1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/lsm_hooks.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/msg.h> 30 #include <net/flow.h> 31 32 #define MAX_LSM_EVM_XATTR 2 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info) 37 38 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 39 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 40 41 static struct kmem_cache *lsm_file_cache; 42 static struct kmem_cache *lsm_inode_cache; 43 44 char *lsm_names; 45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 46 47 /* Boot-time LSM user choice */ 48 static __initdata const char *chosen_lsm_order; 49 static __initdata const char *chosen_major_lsm; 50 51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 52 53 /* Ordered list of LSMs to initialize. */ 54 static __initdata struct lsm_info **ordered_lsms; 55 static __initdata struct lsm_info *exclusive; 56 57 static __initdata bool debug; 58 #define init_debug(...) \ 59 do { \ 60 if (debug) \ 61 pr_info(__VA_ARGS__); \ 62 } while (0) 63 64 static bool __init is_enabled(struct lsm_info *lsm) 65 { 66 if (!lsm->enabled) 67 return false; 68 69 return *lsm->enabled; 70 } 71 72 /* Mark an LSM's enabled flag. */ 73 static int lsm_enabled_true __initdata = 1; 74 static int lsm_enabled_false __initdata = 0; 75 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 76 { 77 /* 78 * When an LSM hasn't configured an enable variable, we can use 79 * a hard-coded location for storing the default enabled state. 80 */ 81 if (!lsm->enabled) { 82 if (enabled) 83 lsm->enabled = &lsm_enabled_true; 84 else 85 lsm->enabled = &lsm_enabled_false; 86 } else if (lsm->enabled == &lsm_enabled_true) { 87 if (!enabled) 88 lsm->enabled = &lsm_enabled_false; 89 } else if (lsm->enabled == &lsm_enabled_false) { 90 if (enabled) 91 lsm->enabled = &lsm_enabled_true; 92 } else { 93 *lsm->enabled = enabled; 94 } 95 } 96 97 /* Is an LSM already listed in the ordered LSMs list? */ 98 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 99 { 100 struct lsm_info **check; 101 102 for (check = ordered_lsms; *check; check++) 103 if (*check == lsm) 104 return true; 105 106 return false; 107 } 108 109 /* Append an LSM to the list of ordered LSMs to initialize. */ 110 static int last_lsm __initdata; 111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 112 { 113 /* Ignore duplicate selections. */ 114 if (exists_ordered_lsm(lsm)) 115 return; 116 117 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 118 return; 119 120 /* Enable this LSM, if it is not already set. */ 121 if (!lsm->enabled) 122 lsm->enabled = &lsm_enabled_true; 123 ordered_lsms[last_lsm++] = lsm; 124 125 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 126 is_enabled(lsm) ? "en" : "dis"); 127 } 128 129 /* Is an LSM allowed to be initialized? */ 130 static bool __init lsm_allowed(struct lsm_info *lsm) 131 { 132 /* Skip if the LSM is disabled. */ 133 if (!is_enabled(lsm)) 134 return false; 135 136 /* Not allowed if another exclusive LSM already initialized. */ 137 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 138 init_debug("exclusive disabled: %s\n", lsm->name); 139 return false; 140 } 141 142 return true; 143 } 144 145 static void __init lsm_set_blob_size(int *need, int *lbs) 146 { 147 int offset; 148 149 if (*need > 0) { 150 offset = *lbs; 151 *lbs += *need; 152 *need = offset; 153 } 154 } 155 156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 157 { 158 if (!needed) 159 return; 160 161 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 162 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 163 /* 164 * The inode blob gets an rcu_head in addition to 165 * what the modules might need. 166 */ 167 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 168 blob_sizes.lbs_inode = sizeof(struct rcu_head); 169 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 170 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 171 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 172 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 173 } 174 175 /* Prepare LSM for initialization. */ 176 static void __init prepare_lsm(struct lsm_info *lsm) 177 { 178 int enabled = lsm_allowed(lsm); 179 180 /* Record enablement (to handle any following exclusive LSMs). */ 181 set_enabled(lsm, enabled); 182 183 /* If enabled, do pre-initialization work. */ 184 if (enabled) { 185 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 186 exclusive = lsm; 187 init_debug("exclusive chosen: %s\n", lsm->name); 188 } 189 190 lsm_set_blob_sizes(lsm->blobs); 191 } 192 } 193 194 /* Initialize a given LSM, if it is enabled. */ 195 static void __init initialize_lsm(struct lsm_info *lsm) 196 { 197 if (is_enabled(lsm)) { 198 int ret; 199 200 init_debug("initializing %s\n", lsm->name); 201 ret = lsm->init(); 202 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 203 } 204 } 205 206 /* Populate ordered LSMs list from comma-separated LSM name list. */ 207 static void __init ordered_lsm_parse(const char *order, const char *origin) 208 { 209 struct lsm_info *lsm; 210 char *sep, *name, *next; 211 212 /* LSM_ORDER_FIRST is always first. */ 213 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 214 if (lsm->order == LSM_ORDER_FIRST) 215 append_ordered_lsm(lsm, "first"); 216 } 217 218 /* Process "security=", if given. */ 219 if (chosen_major_lsm) { 220 struct lsm_info *major; 221 222 /* 223 * To match the original "security=" behavior, this 224 * explicitly does NOT fallback to another Legacy Major 225 * if the selected one was separately disabled: disable 226 * all non-matching Legacy Major LSMs. 227 */ 228 for (major = __start_lsm_info; major < __end_lsm_info; 229 major++) { 230 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 231 strcmp(major->name, chosen_major_lsm) != 0) { 232 set_enabled(major, false); 233 init_debug("security=%s disabled: %s\n", 234 chosen_major_lsm, major->name); 235 } 236 } 237 } 238 239 sep = kstrdup(order, GFP_KERNEL); 240 next = sep; 241 /* Walk the list, looking for matching LSMs. */ 242 while ((name = strsep(&next, ",")) != NULL) { 243 bool found = false; 244 245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 246 if (lsm->order == LSM_ORDER_MUTABLE && 247 strcmp(lsm->name, name) == 0) { 248 append_ordered_lsm(lsm, origin); 249 found = true; 250 } 251 } 252 253 if (!found) 254 init_debug("%s ignored: %s\n", origin, name); 255 } 256 257 /* Process "security=", if given. */ 258 if (chosen_major_lsm) { 259 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 260 if (exists_ordered_lsm(lsm)) 261 continue; 262 if (strcmp(lsm->name, chosen_major_lsm) == 0) 263 append_ordered_lsm(lsm, "security="); 264 } 265 } 266 267 /* Disable all LSMs not in the ordered list. */ 268 