xref: /openbmc/linux/security/security.c (revision 9ab55d7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
62 	[LOCKDOWN_KCORE] = "/proc/kcore access",
63 	[LOCKDOWN_KPROBES] = "use of kprobes",
64 	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
65 	[LOCKDOWN_PERF] = "unsafe use of perf",
66 	[LOCKDOWN_TRACEFS] = "use of tracefs",
67 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
68 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
69 };
70 
71 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
72 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
73 
74 static struct kmem_cache *lsm_file_cache;
75 static struct kmem_cache *lsm_inode_cache;
76 
77 char *lsm_names;
78 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
79 
80 /* Boot-time LSM user choice */
81 static __initdata const char *chosen_lsm_order;
82 static __initdata const char *chosen_major_lsm;
83 
84 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
85 
86 /* Ordered list of LSMs to initialize. */
87 static __initdata struct lsm_info **ordered_lsms;
88 static __initdata struct lsm_info *exclusive;
89 
90 static __initdata bool debug;
91 #define init_debug(...)						\
92 	do {							\
93 		if (debug)					\
94 			pr_info(__VA_ARGS__);			\
95 	} while (0)
96 
97 static bool __init is_enabled(struct lsm_info *lsm)
98 {
99 	if (!lsm->enabled)
100 		return false;
101 
102 	return *lsm->enabled;
103 }
104 
105 /* Mark an LSM's enabled flag. */
106 static int lsm_enabled_true __initdata = 1;
107 static int lsm_enabled_false __initdata = 0;
108 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
109 {
110 	/*
111 	 * When an LSM hasn't configured an enable variable, we can use
112 	 * a hard-coded location for storing the default enabled state.
113 	 */
114 	if (!lsm->enabled) {
115 		if (enabled)
116 			lsm->enabled = &lsm_enabled_true;
117 		else
118 			lsm->enabled = &lsm_enabled_false;
119 	} else if (lsm->enabled == &lsm_enabled_true) {
120 		if (!enabled)
121 			lsm->enabled = &lsm_enabled_false;
122 	} else if (lsm->enabled == &lsm_enabled_false) {
123 		if (enabled)
124 			lsm->enabled = &lsm_enabled_true;
125 	} else {
126 		*lsm->enabled = enabled;
127 	}
128 }
129 
130 /* Is an LSM already listed in the ordered LSMs list? */
131 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
132 {
133 	struct lsm_info **check;
134 
135 	for (check = ordered_lsms; *check; check++)
136 		if (*check == lsm)
137 			return true;
138 
139 	return false;
140 }
141 
142 /* Append an LSM to the list of ordered LSMs to initialize. */
143 static int last_lsm __initdata;
144 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
145 {
146 	/* Ignore duplicate selections. */
147 	if (exists_ordered_lsm(lsm))
148 		return;
149 
150 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
151 		return;
152 
153 	/* Enable this LSM, if it is not already set. */
154 	if (!lsm->enabled)
155 		lsm->enabled = &lsm_enabled_true;
156 	ordered_lsms[last_lsm++] = lsm;
157 
158 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
159 		   is_enabled(lsm) ? "en" : "dis");
160 }
161 
162 /* Is an LSM allowed to be initialized? */
163 static bool __init lsm_allowed(struct lsm_info *lsm)
164 {
165 	/* Skip if the LSM is disabled. */
166 	if (!is_enabled(lsm))
167 		return false;
168 
169 	/* Not allowed if another exclusive LSM already initialized. */
170 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
171 		init_debug("exclusive disabled: %s\n", lsm->name);
172 		return false;
173 	}
174 
175 	return true;
176 }
177 
178 static void __init lsm_set_blob_size(int *need, int *lbs)
179 {
180 	int offset;
181 
182 	if (*need > 0) {
183 		offset = *lbs;
184 		*lbs += *need;
185 		*need = offset;
186 	}
187 }
188 
189 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
190 {
191 	if (!needed)
192 		return;
193 
194 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
195 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
196 	/*
197 	 * The inode blob gets an rcu_head in addition to
198 	 * what the modules might need.
199 	 */
200 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
201 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
202 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
203 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
204 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
205 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
206 }
207 
208 /* Prepare LSM for initialization. */
209 static void __init prepare_lsm(struct lsm_info *lsm)
210 {
211 	int enabled = lsm_allowed(lsm);
212 
213 	/* Record enablement (to handle any following exclusive LSMs). */
214 	set_enabled(lsm, enabled);
215 
216 	/* If enabled, do pre-initialization work. */
217 	if (enabled) {
218 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
219 			exclusive = lsm;
220 			init_debug("exclusive chosen: %s\n", lsm->name);
221 		}
222 
223 		lsm_set_blob_sizes(lsm->blobs);
224 	}
225 }
226 
227 /* Initialize a given LSM, if it is enabled. */
228 static void __init initialize_lsm(struct lsm_info *lsm)
229 {
230 	if (is_enabled(lsm)) {
231 		int ret;
232 
233 		init_debug("initializing %s\n", lsm->name);
234 		ret = lsm->init();
235 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
236 	}
237 }
238 
239 /* Populate ordered LSMs list from comma-separated LSM name list. */
240 static void __init ordered_lsm_parse(const char *order, const char *origin)
241 {
242 	struct lsm_info *lsm;
243 	char *sep, *name, *next;
244 
245 	/* LSM_ORDER_FIRST is always first. */
246 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
247 		if (lsm->order == LSM_ORDER_FIRST)
248 			append_ordered_lsm(lsm, "first");
249 	}
250 
251 	/* Process "security=", if given. */
252 	if (chosen_major_lsm) {
253 		struct lsm_info *major;
254 
255 		/*
256 		 * To match the original "security=" behavior, this
257 		 * explicitly does NOT fallback to another Legacy Major
258 		 * if the selected one was separately disabled: disable
259 		 * all non-matching Legacy Major LSMs.
260 		 */
261 		for (major = __start_lsm_info; major < __end_lsm_info;
262 		     major++) {
263 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
264 			    strcmp(major->name, chosen_major_lsm) != 0) {
265 				set_enabled(major, false);
266 				init_debug("security=%s disabled: %s\n",
267 					   chosen_major_lsm, major->name);
268 			}
269 		}
270 	}
271 
272 	sep = kstrdup(order, GFP_KERNEL);
273 	next = sep;
274 	/* Walk the list, looking for matching LSMs. */
275 	while ((name = strsep(&next, ",")) != NULL) {
276 		bool found = false;
277 
278 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
279 			if (lsm->order == LSM_ORDER_MUTABLE &&
280 			    strcmp(lsm->name, name) == 0) {
281 				append_ordered_lsm(lsm, origin);
282 				found = true;
283 			}
284 		}
285 
286 		if (!found)
287 			init_debug("%s ignored: %s\n", origin, name);
288 	}
289 
290 	/* Process "security=", if given. */
291 	if (chosen_major_lsm) {
292 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
293 			if (exists_ordered_lsm(lsm))
294 				continue;
295 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
296 				append_ordered_lsm(lsm, "security=");
297 		}
298 	}
299 
300 	/* Disable all LSMs not in the ordered list. */
301 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302 		if (exists_ordered_lsm(lsm))
303 			continue;
304 		set_enabled(lsm, false);
305 		init_debug("%s disabled: %s\n", origin, lsm->name);
306 	}
307 
308 	kfree(sep);
309 }
310 
311 static void __init lsm_early_cred(struct cred *cred);
312 static void __init lsm_early_task(struct task_struct *task);
313 
314 static int lsm_append(const char *new, char **result);
315 
316 static void __init ordered_lsm_init(void)
317 {
318 	struct lsm_info **lsm;
319 
320 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
321 				GFP_KERNEL);
322 
323 	if (chosen_lsm_order) {
324 		if (chosen_major_lsm) {
325 			pr_info("security= is ignored because it is superseded by lsm=\n");
326 			chosen_major_lsm = NULL;
327 		}
328 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
329 	} else
330 		ordered_lsm_parse(builtin_lsm_order, "builtin");
331 
332 	for (lsm = ordered_lsms; *lsm; lsm++)
333 		prepare_lsm(*lsm);
334 
335 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
336 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
337 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
338 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
339 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
340 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
341 
342 	/*
343 	 * Create any kmem_caches needed for blobs
344 	 */
345 	if (blob_sizes.lbs_file)
346 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
347 						   blob_sizes.lbs_file, 0,
348 						   SLAB_PANIC, NULL);
349 	if (blob_sizes.lbs_inode)
350 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
351 						    blob_sizes.lbs_inode, 0,
352 						    SLAB_PANIC, NULL);
353 
354 	lsm_early_cred((struct cred *) current->cred);
355 	lsm_early_task(current);
356 	for (lsm = ordered_lsms; *lsm; lsm++)
357 		initialize_lsm(*lsm);
358 
359 	kfree(ordered_lsms);
360 }
361 
362 int __init early_security_init(void)
363 {
364 	int i;
365 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
366 	struct lsm_info *lsm;
367 
368 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
369 	     i++)
370 		INIT_HLIST_HEAD(&list[i]);
371 
372 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
373 		if (!lsm->enabled)
374 			lsm->enabled = &lsm_enabled_true;
375 		prepare_lsm(lsm);
376 		initialize_lsm(lsm);
377 	}
378 
379 	return 0;
380 }
381 
382 /**
383  * security_init - initializes the security framework
384  *
385  * This should be called early in the kernel initialization sequence.
