1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/security.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <net/flow.h> 29 30 #define MAX_LSM_EVM_XATTR 2 31 32 /* Boot-time LSM user choice */ 33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 34 CONFIG_DEFAULT_SECURITY; 35 36 static struct security_operations *security_ops; 37 static struct security_operations default_security_ops = { 38 .name = "default", 39 }; 40 41 static inline int __init verify(struct security_operations *ops) 42 { 43 /* verify the security_operations structure exists */ 44 if (!ops) 45 return -EINVAL; 46 security_fixup_ops(ops); 47 return 0; 48 } 49 50 static void __init do_security_initcalls(void) 51 { 52 initcall_t *call; 53 call = __security_initcall_start; 54 while (call < __security_initcall_end) { 55 (*call) (); 56 call++; 57 } 58 } 59 60 /** 61 * security_init - initializes the security framework 62 * 63 * This should be called early in the kernel initialization sequence. 64 */ 65 int __init security_init(void) 66 { 67 printk(KERN_INFO "Security Framework initialized\n"); 68 69 security_fixup_ops(&default_security_ops); 70 security_ops = &default_security_ops; 71 do_security_initcalls(); 72 73 return 0; 74 } 75 76 void reset_security_ops(void) 77 { 78 security_ops = &default_security_ops; 79 } 80 81 /* Save user chosen LSM */ 82 static int __init choose_lsm(char *str) 83 { 84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 85 return 1; 86 } 87 __setup("security=", choose_lsm); 88 89 /** 90 * security_module_enable - Load given security module on boot ? 91 * @ops: a pointer to the struct security_operations that is to be checked. 92 * 93 * Each LSM must pass this method before registering its own operations 94 * to avoid security registration races. This method may also be used 95 * to check if your LSM is currently loaded during kernel initialization. 96 * 97 * Return true if: 98 * -The passed LSM is the one chosen by user at boot time, 99 * -or the passed LSM is configured as the default and the user did not 100 * choose an alternate LSM at boot time. 101 * Otherwise, return false. 102 */ 103 int __init security_module_enable(struct security_operations *ops) 104 { 105 return !strcmp(ops->name, chosen_lsm); 106 } 107 108 /** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120 int __init register_security(struct security_operations *ops) 121 { 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134 } 135 136 /* Security operations */ 137 138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139 { 140 #ifdef CONFIG_SECURITY_YAMA_STACKED 141 int rc; 142 rc = yama_ptrace_access_check(child, mode); 143 if (rc) 144 return rc; 145 #endif 146 return security_ops->ptrace_access_check(child, mode); 147 } 148 149 int security_ptrace_traceme(struct task_struct *parent) 150 { 151 #ifdef CONFIG_SECURITY_YAMA_STACKED 152 int rc; 153 rc = yama_ptrace_traceme(parent); 154 if (rc) 155 return rc; 156 #endif 157 return security_ops->ptrace_traceme(parent); 158 } 159 160 int security_capget(struct task_struct *target, 161 kernel_cap_t *effective, 162 kernel_cap_t *inheritable, 163 kernel_cap_t *permitted) 164 { 165 return security_ops->capget(target, effective, inheritable, permitted); 166 } 167 168 int security_capset(struct cred *new, const struct cred *old, 169 const kernel_cap_t *effective, 170 const kernel_cap_t *inheritable, 171 const kernel_cap_t *permitted) 172 { 173 return security_ops->capset(new, old, 174 effective, inheritable, permitted); 175 } 176 177 int security_capable(const struct cred *cred, struct user_namespace *ns, 178 int cap) 179 { 180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 181 } 182 183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 184 int cap) 185 { 186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 187 } 188 189 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190 { 191 return security_ops->quotactl(cmds, type, id, sb); 192 } 193 194 int security_quota_on(struct dentry *dentry) 195 { 196 return security_ops->quota_on(dentry); 197 } 198 199 int security_syslog(int type) 200 { 201 return security_ops->syslog(type); 202 } 203 204 int security_settime(const struct timespec *ts, const struct timezone *tz) 205 { 206 return security_ops->settime(ts, tz); 207 } 208 209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 210 { 211 return security_ops->vm_enough_memory(mm, pages); 212 } 213 214 int security_bprm_set_creds(struct linux_binprm *bprm) 215 { 216 return security_ops->bprm_set_creds(bprm); 217 } 218 219 int security_bprm_check(struct linux_binprm *bprm) 220 { 221 int ret; 222 223 ret = security_ops->bprm_check_security(bprm); 224 if (ret) 225 return ret; 226 return ima_bprm_check(bprm); 227 } 228 229 void security_bprm_committing_creds(struct linux_binprm *bprm) 230 { 231 security_ops->bprm_committing_creds(bprm); 232 } 233 234 void security_bprm_committed_creds(struct linux_binprm *bprm) 235 { 236 security_ops->bprm_committed_creds(bprm); 237 } 238 239 int security_bprm_secureexec(struct linux_binprm *bprm) 240 { 241 return security_ops->bprm_secureexec(bprm); 242 } 243 244 int security_sb_alloc(struct super_block *sb) 245 { 246 return security_ops->sb_alloc_security(sb); 247 } 248 249 void security_sb_free(struct super_block *sb) 250 { 251 security_ops->sb_free_security(sb); 252 } 253 254 int security_sb_copy_data(char *orig, char *copy) 255 { 256 return security_ops->sb_copy_data(orig, copy); 257 } 258 EXPORT_SYMBOL(security_sb_copy_data); 259 260 int security_sb_remount(struct super_block *sb, void *data) 261 { 262 return security_ops->sb_remount(sb, data); 263 } 264 265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 266 { 267 return security_ops->sb_kern_mount(sb, flags, data); 268 } 269 270 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 271 { 272 return security_ops->sb_show_options(m, sb); 273 } 274 275 int security_sb_statfs(struct dentry *dentry) 276 { 277 return security_ops->sb_statfs(dentry); 278 } 279 280 int security_sb_mount(const char *dev_name, struct path *path, 281 const char *type, unsigned long flags, void *data) 282 { 283 return security_ops->sb_mount(dev_name, path, type, flags, data); 284 } 285 286 int security_sb_umount(struct vfsmount *mnt, int flags) 287 { 288 return security_ops->sb_umount(mnt, flags); 289 } 290 291 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 292 { 293 return security_ops->sb_pivotroot(old_path, new_path); 294 } 295 296 int security_sb_set_mnt_opts(struct super_block *sb, 297 struct security_mnt_opts *opts, 298 unsigned long kern_flags, 299 unsigned long *set_kern_flags) 300 { 301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags, 302 set_kern_flags); 303 } 304 EXPORT_SYMBOL(security_sb_set_mnt_opts); 305 306 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 307 struct super_block *newsb) 308 { 309 return security_ops->sb_clone_mnt_opts(oldsb, newsb); 310 } 311 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 312 313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 314 { 315 return security_ops->sb_parse_opts_str(options, opts); 316 } 317 EXPORT_SYMBOL(security_sb_parse_opts_str); 318 319 int security_inode_alloc(struct inode *inode) 320 { 321 inode->i_security = NULL; 322 return security_ops->inode_alloc_security(inode); 323 } 324 325 void security_inode_free(struct inode *inode) 326 { 327 integrity_inode_free(inode); 328 security_ops->inode_free_security(inode); 329 } 330 331 int security_dentry_init_security(struct dentry *dentry, int mode, 332 struct qstr *name, void **ctx, 333 u32 *ctxlen) 334 { 335 return security_ops->dentry_init_security(dentry, mode, name, 336 ctx, ctxlen); 337 } 338 EXPORT_SYMBOL(security_dentry_init_security); 339 340 int security_inode_init_security(struct inode *inode, struct inode *dir, 341 const struct qstr *qstr, 342 const initxattrs initxattrs, void *fs_data) 343 { 344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 345 struct xattr *lsm_xattr, *evm_xattr, *xattr; 346 int ret; 347 348 if (unlikely(IS_PRIVATE(inode))) 349 return 0; 350 351 if (!initxattrs) 352 return security_ops->inode_init_security(inode, dir, qstr, 353 NULL, NULL, NULL); 354 memset(new_xattrs, 0, sizeof(new_xattrs)); 355 lsm_xattr = new_xattrs; 356 ret = security_ops->inode_init_security(inode, dir, qstr, 357 &lsm_xattr->name, 358 &lsm_xattr->value, 359 &lsm_xattr->value_len); 360 if (ret) 361 goto out; 362 363 evm_xattr = lsm_xattr + 1; 364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 365 if (ret) 366 goto out; 367 ret = initxattrs(inode, new_xattrs, fs_data); 368 out: 369 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 370 kfree(xattr->value); 371 return (ret == -EOPNOTSUPP) ? 0 : ret; 372 } 373 EXPORT_SYMBOL(security_inode_init_security); 374 375 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 376 const struct qstr *qstr, const char **name, 377 void **value, size_t *len) 378 { 379 if (unlikely(IS_PRIVATE(inode))) 380 return -EOPNOTSUPP; 381 return security_ops->inode_init_security(inode, dir, qstr, name, value, 382 len); 383 } 384 EXPORT_SYMBOL(security_old_inode_init_security); 385 386 #ifdef CONFIG_SECURITY_PATH 387 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 388 unsigned int dev) 389 { 390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 391 return 0; 392 return security_ops->path_mknod(dir, dentry, mode, dev); 393 } 394 EXPORT_SYMBOL(security_path_mknod); 395 396 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 397 { 398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 399 return 0; 400 return security_ops->path_mkdir(dir, dentry, mode); 