1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25 /* things that live in capability.c */ 26 extern struct security_operations default_security_ops; 27 extern void security_fixup_ops(struct security_operations *ops); 28 29 struct security_operations *security_ops; /* Initialized to NULL */ 30 31 static inline int verify(struct security_operations *ops) 32 { 33 /* verify the security_operations structure exists */ 34 if (!ops) 35 return -EINVAL; 36 security_fixup_ops(ops); 37 return 0; 38 } 39 40 static void __init do_security_initcalls(void) 41 { 42 initcall_t *call; 43 call = __security_initcall_start; 44 while (call < __security_initcall_end) { 45 (*call) (); 46 call++; 47 } 48 } 49 50 /** 51 * security_init - initializes the security framework 52 * 53 * This should be called early in the kernel initialization sequence. 54 */ 55 int __init security_init(void) 56 { 57 printk(KERN_INFO "Security Framework initialized\n"); 58 59 security_fixup_ops(&default_security_ops); 60 security_ops = &default_security_ops; 61 do_security_initcalls(); 62 63 return 0; 64 } 65 66 /* Save user chosen LSM */ 67 static int __init choose_lsm(char *str) 68 { 69 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 70 return 1; 71 } 72 __setup("security=", choose_lsm); 73 74 /** 75 * security_module_enable - Load given security module on boot ? 76 * @ops: a pointer to the struct security_operations that is to be checked. 77 * 78 * Each LSM must pass this method before registering its own operations 79 * to avoid security registration races. This method may also be used 80 * to check if your LSM is currently loaded during kernel initialization. 81 * 82 * Return true if: 83 * -The passed LSM is the one chosen by user at boot time, 84 * -or the passed LSM is configured as the default and the user did not 85 * choose an alternate LSM at boot time, 86 * -or there is no default LSM set and the user didn't specify a 87 * specific LSM and we're the first to ask for registration permission, 88 * -or the passed LSM is currently loaded. 89 * Otherwise, return false. 90 */ 91 int __init security_module_enable(struct security_operations *ops) 92 { 93 if (!*chosen_lsm) 94 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 95 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 96 return 0; 97 98 return 1; 99 } 100 101 /** 102 * register_security - registers a security framework with the kernel 103 * @ops: a pointer to the struct security_options that is to be registered 104 * 105 * This function allows a security module to register itself with the 106 * kernel security subsystem. Some rudimentary checking is done on the @ops 107 * value passed to this function. You'll need to check first if your LSM 108 * is allowed to register its @ops by calling security_module_enable(@ops). 109 * 110 * If there is already a security module registered with the kernel, 111 * an error will be returned. Otherwise %0 is returned on success. 112 */ 113 int register_security(struct security_operations *ops) 114 { 115 if (verify(ops)) { 116 printk(KERN_DEBUG "%s could not verify " 117 "security_operations structure.\n", __func__); 118 return -EINVAL; 119 } 120 121 if (security_ops != &default_security_ops) 122 return -EAGAIN; 123 124 security_ops = ops; 125 126 return 0; 127 } 128 129 /* Security operations */ 130 131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 132 { 133 return security_ops->ptrace_access_check(child, mode); 134 } 135 136 int security_ptrace_traceme(struct task_struct *parent) 137 { 138 return security_ops->ptrace_traceme(parent); 139 } 140 141 int security_capget(struct task_struct *target, 142 kernel_cap_t *effective, 143 kernel_cap_t *inheritable, 144 kernel_cap_t *permitted) 145 { 146 return security_ops->capget(target, effective, inheritable, permitted); 147 } 148 149 int security_capset(struct cred *new, const struct cred *old, 150 const kernel_cap_t *effective, 151 const kernel_cap_t *inheritable, 152 const kernel_cap_t *permitted) 153 { 154 return security_ops->capset(new, old, 155 effective, inheritable, permitted); 156 } 157 158 int security_capable(int cap) 159 { 160 return security_ops->capable(current, current_cred(), cap, 161 SECURITY_CAP_AUDIT); 162 } 163 164 int security_real_capable(struct task_struct *tsk, int cap) 165 { 166 const struct cred *cred; 167 int ret; 168 169 cred = get_task_cred(tsk); 170 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 171 put_cred(cred); 172 return ret; 173 } 174 175 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 