386  */
387 int __init security_init(void)
388 {
389 	struct lsm_info *lsm;
390 
391 	pr_info("Security Framework initializing\n");
392 
393 	/*
394 	 * Append the names of the early LSM modules now that kmalloc() is
395 	 * available
396 	 */
397 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
398 		if (lsm->enabled)
399 			lsm_append(lsm->name, &lsm_names);
400 	}
401 
402 	/* Load LSMs in specified order. */
403 	ordered_lsm_init();
404 
405 	return 0;
406 }
407 
408 /* Save user chosen LSM */
409 static int __init choose_major_lsm(char *str)
410 {
411 	chosen_major_lsm = str;
412 	return 1;
413 }
414 __setup("security=", choose_major_lsm);
415 
416 /* Explicitly choose LSM initialization order. */
417 static int __init choose_lsm_order(char *str)
418 {
419 	chosen_lsm_order = str;
420 	return 1;
421 }
422 __setup("lsm=", choose_lsm_order);
423 
424 /* Enable LSM order debugging. */
425 static int __init enable_debug(char *str)
426 {
427 	debug = true;
428 	return 1;
429 }
430 __setup("lsm.debug", enable_debug);
431 
432 static bool match_last_lsm(const char *list, const char *lsm)
433 {
434 	const char *last;
435 
436 	if (WARN_ON(!list || !lsm))
437 		return false;
438 	last = strrchr(list, ',');
439 	if (last)
440 		/* Pass the comma, strcmp() will check for '\0' */
441 		last++;
442 	else
443 		last = list;
444 	return !strcmp(last, lsm);
445 }
446 
447 static int lsm_append(const char *new, char **result)
448 {
449 	char *cp;
450 
451 	if (*result == NULL) {
452 		*result = kstrdup(new, GFP_KERNEL);
453 		if (*result == NULL)
454 			return -ENOMEM;
455 	} else {
456 		/* Check if it is the last registered name */
457 		if (match_last_lsm(*result, new))
458 			return 0;
459 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
460 		if (cp == NULL)
461 			return -ENOMEM;
462 		kfree(*result);
463 		*result = cp;
464 	}
465 	return 0;
466 }
467 
468 /**
469  * security_add_hooks - Add a modules hooks to the hook lists.
470  * @hooks: the hooks to add
471  * @count: the number of hooks to add
472  * @lsm: the name of the security module
473  *
474  * Each LSM has to register its hooks with the infrastructure.
475  */
476 void __init security_add_hooks(struct security_hook_list *hooks, int count,
477 				char *lsm)
478 {
479 	int i;
480 
481 	for (i = 0; i < count; i++) {
482 		hooks[i].lsm = lsm;
483 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
484 	}
485 
486 	/*
487 	 * Don't try to append during early_security_init(), we'll come back
488 	 * and fix this up afterwards.
489 	 */
490 	if (slab_is_available()) {
491 		if (lsm_append(lsm, &lsm_names) < 0)
492 			panic("%s - Cannot get early memory.\n", __func__);
493 	}
494 }
495 
496 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
497 {
498 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
499 					    event, data);
500 }
501 EXPORT_SYMBOL(call_blocking_lsm_notifier);
502 
503 int register_blocking_lsm_notifier(struct notifier_block *nb)
504 {
505 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
506 						nb);
507 }
508 EXPORT_SYMBOL(register_blocking_lsm_notifier);
509 
510 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
511 {
512 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
513 						  nb);
514 }
515 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
516 
517 /**
518  * lsm_cred_alloc - allocate a composite cred blob
519  * @cred: the cred that needs a blob
520  * @gfp: allocation type
521  *
522  * Allocate the cred blob for all the modules
523  *
524  * Returns 0, or -ENOMEM if memory can't be allocated.
525  */
526 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
527 {
528 	if (blob_sizes.lbs_cred == 0) {
529 		cred->security = NULL;
530 		return 0;
531 	}
532 
533 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
534 	if (cred->security == NULL)
535 		return -ENOMEM;
536 	return 0;
537 }
538 
539 /**
540  * lsm_early_cred - during initialization allocate a composite cred blob
541  * @cred: the cred that needs a blob
542  *
543  * Allocate the cred blob for all the modules
544  */
545 static void __init lsm_early_cred(struct cred *cred)
546 {
547 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
548 
549 	if (rc)
550 		panic("%s: Early cred alloc failed.\n", __func__);
551 }
552 
553 /**
554  * lsm_file_alloc - allocate a composite file blob
555  * @file: the file that needs a blob
556  *
557  * Allocate the file blob for all the modules
558  *
559  * Returns 0, or -ENOMEM if memory can't be allocated.
560  */
561 static int lsm_file_alloc(struct file *file)
562 {
563 	if (!lsm_file_cache) {
564 		file->f_security = NULL;
565 		return 0;
566 	}
567 
568 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
569 	if (file->f_security == NULL)
570 		return -ENOMEM;
571 	return 0;
572 }
573 
574 /**
575  * lsm_inode_alloc - allocate a composite inode blob
576  * @inode: the inode that needs a blob
577  *
578  * Allocate the inode blob for all the modules
579  *
580  * Returns 0, or -ENOMEM if memory can't be allocated.
581  */
582 int lsm_inode_alloc(struct inode *inode)
583 {
584 	if (!lsm_inode_cache) {
585 		inode->i_security = NULL;
586 		return 0;
587 	}
588 
589 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
590 	if (inode->i_security == NULL)
591 		return -ENOMEM;
592 	return 0;
593 }
594 
595 /**
596  * lsm_task_alloc - allocate a composite task blob
597  * @task: the task that needs a blob
598  *
599  * Allocate the task blob for all the modules
600  *
601  * Returns 0, or -ENOMEM if memory can't be allocated.
602  */
603 static int lsm_task_alloc(struct task_struct *task)
604 {
605 	if (blob_sizes.lbs_task == 0) {
606 		task->security = NULL;
607 		return 0;
608 	}
609 
610 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
611 	if (task->security == NULL)
612 		return -ENOMEM;
613 	return 0;
614 }
615 
616 /**
617  * lsm_ipc_alloc - allocate a composite ipc blob
618  * @kip: the ipc that needs a blob
619  *
620  * Allocate the ipc blob for all the modules
621  *
622  * Returns 0, or -ENOMEM if memory can't be allocated.
623  */
624 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
625 {
626 	if (blob_sizes.lbs_ipc == 0) {
627 		kip->security = NULL;
628 		return 0;
629 	}
630 
631 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
632 	if (kip->security == NULL)
633 		return -ENOMEM;
634 	return 0;
635 }
636 
637 /**
638  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
639  * @mp: the msg_msg that needs a blob
640  *
641  * Allocate the ipc blob for all the modules
642  *
643  * Returns 0, or -ENOMEM if memory can't be allocated.
644  */
645 static int lsm_msg_msg_alloc(struct msg_msg *mp)
646 {
647 	if (blob_sizes.lbs_msg_msg == 0) {
648 		mp->security = NULL;
649 		return 0;
650 	}
651 
652 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
653 	if (mp->security == NULL)
654 		return -ENOMEM;
655 	return 0;
656 }
657 
658 /**
659  * lsm_early_task - during initialization allocate a composite task blob
660  * @task: the task that needs a blob
661  *
662  * Allocate the task blob for all the modules
663  */
664 static void __init lsm_early_task(struct task_struct *task)
665 {
666 	int rc = lsm_task_alloc(task);
667 
668 	if (rc)
669 		panic("%s: Early task alloc failed.\n", __func__);
670 }
671 
672 /*
673  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
674  * can be accessed with:
675  *
676  *	LSM_RET_DEFAULT(<hook_name>)
677  *
678  * The macros below define static constants for the default value of each
679  * LSM hook.
