1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <net/flow.h> 34 35 #define MAX_LSM_EVM_XATTR 2 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 42 43 char *lsm_names; 44 /* Boot-time LSM user choice */ 45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 46 CONFIG_DEFAULT_SECURITY; 47 48 static __initdata bool debug; 49 #define init_debug(...) \ 50 do { \ 51 if (debug) \ 52 pr_info(__VA_ARGS__); \ 53 } while (0) 54 55 static void __init major_lsm_init(void) 56 { 57 struct lsm_info *lsm; 58 int ret; 59 60 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 61 init_debug("initializing %s\n", lsm->name); 62 ret = lsm->init(); 63 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 64 } 65 } 66 67 /** 68 * security_init - initializes the security framework 69 * 70 * This should be called early in the kernel initialization sequence. 71 */ 72 int __init security_init(void) 73 { 74 int i; 75 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 76 77 pr_info("Security Framework initializing\n"); 78 79 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 80 i++) 81 INIT_HLIST_HEAD(&list[i]); 82 83 /* 84 * Load minor LSMs, with the capability module always first. 85 */ 86 capability_add_hooks(); 87 yama_add_hooks(); 88 loadpin_add_hooks(); 89 90 /* 91 * Load all the remaining security modules. 92 */ 93 major_lsm_init(); 94 95 return 0; 96 } 97 98 /* Save user chosen LSM */ 99 static int __init choose_lsm(char *str) 100 { 101 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 102 return 1; 103 } 104 __setup("security=", choose_lsm); 105 106 /* Enable LSM order debugging. */ 107 static int __init enable_debug(char *str) 108 { 109 debug = true; 110 return 1; 111 } 112 __setup("lsm.debug", enable_debug); 113 114 static bool match_last_lsm(const char *list, const char *lsm) 115 { 116 const char *last; 117 118 if (WARN_ON(!list || !lsm)) 119 return false; 120 last = strrchr(list, ','); 121 if (last) 122 /* Pass the comma, strcmp() will check for '\0' */ 123 last++; 124 else 125 last = list; 126 return !strcmp(last, lsm); 127 } 128 129 static int lsm_append(char *new, char **result) 130 { 131 char *cp; 132 133 if (*result == NULL) { 134 *result = kstrdup(new, GFP_KERNEL); 135 if (*result == NULL) 136 return -ENOMEM; 137 } else { 138 /* Check if it is the last registered name */ 139 if (match_last_lsm(*result, new)) 140 return 0; 141 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 142 if (cp == NULL) 143 return -ENOMEM; 144 kfree(*result); 145 *result = cp; 146 } 147 return 0; 148 } 149 150 /** 151 * security_module_enable - Load given security module on boot ? 152 * @module: the name of the module 153 * 154 * Each LSM must pass this method before registering its own operations 155 * to avoid security registration races. This method may also be used 156 * to check if your LSM is currently loaded during kernel initialization. 157 * 158 * Returns: 159 * 160 * true if: 161 * 162 * - The passed LSM is the one chosen by user at boot time, 163 * - or the passed LSM is configured as the default and the user did not 164 * choose an alternate LSM at boot time. 165 * 166 * Otherwise, return false. 167 */ 168 int __init security_module_enable(const char *module) 169 { 170 return !strcmp(module, chosen_lsm); 171 } 172 173 /** 174 * security_add_hooks - Add a modules hooks to the hook lists. 175 * @hooks: the hooks to add 176 * @count: the number of hooks to add 177 * @lsm: the name of the security module 178 * 179 * Each LSM has to register its hooks with the infrastructure. 180 */ 181 void __init security_add_hooks(struct security_hook_list *hooks, int count, 182 char *lsm) 183 { 184 int i; 185 186 for (i = 0; i < count; i++) { 187 hooks[i].lsm = lsm; 188 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 189 } 190 if (lsm_append(lsm, &lsm_names) < 0) 191 panic("%s - Cannot get early memory.\n", __func__); 192 } 193 194 int call_lsm_notifier(enum lsm_event event, void *data) 195 { 196 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 197 } 198 EXPORT_SYMBOL(call_lsm_notifier); 199 200 int register_lsm_notifier(struct notifier_block *nb) 201 { 202 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 203 } 204 EXPORT_SYMBOL(register_lsm_notifier); 205 206 int unregister_lsm_notifier(struct notifier_block *nb) 207 { 208 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 209 } 210 EXPORT_SYMBOL(unregister_lsm_notifier); 211 212 /* 213 * Hook list operation macros. 214 * 215 * call_void_hook: 216 * This is a hook that does not return a value. 217 * 218 * call_int_hook: 219 * This is a hook that returns a value. 220 */ 221 222 #define call_void_hook(FUNC, ...) \ 223 do { \ 224 struct security_hook_list *P; \ 225 \ 226 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 227 P->hook.FUNC(__VA_ARGS__); \ 228 } while (0) 229 230 #define call_int_hook(FUNC, IRC, ...) ({ \ 231 int RC = IRC; \ 232 do { \ 233 struct security_hook_list *P; \ 234 \ 235 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 236 RC = P->hook.FUNC(__VA_ARGS__); \ 237 if (RC != 0) \ 238 break; \ 239 } \ 240 } while (0); \ 241 RC; \ 242 }) 243 244 /* Security operations */ 245 246 int security_binder_set_context_mgr(struct task_struct *mgr) 247 { 248 return call_int_hook(binder_set_context_mgr, 0, mgr); 249 } 250 251 int security_binder_transaction(struct task_struct *from, 252 struct task_struct *to) 253 { 254 return call_int_hook(binder_transaction, 0, from, to); 255 } 256 257 int security_binder_transfer_binder(struct task_struct *from, 258 struct task_struct *to) 259 { 260 return call_int_hook(binder_transfer_binder, 0, from, to); 261 } 262 263 int security_binder_transfer_file(struct task_struct *from, 264 struct task_struct *to, struct file *file) 265 { 266 return call_int_hook(binder_transfer_file, 0, from, to, file); 267 } 268 269 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 270 { 271 return call_int_hook(ptrace_access_check, 0, child, mode); 272 } 273 274 int security_ptrace_traceme(struct task_struct *parent) 275 { 276 return call_int_hook(ptrace_traceme, 0, parent); 277 } 278 279 int security_capget(struct