1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #include <linux/bpf.h> 16 #include <linux/capability.h> 17 #include <linux/dcache.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <net/flow.h> 32 33 #include <trace/events/initcall.h> 34 35 #define MAX_LSM_EVM_XATTR 2 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 42 43 char *lsm_names; 44 /* Boot-time LSM user choice */ 45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 46 CONFIG_DEFAULT_SECURITY; 47 48 static void __init do_security_initcalls(void) 49 { 50 int ret; 51 initcall_t *call; 52 call = __security_initcall_start; 53 trace_initcall_level("security"); 54 while (call < __security_initcall_end) { 55 trace_initcall_start((*call)); 56 ret = (*call) (); 57 trace_initcall_finish((*call), ret); 58 call++; 59 } 60 } 61 62 /** 63 * security_init - initializes the security framework 64 * 65 * This should be called early in the kernel initialization sequence. 66 */ 67 int __init security_init(void) 68 { 69 int i; 70 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 71 72 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 73 i++) 74 INIT_HLIST_HEAD(&list[i]); 75 pr_info("Security Framework initialized\n"); 76 77 /* 78 * Load minor LSMs, with the capability module always first. 79 */ 80 capability_add_hooks(); 81 yama_add_hooks(); 82 loadpin_add_hooks(); 83 84 /* 85 * Load all the remaining security modules. 86 */ 87 do_security_initcalls(); 88 89 return 0; 90 } 91 92 /* Save user chosen LSM */ 93 static int __init choose_lsm(char *str) 94 { 95 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 96 return 1; 97 } 98 __setup("security=", choose_lsm); 99 100 static bool match_last_lsm(const char *list, const char *lsm) 101 { 102 const char *last; 103 104 if (WARN_ON(!list || !lsm)) 105 return false; 106 last = strrchr(list, ','); 107 if (last) 108 /* Pass the comma, strcmp() will check for '\0' */ 109 last++; 110 else 111 last = list; 112 return !strcmp(last, lsm); 113 } 114 115 static int lsm_append(char *new, char **result) 116 { 117 char *cp; 118 119 if (*result == NULL) { 120 *result = kstrdup(new, GFP_KERNEL); 121 } else { 122 /* Check if it is the last registered name */ 123 if (match_last_lsm(*result, new)) 124 return 0; 125 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 126 if (cp == NULL) 127 return -ENOMEM; 128 kfree(*result); 129 *result = cp; 130 } 131 return 0; 132 } 133 134 /** 135 * security_module_enable - Load given security module on boot ? 136 * @module: the name of the module 137 * 138 * Each LSM must pass this method before registering its own operations 139 * to avoid security registration races. This method may also be used 140 * to check if your LSM is currently loaded during kernel initialization. 141 * 142 * Returns: 143 * 144 * true if: 145 * 146 * - The passed LSM is the one chosen by user at boot time, 147 * - or the passed LSM is configured as the default and the user did not 148 * choose an alternate LSM at boot time. 149 * 150 * Otherwise, return false. 151 */ 152 int __init security_module_enable(const char *module) 153 { 154 return !strcmp(module, chosen_lsm); 155 } 156 157 /** 158 * security_add_hooks - Add a modules hooks to the hook lists. 159 * @hooks: the hooks to add 160 * @count: the number of hooks to add 161 * @lsm: the name of the security module 162 * 163 * Each LSM has to register its hooks with the infrastructure. 164 */ 165 void __init security_add_hooks(struct security_hook_list *hooks, int count, 166 char *lsm) 167 { 168 int i; 169 170 for (i = 0; i < count; i++) { 171 hooks[i].lsm = lsm; 172 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 173 } 174 if (lsm_append(lsm, &lsm_names) < 0) 175 panic("%s - Cannot get early memory.\n", __func__); 176 } 177 178 int call_lsm_notifier(enum lsm_event event, void *data) 179 { 180 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 181 } 182 EXPORT_SYMBOL(call_lsm_notifier); 183 184 int register_lsm_notifier(struct notifier_block *nb) 185 { 186 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 187 } 188 EXPORT_SYMBOL(register_lsm_notifier); 189 190 int unregister_lsm_notifier(struct notifier_block *nb) 191 { 192 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 193 } 194 EXPORT_SYMBOL(unregister_lsm_notifier); 195 196 /* 197 * Hook list operation macros. 198 * 199 * call_void_hook: 200 * This is a hook that does not return a value. 201 * 202 * call_int_hook: 203 * This is a hook that returns a value. 204 */ 205 206 #define call_void_hook(FUNC, ...) \ 207 do { \ 208 struct security_hook_list *P; \ 209 \ 210 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 211 P->hook.FUNC(__VA_ARGS__); \ 212 } while (0) 213 214 #define call_int_hook(FUNC, IRC, ...) ({ \ 215 int RC = IRC; \ 216 do { \ 217 struct security_hook_list *P; \ 218 \ 219 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 220 RC = P->hook.FUNC(__VA_ARGS__); \ 221 if (RC != 0) \ 222 break; \ 223 } \ 224 } while (0); \ 225 RC; \ 226 }) 227 228 /* Security operations */ 229 230 int security_binder_set_context_mgr(struct task_struct *mgr) 231 { 232 return call_int_hook(binder_set_context_mgr, 0, mgr); 233 } 234 235 int security_binder_transaction(struct task_struct *from, 236 struct task_struct *to) 237 { 238 return call_int_hook(binder_transaction, 0, from, to); 239 } 240 241 int security_binder_transfer_binder(struct task_struct *from, 242 struct task_struct *to) 243 { 244 return call_int_hook(binder_transfer_binder, 0, from, to); 245 } 246 247 int security_binder_transfer_file(struct task_struct *from, 248 struct task_struct *to, struct file *file) 249 { 250 return call_int_hook(binder_transfer_file, 0, from, to, file); 251 } 252 253 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 254 { 255 return call_int_hook(ptrace_access_check, 0, child, mode); 256 } 257 258 int security_ptrace_traceme(struct task_struct *parent) 259 { 260 return call_int_hook(ptrace_traceme, 0, parent); 261 } 262 263 int security_capget(struct task_struct *target, 264 kernel_cap_t *effective, 265 kernel_cap_t *inheritable, 266 kernel_cap_t *permitted) 267 { 268 return call_int_hook(capget, 0, target, 269 effective, inheritable, permitted); 270 } 271 272 int security_capset(struct cred *new, const struct cred *old, 273 const kernel_cap_t *effective, 274 const kernel_cap_t *inheritable, 275 const kernel_cap_t *permitted) 276 { 277 return call_int_hook(capset, 0, new, old, 278 effective, inheritable, permitted); 279 } 280 281 int security_capable(const struct cred *cred, struct user_namespace *ns, 282 int cap) 283 { 284 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT); 285 } 286 287 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 288 int cap) 289 { 290 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT); 291 } 292 293 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 294 { 295 return call_int_hook(quotactl, 0, cmds, type, id, sb); 296 } 297 298 int security_quota_on(struct dentry *dentry) 299 { 300 return call_int_hook(quota_on, 0, dentry); 301 } 302 303 int security_syslog(int type) 304 { 305 return call_int_hook(syslog, 0, type); 306 } 307 308 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 309 { 310 return call_int_hook(settime, 0, ts, tz); 311 } 312 313 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 314 { 315 struct security_hook_list *hp; 316 int cap_sys_admin = 1; 317 int rc; 318 319 /* 320 * The module will respond with a positive value if 321 * it thinks the __vm_enough_memory() call should be 322 * made with the cap_sys_admin set. If all of the modules 323 * agree that it should be set it will. If any module 324 * thinks it should not be set it won't. 325 */ 326 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 327 rc = hp->hook.vm_enough_memory(mm, pages); 328 if (rc <= 0) { 329 cap_sys_admin = 0; 330 break; 331 } 332 } 333 return __vm_enough_memory(mm, pages, cap_sys_admin); 334 } 335 336 int security_bprm_set_creds(struct linux_binprm *bprm) 337 { 338 return call_int_hook(bprm_set_creds, 0, bprm); 339 } 340 341 int security_bprm_check(struct linux_binprm *bprm) 342 { 343 int ret; 344 345 ret = call_int_hook(bprm_check_security, 0, bprm); 346 if (ret) 347 return ret; 348 return ima_bprm_check(bprm); 349 } 350 351 void security_bprm_committing_creds(struct linux_binprm *bprm) 352 { 353 call_void_hook(bprm_committing_creds, bprm); 354 } 355 356 void security_bprm_committed_creds(struct linux_binprm *bprm) 357 { 358 call_void_hook(bprm_committed_creds, bprm); 359 } 360 361 int security_sb_alloc(struct super_block *sb) 362 { 363 return call_int_hook(sb_alloc_security, 0, sb); 364 } 365 366 void security_sb_free(struct super_block *sb) 367 { 368 call_void_hook(sb_free_security, sb); 369 } 370 371 int security_sb_copy_data(char *orig, char *copy) 372 { 373 return call_int_hook(sb_copy_data, 0, orig, copy); 374 } 375 EXPORT_SYMBOL(security_sb_copy_data); 376 377 int security_sb_remount(struct super_block *sb, void *data) 378 { 379 return call_int_hook(sb_remount, 0, sb, data); 380 } 381 382 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 383 { 384 return call_int_hook(sb_kern_mount, 0, sb, flags, data); 385 } 386 387 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 388 { 389 return call_int_hook(sb_show_options, 0, m, sb); 390 } 391 392 int security_sb_statfs(struct dentry *dentry) 393 { 394 return call_int_hook(sb_statfs, 0, dentry); 395 } 396 397 int security_sb_mount(const char *dev_name, const struct path *path, 398 const char *type, unsigned long flags, void *data) 399 { 400 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 401 } 402 403 int security_sb_umount(struct vfsmount *mnt, int flags) 404 { 405 return call_int_hook(sb_umount, 0, mnt, flags); 406 } 407 408 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 409 { 410 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 411 } 412 413 int security_sb_set_mnt_opts(struct super_block *sb, 414 struct security_mnt_opts *opts, 415 unsigned long kern_flags, 416 unsigned long *set_kern_flags) 417 { 418 return call_int_hook(sb_set_mnt_opts, 419 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb, 420 opts, kern_flags, set_kern_flags); 421 } 422 EXPORT_SYMBOL(security_sb_set_mnt_opts); 423 424 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 425 struct super_block *newsb, 426 unsigned long kern_flags, 427 unsigned long *set_kern_flags) 428 { 429 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 430 kern_flags, set_kern_flags); 431 } 432 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 433 434 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 435 { 436 return call_int_hook(sb_parse_opts_str, 0, options, opts); 437 } 438 EXPORT_SYMBOL(security_sb_parse_opts_str); 439 440 int security_inode_alloc(struct inode *inode) 441 { 442 inode->i_security = NULL; 443 return call_int_hook(inode_alloc_security, 0, inode); 444 } 445 446 void security_inode_free(struct inode *inode) 447 { 448 integrity_inode_free(inode); 449 call_void_hook(inode_free_security, inode); 450 } 451 452 int security_dentry_init_security(struct dentry *dentry, int mode, 453 const struct qstr *name, void **ctx, 454 u32 *ctxlen) 455 { 456 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 457 name, ctx, ctxlen); 458 } 459 EXPORT_SYMBOL(security_dentry_init_security); 460 461 int security_dentry_create_files_as(struct dentry *dentry, int mode, 462 struct qstr *name, 463 const struct cred *old, struct cred *new) 464 { 465 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 466 name, old, new); 467 } 468 EXPORT_SYMBOL(security_dentry_create_files_as); 469 470 int security_inode_init_security(struct inode *inode, struct inode *dir, 471 const struct qstr *qstr, 472 const initxattrs initxattrs, void *fs_data) 473 { 474 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 475 struct xattr *lsm_xattr, *evm_xattr, *xattr; 476 int ret; 477 478 if (unlikely(IS_PRIVATE(inode))) 479 return 0; 480 481 if (!initxattrs) 482 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 483 dir, qstr, NULL, NULL, NULL); 484 memset(new_xattrs, 0, sizeof(new_xattrs)); 485 lsm_xattr = new_xattrs; 486 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 487 &lsm_xattr->name, 488 &lsm_xattr->value, 489 &lsm_xattr->value_len); 490 if (ret) 491 goto out; 492 493 evm_xattr = lsm_xattr + 1; 494 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 495 if (ret) 496 goto out; 497 ret = initxattrs(inode, new_xattrs, fs_data); 498 out: 499 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 500 kfree(xattr->value); 501 return (ret == -EOPNOTSUPP) ? 