680  */
681 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
682 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
683 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
684 	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
685 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
686 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
687 
688 #include <linux/lsm_hook_defs.h>
689 #undef LSM_HOOK
690 
691 /*
692  * Hook list operation macros.
693  *
694  * call_void_hook:
695  *	This is a hook that does not return a value.
696  *
697  * call_int_hook:
698  *	This is a hook that returns a value.
699  */
700 
701 #define call_void_hook(FUNC, ...)				\
702 	do {							\
703 		struct security_hook_list *P;			\
704 								\
705 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
706 			P->hook.FUNC(__VA_ARGS__);		\
707 	} while (0)
708 
709 #define call_int_hook(FUNC, IRC, ...) ({			\
710 	int RC = IRC;						\
711 	do {							\
712 		struct security_hook_list *P;			\
713 								\
714 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
715 			RC = P->hook.FUNC(__VA_ARGS__);		\
716 			if (RC != 0)				\
717 				break;				\
718 		}						\
719 	} while (0);						\
720 	RC;							\
721 })
722 
723 /* Security operations */
724 
725 int security_binder_set_context_mgr(struct task_struct *mgr)
726 {
727 	return call_int_hook(binder_set_context_mgr, 0, mgr);
728 }
729 
730 int security_binder_transaction(struct task_struct *from,
731 				struct task_struct *to)
732 {
733 	return call_int_hook(binder_transaction, 0, from, to);
734 }
735 
736 int security_binder_transfer_binder(struct task_struct *from,
737 				    struct task_struct *to)
738 {
739 	return call_int_hook(binder_transfer_binder, 0, from, to);
740 }
741 
742 int security_binder_transfer_file(struct task_struct *from,
743 				  struct task_struct *to, struct file *file)
744 {
745 	return call_int_hook(binder_transfer_file, 0, from, to, file);
746 }
747 
748 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
749 {
750 	return call_int_hook(ptrace_access_check, 0, child, mode);
751 }
752 
753 int security_ptrace_traceme(struct task_struct *parent)
754 {
755 	return call_int_hook(ptrace_traceme, 0, parent);
756 }
757 
758 int security_capget(struct task_struct *target,
759 		     kernel_cap_t *effective,
760 		     kernel_cap_t *inheritable,
761 		     kernel_cap_t *permitted)
762 {
763 	return call_int_hook(capget, 0, target,
764 				effective, inheritable, permitted);
765 }
766 
767 int security_capset(struct cred *new, const struct cred *old,
768 		    const kernel_cap_t *effective,
769 		    const kernel_cap_t *inheritable,
770 		    const kernel_cap_t *permitted)
771 {
772 	return call_int_hook(capset, 0, new, old,
773 				effective, inheritable, permitted);
774 }
775 
776 int security_capable(const struct cred *cred,
777 		     struct user_namespace *ns,
778 		     int cap,
779 		     unsigned int opts)
780 {
781 	return call_int_hook(capable, 0, cred, ns, cap, opts);
782 }
783 
784 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
785 {
786 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
787 }
788 
789 int security_quota_on(struct dentry *dentry)
790 {
791 	return call_int_hook(quota_on, 0, dentry);
792 }
793 
794 int security_syslog(int type)
795 {
796 	return call_int_hook(syslog, 0, type);
797 }
798 
799 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
800 {
801 	return call_int_hook(settime, 0, ts, tz);
802 }
803 
804 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
805 {
806 	struct security_hook_list *hp;
807 	int cap_sys_admin = 1;
808 	int rc;
809 
810 	/*
811 	 * The module will respond with a positive value if
812 	 * it thinks the __vm_enough_memory() call should be
813 	 * made with the cap_sys_admin set. If all of the modules
814 	 * agree that it should be set it will. If any module
815 	 * thinks it should not be set it won't.
816 	 */
817 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
818 		rc = hp->hook.vm_enough_memory(mm, pages);
819 		if (rc <= 0) {
820 			cap_sys_admin = 0;
821 			break;
822 		}
823 	}
824 	return __vm_enough_memory(mm, pages, cap_sys_admin);
825 }
826 
827 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
828 {
829 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
830 }
831 
832 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
833 {
834 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
835 }
836 
837 int security_bprm_check(struct linux_binprm *bprm)
838 {
839 	int ret;
840 
841 	ret = call_int_hook(bprm_check_security, 0, bprm);
842 	if (ret)
843 		return ret;
844 	return ima_bprm_check(bprm);
845 }
846 
847 void security_bprm_committing_creds(struct linux_binprm *bprm)
848 {
849 	call_void_hook(bprm_committing_creds, bprm);
850 }
851 
852 void security_bprm_committed_creds(struct linux_binprm *bprm)
853 {
854 	call_void_hook(bprm_committed_creds, bprm);
855 }
856 
857 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
858 {
859 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
860 }
861 
862 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
863 {
864 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
865 }
866 
867 int security_sb_alloc(struct super_block *sb)
868 {
869 	return call_int_hook(sb_alloc_security, 0, sb);
870 }
871 
872 void security_sb_free(struct super_block *sb)
873 {
874 	call_void_hook(sb_free_security, sb);
875 }
876 
877 void security_free_mnt_opts(void **mnt_opts)
878 {
879 	if (!*mnt_opts)
880 		return;
881 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
882 	*mnt_opts = NULL;
883 }
884 EXPORT_SYMBOL(security_free_mnt_opts);
885 
886 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
887 {
888 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
889 }
890 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
891 
892 int security_sb_remount(struct super_block *sb,
893 			void *mnt_opts)
894 {
895 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
896 }
897 EXPORT_SYMBOL(security_sb_remount);
898 
899 int security_sb_kern_mount(struct super_block *sb)
900 {
901 	return call_int_hook(sb_kern_mount, 0, sb);
902 }
903 
904 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
905 {
906 	return call_int_hook(sb_show_options, 0, m, sb);
907 }
908 
909 int security_sb_statfs(struct dentry *dentry)
910 {
911 	return call_int_hook(sb_statfs, 0, dentry);
912 }
913 
914 int security_sb_mount(const char *dev_name, const struct path *path,
915                        const char *type, unsigned long flags, void *data)
916 {
917 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
918 }
919 
920 int security_sb_umount(struct vfsmount *mnt, int flags)
921 {
922 	return call_int_hook(sb_umount, 0, mnt, flags);
923 }
924 
925 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
926 {
927 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
928 }
929 
930 int security_sb_set_mnt_opts(struct super_block *sb,
931 				void *mnt_opts,
932 				unsigned long kern_flags,
933 				unsigned long *set_kern_flags)
934 {
935 	return call_int_hook(sb_set_mnt_opts,
936 				mnt_opts ? -EOPNOTSUPP : 0, sb,
937 				mnt_opts, kern_flags, set_kern_flags);
938 }
939 EXPORT_SYMBOL(security_sb_set_mnt_opts);
940 
941 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
942 				struct super_block *newsb,
943 				unsigned long kern_flags,
944 				unsigned long *set_kern_flags)
945 {
946 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
947 				kern_flags, set_kern_flags);
948 }
949 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
950 
951 int security_add_mnt_opt(const char *option, const char *val, int len,
952 			 void **mnt_opts)
953 {
954 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
955 					option, val, len, mnt_opts);
956 }
957 EXPORT_SYMBOL(security_add_mnt_opt);
958 
959 int security_move_mount(const struct path *from_path, const struct path *to_path)
960 {
961 	return call_int_hook(move_mount, 0, from_path, to_path);
962 }
963 
964 int security_path_notify(const struct path *path, u64 mask,
965 				unsigned int obj_type)
966 {
967 	return call_int_hook(path_notify, 0, path, mask, obj_type);
968 }
969 
970 int security_inode_alloc(struct inode *inode)
971 {
972 	int rc = lsm_inode_alloc(inode);
973 
974 	if (unlikely(rc))
975 		return rc;
976 	rc = call_int_hook(inode_alloc_security, 0, inode);
977 	if (unlikely(rc))
978 		security_inode_free(inode);
979 	return rc;
980 }
981 
982 static void inode_free_by_rcu(struct rcu_head *head)
983 {
984 	/*
985 	 * The rcu head is at the start of the inode blob
986 	 */
987 	kmem_cache_free(lsm_inode_cache, head);
988 }
989 
990 void security_inode_free(struct inode *inode)
991 {
992 	integrity_inode_free(inode);
993 	call_void_hook(inode_free_security, inode);
994 	/*
995 	 * The inode may still be referenced in a path walk and
996 	 * a call to security_inode_permission() can be made
997 	 * after inode_free_security() is called. Ideally, the VFS
998 	 * wouldn't do this, but fixing that is a much harder
999 	 * job. For now, simply free the i_security via RCU, and
1000 	 * leave the current inode->i_security pointer intact.