task_struct *target, 280 kernel_cap_t *effective, 281 kernel_cap_t *inheritable, 282 kernel_cap_t *permitted) 283 { 284 return call_int_hook(capget, 0, target, 285 effective, inheritable, permitted); 286 } 287 288 int security_capset(struct cred *new, const struct cred *old, 289 const kernel_cap_t *effective, 290 const kernel_cap_t *inheritable, 291 const kernel_cap_t *permitted) 292 { 293 return call_int_hook(capset, 0, new, old, 294 effective, inheritable, permitted); 295 } 296 297 int security_capable(const struct cred *cred, struct user_namespace *ns, 298 int cap) 299 { 300 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT); 301 } 302 303 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 304 int cap) 305 { 306 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT); 307 } 308 309 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 310 { 311 return call_int_hook(quotactl, 0, cmds, type, id, sb); 312 } 313 314 int security_quota_on(struct dentry *dentry) 315 { 316 return call_int_hook(quota_on, 0, dentry); 317 } 318 319 int security_syslog(int type) 320 { 321 return call_int_hook(syslog, 0, type); 322 } 323 324 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 325 { 326 return call_int_hook(settime, 0, ts, tz); 327 } 328 329 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 330 { 331 struct security_hook_list *hp; 332 int cap_sys_admin = 1; 333 int rc; 334 335 /* 336 * The module will respond with a positive value if 337 * it thinks the __vm_enough_memory() call should be 338 * made with the cap_sys_admin set. If all of the modules 339 * agree that it should be set it will. If any module 340 * thinks it should not be set it won't. 341 */ 342 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 343 rc = hp->hook.vm_enough_memory(mm, pages); 344 if (rc <= 0) { 345 cap_sys_admin = 0; 346 break; 347 } 348 } 349 return __vm_enough_memory(mm, pages, cap_sys_admin); 350 } 351 352 int security_bprm_set_creds(struct linux_binprm *bprm) 353 { 354 return call_int_hook(bprm_set_creds, 0, bprm); 355 } 356 357 int security_bprm_check(struct linux_binprm *bprm) 358 { 359 int ret; 360 361 ret = call_int_hook(bprm_check_security, 0, bprm); 362 if (ret) 363 return ret; 364 return ima_bprm_check(bprm); 365 } 366 367 void security_bprm_committing_creds(struct linux_binprm *bprm) 368 { 369 call_void_hook(bprm_committing_creds, bprm); 370 } 371 372 void security_bprm_committed_creds(struct linux_binprm *bprm) 373 { 374 call_void_hook(bprm_committed_creds, bprm); 375 } 376 377 int security_sb_alloc(struct super_block *sb) 378 { 379 return call_int_hook(sb_alloc_security, 0, sb); 380 } 381 382 void security_sb_free(struct super_block *sb) 383 { 384 call_void_hook(sb_free_security, sb); 385 } 386 387 void security_free_mnt_opts(void **mnt_opts) 388 { 389 if (!*mnt_opts) 390 return; 391 call_void_hook(sb_free_mnt_opts, *mnt_opts); 392 *mnt_opts = NULL; 393 } 394 EXPORT_SYMBOL(security_free_mnt_opts); 395 396 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 397 { 398 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 399 } 400 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 401 402 int security_sb_remount(struct super_block *sb, 403 void *mnt_opts) 404 { 405 return call_int_hook(sb_remount, 0, sb, mnt_opts); 406 } 407 EXPORT_SYMBOL(security_sb_remount); 408 409 int security_sb_kern_mount(struct super_block *sb) 410 { 411 return call_int_hook(sb_kern_mount, 0, sb); 412 } 413 414 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 415 { 416 return call_int_hook(sb_show_options, 0, m, sb); 417 } 418 419 int security_sb_statfs(struct dentry *dentry) 420 { 421 return call_int_hook(sb_statfs, 0, dentry); 422 } 423 424 int security_sb_mount(const char *dev_name, const struct path *path, 425 const char *type, unsigned long flags, void *data) 426 { 427 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 428 } 429 430 int security_sb_umount(struct vfsmount *mnt, int flags) 431 { 432 return call_int_hook(sb_umount, 0, mnt, flags); 433 } 434 435 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 436 { 437 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 438 } 439 440 int security_sb_set_mnt_opts(struct super_block *sb, 441 void *mnt_opts, 442 unsigned long kern_flags, 443 unsigned long *set_kern_flags) 444 { 445 return call_int_hook(sb_set_mnt_opts, 446 mnt_opts ? -EOPNOTSUPP : 0, sb, 447 mnt_opts, kern_flags, set_kern_flags); 448 } 449 EXPORT_SYMBOL(security_sb_set_mnt_opts); 450 451 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 452 struct super_block *newsb, 453 unsigned long kern_flags, 454 unsigned long *set_kern_flags) 455 { 456 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 457 kern_flags, set_kern_flags); 458 } 459 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 460 461 int security_add_mnt_opt(const char *option, const char *val, int len, 462 void **mnt_opts) 463 { 464 return call_int_hook(sb_add_mnt_opt, -EINVAL, 465 option, val, len, mnt_opts); 466 } 467 EXPORT_SYMBOL(security_add_mnt_opt); 468 469 int security_inode_alloc(struct inode *inode) 470 { 471 inode->i_security = NULL; 472 return call_int_hook(inode_alloc_security, 0, inode); 473 } 474 475 void security_inode_free(struct inode *inode) 476 { 477 integrity_inode_free(inode); 478 call_void_hook(inode_free_security, inode); 479 } 480 481 int security_dentry_init_security(struct dentry *dentry, int mode, 482 const struct qstr *name, void **ctx, 483 u32 *ctxlen) 484 { 485 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 486 name, ctx, ctxlen); 487 } 488 EXPORT_SYMBOL(security_dentry_init_security); 489 490 int security_dentry_create_files_as(struct dentry *dentry, int mode, 491 struct qstr *name, 492 const struct cred *old, struct cred *new) 493 { 494 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 495 name, old, new); 496 } 497 EXPORT_SYMBOL(security_dentry_create_files_as); 498 499 int security_inode_init_security(struct inode *inode, struct inode *dir, 500 const struct qstr *qstr, 501 const initxattrs initxattrs, void *fs_data) 502 { 503 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 504 struct xattr *lsm_xattr, *evm_xattr, *xattr; 505 int ret; 506 507 if (unlikely(IS_PRIVATE(inode))) 508 return 0; 509 510 if (!initxattrs) 511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 512 dir, qstr, NULL, NULL, NULL); 513 memset(new_xattrs, 0, sizeof(new_xattrs)); 514 lsm_xattr = new_xattrs; 515 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 516 &lsm_xattr->name, 517 &lsm_xattr->value, 518 &lsm_xattr->value_len); 519 if (ret) 520 goto out; 521 522 evm_xattr = lsm_xattr + 1; 523 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 524 if (ret) 525 goto out; 526 ret = initxattrs(inode, new_xattrs, fs_data); 527 out: 528 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 529 kfree(xattr->value); 530 return (ret == -EOPNOTSUPP) ? 