xref: /openbmc/linux/security/security.c (revision b6dcefde)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern struct security_operations default_security_ops;
27 extern void security_fixup_ops(struct security_operations *ops);
28 
29 struct security_operations *security_ops;	/* Initialized to NULL */
30 
31 static inline int verify(struct security_operations *ops)
32 {
33 	/* verify the security_operations structure exists */
34 	if (!ops)
35 		return -EINVAL;
36 	security_fixup_ops(ops);
37 	return 0;
38 }
39 
40 static void __init do_security_initcalls(void)
41 {
42 	initcall_t *call;
43 	call = __security_initcall_start;
44 	while (call < __security_initcall_end) {
45 		(*call) ();
46 		call++;
47 	}
48 }
49 
50 /**
51  * security_init - initializes the security framework
52  *
53  * This should be called early in the kernel initialization sequence.
54  */
55 int __init security_init(void)
56 {
57 	printk(KERN_INFO "Security Framework initialized\n");
58 
59 	security_fixup_ops(&default_security_ops);
60 	security_ops = &default_security_ops;
61 	do_security_initcalls();
62 
63 	return 0;
64 }
65 
66 /* Save user chosen LSM */
67 static int __init choose_lsm(char *str)
68 {
69 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
70 	return 1;
71 }
72 __setup("security=", choose_lsm);
73 
74 /**
75  * security_module_enable - Load given security module on boot ?
76  * @ops: a pointer to the struct security_operations that is to be checked.
77  *
78  * Each LSM must pass this method before registering its own operations
79  * to avoid security registration races. This method may also be used
80  * to check if your LSM is currently loaded during kernel initialization.
81  *
82  * Return true if:
83  *	-The passed LSM is the one chosen by user at boot time,
84  *	-or the passed LSM is configured as the default and the user did not
85  *	 choose an alternate LSM at boot time,
86  *	-or there is no default LSM set and the user didn't specify a
87  *	 specific LSM and we're the first to ask for registration permission,
88  *	-or the passed LSM is currently loaded.
89  * Otherwise, return false.
90  */
91 int __init security_module_enable(struct security_operations *ops)
92 {
93 	if (!*chosen_lsm)
94 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
95 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
96 		return 0;
97 
98 	return 1;
99 }
100 
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int register_security(struct security_operations *ops)
114 {
115 	if (verify(ops)) {
116 		printk(KERN_DEBUG "%s could not verify "
117 		       "security_operations structure.\n", __func__);
118 		return -EINVAL;
119 	}
120 
121 	if (security_ops != &default_security_ops)
122 		return -EAGAIN;
123 
124 	security_ops = ops;
125 
126 	return 0;
127 }
128 
129 /* Security operations */
130 
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133 	return security_ops->ptrace_access_check(child, mode);
134 }
135 
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138 	return security_ops->ptrace_traceme(parent);
139 }
140 
141 int security_capget(struct task_struct *target,
142 		     kernel_cap_t *effective,
143 		     kernel_cap_t *inheritable,
144 		     kernel_cap_t *permitted)
145 {
146 	return security_ops->capget(target, effective, inheritable, permitted);
147 }
148 
149 int security_capset(struct cred *new, const struct cred *old,
150 		    const kernel_cap_t *effective,
151 		    const kernel_cap_t *inheritable,
152 		    const kernel_cap_t *permitted)
153 {
154 	return security_ops->capset(new, old,
155 				    effective, inheritable, permitted);
156 }
157 
158 int security_capable(int cap)
159 {
160 	return security_ops->capable(current, current_cred(), cap,
161 				     SECURITY_CAP_AUDIT);
162 }
163 
164 int security_real_capable(struct task_struct *tsk, int cap)
165 {
166 	const struct cred *cred;
167 	int ret;
168 
169 	cred = get_task_cred(tsk);
170 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
171 	put_cred(cred);
172 	return ret;
173 }
174 
175 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
176 {
177 	const struct cred *cred;
178 	int ret;
179 
180 	cred = get_task_cred(tsk);
181 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
182 	put_cred(cred);
183 	return ret;
184 }
185 
186 int security_acct(struct file *file)
187 {
188 	return security_ops->acct(file);
189 }
190 
191 int security_sysctl(struct ctl_table *table, int op)
192 {
193 	return security_ops->sysctl(table, op);
194 }
195 
196 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