0 : ret; 502 } 503 EXPORT_SYMBOL(security_inode_init_security); 504 505 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 506 const struct qstr *qstr, const char **name, 507 void **value, size_t *len) 508 { 509 if (unlikely(IS_PRIVATE(inode))) 510 return -EOPNOTSUPP; 511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 512 qstr, name, value, len); 513 } 514 EXPORT_SYMBOL(security_old_inode_init_security); 515 516 #ifdef CONFIG_SECURITY_PATH 517 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 518 unsigned int dev) 519 { 520 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 521 return 0; 522 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 523 } 524 EXPORT_SYMBOL(security_path_mknod); 525 526 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 527 { 528 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 529 return 0; 530 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 531 } 532 EXPORT_SYMBOL(security_path_mkdir); 533 534 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 535 { 536 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 537 return 0; 538 return call_int_hook(path_rmdir, 0, dir, dentry); 539 } 540 541 int security_path_unlink(const struct path *dir, struct dentry *dentry) 542 { 543 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 544 return 0; 545 return call_int_hook(path_unlink, 0, dir, dentry); 546 } 547 EXPORT_SYMBOL(security_path_unlink); 548 549 int security_path_symlink(const struct path *dir, struct dentry *dentry, 550 const char *old_name) 551 { 552 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 553 return 0; 554 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 555 } 556 557 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 558 struct dentry *new_dentry) 559 { 560 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 561 return 0; 562 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 563 } 564 565 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 566 const struct path *new_dir, struct dentry *new_dentry, 567 unsigned int flags) 568 { 569 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 570 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 571 return 0; 572 573 if (flags & RENAME_EXCHANGE) { 574 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 575 old_dir, old_dentry); 576 if (err) 577 return err; 578 } 579 580 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 581 new_dentry); 582 } 583 EXPORT_SYMBOL(security_path_rename); 584 585 int security_path_truncate(const struct path *path) 586 { 587 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 588 return 0; 589 return call_int_hook(path_truncate, 0, path); 590 } 591 592 int security_path_chmod(const struct path *path, umode_t mode) 593 { 594 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 595 return 0; 596 return call_int_hook(path_chmod, 0, path, mode); 597 } 598 599 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 600 { 601 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 602 return 0; 603 return call_int_hook(path_chown, 0, path, uid, gid); 604 } 605 606 int security_path_chroot(const struct path *path) 607 { 608 return call_int_hook(path_chroot, 0, path); 609 } 610 #endif 611 612 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 613 { 614 if (unlikely(IS_PRIVATE(dir))) 615 return 0; 616 return call_int_hook(inode_create, 0, dir, dentry, mode); 617 } 618 EXPORT_SYMBOL_GPL(security_inode_create); 619 620 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 621 struct dentry *new_dentry) 622 { 623 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 624 return 0; 625 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 626 } 627 628 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 629 { 630 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 631 return 0; 632 return call_int_hook(inode_unlink, 0, dir, dentry); 633 } 634 635 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 636 const char *old_name) 637 { 638 if (unlikely(IS_PRIVATE(dir))) 639 return 0; 640 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 641 } 642 643 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 644 { 645 if (unlikely(IS_PRIVATE(dir))) 646 return 0; 647 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 648 } 649 EXPORT_SYMBOL_GPL(security_inode_mkdir); 650 651 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 652 { 653 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 654 return 0; 655 return call_int_hook(inode_rmdir, 0, dir, dentry); 656 } 657 658 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 659 { 660 if (unlikely(IS_PRIVATE(dir))) 661 return 0; 662 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 663 } 664 665 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 666 struct inode *new_dir, struct dentry *new_dentry, 667 unsigned int flags) 668 { 669 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 670 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 671 return 0; 672 673 if (flags & RENAME_EXCHANGE) { 674 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 675 old_dir, old_dentry); 676 if (err) 677 return err; 678 } 679 680 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 681 new_dir, new_dentry); 682 } 683 684 int security_inode_readlink(struct dentry *dentry) 685 { 686 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 687 return 0; 688 return call_int_hook(inode_readlink, 0, dentry); 689 } 690 