0 : ret; 531 } 532 EXPORT_SYMBOL(security_inode_init_security); 533 534 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 535 const struct qstr *qstr, const char **name, 536 void **value, size_t *len) 537 { 538 if (unlikely(IS_PRIVATE(inode))) 539 return -EOPNOTSUPP; 540 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 541 qstr, name, value, len); 542 } 543 EXPORT_SYMBOL(security_old_inode_init_security); 544 545 #ifdef CONFIG_SECURITY_PATH 546 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 547 unsigned int dev) 548 { 549 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 550 return 0; 551 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 552 } 553 EXPORT_SYMBOL(security_path_mknod); 554 555 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 556 { 557 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 558 return 0; 559 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 560 } 561 EXPORT_SYMBOL(security_path_mkdir); 562 563 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 564 { 565 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 566 return 0; 567 return call_int_hook(path_rmdir, 0, dir, dentry); 568 } 569 570 int security_path_unlink(const struct path *dir, struct dentry *dentry) 571 { 572 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 573 return 0; 574 return call_int_hook(path_unlink, 0, dir, dentry); 575 } 576 EXPORT_SYMBOL(security_path_unlink); 577 578 int security_path_symlink(const struct path *dir, struct dentry *dentry, 579 const char *old_name) 580 { 581 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 582 return 0; 583 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 584 } 585 586 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 587 struct dentry *new_dentry) 588 { 589 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 590 return 0; 591 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 592 } 593 594 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 595 const struct path *new_dir, struct dentry *new_dentry, 596 unsigned int flags) 597 { 598 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 599 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 600 return 0; 601 602 if (flags & RENAME_EXCHANGE) { 603 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 604 old_dir, old_dentry); 605 if (err) 606 return err; 607 } 608 609 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 610 new_dentry); 611 } 612 EXPORT_SYMBOL(security_path_rename); 613 614 int security_path_truncate(const struct path *path) 615 { 616 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 617 return 0; 618 return call_int_hook(path_truncate, 0, path); 619 } 620 621 int security_path_chmod(const struct path *path, umode_t mode) 622 { 623 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 624 return 0; 625 return call_int_hook(path_chmod, 0, path, mode); 626 } 627 628 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 629 { 630 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 631 return 0; 632 return call_int_hook(path_chown, 0, path, uid, gid); 633 } 634 635 int security_path_chroot(const struct path *path) 636 { 637 return call_int_hook(path_chroot, 0, path); 638 } 639 #endif 640 641 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 642 { 643 if (unlikely(IS_PRIVATE(dir))) 644 return 0; 645 return call_int_hook(inode_create, 0, dir, dentry, mode); 646 } 647 EXPORT_SYMBOL_GPL(security_inode_create); 648 649 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 650 struct dentry *new_dentry) 651 { 652 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 653 return 0; 654 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 655 } 656 657 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 658 { 659 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 660 return 0; 661 return call_int_hook(inode_unlink, 0, dir, dentry); 662 } 663 664 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 665 const char *old_name) 666 { 667 if (unlikely(IS_PRIVATE(dir))) 668 return 0; 669 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 670 } 671 672 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 673 { 674 if (unlikely(IS_PRIVATE(dir))) 675 return 0; 676 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 677 } 678 EXPORT_SYMBOL_GPL(security_inode_mkdir); 679 680 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 681 { 682 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 683 return 0; 684 return call_int_hook(inode_rmdir, 0, dir, dentry); 685 } 686 687 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 688 { 689 if (unlikely(IS_PRIVATE(dir))) 690 return 0; 691 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 692 } 693 694 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 695 struct inode *new_dir, struct dentry *new_dentry, 696 unsigned int flags) 697 { 698 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 699 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 700 return 0; 701 702 if (flags & RENAME_EXCHANGE) { 703 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 704 old_dir, old_dentry); 705 if (err) 706 return err; 707 } 708 709 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 710 new_dir, new_dentry); 711 } 712 713 int security_inode_readlink(struct dentry *dentry) 714 { 715 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 716 return 0; 717 