xref: /openbmc/linux/security/security.c (revision b478a9f9)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in dummy.c */
24 extern struct security_operations dummy_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	if (verify(&dummy_security_ops)) {
61 		printk(KERN_ERR "%s could not verify "
62 		       "dummy_security_ops structure.\n", __func__);
63 		return -EIO;
64 	}
65 
66 	security_ops = &dummy_security_ops;
67 	do_security_initcalls();
68 
69 	return 0;
70 }
71 
72 /* Save user chosen LSM */
73 static int __init choose_lsm(char *str)
74 {
75 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76 	return 1;
77 }
78 __setup("security=", choose_lsm);
79 
80 /**
81  * security_module_enable - Load given security module on boot ?
82  * @ops: a pointer to the struct security_operations that is to be checked.
83  *
84  * Each LSM must pass this method before registering its own operations
85  * to avoid security registration races. This method may also be used
86  * to check if your LSM is currently loaded during kernel initialization.
87  *
88  * Return true if:
89  *	-The passed LSM is the one chosen by user at boot time,
90  *	-or user didsn't specify a specific LSM and we're the first to ask
91  *	 for registeration permissoin,
92  *	-or the passed LSM is currently loaded.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 	if (!*chosen_lsm)
98 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
99 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
100 		return 0;
101 
102 	return 1;
103 }
104 
105 /**
106  * register_security - registers a security framework with the kernel
107  * @ops: a pointer to the struct security_options that is to be registered
108  *
109  * This function is to allow a security module to register itself with the
110  * kernel security subsystem.  Some rudimentary checking is done on the @ops
111  * value passed to this function. You'll need to check first if your LSM
112  * is allowed to register its @ops by calling security_module_enable(@ops).
113  *
114  * If there is already a security module registered with the kernel,
115  * an error will be returned.  Otherwise 0 is returned on success.
116  */
117 int register_security(struct security_operations *ops)
118 {
119 	if (verify(ops)) {
120 		printk(KERN_DEBUG "%s could not verify "
121 		       "security_operations structure.\n", __func__);
122 		return -EINVAL;
123 	}
124 
125 	if (security_ops != &dummy_security_ops)
126 		return -EAGAIN;
127 
128 	security_ops = ops;
129 
130 	return 0;
131 }
132 
133 /**
134  * mod_reg_security - allows security modules to be "stacked"
135  * @name: a pointer to a string with the name of the security_options to be registered
136  * @ops: a pointer to the struct security_options that is to be registered
137  *
138  * This function allows security modules to be stacked if the currently loaded
139  * security module allows this to happen.  It passes the @name and @ops to the
140  * register_security function of the currently loaded security module.
141  *
142  * The return value depends on the currently loaded security module, with 0 as
143  * success.
144  */
145 int mod_reg_security(const char *name, struct security_operations *ops)
146 {
147 	if (verify(ops)) {
148 		printk(KERN_INFO "%s could not verify "
149 		       "security operations.\n", __func__);
150 		return -EINVAL;
151 	}
152 
153 	if (ops == security_ops) {
154 		printk(KERN_INFO "%s security operations "
155 		       "already registered.\n", __func__);
156 		return -EINVAL;
157 	}
158 
159 	return security_ops->register_security(name, ops);
160 }
161 
162 /* Security operations */
163 
164 int security_ptrace(struct task_struct *parent, struct task_struct *child,
165 		    unsigned int mode)
166 {
167 	return security_ops->ptrace(parent, child, mode);
168 }
169 
170 int security_capget(struct task_struct *target,
171 		     kernel_cap_t *effective,
172 		     kernel_cap_t *inheritable,
173 		     kernel_cap_t *permitted)
174 {
175 	return security_ops->capget(target, effective, inheritable, permitted);
176 }
177 
178 int security_capset_check(struct task_struct *target,
179 			   kernel_cap_t *effective,
180 			   kernel_cap_t *inheritable,
181 			   kernel_cap_t *permitted)
182 {
183 	return security_ops->capset_check(target, effective, inheritable, permitted);
184 }
185 
186 void security_capset_set(struct task_struct *target,
187 			  kernel_cap_t *effective,
188 			  kernel_cap_t *inheritable,
189 			  kernel_cap_t *permitted)
190 {