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 269 if (exists_ordered_lsm(lsm)) 270 continue; 271 set_enabled(lsm, false); 272 init_debug("%s disabled: %s\n", origin, lsm->name); 273 } 274 275 kfree(sep); 276 } 277 278 static void __init lsm_early_cred(struct cred *cred); 279 static void __init lsm_early_task(struct task_struct *task); 280 281 static int lsm_append(const char *new, char **result); 282 283 static void __init ordered_lsm_init(void) 284 { 285 struct lsm_info **lsm; 286 287 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 288 GFP_KERNEL); 289 290 if (chosen_lsm_order) { 291 if (chosen_major_lsm) { 292 pr_info("security= is ignored because it is superseded by lsm=\n"); 293 chosen_major_lsm = NULL; 294 } 295 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 296 } else 297 ordered_lsm_parse(builtin_lsm_order, "builtin"); 298 299 for (lsm = ordered_lsms; *lsm; lsm++) 300 prepare_lsm(*lsm); 301 302 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 303 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 304 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 305 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 306 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 307 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 308 309 /* 310 * Create any kmem_caches needed for blobs 311 */ 312 if (blob_sizes.lbs_file) 313 lsm_file_cache = kmem_cache_create("lsm_file_cache", 314 blob_sizes.lbs_file, 0, 315 SLAB_PANIC, NULL); 316 if (blob_sizes.lbs_inode) 317 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 318 blob_sizes.lbs_inode, 0, 319 SLAB_PANIC, NULL); 320 321 lsm_early_cred((struct cred *) current->cred); 322 lsm_early_task(current); 323 for (lsm = ordered_lsms; *lsm; lsm++) 324 initialize_lsm(*lsm); 325 326 kfree(ordered_lsms); 327 } 328 329 int __init early_security_init(void) 330 { 331 int i; 332 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 333 struct lsm_info *lsm; 334 335 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 336 i++) 337 INIT_HLIST_HEAD(&list[i]); 338 339 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 340 if (!lsm->enabled) 341 lsm->enabled = &lsm_enabled_true; 342 prepare_lsm(lsm); 343 initialize_lsm(lsm); 344 } 345 346 return 0; 347 } 348 349 /** 350 * security_init - initializes the security framework 351 * 352 * This should be called early in the kernel initialization sequence. 353 */ 354 int __init security_init(void) 355 { 356 struct lsm_info *lsm; 357 358 pr_info("Security Framework initializing\n"); 359 360 /* 361 * Append the names of the early LSM modules now that kmalloc() is 362 * available 363 */ 364 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 365 if (lsm->enabled) 366 lsm_append(lsm->name, &lsm_names); 367 } 368 369 /* Load LSMs in specified order. */ 370 ordered_lsm_init(); 371 372 return 0; 373 } 374 375 /* Save user chosen LSM */ 376 static int __init choose_major_lsm(char *str) 377 { 378 chosen_major_lsm = str; 379 return 1; 380 } 381 __setup("security=", choose_major_lsm); 382 383 /* Explicitly choose LSM initialization order. */ 384 static int __init choose_lsm_order(char *str) 385 { 386 chosen_lsm_order = str; 387 return 1; 388 } 389 __setup("lsm=", choose_lsm_order); 390 391 /* Enable LSM order debugging. */ 392 static int __init enable_debug(char *str) 393 { 394 debug = true; 395 return 1; 396 } 397 __setup("lsm.debug", enable_debug); 398 399 static bool match_last_lsm(const char *list, const char *lsm) 400 { 401 const char *last; 402 403 if (WARN_ON(!list || !lsm)) 404 return false; 405 last = strrchr(list, ','); 406 if (last) 407 /* Pass the comma, strcmp() will check for '\0' */ 408 last++; 409 else 410 last = list; 411 return !strcmp(last, lsm); 412 } 413 414 static int lsm_append(const char *new, char **result) 415 { 416 char *cp; 417 418 if (*result == NULL) { 419 *result = kstrdup(new, GFP_KERNEL); 420 if (*result == NULL) 421 return -ENOMEM; 422 } else { 423 /* Check if it is the last registered name */ 424 if (match_last_lsm(*result, new)) 425 return 0; 426 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 427 if (cp == NULL) 428 return -ENOMEM; 429 kfree(*result); 430 *result = cp; 431 } 432 return 0; 433 } 434 435 /** 436 * security_add_hooks - Add a modules hooks to the hook lists. 437 * @hooks: the hooks to add 438 * @count: the number of hooks to add 439 * @lsm: the name of the security module 440 * 441 * Each LSM has to register its hooks with the infrastructure. 442 */ 443 void __init security_add_hooks(struct security_hook_list *hooks, int count, 444 char *lsm) 445 { 446 int i; 447 448 for (i = 0; i < count; i++) { 449 hooks[i].lsm = lsm; 450 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 451 } 452 453 /* 454 * Don't try to append during early_security_init(), we'll come back 455 * and fix this up afterwards. 456 */ 457 if (slab_is_available()) { 458 if (lsm_append(lsm, &lsm_names) < 0) 459 panic("%s - Cannot get early memory.\n", __func__); 460 } 461 } 462 463 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 464 { 465 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 466 event, data); 467 } 468 EXPORT_SYMBOL(call_blocking_lsm_notifier); 469 470 int register_blocking_lsm_notifier(struct notifier_block *nb) 471 { 472 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 473 nb); 474 } 475 EXPORT_SYMBOL(register_blocking_lsm_notifier); 476 477 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 478 { 479 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 480 nb); 481 } 482 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 483 484 /** 485 * lsm_cred_alloc - allocate a composite cred blob 486 * @cred: the cred that needs a blob 487 * @gfp: allocation type 488 * 489 * Allocate the cred blob for all the modules 490 * 491 * Returns 0, or -ENOMEM if memory can't be allocated. 492 */ 493 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 494 { 495 if (blob_sizes.lbs_cred == 0) { 496 cred->security = NULL; 497 return 0; 498 } 499 500 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 501 if (cred->security == NULL) 502 return -ENOMEM; 503 return 0; 504 } 505 506 /** 507 * lsm_early_cred - during initialization allocate a composite cred blob 508 * @cred: the cred that needs a blob 509 * 510 * Allocate the cred blob for all the modules 511 */ 512 static void __init lsm_early_cred(struct cred *cred) 513 { 514 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 515 516 if (rc) 517 panic("%s: Early cred alloc failed.\n", __func__); 518 } 519 520 /** 521 * lsm_file_alloc - allocate a composite file blob 522 * @file: the file that needs a blob 523 * 524 * Allocate the file blob for all the modules 525 * 526 * Returns 0, or -ENOMEM if memory can't be allocated. 