1001 	 * The inode will be freed after the RCU grace period too.
1002 	 */
1003 	if (inode->i_security)
1004 		call_rcu((struct rcu_head *)inode->i_security,
1005 				inode_free_by_rcu);
1006 }
1007 
1008 int security_dentry_init_security(struct dentry *dentry, int mode,
1009 					const struct qstr *name, void **ctx,
1010 					u32 *ctxlen)
1011 {
1012 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1013 				name, ctx, ctxlen);
1014 }
1015 EXPORT_SYMBOL(security_dentry_init_security);
1016 
1017 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1018 				    struct qstr *name,
1019 				    const struct cred *old, struct cred *new)
1020 {
1021 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1022 				name, old, new);
1023 }
1024 EXPORT_SYMBOL(security_dentry_create_files_as);
1025 
1026 int security_inode_init_security(struct inode *inode, struct inode *dir,
1027 				 const struct qstr *qstr,
1028 				 const initxattrs initxattrs, void *fs_data)
1029 {
1030 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1031 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1032 	int ret;
1033 
1034 	if (unlikely(IS_PRIVATE(inode)))
1035 		return 0;
1036 
1037 	if (!initxattrs)
1038 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1039 				     dir, qstr, NULL, NULL, NULL);
1040 	memset(new_xattrs, 0, sizeof(new_xattrs));
1041 	lsm_xattr = new_xattrs;
1042 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1043 						&lsm_xattr->name,
1044 						&lsm_xattr->value,
1045 						&lsm_xattr->value_len);
1046 	if (ret)
1047 		goto out;
1048 
1049 	evm_xattr = lsm_xattr + 1;
1050 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1051 	if (ret)
1052 		goto out;
1053 	ret = initxattrs(inode, new_xattrs, fs_data);
1054 out:
1055 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1056 		kfree(xattr->value);
1057 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1058 }
1059 EXPORT_SYMBOL(security_inode_init_security);
1060 
1061 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1062 				     const struct qstr *qstr, const char **name,
1063 				     void **value, size_t *len)
1064 {
1065 	if (unlikely(IS_PRIVATE(inode)))
1066 		return -EOPNOTSUPP;
1067 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1068 			     qstr, name, value, len);
1069 }
1070 EXPORT_SYMBOL(security_old_inode_init_security);
1071 
1072 #ifdef CONFIG_SECURITY_PATH
1073 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1074 			unsigned int dev)
1075 {
1076 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1077 		return 0;
1078 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1079 }
1080 EXPORT_SYMBOL(security_path_mknod);
1081 
1082 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1083 {
1084 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1085 		return 0;
1086 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1087 }
1088 EXPORT_SYMBOL(security_path_mkdir);
1089 
1090 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1091 {
1092 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1093 		return 0;
1094 	return call_int_hook(path_rmdir, 0, dir, dentry);
1095 }
1096 
1097 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1098 {
1099 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1100 		return 0;
1101 	return call_int_hook(path_unlink, 0, dir, dentry);
1102 }
1103 EXPORT_SYMBOL(security_path_unlink);
1104 
1105 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1106 			  const char *old_name)
1107 {
1108 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109 		return 0;
1110 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1111 }
1112 
1113 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1114 		       struct dentry *new_dentry)
1115 {
1116 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1117 		return 0;
1118 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1119 }
1120 
1121 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1122 			 const struct path *new_dir, struct dentry *new_dentry,
1123 			 unsigned int flags)
1124 {
1125 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1126 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1127 		return 0;
1128 
1129 	if (flags & RENAME_EXCHANGE) {
1130 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1131 					old_dir, old_dentry);
1132 		if (err)
1133 			return err;
1134 	}
1135 
1136 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1137 				new_dentry);
1138 }
1139 EXPORT_SYMBOL(security_path_rename);
1140 
1141 int security_path_truncate(const struct path *path)
1142 {
1143 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1144 		return 0;
1145 	return call_int_hook(path_truncate, 0, path);
1146 }
1147 
1148 int security_path_chmod(const struct path *path, umode_t mode)
1149 {
1150 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1151 		return 0;
1152 	return call_int_hook(path_chmod, 0, path, mode);
1153 }
1154 
1155 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1156 {
1157 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1158 		return 0;
1159 	return call_int_hook(path_chown, 0, path, uid, gid);
1160 }
1161 
1162 int security_path_chroot(const struct path *path)
1163 {
1164 	return call_int_hook(path_chroot, 0, path);
1165 }
1166 #endif
1167 
1168 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1169 {
1170 	if (unlikely(IS_PRIVATE(dir)))
1171 		return 0;
1172 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1173 }
1174 EXPORT_SYMBOL_GPL(security_inode_create);
1175 
1176 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1177 			 struct dentry *new_dentry)
1178 {
1179 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1180 		return 0;
1181 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1182 }
1183 
1184 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1185 {
1186 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1187 		return 0;
1188 	return call_int_hook(inode_unlink, 0, dir, dentry);
1189 }
1190 
1191 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1192 			    const char *old_name)
1193 {
1194 	if (unlikely(IS_PRIVATE(dir)))
1195 		return 0;
1196 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1197 }
1198 
1199 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1200 {
1201 	if (unlikely(IS_PRIVATE(dir)))
1202 		return 0;
1203 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1204 }
1205 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1206 
1207 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1208 {
1209 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 		return 0;
1211 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1212 }
1213 
1214 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1215 {
1216 	if (unlikely(IS_PRIVATE(dir)))
1217 		return 0;
1218 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1219 }
1220 
1221 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1222 			   struct inode *new_dir, struct dentry *new_dentry,
1223 			   unsigned int flags)
1224 {
1225         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1226             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1227 		return 0;
1228 
1229 	if (flags & RENAME_EXCHANGE) {
1230 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1231 						     old_dir, old_dentry);
1232 		if (err)
1233 			return err;
1234 	}
1235 
1236 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1237 					   new_dir, new_dentry);
1238 }
1239 
1240 int security_inode_readlink(struct dentry *dentry)
1241 {
1242 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1243 		return 0;
1244 	return call_int_hook(inode_readlink, 0, dentry);
1245 }
1246 
1247 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1248 			       bool rcu)
1249 {
1250 	if (unlikely(IS_PRIVATE(inode)))
1251 		return 0;
1252 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1253 }
1254 
1255 int security_inode_permission(struct inode *inode, int mask)
1256 {
1257 	if (unlikely(IS_PRIVATE(inode)))
1258 		return 0;
1259 	return call_int_hook(inode_permission, 0, inode, mask);
1260 }
1261 
1262 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1263 {
1264 	int ret;
1265 
1266 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1267 		return 0;
1268 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1269 	if (ret)
1270 		return ret;
1271 	return evm_inode_setattr(dentry, attr);
1272 }
1273 EXPORT_SYMBOL_GPL(security_inode_setattr);
1274 
1275 int security_inode_getattr(const struct path *path)
1276 {
1277 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1278 		return 0;
1279 	return call_int_hook(inode_getattr, 0, path);
1280 }
1281 
1282 int security_inode_setxattr(struct dentry *dentry, const char *name,
1283 			    const void *value, size_t size, int flags)
1284 {
1285 	int ret;
1286 
1287 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1288 		return 0;
1289 	/*
1290 	 * SELinux and Smack integrate the cap call,
1291 	 * so assume that all LSMs supplying this call do so.