191 	security_ops->capset_set(target, effective, inheritable, permitted);
192 }
193 
194 int security_capable(struct task_struct *tsk, int cap)
195 {
196 	return security_ops->capable(tsk, cap);
197 }
198 
199 int security_acct(struct file *file)
200 {
201 	return security_ops->acct(file);
202 }
203 
204 int security_sysctl(struct ctl_table *table, int op)
205 {
206 	return security_ops->sysctl(table, op);
207 }
208 
209 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
210 {
211 	return security_ops->quotactl(cmds, type, id, sb);
212 }
213 
214 int security_quota_on(struct dentry *dentry)
215 {
216 	return security_ops->quota_on(dentry);
217 }
218 
219 int security_syslog(int type)
220 {
221 	return security_ops->syslog(type);
222 }
223 
224 int security_settime(struct timespec *ts, struct timezone *tz)
225 {
226 	return security_ops->settime(ts, tz);
227 }
228 
229 int security_vm_enough_memory(long pages)
230 {
231 	return security_ops->vm_enough_memory(current->mm, pages);
232 }
233 
234 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
235 {
236 	return security_ops->vm_enough_memory(mm, pages);
237 }
238 
239 int security_bprm_alloc(struct linux_binprm *bprm)
240 {
241 	return security_ops->bprm_alloc_security(bprm);
242 }
243 
244 void security_bprm_free(struct linux_binprm *bprm)
245 {
246 	security_ops->bprm_free_security(bprm);
247 }
248 
249 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
250 {
251 	security_ops->bprm_apply_creds(bprm, unsafe);
252 }
253 
254 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
255 {
256 	security_ops->bprm_post_apply_creds(bprm);
257 }
258 
259 int security_bprm_set(struct linux_binprm *bprm)
260 {
261 	return security_ops->bprm_set_security(bprm);
262 }
263 
264 int security_bprm_check(struct linux_binprm *bprm)
265 {
266 	return security_ops->bprm_check_security(bprm);
267 }
268 
269 int security_bprm_secureexec(struct linux_binprm *bprm)
270 {
271 	return security_ops->bprm_secureexec(bprm);
272 }
273 
274 int security_sb_alloc(struct super_block *sb)
275 {
276 	return security_ops->sb_alloc_security(sb);
277 }
278 
279 void security_sb_free(struct super_block *sb)
280 {
281 	security_ops->sb_free_security(sb);
282 }
283 
284 int security_sb_copy_data(char *orig, char *copy)
285 {
286 	return security_ops->sb_copy_data(orig, copy);
287 }
288 EXPORT_SYMBOL(security_sb_copy_data);
289 
290 int security_sb_kern_mount(struct super_block *sb, void *data)
291 {
292 	return security_ops->sb_kern_mount(sb, data);
293 }
294 
295 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
296 {
297 	return security_ops->sb_show_options(m, sb);
298 }
299 
300 int security_sb_statfs(struct dentry *dentry)
301 {
302 	return security_ops->sb_statfs(dentry);
303 }
304 
305 int security_sb_mount(char *dev_name, struct path *path,
306                        char *type, unsigned long flags, void *data)
307 {
308 	return security_ops->sb_mount(dev_name, path, type, flags, data);
309 }
310 
311 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
312 {
313 	return security_ops->sb_check_sb(mnt, path);
314 }
315 
316 int security_sb_umount(struct vfsmount *mnt, int flags)
317 {
318 	return security_ops->sb_umount(mnt, flags);
319 }
320 
321 void security_sb_umount_close(struct vfsmount *mnt)
322 {
323 	security_ops->sb_umount_close(mnt);
324 }
325 
326 void security_sb_umount_busy(struct vfsmount *mnt)
327 {
328 	security_ops->sb_umount_busy(mnt);
329 }
330 
331 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
332 {
333 	security_ops->sb_post_remount(mnt, flags, data);
334 }
335 
336 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
337 {
338 	security_ops->sb_post_addmount(mnt, mountpoint);
339 }
340 
341 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
342 {
343 	return security_ops->sb_pivotroot(old_path, new_path);
344 }
345 
346 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
347 {
348 	security_ops->sb_post_pivotroot(old_path, new_path);
349 }
350 
351 int security_sb_set_mnt_opts(struct super_block *sb,
352 				struct security_mnt_opts *opts)
353 {
354 	return security_ops->sb_set_mnt_opts(sb, opts);
355 }
356 EXPORT_SYMBOL(security_sb_set_mnt_opts);
357 
358 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
359 				struct super_block *newsb)
360 {
361 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
362 }
363 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
364 
365 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
366 {
367 	return security_ops->sb_parse_opts_str(options, opts);
368 }