527 */ 528 static int lsm_file_alloc(struct file *file) 529 { 530 if (!lsm_file_cache) { 531 file->f_security = NULL; 532 return 0; 533 } 534 535 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 536 if (file->f_security == NULL) 537 return -ENOMEM; 538 return 0; 539 } 540 541 /** 542 * lsm_inode_alloc - allocate a composite inode blob 543 * @inode: the inode that needs a blob 544 * 545 * Allocate the inode blob for all the modules 546 * 547 * Returns 0, or -ENOMEM if memory can't be allocated. 548 */ 549 int lsm_inode_alloc(struct inode *inode) 550 { 551 if (!lsm_inode_cache) { 552 inode->i_security = NULL; 553 return 0; 554 } 555 556 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 557 if (inode->i_security == NULL) 558 return -ENOMEM; 559 return 0; 560 } 561 562 /** 563 * lsm_task_alloc - allocate a composite task blob 564 * @task: the task that needs a blob 565 * 566 * Allocate the task blob for all the modules 567 * 568 * Returns 0, or -ENOMEM if memory can't be allocated. 569 */ 570 static int lsm_task_alloc(struct task_struct *task) 571 { 572 if (blob_sizes.lbs_task == 0) { 573 task->security = NULL; 574 return 0; 575 } 576 577 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 578 if (task->security == NULL) 579 return -ENOMEM; 580 return 0; 581 } 582 583 /** 584 * lsm_ipc_alloc - allocate a composite ipc blob 585 * @kip: the ipc that needs a blob 586 * 587 * Allocate the ipc blob for all the modules 588 * 589 * Returns 0, or -ENOMEM if memory can't be allocated. 590 */ 591 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 592 { 593 if (blob_sizes.lbs_ipc == 0) { 594 kip->security = NULL; 595 return 0; 596 } 597 598 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 599 if (kip->security == NULL) 600 return -ENOMEM; 601 return 0; 602 } 603 604 /** 605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 606 * @mp: the msg_msg that needs a blob 607 * 608 * Allocate the ipc blob for all the modules 609 * 610 * Returns 0, or -ENOMEM if memory can't be allocated. 611 */ 612 static int lsm_msg_msg_alloc(struct msg_msg *mp) 613 { 614 if (blob_sizes.lbs_msg_msg == 0) { 615 mp->security = NULL; 616 return 0; 617 } 618 619 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 620 if (mp->security == NULL) 621 return -ENOMEM; 622 return 0; 623 } 624 625 /** 626 * lsm_early_task - during initialization allocate a composite task blob 627 * @task: the task that needs a blob 628 * 629 * Allocate the task blob for all the modules 630 */ 631 static void __init lsm_early_task(struct task_struct *task) 632 { 633 int rc = lsm_task_alloc(task); 634 635 if (rc) 636 panic("%s: Early task alloc failed.\n", __func__); 637 } 638 639 /* 640 * Hook list operation macros. 641 * 642 * call_void_hook: 643 * This is a hook that does not return a value. 644 * 645 * call_int_hook: 646 * This is a hook that returns a value. 647 */ 648 649 #define call_void_hook(FUNC, ...) \ 650 do { \ 651 struct security_hook_list *P; \ 652 \ 653 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 654 P->hook.FUNC(__VA_ARGS__); \ 655 } while (0) 656 657 #define call_int_hook(FUNC, IRC, ...) ({ \ 658 int RC = IRC; \ 659 do { \ 660 struct security_hook_list *P; \ 661 \ 662 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 663 RC = P->hook.FUNC(__VA_ARGS__); \ 664 if (RC != 0) \ 665 break; \ 666 } \ 667 } while (0); \ 668 RC; \ 669 }) 670 671 /* Security operations */ 672 673 int security_binder_set_context_mgr(struct task_struct *mgr) 674 { 675 return call_int_hook(binder_set_context_mgr, 0, mgr); 676 } 677 678 int security_binder_transaction(struct task_struct *from, 679 struct task_struct *to) 680 { 681 return call_int_hook(binder_transaction, 0, from, to); 682 } 683 684 int security_binder_transfer_binder(struct task_struct *from, 685 struct task_struct *to) 686 { 687 return call_int_hook(binder_transfer_binder, 0, from, to); 688 } 689 690 int security_binder_transfer_file(struct task_struct *from, 691 struct task_struct *to, struct file *file) 692 { 693 return call_int_hook(binder_transfer_file, 0, from, to, file); 694 } 695 696 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 697 { 698 return call_int_hook(ptrace_access_check, 0, child, mode); 699 } 700 701 int security_ptrace_traceme(struct task_struct *parent) 702 { 703 return call_int_hook(ptrace_traceme, 0, parent); 704 } 705 706 int security_capget(struct task_struct *target, 707 kernel_cap_t *effective, 708 kernel_cap_t *inheritable, 709 kernel_cap_t *permitted) 710 { 711 return call_int_hook(capget, 0, target, 712 effective, inheritable, permitted); 713 } 714 715 int security_capset(struct cred *new, const struct cred *old, 716 const kernel_cap_t *effective, 717 const kernel_cap_t *inheritable, 718 const kernel_cap_t *permitted) 719 { 720 return call_int_hook(capset, 0, new, old, 721 effective, inheritable, permitted); 722 } 723 724 int security_capable(const struct cred *cred, 725 struct user_namespace *ns, 726 int cap, 727 unsigned int opts) 728 { 729 return call_int_hook(capable, 0, cred, ns, cap, opts); 730 } 731 732 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 733 { 734 return call_int_hook(quotactl, 0, cmds, type, id, sb); 735 } 736 737 int security_quota_on(struct dentry *dentry) 738 { 739 return call_int_hook(quota_on, 0, dentry); 740 } 741 742 int security_syslog(int type) 743 { 744 return call_int_hook(syslog, 0, type); 745 } 746 747 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 748 { 749 return call_int_hook(settime, 0, ts, tz); 750 } 751 752 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 753 { 754 struct security_hook_list *hp; 755 int cap_sys_admin = 1; 756 int rc; 757 758 /* 759 * The module will respond with a positive value if 760 * it thinks the __vm_enough_memory() call should be 761 * made with the cap_sys_admin set. If all of the modules 762 * agree that it should be set it will. If any module 763 * thinks it should not be set it won't. 764 */ 765 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 766 rc = hp->hook.vm_enough_memory(mm, pages); 767 if (rc <= 0) { 768 cap_sys_admin = 0; 769 break; 770 } 771 } 772 return __vm_enough_memory(mm, pages, cap_sys_admin); 773 } 774 775 int security_bprm_set_creds(struct linux_binprm *bprm) 776 { 777 return call_int_hook(bprm_set_creds, 0, bprm); 778 } 779 780 int security_bprm_check(struct linux_binprm *bprm) 781 { 782 int ret; 783 784 ret = call_int_hook(bprm_check_security, 0, bprm); 785 if (ret) 786 return ret; 787 return ima_bprm_check(bprm); 788 } 789 790 void security_bprm_committing_creds(struct linux_binprm *bprm) 791 { 792 call_void_hook(bprm_committing_creds, bprm); 793 } 794 795 void security_bprm_committed_creds(struct linux_binprm *bprm) 796 { 797 call_void_hook(bprm_committed_creds, bprm); 798 } 799 800 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 801 { 802 return call_int_hook(fs_context_dup, 0, fc, src_fc); 803 } 804 805 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 806 { 807 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 808 } 809 810 int security_sb_alloc(struct super_block *sb) 811 { 812 return call_int_hook(sb_alloc_security, 0, sb); 813 } 814 815 void security_sb_free(struct super_block *sb) 816 { 817 call_void_hook(sb_free_security, sb); 818 } 819 820 void security_free_mnt_opts(void **mnt_opts) 821 { 822 if (!