401 } 402 EXPORT_SYMBOL(security_path_mkdir); 403 404 int security_path_rmdir(struct path *dir, struct dentry *dentry) 405 { 406 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 407 return 0; 408 return security_ops->path_rmdir(dir, dentry); 409 } 410 411 int security_path_unlink(struct path *dir, struct dentry *dentry) 412 { 413 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 414 return 0; 415 return security_ops->path_unlink(dir, dentry); 416 } 417 EXPORT_SYMBOL(security_path_unlink); 418 419 int security_path_symlink(struct path *dir, struct dentry *dentry, 420 const char *old_name) 421 { 422 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 423 return 0; 424 return security_ops->path_symlink(dir, dentry, old_name); 425 } 426 427 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 428 struct dentry *new_dentry) 429 { 430 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 431 return 0; 432 return security_ops->path_link(old_dentry, new_dir, new_dentry); 433 } 434 435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 436 struct path *new_dir, struct dentry *new_dentry, 437 unsigned int flags) 438 { 439 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 440 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 441 return 0; 442 443 if (flags & RENAME_EXCHANGE) { 444 int err = security_ops->path_rename(new_dir, new_dentry, 445 old_dir, old_dentry); 446 if (err) 447 return err; 448 } 449 450 return security_ops->path_rename(old_dir, old_dentry, new_dir, 451 new_dentry); 452 } 453 EXPORT_SYMBOL(security_path_rename); 454 455 int security_path_truncate(struct path *path) 456 { 457 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 458 return 0; 459 return security_ops->path_truncate(path); 460 } 461 462 int security_path_chmod(struct path *path, umode_t mode) 463 { 464 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 465 return 0; 466 return security_ops->path_chmod(path, mode); 467 } 468 469 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 470 { 471 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 472 return 0; 473 return security_ops->path_chown(path, uid, gid); 474 } 475 476 int security_path_chroot(struct path *path) 477 { 478 return security_ops->path_chroot(path); 479 } 480 #endif 481 482 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 483 { 484 if (unlikely(IS_PRIVATE(dir))) 485 return 0; 486 return security_ops->inode_create(dir, dentry, mode); 487 } 488 EXPORT_SYMBOL_GPL(security_inode_create); 489 490 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 491 struct dentry *new_dentry) 492 { 493 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 494 return 0; 495 return security_ops->inode_link(old_dentry, dir, new_dentry); 496 } 497 498 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 499 { 500 if (unlikely(IS_PRIVATE(dentry->d_inode))) 501 return 0; 502 return security_ops->inode_unlink(dir, dentry); 503 } 504 505 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 506 const char *old_name) 507 { 508 if (unlikely(IS_PRIVATE(dir))) 509 return 0; 510 return security_ops->inode_symlink(dir, dentry, old_name); 511 } 512 513 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 514 { 515 if (unlikely(IS_PRIVATE(dir))) 516 return 0; 517 return security_ops->inode_mkdir(dir, dentry, mode); 518 } 519 EXPORT_SYMBOL_GPL(security_inode_mkdir); 520 521 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 522 { 523 if (unlikely(IS_PRIVATE(dentry->d_inode))) 524 return 0; 525 return security_ops->inode_rmdir(dir, dentry); 526 } 527 528 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 529 { 530 if (unlikely(IS_PRIVATE(dir))) 531 return 0; 532 return security_ops->inode_mknod(dir, dentry, mode, dev); 533 } 534 535 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 536 struct inode *new_dir, struct dentry *new_dentry, 537 unsigned int flags) 538 { 539 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 540 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 541 return 0; 542 543 if (flags & RENAME_EXCHANGE) { 544 int err = security_ops->inode_rename(new_dir, new_dentry, 545 old_dir, old_dentry); 546 if (err) 547 return err; 548 } 549 550 return security_ops->inode_rename(old_dir, old_dentry, 551 new_dir, new_dentry); 552 } 553 554 int security_inode_readlink(struct dentry *dentry) 555 { 556 if (unlikely(IS_PRIVATE(dentry->d_inode))) 557 return 0; 558 return security_ops->inode_readlink(dentry); 559 } 560 561 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 562 { 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 return security_ops->inode_follow_link(dentry, nd); 566 } 567 568 int security_inode_permission(struct inode *inode, int mask) 569 { 570 if (unlikely(IS_PRIVATE(inode))) 571 return 0; 572 return security_ops->inode_permission(inode, mask); 