176 { 177 const struct cred *cred; 178 int ret; 179 180 cred = get_task_cred(tsk); 181 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 182 put_cred(cred); 183 return ret; 184 } 185 186 int security_acct(struct file *file) 187 { 188 return security_ops->acct(file); 189 } 190 191 int security_sysctl(struct ctl_table *table, int op) 192 { 193 return security_ops->sysctl(table, op); 194 } 195 196 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 197 { 198 return security_ops->quotactl(cmds, type, id, sb); 199 } 200 201 int security_quota_on(struct dentry *dentry) 202 { 203 return security_ops->quota_on(dentry); 204 } 205 206 int security_syslog(int type) 207 { 208 return security_ops->syslog(type); 209 } 210 211 int security_settime(struct timespec *ts, struct timezone *tz) 212 { 213 return security_ops->settime(ts, tz); 214 } 215 216 int security_vm_enough_memory(long pages) 217 { 218 WARN_ON(current->mm == NULL); 219 return security_ops->vm_enough_memory(current->mm, pages); 220 } 221 222 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 223 { 224 WARN_ON(mm == NULL); 225 return security_ops->vm_enough_memory(mm, pages); 226 } 227 228 int security_vm_enough_memory_kern(long pages) 229 { 230 /* If current->mm is a kernel thread then we will pass NULL, 231 for this specific case that is fine */ 232 return security_ops->vm_enough_memory(current->mm, pages); 233 } 234 235 int security_bprm_set_creds(struct linux_binprm *bprm) 236 { 237 return security_ops->bprm_set_creds(bprm); 238 } 239 240 int security_bprm_check(struct linux_binprm *bprm) 241 { 242 int ret; 243 244 ret = security_ops->bprm_check_security(bprm); 245 if (ret) 246 return ret; 247 return ima_bprm_check(bprm); 248 } 249 250 void security_bprm_committing_creds(struct linux_binprm *bprm) 251 { 252 security_ops->bprm_committing_creds(bprm); 253 } 254 255 void security_bprm_committed_creds(struct linux_binprm *bprm) 256 { 257 security_ops->bprm_committed_creds(bprm); 258 } 259 260 int security_bprm_secureexec(struct linux_binprm *bprm) 261 { 262 return security_ops->bprm_secureexec(bprm); 263 } 264 265 int security_sb_alloc(struct super_block *sb) 266 { 267 return security_ops->sb_alloc_security(sb); 268 } 269 270 void security_sb_free(struct super_block *sb) 271 { 272 security_ops->sb_free_security(sb); 273 } 274 275 int security_sb_copy_data(char *orig, char *copy) 276 { 277 return security_ops->sb_copy_data(orig, copy); 278 } 279 EXPORT_SYMBOL(security_sb_copy_data); 280 281 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 282 { 283 return security_ops->sb_kern_mount(sb, flags, data); 284 } 285 286 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 287 { 288 return security_ops->sb_show_options(m, sb); 289 } 290 291 int security_sb_statfs(struct dentry *dentry) 292 { 293 return security_ops->sb_statfs(dentry); 294 } 295 296 int security_sb_mount(char *dev_name, struct path *path, 297 char *type, unsigned long flags, void *data) 298 { 299 return security_ops->sb_mount(dev_name, path, type, flags, data); 300 } 301 302 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 303 { 304 return security_ops->sb_check_sb(mnt, path); 305 } 306 307 int security_sb_umount(struct vfsmount *mnt, int flags) 308 { 309 return security_ops->sb_umount(mnt, flags); 310 } 311 312 void security_sb_umount_close(struct vfsmount *mnt) 313 { 314 security_ops->sb_umount_close(mnt); 315 } 316 317 void security_sb_umount_busy(struct vfsmount *mnt) 318 { 319 security_ops->sb_umount_busy(mnt); 320 } 321 322 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 323 { 324 security_ops->sb_post_remount(mnt, flags, data); 325 } 326 327 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 328 { 329 security_ops->sb_post_addmount(mnt, mountpoint); 330 } 331 332 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 333 { 334 return security_ops->sb_pivotroot(old_path, new_path); 335 } 336 337 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 338 { 339 security_ops->sb_post_pivotroot(old_path, new_path); 340 } 341 342 int security_sb_set_mnt_opts(struct super_block *sb, 343 struct security_mnt_opts *opts) 344 { 345 return security_ops->sb_set_mnt_opts(sb, opts); 346 } 347 EXPORT_SYMBOL(security_sb_set_mnt_opts); 348 349 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 350 struct super_block *newsb) 351 { 352 security_ops->sb_clone_mnt_opts(oldsb, newsb); 353 } 354 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 355 356 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 