691 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 692 bool rcu) 693 { 694 if (unlikely(IS_PRIVATE(inode))) 695 return 0; 696 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 697 } 698 699 int security_inode_permission(struct inode *inode, int mask) 700 { 701 if (unlikely(IS_PRIVATE(inode))) 702 return 0; 703 return call_int_hook(inode_permission, 0, inode, mask); 704 } 705 706 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 707 { 708 int ret; 709 710 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 711 return 0; 712 ret = call_int_hook(inode_setattr, 0, dentry, attr); 713 if (ret) 714 return ret; 715 return evm_inode_setattr(dentry, attr); 716 } 717 EXPORT_SYMBOL_GPL(security_inode_setattr); 718 719 int security_inode_getattr(const struct path *path) 720 { 721 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 722 return 0; 723 return call_int_hook(inode_getattr, 0, path); 724 } 725 726 int security_inode_setxattr(struct dentry *dentry, const char *name, 727 const void *value, size_t size, int flags) 728 { 729 int ret; 730 731 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 732 return 0; 733 /* 734 * SELinux and Smack integrate the cap call, 735 * so assume that all LSMs supplying this call do so. 736 */ 737 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 738 flags); 739 740 if (ret == 1) 741 ret = cap_inode_setxattr(dentry, name, value, size, flags); 742 if (ret) 743 return ret; 744 ret = ima_inode_setxattr(dentry, name, value, size); 745 if (ret) 746 return ret; 747 return evm_inode_setxattr(dentry, name, value, size); 748 } 749 750 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 751 const void *value, size_t size, int flags) 752 { 753 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 754 return; 755 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 756 evm_inode_post_setxattr(dentry, name, value, size); 757 } 758 759 int security_inode_getxattr(struct dentry *dentry, const char *name) 760 { 761 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 762 return 0; 763 return call_int_hook(inode_getxattr, 0, dentry, name); 764 } 765 766 int security_inode_listxattr(struct dentry *dentry) 767 { 768 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 769 return 0; 770 return call_int_hook(inode_listxattr, 0, dentry); 771 } 772 773 int security_inode_removexattr(struct dentry *dentry, const char *name) 774 { 775 int ret; 776 777 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 778 return 0; 779 /* 780 * SELinux and Smack integrate the cap call, 781 * so assume that all LSMs supplying this call do so. 782 */ 783 ret = call_int_hook(inode_removexattr, 1, dentry, name); 784 if (ret == 1) 785 ret = cap_inode_removexattr(dentry, name); 786 if (ret) 787 return ret; 788 ret = ima_inode_removexattr(dentry, name); 789 if (ret) 790 return ret; 791 return evm_inode_removexattr(dentry, name); 792 } 793 794 int security_inode_need_killpriv(struct dentry *dentry) 795 { 796 return call_int_hook(inode_need_killpriv, 0, dentry); 797 } 798 799 int security_inode_killpriv(struct dentry *dentry) 800 { 801 return call_int_hook(inode_killpriv, 0, dentry); 802 } 803 804 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 805 { 806 struct security_hook_list *hp; 807 int rc; 808 809 if (unlikely(IS_PRIVATE(inode))) 810 return -EOPNOTSUPP; 811 /* 812 * Only one module will provide an attribute with a given name. 813 */ 814 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 815 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 816 if (rc != -EOPNOTSUPP) 817 return rc; 818 } 819 return -EOPNOTSUPP; 820 } 821 822 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 823 { 824 struct security_hook_list *hp; 825 int rc; 826 827 if (unlikely(IS_PRIVATE(inode))) 828 return -EOPNOTSUPP; 829 /* 830 * Only one module will provide an attribute with a given name. 831 */ 832 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 833 rc = hp->hook.inode_setsecurity(inode, name, value, size, 834 flags); 835 if (rc != -EOPNOTSUPP) 836 return rc; 837 } 838 return -EOPNOTSUPP; 839 } 840 841 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 842 { 843 if (unlikely(IS_PRIVATE(inode))) 844 return 0; 845 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 846 } 847 EXPORT_SYMBOL(security_inode_listsecurity); 848 849 void security_inode_getsecid(struct inode *inode, u32 *secid) 850 { 851 call_void_hook(inode_getsecid, inode, secid); 852 } 853 854 int security_inode_copy_up(struct dentry *src, struct cred **new) 855 { 856 return call_int_hook(inode_copy_up, 0, src, new); 857 } 858 EXPORT_SYMBOL(security_inode_copy_up); 859 860 int security_inode_copy_up_xattr(const char *name) 861 { 862 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 863 } 864 EXPORT_SYMBOL(security_inode_copy_up_xattr); 865 866 int security_file_permission(struct file *file, int mask) 867 { 868 int ret; 869 870 ret = call_int_hook(file_permission, 0, file, mask); 871 if (ret) 872 return ret; 873 874 return fsnotify_perm(file, mask); 875 } 876 877 int security_file_alloc(struct file *file) 878 { 879 return call_int_hook(file_alloc_security, 0, file); 880 } 881 882 void security_file_free(struct file *file) 883 { 884 call_void_hook(file_free_security, file); 885 } 886 887 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 888 { 889 return call_int_hook(file_ioctl, 0, file, cmd, arg); 890 } 891 892 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 893 { 894 /* 895 * Does we have PROT_READ and does the application expect 896 * it to imply PROT_EXEC? If not, nothing to talk about... 897 */ 898 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 899 return prot; 900 if (!(current->personality & READ_IMPLIES_EXEC)) 901 return prot; 902 /* 903 * if that's an anonymous mapping, let it. 904 */ 905 if (!file) 906 return prot | PROT_EXEC; 907 /* 908 * ditto if it's not on noexec mount, except that on !MMU we need 909 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 910 */ 911 if (!path_noexec(&file->f_path)) { 912 #ifndef CONFIG_MMU 913 if (file->f_op->mmap_capabilities) { 914 unsigned caps = file->f_op->mmap_capabilities(file); 915 if (!