573 } 574 575 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 576 { 577 int ret; 578 579 if (unlikely(IS_PRIVATE(dentry->d_inode))) 580 return 0; 581 ret = security_ops->inode_setattr(dentry, attr); 582 if (ret) 583 return ret; 584 return evm_inode_setattr(dentry, attr); 585 } 586 EXPORT_SYMBOL_GPL(security_inode_setattr); 587 588 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 589 { 590 if (unlikely(IS_PRIVATE(dentry->d_inode))) 591 return 0; 592 return security_ops->inode_getattr(mnt, dentry); 593 } 594 595 int security_inode_setxattr(struct dentry *dentry, const char *name, 596 const void *value, size_t size, int flags) 597 { 598 int ret; 599 600 if (unlikely(IS_PRIVATE(dentry->d_inode))) 601 return 0; 602 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 603 if (ret) 604 return ret; 605 ret = ima_inode_setxattr(dentry, name, value, size); 606 if (ret) 607 return ret; 608 return evm_inode_setxattr(dentry, name, value, size); 609 } 610 611 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 612 const void *value, size_t size, int flags) 613 { 614 if (unlikely(IS_PRIVATE(dentry->d_inode))) 615 return; 616 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 617 evm_inode_post_setxattr(dentry, name, value, size); 618 } 619 620 int security_inode_getxattr(struct dentry *dentry, const char *name) 621 { 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 return security_ops->inode_getxattr(dentry, name); 625 } 626 627 int security_inode_listxattr(struct dentry *dentry) 628 { 629 if (unlikely(IS_PRIVATE(dentry->d_inode))) 630 return 0; 631 return security_ops->inode_listxattr(dentry); 632 } 633 634 int security_inode_removexattr(struct dentry *dentry, const char *name) 635 { 636 int ret; 637 638 if (unlikely(IS_PRIVATE(dentry->d_inode))) 639 return 0; 640 ret = security_ops->inode_removexattr(dentry, name); 641 if (ret) 642 return ret; 643 ret = ima_inode_removexattr(dentry, name); 644 if (ret) 645 return ret; 646 return evm_inode_removexattr(dentry, name); 647 } 648 649 int security_inode_need_killpriv(struct dentry *dentry) 650 { 651 return security_ops->inode_need_killpriv(dentry); 652 } 653 654 int security_inode_killpriv(struct dentry *dentry) 655 { 656 return security_ops->inode_killpriv(dentry); 657 } 658 659 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 660 { 661 if (unlikely(IS_PRIVATE(inode))) 662 return -EOPNOTSUPP; 663 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 664 } 665 666 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 667 { 668 if (unlikely(IS_PRIVATE(inode))) 669 return -EOPNOTSUPP; 670 return security_ops->inode_setsecurity(inode, name, value, size, flags); 671 } 672 673 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 674 { 675 if (unlikely(IS_PRIVATE(inode))) 676 return 0; 677 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 678 } 679 EXPORT_SYMBOL(security_inode_listsecurity); 680 681 void security_inode_getsecid(const struct inode *inode, u32 *secid) 682 { 683 security_ops->inode_getsecid(inode, secid); 684 } 685 686 int security_file_permission(struct file *file, int mask) 687 { 688 int ret; 689 690 ret = security_ops->file_permission(file, mask); 691 if (ret) 692 return ret; 693 694 return fsnotify_perm(file, mask); 695 } 696 697 int security_file_alloc(struct file *file) 698 { 699 return security_ops->file_alloc_security(file); 700 } 701 702 void security_file_free(struct file *file) 703 { 704 security_ops->file_free_security(file); 705 } 706 707 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 708 { 709 return security_ops->file_ioctl(file, cmd, arg); 710 } 711 712 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 713 { 714 /* 715 * Does we have PROT_READ and does the application expect 716 * it to imply PROT_EXEC? If not, nothing to talk about... 717 */ 718 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 719 return prot; 720 if (!(current->personality & READ_IMPLIES_EXEC)) 721 return prot; 722 /* 723 * if that's an anonymous mapping, let it. 724 */ 725 if (!file) 726 return prot | PROT_EXEC; 727 /* 728 * ditto if it's not on noexec mount, except that on !MMU we need 729 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 730 */ 731 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 732 #ifndef CONFIG_MMU 733 unsigned long caps = 0; 734 struct address_space *mapping = file->f_mapping; 735 if (mapping && mapping->backing_dev_info) 736 caps = mapping->backing_dev_info->capabilities; 737 if (!