357 { 358 return security_ops->sb_parse_opts_str(options, opts); 359 } 360 EXPORT_SYMBOL(security_sb_parse_opts_str); 361 362 int security_inode_alloc(struct inode *inode) 363 { 364 int ret; 365 366 inode->i_security = NULL; 367 ret = security_ops->inode_alloc_security(inode); 368 if (ret) 369 return ret; 370 ret = ima_inode_alloc(inode); 371 if (ret) 372 security_inode_free(inode); 373 return ret; 374 } 375 376 void security_inode_free(struct inode *inode) 377 { 378 ima_inode_free(inode); 379 security_ops->inode_free_security(inode); 380 } 381 382 int security_inode_init_security(struct inode *inode, struct inode *dir, 383 char **name, void **value, size_t *len) 384 { 385 if (unlikely(IS_PRIVATE(inode))) 386 return -EOPNOTSUPP; 387 return security_ops->inode_init_security(inode, dir, name, value, len); 388 } 389 EXPORT_SYMBOL(security_inode_init_security); 390 391 #ifdef CONFIG_SECURITY_PATH 392 int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 393 unsigned int dev) 394 { 395 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 396 return 0; 397 return security_ops->path_mknod(path, dentry, mode, dev); 398 } 399 EXPORT_SYMBOL(security_path_mknod); 400 401 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 402 { 403 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 404 return 0; 405 return security_ops->path_mkdir(path, dentry, mode); 406 } 407 408 int security_path_rmdir(struct path *path, struct dentry *dentry) 409 { 410 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 411 return 0; 412 return security_ops->path_rmdir(path, dentry); 413 } 414 415 int security_path_unlink(struct path *path, struct dentry *dentry) 416 { 417 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 418 return 0; 419 return security_ops->path_unlink(path, dentry); 420 } 421 422 int security_path_symlink(struct path *path, struct dentry *dentry, 423 const char *old_name) 424 { 425 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 426 return 0; 427 return security_ops->path_symlink(path, dentry, old_name); 428 } 429 430 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 431 struct dentry *new_dentry) 432 { 433 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 434 return 0; 435 return security_ops->path_link(old_dentry, new_dir, new_dentry); 436 } 437 438 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 439 struct path *new_dir, struct dentry *new_dentry) 440 { 441 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 442 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 443 return 0; 444 return security_ops->path_rename(old_dir, old_dentry, new_dir, 445 new_dentry); 446 } 447 448 int security_path_truncate(struct path *path, loff_t length, 449 unsigned int time_attrs) 450 { 451 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 452 return 0; 453 return security_ops->path_truncate(path, length, time_attrs); 454 } 455 456 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 457 mode_t mode) 458 { 459 if (unlikely(IS_PRIVATE(dentry->d_inode))) 460 return 0; 461 return security_ops->path_chmod(dentry, mnt, mode); 462 } 463 464 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 465 { 466 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 467 return 0; 468 return security_ops->path_chown(path, uid, gid); 469 } 470 471 int security_path_chroot(struct path *path) 472 { 473 return security_ops->path_chroot(path); 474 } 475 #endif 476 477 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 478 { 479 if (unlikely(IS_PRIVATE(dir))) 480 return 0; 481 return security_ops->inode_create(dir, dentry, mode); 482 } 483 EXPORT_SYMBOL_GPL(security_inode_create); 484 485 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 486 struct dentry *new_dentry) 487 { 488 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 489 return 0; 490 return security_ops->inode_link(old_dentry, dir, new_dentry); 491 } 492 493 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 494 { 495 if (unlikely(IS_PRIVATE(dentry->d_inode))) 496 return 0; 497 return security_ops->inode_unlink(dir, dentry); 498 } 499 500 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 501 const char *old_name) 502 { 503 if (unlikely(IS_PRIVATE(dir))) 504 return 0; 505 return security_ops->inode_symlink(dir, dentry, old_name); 506 } 507 508 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 509 { 510 if (unlikely(IS_PRIVATE(dir))) 511 return 0; 512 return security_ops->inode_mkdir(dir, dentry, mode); 513 } 514 EXPORT_SYMBOL_GPL(security_inode_mkdir); 