369 EXPORT_SYMBOL(security_sb_parse_opts_str);
370 
371 int security_inode_alloc(struct inode *inode)
372 {
373 	inode->i_security = NULL;
374 	return security_ops->inode_alloc_security(inode);
375 }
376 
377 void security_inode_free(struct inode *inode)
378 {
379 	security_ops->inode_free_security(inode);
380 }
381 
382 int security_inode_init_security(struct inode *inode, struct inode *dir,
383 				  char **name, void **value, size_t *len)
384 {
385 	if (unlikely(IS_PRIVATE(inode)))
386 		return -EOPNOTSUPP;
387 	return security_ops->inode_init_security(inode, dir, name, value, len);
388 }
389 EXPORT_SYMBOL(security_inode_init_security);
390 
391 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
392 {
393 	if (unlikely(IS_PRIVATE(dir)))
394 		return 0;
395 	return security_ops->inode_create(dir, dentry, mode);
396 }
397 
398 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
399 			 struct dentry *new_dentry)
400 {
401 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
402 		return 0;
403 	return security_ops->inode_link(old_dentry, dir, new_dentry);
404 }
405 
406 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
407 {
408 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
409 		return 0;
410 	return security_ops->inode_unlink(dir, dentry);
411 }
412 
413 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
414 			    const char *old_name)
415 {
416 	if (unlikely(IS_PRIVATE(dir)))
417 		return 0;
418 	return security_ops->inode_symlink(dir, dentry, old_name);
419 }
420 
421 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
422 {
423 	if (unlikely(IS_PRIVATE(dir)))
424 		return 0;
425 	return security_ops->inode_mkdir(dir, dentry, mode);
426 }
427 
428 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
429 {
430 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
431 		return 0;
432 	return security_ops->inode_rmdir(dir, dentry);
433 }
434 
435 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
436 {
437 	if (unlikely(IS_PRIVATE(dir)))
438 		return 0;
439 	return security_ops->inode_mknod(dir, dentry, mode, dev);
440 }
441 
442 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
443 			   struct inode *new_dir, struct dentry *new_dentry)
444 {
445         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447 		return 0;
448 	return security_ops->inode_rename(old_dir, old_dentry,
449 					   new_dir, new_dentry);
450 }
451 
452 int security_inode_readlink(struct dentry *dentry)
453 {
454 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
455 		return 0;
456 	return security_ops->inode_readlink(dentry);
457 }
458 
459 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
460 {
461 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
462 		return 0;
463 	return security_ops->inode_follow_link(dentry, nd);
464 }
465 
466 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
467 {
468 	if (unlikely(IS_PRIVATE(inode)))
469 		return 0;
470 	return security_ops->inode_permission(inode, mask, nd);
471 }
472 
473 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
474 {
475 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
476 		return 0;
477 	return security_ops->inode_setattr(dentry, attr);
478 }
479 
480 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
481 {
482 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
483 		return 0;
484 	return security_ops->inode_getattr(mnt, dentry);
485 }
486 
487 void security_inode_delete(struct inode *inode)
488 {
489 	if (unlikely(IS_PRIVATE(inode)))
490 		return;
491 	security_ops->inode_delete(inode);
492 }
493 
494 int security_inode_setxattr(struct dentry *dentry, const char *name,
495 			    const void *value, size_t size, int flags)
496 {
497 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
498 		return 0;
499 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
500 }
501 
502 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
503 				  const void *value, size_t size, int flags)
504 {
505 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
506 		return;
507 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
508 }
509 
510 int security_inode_getxattr(struct dentry *dentry, const char *name)
511 {
512 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
513 		return 0;
514 	return security_ops->inode_getxattr(dentry, name);
515 }
516 
517 int security_inode_listxattr(struct dentry *dentry)
518 {
519 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
520 		return 0;
521 	return security_ops->inode_listxattr(dentry);
522 }
523 
524 int security_inode_removexattr(struct dentry *dentry, const char *name)