*mnt_opts) 823 return; 824 call_void_hook(sb_free_mnt_opts, *mnt_opts); 825 *mnt_opts = NULL; 826 } 827 EXPORT_SYMBOL(security_free_mnt_opts); 828 829 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 830 { 831 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 832 } 833 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 834 835 int security_sb_remount(struct super_block *sb, 836 void *mnt_opts) 837 { 838 return call_int_hook(sb_remount, 0, sb, mnt_opts); 839 } 840 EXPORT_SYMBOL(security_sb_remount); 841 842 int security_sb_kern_mount(struct super_block *sb) 843 { 844 return call_int_hook(sb_kern_mount, 0, sb); 845 } 846 847 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 848 { 849 return call_int_hook(sb_show_options, 0, m, sb); 850 } 851 852 int security_sb_statfs(struct dentry *dentry) 853 { 854 return call_int_hook(sb_statfs, 0, dentry); 855 } 856 857 int security_sb_mount(const char *dev_name, const struct path *path, 858 const char *type, unsigned long flags, void *data) 859 { 860 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 861 } 862 863 int security_sb_umount(struct vfsmount *mnt, int flags) 864 { 865 return call_int_hook(sb_umount, 0, mnt, flags); 866 } 867 868 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 869 { 870 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 871 } 872 873 int security_sb_set_mnt_opts(struct super_block *sb, 874 void *mnt_opts, 875 unsigned long kern_flags, 876 unsigned long *set_kern_flags) 877 { 878 return call_int_hook(sb_set_mnt_opts, 879 mnt_opts ? -EOPNOTSUPP : 0, sb, 880 mnt_opts, kern_flags, set_kern_flags); 881 } 882 EXPORT_SYMBOL(security_sb_set_mnt_opts); 883 884 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 885 struct super_block *newsb, 886 unsigned long kern_flags, 887 unsigned long *set_kern_flags) 888 { 889 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 890 kern_flags, set_kern_flags); 891 } 892 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 893 894 int security_add_mnt_opt(const char *option, const char *val, int len, 895 void **mnt_opts) 896 { 897 return call_int_hook(sb_add_mnt_opt, -EINVAL, 898 option, val, len, mnt_opts); 899 } 900 EXPORT_SYMBOL(security_add_mnt_opt); 901 902 int security_move_mount(const struct path *from_path, const struct path *to_path) 903 { 904 return call_int_hook(move_mount, 0, from_path, to_path); 905 } 906 907 int security_path_notify(const struct path *path, u64 mask, 908 unsigned int obj_type) 909 { 910 return call_int_hook(path_notify, 0, path, mask, obj_type); 911 } 912 913 int security_inode_alloc(struct inode *inode) 914 { 915 int rc = lsm_inode_alloc(inode); 916 917 if (unlikely(rc)) 918 return rc; 919 rc = call_int_hook(inode_alloc_security, 0, inode); 920 if (unlikely(rc)) 921 security_inode_free(inode); 922 return rc; 923 } 924 925 static void inode_free_by_rcu(struct rcu_head *head) 926 { 927 /* 928 * The rcu head is at the start of the inode blob 929 */ 930 kmem_cache_free(lsm_inode_cache, head); 931 } 932 933 void security_inode_free(struct inode *inode) 934 { 935 integrity_inode_free(inode); 936 call_void_hook(inode_free_security, inode); 937 /* 938 * The inode may still be referenced in a path walk and 939 * a call to security_inode_permission() can be made 940 * after inode_free_security() is called. Ideally, the VFS 941 * wouldn't do this, but fixing that is a much harder 942 * job. For now, simply free the i_security via RCU, and 943 * leave the current inode->i_security pointer intact. 944 * The inode will be freed after the RCU grace period too. 945 */ 946 if (inode->i_security) 947 call_rcu((struct rcu_head *)inode->i_security, 948 inode_free_by_rcu); 949 } 950 951 int security_dentry_init_security(struct dentry *dentry, int mode, 952 const struct qstr *name, void **ctx, 953 u32 *ctxlen) 954 { 955 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 956 name, ctx, ctxlen); 957 } 958 EXPORT_SYMBOL(security_dentry_init_security); 959 960 int security_dentry_create_files_as(struct dentry *dentry, int mode, 961 struct qstr *name, 962 const struct cred *old, struct cred *new) 963 { 964 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 965 name, old, new); 966 } 967 EXPORT_SYMBOL(security_dentry_create_files_as); 968 969 int security_inode_init_security(struct inode *inode, struct inode *dir, 970 const struct qstr *qstr, 971 const initxattrs initxattrs, void *fs_data) 972 { 973 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 974 struct xattr *lsm_xattr, *evm_xattr, *xattr; 975 int ret; 976 977 if (unlikely(IS_PRIVATE(inode))) 978 return 0; 979 980 if (!initxattrs) 981 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 982 dir, qstr, NULL, NULL, NULL); 983 memset(new_xattrs, 0, sizeof(new_xattrs)); 984 lsm_xattr = new_xattrs; 985 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 986 &lsm_xattr->name, 987 &lsm_xattr->value, 988 &lsm_xattr->value_len); 989 if (ret) 990 goto out; 991 992 evm_xattr = lsm_xattr + 1; 993 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 994 if (ret) 995 goto out; 996 ret = initxattrs(inode, new_xattrs, fs_data); 997 out: 998 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 999 kfree(xattr->value); 1000 return (ret == -EOPNOTSUPP) ? 