1292 	 */
1293 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1294 				flags);
1295 
1296 	if (ret == 1)
1297 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1298 	if (ret)
1299 		return ret;
1300 	ret = ima_inode_setxattr(dentry, name, value, size);
1301 	if (ret)
1302 		return ret;
1303 	return evm_inode_setxattr(dentry, name, value, size);
1304 }
1305 
1306 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1307 				  const void *value, size_t size, int flags)
1308 {
1309 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1310 		return;
1311 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1312 	evm_inode_post_setxattr(dentry, name, value, size);
1313 }
1314 
1315 int security_inode_getxattr(struct dentry *dentry, const char *name)
1316 {
1317 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1318 		return 0;
1319 	return call_int_hook(inode_getxattr, 0, dentry, name);
1320 }
1321 
1322 int security_inode_listxattr(struct dentry *dentry)
1323 {
1324 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1325 		return 0;
1326 	return call_int_hook(inode_listxattr, 0, dentry);
1327 }
1328 
1329 int security_inode_removexattr(struct dentry *dentry, const char *name)
1330 {
1331 	int ret;
1332 
1333 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1334 		return 0;
1335 	/*
1336 	 * SELinux and Smack integrate the cap call,
1337 	 * so assume that all LSMs supplying this call do so.
1338 	 */
1339 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1340 	if (ret == 1)
1341 		ret = cap_inode_removexattr(dentry, name);
1342 	if (ret)
1343 		return ret;
1344 	ret = ima_inode_removexattr(dentry, name);
1345 	if (ret)
1346 		return ret;
1347 	return evm_inode_removexattr(dentry, name);
1348 }
1349 
1350 int security_inode_need_killpriv(struct dentry *dentry)
1351 {
1352 	return call_int_hook(inode_need_killpriv, 0, dentry);
1353 }
1354 
1355 int security_inode_killpriv(struct dentry *dentry)
1356 {
1357 	return call_int_hook(inode_killpriv, 0, dentry);
1358 }
1359 
1360 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1361 {
1362 	struct security_hook_list *hp;
1363 	int rc;
1364 
1365 	if (unlikely(IS_PRIVATE(inode)))
1366 		return LSM_RET_DEFAULT(inode_getsecurity);
1367 	/*
1368 	 * Only one module will provide an attribute with a given name.
1369 	 */
1370 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1371 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1372 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1373 			return rc;
1374 	}
1375 	return LSM_RET_DEFAULT(inode_getsecurity);
1376 }
1377 
1378 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1379 {
1380 	struct security_hook_list *hp;
1381 	int rc;
1382 
1383 	if (unlikely(IS_PRIVATE(inode)))
1384 		return LSM_RET_DEFAULT(inode_setsecurity);
1385 	/*
1386 	 * Only one module will provide an attribute with a given name.
1387 	 */
1388 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1389 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1390 								flags);
1391 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1392 			return rc;
1393 	}
1394 	return LSM_RET_DEFAULT(inode_setsecurity);
1395 }
1396 
1397 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1398 {
1399 	if (unlikely(IS_PRIVATE(inode)))
1400 		return 0;
1401 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1402 }
1403 EXPORT_SYMBOL(security_inode_listsecurity);
1404 
1405 void security_inode_getsecid(struct inode *inode, u32 *secid)
1406 {
1407 	call_void_hook(inode_getsecid, inode, secid);
1408 }
1409 
1410 int security_inode_copy_up(struct dentry *src, struct cred **new)
1411 {
1412 	return call_int_hook(inode_copy_up, 0, src, new);
1413 }
1414 EXPORT_SYMBOL(security_inode_copy_up);
1415 
1416 int security_inode_copy_up_xattr(const char *name)
1417 {
1418 	struct security_hook_list *hp;
1419 	int rc;
1420 
1421 	/*
1422 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1423 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1424 	 * any other error code incase of an error.
1425 	 */
1426 	hlist_for_each_entry(hp,
1427 		&security_hook_heads.inode_copy_up_xattr, list) {
1428 		rc = hp->hook.inode_copy_up_xattr(name);
1429 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1430 			return rc;
1431 	}
1432 
1433 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1434 }
1435 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1436 
1437 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1438 				  struct kernfs_node *kn)
1439 {
1440 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1441 }
1442 
1443 int security_file_permission(struct file *file, int mask)
1444 {
1445 	int ret;
1446 
1447 	ret = call_int_hook(file_permission, 0, file, mask);
1448 	if (ret)
1449 		return ret;
1450 
1451 	return fsnotify_perm(file, mask);
1452 }
1453 
1454 int security_file_alloc(struct file *file)
1455 {
1456 	int rc = lsm_file_alloc(file);
1457 
1458 	if (rc)
1459 		return rc;
1460 	rc = call_int_hook(file_alloc_security, 0, file);
1461 	if (unlikely(rc))
1462 		security_file_free(file);
1463 	return rc;
1464 }
1465 
1466 void security_file_free(struct file *file)
1467 {
1468 	void *blob;
1469 
1470 	call_void_hook(file_free_security, file);
1471 
1472 	blob = file->f_security;
1473 	if (blob) {
1474 		file->f_security = NULL;
1475 		kmem_cache_free(lsm_file_cache, blob);
1476 	}
1477 }
1478 
1479 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1480 {
1481 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1482 }
1483 EXPORT_SYMBOL_GPL(security_file_ioctl);
1484 
1485 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1486 {
1487 	/*
1488 	 * Does we have PROT_READ and does the application expect
1489 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1490 	 */
1491 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1492 		return prot;
1493 	if (!(current->personality & READ_IMPLIES_EXEC))
1494 		return prot;
1495 	/*
1496 	 * if that's an anonymous mapping, let it.
1497 	 */
1498 	if (!file)
1499 		return prot | PROT_EXEC;
1500 	/*
1501 	 * ditto if it's not on noexec mount, except that on !MMU we need
1502 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1503 	 */
1504 	if (!path_noexec(&file->f_path)) {
1505 #ifndef CONFIG_MMU
1506 		if (file->f_op->mmap_capabilities) {
1507 			unsigned caps = file->f_op->mmap_capabilities(file);
1508 			if (!(caps & NOMMU_MAP_EXEC))
1509 				return prot;
1510 		}
1511 #endif
1512 		return prot | PROT_EXEC;
1513 	}
1514 	/* anything on noexec mount won't get PROT_EXEC */
1515 	return prot;
1516 }
1517 
1518 int security_mmap_file(struct file *file, unsigned long prot,
1519 			unsigned long flags)
1520 {
1521 	int ret;
1522 	ret = call_int_hook(mmap_file, 0, file, prot,
1523 					mmap_prot(file, prot), flags);
1524 	if (ret)
1525 		return ret;
1526 	return ima_file_mmap(file, prot);
1527 }
1528 
1529 int security_mmap_addr(unsigned long addr)
1530 {
1531 	return call_int_hook(mmap_addr, 0, addr);
1532 }
1533 
1534 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1535 			    unsigned long prot)
1536 {
1537 	int ret;
1538 
1539 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1540 	if (ret)
1541 		return ret;
1542 	return ima_file_mprotect(vma, prot);
1543 }
1544 
1545 int security_file_lock(struct file *file, unsigned int cmd)
1546 {
1547 	return call_int_hook(file_lock, 0, file, cmd);
1548 }
1549 
1550 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1551 {
1552 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1553 }
1554 
1555 void security_file_set_fowner(struct file *file)
1556 {
1557 	call_void_hook(file_set_fowner, file);
1558 }
1559 
1560 int security_file_send_sigiotask(struct task_struct *tsk,
1561 				  struct fown_struct *fown, int sig)
1562 {
1563 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1564 }
1565 
1566 int security_file_receive(struct file *file)
1567 {
1568 	return call_int_hook(file_receive, 0, file);
1569 }
1570 
1571 int security_file_open(struct file *file)
1572 {
1573 	int ret;
1574 
1575 	ret = call_int_hook(file_open, 0, file);
1576 	if (ret)
1577 		return ret;
1578 
1579 	return fsnotify_perm(file, MAY_OPEN);
1580 }
1581 
1582 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1583 {
1584 	int rc = lsm_task_alloc(task);
1585 
1586 	if (rc)
1587 		return rc;
1588 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1589 	if (unlikely(rc))
1590 		security_task_free(task);
1591 	return rc;
1592 }
1593 
1594 void security_task_free(struct task_struct *task)
1595 {
1596 	call_void_hook(task_free, task);
1597 
1598 	kfree(task->security);
1599 	task->security = NULL;
1600 }
1601 
1602 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1603 {
1604 	int rc = lsm_cred_alloc(cred, gfp);
1605 
1606 	if (rc)
1607 		return rc;
1608 
1609 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1610 	if (unlikely(rc))
1611 		security_cred_free(cred);
1612 	return rc;
1613 }
1614 
1615 void security_cred_free(struct cred *cred)
1616 {
1617 	/*
1618 	 * There is a failure case in prepare_creds() that
1619 	 * may result in a call here with ->security being NULL.