525 {
526 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
527 		return 0;
528 	return security_ops->inode_removexattr(dentry, name);
529 }
530 
531 int security_inode_need_killpriv(struct dentry *dentry)
532 {
533 	return security_ops->inode_need_killpriv(dentry);
534 }
535 
536 int security_inode_killpriv(struct dentry *dentry)
537 {
538 	return security_ops->inode_killpriv(dentry);
539 }
540 
541 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
542 {
543 	if (unlikely(IS_PRIVATE(inode)))
544 		return 0;
545 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
546 }
547 
548 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
549 {
550 	if (unlikely(IS_PRIVATE(inode)))
551 		return 0;
552 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
553 }
554 
555 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
556 {
557 	if (unlikely(IS_PRIVATE(inode)))
558 		return 0;
559 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
560 }
561 
562 void security_inode_getsecid(const struct inode *inode, u32 *secid)
563 {
564 	security_ops->inode_getsecid(inode, secid);
565 }
566 
567 int security_file_permission(struct file *file, int mask)
568 {
569 	return security_ops->file_permission(file, mask);
570 }
571 
572 int security_file_alloc(struct file *file)
573 {
574 	return security_ops->file_alloc_security(file);
575 }
576 
577 void security_file_free(struct file *file)
578 {
579 	security_ops->file_free_security(file);
580 }
581 
582 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
583 {
584 	return security_ops->file_ioctl(file, cmd, arg);
585 }
586 
587 int security_file_mmap(struct file *file, unsigned long reqprot,
588 			unsigned long prot, unsigned long flags,
589 			unsigned long addr, unsigned long addr_only)
590 {
591 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
592 }
593 
594 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
595 			    unsigned long prot)
596 {
597 	return security_ops->file_mprotect(vma, reqprot, prot);
598 }
599 
600 int security_file_lock(struct file *file, unsigned int cmd)
601 {
602 	return security_ops->file_lock(file, cmd);
603 }
604 
605 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
606 {
607 	return security_ops->file_fcntl(file, cmd, arg);
608 }
609 
610 int security_file_set_fowner(struct file *file)
611 {
612 	return security_ops->file_set_fowner(file);
613 }
614 
615 int security_file_send_sigiotask(struct task_struct *tsk,
616 				  struct fown_struct *fown, int sig)
617 {
618 	return security_ops->file_send_sigiotask(tsk, fown, sig);
619 }
620 
621 int security_file_receive(struct file *file)
622 {
623 	return security_ops->file_receive(file);
624 }
625 
626 int security_dentry_open(struct file *file)
627 {
628 	return security_ops->dentry_open(file);
629 }
630 
631 int security_task_create(unsigned long clone_flags)
632 {
633 	return security_ops->task_create(clone_flags);
634 }
635 
636 int security_task_alloc(struct task_struct *p)
637 {
638 	return security_ops->task_alloc_security(p);
639 }
640 
641 void security_task_free(struct task_struct *p)
642 {
643 	security_ops->task_free_security(p);
644 }
645 
646 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
647 {
648 	return security_ops->task_setuid(id0, id1, id2, flags);
649 }
650 
651 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
652 			       uid_t old_suid, int flags)
653 {
654 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
655 }
656 
657 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
658 {
659 	return security_ops->task_setgid(id0, id1, id2, flags);
660 }
661 
662 int security_task_setpgid(struct task_struct *p, pid_t pgid)
663 {
664 	return security_ops->task_setpgid(p, pgid);
665 }
666 
667 int security_task_getpgid(struct task_struct *p)
668 {
669 	return security_ops->task_getpgid(p);
670 }
671 
672 int security_task_getsid(struct task_struct *p)
673 {
674 	return security_ops->task_getsid(p);
675 }
676 
677 void security_task_getsecid(struct task_struct *p, u32 *secid)
678 {
679 	security_ops->task_getsecid(p, secid);
680 }
681 EXPORT_SYMBOL(security_task_getsecid);
682 
683 int security_task_setgroups(struct group_info *group_info)
684 {
685 	return security_ops->task_setgroups(group_info);
686 }
687 
688 int security_task_setnice(struct task_struct *p, int nice)
689 {
690 	return security_ops->task_setnice(p, nice);
691 }
692 
693 int security_task_setioprio(struct task_struct *p, int ioprio)
694 {
695 	return security_ops->task_setioprio(p, ioprio);
696 }
697 