197 {
198 	return security_ops->quotactl(cmds, type, id, sb);
199 }
200 
201 int security_quota_on(struct dentry *dentry)
202 {
203 	return security_ops->quota_on(dentry);
204 }
205 
206 int security_syslog(int type)
207 {
208 	return security_ops->syslog(type);
209 }
210 
211 int security_settime(struct timespec *ts, struct timezone *tz)
212 {
213 	return security_ops->settime(ts, tz);
214 }
215 
216 int security_vm_enough_memory(long pages)
217 {
218 	WARN_ON(current->mm == NULL);
219 	return security_ops->vm_enough_memory(current->mm, pages);
220 }
221 
222 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
223 {
224 	WARN_ON(mm == NULL);
225 	return security_ops->vm_enough_memory(mm, pages);
226 }
227 
228 int security_vm_enough_memory_kern(long pages)
229 {
230 	/* If current->mm is a kernel thread then we will pass NULL,
231 	   for this specific case that is fine */
232 	return security_ops->vm_enough_memory(current->mm, pages);
233 }
234 
235 int security_bprm_set_creds(struct linux_binprm *bprm)
236 {
237 	return security_ops->bprm_set_creds(bprm);
238 }
239 
240 int security_bprm_check(struct linux_binprm *bprm)
241 {
242 	int ret;
243 
244 	ret = security_ops->bprm_check_security(bprm);
245 	if (ret)
246 		return ret;
247 	return ima_bprm_check(bprm);
248 }
249 
250 void security_bprm_committing_creds(struct linux_binprm *bprm)
251 {
252 	security_ops->bprm_committing_creds(bprm);
253 }
254 
255 void security_bprm_committed_creds(struct linux_binprm *bprm)
256 {
257 	security_ops->bprm_committed_creds(bprm);
258 }
259 
260 int security_bprm_secureexec(struct linux_binprm *bprm)
261 {
262 	return security_ops->bprm_secureexec(bprm);
263 }
264 
265 int security_sb_alloc(struct super_block *sb)
266 {
267 	return security_ops->sb_alloc_security(sb);
268 }
269 
270 void security_sb_free(struct super_block *sb)
271 {
272 	security_ops->sb_free_security(sb);
273 }
274 
275 int security_sb_copy_data(char *orig, char *copy)
276 {
277 	return security_ops->sb_copy_data(orig, copy);
278 }
279 EXPORT_SYMBOL(security_sb_copy_data);
280 
281 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
282 {
283 	return security_ops->sb_kern_mount(sb, flags, data);
284 }
285 
286 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
287 {
288 	return security_ops->sb_show_options(m, sb);
289 }
290 
291 int security_sb_statfs(struct dentry *dentry)
292 {
293 	return security_ops->sb_statfs(dentry);
294 }
295 
296 int security_sb_mount(char *dev_name, struct path *path,
297                        char *type, unsigned long flags, void *data)
298 {
299 	return security_ops->sb_mount(dev_name, path, type, flags, data);
300 }
301 
302 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
303 {
304 	return security_ops->sb_check_sb(mnt, path);
305 }
306 
307 int security_sb_umount(struct vfsmount *mnt, int flags)
308 {
309 	return security_ops->sb_umount(mnt, flags);
310 }
311 
312 void security_sb_umount_close(struct vfsmount *mnt)
313 {
314 	security_ops->sb_umount_close(mnt);
315 }
316 
317 void security_sb_umount_busy(struct vfsmount *mnt)
318 {
319 	security_ops->sb_umount_busy(mnt);
320 }
321 
322 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
323 {
324 	security_ops->sb_post_remount(mnt, flags, data);
325 }
326 
327 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
328 {
329 	security_ops->sb_post_addmount(mnt, mountpoint);
330 }
331 
332 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
333 {
334 	return security_ops->sb_pivotroot(old_path, new_path);
335 }
336 
337 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
338 {
339 	security_ops->sb_post_pivotroot(old_path, new_path);
340 }
341 
342 int security_sb_set_mnt_opts(struct super_block *sb,
343 				struct security_mnt_opts *opts)
344 {
345 	return security_ops->sb_set_mnt_opts(sb, opts);
346 }
347 EXPORT_SYMBOL(security_sb_set_mnt_opts);
348 
349 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
350 				struct super_block *newsb)
351 {
352 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
353 }
354 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
355 
356 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
357 {
358 	return security_ops->sb_parse_opts_str(options, opts);
359 }
360 EXPORT_SYMBOL(security_sb_parse_opts_str);
361 
362 int security_inode_alloc(struct inode *inode)
363 {
364 	int ret;
365 
366 	inode->i_security = NULL;
367 	ret =  security_ops->inode_alloc_security(inode);
368 	if (ret)
369 		return ret;
370 	ret = ima_inode_alloc(inode);
371 	if (ret)