515 516 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 517 { 518 if (unlikely(IS_PRIVATE(dentry->d_inode))) 519 return 0; 520 return security_ops->inode_rmdir(dir, dentry); 521 } 522 523 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 524 { 525 if (unlikely(IS_PRIVATE(dir))) 526 return 0; 527 return security_ops->inode_mknod(dir, dentry, mode, dev); 528 } 529 530 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 531 struct inode *new_dir, struct dentry *new_dentry) 532 { 533 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 534 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 535 return 0; 536 return security_ops->inode_rename(old_dir, old_dentry, 537 new_dir, new_dentry); 538 } 539 540 int security_inode_readlink(struct dentry *dentry) 541 { 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return 0; 544 return security_ops->inode_readlink(dentry); 545 } 546 547 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 548 { 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_follow_link(dentry, nd); 552 } 553 554 int security_inode_permission(struct inode *inode, int mask) 555 { 556 if (unlikely(IS_PRIVATE(inode))) 557 return 0; 558 return security_ops->inode_permission(inode, mask); 559 } 560 561 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 562 { 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 return security_ops->inode_setattr(dentry, attr); 566 } 567 EXPORT_SYMBOL_GPL(security_inode_setattr); 568 569 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 570 { 571 if (unlikely(IS_PRIVATE(dentry->d_inode))) 572 return 0; 573 return security_ops->inode_getattr(mnt, dentry); 574 } 575 576 void security_inode_delete(struct inode *inode) 577 { 578 if (unlikely(IS_PRIVATE(inode))) 579 return; 580 security_ops->inode_delete(inode); 581 } 582 583 int security_inode_setxattr(struct dentry *dentry, const char *name, 584 const void *value, size_t size, int flags) 585 { 586 if (unlikely(IS_PRIVATE(dentry->d_inode))) 587 return 0; 588 return security_ops->inode_setxattr(dentry, name, value, size, flags); 589 } 590 591 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 592 const void *value, size_t size, int flags) 593 { 594 if (unlikely(IS_PRIVATE(dentry->d_inode))) 595 return; 596 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 597 } 598 599 int security_inode_getxattr(struct dentry *dentry, const char *name) 600 { 601 if (unlikely(IS_PRIVATE(dentry->d_inode))) 602 return 0; 603 return security_ops->inode_getxattr(dentry, name); 604 } 605 606 int security_inode_listxattr(struct dentry *dentry) 607 { 608 if (unlikely(IS_PRIVATE(dentry->d_inode))) 609 return 0; 610 return security_ops->inode_listxattr(dentry); 611 } 612 613 int security_inode_removexattr(struct dentry *dentry, const char *name) 614 { 615 if (unlikely(IS_PRIVATE(dentry->d_inode))) 616 return 0; 617 return security_ops->inode_removexattr(dentry, name); 618 } 619 620 int security_inode_need_killpriv(struct dentry *dentry) 621 { 622 return security_ops->inode_need_killpriv(dentry); 623 } 624 625 int security_inode_killpriv(struct dentry *dentry) 626 { 627 return security_ops->inode_killpriv(dentry); 628 } 629 630 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 631 { 632 if (unlikely(IS_PRIVATE(inode))) 633 return 0; 634 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 635 } 636 637 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 638 { 639 if (unlikely(IS_PRIVATE(inode))) 640 return 0; 641 return security_ops->inode_setsecurity(inode, name, value, size, flags); 642 } 643 644 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 645 { 646 if (unlikely(IS_PRIVATE(inode))) 647 return 0; 648 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 649 } 650 651 void security_inode_getsecid(const struct inode *inode, u32 *secid) 652 { 653 security_ops->inode_getsecid(inode, secid); 654 } 655 656 int security_file_permission(struct file *file, int mask) 657 { 658 return security_ops->file_permission(file, mask); 659 } 660 661 int security_file_alloc(struct file *file) 662 { 663 return security_ops->file_alloc_security(file); 664 } 665 666 void security_file_free(struct file *file) 667 { 668 security_ops->file_free_security(file); 669 } 670 671 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 672 { 673 return security_ops->file_ioctl(file, cmd, arg); 674 } 675 676 int security_file_mmap(struct file *file, unsigned long reqprot, 677 unsigned long prot, unsigned long flags, 678 unsigned long addr, unsigned