return call_int_hook(inode_readlink, 0, dentry); 718 } 719 720 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 721 bool rcu) 722 { 723 if (unlikely(IS_PRIVATE(inode))) 724 return 0; 725 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 726 } 727 728 int security_inode_permission(struct inode *inode, int mask) 729 { 730 if (unlikely(IS_PRIVATE(inode))) 731 return 0; 732 return call_int_hook(inode_permission, 0, inode, mask); 733 } 734 735 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 736 { 737 int ret; 738 739 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 740 return 0; 741 ret = call_int_hook(inode_setattr, 0, dentry, attr); 742 if (ret) 743 return ret; 744 return evm_inode_setattr(dentry, attr); 745 } 746 EXPORT_SYMBOL_GPL(security_inode_setattr); 747 748 int security_inode_getattr(const struct path *path) 749 { 750 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 751 return 0; 752 return call_int_hook(inode_getattr, 0, path); 753 } 754 755 int security_inode_setxattr(struct dentry *dentry, const char *name, 756 const void *value, size_t size, int flags) 757 { 758 int ret; 759 760 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 761 return 0; 762 /* 763 * SELinux and Smack integrate the cap call, 764 * so assume that all LSMs supplying this call do so. 765 */ 766 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 767 flags); 768 769 if (ret == 1) 770 ret = cap_inode_setxattr(dentry, name, value, size, flags); 771 if (ret) 772 return ret; 773 ret = ima_inode_setxattr(dentry, name, value, size); 774 if (ret) 775 return ret; 776 return evm_inode_setxattr(dentry, name, value, size); 777 } 778 779 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 780 const void *value, size_t size, int flags) 781 { 782 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 783 return; 784 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 785 evm_inode_post_setxattr(dentry, name, value, size); 786 } 787 788 int security_inode_getxattr(struct dentry *dentry, const char *name) 789 { 790 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 791 return 0; 792 return call_int_hook(inode_getxattr, 0, dentry, name); 793 } 794 795 int security_inode_listxattr(struct dentry *dentry) 796 { 797 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 798 return 0; 799 return call_int_hook(inode_listxattr, 0, dentry); 800 } 801 802 int security_inode_removexattr(struct dentry *dentry, const char *name) 803 { 804 int ret; 805 806 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 807 return 0; 808 /* 809 * SELinux and Smack integrate the cap call, 810 * so assume that all LSMs supplying this call do so. 811 */ 812 ret = call_int_hook(inode_removexattr, 1, dentry, name); 813 if (ret == 1) 814 ret = cap_inode_removexattr(dentry, name); 815 if (ret) 816 return ret; 817 ret = ima_inode_removexattr(dentry, name); 818 if (ret) 819 return ret; 820 return evm_inode_removexattr(dentry, name); 821 } 822 823 int security_inode_need_killpriv(struct dentry *dentry) 824 { 825 return call_int_hook(inode_need_killpriv, 0, dentry); 826 } 827 828 int security_inode_killpriv(struct dentry *dentry) 829 { 830 return call_int_hook(inode_killpriv, 0, dentry); 831 } 832 833 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 834 { 835 struct security_hook_list *hp; 836 int rc; 837 838 if (unlikely(IS_PRIVATE(inode))) 839 return -EOPNOTSUPP; 840 /* 841 * Only one module will provide an attribute with a given name. 842 */ 843 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 844 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 845 if (rc != -EOPNOTSUPP) 846 return rc; 847 } 848 return -EOPNOTSUPP; 849 } 850 851 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 852 { 853 struct security_hook_list *hp; 854 int rc; 855 856 if (unlikely(IS_PRIVATE(inode))) 857 return -EOPNOTSUPP; 858 /* 859 * Only one module will provide an attribute with a given name. 860 */ 861 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 862 rc = hp->hook.inode_setsecurity(inode, name, value, size, 863 flags); 864 if (rc != -EOPNOTSUPP) 865 return rc; 866 } 867 return -EOPNOTSUPP; 868 } 869 870 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 871 { 872 if (unlikely(IS_PRIVATE(inode))) 873 return 0; 874 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 875 } 876 EXPORT_SYMBOL(security_inode_listsecurity); 877 878 void security_inode_getsecid(struct inode *inode, u32 *secid) 879 { 880 call_void_hook(inode_getsecid, inode, secid); 881 } 882 883 int security_inode_copy_up(struct dentry *src, struct cred **new) 884 { 885 return call_int_hook(inode_copy_up, 0, src, new); 886 } 887 EXPORT_SYMBOL(security_inode_copy_up); 888 889 int security_inode_copy_up_xattr(const char *name) 890 { 891 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 892 } 893 EXPORT_SYMBOL(security_inode_copy_up_xattr); 894 895 int security_file_permission(struct file *file, int mask) 896 { 897 int ret; 898 899 ret = call_int_hook(file_permission, 0, file, mask); 900 if (ret) 901 return ret; 902 903 return fsnotify_perm(file, mask); 904 } 905 906 int security_file_alloc(struct file *file) 907 { 908 return call_int_hook(file_alloc_security, 0, file); 909 } 910 911 void security_file_free(struct file *file) 912 { 913 call_void_hook(file_free_security, file); 914 } 915 916 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 917 { 918 return call_int_hook(file_ioctl, 0, file, cmd, arg); 919 } 920 921 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 922 { 923 /* 924 * Does we have PROT_READ and does the application expect 925 * it to imply PROT_EXEC? If not, nothing to talk about... 926 */ 927 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 928 return prot; 929 if (!(current->personality & READ_IMPLIES_EXEC)) 930 return prot; 931 /* 932 * if that's an anonymous mapping, let it. 933 */ 934 if (!file) 935 return prot | PROT_EXEC; 936 /* 937 * ditto if it's not on noexec mount, except that on !MMU we need 938 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 939 */ 940 if (!path_noexec(&file->f_path)) { 941 #ifndef CONFIG_MMU 942 if (file->f_op->mmap_capabilities) { 943 unsigned caps = file->f_op->mmap_capabilities(file); 944 if (!