372 		security_inode_free(inode);
373 	return ret;
374 }
375 
376 void security_inode_free(struct inode *inode)
377 {
378 	ima_inode_free(inode);
379 	security_ops->inode_free_security(inode);
380 }
381 
382 int security_inode_init_security(struct inode *inode, struct inode *dir,
383 				  char **name, void **value, size_t *len)
384 {
385 	if (unlikely(IS_PRIVATE(inode)))
386 		return -EOPNOTSUPP;
387 	return security_ops->inode_init_security(inode, dir, name, value, len);
388 }
389 EXPORT_SYMBOL(security_inode_init_security);
390 
391 #ifdef CONFIG_SECURITY_PATH
392 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
393 			unsigned int dev)
394 {
395 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_mknod(path, dentry, mode, dev);
398 }
399 EXPORT_SYMBOL(security_path_mknod);
400 
401 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
402 {
403 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
404 		return 0;
405 	return security_ops->path_mkdir(path, dentry, mode);
406 }
407 
408 int security_path_rmdir(struct path *path, struct dentry *dentry)
409 {
410 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411 		return 0;
412 	return security_ops->path_rmdir(path, dentry);
413 }
414 
415 int security_path_unlink(struct path *path, struct dentry *dentry)
416 {
417 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
418 		return 0;
419 	return security_ops->path_unlink(path, dentry);
420 }
421 
422 int security_path_symlink(struct path *path, struct dentry *dentry,
423 			  const char *old_name)
424 {
425 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
426 		return 0;
427 	return security_ops->path_symlink(path, dentry, old_name);
428 }
429 
430 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
431 		       struct dentry *new_dentry)
432 {
433 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
434 		return 0;
435 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
436 }
437 
438 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
439 			 struct path *new_dir, struct dentry *new_dentry)
440 {
441 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
442 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
443 		return 0;
444 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
445 					 new_dentry);
446 }
447 
448 int security_path_truncate(struct path *path, loff_t length,
449 			   unsigned int time_attrs)
450 {
451 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452 		return 0;
453 	return security_ops->path_truncate(path, length, time_attrs);
454 }
455 
456 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
457 			mode_t mode)
458 {
459 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
460 		return 0;
461 	return security_ops->path_chmod(dentry, mnt, mode);
462 }
463 
464 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
465 {
466 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
467 		return 0;
468 	return security_ops->path_chown(path, uid, gid);
469 }
470 
471 int security_path_chroot(struct path *path)
472 {
473 	return security_ops->path_chroot(path);
474 }
475 #endif
476 
477 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
478 {
479 	if (unlikely(IS_PRIVATE(dir)))
480 		return 0;
481 	return security_ops->inode_create(dir, dentry, mode);
482 }
483 EXPORT_SYMBOL_GPL(security_inode_create);
484 
485 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
486 			 struct dentry *new_dentry)
487 {
488 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
489 		return 0;
490 	return security_ops->inode_link(old_dentry, dir, new_dentry);
491 }
492 
493 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
494 {
495 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
496 		return 0;
497 	return security_ops->inode_unlink(dir, dentry);
498 }
499 
500 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
501 			    const char *old_name)
502 {
503 	if (unlikely(IS_PRIVATE(dir)))
504 		return 0;
505 	return security_ops->inode_symlink(dir, dentry, old_name);
506 }
507 
508 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
509 {
510 	if (unlikely(IS_PRIVATE(dir)))
511 		return 0;
512 	return security_ops->inode_mkdir(dir, dentry, mode);
513 }
514 EXPORT_SYMBOL_GPL(security_inode_mkdir);
515 
516 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
517 {
518 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
519 		return 0;
520 	return security_ops->inode_rmdir(dir, dentry);
521 }
522 
523 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
524 {
525 	if (unlikely(IS_PRIVATE(dir)))
526 		return 0;