0 : ret; 1001 } 1002 EXPORT_SYMBOL(security_inode_init_security); 1003 1004 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1005 const struct qstr *qstr, const char **name, 1006 void **value, size_t *len) 1007 { 1008 if (unlikely(IS_PRIVATE(inode))) 1009 return -EOPNOTSUPP; 1010 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1011 qstr, name, value, len); 1012 } 1013 EXPORT_SYMBOL(security_old_inode_init_security); 1014 1015 #ifdef CONFIG_SECURITY_PATH 1016 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1017 unsigned int dev) 1018 { 1019 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1020 return 0; 1021 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1022 } 1023 EXPORT_SYMBOL(security_path_mknod); 1024 1025 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1026 { 1027 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1028 return 0; 1029 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1030 } 1031 EXPORT_SYMBOL(security_path_mkdir); 1032 1033 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1034 { 1035 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1036 return 0; 1037 return call_int_hook(path_rmdir, 0, dir, dentry); 1038 } 1039 1040 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1041 { 1042 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1043 return 0; 1044 return call_int_hook(path_unlink, 0, dir, dentry); 1045 } 1046 EXPORT_SYMBOL(security_path_unlink); 1047 1048 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1049 const char *old_name) 1050 { 1051 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1052 return 0; 1053 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1054 } 1055 1056 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1057 struct dentry *new_dentry) 1058 { 1059 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1060 return 0; 1061 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1062 } 1063 1064 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1065 const struct path *new_dir, struct dentry *new_dentry, 1066 unsigned int flags) 1067 { 1068 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1069 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1070 return 0; 1071 1072 if (flags & RENAME_EXCHANGE) { 1073 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1074 old_dir, old_dentry); 1075 if (err) 1076 return err; 1077 } 1078 1079 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1080 new_dentry); 1081 } 1082 EXPORT_SYMBOL(security_path_rename); 1083 1084 int security_path_truncate(const struct path *path) 1085 { 1086 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1087 return 0; 1088 return call_int_hook(path_truncate, 0, path); 1089 } 1090 1091 int security_path_chmod(const struct path *path, umode_t mode) 1092 { 1093 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1094 return 0; 1095 return call_int_hook(path_chmod, 0, path, mode); 1096 } 1097 1098 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1099 { 1100 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1101 return 0; 1102 return call_int_hook(path_chown, 0, path, uid, gid); 1103 } 1104 1105 int security_path_chroot(const struct path *path) 1106 { 1107 return call_int_hook(path_chroot, 0, path); 1108 } 1109 #endif 1110 1111 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1112 { 1113 if (unlikely(IS_PRIVATE(dir))) 1114 return 0; 1115 return call_int_hook(inode_create, 0, dir, dentry, mode); 1116 } 1117 EXPORT_SYMBOL_GPL(security_inode_create); 1118 1119 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1120 struct dentry *new_dentry) 1121 { 1122 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1123 return 0; 1124 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1125 } 1126 1127 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1128 { 1129 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1130 return 0; 1131 return call_int_hook(inode_unlink, 0, dir, dentry); 1132 } 1133 1134 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1135 const char *old_name) 1136 { 1137 if (unlikely(IS_PRIVATE(dir))) 1138 return 0; 1139 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1140 } 1141 1142 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1143 { 1144 if (unlikely(IS_PRIVATE(dir))) 1145 return 0; 1146 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1147 } 1148 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1149 1150 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1151 { 1152 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1153 return 0; 1154 return call_int_hook(inode_rmdir, 0, dir, dentry); 1155 } 1156 1157 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1158 { 1159 if (unlikely(IS_PRIVATE(dir))) 1160 return 0; 1161 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1162 } 1163 1164 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1165 struct inode *new_dir, struct dentry *new_dentry, 1166 unsigned int flags) 1167 { 1168 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1169 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1170 return 0; 1171 1172 if (flags & RENAME_EXCHANGE) { 1173 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1174 old_dir, old_dentry); 1175 if (err) 1176 return err; 1177 } 1178 1179 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1180 new_dir, new_dentry); 1181 } 1182 1183 int security_inode_readlink(struct dentry *dentry) 1184 { 1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1186 return 0; 1187 return call_int_hook(inode_readlink, 0, dentry); 1188 } 1189 1190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1191 bool rcu) 1192 { 1193 if (unlikely(IS_PRIVATE(inode))) 1194 return 0; 1195 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1196 } 1197 1198 int security_inode_permission(struct inode *inode, int mask) 1199 { 1200 if (unlikely(IS_PRIVATE(inode))) 1201 return 0; 1202 return call_int_hook(inode_permission, 0, inode, mask); 1203 } 1204 1205 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1206 { 1207 int ret; 1208 1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1210 return 0; 1211 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1212 if (ret) 1213 return ret; 1214 return evm_inode_setattr(dentry, attr); 1215 } 1216 EXPORT_SYMBOL_GPL(security_inode_setattr); 1217 1218 int security_inode_getattr(const struct path *path) 1219 { 1220 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1221 return 0; 1222 return call_int_hook(inode_getattr, 0, path); 1223 } 1224 1225 int security_inode_setxattr(struct dentry *dentry, const char *name, 1226 const void *value, size_t size, int flags) 1227 { 1228 int ret; 1229 1230 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1231 return 0; 1232 /* 1233 * SELinux and Smack integrate the cap call, 1234 * so assume that all LSMs supplying this call do so. 1235 */ 1236 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1237 flags); 1238 1239 if (ret == 1) 1240 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1241 if (ret) 1242 return ret; 1243 ret = ima_inode_setxattr(dentry, name, value, size); 1244 if (ret) 1245 return ret; 1246 return evm_inode_setxattr(dentry, name, value, size); 1247 } 1248 1249 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1250 const void *value, size_t size, int flags) 1251 { 1252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1253 return; 1254 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1255 evm_inode_post_setxattr(dentry, name, value, size); 1256 } 1257 1258 int security_inode_getxattr(struct dentry *dentry, const char *name) 1259 { 1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1261 return 0; 1262 