(caps & NOMMU_MAP_EXEC)) 945 return prot; 946 } 947 #endif 948 return prot | PROT_EXEC; 949 } 950 /* anything on noexec mount won't get PROT_EXEC */ 951 return prot; 952 } 953 954 int security_mmap_file(struct file *file, unsigned long prot, 955 unsigned long flags) 956 { 957 int ret; 958 ret = call_int_hook(mmap_file, 0, file, prot, 959 mmap_prot(file, prot), flags); 960 if (ret) 961 return ret; 962 return ima_file_mmap(file, prot); 963 } 964 965 int security_mmap_addr(unsigned long addr) 966 { 967 return call_int_hook(mmap_addr, 0, addr); 968 } 969 970 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 971 unsigned long prot) 972 { 973 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 974 } 975 976 int security_file_lock(struct file *file, unsigned int cmd) 977 { 978 return call_int_hook(file_lock, 0, file, cmd); 979 } 980 981 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 982 { 983 return call_int_hook(file_fcntl, 0, file, cmd, arg); 984 } 985 986 void security_file_set_fowner(struct file *file) 987 { 988 call_void_hook(file_set_fowner, file); 989 } 990 991 int security_file_send_sigiotask(struct task_struct *tsk, 992 struct fown_struct *fown, int sig) 993 { 994 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 995 } 996 997 int security_file_receive(struct file *file) 998 { 999 return call_int_hook(file_receive, 0, file); 1000 } 1001 1002 int security_file_open(struct file *file) 1003 { 1004 int ret; 1005 1006 ret = call_int_hook(file_open, 0, file); 1007 if (ret) 1008 return ret; 1009 1010 return fsnotify_perm(file, MAY_OPEN); 1011 } 1012 1013 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1014 { 1015 return call_int_hook(task_alloc, 0, task, clone_flags); 1016 } 1017 1018 void security_task_free(struct task_struct *task) 1019 { 1020 call_void_hook(task_free, task); 1021 } 1022 1023 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1024 { 1025 return call_int_hook(cred_alloc_blank, 0, cred, gfp); 1026 } 1027 1028 void security_cred_free(struct cred *cred) 1029 { 1030 /* 1031 * There is a failure case in prepare_creds() that 1032 * may result in a call here with ->security being NULL. 1033 */ 1034 if (unlikely(cred->security == NULL)) 1035 return; 1036 1037 call_void_hook(cred_free, cred); 1038 } 1039 1040 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1041 { 1042 return call_int_hook(cred_prepare, 0, new, old, gfp); 1043 } 1044 1045 void security_transfer_creds(struct cred *new, const struct cred *old) 1046 { 1047 call_void_hook(cred_transfer, new, old); 1048 } 1049 1050 void security_cred_getsecid(const struct cred *c, u32 *secid) 1051 { 1052 *secid = 0; 1053 call_void_hook(cred_getsecid, c, secid); 1054 } 1055 EXPORT_SYMBOL(security_cred_getsecid); 1056 1057 int security_kernel_act_as(struct cred *new, u32 secid) 1058 { 1059 return call_int_hook(kernel_act_as, 0, new, secid); 1060 } 1061 1062 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1063 { 1064 return call_int_hook(kernel_create_files_as, 0, new, inode); 1065 } 1066 1067 int security_kernel_module_request(char *kmod_name) 1068 { 1069 int ret; 1070 1071 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1072 if (ret) 1073 return ret; 1074 return integrity_kernel_module_request(kmod_name); 1075 } 1076 1077 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1078 { 1079 int ret; 1080 1081 ret = call_int_hook(kernel_read_file, 0, file, id); 1082 if (ret) 1083 return ret; 1084 return ima_read_file(file, id); 1085 } 1086 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1087 1088 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1089 enum kernel_read_file_id id) 1090 { 1091 int ret; 1092 1093 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1094 if (ret) 1095 return ret; 1096 return ima_post_read_file(file, buf, size, id); 1097 } 1098 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1099 1100 int security_kernel_load_data(enum kernel_load_data_id id) 1101 { 1102 int ret; 1103 1104 ret = call_int_hook(kernel_load_data, 0, id); 1105 if (ret) 1106 return ret; 1107 return ima_load_data(id); 1108 } 1109 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1110 1111 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1112 int flags) 1113 { 1114 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1115 } 1116 1117 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1118 { 1119 return call_int_hook(task_setpgid, 0, p, pgid); 1120 } 1121 1122 int security_task_getpgid(struct task_struct *p) 1123 { 1124 return call_int_hook(task_getpgid, 0, p); 1125 } 1126 1127 int security_task_getsid(struct task_struct *p) 1128 { 1129 return call_int_hook(task_getsid, 0, p); 1130 } 1131 1132 void security_task_getsecid(struct task_struct *p, u32 *secid) 1133 { 1134 *secid = 0; 1135 call_void_hook(task_getsecid, p, secid); 1136 } 1137 EXPORT_SYMBOL(security_task_getsecid); 1138 1139 int security_task_setnice(struct task_struct *p, int nice) 1140 { 1141 return call_int_hook(task_setnice, 0, p, nice); 1142 } 1143 1144 int security_task_setioprio(struct task_struct *p, int ioprio) 1145 { 1146 return call_int_hook(task_setioprio, 0, p, ioprio); 1147 } 1148 1149 int security_task_getioprio(struct task_struct *p) 1150 { 1151 return call_int_hook(task_getioprio, 0, p); 1152 } 1153 1154 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1155 unsigned int flags) 1156 { 1157 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1158 } 1159 1160 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1161 struct rlimit *new_rlim) 1162 { 1163 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1164 } 1165 1166 int security_task_setscheduler(struct task_struct *p) 1167 { 1168 return call_int_hook(task_setscheduler, 0, p); 1169 } 1170 1171 int security_task_getscheduler(struct task_struct *p) 1172 { 1173 return call_int_hook(task_getscheduler, 0, p); 1174 } 1175 1176 int security_task_movememory(struct task_struct *p) 1177 { 1178 return call_int_hook(task_movememory, 0, p); 1179 } 1180 1181 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1182 