527 	return security_ops->inode_mknod(dir, dentry, mode, dev);
528 }
529 
530 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
531 			   struct inode *new_dir, struct dentry *new_dentry)
532 {
533         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
534             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
535 		return 0;
536 	return security_ops->inode_rename(old_dir, old_dentry,
537 					   new_dir, new_dentry);
538 }
539 
540 int security_inode_readlink(struct dentry *dentry)
541 {
542 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
543 		return 0;
544 	return security_ops->inode_readlink(dentry);
545 }
546 
547 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
548 {
549 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 		return 0;
551 	return security_ops->inode_follow_link(dentry, nd);
552 }
553 
554 int security_inode_permission(struct inode *inode, int mask)
555 {
556 	if (unlikely(IS_PRIVATE(inode)))
557 		return 0;
558 	return security_ops->inode_permission(inode, mask);
559 }
560 
561 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
562 {
563 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 		return 0;
565 	return security_ops->inode_setattr(dentry, attr);
566 }
567 EXPORT_SYMBOL_GPL(security_inode_setattr);
568 
569 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
570 {
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	return security_ops->inode_getattr(mnt, dentry);
574 }
575 
576 void security_inode_delete(struct inode *inode)
577 {
578 	if (unlikely(IS_PRIVATE(inode)))
579 		return;
580 	security_ops->inode_delete(inode);
581 }
582 
583 int security_inode_setxattr(struct dentry *dentry, const char *name,
584 			    const void *value, size_t size, int flags)
585 {
586 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
587 		return 0;
588 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
589 }
590 
591 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
592 				  const void *value, size_t size, int flags)
593 {
594 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
595 		return;
596 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
597 }
598 
599 int security_inode_getxattr(struct dentry *dentry, const char *name)
600 {
601 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
602 		return 0;
603 	return security_ops->inode_getxattr(dentry, name);
604 }
605 
606 int security_inode_listxattr(struct dentry *dentry)
607 {
608 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
609 		return 0;
610 	return security_ops->inode_listxattr(dentry);
611 }
612 
613 int security_inode_removexattr(struct dentry *dentry, const char *name)
614 {
615 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
616 		return 0;
617 	return security_ops->inode_removexattr(dentry, name);
618 }
619 
620 int security_inode_need_killpriv(struct dentry *dentry)
621 {
622 	return security_ops->inode_need_killpriv(dentry);
623 }
624 
625 int security_inode_killpriv(struct dentry *dentry)
626 {
627 	return security_ops->inode_killpriv(dentry);
628 }
629 
630 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
631 {
632 	if (unlikely(IS_PRIVATE(inode)))
633 		return 0;
634 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
635 }
636 
637 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
638 {
639 	if (unlikely(IS_PRIVATE(inode)))
640 		return 0;
641 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
642 }
643 
644 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
645 {
646 	if (unlikely(IS_PRIVATE(inode)))
647 		return 0;
648 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
649 }
650 
651 void security_inode_getsecid(const struct inode *inode, u32 *secid)
652 {
653 	security_ops->inode_getsecid(inode, secid);
654 }
655 
656 int security_file_permission(struct file *file, int mask)
657 {
658 	return security_ops->file_permission(file, mask);
659 }
660 
661 int security_file_alloc(struct file *file)
662 {
663 	return security_ops->file_alloc_security(file);
664 }
665 
666 void security_file_free(struct file *file)
667 {
668 	security_ops->file_free_security(file);
669 }
670 
671 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
672 {
673 	return security_ops->file_ioctl(file, cmd, arg);
674 }
675 
676 int security_file_mmap(struct file *file, unsigned long reqprot,
677 			unsigned long prot, unsigned long flags,
678 			unsigned long addr, unsigned long addr_only)
679 {
680 	int ret;
681 
682 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
683 	if (ret)
684 		return ret;
685 	return ima_file_mmap(file, prot);
686 }
