security_ops->sem_associate(sma, semflg);
903 }
904 
905 int security_sem_semctl(struct sem_array *sma, int cmd)
906 {
907 	return security_ops->sem_semctl(sma, cmd);
908 }
909 
910 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
911 			unsigned nsops, int alter)
912 {
913 	return security_ops->sem_semop(sma, sops, nsops, alter);
914 }
915 
916 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
917 {
918 	if (unlikely(inode && IS_PRIVATE(inode)))
919 		return;
920 	security_ops->d_instantiate(dentry, inode);
921 }
922 EXPORT_SYMBOL(security_d_instantiate);
923 
924 int security_getprocattr(struct task_struct *p, char *name, char **value)
925 {
926 	return security_ops->getprocattr(p, name, value);
927 }
928 
929 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
930 {
931 	return security_ops->setprocattr(p, name, value, size);
932 }
933 
934 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
935 {
936 	return security_ops->netlink_send(sk, skb);
937 }
938 
939 int security_netlink_recv(struct sk_buff *skb, int cap)
940 {
941 	return security_ops->netlink_recv(skb, cap);
942 }
943 EXPORT_SYMBOL(security_netlink_recv);
944 
945 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
946 {
947 	return security_ops->secid_to_secctx(secid, secdata, seclen);
948 }
949 EXPORT_SYMBOL(security_secid_to_secctx);
950 
951 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
952 {
953 	return security_ops->secctx_to_secid(secdata, seclen, secid);
954 }
955 EXPORT_SYMBOL(security_secctx_to_secid);
956 
957 void security_release_secctx(char *secdata, u32 seclen)
958 {
959 	security_ops->release_secctx(secdata, seclen);
960 }
961 EXPORT_SYMBOL(security_release_secctx);
962 
963 #ifdef CONFIG_SECURITY_NETWORK
964 
965 int security_unix_stream_connect(struct socket *sock, struct socket *other,
966 				 struct sock *newsk)
967 {
968 	return security_ops->unix_stream_connect(sock, other, newsk);
969 }
970 EXPORT_SYMBOL(security_unix_stream_connect);
971 
972 int security_unix_may_send(struct socket *sock,  struct socket *other)
973 {
974 	return security_ops->unix_may_send(sock, other);
975 }
976 EXPORT_SYMBOL(security_unix_may_send);
977 
978 int security_socket_create(int family, int type, int protocol, int kern)
979 {
980 	return security_ops->socket_create(family, type, protocol, kern);
981 }
982 
983 int security_socket_post_create(struct socket *sock, int family,
984 				int type, int protocol, int kern)
985 {
986 	return security_ops->socket_post_create(sock, family, type,
987 						protocol, kern);
988 }
989 
990 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
991 {
992 	return security_ops->socket_bind(sock, address, addrlen);
993 }
994 
995 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
996 {
997 	return security_ops->socket_connect(sock, address, addrlen);
998 }
999 
1000 int security_socket_listen(struct socket *sock, int backlog)
1001 {
1002 	return security_ops->socket_listen(sock, backlog);
1003 }
1004 
1005 int security_socket_accept(struct socket *sock, struct socket *newsock)
1006 {
1007 	return security_ops->socket_accept(sock, newsock);
1008 }
1009 
1010 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1011 {
1012 	return security_ops->socket_sendmsg(sock, msg, size);
1013 }
1014 
1015 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1016 			    int size, int flags)
1017 {
1018 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1019 }
1020 
1021 int security_socket_getsockname(struct socket *sock)
1022 {
1023 	return security_ops->socket_getsockname(sock);
1024 }
1025 
1026 int security_socket_getpeername(struct socket *sock)
1027 {
1028 	return security_ops->socket_getpeername(sock);
1029 }
1030 
1031 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1032 {
1033 	return security_ops->socket_getsockopt(sock, level, optname);
1034 }
1035 
1036 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1037 {
1038 	return security_ops->socket_setsockopt(sock, level, optname);
1039 }
1040 
1041 int security_socket_shutdown(struct socket *sock, int how)
1042 {
1043 	return security_ops->socket_shutdown(sock, how);
1044 }
1045 
1046 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1047 {
1048 	return security_ops->socket_sock_rcv_skb(sk, skb);
1049 }
1050 EXPORT_SYMBOL(security_sock_rcv_skb);
1051 
1052 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1053 				      int __user *optlen, unsigned len)
1054 {
1055 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1056 }
1057 
1058 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1059 {
1060 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1061 }
1062 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1063 
1064 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1065 {
1066 	return security_ops->sk_alloc_security(sk, family, priority);
1067 }
1068 
1069 void security_sk_free(struct sock *sk)
1070 {
1071 	security_ops->sk_free_security(sk);