(caps & NOMMU_MAP_EXEC)) 916 return prot; 917 } 918 #endif 919 return prot | PROT_EXEC; 920 } 921 /* anything on noexec mount won't get PROT_EXEC */ 922 return prot; 923 } 924 925 int security_mmap_file(struct file *file, unsigned long prot, 926 unsigned long flags) 927 { 928 int ret; 929 ret = call_int_hook(mmap_file, 0, file, prot, 930 mmap_prot(file, prot), flags); 931 if (ret) 932 return ret; 933 return ima_file_mmap(file, prot); 934 } 935 936 int security_mmap_addr(unsigned long addr) 937 { 938 return call_int_hook(mmap_addr, 0, addr); 939 } 940 941 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 942 unsigned long prot) 943 { 944 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 945 } 946 947 int security_file_lock(struct file *file, unsigned int cmd) 948 { 949 return call_int_hook(file_lock, 0, file, cmd); 950 } 951 952 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 953 { 954 return call_int_hook(file_fcntl, 0, file, cmd, arg); 955 } 956 957 void security_file_set_fowner(struct file *file) 958 { 959 call_void_hook(file_set_fowner, file); 960 } 961 962 int security_file_send_sigiotask(struct task_struct *tsk, 963 struct fown_struct *fown, int sig) 964 { 965 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 966 } 967 968 int security_file_receive(struct file *file) 969 { 970 return call_int_hook(file_receive, 0, file); 971 } 972 973 int security_file_open(struct file *file, const struct cred *cred) 974 { 975 int ret; 976 977 ret = call_int_hook(file_open, 0, file, cred); 978 if (ret) 979 return ret; 980 981 return fsnotify_perm(file, MAY_OPEN); 982 } 983 984 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 985 { 986 return call_int_hook(task_alloc, 0, task, clone_flags); 987 } 988 989 void security_task_free(struct task_struct *task) 990 { 991 call_void_hook(task_free, task); 992 } 993 994 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 995 { 996 return call_int_hook(cred_alloc_blank, 0, cred, gfp); 997 } 998 999 void security_cred_free(struct cred *cred) 1000 { 1001 call_void_hook(cred_free, cred); 1002 } 1003 1004 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1005 { 1006 return call_int_hook(cred_prepare, 0, new, old, gfp); 1007 } 1008 1009 void security_transfer_creds(struct cred *new, const struct cred *old) 1010 { 1011 call_void_hook(cred_transfer, new, old); 1012 } 1013 1014 void security_cred_getsecid(const struct cred *c, u32 *secid) 1015 { 1016 *secid = 0; 1017 call_void_hook(cred_getsecid, c, secid); 1018 } 1019 EXPORT_SYMBOL(security_cred_getsecid); 1020 1021 int security_kernel_act_as(struct cred *new, u32 secid) 1022 { 1023 return call_int_hook(kernel_act_as, 0, new, secid); 1024 } 1025 1026 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1027 { 1028 return call_int_hook(kernel_create_files_as, 0, new, inode); 1029 } 1030 1031 int security_kernel_module_request(char *kmod_name) 1032 { 1033 return call_int_hook(kernel_module_request, 0, kmod_name); 1034 } 1035 1036 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1037 { 1038 int ret; 1039 1040 ret = call_int_hook(kernel_read_file, 0, file, id); 1041 if (ret) 1042 return ret; 1043 return ima_read_file(file, id); 1044 } 1045 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1046 1047 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1048 enum kernel_read_file_id id) 1049 { 1050 int ret; 1051 1052 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1053 if (ret) 1054 return ret; 1055 return ima_post_read_file(file, buf, size, id); 1056 } 1057 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1058 1059 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1060 int flags) 1061 { 1062 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1063 } 1064 1065 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1066 { 1067 return call_int_hook(task_setpgid, 0, p, pgid); 1068 } 1069 1070 int security_task_getpgid(struct task_struct *p) 1071 { 1072 return call_int_hook(task_getpgid, 0, p); 1073 } 1074 1075 int security_task_getsid(struct task_struct *p) 1076 { 1077 return call_int_hook(task_getsid, 0, p); 1078 } 1079 1080 void security_task_getsecid(struct task_struct *p, u32 *secid) 1081 { 1082 *secid = 0; 1083 call_void_hook(task_getsecid, p, secid); 1084 } 1085 EXPORT_SYMBOL(security_task_getsecid); 1086 1087 int security_task_setnice(struct task_struct *p, int nice) 1088 { 1089 return call_int_hook(task_setnice, 0, p, nice); 1090 } 1091 1092 int security_task_setioprio(struct task_struct *p, int ioprio) 1093 { 1094 return call_int_hook(task_setioprio, 0, p, ioprio); 1095 } 1096 1097 int security_task_getioprio(struct task_struct *p) 1098 { 1099 return call_int_hook(task_getioprio, 0, p); 1100 } 1101 1102 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1103 unsigned int flags) 1104 { 1105 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1106 } 1107 1108 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1109 struct rlimit *new_rlim) 1110 { 1111 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1112 } 1113 1114 int security_task_setscheduler(struct task_struct *p) 1115 { 1116 return call_int_hook(task_setscheduler, 0, p); 1117 } 1118 1119 int security_task_getscheduler(struct task_struct *p) 1120 { 1121 return call_int_hook(task_getscheduler, 0, p); 1122 } 1123 1124 int security_task_movememory(struct task_struct *p) 1125 { 1126 return call_int_hook(task_movememory, 0, p); 1127 } 1128 1129 int security_task_kill(struct task_struct *p, struct siginfo *info, 1130 int sig, const struct cred *cred) 1131 { 1132 return call_int_hook(task_kill, 0, p, info, sig, cred); 1133 } 1134 1135 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1136 unsigned long arg4, unsigned long arg5) 1137 { 1138 int thisrc; 1139 int rc = -ENOSYS; 1140 struct security_hook_list *hp; 1141 1142 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1143 