int sig, const struct cred *cred) 1183 { 1184 return call_int_hook(task_kill, 0, p, info, sig, cred); 1185 } 1186 1187 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1188 unsigned long arg4, unsigned long arg5) 1189 { 1190 int thisrc; 1191 int rc = -ENOSYS; 1192 struct security_hook_list *hp; 1193 1194 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1195 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1196 if (thisrc != -ENOSYS) { 1197 rc = thisrc; 1198 if (thisrc != 0) 1199 break; 1200 } 1201 } 1202 return rc; 1203 } 1204 1205 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1206 { 1207 call_void_hook(task_to_inode, p, inode); 1208 } 1209 1210 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1211 { 1212 return call_int_hook(ipc_permission, 0, ipcp, flag); 1213 } 1214 1215 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1216 { 1217 *secid = 0; 1218 call_void_hook(ipc_getsecid, ipcp, secid); 1219 } 1220 1221 int security_msg_msg_alloc(struct msg_msg *msg) 1222 { 1223 return call_int_hook(msg_msg_alloc_security, 0, msg); 1224 } 1225 1226 void security_msg_msg_free(struct msg_msg *msg) 1227 { 1228 call_void_hook(msg_msg_free_security, msg); 1229 } 1230 1231 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1232 { 1233 return call_int_hook(msg_queue_alloc_security, 0, msq); 1234 } 1235 1236 void security_msg_queue_free(struct kern_ipc_perm *msq) 1237 { 1238 call_void_hook(msg_queue_free_security, msq); 1239 } 1240 1241 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1242 { 1243 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1244 } 1245 1246 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1247 { 1248 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1249 } 1250 1251 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1252 struct msg_msg *msg, int msqflg) 1253 { 1254 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1255 } 1256 1257 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1258 struct task_struct *target, long type, int mode) 1259 { 1260 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1261 } 1262 1263 int security_shm_alloc(struct kern_ipc_perm *shp) 1264 { 1265 return call_int_hook(shm_alloc_security, 0, shp); 1266 } 1267 1268 void security_shm_free(struct kern_ipc_perm *shp) 1269 { 1270 call_void_hook(shm_free_security, shp); 1271 } 1272 1273 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1274 { 1275 return call_int_hook(shm_associate, 0, shp, shmflg); 1276 } 1277 1278 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1279 { 1280 return call_int_hook(shm_shmctl, 0, shp, cmd); 1281 } 1282 1283 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1284 { 1285 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1286 } 1287 1288 int security_sem_alloc(struct kern_ipc_perm *sma) 1289 { 1290 return call_int_hook(sem_alloc_security, 0, sma); 1291 } 1292 1293 void security_sem_free(struct kern_ipc_perm *sma) 1294 { 1295 call_void_hook(sem_free_security, sma); 1296 } 1297 1298 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1299 { 1300 return call_int_hook(sem_associate, 0, sma, semflg); 1301 } 1302 1303 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1304 { 1305 return call_int_hook(sem_semctl, 0, sma, cmd); 1306 } 1307 1308 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1309 unsigned nsops, int alter) 1310 { 1311 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1312 } 1313 1314 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1315 { 1316 if (unlikely(inode && IS_PRIVATE(inode))) 1317 return; 1318 call_void_hook(d_instantiate, dentry, inode); 1319 } 1320 EXPORT_SYMBOL(security_d_instantiate); 1321 1322 int security_getprocattr(struct task_struct *p, char *name, char **value) 1323 { 1324 return call_int_hook(getprocattr, -EINVAL, p, name, value); 1325 } 1326 1327 int security_setprocattr(const char *name, void *value, size_t size) 1328 { 1329 return call_int_hook(setprocattr, -EINVAL, name, value, size); 1330 } 1331 1332 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1333 { 1334 return call_int_hook(netlink_send, 0, sk, skb); 1335 } 1336 1337 int security_ismaclabel(const char *name) 1338 { 1339 return call_int_hook(ismaclabel, 0, name); 1340 } 1341 EXPORT_SYMBOL(security_ismaclabel); 1342 1343 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1344 { 1345 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1346 seclen); 1347 } 1348 EXPORT_SYMBOL(security_secid_to_secctx); 1349 1350 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1351 { 1352 *secid = 0; 1353 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1354 } 1355 EXPORT_SYMBOL(security_secctx_to_secid); 1356 1357 void security_release_secctx(char *secdata, u32 seclen) 1358 { 1359 call_void_hook(release_secctx, secdata, seclen); 1360 } 1361 EXPORT_SYMBOL(security_release_secctx); 1362 1363 void security_inode_invalidate_secctx(struct inode *inode) 1364 { 1365 call_void_hook(inode_invalidate_secctx, inode); 1366 } 1367 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1368 1369 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1370 { 1371 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1372 } 1373 EXPORT_SYMBOL(security_inode_notifysecctx); 1374 1375 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1376 { 1377 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1378 } 1379 EXPORT_SYMBOL(security_inode_setsecctx); 1380 1381 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1382 { 1383 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1384 } 1385 EXPORT_SYMBOL(security_inode_getsecctx); 1386 1387 #ifdef CONFIG_SECURITY_NETWORK 1388 1389 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1390 { 1391 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1392 } 1393 EXPORT_SYMBOL(security_unix_stream_connect); 1394 1395 int security_unix_may_send(struct socket *sock, struct socket *other) 1396 { 1397 return call_int_hook(unix_may_send, 0, sock, other); 1398 } 1399 EXPORT_SYMBOL(security_unix_may_send); 1400 1401 int security_socket_create(int family, int type, int protocol, int kern) 1402 { 1403 