(caps & BDI_CAP_EXEC_MAP)) 738 return prot; 739 #endif 740 return prot | PROT_EXEC; 741 } 742 /* anything on noexec mount won't get PROT_EXEC */ 743 return prot; 744 } 745 746 int security_mmap_file(struct file *file, unsigned long prot, 747 unsigned long flags) 748 { 749 int ret; 750 ret = security_ops->mmap_file(file, prot, 751 mmap_prot(file, prot), flags); 752 if (ret) 753 return ret; 754 return ima_file_mmap(file, prot); 755 } 756 757 int security_mmap_addr(unsigned long addr) 758 { 759 return security_ops->mmap_addr(addr); 760 } 761 762 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 763 unsigned long prot) 764 { 765 return security_ops->file_mprotect(vma, reqprot, prot); 766 } 767 768 int security_file_lock(struct file *file, unsigned int cmd) 769 { 770 return security_ops->file_lock(file, cmd); 771 } 772 773 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 774 { 775 return security_ops->file_fcntl(file, cmd, arg); 776 } 777 778 int security_file_set_fowner(struct file *file) 779 { 780 return security_ops->file_set_fowner(file); 781 } 782 783 int security_file_send_sigiotask(struct task_struct *tsk, 784 struct fown_struct *fown, int sig) 785 { 786 return security_ops->file_send_sigiotask(tsk, fown, sig); 787 } 788 789 int security_file_receive(struct file *file) 790 { 791 return security_ops->file_receive(file); 792 } 793 794 int security_file_open(struct file *file, const struct cred *cred) 795 { 796 int ret; 797 798 ret = security_ops->file_open(file, cred); 799 if (ret) 800 return ret; 801 802 return fsnotify_perm(file, MAY_OPEN); 803 } 804 805 int security_task_create(unsigned long clone_flags) 806 { 807 return security_ops->task_create(clone_flags); 808 } 809 810 void security_task_free(struct task_struct *task) 811 { 812 #ifdef CONFIG_SECURITY_YAMA_STACKED 813 yama_task_free(task); 814 #endif 815 security_ops->task_free(task); 816 } 817 818 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 819 { 820 return security_ops->cred_alloc_blank(cred, gfp); 821 } 822 823 void security_cred_free(struct cred *cred) 824 { 825 security_ops->cred_free(cred); 826 } 827 828 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 829 { 830 return security_ops->cred_prepare(new, old, gfp); 831 } 832 833 void security_transfer_creds(struct cred *new, const struct cred *old) 834 { 835 security_ops->cred_transfer(new, old); 836 } 837 838 int security_kernel_act_as(struct cred *new, u32 secid) 839 { 840 return security_ops->kernel_act_as(new, secid); 841 } 842 843 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 844 { 845 return security_ops->kernel_create_files_as(new, inode); 846 } 847 848 int security_kernel_module_request(char *kmod_name) 849 { 850 return security_ops->kernel_module_request(kmod_name); 851 } 852 853 int security_kernel_module_from_file(struct file *file) 854 { 855 int ret; 856 857 ret = security_ops->kernel_module_from_file(file); 858 if (ret) 859 return ret; 860 return ima_module_check(file); 861 } 862 863 int security_task_fix_setuid(struct cred *new, const struct cred *old, 864 int flags) 865 { 866 return security_ops->task_fix_setuid(new, old, flags); 867 } 868 869 int security_task_setpgid(struct task_struct *p, pid_t pgid) 870 { 871 return security_ops->task_setpgid(p, pgid); 872 } 873 874 int security_task_getpgid(struct task_struct *p) 875 { 876 return security_ops->task_getpgid(p); 877 } 878 879 int security_task_getsid(struct task_struct *p) 880 { 881 return security_ops->task_getsid(p); 882 } 883 884 void security_task_getsecid(struct task_struct *p, u32 *secid) 885 { 886 security_ops->task_getsecid(p, secid); 887 } 888 EXPORT_SYMBOL(security_task_getsecid); 889 890 int security_task_setnice(struct task_struct *p, int nice) 891 { 892 return security_ops->task_setnice(p, nice); 893 } 894 895 int security_task_setioprio(struct task_struct *p, int ioprio) 896 { 897 return security_ops->task_setioprio(p, ioprio); 898 } 899 900 int security_task_getioprio(struct task_struct *p) 901 { 902 return security_ops->task_getioprio(p); 903 } 904 905 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 906 struct rlimit *new_rlim) 907 { 908 return security_ops->task_setrlimit(p, resource, new_rlim); 909 } 910 911 int security_task_setscheduler(struct task_struct *p) 912 { 913 return security_ops->task_setscheduler(p); 914 } 915 916 int security_task_getscheduler(struct task_struct *p) 917 { 918 return security_ops->task_getscheduler(p); 919 } 920 921 int security_task_movememory(struct task_struct *p) 922 { 923 return security_ops->task_movememory(p); 924 } 925 926 int security_task_kill(struct task_struct *p, struct siginfo *info, 927 int sig, u32 secid) 928 { 929 return security_ops->task_kill(p, info, sig, secid); 930 } 931 932 int security_task_wait(struct task_struct *p) 933 { 934 return security_ops->task_wait(p); 935 } 936 937 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 938 unsigned long arg4, unsigned long arg5) 939 { 940 #ifdef CONFIG_SECURITY_YAMA_STACKED 941 int rc; 942 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5); 943 if (rc != -ENOSYS) 944 return rc; 945 #endif 946 