698 int security_task_getioprio(struct task_struct *p)
699 {
700 	return security_ops->task_getioprio(p);
701 }
702 
703 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
704 {
705 	return security_ops->task_setrlimit(resource, new_rlim);
706 }
707 
708 int security_task_setscheduler(struct task_struct *p,
709 				int policy, struct sched_param *lp)
710 {
711 	return security_ops->task_setscheduler(p, policy, lp);
712 }
713 
714 int security_task_getscheduler(struct task_struct *p)
715 {
716 	return security_ops->task_getscheduler(p);
717 }
718 
719 int security_task_movememory(struct task_struct *p)
720 {
721 	return security_ops->task_movememory(p);
722 }
723 
724 int security_task_kill(struct task_struct *p, struct siginfo *info,
725 			int sig, u32 secid)
726 {
727 	return security_ops->task_kill(p, info, sig, secid);
728 }
729 
730 int security_task_wait(struct task_struct *p)
731 {
732 	return security_ops->task_wait(p);
733 }
734 
735 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
736 			 unsigned long arg4, unsigned long arg5, long *rc_p)
737 {
738 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
739 }
740 
741 void security_task_reparent_to_init(struct task_struct *p)
742 {
743 	security_ops->task_reparent_to_init(p);
744 }
745 
746 void security_task_to_inode(struct task_struct *p, struct inode *inode)
747 {
748 	security_ops->task_to_inode(p, inode);
749 }
750 
751 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
752 {
753 	return security_ops->ipc_permission(ipcp, flag);
754 }
755 
756 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
757 {
758 	security_ops->ipc_getsecid(ipcp, secid);
759 }
760 
761 int security_msg_msg_alloc(struct msg_msg *msg)
762 {
763 	return security_ops->msg_msg_alloc_security(msg);
764 }
765 
766 void security_msg_msg_free(struct msg_msg *msg)
767 {
768 	security_ops->msg_msg_free_security(msg);
769 }
770 
771 int security_msg_queue_alloc(struct msg_queue *msq)
772 {
773 	return security_ops->msg_queue_alloc_security(msq);
774 }
775 
776 void security_msg_queue_free(struct msg_queue *msq)
777 {
778 	security_ops->msg_queue_free_security(msq);
779 }
780 
781 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
782 {
783 	return security_ops->msg_queue_associate(msq, msqflg);
784 }
785 
786 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
787 {
788 	return security_ops->msg_queue_msgctl(msq, cmd);
789 }
790 
791 int security_msg_queue_msgsnd(struct msg_queue *msq,
792 			       struct msg_msg *msg, int msqflg)
793 {
794 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
795 }
796 
797 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
798 			       struct task_struct *target, long type, int mode)
799 {
800 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
801 }
802 
803 int security_shm_alloc(struct shmid_kernel *shp)
804 {
805 	return security_ops->shm_alloc_security(shp);
806 }
807 
808 void security_shm_free(struct shmid_kernel *shp)
809 {
810 	security_ops->shm_free_security(shp);
811 }
812 
813 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
814 {
815 	return security_ops->shm_associate(shp, shmflg);
816 }
817 
818 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
819 {
820 	return security_ops->shm_shmctl(shp, cmd);
821 }
822 
823 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
824 {
825 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
826 }
827 
828 int security_sem_alloc(struct sem_array *sma)
829 {
830 	return security_ops->sem_alloc_security(sma);
831 }
832 
833 void security_sem_free(struct sem_array *sma)
834 {
835 	security_ops->sem_free_security(sma);
836 }
837 
838 int security_sem_associate(struct sem_array *sma, int semflg)
839 {
840 	return security_ops->sem_associate(sma, semflg);
841 }
842 
843 int security_sem_semctl(struct sem_array *sma, int cmd)
844 {
845 	return security_ops->sem_semctl(sma, cmd);
846 }
847 
848 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
849 			unsigned nsops, int alter)
850 {
851 	return security_ops->sem_semop(sma, sops, nsops, alter);
852 }
853 
854 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
855 {
856 	if (unlikely(inode && IS_PRIVATE(inode)))
857 		return;
858 	security_ops->d_instantiate(dentry, inode);
859 }
860 EXPORT_SYMBOL(security_d_instantiate);
861 
862 int security_getprocattr(struct task_struct *p, char *name, char **value)
863 {
864 	return security_ops->getprocattr(p, name, value);
865 }
866 
867 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
868 {
869 	return security_ops->setprocattr(p, name, value, size);