687 
688 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
689 			    unsigned long prot)
690 {
691 	return security_ops->file_mprotect(vma, reqprot, prot);
692 }
693 
694 int security_file_lock(struct file *file, unsigned int cmd)
695 {
696 	return security_ops->file_lock(file, cmd);
697 }
698 
699 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
700 {
701 	return security_ops->file_fcntl(file, cmd, arg);
702 }
703 
704 int security_file_set_fowner(struct file *file)
705 {
706 	return security_ops->file_set_fowner(file);
707 }
708 
709 int security_file_send_sigiotask(struct task_struct *tsk,
710 				  struct fown_struct *fown, int sig)
711 {
712 	return security_ops->file_send_sigiotask(tsk, fown, sig);
713 }
714 
715 int security_file_receive(struct file *file)
716 {
717 	return security_ops->file_receive(file);
718 }
719 
720 int security_dentry_open(struct file *file, const struct cred *cred)
721 {
722 	return security_ops->dentry_open(file, cred);
723 }
724 
725 int security_task_create(unsigned long clone_flags)
726 {
727 	return security_ops->task_create(clone_flags);
728 }
729 
730 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
731 {
732 	return security_ops->cred_alloc_blank(cred, gfp);
733 }
734 
735 void security_cred_free(struct cred *cred)
736 {
737 	security_ops->cred_free(cred);
738 }
739 
740 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
741 {
742 	return security_ops->cred_prepare(new, old, gfp);
743 }
744 
745 void security_commit_creds(struct cred *new, const struct cred *old)
746 {
747 	security_ops->cred_commit(new, old);
748 }
749 
750 void security_transfer_creds(struct cred *new, const struct cred *old)
751 {
752 	security_ops->cred_transfer(new, old);
753 }
754 
755 int security_kernel_act_as(struct cred *new, u32 secid)
756 {
757 	return security_ops->kernel_act_as(new, secid);
758 }
759 
760 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
761 {
762 	return security_ops->kernel_create_files_as(new, inode);
763 }
764 
765 int security_kernel_module_request(char *kmod_name)
766 {
767 	return security_ops->kernel_module_request(kmod_name);
768 }
769 
770 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
771 {
772 	return security_ops->task_setuid(id0, id1, id2, flags);
773 }
774 
775 int security_task_fix_setuid(struct cred *new, const struct cred *old,
776 			     int flags)
777 {
778 	return security_ops->task_fix_setuid(new, old, flags);
779 }
780 
781 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
782 {
783 	return security_ops->task_setgid(id0, id1, id2, flags);
784 }
785 
786 int security_task_setpgid(struct task_struct *p, pid_t pgid)
787 {
788 	return security_ops->task_setpgid(p, pgid);
789 }
790 
791 int security_task_getpgid(struct task_struct *p)
792 {
793 	return security_ops->task_getpgid(p);
794 }
795 
796 int security_task_getsid(struct task_struct *p)
797 {
798 	return security_ops->task_getsid(p);
799 }
800 
801 void security_task_getsecid(struct task_struct *p, u32 *secid)
802 {
803 	security_ops->task_getsecid(p, secid);
804 }
805 EXPORT_SYMBOL(security_task_getsecid);
806 
807 int security_task_setgroups(struct group_info *group_info)
808 {
809 	return security_ops->task_setgroups(group_info);
810 }
811 
812 int security_task_setnice(struct task_struct *p, int nice)
813 {
814 	return security_ops->task_setnice(p, nice);
815 }
816 
817 int security_task_setioprio(struct task_struct *p, int ioprio)
818 {
819 	return security_ops->task_setioprio(p, ioprio);
820 }
821 
822 int security_task_getioprio(struct task_struct *p)
823 {
824 	return security_ops->task_getioprio(p);
825 }
826 
827 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
828 {
829 	return security_ops->task_setrlimit(resource, new_rlim);
830 }
831 
832 int security_task_setscheduler(struct task_struct *p,
833 				int policy, struct sched_param *lp)
834 {
835 	return security_ops->task_setscheduler(p, policy, lp);
836 }
837 
838 int security_task_getscheduler(struct task_struct *p)
839 {
840 	return security_ops->task_getscheduler(p);
841 }
842 
843 int security_task_movememory(struct task_struct *p)
844 {
845 	return security_ops->task_movememory(p);
846 }
847 
848 int security_task_kill(struct task_struct *p, struct siginfo *info,
849 			int sig, u32 secid)
850 {
851 	return security_ops->task_kill(p, info, sig, secid);
852 }
853 
854 int security_task_wait(struct task_struct *p)
855 {
856 	return security_ops->task_wait(p);
857 }
858 
859 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
860 			 unsigned long arg4, unsigned long arg5)