return call_int_hook(inode_getxattr, 0, dentry, name); 1263 } 1264 1265 int security_inode_listxattr(struct dentry *dentry) 1266 { 1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1268 return 0; 1269 return call_int_hook(inode_listxattr, 0, dentry); 1270 } 1271 1272 int security_inode_removexattr(struct dentry *dentry, const char *name) 1273 { 1274 int ret; 1275 1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1277 return 0; 1278 /* 1279 * SELinux and Smack integrate the cap call, 1280 * so assume that all LSMs supplying this call do so. 1281 */ 1282 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1283 if (ret == 1) 1284 ret = cap_inode_removexattr(dentry, name); 1285 if (ret) 1286 return ret; 1287 ret = ima_inode_removexattr(dentry, name); 1288 if (ret) 1289 return ret; 1290 return evm_inode_removexattr(dentry, name); 1291 } 1292 1293 int security_inode_need_killpriv(struct dentry *dentry) 1294 { 1295 return call_int_hook(inode_need_killpriv, 0, dentry); 1296 } 1297 1298 int security_inode_killpriv(struct dentry *dentry) 1299 { 1300 return call_int_hook(inode_killpriv, 0, dentry); 1301 } 1302 1303 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1304 { 1305 struct security_hook_list *hp; 1306 int rc; 1307 1308 if (unlikely(IS_PRIVATE(inode))) 1309 return -EOPNOTSUPP; 1310 /* 1311 * Only one module will provide an attribute with a given name. 1312 */ 1313 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1314 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1315 if (rc != -EOPNOTSUPP) 1316 return rc; 1317 } 1318 return -EOPNOTSUPP; 1319 } 1320 1321 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1322 { 1323 struct security_hook_list *hp; 1324 int rc; 1325 1326 if (unlikely(IS_PRIVATE(inode))) 1327 return -EOPNOTSUPP; 1328 /* 1329 * Only one module will provide an attribute with a given name. 1330 */ 1331 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1332 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1333 flags); 1334 if (rc != -EOPNOTSUPP) 1335 return rc; 1336 } 1337 return -EOPNOTSUPP; 1338 } 1339 1340 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1341 { 1342 if (unlikely(IS_PRIVATE(inode))) 1343 return 0; 1344 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1345 } 1346 EXPORT_SYMBOL(security_inode_listsecurity); 1347 1348 void security_inode_getsecid(struct inode *inode, u32 *secid) 1349 { 1350 call_void_hook(inode_getsecid, inode, secid); 1351 } 1352 1353 int security_inode_copy_up(struct dentry *src, struct cred **new) 1354 { 1355 return call_int_hook(inode_copy_up, 0, src, new); 1356 } 1357 EXPORT_SYMBOL(security_inode_copy_up); 1358 1359 int security_inode_copy_up_xattr(const char *name) 1360 { 1361 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1362 } 1363 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1364 1365 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1366 struct kernfs_node *kn) 1367 { 1368 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1369 } 1370 1371 int security_file_permission(struct file *file, int mask) 1372 { 1373 int ret; 1374 1375 ret = call_int_hook(file_permission, 0, file, mask); 1376 if (ret) 1377 return ret; 1378 1379 return fsnotify_perm(file, mask); 1380 } 1381 1382 int security_file_alloc(struct file *file) 1383 { 1384 int rc = lsm_file_alloc(file); 1385 1386 if (rc) 1387 return rc; 1388 rc = call_int_hook(file_alloc_security, 0, file); 1389 if (unlikely(rc)) 1390 security_file_free(file); 1391 return rc; 1392 } 1393 1394 void security_file_free(struct file *file) 1395 { 1396 void *blob; 1397 1398 call_void_hook(file_free_security, file); 1399 1400 blob = file->f_security; 1401 if (blob) { 1402 file->f_security = NULL; 1403 kmem_cache_free(lsm_file_cache, blob); 1404 } 1405 } 1406 1407 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1408 { 1409 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1410 } 1411 1412 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1413 { 1414 /* 1415 * Does we have PROT_READ and does the application expect 1416 * it to imply PROT_EXEC? If not, nothing to talk about... 1417 */ 1418 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1419 return prot; 1420 if (!(current->personality & READ_IMPLIES_EXEC)) 1421 return prot; 1422 /* 1423 * if that's an anonymous mapping, let it. 1424 */ 1425 if (!file) 1426 return prot | PROT_EXEC; 1427 /* 1428 * ditto if it's not on noexec mount, except that on !MMU we need 1429 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1430 */ 1431 if (!path_noexec(&file->f_path)) { 1432 #ifndef CONFIG_MMU 1433 if (file->f_op->mmap_capabilities) { 1434 unsigned caps = file->f_op->mmap_capabilities(file); 1435 if (!(caps & NOMMU_MAP_EXEC)) 1436 return prot; 1437 } 1438 #endif 1439 return prot | PROT_EXEC; 1440 } 1441 /* anything on noexec mount won't get PROT_EXEC */ 1442 return prot; 1443 } 1444 1445 int security_mmap_file(struct file *file, unsigned long prot, 1446 unsigned long flags) 1447 { 1448 int ret; 1449 ret = call_int_hook(mmap_file, 0, file, prot, 1450 mmap_prot(file, prot), flags); 1451 if (ret) 1452 return ret; 1453 return ima_file_mmap(file, prot); 1454 } 1455 1456 int security_mmap_addr(unsigned long addr) 1457 { 1458 return call_int_hook(mmap_addr, 0, addr); 1459 } 1460 1461 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1462 unsigned long prot) 1463 { 1464 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1465 } 1466 1467 int security_file_lock(struct file *file, unsigned int cmd) 1468 { 1469 return call_int_hook(file_lock, 0, file, cmd); 1470 } 1471 1472 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1473 { 1474 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1475 } 1476 1477 void security_file_set_fowner(struct file *file) 1478 { 1479 call_void_hook(file_set_fowner, file); 1480 } 1481 1482 int security_file_send_sigiotask(struct task_struct *tsk, 1483 struct fown_struct *fown, int sig) 1484 { 1485 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1486 } 1487 1488 int security_file_receive(struct file *file) 1489 { 1490 return call_int_hook(file_receive, 0, file); 1491 } 1492 1493 int security_file_open(struct file *file) 1494 { 1495 int ret; 1496 1497 ret = call_int_hook(file_open, 0, file); 1498 if (ret) 1499 return ret; 1500 1501 return fsnotify_perm(file, MAY_OPEN); 1502 } 1503 1504 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1505 { 1506 int rc = lsm_task_alloc(task); 1507 1508 if (rc) 1509 return rc; 1510 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1511 if (unlikely(rc)) 1512 security_task_free(task); 1513 return rc; 1514 } 1515 1516 void security_task_free(struct task_struct *task) 1517 { 1518 call_void_hook(task_free, task); 1519 1520 kfree(task->security); 