long addr_only) 679 { 680 int ret; 681 682 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 683 if (ret) 684 return ret; 685 return ima_file_mmap(file, prot); 686 } 687 688 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 689 unsigned long prot) 690 { 691 return security_ops->file_mprotect(vma, reqprot, prot); 692 } 693 694 int security_file_lock(struct file *file, unsigned int cmd) 695 { 696 return security_ops->file_lock(file, cmd); 697 } 698 699 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 700 { 701 return security_ops->file_fcntl(file, cmd, arg); 702 } 703 704 int security_file_set_fowner(struct file *file) 705 { 706 return security_ops->file_set_fowner(file); 707 } 708 709 int security_file_send_sigiotask(struct task_struct *tsk, 710 struct fown_struct *fown, int sig) 711 { 712 return security_ops->file_send_sigiotask(tsk, fown, sig); 713 } 714 715 int security_file_receive(struct file *file) 716 { 717 return security_ops->file_receive(file); 718 } 719 720 int security_dentry_open(struct file *file, const struct cred *cred) 721 { 722 return security_ops->dentry_open(file, cred); 723 } 724 725 int security_task_create(unsigned long clone_flags) 726 { 727 return security_ops->task_create(clone_flags); 728 } 729 730 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 731 { 732 return security_ops->cred_alloc_blank(cred, gfp); 733 } 734 735 void security_cred_free(struct cred *cred) 736 { 737 security_ops->cred_free(cred); 738 } 739 740 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 741 { 742 return security_ops->cred_prepare(new, old, gfp); 743 } 744 745 void security_commit_creds(struct cred *new, const struct cred *old) 746 { 747 security_ops->cred_commit(new, old); 748 } 749 750 void security_transfer_creds(struct cred *new, const struct cred *old) 751 { 752 security_ops->cred_transfer(new, old); 753 } 754 755 int security_kernel_act_as(struct cred *new, u32 secid) 756 { 757 return security_ops->kernel_act_as(new, secid); 758 } 759 760 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 761 { 762 return security_ops->kernel_create_files_as(new, inode); 763 } 764 765 int security_kernel_module_request(char *kmod_name) 766 { 767 return security_ops->kernel_module_request(kmod_name); 768 } 769 770 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 771 { 772 return security_ops->task_setuid(id0, id1, id2, flags); 773 } 774 775 int security_task_fix_setuid(struct cred *new, const struct cred *old, 776 int flags) 777 { 778 return security_ops->task_fix_setuid(new, old, flags); 779 } 780 781 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 782 { 783 return security_ops->task_setgid(id0, id1, id2, flags); 784 } 785 786 int security_task_setpgid(struct task_struct *p, pid_t pgid) 787 { 788 return security_ops->task_setpgid(p, pgid); 789 } 790 791 int security_task_getpgid(struct task_struct *p) 792 { 793 return security_ops->task_getpgid(p); 794 } 795 796 int security_task_getsid(struct task_struct *p) 797 { 798 return security_ops->task_getsid(p); 799 } 800 801 void security_task_getsecid(struct task_struct *p, u32 *secid) 802 { 803 security_ops->task_getsecid(p, secid); 804 } 805 EXPORT_SYMBOL(security_task_getsecid); 806 807 int security_task_setgroups(struct group_info *group_info) 808 { 809 return security_ops->task_setgroups(group_info); 810 } 811 812 int security_task_setnice(struct task_struct *p, int nice) 813 { 814 return security_ops->task_setnice(p, nice); 815 } 816 817 int security_task_setioprio(struct task_struct *p, int ioprio) 818 { 819 return security_ops->task_setioprio(p, ioprio); 820 } 821 822 int security_task_getioprio(struct task_struct *p) 823 { 824 return security_ops->task_getioprio(p); 825 } 826 827 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 828 { 829 return security_ops->task_setrlimit(resource, new_rlim); 830 } 831 832 int security_task_setscheduler(struct task_struct *p, 833 int policy, struct sched_param *lp) 834 { 835 return security_ops->task_setscheduler(p, policy, lp); 836 } 837 838 int security_task_getscheduler(struct task_struct *p) 839 { 840 return security_ops->task_getscheduler(p); 841 } 842 843 int security_task_movememory(struct task_struct *p) 844 { 845 return security_ops->task_movememory(p); 846 } 847 848 int security_task_kill(struct task_struct *p, struct siginfo *info, 849 int sig, u32 secid) 850 { 851 return security_ops->task_kill(p, info, sig, secid); 852 } 853 854 int security_task_wait(struct task_struct *p) 855 { 856 return