1620 	 */
1621 	if (unlikely(cred->security == NULL))
1622 		return;
1623 
1624 	call_void_hook(cred_free, cred);
1625 
1626 	kfree(cred->security);
1627 	cred->security = NULL;
1628 }
1629 
1630 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1631 {
1632 	int rc = lsm_cred_alloc(new, gfp);
1633 
1634 	if (rc)
1635 		return rc;
1636 
1637 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1638 	if (unlikely(rc))
1639 		security_cred_free(new);
1640 	return rc;
1641 }
1642 
1643 void security_transfer_creds(struct cred *new, const struct cred *old)
1644 {
1645 	call_void_hook(cred_transfer, new, old);
1646 }
1647 
1648 void security_cred_getsecid(const struct cred *c, u32 *secid)
1649 {
1650 	*secid = 0;
1651 	call_void_hook(cred_getsecid, c, secid);
1652 }
1653 EXPORT_SYMBOL(security_cred_getsecid);
1654 
1655 int security_kernel_act_as(struct cred *new, u32 secid)
1656 {
1657 	return call_int_hook(kernel_act_as, 0, new, secid);
1658 }
1659 
1660 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1661 {
1662 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1663 }
1664 
1665 int security_kernel_module_request(char *kmod_name)
1666 {
1667 	int ret;
1668 
1669 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1670 	if (ret)
1671 		return ret;
1672 	return integrity_kernel_module_request(kmod_name);
1673 }
1674 
1675 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1676 			      bool contents)
1677 {
1678 	int ret;
1679 
1680 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1681 	if (ret)
1682 		return ret;
1683 	return ima_read_file(file, id, contents);
1684 }
1685 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1686 
1687 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1688 				   enum kernel_read_file_id id)
1689 {
1690 	int ret;
1691 
1692 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1693 	if (ret)
1694 		return ret;
1695 	return ima_post_read_file(file, buf, size, id);
1696 }
1697 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1698 
1699 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1700 {
1701 	int ret;
1702 
1703 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1704 	if (ret)
1705 		return ret;
1706 	return ima_load_data(id, contents);
1707 }
1708 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1709 
1710 int security_kernel_post_load_data(char *buf, loff_t size,
1711 				   enum kernel_load_data_id id,
1712 				   char *description)
1713 {
1714 	int ret;
1715 
1716 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1717 			    description);
1718 	if (ret)
1719 		return ret;
1720 	return ima_post_load_data(buf, size, id, description);
1721 }
1722 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1723 
1724 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1725 			     int flags)
1726 {
1727 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1728 }
1729 
1730 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1731 				 int flags)
1732 {
1733 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1734 }
1735 
1736 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1737 {
1738 	return call_int_hook(task_setpgid, 0, p, pgid);
1739 }
1740 
1741 int security_task_getpgid(struct task_struct *p)
1742 {
1743 	return call_int_hook(task_getpgid, 0, p);
1744 }
1745 
1746 int security_task_getsid(struct task_struct *p)
1747 {
1748 	return call_int_hook(task_getsid, 0, p);
1749 }
1750 
1751 void security_task_getsecid(struct task_struct *p, u32 *secid)
1752 {
1753 	*secid = 0;
1754 	call_void_hook(task_getsecid, p, secid);
1755 }
1756 EXPORT_SYMBOL(security_task_getsecid);
1757 
1758 int security_task_setnice(struct task_struct *p, int nice)
1759 {
1760 	return call_int_hook(task_setnice, 0, p, nice);
1761 }
1762 
1763 int security_task_setioprio(struct task_struct *p, int ioprio)
1764 {
1765 	return call_int_hook(task_setioprio, 0, p, ioprio);
1766 }
1767 
1768 int security_task_getioprio(struct task_struct *p)
1769 {
1770 	return call_int_hook(task_getioprio, 0, p);
1771 }
1772 
1773 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1774 			  unsigned int flags)
1775 {
1776 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1777 }
1778 
1779 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1780 		struct rlimit *new_rlim)
1781 {
1782 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1783 }
1784 
1785 int security_task_setscheduler(struct task_struct *p)
1786 {
1787 	return call_int_hook(task_setscheduler, 0, p);
1788 }
1789 
1790 int security_task_getscheduler(struct task_struct *p)
1791 {
1792 	return call_int_hook(task_getscheduler, 0, p);
1793 }
1794 
1795 int security_task_movememory(struct task_struct *p)
1796 {
1797 	return call_int_hook(task_movememory, 0, p);
1798 }
1799 
1800 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1801 			int sig, const struct cred *cred)
1802 {
1803 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1804 }
1805 
1806 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1807 			 unsigned long arg4, unsigned long arg5)
1808 {
1809 	int thisrc;
1810 	int rc = LSM_RET_DEFAULT(task_prctl);
1811 	struct security_hook_list *hp;
1812 
1813 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1814 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1815 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1816 			rc = thisrc;
1817 			if (thisrc != 0)
1818 				break;
1819 		}
1820 	}
1821 	return rc;
1822 }
1823 
1824 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1825 {
1826 	call_void_hook(task_to_inode, p, inode);
1827 }
1828 
1829 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1830 {
1831 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1832 }
1833 
1834 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1835 {
1836 	*secid = 0;
1837 	call_void_hook(ipc_getsecid, ipcp, secid);
1838 }
1839 
1840 int security_msg_msg_alloc(struct msg_msg *msg)
1841 {
1842 	int rc = lsm_msg_msg_alloc(msg);
1843 
1844 	if (unlikely(rc))
1845 		return rc;
1846 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1847 	if (unlikely(rc))
1848 		security_msg_msg_free(msg);
1849 	return rc;
1850 }
1851 
1852 void security_msg_msg_free(struct msg_msg *msg)
1853 {
1854 	call_void_hook(msg_msg_free_security, msg);
1855 	kfree(msg->security);
1856 	msg->security = NULL;
1857 }
1858 
1859 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1860 {
1861 	int rc = lsm_ipc_alloc(msq);
1862 
1863 	if (unlikely(rc))
1864 		return rc;
1865 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1866 	if (unlikely(rc))
1867 		security_msg_queue_free(msq);
1868 	return rc;
1869 }
1870 
1871 void security_msg_queue_free(struct kern_ipc_perm *msq)
1872 {
1873 	call_void_hook(msg_queue_free_security, msq);
1874 	kfree(msq->security);
1875 	msq->security = NULL;
1876 }
1877 
1878 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1879 {
1880 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1881 }
1882 
1883 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1884 {
1885 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1886 }
1887 
1888 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1889 			       struct msg_msg *msg, int msqflg)
1890 {
1891 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1892 }
1893 
1894 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1895 			       struct task_struct *target, long type, int mode)
1896 {
1897 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1898 }
1899 
1900 int security_shm_alloc(struct kern_ipc_perm *shp)
1901 {
1902 	int rc = lsm_ipc_alloc(shp);
1903 
1904 	if (unlikely(rc))
1905 		return rc;
1906 	rc = call_int_hook(shm_alloc_security, 0, shp);
1907 	if (unlikely(rc))
1908 		security_shm_free(shp);
1909 	return rc;
1910 }
1911 
1912 void security_shm_free(struct kern_ipc_perm *shp)
1913 {
1914 	call_void_hook(shm_free_security, shp);
1915 	kfree(shp->security);
1916 	shp->security = NULL;
1917 }
1918 
1919 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1920 {
1921 	return call_int_hook(shm_associate, 0, shp, shmflg);
1922 }
1923 
1924 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1925 {
1926 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1927 }
1928 
1929 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1930 {
1931 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1932 }
1933 
1934 int security_sem_alloc(struct kern_ipc_perm *sma)
1935 {
1936 	int rc = lsm_ipc_alloc(sma);
1937 
1938 	if (unlikely(rc))
1939 		return rc;
1940 	rc = call_int_hook(sem_alloc_security, 0, sma);
1941 	if (unlikely(rc))
1942 		security_sem_free(sma);
1943 	return rc;
1944 }
1945 
1946 void security_sem_free(struct kern_ipc_perm *sma)
1947 {
1948 	call_void_hook(sem_free_security, sma);
1949 	kfree(sma->security);
1950 	sma->security = NULL;
1951 }
1952 
1953 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1954 {
1955 	return call_int_hook(sem_associate, 0, sma, semflg);
1956 }
1957 
1958 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1959 {
1960 	return call_int_hook(sem_semctl, 0, sma, cmd);
1961 }
1962 
1963 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1964 			unsigned nsops, int alter)
1965 {
1966 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1967 }
1968 
1969 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1970 {
1971 	if (unlikely(inode && IS_PRIVATE(inode)))
1972 		return;
1973 	call_void_hook(d_instantiate, dentry, inode);
1974 }
1975 EXPORT_SYMBOL(security_d_instantiate);
1976 
1977 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1978 				char **value)
1979 {
1980 	struct security_hook_list *hp;
1981 
1982 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1983 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1984 			continue;
1985 		return hp->hook.getprocattr(p, name, value);
1986 	}
1987 	return LSM_RET_DEFAULT(getprocattr);
1988 }
1989 
1990 int security_setprocattr(const char *lsm, const char *name, void *value,
1991 			 size_t size)
1992 {
1993 	struct security_hook_list *hp;
1994 
1995 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1996 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1997 			continue;
1998 		return hp->hook.setprocattr(name, value, size);
1999 	}
2000 	return LSM_RET_DEFAULT(setprocattr);
2001 }
2002 
2003 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2004 {
2005 	return call_int_hook(netlink_send, 0, sk, skb);
2006 }
2007 
2008 int security_ismaclabel(const char *name)
2009 {
2010 	return call_int_hook(ismaclabel, 0, name);
2011 }
2012 EXPORT_SYMBOL(security_ismaclabel);
2013 
2014 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2015 {
2016 	struct security_hook_list *hp;
2017 	int rc;
2018 
2019 	/*
2020 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2021 	 * LSM hook is not "stackable").