861 {
862 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
863 }
864 
865 void security_task_to_inode(struct task_struct *p, struct inode *inode)
866 {
867 	security_ops->task_to_inode(p, inode);
868 }
869 
870 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
871 {
872 	return security_ops->ipc_permission(ipcp, flag);
873 }
874 
875 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
876 {
877 	security_ops->ipc_getsecid(ipcp, secid);
878 }
879 
880 int security_msg_msg_alloc(struct msg_msg *msg)
881 {
882 	return security_ops->msg_msg_alloc_security(msg);
883 }
884 
885 void security_msg_msg_free(struct msg_msg *msg)
886 {
887 	security_ops->msg_msg_free_security(msg);
888 }
889 
890 int security_msg_queue_alloc(struct msg_queue *msq)
891 {
892 	return security_ops->msg_queue_alloc_security(msq);
893 }
894 
895 void security_msg_queue_free(struct msg_queue *msq)
896 {
897 	security_ops->msg_queue_free_security(msq);
898 }
899 
900 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
901 {
902 	return security_ops->msg_queue_associate(msq, msqflg);
903 }
904 
905 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
906 {
907 	return security_ops->msg_queue_msgctl(msq, cmd);
908 }
909 
910 int security_msg_queue_msgsnd(struct msg_queue *msq,
911 			       struct msg_msg *msg, int msqflg)
912 {
913 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
914 }
915 
916 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
917 			       struct task_struct *target, long type, int mode)
918 {
919 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
920 }
921 
922 int security_shm_alloc(struct shmid_kernel *shp)
923 {
924 	return security_ops->shm_alloc_security(shp);
925 }
926 
927 void security_shm_free(struct shmid_kernel *shp)
928 {
929 	security_ops->shm_free_security(shp);
930 }
931 
932 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
933 {
934 	return security_ops->shm_associate(shp, shmflg);
935 }
936 
937 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
938 {
939 	return security_ops->shm_shmctl(shp, cmd);
940 }
941 
942 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
943 {
944 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
945 }
946 
947 int security_sem_alloc(struct sem_array *sma)
948 {
949 	return security_ops->sem_alloc_security(sma);
950 }
951 
952 void security_sem_free(struct sem_array *sma)
953 {
954 	security_ops->sem_free_security(sma);
955 }
956 
957 int security_sem_associate(struct sem_array *sma, int semflg)
958 {
959 	return security_ops->sem_associate(sma, semflg);
960 }
961 
962 int security_sem_semctl(struct sem_array *sma, int cmd)
963 {
964 	return security_ops->sem_semctl(sma, cmd);
965 }
966 
967 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
968 			unsigned nsops, int alter)
969 {
970 	return security_ops->sem_semop(sma, sops, nsops, alter);
971 }
972 
973 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
974 {
975 	if (unlikely(inode && IS_PRIVATE(inode)))
976 		return;
977 	security_ops->d_instantiate(dentry, inode);
978 }
979 EXPORT_SYMBOL(security_d_instantiate);
980 
981 int security_getprocattr(struct task_struct *p, char *name, char **value)
982 {
983 	return security_ops->getprocattr(p, name, value);
984 }
985 
986 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
987 {
988 	return security_ops->setprocattr(p, name, value, size);
989 }
990 
991 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
992 {
993 	return security_ops->netlink_send(sk, skb);
994 }
995 
996 int security_netlink_recv(struct sk_buff *skb, int cap)
997 {
998 	return security_ops->netlink_recv(skb, cap);
999 }
1000 EXPORT_SYMBOL(security_netlink_recv);
1001 
1002 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1003 {
1004 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1005 }
1006 EXPORT_SYMBOL(security_secid_to_secctx);
1007 
1008 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1009 {
1010 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1011 }
1012 EXPORT_SYMBOL(security_secctx_to_secid);
1013 
1014 void security_release_secctx(char *secdata, u32 seclen)
1015 {
1016 	security_ops->release_secctx(secdata, seclen);
1017 }
1018 EXPORT_SYMBOL(security_release_secctx);
1019 
1020 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1021 {
1022 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1023 }
1024 EXPORT_SYMBOL(security_inode_notifysecctx);
1025 
1026 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1027 {
1028 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1029 }