security_ops->task_wait(p); 857 } 858 859 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 860 unsigned long arg4, unsigned long arg5) 861 { 862 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 863 } 864 865 void security_task_to_inode(struct task_struct *p, struct inode *inode) 866 { 867 security_ops->task_to_inode(p, inode); 868 } 869 870 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 871 { 872 return security_ops->ipc_permission(ipcp, flag); 873 } 874 875 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 876 { 877 security_ops->ipc_getsecid(ipcp, secid); 878 } 879 880 int security_msg_msg_alloc(struct msg_msg *msg) 881 { 882 return security_ops->msg_msg_alloc_security(msg); 883 } 884 885 void security_msg_msg_free(struct msg_msg *msg) 886 { 887 security_ops->msg_msg_free_security(msg); 888 } 889 890 int security_msg_queue_alloc(struct msg_queue *msq) 891 { 892 return security_ops->msg_queue_alloc_security(msq); 893 } 894 895 void security_msg_queue_free(struct msg_queue *msq) 896 { 897 security_ops->msg_queue_free_security(msq); 898 } 899 900 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 901 { 902 return security_ops->msg_queue_associate(msq, msqflg); 903 } 904 905 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 906 { 907 return security_ops->msg_queue_msgctl(msq, cmd); 908 } 909 910 int security_msg_queue_msgsnd(struct msg_queue *msq, 911 struct msg_msg *msg, int msqflg) 912 { 913 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 914 } 915 916 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 917 struct task_struct *target, long type, int mode) 918 { 919 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 920 } 921 922 int security_shm_alloc(struct shmid_kernel *shp) 923 { 924 return security_ops->shm_alloc_security(shp); 925 } 926 927 void security_shm_free(struct shmid_kernel *shp) 928 { 929 security_ops->shm_free_security(shp); 930 } 931 932 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 933 { 934 return security_ops->shm_associate(shp, shmflg); 935 } 936 937 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 938 { 939 return security_ops->shm_shmctl(shp, cmd); 940 } 941 942 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 943 { 944 return security_ops->shm_shmat(shp, shmaddr, shmflg); 945 } 946 947 int security_sem_alloc(struct sem_array *sma) 948 { 949 return security_ops->sem_alloc_security(sma); 950 } 951 952 void security_sem_free(struct sem_array *sma) 953 { 954 security_ops->sem_free_security(sma); 955 } 956 957 int security_sem_associate(struct sem_array *sma, int semflg) 958 { 959 return security_ops->sem_associate(sma, semflg); 960 } 961 962 int security_sem_semctl(struct sem_array *sma, int cmd) 963 { 964 return security_ops->sem_semctl(sma, cmd); 965 } 966 967 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 968 unsigned nsops, int alter) 969 { 970 return security_ops->sem_semop(sma, sops, nsops, alter); 971 } 972 973 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 974 { 975 if (unlikely(inode && IS_PRIVATE(inode))) 976 return; 977 security_ops->d_instantiate(dentry, inode); 978 } 979 EXPORT_SYMBOL(security_d_instantiate); 980 981 int security_getprocattr(struct task_struct *p, char *name, char **value) 982 { 983 return security_ops->getprocattr(p, name, value); 984 } 985 986 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 987 { 988 return security_ops->setprocattr(p, name, value, size); 989 } 990 991 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 992 { 993 return security_ops->netlink_send(sk, skb); 994 } 995 996 int security_netlink_recv(struct sk_buff *skb, int cap) 997 { 998 return security_ops->netlink_recv(skb, cap); 999 } 1000 EXPORT_SYMBOL(security_netlink_recv); 1001 1002 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1003 { 1004 return security_ops->secid_to_secctx(secid, secdata, seclen); 1005 } 1006 EXPORT_SYMBOL(security_secid_to_secctx); 1007 1008 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1009 { 1010 return security_ops->secctx_to_secid(secdata, seclen, secid); 1011 } 1012 EXPORT_SYMBOL(security_secctx_to_secid); 1013 1014 void security_release_secctx(char *secdata, u32 seclen) 1015 { 1016 security_ops->release_secctx(secdata, seclen); 1017 } 1018 EXPORT_SYMBOL(security_release_secctx); 1019 1020 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1021 { 1022 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1023 } 1024 EXPORT_SYMBOL(security_inode_notifysecctx); 1025 1026 