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1404 } 1405 1406 int security_socket_post_create(struct socket *sock, int family, 1407 int type, int protocol, int kern) 1408 { 1409 return call_int_hook(socket_post_create, 0, sock, family, type, 1410 protocol, kern); 1411 } 1412 1413 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1414 { 1415 return call_int_hook(socket_socketpair, 0, socka, sockb); 1416 } 1417 EXPORT_SYMBOL(security_socket_socketpair); 1418 1419 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1420 { 1421 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1422 } 1423 1424 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1425 { 1426 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1427 } 1428 1429 int security_socket_listen(struct socket *sock, int backlog) 1430 { 1431 return call_int_hook(socket_listen, 0, sock, backlog); 1432 } 1433 1434 int security_socket_accept(struct socket *sock, struct socket *newsock) 1435 { 1436 return call_int_hook(socket_accept, 0, sock, newsock); 1437 } 1438 1439 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1440 { 1441 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1442 } 1443 1444 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1445 int size, int flags) 1446 { 1447 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1448 } 1449 1450 int security_socket_getsockname(struct socket *sock) 1451 { 1452 return call_int_hook(socket_getsockname, 0, sock); 1453 } 1454 1455 int security_socket_getpeername(struct socket *sock) 1456 { 1457 return call_int_hook(socket_getpeername, 0, sock); 1458 } 1459 1460 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1461 { 1462 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1463 } 1464 1465 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1466 { 1467 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1468 } 1469 1470 int security_socket_shutdown(struct socket *sock, int how) 1471 { 1472 return call_int_hook(socket_shutdown, 0, sock, how); 1473 } 1474 1475 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1476 { 1477 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1478 } 1479 EXPORT_SYMBOL(security_sock_rcv_skb); 1480 1481 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1482 int __user *optlen, unsigned len) 1483 { 1484 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1485 optval, optlen, len); 1486 } 1487 1488 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1489 { 1490 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1491 skb, secid); 1492 } 1493 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1494 1495 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1496 { 1497 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 1498 } 1499 1500 void security_sk_free(struct sock *sk) 1501 { 1502 call_void_hook(sk_free_security, sk); 1503 } 1504 1505 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1506 { 1507 call_void_hook(sk_clone_security, sk, newsk); 1508 } 1509 EXPORT_SYMBOL(security_sk_clone); 1510 1511 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1512 { 1513 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 1514 } 1515 EXPORT_SYMBOL(security_sk_classify_flow); 1516 1517 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1518 { 1519 call_void_hook(req_classify_flow, req, fl); 1520 } 1521 EXPORT_SYMBOL(security_req_classify_flow); 1522 1523 void security_sock_graft(struct sock *sk, struct socket *parent) 1524 { 1525 call_void_hook(sock_graft, sk, parent); 1526 } 1527 EXPORT_SYMBOL(security_sock_graft); 1528 1529 int security_inet_conn_request(struct sock *sk, 1530 struct sk_buff *skb, struct request_sock *req) 1531 { 1532 return call_int_hook(inet_conn_request, 0, sk, skb, req); 1533 } 1534 EXPORT_SYMBOL(security_inet_conn_request); 1535 1536 void security_inet_csk_clone(struct sock *newsk, 1537 const struct request_sock *req) 1538 { 1539 call_void_hook(inet_csk_clone, newsk, req); 1540 } 1541 1542 void security_inet_conn_established(struct sock *sk, 1543 struct sk_buff *skb) 1544 { 1545 call_void_hook(inet_conn_established, sk, skb); 1546 } 1547 EXPORT_SYMBOL(security_inet_conn_established); 1548 1549 int security_secmark_relabel_packet(u32 secid) 1550 { 1551 return call_int_hook(secmark_relabel_packet, 0, secid); 1552 } 1553 EXPORT_SYMBOL(security_secmark_relabel_packet); 1554 1555 void security_secmark_refcount_inc(void) 1556 { 1557 call_void_hook(secmark_refcount_inc); 1558 } 1559 EXPORT_SYMBOL(security_secmark_refcount_inc); 1560 1561 void security_secmark_refcount_dec(void) 1562 { 1563 call_void_hook(secmark_refcount_dec); 1564 } 1565 EXPORT_SYMBOL(security_secmark_refcount_dec); 1566 1567 int security_tun_dev_alloc_security(void **security) 1568 { 1569 return call_int_hook(tun_dev_alloc_security, 0, security); 1570 } 1571 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1572 1573 void security_tun_dev_free_security(void *security) 1574 { 1575 call_void_hook(tun_dev_free_security, security); 1576 } 1577 EXPORT_SYMBOL(security_tun_dev_free_security); 1578 1579 int security_tun_dev_create(void) 1580 { 1581 return call_int_hook(tun_dev_create, 0); 1582 } 1583 EXPORT_SYMBOL(security_tun_dev_create); 1584 1585 int security_tun_dev_attach_queue(void *security) 1586 { 1587 return call_int_hook(tun_dev_attach_queue, 0, security); 1588 } 1589 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1590 1591 int security_tun_dev_attach(struct sock *sk, void *security) 1592 { 1593 return call_int_hook(tun_dev_attach, 0, sk, security); 1594 } 1595 EXPORT_SYMBOL(security_tun_dev_attach); 1596 1597 int security_tun_dev_open(void *security) 1598 { 1599 return call_int_hook(tun_dev_open, 0, security); 1600 } 1601 EXPORT_SYMBOL(security_tun_dev_open); 1602 1603 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 1604 { 1605 return call_int_hook(sctp_assoc_request, 0, ep, skb); 1606 } 1607 EXPORT_SYMBOL(security_sctp_assoc_request); 1608 1609 int security_sctp_bind_connect(struct sock *sk, int optname, 1610 struct sockaddr *address, int addrlen) 1611 { 1612 return call_int_hook(sctp_bind_connect, 0, sk, optname, 1613 address, addrlen); 1614 } 1615 