2022 	 */
2023 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2024 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2025 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2026 			return rc;
2027 	}
2028 
2029 	return LSM_RET_DEFAULT(secid_to_secctx);
2030 }
2031 EXPORT_SYMBOL(security_secid_to_secctx);
2032 
2033 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2034 {
2035 	*secid = 0;
2036 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2037 }
2038 EXPORT_SYMBOL(security_secctx_to_secid);
2039 
2040 void security_release_secctx(char *secdata, u32 seclen)
2041 {
2042 	call_void_hook(release_secctx, secdata, seclen);
2043 }
2044 EXPORT_SYMBOL(security_release_secctx);
2045 
2046 void security_inode_invalidate_secctx(struct inode *inode)
2047 {
2048 	call_void_hook(inode_invalidate_secctx, inode);
2049 }
2050 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2051 
2052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2053 {
2054 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2055 }
2056 EXPORT_SYMBOL(security_inode_notifysecctx);
2057 
2058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2059 {
2060 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2061 }
2062 EXPORT_SYMBOL(security_inode_setsecctx);
2063 
2064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2065 {
2066 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2067 }
2068 EXPORT_SYMBOL(security_inode_getsecctx);
2069 
2070 #ifdef CONFIG_WATCH_QUEUE
2071 int security_post_notification(const struct cred *w_cred,
2072 			       const struct cred *cred,
2073 			       struct watch_notification *n)
2074 {
2075 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2076 }
2077 #endif /* CONFIG_WATCH_QUEUE */
2078 
2079 #ifdef CONFIG_KEY_NOTIFICATIONS
2080 int security_watch_key(struct key *key)
2081 {
2082 	return call_int_hook(watch_key, 0, key);
2083 }
2084 #endif
2085 
2086 #ifdef CONFIG_SECURITY_NETWORK
2087 
2088 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2089 {
2090 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2091 }
2092 EXPORT_SYMBOL(security_unix_stream_connect);
2093 
2094 int security_unix_may_send(struct socket *sock,  struct socket *other)
2095 {
2096 	return call_int_hook(unix_may_send, 0, sock, other);
2097 }
2098 EXPORT_SYMBOL(security_unix_may_send);
2099 
2100 int security_socket_create(int family, int type, int protocol, int kern)
2101 {
2102 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2103 }
2104 
2105 int security_socket_post_create(struct socket *sock, int family,
2106 				int type, int protocol, int kern)
2107 {
2108 	return call_int_hook(socket_post_create, 0, sock, family, type,
2109 						protocol, kern);
2110 }
2111 
2112 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2113 {
2114 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2115 }
2116 EXPORT_SYMBOL(security_socket_socketpair);
2117 
2118 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2119 {
2120 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2121 }
2122 
2123 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2124 {
2125 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2126 }
2127 
2128 int security_socket_listen(struct socket *sock, int backlog)
2129 {
2130 	return call_int_hook(socket_listen, 0, sock, backlog);
2131 }
2132 
2133 int security_socket_accept(struct socket *sock, struct socket *newsock)
2134 {
2135 	return call_int_hook(socket_accept, 0, sock, newsock);
2136 }
2137 
2138 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2139 {
2140 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2141 }
2142 
2143 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2144 			    int size, int flags)
2145 {
2146 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2147 }
2148 
2149 int security_socket_getsockname(struct socket *sock)
2150 {
2151 	return call_int_hook(socket_getsockname, 0, sock);
2152 }
2153 
2154 int security_socket_getpeername(struct socket *sock)
2155 {
2156 	return call_int_hook(socket_getpeername, 0, sock);
2157 }
2158 
2159 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2160 {
2161 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2162 }
2163 
2164 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2165 {
2166 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2167 }
2168 
2169 int security_socket_shutdown(struct socket *sock, int how)
2170 {
2171 	return call_int_hook(socket_shutdown, 0, sock, how);
2172 }
2173 
2174 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2175 {
2176 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2177 }
2178 EXPORT_SYMBOL(security_sock_rcv_skb);
2179 
2180 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2181 				      int __user *optlen, unsigned len)
2182 {
2183 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2184 				optval, optlen, len);
2185 }
2186 
2187 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2188 {
2189 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2190 			     skb, secid);
2191 }
2192 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2193 
2194 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2195 {
2196 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2197 }
2198 
2199 void security_sk_free(struct sock *sk)
2200 {
2201 	call_void_hook(sk_free_security, sk);
2202 }
2203 
2204 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2205 {
2206 	call_void_hook(sk_clone_security, sk, newsk);
2207 }
2208 EXPORT_SYMBOL(security_sk_clone);
2209 
2210 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2211 {
2212 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2213 }
2214 EXPORT_SYMBOL(security_sk_classify_flow);
2215 
2216 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2217 {
2218 	call_void_hook(req_classify_flow, req, fl);
2219 }
2220 EXPORT_SYMBOL(security_req_classify_flow);
2221 
2222 void security_sock_graft(struct sock *sk, struct socket *parent)
2223 {
2224 	call_void_hook(sock_graft, sk, parent);
2225 }
2226 EXPORT_SYMBOL(security_sock_graft);
2227 
2228 int security_inet_conn_request(struct sock *sk,
2229 			struct sk_buff *skb, struct request_sock *req)
2230 {
2231 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2232 }
2233 EXPORT_SYMBOL(security_inet_conn_request);
2234 
2235 void security_inet_csk_clone(struct sock *newsk,
2236 			const struct request_sock *req)
2237 {
2238 	call_void_hook(inet_csk_clone, newsk, req);
2239 }
2240 
2241 void security_inet_conn_established(struct sock *sk,
2242 			struct sk_buff *skb)
2243 {
2244 	call_void_hook(inet_conn_established, sk, skb);
2245 }
2246 EXPORT_SYMBOL(security_inet_conn_established);
2247 
2248 int security_secmark_relabel_packet(u32 secid)
2249 {
2250 	return call_int_hook(secmark_relabel_packet, 0, secid);
2251 }
2252 EXPORT_SYMBOL(security_secmark_relabel_packet);
2253 
2254 void security_secmark_refcount_inc(void)
2255 {
2256 	call_void_hook(secmark_refcount_inc);
2257 }
2258 EXPORT_SYMBOL(security_secmark_refcount_inc);
2259 
2260 void security_secmark_refcount_dec(void)
2261 {
2262 	call_void_hook(secmark_refcount_dec);
2263 }
2264 EXPORT_SYMBOL(security_secmark_refcount_dec);
2265 
2266 int security_tun_dev_alloc_security(void **security)
2267 {
2268 	return call_int_hook(tun_dev_alloc_security, 0, security);
2269 }
2270 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2271 
2272 void security_tun_dev_free_security(void *security)
2273 {
2274 	call_void_hook(tun_dev_free_security, security);
2275 }
2276 EXPORT_SYMBOL(security_tun_dev_free_security);
2277 
2278 int security_tun_dev_create(void)
2279 {
2280 	return call_int_hook(tun_dev_create, 0);
2281 }
2282 EXPORT_SYMBOL(security_tun_dev_create);
2283 
2284 int security_tun_dev_attach_queue(void *security)
2285 {
2286 	return call_int_hook(tun_dev_attach_queue, 0, security);
2287 }
2288 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2289 