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1027 { 1028 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1029 } 1030 EXPORT_SYMBOL(security_inode_setsecctx); 1031 1032 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1033 { 1034 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1035 } 1036 EXPORT_SYMBOL(security_inode_getsecctx); 1037 1038 #ifdef CONFIG_SECURITY_NETWORK 1039 1040 int security_unix_stream_connect(struct socket *sock, struct socket *other, 1041 struct sock *newsk) 1042 { 1043 return security_ops->unix_stream_connect(sock, other, newsk); 1044 } 1045 EXPORT_SYMBOL(security_unix_stream_connect); 1046 1047 int security_unix_may_send(struct socket *sock, struct socket *other) 1048 { 1049 return security_ops->unix_may_send(sock, other); 1050 } 1051 EXPORT_SYMBOL(security_unix_may_send); 1052 1053 int security_socket_create(int family, int type, int protocol, int kern) 1054 { 1055 return security_ops->socket_create(family, type, protocol, kern); 1056 } 1057 1058 int security_socket_post_create(struct socket *sock, int family, 1059 int type, int protocol, int kern) 1060 { 1061 return security_ops->socket_post_create(sock, family, type, 1062 protocol, kern); 1063 } 1064 1065 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1066 { 1067 return security_ops->socket_bind(sock, address, addrlen); 1068 } 1069 1070 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1071 { 1072 return security_ops->socket_connect(sock, address, addrlen); 1073 } 1074 1075 int security_socket_listen(struct socket *sock, int backlog) 1076 { 1077 return security_ops->socket_listen(sock, backlog); 1078 } 1079 1080 int security_socket_accept(struct socket *sock, struct socket *newsock) 1081 { 1082 return security_ops->socket_accept(sock, newsock); 1083 } 1084 1085 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1086 { 1087 return security_ops->socket_sendmsg(sock, msg, size); 1088 } 1089 1090 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1091 int size, int flags) 1092 { 1093 return security_ops->socket_recvmsg(sock, msg, size, flags); 1094 } 1095 1096 int security_socket_getsockname(struct socket *sock) 1097 { 1098 return security_ops->socket_getsockname(sock); 1099 } 1100 1101 int security_socket_getpeername(struct socket *sock) 1102 { 1103 return security_ops->socket_getpeername(sock); 1104 } 1105 1106 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1107 { 1108 return security_ops->socket_getsockopt(sock, level, optname); 1109 } 1110 1111 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1112 { 1113 return security_ops->socket_setsockopt(sock, level, optname); 1114 } 1115 1116 int security_socket_shutdown(struct socket *sock, int how) 1117 { 1118 return security_ops->socket_shutdown(sock, how); 1119 } 1120 1121 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1122 { 1123 return security_ops->socket_sock_rcv_skb(sk, skb); 1124 } 1125 EXPORT_SYMBOL(security_sock_rcv_skb); 1126 1127 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1128 int __user *optlen, unsigned len) 1129 { 1130 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1131 } 1132 1133 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1134 { 1135 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1136 } 1137 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1138 1139 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1140 { 1141 return security_ops->sk_alloc_security(sk, family, priority); 1142 } 1143 1144 void security_sk_free(struct sock *sk) 1145 { 1146 security_ops->sk_free_security(sk); 1147 } 1148 1149 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1150 { 1151 security_ops->sk_clone_security(sk, newsk); 1152 } 1153 1154 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1155 { 1156 security_ops->sk_getsecid(sk, &fl->secid); 1157 } 1158 EXPORT_SYMBOL(security_sk_classify_flow); 1159 1160 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1161 { 1162 security_ops->req_classify_flow(req, fl); 1163 } 1164 EXPORT_SYMBOL(security_req_classify_flow); 1165 1166 void security_sock_graft(struct sock *sk, struct socket *parent) 1167 { 1168 security_ops->sock_graft(sk, parent); 1169 } 1170 EXPORT_SYMBOL(security_sock_graft); 1171 1172 int security_inet_conn_request(struct sock *sk, 1173 struct sk_buff *skb, struct request_sock *req) 1174 { 1175 return security_ops->inet_conn_request(sk, skb, req); 1176 } 1177 EXPORT_SYMBOL(security_inet_conn_request); 1178 1179 void security_inet_csk_clone(struct sock *newsk, 1180 const struct request_sock *req) 1181 { 1182 security_ops->inet_csk_clone(newsk, req); 1183 } 1184 1185 void security_inet_conn_established(struct sock *sk, 1186 struct sk_buff *skb) 1187 { 1188 security_ops->inet_conn_established(sk, skb); 1189 } 1190 1191 int security_tun_dev_create(void) 1192 { 1193 return security_ops->tun_dev_create(); 1194 } 1195 EXPORT_SYMBOL(security_tun_dev_create); 1196 1197 void security_tun_dev_post_create(struct sock *sk) 1198 { 1199 return security_ops->tun_dev_post_create(sk); 1200 } 1201 EXPORT_SYMBOL(security_tun_dev_post_create); 1202 1203 int security_tun_dev_attach(struct sock *sk) 1204 { 1205 return security_ops->tun_dev_attach(sk); 1206 } 1207 EXPORT_SYMBOL(security_tun_dev_attach); 1208 1209 #endif /* CONFIG_SECURITY_NETWORK */ 1210 1211 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1212 1213 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1214 { 1215 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1216 } 1217 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1218 1219 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1220 struct xfrm_sec_ctx **new_ctxp) 1221 { 1222 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1223 } 1224 1225 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1226 { 1227 security_ops->xfrm_policy_free_security(ctx); 1228 } 1229 EXPORT_SYMBOL(security_xfrm_policy_free); 1230 1231 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1232 { 1233 return security_ops->xfrm_policy_delete_security(ctx); 1234 } 1235 1236 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1237 { 1238 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1239 } 1240 EXPORT_SYMBOL(security_xfrm_state_alloc); 1241 1242 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1243 struct xfrm_sec_ctx *polsec, u32 secid) 1244 { 1245 if (!polsec) 1246 return 0; 1247 /* 1248 * We want the context to be taken from secid which is usually 1249 * from the sock. 1250 */ 1251 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1252 } 1253 1254 int security_xfrm_state_delete(struct xfrm_state *x) 1255 { 1256 return security_ops->xfrm_state_delete_security(x); 1257 } 1258 EXPORT_SYMBOL(security_xfrm_state_delete); 1259 1260 void security_xfrm_state_free(struct xfrm_state *x) 1261 { 1262 security_ops->xfrm_state_free_security(x); 1263 } 1264 1265 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1266 { 1267 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1268 } 1269 1270 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1271 struct xfrm_policy *xp, struct flowi *fl) 1272 { 1273 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1274 } 1275 1276 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1277 { 1278 return security_ops->xfrm_decode_session(skb, secid, 1); 1279 } 1280 1281 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1282 { 1283 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1284 1285 BUG_ON(rc); 1286 } 1287 EXPORT_SYMBOL(security_skb_classify_flow); 1288 1289 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1290 1291 #ifdef CONFIG_KEYS 1292 1293 int security_key_alloc(struct key *key, const struct cred *cred, 1294 unsigned long flags) 1295 { 1296 return security_ops->key_alloc(key, cred, flags); 1297 } 1298 1299 void security_key_free(struct key *key) 1300 { 1301 security_ops->key_free(key); 1302 } 1303 1304 int security_key_permission(key_ref_t key_ref, 1305 const struct cred *cred, key_perm_t perm) 1306 { 1307 return security_ops->key_permission(key_ref, cred, perm); 1308 } 1309 1310 int security_key_getsecurity(struct key *key, char **_buffer) 1311 { 1312 return security_ops->key_getsecurity(key, _buffer); 1313 } 1314 1315 int security_key_session_to_parent(const struct cred *cred, 1316 const struct cred *parent_cred, 1317 struct key *key) 1318 { 1319 return security_ops->key_session_to_parent(cred, parent_cred, key); 1320 } 1321 1322 #endif /* CONFIG_KEYS */ 1323 1324 #ifdef CONFIG_AUDIT 1325 1326 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1327 { 1328 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1329 } 1330 1331 int security_audit_rule_known(struct audit_krule *krule) 1332 { 1333 return security_ops->audit_rule_known(krule); 1334 } 1335 1336 void security_audit_rule_free(void *lsmrule) 1337 { 1338 security_ops->audit_rule_free(lsmrule); 1339 } 1340 1341 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1342 struct audit_context *actx) 1343 { 1344 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1345 } 1346 1347 #endif /* CONFIG_AUDIT */ 1348