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1144 if (thisrc != -ENOSYS) { 1145 rc = thisrc; 1146 if (thisrc != 0) 1147 break; 1148 } 1149 } 1150 return rc; 1151 } 1152 1153 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1154 { 1155 call_void_hook(task_to_inode, p, inode); 1156 } 1157 1158 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1159 { 1160 return call_int_hook(ipc_permission, 0, ipcp, flag); 1161 } 1162 1163 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1164 { 1165 *secid = 0; 1166 call_void_hook(ipc_getsecid, ipcp, secid); 1167 } 1168 1169 int security_msg_msg_alloc(struct msg_msg *msg) 1170 { 1171 return call_int_hook(msg_msg_alloc_security, 0, msg); 1172 } 1173 1174 void security_msg_msg_free(struct msg_msg *msg) 1175 { 1176 call_void_hook(msg_msg_free_security, msg); 1177 } 1178 1179 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1180 { 1181 return call_int_hook(msg_queue_alloc_security, 0, msq); 1182 } 1183 1184 void security_msg_queue_free(struct kern_ipc_perm *msq) 1185 { 1186 call_void_hook(msg_queue_free_security, msq); 1187 } 1188 1189 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1190 { 1191 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1192 } 1193 1194 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1195 { 1196 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1197 } 1198 1199 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1200 struct msg_msg *msg, int msqflg) 1201 { 1202 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1203 } 1204 1205 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1206 struct task_struct *target, long type, int mode) 1207 { 1208 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1209 } 1210 1211 int security_shm_alloc(struct kern_ipc_perm *shp) 1212 { 1213 return call_int_hook(shm_alloc_security, 0, shp); 1214 } 1215 1216 void security_shm_free(struct kern_ipc_perm *shp) 1217 { 1218 call_void_hook(shm_free_security, shp); 1219 } 1220 1221 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1222 { 1223 return call_int_hook(shm_associate, 0, shp, shmflg); 1224 } 1225 1226 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1227 { 1228 return call_int_hook(shm_shmctl, 0, shp, cmd); 1229 } 1230 1231 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1232 { 1233 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1234 } 1235 1236 int security_sem_alloc(struct kern_ipc_perm *sma) 1237 { 1238 return call_int_hook(sem_alloc_security, 0, sma); 1239 } 1240 1241 void security_sem_free(struct kern_ipc_perm *sma) 1242 { 1243 call_void_hook(sem_free_security, sma); 1244 } 1245 1246 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1247 { 1248 return call_int_hook(sem_associate, 0, sma, semflg); 1249 } 1250 1251 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1252 { 1253 return call_int_hook(sem_semctl, 0, sma, cmd); 1254 } 1255 1256 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1257 unsigned nsops, int alter) 1258 { 1259 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1260 } 1261 1262 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1263 { 1264 if (unlikely(inode && IS_PRIVATE(inode))) 1265 return; 1266 call_void_hook(d_instantiate, dentry, inode); 1267 } 1268 EXPORT_SYMBOL(security_d_instantiate); 1269 1270 int security_getprocattr(struct task_struct *p, char *name, char **value) 1271 { 1272 return call_int_hook(getprocattr, -EINVAL, p, name, value); 1273 } 1274 1275 int security_setprocattr(const char *name, void *value, size_t size) 1276 { 1277 return call_int_hook(setprocattr, -EINVAL, name, value, size); 1278 } 1279 1280 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1281 { 1282 return call_int_hook(netlink_send, 0, sk, skb); 1283 } 1284 1285 int security_ismaclabel(const char *name) 1286 { 1287 return call_int_hook(ismaclabel, 0, name); 1288 } 1289 EXPORT_SYMBOL(security_ismaclabel); 1290 1291 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1292 { 1293 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1294 seclen); 1295 } 1296 EXPORT_SYMBOL(security_secid_to_secctx); 1297 1298 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1299 { 1300 *secid = 0; 1301 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1302 } 1303 EXPORT_SYMBOL(security_secctx_to_secid); 1304 1305 void security_release_secctx(char *secdata, u32 seclen) 1306 { 1307 call_void_hook(release_secctx, secdata, seclen); 1308 } 1309 EXPORT_SYMBOL(security_release_secctx); 1310 1311 void security_inode_invalidate_secctx(struct inode *inode) 1312 { 1313 call_void_hook(inode_invalidate_secctx, inode); 1314 } 1315 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1316 1317 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1318 { 1319 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1320 } 1321 EXPORT_SYMBOL(security_inode_notifysecctx); 1322 1323 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1324 { 1325 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1326 } 1327 EXPORT_SYMBOL(security_inode_setsecctx); 1328 1329 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1330 { 1331 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1332 } 1333 EXPORT_SYMBOL(security_inode_getsecctx); 1334 1335 #ifdef CONFIG_SECURITY_NETWORK 1336 1337 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1338 { 1339 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1340 } 1341 EXPORT_SYMBOL(security_unix_stream_connect); 1342 1343 int security_unix_may_send(struct socket *sock, struct socket *other) 1344 { 1345 return call_int_hook(unix_may_send, 0, sock, other); 1346 } 1347 EXPORT_SYMBOL(security_unix_may_send); 1348 1349 int security_socket_create(int family, int type, int protocol, int kern) 1350 { 1351 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1352 } 1353 1354 int security_socket_post_create(struct socket *sock, int family, 1355 int type, int protocol, int kern) 1356 { 1357 return call_int_hook(socket_post_create, 0, sock, family, type, 1358 