1030 EXPORT_SYMBOL(security_inode_setsecctx);
1031 
1032 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1033 {
1034 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1035 }
1036 EXPORT_SYMBOL(security_inode_getsecctx);
1037 
1038 #ifdef CONFIG_SECURITY_NETWORK
1039 
1040 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1041 				 struct sock *newsk)
1042 {
1043 	return security_ops->unix_stream_connect(sock, other, newsk);
1044 }
1045 EXPORT_SYMBOL(security_unix_stream_connect);
1046 
1047 int security_unix_may_send(struct socket *sock,  struct socket *other)
1048 {
1049 	return security_ops->unix_may_send(sock, other);
1050 }
1051 EXPORT_SYMBOL(security_unix_may_send);
1052 
1053 int security_socket_create(int family, int type, int protocol, int kern)
1054 {
1055 	return security_ops->socket_create(family, type, protocol, kern);
1056 }
1057 
1058 int security_socket_post_create(struct socket *sock, int family,
1059 				int type, int protocol, int kern)
1060 {
1061 	return security_ops->socket_post_create(sock, family, type,
1062 						protocol, kern);
1063 }
1064 
1065 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1066 {
1067 	return security_ops->socket_bind(sock, address, addrlen);
1068 }
1069 
1070 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1071 {
1072 	return security_ops->socket_connect(sock, address, addrlen);
1073 }
1074 
1075 int security_socket_listen(struct socket *sock, int backlog)
1076 {
1077 	return security_ops->socket_listen(sock, backlog);
1078 }
1079 
1080 int security_socket_accept(struct socket *sock, struct socket *newsock)
1081 {
1082 	return security_ops->socket_accept(sock, newsock);
1083 }
1084 
1085 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1086 {
1087 	return security_ops->socket_sendmsg(sock, msg, size);
1088 }
1089 
1090 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1091 			    int size, int flags)
1092 {
1093 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1094 }
1095 
1096 int security_socket_getsockname(struct socket *sock)
1097 {
1098 	return security_ops->socket_getsockname(sock);
1099 }
1100 
1101 int security_socket_getpeername(struct socket *sock)
1102 {
1103 	return security_ops->socket_getpeername(sock);
1104 }
1105 
1106 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1107 {
1108 	return security_ops->socket_getsockopt(sock, level, optname);
1109 }
1110 
1111 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1112 {
1113 	return security_ops->socket_setsockopt(sock, level, optname);
1114 }
1115 
1116 int security_socket_shutdown(struct socket *sock, int how)
1117 {
1118 	return security_ops->socket_shutdown(sock, how);
1119 }
1120 
1121 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1122 {
1123 	return security_ops->socket_sock_rcv_skb(sk, skb);
1124 }
1125 EXPORT_SYMBOL(security_sock_rcv_skb);
1126 
1127 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1128 				      int __user *optlen, unsigned len)
1129 {
1130 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1131 }
1132 
1133 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1134 {
1135 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1136 }
1137 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1138 
1139 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1140 {
1141 	return security_ops->sk_alloc_security(sk, family, priority);
1142 }
1143 
1144 void security_sk_free(struct sock *sk)
1145 {
1146 	security_ops->sk_free_security(sk);
1147 }
1148 
1149 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1150 {
1151 	security_ops->sk_clone_security(sk, newsk);
1152 }
1153 
1154 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1155 {
1156 	security_ops->sk_getsecid(sk, &fl->secid);
1157 }
1158 EXPORT_SYMBOL(security_sk_classify_flow);
1159 
1160 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1161 {
1162 	security_ops->req_classify_flow(req, fl);
1163 }
1164 EXPORT_SYMBOL(security_req_classify_flow);
1165 
1166 void security_sock_graft(struct sock *sk, struct socket *parent)
1167 {
1168 	security_ops->sock_graft(sk, parent);
1169 }
1170 EXPORT_SYMBOL(security_sock_graft);
1171 
1172 int security_inet_conn_request(struct sock *sk,
1173 			struct sk_buff *skb, struct request_sock *req)
1174 {
1175 	return security_ops->inet_conn_request(sk, skb, req);
1176 }
1177 EXPORT_SYMBOL(security_inet_conn_request);
1178 
1179 void security_inet_csk_clone(struct sock *newsk,
1180 			const struct request_sock *req)
1181 {
1182 	security_ops->inet_csk_clone(newsk, req);
1183 }
1184 