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 947 } 948 949 void security_task_to_inode(struct task_struct *p, struct inode *inode) 950 { 951 security_ops->task_to_inode(p, inode); 952 } 953 954 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 955 { 956 return security_ops->ipc_permission(ipcp, flag); 957 } 958 959 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 960 { 961 security_ops->ipc_getsecid(ipcp, secid); 962 } 963 964 int security_msg_msg_alloc(struct msg_msg *msg) 965 { 966 return security_ops->msg_msg_alloc_security(msg); 967 } 968 969 void security_msg_msg_free(struct msg_msg *msg) 970 { 971 security_ops->msg_msg_free_security(msg); 972 } 973 974 int security_msg_queue_alloc(struct msg_queue *msq) 975 { 976 return security_ops->msg_queue_alloc_security(msq); 977 } 978 979 void security_msg_queue_free(struct msg_queue *msq) 980 { 981 security_ops->msg_queue_free_security(msq); 982 } 983 984 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 985 { 986 return security_ops->msg_queue_associate(msq, msqflg); 987 } 988 989 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 990 { 991 return security_ops->msg_queue_msgctl(msq, cmd); 992 } 993 994 int security_msg_queue_msgsnd(struct msg_queue *msq, 995 struct msg_msg *msg, int msqflg) 996 { 997 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 998 } 999 1000 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1001 struct task_struct *target, long type, int mode) 1002 { 1003 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 1004 } 1005 1006 int security_shm_alloc(struct shmid_kernel *shp) 1007 { 1008 return security_ops->shm_alloc_security(shp); 1009 } 1010 1011 void security_shm_free(struct shmid_kernel *shp) 1012 { 1013 security_ops->shm_free_security(shp); 1014 } 1015 1016 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 1017 { 1018 return security_ops->shm_associate(shp, shmflg); 1019 } 1020 1021 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 1022 { 1023 return security_ops->shm_shmctl(shp, cmd); 1024 } 1025 1026 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 1027 { 1028 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1029 } 1030 1031 int security_sem_alloc(struct sem_array *sma) 1032 { 1033 return security_ops->sem_alloc_security(sma); 1034 } 1035 1036 void security_sem_free(struct sem_array *sma) 1037 { 1038 security_ops->sem_free_security(sma); 1039 } 1040 1041 int security_sem_associate(struct sem_array *sma, int semflg) 1042 { 1043 return security_ops->sem_associate(sma, semflg); 1044 } 1045 1046 int security_sem_semctl(struct sem_array *sma, int cmd) 1047 { 1048 return security_ops->sem_semctl(sma, cmd); 1049 } 1050 1051 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1052 unsigned nsops, int alter) 1053 { 1054 return security_ops->sem_semop(sma, sops, nsops, alter); 1055 } 1056 1057 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1058 { 1059 if (unlikely(inode && IS_PRIVATE(inode))) 1060 return; 1061 security_ops->d_instantiate(dentry, inode); 1062 } 1063 EXPORT_SYMBOL(security_d_instantiate); 1064 1065 int security_getprocattr(struct task_struct *p, char *name, char **value) 1066 { 1067 return security_ops->getprocattr(p, name, value); 1068 } 1069 1070 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1071 { 1072 return security_ops->setprocattr(p, name, value, size); 1073 } 1074 1075 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1076 { 1077 return security_ops->netlink_send(sk, skb); 1078 } 1079 1080 int security_ismaclabel(const char *name) 1081 { 1082 return security_ops->ismaclabel(name); 1083 } 1084 EXPORT_SYMBOL(security_ismaclabel); 1085 1086 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1087 { 1088 return security_ops->secid_to_secctx(secid, secdata, seclen); 1089 } 1090 EXPORT_SYMBOL(security_secid_to_secctx); 1091 1092 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1093 { 1094 return security_ops->secctx_to_secid(secdata, seclen, secid); 1095 } 1096 EXPORT_SYMBOL(security_secctx_to_secid); 1097 1098 void security_release_secctx(char *secdata, u32 seclen) 1099 { 1100 security_ops->release_secctx(secdata, seclen); 1101 } 1102 EXPORT_SYMBOL(security_release_secctx); 1103 1104 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1105 { 1106 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1107 } 1108 EXPORT_SYMBOL(security_inode_notifysecctx); 1109 1110 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1111 { 1112 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1113 } 1114 EXPORT_SYMBOL(security_inode_setsecctx); 1115 1116 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1117 { 1118 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1119 } 1120 EXPORT_SYMBOL(security_inode_getsecctx); 1121 1122 #ifdef CONFIG_SECURITY_NETWORK 1123 1124 