870 }
871 
872 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
873 {
874 	return security_ops->netlink_send(sk, skb);
875 }
876 
877 int security_netlink_recv(struct sk_buff *skb, int cap)
878 {
879 	return security_ops->netlink_recv(skb, cap);
880 }
881 EXPORT_SYMBOL(security_netlink_recv);
882 
883 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
884 {
885 	return security_ops->secid_to_secctx(secid, secdata, seclen);
886 }
887 EXPORT_SYMBOL(security_secid_to_secctx);
888 
889 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
890 {
891 	return security_ops->secctx_to_secid(secdata, seclen, secid);
892 }
893 EXPORT_SYMBOL(security_secctx_to_secid);
894 
895 void security_release_secctx(char *secdata, u32 seclen)
896 {
897 	security_ops->release_secctx(secdata, seclen);
898 }
899 EXPORT_SYMBOL(security_release_secctx);
900 
901 #ifdef CONFIG_SECURITY_NETWORK
902 
903 int security_unix_stream_connect(struct socket *sock, struct socket *other,
904 				 struct sock *newsk)
905 {
906 	return security_ops->unix_stream_connect(sock, other, newsk);
907 }
908 EXPORT_SYMBOL(security_unix_stream_connect);
909 
910 int security_unix_may_send(struct socket *sock,  struct socket *other)
911 {
912 	return security_ops->unix_may_send(sock, other);
913 }
914 EXPORT_SYMBOL(security_unix_may_send);
915 
916 int security_socket_create(int family, int type, int protocol, int kern)
917 {
918 	return security_ops->socket_create(family, type, protocol, kern);
919 }
920 
921 int security_socket_post_create(struct socket *sock, int family,
922 				int type, int protocol, int kern)
923 {
924 	return security_ops->socket_post_create(sock, family, type,
925 						protocol, kern);
926 }
927 
928 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
929 {
930 	return security_ops->socket_bind(sock, address, addrlen);
931 }
932 
933 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
934 {
935 	return security_ops->socket_connect(sock, address, addrlen);
936 }
937 
938 int security_socket_listen(struct socket *sock, int backlog)
939 {
940 	return security_ops->socket_listen(sock, backlog);
941 }
942 
943 int security_socket_accept(struct socket *sock, struct socket *newsock)
944 {
945 	return security_ops->socket_accept(sock, newsock);
946 }
947 
948 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
949 {
950 	security_ops->socket_post_accept(sock, newsock);
951 }
952 
953 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
954 {
955 	return security_ops->socket_sendmsg(sock, msg, size);
956 }
957 
958 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
959 			    int size, int flags)
960 {
961 	return security_ops->socket_recvmsg(sock, msg, size, flags);
962 }
963 
964 int security_socket_getsockname(struct socket *sock)
965 {
966 	return security_ops->socket_getsockname(sock);
967 }
968 
969 int security_socket_getpeername(struct socket *sock)
970 {
971 	return security_ops->socket_getpeername(sock);
972 }
973 
974 int security_socket_getsockopt(struct socket *sock, int level, int optname)
975 {
976 	return security_ops->socket_getsockopt(sock, level, optname);
977 }
978 
979 int security_socket_setsockopt(struct socket *sock, int level, int optname)
980 {
981 	return security_ops->socket_setsockopt(sock, level, optname);
982 }
983 
984 int security_socket_shutdown(struct socket *sock, int how)
985 {
986 	return security_ops->socket_shutdown(sock, how);
987 }
988 
989 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
990 {
991 	return security_ops->socket_sock_rcv_skb(sk, skb);
992 }
993 EXPORT_SYMBOL(security_sock_rcv_skb);
994 
995 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
996 				      int __user *optlen, unsigned len)
997 {
998 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
999 }
1000 
1001 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1002 {
1003 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1004 }
1005 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1006 
1007 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1008 {
1009 	return security_ops->sk_alloc_security(sk, family, priority);
1010 }
1011 
1012 void security_sk_free(struct sock *sk)
1013 {
1014 	security_ops->sk_free_security(sk);
1015 }
1016 
1017 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1018 {
1019 	security_ops->sk_clone_security(sk, newsk);
1020 }
1021 
1022 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1023 {
1024 	security_ops->sk_getsecid(sk, &fl->secid);
1025 }
1026 EXPORT_SYMBOL(security_sk_classify_flow);
1027 