1185 void security_inet_conn_established(struct sock *sk,
1186 			struct sk_buff *skb)
1187 {
1188 	security_ops->inet_conn_established(sk, skb);
1189 }
1190 
1191 int security_tun_dev_create(void)
1192 {
1193 	return security_ops->tun_dev_create();
1194 }
1195 EXPORT_SYMBOL(security_tun_dev_create);
1196 
1197 void security_tun_dev_post_create(struct sock *sk)
1198 {
1199 	return security_ops->tun_dev_post_create(sk);
1200 }
1201 EXPORT_SYMBOL(security_tun_dev_post_create);
1202 
1203 int security_tun_dev_attach(struct sock *sk)
1204 {
1205 	return security_ops->tun_dev_attach(sk);
1206 }
1207 EXPORT_SYMBOL(security_tun_dev_attach);
1208 
1209 #endif	/* CONFIG_SECURITY_NETWORK */
1210 
1211 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1212 
1213 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1214 {
1215 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1216 }
1217 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1218 
1219 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1220 			      struct xfrm_sec_ctx **new_ctxp)
1221 {
1222 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1223 }
1224 
1225 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1226 {
1227 	security_ops->xfrm_policy_free_security(ctx);
1228 }
1229 EXPORT_SYMBOL(security_xfrm_policy_free);
1230 
1231 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1232 {
1233 	return security_ops->xfrm_policy_delete_security(ctx);
1234 }
1235 
1236 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1237 {
1238 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1239 }
1240 EXPORT_SYMBOL(security_xfrm_state_alloc);
1241 
1242 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1243 				      struct xfrm_sec_ctx *polsec, u32 secid)
1244 {
1245 	if (!polsec)
1246 		return 0;
1247 	/*
1248 	 * We want the context to be taken from secid which is usually
1249 	 * from the sock.
1250 	 */
1251 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1252 }
1253 
1254 int security_xfrm_state_delete(struct xfrm_state *x)
1255 {
1256 	return security_ops->xfrm_state_delete_security(x);
1257 }
1258 EXPORT_SYMBOL(security_xfrm_state_delete);
1259 
1260 void security_xfrm_state_free(struct xfrm_state *x)
1261 {
1262 	security_ops->xfrm_state_free_security(x);
1263 }
1264 
1265 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1266 {
1267 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1268 }
1269 
1270 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1271 				       struct xfrm_policy *xp, struct flowi *fl)
1272 {
1273 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1274 }
1275 
1276 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1277 {
1278 	return security_ops->xfrm_decode_session(skb, secid, 1);
1279 }
1280 
1281 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1282 {
1283 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1284 
1285 	BUG_ON(rc);
1286 }
1287 EXPORT_SYMBOL(security_skb_classify_flow);
1288 
1289 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1290 
1291 #ifdef CONFIG_KEYS
1292 
1293 int security_key_alloc(struct key *key, const struct cred *cred,
1294 		       unsigned long flags)
1295 {
1296 	return security_ops->key_alloc(key, cred, flags);
1297 }
1298 
1299 void security_key_free(struct key *key)
1300 {
1301 	security_ops->key_free(key);
1302 }
1303 
1304 int security_key_permission(key_ref_t key_ref,
1305 			    const struct cred *cred, key_perm_t perm)
1306 {
1307 	return security_ops->key_permission(key_ref, cred, perm);
1308 }
1309 
1310 int security_key_getsecurity(struct key *key, char **_buffer)
1311 {
1312 	return security_ops->key_getsecurity(key, _buffer);
1313 }
1314 
1315 int security_key_session_to_parent(const struct cred *cred,
1316 				   const struct cred *parent_cred,
1317 				   struct key *key)
1318 {
1319 	return security_ops->key_session_to_parent(cred, parent_cred, key);
1320 }
1321 
1322 #endif	/* CONFIG_KEYS */
1323 
1324 #ifdef CONFIG_AUDIT
1325 
1326 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1327 {
1328 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1329 }
1330 
1331 int security_audit_rule_known(struct audit_krule *krule)
1332 {
1333 	return security_ops->audit_rule_known(krule);
1334 }
1335 
1336 void security_audit_rule_free(void *lsmrule)
1337 {
1338 	security_ops->audit_rule_free(lsmrule);
1339 }
1340 
1341 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1342 			      struct audit_context *actx)
1343 {
1344 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1345 }
1346 
1347 #endif /* CONFIG_AUDIT */
1348