1072 }
1073 
1074 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1075 {
1076 	security_ops->sk_clone_security(sk, newsk);
1077 }
1078 
1079 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1080 {
1081 	security_ops->sk_getsecid(sk, &fl->secid);
1082 }
1083 EXPORT_SYMBOL(security_sk_classify_flow);
1084 
1085 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1086 {
1087 	security_ops->req_classify_flow(req, fl);
1088 }
1089 EXPORT_SYMBOL(security_req_classify_flow);
1090 
1091 void security_sock_graft(struct sock *sk, struct socket *parent)
1092 {
1093 	security_ops->sock_graft(sk, parent);
1094 }
1095 EXPORT_SYMBOL(security_sock_graft);
1096 
1097 int security_inet_conn_request(struct sock *sk,
1098 			struct sk_buff *skb, struct request_sock *req)
1099 {
1100 	return security_ops->inet_conn_request(sk, skb, req);
1101 }
1102 EXPORT_SYMBOL(security_inet_conn_request);
1103 
1104 void security_inet_csk_clone(struct sock *newsk,
1105 			const struct request_sock *req)
1106 {
1107 	security_ops->inet_csk_clone(newsk, req);
1108 }
1109 
1110 void security_inet_conn_established(struct sock *sk,
1111 			struct sk_buff *skb)
1112 {
1113 	security_ops->inet_conn_established(sk, skb);
1114 }
1115 
1116 #endif	/* CONFIG_SECURITY_NETWORK */
1117 
1118 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1119 
1120 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1121 {
1122 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1123 }
1124 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1125 
1126 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1127 			      struct xfrm_sec_ctx **new_ctxp)
1128 {
1129 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1130 }
1131 
1132 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1133 {
1134 	security_ops->xfrm_policy_free_security(ctx);
1135 }
1136 EXPORT_SYMBOL(security_xfrm_policy_free);
1137 
1138 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1139 {
1140 	return security_ops->xfrm_policy_delete_security(ctx);
1141 }
1142 
1143 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1144 {
1145 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1146 }
1147 EXPORT_SYMBOL(security_xfrm_state_alloc);
1148 
1149 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1150 				      struct xfrm_sec_ctx *polsec, u32 secid)
1151 {
1152 	if (!polsec)
1153 		return 0;
1154 	/*
1155 	 * We want the context to be taken from secid which is usually
1156 	 * from the sock.
1157 	 */
1158 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1159 }
1160 
1161 int security_xfrm_state_delete(struct xfrm_state *x)
1162 {
1163 	return security_ops->xfrm_state_delete_security(x);
1164 }
1165 EXPORT_SYMBOL(security_xfrm_state_delete);
1166 
1167 void security_xfrm_state_free(struct xfrm_state *x)
1168 {
1169 	security_ops->xfrm_state_free_security(x);
1170 }
1171 
1172 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1173 {
1174 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1175 }
1176 
1177 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1178 				       struct xfrm_policy *xp, struct flowi *fl)
1179 {
1180 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1181 }
1182 
1183 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1184 {
1185 	return security_ops->xfrm_decode_session(skb, secid, 1);
1186 }
1187 
1188 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1189 {
1190 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1191 
1192 	BUG_ON(rc);
1193 }
1194 EXPORT_SYMBOL(security_skb_classify_flow);
1195 
1196 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1197 
1198 #ifdef CONFIG_KEYS
1199 
1200 int security_key_alloc(struct key *key, const struct cred *cred,
1201 		       unsigned long flags)
1202 {
1203 	return security_ops->key_alloc(key, cred, flags);
1204 }
1205 
1206 void security_key_free(struct key *key)
1207 {
1208 	security_ops->key_free(key);
1209 }
1210 
1211 int security_key_permission(key_ref_t key_ref,
1212 			    const struct cred *cred, key_perm_t perm)
1213 {
1214 	return security_ops->key_permission(key_ref, cred, perm);
1215 }
1216 
1217 int security_key_getsecurity(struct key *key, char **_buffer)
1218 {
1219 	return security_ops->key_getsecurity(key, _buffer);
1220 }
1221 
1222 #endif	/* CONFIG_KEYS */
1223 
1224 #ifdef CONFIG_AUDIT
1225 
1226 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1227 {
1228 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1229 }
1230 
1231 int security_audit_rule_known(struct audit_krule *krule)
1232 {
1233 	return security_ops->audit_rule_known(krule);
1234 }
1235 
1236 void security_audit_rule_free(void *lsmrule)
1237 {
1238 	security_ops->audit_rule_free(lsmrule);
1239 }
1240 
1241 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1242 			      struct audit_context *actx)
1243 {
1244 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1245 }
1246 
1247 #endif /* CONFIG_AUDIT */
1248