2290 int security_tun_dev_attach(struct sock *sk, void *security)
2291 {
2292 	return call_int_hook(tun_dev_attach, 0, sk, security);
2293 }
2294 EXPORT_SYMBOL(security_tun_dev_attach);
2295 
2296 int security_tun_dev_open(void *security)
2297 {
2298 	return call_int_hook(tun_dev_open, 0, security);
2299 }
2300 EXPORT_SYMBOL(security_tun_dev_open);
2301 
2302 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2303 {
2304 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2305 }
2306 EXPORT_SYMBOL(security_sctp_assoc_request);
2307 
2308 int security_sctp_bind_connect(struct sock *sk, int optname,
2309 			       struct sockaddr *address, int addrlen)
2310 {
2311 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2312 			     address, addrlen);
2313 }
2314 EXPORT_SYMBOL(security_sctp_bind_connect);
2315 
2316 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2317 			    struct sock *newsk)
2318 {
2319 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2320 }
2321 EXPORT_SYMBOL(security_sctp_sk_clone);
2322 
2323 #endif	/* CONFIG_SECURITY_NETWORK */
2324 
2325 #ifdef CONFIG_SECURITY_INFINIBAND
2326 
2327 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2328 {
2329 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2330 }
2331 EXPORT_SYMBOL(security_ib_pkey_access);
2332 
2333 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2334 {
2335 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2336 }
2337 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2338 
2339 int security_ib_alloc_security(void **sec)
2340 {
2341 	return call_int_hook(ib_alloc_security, 0, sec);
2342 }
2343 EXPORT_SYMBOL(security_ib_alloc_security);
2344 
2345 void security_ib_free_security(void *sec)
2346 {
2347 	call_void_hook(ib_free_security, sec);
2348 }
2349 EXPORT_SYMBOL(security_ib_free_security);
2350 #endif	/* CONFIG_SECURITY_INFINIBAND */
2351 
2352 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2353 
2354 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2355 			       struct xfrm_user_sec_ctx *sec_ctx,
2356 			       gfp_t gfp)
2357 {
2358 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2359 }
2360 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2361 
2362 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2363 			      struct xfrm_sec_ctx **new_ctxp)
2364 {
2365 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2366 }
2367 
2368 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2369 {
2370 	call_void_hook(xfrm_policy_free_security, ctx);
2371 }
2372 EXPORT_SYMBOL(security_xfrm_policy_free);
2373 
2374 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2375 {
2376 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2377 }
2378 
2379 int security_xfrm_state_alloc(struct xfrm_state *x,
2380 			      struct xfrm_user_sec_ctx *sec_ctx)
2381 {
2382 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2383 }
2384 EXPORT_SYMBOL(security_xfrm_state_alloc);
2385 
2386 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2387 				      struct xfrm_sec_ctx *polsec, u32 secid)
2388 {
2389 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2390 }
2391 
2392 int security_xfrm_state_delete(struct xfrm_state *x)
2393 {
2394 	return call_int_hook(xfrm_state_delete_security, 0, x);
2395 }
2396 EXPORT_SYMBOL(security_xfrm_state_delete);
2397 
2398 void security_xfrm_state_free(struct xfrm_state *x)
2399 {
2400 	call_void_hook(xfrm_state_free_security, x);
2401 }
2402 
2403 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2404 {
2405 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2406 }
2407 
2408 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2409 				       struct xfrm_policy *xp,
2410 				       const struct flowi *fl)
2411 {
2412 	struct security_hook_list *hp;
2413 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2414 
2415 	/*
2416 	 * Since this function is expected to return 0 or 1, the judgment
2417 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2418 	 * we can use the first LSM's judgment because currently only SELinux
2419 	 * supplies this call.
2420 	 *
2421 	 * For speed optimization, we explicitly break the loop rather than
2422 	 * using the macro
2423 	 */
2424 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2425 				list) {
2426 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2427 		break;
2428 	}
2429 	return rc;
2430 }
2431 
2432 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2433 {
2434 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2435 }
2436 
2437 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2438 {
2439 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2440 				0);
2441 
2442 	BUG_ON(rc);
2443 }
2444 EXPORT_SYMBOL(security_skb_classify_flow);
2445 
2446 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2447 
2448 #ifdef CONFIG_KEYS
2449 
2450 int security_key_alloc(struct key *key, const struct cred *cred,
2451 		       unsigned long flags)
2452 {
2453 	return call_int_hook(key_alloc, 0, key, cred, flags);
2454 }
2455 
2456 void security_key_free(struct key *key)
2457 {
2458 	call_void_hook(key_free, key);
2459 }
2460 
2461 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2462 			    enum key_need_perm need_perm)
2463 {
2464 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2465 }
2466 
2467 int security_key_getsecurity(struct key *key, char **_buffer)
2468 {
2469 	*_buffer = NULL;
2470 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2471 }
2472 
2473 #endif	/* CONFIG_KEYS */
2474 
2475 #ifdef CONFIG_AUDIT
2476 
2477 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2478 {
2479 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2480 }
2481 
2482 int security_audit_rule_known(struct audit_krule *krule)
2483 {
2484 	return call_int_hook(audit_rule_known, 0, krule);
2485 }
2486 
2487 void security_audit_rule_free(void *lsmrule)
2488 {
2489 	call_void_hook(audit_rule_free, lsmrule);
2490 }
2491 
2492 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2493 {
2494 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2495 }
2496 #endif /* CONFIG_AUDIT */
2497 
2498 #ifdef CONFIG_BPF_SYSCALL
2499 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2500 {
2501 	return call_int_hook(bpf, 0, cmd, attr, size);
2502 }
2503 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2504 {
2505 	return call_int_hook(bpf_map, 0, map, fmode);
2506 }
2507 int security_bpf_prog(struct bpf_prog *prog)
2508 {
2509 	return call_int_hook(bpf_prog, 0, prog);
2510 }
2511 int security_bpf_map_alloc(struct bpf_map *map)
2512 {
2513 	return call_int_hook(bpf_map_alloc_security, 0, map);
2514 }
2515 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2516 {
2517 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2518 }
2519 void security_bpf_map_free(struct bpf_map *map)
2520 {
2521 	call_void_hook(bpf_map_free_security, map);
2522 }
2523 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2524 {
2525 	call_void_hook(bpf_prog_free_security, aux);
2526 }
2527 #endif /* CONFIG_BPF_SYSCALL */
2528 
2529 int security_locked_down(enum lockdown_reason what)
2530 {
2531 	return call_int_hook(locked_down, 0, what);
2532 }
2533 EXPORT_SYMBOL(security_locked_down);
2534 
2535 #ifdef CONFIG_PERF_EVENTS
2536 int security_perf_event_open(struct perf_event_attr *attr, int type)
2537 {
2538 	return call_int_hook(perf_event_open, 0, attr, type);
2539 }
2540 
2541 int security_perf_event_alloc(struct perf_event *event)
2542 {
2543 	return call_int_hook(perf_event_alloc, 0, event);
2544 }
2545 
2546 void security_perf_event_free(struct perf_event *event)
2547 {
2548 	call_void_hook(perf_event_free, event);
2549 }
2550 
2551 int security_perf_event_read(struct perf_event *event)
2552 {
2553 	return call_int_hook(perf_event_read, 0, event);
2554 }
2555 
2556 int security_perf_event_write(struct perf_event *event)
2557 {
2558 	return call_int_hook(perf_event_write, 0, event);
2559 }
2560 #endif /* CONFIG_PERF_EVENTS */
2561