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1125 { 1126 return security_ops->unix_stream_connect(sock, other, newsk); 1127 } 1128 EXPORT_SYMBOL(security_unix_stream_connect); 1129 1130 int security_unix_may_send(struct socket *sock, struct socket *other) 1131 { 1132 return security_ops->unix_may_send(sock, other); 1133 } 1134 EXPORT_SYMBOL(security_unix_may_send); 1135 1136 int security_socket_create(int family, int type, int protocol, int kern) 1137 { 1138 return security_ops->socket_create(family, type, protocol, kern); 1139 } 1140 1141 int security_socket_post_create(struct socket *sock, int family, 1142 int type, int protocol, int kern) 1143 { 1144 return security_ops->socket_post_create(sock, family, type, 1145 protocol, kern); 1146 } 1147 1148 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1149 { 1150 return security_ops->socket_bind(sock, address, addrlen); 1151 } 1152 1153 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1154 { 1155 return security_ops->socket_connect(sock, address, addrlen); 1156 } 1157 1158 int security_socket_listen(struct socket *sock, int backlog) 1159 { 1160 return security_ops->socket_listen(sock, backlog); 1161 } 1162 1163 int security_socket_accept(struct socket *sock, struct socket *newsock) 1164 { 1165 return security_ops->socket_accept(sock, newsock); 1166 } 1167 1168 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1169 { 1170 return security_ops->socket_sendmsg(sock, msg, size); 1171 } 1172 1173 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1174 int size, int flags) 1175 { 1176 return security_ops->socket_recvmsg(sock, msg, size, flags); 1177 } 1178 1179 int security_socket_getsockname(struct socket *sock) 1180 { 1181 return security_ops->socket_getsockname(sock); 1182 } 1183 1184 int security_socket_getpeername(struct socket *sock) 1185 { 1186 return security_ops->socket_getpeername(sock); 1187 } 1188 1189 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1190 { 1191 return security_ops->socket_getsockopt(sock, level, optname); 1192 } 1193 1194 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1195 { 1196 return security_ops->socket_setsockopt(sock, level, optname); 1197 } 1198 1199 int security_socket_shutdown(struct socket *sock, int how) 1200 { 1201 return security_ops->socket_shutdown(sock, how); 1202 } 1203 1204 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1205 { 1206 return security_ops->socket_sock_rcv_skb(sk, skb); 1207 } 1208 EXPORT_SYMBOL(security_sock_rcv_skb); 1209 1210 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1211 int __user *optlen, unsigned len) 1212 { 1213 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1214 } 1215 1216 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1217 { 1218 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1219 } 1220 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1221 1222 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1223 { 1224 return security_ops->sk_alloc_security(sk, family, priority); 1225 } 1226 1227 void security_sk_free(struct sock *sk) 1228 { 1229 security_ops->sk_free_security(sk); 1230 } 1231 1232 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1233 { 1234 security_ops->sk_clone_security(sk, newsk); 1235 } 1236 EXPORT_SYMBOL(security_sk_clone); 1237 1238 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1239 { 1240 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1241 } 1242 EXPORT_SYMBOL(security_sk_classify_flow); 1243 1244 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1245 { 1246 security_ops->req_classify_flow(req, fl); 1247 } 1248 EXPORT_SYMBOL(security_req_classify_flow); 1249 1250 void security_sock_graft(struct sock *sk, struct socket *parent) 1251 { 1252 security_ops->sock_graft(sk, parent); 1253 } 1254 EXPORT_SYMBOL(security_sock_graft); 1255 1256 int security_inet_conn_request(struct sock *sk, 1257 struct sk_buff *skb, struct request_sock *req) 1258 { 1259 return security_ops->inet_conn_request(sk, skb, req); 1260 } 1261 EXPORT_SYMBOL(security_inet_conn_request); 1262 1263 void security_inet_csk_clone(struct sock *newsk, 1264 const struct request_sock *req) 1265 { 1266 security_ops->inet_csk_clone(newsk, req); 1267 } 1268 1269 void security_inet_conn_established(struct sock *sk, 1270 struct sk_buff *skb) 1271 { 1272 security_ops->inet_conn_established(sk, skb); 1273 } 1274 1275 int security_secmark_relabel_packet(u32 secid) 1276 { 1277 return security_ops->secmark_relabel_packet(secid); 1278 } 1279 EXPORT_SYMBOL(security_secmark_relabel_packet); 1280 1281 void security_secmark_refcount_inc(void) 1282 { 1283 security_ops->secmark_refcount_inc(); 1284 } 1285 EXPORT_SYMBOL(security_secmark_refcount_inc); 1286 1287 void security_secmark_refcount_dec(void) 1288 { 1289 security_ops->secmark_refcount_dec(); 1290 } 1291 