protocol, kern); 1359 } 1360 1361 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1362 { 1363 return call_int_hook(socket_socketpair, 0, socka, sockb); 1364 } 1365 EXPORT_SYMBOL(security_socket_socketpair); 1366 1367 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1368 { 1369 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1370 } 1371 1372 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1373 { 1374 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1375 } 1376 1377 int security_socket_listen(struct socket *sock, int backlog) 1378 { 1379 return call_int_hook(socket_listen, 0, sock, backlog); 1380 } 1381 1382 int security_socket_accept(struct socket *sock, struct socket *newsock) 1383 { 1384 return call_int_hook(socket_accept, 0, sock, newsock); 1385 } 1386 1387 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1388 { 1389 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1390 } 1391 1392 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1393 int size, int flags) 1394 { 1395 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1396 } 1397 1398 int security_socket_getsockname(struct socket *sock) 1399 { 1400 return call_int_hook(socket_getsockname, 0, sock); 1401 } 1402 1403 int security_socket_getpeername(struct socket *sock) 1404 { 1405 return call_int_hook(socket_getpeername, 0, sock); 1406 } 1407 1408 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1409 { 1410 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1411 } 1412 1413 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1414 { 1415 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1416 } 1417 1418 int security_socket_shutdown(struct socket *sock, int how) 1419 { 1420 return call_int_hook(socket_shutdown, 0, sock, how); 1421 } 1422 1423 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1424 { 1425 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1426 } 1427 EXPORT_SYMBOL(security_sock_rcv_skb); 1428 1429 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1430 int __user *optlen, unsigned len) 1431 { 1432 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1433 optval, optlen, len); 1434 } 1435 1436 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1437 { 1438 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1439 skb, secid); 1440 } 1441 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1442 1443 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1444 { 1445 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 1446 } 1447 1448 void security_sk_free(struct sock *sk) 1449 { 1450 call_void_hook(sk_free_security, sk); 1451 } 1452 1453 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1454 { 1455 call_void_hook(sk_clone_security, sk, newsk); 1456 } 1457 EXPORT_SYMBOL(security_sk_clone); 1458 1459 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1460 { 1461 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 1462 } 1463 EXPORT_SYMBOL(security_sk_classify_flow); 1464 1465 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1466 { 1467 call_void_hook(req_classify_flow, req, fl); 1468 } 1469 EXPORT_SYMBOL(security_req_classify_flow); 1470 1471 void security_sock_graft(struct sock *sk, struct socket *parent) 1472 { 1473 call_void_hook(sock_graft, sk, parent); 1474 } 1475 EXPORT_SYMBOL(security_sock_graft); 1476 1477 int security_inet_conn_request(struct sock *sk, 1478 struct sk_buff *skb, struct request_sock *req) 1479 { 1480 return call_int_hook(inet_conn_request, 0, sk, skb, req); 1481 } 1482 EXPORT_SYMBOL(security_inet_conn_request); 1483 1484 void security_inet_csk_clone(struct sock *newsk, 1485 const struct request_sock *req) 1486 { 1487 call_void_hook(inet_csk_clone, newsk, req); 1488 } 1489 1490 void security_inet_conn_established(struct sock *sk, 1491 struct sk_buff *skb) 1492 { 1493 call_void_hook(inet_conn_established, sk, skb); 1494 } 1495 EXPORT_SYMBOL(security_inet_conn_established); 1496 1497 int security_secmark_relabel_packet(u32 secid) 1498 { 1499 return call_int_hook(secmark_relabel_packet, 0, secid); 1500 } 1501 EXPORT_SYMBOL(security_secmark_relabel_packet); 1502 1503 void security_secmark_refcount_inc(void) 1504 { 1505 call_void_hook(secmark_refcount_inc); 1506 } 1507 EXPORT_SYMBOL(security_secmark_refcount_inc); 1508 1509 void security_secmark_refcount_dec(void) 1510 { 1511 call_void_hook(secmark_refcount_dec); 1512 } 1513 EXPORT_SYMBOL(security_secmark_refcount_dec); 1514 1515 int security_tun_dev_alloc_security(void **security) 1516 { 1517 return call_int_hook(tun_dev_alloc_security, 0, security); 1518 } 1519 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1520 1521 void security_tun_dev_free_security(void *security) 1522 { 1523 call_void_hook(tun_dev_free_security, security); 1524 } 1525 EXPORT_SYMBOL(security_tun_dev_free_security); 1526 1527 int security_tun_dev_create(void) 1528 { 1529 return call_int_hook(tun_dev_create, 0); 1530 } 1531 EXPORT_SYMBOL(security_tun_dev_create); 1532 1533 int security_tun_dev_attach_queue(void *security) 1534 { 1535 return call_int_hook(tun_dev_attach_queue, 0, security); 1536 } 1537 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1538 1539 int security_tun_dev_attach(struct sock *sk, void *security) 1540 { 1541 return call_int_hook(tun_dev_attach, 0, sk, security); 1542 } 1543 EXPORT_SYMBOL(security_tun_dev_attach); 1544 1545 int security_tun_dev_open(void *security) 1546 { 1547 return call_int_hook(tun_dev_open, 0, security); 1548 } 1549 EXPORT_SYMBOL(security_tun_dev_open); 1550 1551 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 1552 { 1553 return call_int_hook(sctp_assoc_request, 0, ep, skb); 1554 } 1555 EXPORT_SYMBOL(security_sctp_assoc_request); 1556 1557 int security_sctp_bind_connect(struct sock *sk, int optname, 1558 struct sockaddr *address, int addrlen) 1559 { 1560 return call_int_hook(sctp_bind_connect, 0, sk, optname, 1561 address, addrlen); 1562 } 1563 EXPORT_SYMBOL(security_sctp_bind_connect); 1564 1565 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 1566 struct sock *newsk) 1567 { 1568 call_void_hook(sctp_sk_clone, ep, sk, newsk); 1569 } 1570 EXPORT_SYMBOL(security_sctp_sk_clone); 1571 1572 #endif /* CONFIG_SECURITY_NETWORK */ 1573 1574 #ifdef CONFIG_SECURITY_INFINIBAND 1575 1576 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 1577 { 1578 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 1579 } 1580 EXPORT_SYMBOL(security_ib_pkey_access); 1581 1582 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 1583 { 1584 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 1585 } 1586 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 1587 1588 int security_ib_alloc_security(void **sec) 1589 { 1590 return call_int_hook(ib_alloc_security, 0, sec); 1591 } 1592 EXPORT_SYMBOL(security_ib_alloc_security); 1593 1594 void security_ib_free_security(void *sec) 1595 { 1596 call_void_hook(ib_free_security, sec); 1597 } 1598 EXPORT_SYMBOL(security_ib_free_security); 1599 #endif /* CONFIG_SECURITY_INFINIBAND */ 1600 1601 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1602 1603 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1604 struct xfrm_user_sec_ctx *sec_ctx, 1605 gfp_t gfp) 1606 { 1607 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 1608 } 1609 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1610 1611 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1612 struct xfrm_sec_ctx **new_ctxp) 1613 { 1614 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 1615 } 1616 1617 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1618 { 1619 call_void_hook(xfrm_policy_free_security, ctx); 1620 } 1621 EXPORT_SYMBOL(security_xfrm_policy_free); 1622 1623 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1624 { 1625 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 1626 } 1627 1628 int security_xfrm_state_alloc(struct xfrm_state *x, 1629 struct xfrm_user_sec_ctx *sec_ctx) 1630 { 1631 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 1632 } 1633 EXPORT_SYMBOL(security_xfrm_state_alloc); 1634 1635 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1636 struct xfrm_sec_ctx *polsec, u32 secid) 1637 { 1638 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 1639 } 1640 1641 int security_xfrm_state_delete(struct xfrm_state *x) 1642 { 1643 return call_int_hook(xfrm_state_delete_security, 0, x); 1644 } 1645 EXPORT_SYMBOL(security_xfrm_state_delete); 1646 1647 void security_xfrm_state_free(struct xfrm_state *x) 1648 { 1649 call_void_hook(xfrm_state_free_security, x); 1650 } 1651 1652 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1653 { 1654 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 1655 } 1656 1657 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1658 struct xfrm_policy *xp, 1659 const struct flowi *fl) 1660 { 1661 struct security_hook_list *hp; 1662 int rc = 1; 1663 1664 /* 1665 * Since this function is expected to return 0 or 1, the judgment 1666 * becomes difficult if multiple LSMs supply this call. Fortunately, 1667 * we can use the first LSM's judgment because currently only SELinux 1668 * supplies this call. 1669 * 1670 * For speed optimization, we explicitly break the loop rather than 1671 * using the macro 1672 */ 1673 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 1674 list) { 1675 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 1676 break; 1677 } 1678 return rc; 1679 } 1680 1681 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1682 { 1683 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 1684 } 1685 1686 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1687 { 1688 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 1689 0); 1690 1691 BUG_ON(rc); 1692 } 1693 EXPORT_SYMBOL(security_skb_classify_flow); 1694 1695 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1696 1697 #ifdef CONFIG_KEYS 1698 1699 int security_key_alloc(struct key *key, const struct cred *cred, 1700 unsigned long flags) 1701 { 1702 return call_int_hook(key_alloc, 0, key, cred, flags); 1703 } 1704 1705 void security_key_free(struct key *key) 1706 { 1707 call_void_hook(key_free, key); 1708 } 1709 1710 int security_key_permission(key_ref_t key_ref, 1711 const struct cred *cred, unsigned perm) 1712 { 1713 return call_int_hook(key_permission, 0, key_ref, cred, perm); 1714 } 1715 1716 int security_key_getsecurity(struct key *key, char **_buffer) 1717 { 1718 *_buffer = NULL; 1719 return call_int_hook(key_getsecurity, 0, key, _buffer); 1720 } 1721 1722 #endif /* CONFIG_KEYS */ 1723 1724 #ifdef CONFIG_AUDIT 1725 1726 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1727 { 1728 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 1729 } 1730 1731 int security_audit_rule_known(struct audit_krule *krule) 1732 { 1733 return call_int_hook(audit_rule_known, 0, krule); 1734 } 1735 1736 void security_audit_rule_free(void *lsmrule) 1737 { 1738 call_void_hook(audit_rule_free, lsmrule); 1739 } 1740 1741 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1742 struct audit_context *actx) 1743 { 1744 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 1745 actx); 1746 } 1747 #endif /* CONFIG_AUDIT */ 1748 1749 #ifdef CONFIG_BPF_SYSCALL 1750 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 1751 { 1752 return call_int_hook(bpf, 0, cmd, attr, size); 1753 } 1754 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 1755 { 1756 return call_int_hook(bpf_map, 0, map, fmode); 1757 } 1758 int security_bpf_prog(struct bpf_prog *prog) 1759 { 1760 return call_int_hook(bpf_prog, 0, prog); 1761 } 1762 int security_bpf_map_alloc(struct bpf_map *map) 1763 { 1764 return call_int_hook(bpf_map_alloc_security, 0, map); 1765 } 1766 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 1767 { 1768 return call_int_hook(bpf_prog_alloc_security, 0, aux); 1769 } 1770 void security_bpf_map_free(struct bpf_map *map) 1771 { 1772 call_void_hook(bpf_map_free_security, map); 1773 } 1774 void security_bpf_prog_free(struct bpf_prog_aux *aux) 1775 { 1776 call_void_hook(bpf_prog_free_security, aux); 1777 } 1778 #endif /* CONFIG_BPF_SYSCALL */ 1779