1028 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1029 {
1030 	security_ops->req_classify_flow(req, fl);
1031 }
1032 EXPORT_SYMBOL(security_req_classify_flow);
1033 
1034 void security_sock_graft(struct sock *sk, struct socket *parent)
1035 {
1036 	security_ops->sock_graft(sk, parent);
1037 }
1038 EXPORT_SYMBOL(security_sock_graft);
1039 
1040 int security_inet_conn_request(struct sock *sk,
1041 			struct sk_buff *skb, struct request_sock *req)
1042 {
1043 	return security_ops->inet_conn_request(sk, skb, req);
1044 }
1045 EXPORT_SYMBOL(security_inet_conn_request);
1046 
1047 void security_inet_csk_clone(struct sock *newsk,
1048 			const struct request_sock *req)
1049 {
1050 	security_ops->inet_csk_clone(newsk, req);
1051 }
1052 
1053 void security_inet_conn_established(struct sock *sk,
1054 			struct sk_buff *skb)
1055 {
1056 	security_ops->inet_conn_established(sk, skb);
1057 }
1058 
1059 #endif	/* CONFIG_SECURITY_NETWORK */
1060 
1061 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1062 
1063 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1064 {
1065 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1066 }
1067 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1068 
1069 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1070 			      struct xfrm_sec_ctx **new_ctxp)
1071 {
1072 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1073 }
1074 
1075 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1076 {
1077 	security_ops->xfrm_policy_free_security(ctx);
1078 }
1079 EXPORT_SYMBOL(security_xfrm_policy_free);
1080 
1081 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1082 {
1083 	return security_ops->xfrm_policy_delete_security(ctx);
1084 }
1085 
1086 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1087 {
1088 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1089 }
1090 EXPORT_SYMBOL(security_xfrm_state_alloc);
1091 
1092 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1093 				      struct xfrm_sec_ctx *polsec, u32 secid)
1094 {
1095 	if (!polsec)
1096 		return 0;
1097 	/*
1098 	 * We want the context to be taken from secid which is usually
1099 	 * from the sock.
1100 	 */
1101 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1102 }
1103 
1104 int security_xfrm_state_delete(struct xfrm_state *x)
1105 {
1106 	return security_ops->xfrm_state_delete_security(x);
1107 }
1108 EXPORT_SYMBOL(security_xfrm_state_delete);
1109 
1110 void security_xfrm_state_free(struct xfrm_state *x)
1111 {
1112 	security_ops->xfrm_state_free_security(x);
1113 }
1114 
1115 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1116 {
1117 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1118 }
1119 
1120 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1121 				       struct xfrm_policy *xp, struct flowi *fl)
1122 {
1123 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1124 }
1125 
1126 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1127 {
1128 	return security_ops->xfrm_decode_session(skb, secid, 1);
1129 }
1130 
1131 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1132 {
1133 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1134 
1135 	BUG_ON(rc);
1136 }
1137 EXPORT_SYMBOL(security_skb_classify_flow);
1138 
1139 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1140 
1141 #ifdef CONFIG_KEYS
1142 
1143 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1144 {
1145 	return security_ops->key_alloc(key, tsk, flags);
1146 }
1147 
1148 void security_key_free(struct key *key)
1149 {
1150 	security_ops->key_free(key);
1151 }
1152 
1153 int security_key_permission(key_ref_t key_ref,
1154 			    struct task_struct *context, key_perm_t perm)
1155 {
1156 	return security_ops->key_permission(key_ref, context, perm);
1157 }
1158 
1159 int security_key_getsecurity(struct key *key, char **_buffer)
1160 {
1161 	return security_ops->key_getsecurity(key, _buffer);
1162 }
1163 
1164 #endif	/* CONFIG_KEYS */
1165 
1166 #ifdef CONFIG_AUDIT
1167 
1168 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1169 {
1170 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1171 }
1172 
1173 int security_audit_rule_known(struct audit_krule *krule)
1174 {
1175 	return security_ops->audit_rule_known(krule);
1176 }
1177 
1178 void security_audit_rule_free(void *lsmrule)
1179 {
1180 	security_ops->audit_rule_free(lsmrule);
1181 }
1182 
1183 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1184 			      struct audit_context *actx)
1185 {
1186 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1187 }
1188 
1189 #endif /* CONFIG_AUDIT */
1190