EXPORT_SYMBOL(security_secmark_refcount_dec); 1292 1293 int security_tun_dev_alloc_security(void **security) 1294 { 1295 return security_ops->tun_dev_alloc_security(security); 1296 } 1297 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1298 1299 void security_tun_dev_free_security(void *security) 1300 { 1301 security_ops->tun_dev_free_security(security); 1302 } 1303 EXPORT_SYMBOL(security_tun_dev_free_security); 1304 1305 int security_tun_dev_create(void) 1306 { 1307 return security_ops->tun_dev_create(); 1308 } 1309 EXPORT_SYMBOL(security_tun_dev_create); 1310 1311 int security_tun_dev_attach_queue(void *security) 1312 { 1313 return security_ops->tun_dev_attach_queue(security); 1314 } 1315 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1316 1317 int security_tun_dev_attach(struct sock *sk, void *security) 1318 { 1319 return security_ops->tun_dev_attach(sk, security); 1320 } 1321 EXPORT_SYMBOL(security_tun_dev_attach); 1322 1323 int security_tun_dev_open(void *security) 1324 { 1325 return security_ops->tun_dev_open(security); 1326 } 1327 EXPORT_SYMBOL(security_tun_dev_open); 1328 1329 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk) 1330 { 1331 security_ops->skb_owned_by(skb, sk); 1332 } 1333 1334 #endif /* CONFIG_SECURITY_NETWORK */ 1335 1336 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1337 1338 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1339 struct xfrm_user_sec_ctx *sec_ctx, 1340 gfp_t gfp) 1341 { 1342 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp); 1343 } 1344 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1345 1346 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1347 struct xfrm_sec_ctx **new_ctxp) 1348 { 1349 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1350 } 1351 1352 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1353 { 1354 security_ops->xfrm_policy_free_security(ctx); 1355 } 1356 EXPORT_SYMBOL(security_xfrm_policy_free); 1357 1358 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1359 { 1360 return security_ops->xfrm_policy_delete_security(ctx); 1361 } 1362 1363 int security_xfrm_state_alloc(struct xfrm_state *x, 1364 struct xfrm_user_sec_ctx *sec_ctx) 1365 { 1366 return security_ops->xfrm_state_alloc(x, sec_ctx); 1367 } 1368 EXPORT_SYMBOL(security_xfrm_state_alloc); 1369 1370 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1371 struct xfrm_sec_ctx *polsec, u32 secid) 1372 { 1373 return security_ops->xfrm_state_alloc_acquire(x, polsec, secid); 1374 } 1375 1376 int security_xfrm_state_delete(struct xfrm_state *x) 1377 { 1378 return security_ops->xfrm_state_delete_security(x); 1379 } 1380 EXPORT_SYMBOL(security_xfrm_state_delete); 1381 1382 void security_xfrm_state_free(struct xfrm_state *x) 1383 { 1384 security_ops->xfrm_state_free_security(x); 1385 } 1386 1387 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1388 { 1389 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1390 } 1391 1392 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1393 struct xfrm_policy *xp, 1394 const struct flowi *fl) 1395 { 1396 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1397 } 1398 1399 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1400 { 1401 return security_ops->xfrm_decode_session(skb, secid, 1); 1402 } 1403 1404 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1405 { 1406 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1407 1408 BUG_ON(rc); 1409 } 1410 EXPORT_SYMBOL(security_skb_classify_flow); 1411 1412 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1413 1414 #ifdef CONFIG_KEYS 1415 1416 int security_key_alloc(struct key *key, const struct cred *cred, 1417 unsigned long flags) 1418 { 1419 return security_ops->key_alloc(key, cred, flags); 1420 } 1421 1422 void security_key_free(struct key *key) 1423 { 1424 security_ops->key_free(key); 1425 } 1426 1427 int security_key_permission(key_ref_t key_ref, 1428 const struct cred *cred, key_perm_t perm) 1429 { 1430 return security_ops->key_permission(key_ref, cred, perm); 1431 } 1432 1433 int security_key_getsecurity(struct key *key, char **_buffer) 1434 { 1435 return security_ops->key_getsecurity(key, _buffer); 1436 } 1437 1438 #endif /* CONFIG_KEYS */ 1439 1440 #ifdef CONFIG_AUDIT 1441 1442 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1443 { 1444 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1445 } 1446 1447 int security_audit_rule_known(struct audit_krule *krule) 1448 { 1449 return security_ops->audit_rule_known(krule); 1450 } 1451 1452 void security_audit_rule_free(void *lsmrule) 1453 { 1454 security_ops->audit_rule_free(lsmrule); 1455 } 1456 1457 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1458 struct audit_context *actx) 1459 { 1460 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1461 } 1462 1463 #endif /* CONFIG_AUDIT */ 1464