EXPORT_SYMBOL(security_sctp_bind_connect); 1616 1617 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 1618 struct sock *newsk) 1619 { 1620 call_void_hook(sctp_sk_clone, ep, sk, newsk); 1621 } 1622 EXPORT_SYMBOL(security_sctp_sk_clone); 1623 1624 #endif /* CONFIG_SECURITY_NETWORK */ 1625 1626 #ifdef CONFIG_SECURITY_INFINIBAND 1627 1628 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 1629 { 1630 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 1631 } 1632 EXPORT_SYMBOL(security_ib_pkey_access); 1633 1634 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 1635 { 1636 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 1637 } 1638 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 1639 1640 int security_ib_alloc_security(void **sec) 1641 { 1642 return call_int_hook(ib_alloc_security, 0, sec); 1643 } 1644 EXPORT_SYMBOL(security_ib_alloc_security); 1645 1646 void security_ib_free_security(void *sec) 1647 { 1648 call_void_hook(ib_free_security, sec); 1649 } 1650 EXPORT_SYMBOL(security_ib_free_security); 1651 #endif /* CONFIG_SECURITY_INFINIBAND */ 1652 1653 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1654 1655 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1656 struct xfrm_user_sec_ctx *sec_ctx, 1657 gfp_t gfp) 1658 { 1659 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 1660 } 1661 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1662 1663 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1664 struct xfrm_sec_ctx **new_ctxp) 1665 { 1666 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 1667 } 1668 1669 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1670 { 1671 call_void_hook(xfrm_policy_free_security, ctx); 1672 } 1673 EXPORT_SYMBOL(security_xfrm_policy_free); 1674 1675 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1676 { 1677 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 1678 } 1679 1680 int security_xfrm_state_alloc(struct xfrm_state *x, 1681 struct xfrm_user_sec_ctx *sec_ctx) 1682 { 1683 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 1684 } 1685 EXPORT_SYMBOL(security_xfrm_state_alloc); 1686 1687 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1688 struct xfrm_sec_ctx *polsec, u32 secid) 1689 { 1690 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 1691 } 1692 1693 int security_xfrm_state_delete(struct xfrm_state *x) 1694 { 1695 return call_int_hook(xfrm_state_delete_security, 0, x); 1696 } 1697 EXPORT_SYMBOL(security_xfrm_state_delete); 1698 1699 void security_xfrm_state_free(struct xfrm_state *x) 1700 { 1701 call_void_hook(xfrm_state_free_security, x); 1702 } 1703 1704 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1705 { 1706 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 1707 } 1708 1709 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1710 struct xfrm_policy *xp, 1711 const struct flowi *fl) 1712 { 1713 struct security_hook_list *hp; 1714 int rc = 1; 1715 1716 /* 1717 * Since this function is expected to return 0 or 1, the judgment 1718 * becomes difficult if multiple LSMs supply this call. Fortunately, 1719 * we can use the first LSM's judgment because currently only SELinux 1720 * supplies this call. 1721 * 1722 * For speed optimization, we explicitly break the loop rather than 1723 * using the macro 1724 */ 1725 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 1726 list) { 1727 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 1728 break; 1729 } 1730 return rc; 1731 } 1732 1733 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1734 { 1735 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 1736 } 1737 1738 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1739 { 1740 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 1741 0); 1742 1743 BUG_ON(rc); 1744 } 1745 EXPORT_SYMBOL(security_skb_classify_flow); 1746 1747 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1748 1749 #ifdef CONFIG_KEYS 1750 1751 int security_key_alloc(struct key *key, const struct cred *cred, 1752 unsigned long flags) 1753 { 1754 return call_int_hook(key_alloc, 0, key, cred, flags); 1755 } 1756 1757 void security_key_free(struct key *key) 1758 { 1759 call_void_hook(key_free, key); 1760 } 1761 1762 int security_key_permission(key_ref_t key_ref, 1763 const struct cred *cred, unsigned perm) 1764 { 1765 return call_int_hook(key_permission, 0, key_ref, cred, perm); 1766 } 1767 1768 int security_key_getsecurity(struct key *key, char **_buffer) 1769 { 1770 *_buffer = NULL; 1771 return call_int_hook(key_getsecurity, 0, key, _buffer); 1772 } 1773 1774 #endif /* CONFIG_KEYS */ 1775 1776 #ifdef CONFIG_AUDIT 1777 1778 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1779 { 1780 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 1781 } 1782 1783 int security_audit_rule_known(struct audit_krule *krule) 1784 { 1785 return call_int_hook(audit_rule_known, 0, krule); 1786 } 1787 1788 void security_audit_rule_free(void *lsmrule) 1789 { 1790 call_void_hook(audit_rule_free, lsmrule); 1791 } 1792 1793 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1794 struct audit_context *actx) 1795 { 1796 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 1797 actx); 1798 } 1799 #endif /* CONFIG_AUDIT */ 1800 1801 #ifdef CONFIG_BPF_SYSCALL 1802 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 1803 { 1804 return call_int_hook(bpf, 0, cmd, attr, size); 1805 } 1806 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 1807 { 1808 return call_int_hook(bpf_map, 0, map, fmode); 1809 } 1810 int security_bpf_prog(struct bpf_prog *prog) 1811 { 1812 return call_int_hook(bpf_prog, 0, prog); 1813 } 1814 int security_bpf_map_alloc(struct bpf_map *map) 1815 { 1816 return call_int_hook(bpf_map_alloc_security, 0, map); 1817 } 1818 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 1819 { 1820 return call_int_hook(bpf_prog_alloc_security, 0, aux); 1821 } 1822 void security_bpf_map_free(struct bpf_map *map) 1823 { 1824 call_void_hook(bpf_map_free_security, map); 1825 } 1826 void security_bpf_prog_free(struct bpf_prog_aux *aux) 1827 { 1828 call_void_hook(bpf_prog_free_security, aux); 1829 } 1830 #endif /* CONFIG_BPF_SYSCALL */ 1831