1521 task->security = NULL; 1522 } 1523 1524 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1525 { 1526 int rc = lsm_cred_alloc(cred, gfp); 1527 1528 if (rc) 1529 return rc; 1530 1531 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1532 if (unlikely(rc)) 1533 security_cred_free(cred); 1534 return rc; 1535 } 1536 1537 void security_cred_free(struct cred *cred) 1538 { 1539 /* 1540 * There is a failure case in prepare_creds() that 1541 * may result in a call here with ->security being NULL. 1542 */ 1543 if (unlikely(cred->security == NULL)) 1544 return; 1545 1546 call_void_hook(cred_free, cred); 1547 1548 kfree(cred->security); 1549 cred->security = NULL; 1550 } 1551 1552 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1553 { 1554 int rc = lsm_cred_alloc(new, gfp); 1555 1556 if (rc) 1557 return rc; 1558 1559 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1560 if (unlikely(rc)) 1561 security_cred_free(new); 1562 return rc; 1563 } 1564 1565 void security_transfer_creds(struct cred *new, const struct cred *old) 1566 { 1567 call_void_hook(cred_transfer, new, old); 1568 } 1569 1570 void security_cred_getsecid(const struct cred *c, u32 *secid) 1571 { 1572 *secid = 0; 1573 call_void_hook(cred_getsecid, c, secid); 1574 } 1575 EXPORT_SYMBOL(security_cred_getsecid); 1576 1577 int security_kernel_act_as(struct cred *new, u32 secid) 1578 { 1579 return call_int_hook(kernel_act_as, 0, new, secid); 1580 } 1581 1582 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1583 { 1584 return call_int_hook(kernel_create_files_as, 0, new, inode); 1585 } 1586 1587 int security_kernel_module_request(char *kmod_name) 1588 { 1589 int ret; 1590 1591 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1592 if (ret) 1593 return ret; 1594 return integrity_kernel_module_request(kmod_name); 1595 } 1596 1597 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1598 { 1599 int ret; 1600 1601 ret = call_int_hook(kernel_read_file, 0, file, id); 1602 if (ret) 1603 return ret; 1604 return ima_read_file(file, id); 1605 } 1606 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1607 1608 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1609 enum kernel_read_file_id id) 1610 { 1611 int ret; 1612 1613 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1614 if (ret) 1615 return ret; 1616 return ima_post_read_file(file, buf, size, id); 1617 } 1618 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1619 1620 int security_kernel_load_data(enum kernel_load_data_id id) 1621 { 1622 int ret; 1623 1624 ret = call_int_hook(kernel_load_data, 0, id); 1625 if (ret) 1626 return ret; 1627 return ima_load_data(id); 1628 } 1629 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1630 1631 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1632 int flags) 1633 { 1634 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1635 } 1636 1637 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1638 { 1639 return call_int_hook(task_setpgid, 0, p, pgid); 1640 } 1641 1642 int security_task_getpgid(struct task_struct *p) 1643 { 1644 return call_int_hook(task_getpgid, 0, p); 1645 } 1646 1647 int security_task_getsid(struct task_struct *p) 1648 { 1649 return call_int_hook(task_getsid, 0, p); 1650 } 1651 1652 void security_task_getsecid(struct task_struct *p, u32 *secid) 1653 { 1654 *secid = 0; 1655 call_void_hook(task_getsecid, p, secid); 1656 } 1657 EXPORT_SYMBOL(security_task_getsecid); 1658 1659 int security_task_setnice(struct task_struct *p, int nice) 1660 { 1661 return call_int_hook(task_setnice, 0, p, nice); 1662 } 1663 1664 int security_task_setioprio(struct task_struct *p, int ioprio) 1665 { 1666 return call_int_hook(task_setioprio, 0, p, ioprio); 1667 } 1668 1669 int security_task_getioprio(struct task_struct *p) 1670 { 1671 return call_int_hook(task_getioprio, 0, p); 1672 } 1673 1674 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1675 unsigned int flags) 1676 { 1677 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1678 } 1679 1680 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1681 struct rlimit *new_rlim) 1682 { 1683 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1684 } 1685 1686 int security_task_setscheduler(struct task_struct *p) 1687 { 1688 return call_int_hook(task_setscheduler, 0, p); 1689 } 1690 1691 int security_task_getscheduler(struct task_struct *p) 1692 { 1693 return call_int_hook(task_getscheduler, 0, p); 1694 } 1695 1696 int security_task_movememory(struct task_struct *p) 1697 { 1698 return call_int_hook(task_movememory, 0, p); 1699 } 1700 1701 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1702 int sig, const struct cred *cred) 1703 { 1704 return call_int_hook(task_kill, 0, p, info, sig, cred); 1705 } 1706 1707 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1708 unsigned long arg4, unsigned long arg5) 1709 { 1710 int thisrc; 1711 int rc = -ENOSYS; 1712 struct security_hook_list *hp; 1713 1714 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1715 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1716 if (thisrc != -ENOSYS) { 1717 rc = thisrc; 1718 if (thisrc != 0) 1719 break; 1720 } 1721 } 1722 return rc; 1723 } 1724 1725 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1726 { 1727 call_void_hook(task_to_inode, p, inode); 1728 } 1729 1730 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1731 { 1732 return call_int_hook(ipc_permission, 0, ipcp, flag); 1733 } 1734 1735 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1736 { 1737 *secid = 0; 1738 call_void_hook(ipc_getsecid, ipcp, secid); 1739 } 1740 1741 int security_msg_msg_alloc(struct msg_msg *msg) 1742 { 1743 int rc = lsm_msg_msg_alloc(msg); 1744 1745 if (unlikely(rc)) 1746 return rc; 1747 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1748 if (unlikely(rc)) 1749 security_msg_msg_free(msg); 1750 return rc; 1751 } 1752 1753 void security_msg_msg_free(struct msg_msg *msg) 1754 { 1755 call_void_hook(msg_msg_free_security, msg); 1756 kfree(msg->security); 1757 msg->security = NULL; 1758 } 1759 1760 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1761 { 1762 int rc = lsm_ipc_alloc(msq); 1763 1764 if (unlikely(rc)) 1765 return rc; 1766 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1767 if (unlikely(rc)) 1768 security_msg_queue_free(msq); 1769 return rc; 1770 } 1771 1772 void security_msg_queue_free(struct kern_ipc_perm *msq) 1773 { 1774 call_void_hook(msg_queue_free_security, msq); 1775 kfree(msq->security); 1776 msq->security = NULL; 1777 } 1778 1779 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1780 { 1781 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1782 } 1783 1784 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1785 { 1786 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1787 } 1788 1789 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1790 struct msg_msg *msg, int msqflg) 1791 { 1792 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1793 } 1794 1795 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1796 struct task_struct *target, long type, int mode) 1797 { 1798 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1799 } 1800 1801 int security_shm_alloc(struct kern_ipc_perm *shp) 1802 { 1803 int rc = lsm_ipc_alloc(shp); 1804 1805 if (unlikely(rc)) 1806 return rc; 1807 rc = call_int_hook(shm_alloc_security, 0, shp); 1808 if (unlikely(rc)) 1809 security_shm_free(shp); 1810 return rc; 1811 } 1812 1813 void security_shm_free(struct kern_ipc_perm *shp) 1814 { 1815 call_void_hook(shm_free_security, shp); 1816 kfree(shp->security); 1817 shp->security = NULL; 1818 } 1819 1820 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1821 { 1822 return call_int_hook(shm_associate, 0, shp, shmflg); 1823 } 1824 1825 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1826 { 1827 return call_int_hook(shm_shmctl, 0, shp, cmd); 1828 } 1829 1830 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1831 { 1832 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1833 } 1834 1835 int security_sem_alloc(struct kern_ipc_perm *sma) 1836 { 1837 int rc = lsm_ipc_alloc(sma); 1838 1839 if (unlikely(rc)) 1840 return rc; 1841 rc = call_int_hook(sem_alloc_security, 0, sma); 1842 if (unlikely(rc)) 1843 security_sem_free(sma); 1844 return rc; 1845 } 1846 1847 void security_sem_free(struct kern_ipc_perm *sma) 1848 { 1849 call_void_hook(sem_free_security, sma); 1850 kfree(sma->security); 1851 sma->security = NULL; 1852 } 1853 1854 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1855 { 1856 return call_int_hook(sem_associate, 0, sma, semflg); 1857 } 1858 1859 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1860 { 1861 return call_int_hook(sem_semctl, 0, sma, cmd); 1862 } 1863 1864 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1865 unsigned nsops, int alter) 1866 { 1867 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1868 } 1869 1870 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1871 { 1872 if (unlikely(inode && IS_PRIVATE(inode))) 1873 return; 1874 call_void_hook(d_instantiate, dentry, inode); 1875 } 1876 EXPORT_SYMBOL(security_d_instantiate); 1877 1878 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1879 char **value) 1880 { 1881 struct security_hook_list *hp; 1882 1883 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1884 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1885 continue; 1886 return hp->hook.getprocattr(p, name, value); 1887 } 1888 return -EINVAL; 1889 } 1890 1891 int security_setprocattr(const char *lsm, const char *name, void *value, 1892 size_t size) 1893 { 1894 struct security_hook_list *hp; 1895 1896 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1897 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1898 continue; 1899 return hp->hook.setprocattr(name, value, size); 1900 } 1901 return -EINVAL; 1902 } 1903 1904 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1905 { 1906 return call_int_hook(netlink_send, 0, sk, skb); 1907 } 1908 1909 int security_ismaclabel(const char *name) 1910 { 1911 return call_int_hook(ismaclabel, 0, name); 1912 } 1913 EXPORT_SYMBOL(security_ismaclabel); 1914 1915 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1916 { 1917 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1918 seclen); 1919 } 1920 EXPORT_SYMBOL(security_secid_to_secctx); 1921 1922 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1923 { 1924 *secid = 0; 1925 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1926 } 1927 EXPORT_SYMBOL(security_secctx_to_secid); 1928 1929 void security_release_secctx(char *secdata, u32 seclen) 1930 { 1931 call_void_hook(release_secctx, secdata, seclen); 1932 } 1933 EXPORT_SYMBOL(security_release_secctx); 1934 1935 void security_inode_invalidate_secctx(struct inode *inode) 1936 { 1937 call_void_hook(inode_invalidate_secctx, inode); 1938 } 1939 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1940 1941 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1942 { 1943 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1944 } 1945 EXPORT_SYMBOL(security_inode_notifysecctx); 1946 1947 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1948 { 1949 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1950 } 1951 EXPORT_SYMBOL(security_inode_setsecctx); 1952 1953 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1954 { 1955 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1956 } 1957 EXPORT_SYMBOL(security_inode_getsecctx); 1958 1959 #ifdef CONFIG_SECURITY_NETWORK 1960 1961 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1962 { 1963 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1964 } 1965 EXPORT_SYMBOL(security_unix_stream_connect); 1966 1967 int security_unix_may_send(struct socket *sock, struct socket *other) 1968 { 1969 return call_int_hook(unix_may_send, 0, sock, other); 1970 } 1971 EXPORT_SYMBOL(security_unix_may_send); 1972 1973 int security_socket_create(int family, int type, int protocol, int kern) 1974 { 1975 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1976 } 1977 1978 int security_socket_post_create(struct socket *sock, int family, 1979 int type, int protocol, int kern) 1980 { 1981 return call_int_hook(socket_post_create, 0, sock, family, type, 1982 protocol, kern); 1983 } 1984 1985 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1986 { 1987 return call_int_hook(socket_socketpair, 0, socka, sockb); 1988 } 1989 EXPORT_SYMBOL(security_socket_socketpair); 1990 1991 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1992 { 1993 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1994 } 1995 1996 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1997 { 1998 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1999 } 2000 2001 int security_socket_listen(struct socket *sock, int backlog) 2002 { 2003 return call_int_hook(socket_listen, 0, sock, backlog); 2004 } 2005 2006 int security_socket_accept(struct socket *sock, struct socket *newsock) 2007 { 2008 return call_int_hook(socket_accept, 0, sock, newsock); 2009 } 2010 2011 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2012 { 2013 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2014 } 2015 2016 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2017 int size, int flags) 2018 { 2019 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2020 } 2021 2022 int security_socket_getsockname(struct socket *sock) 2023 { 2024 return call_int_hook(socket_getsockname, 0, sock); 2025 } 2026 2027 int security_socket_getpeername(struct socket *sock) 2028 { 2029 return call_int_hook(socket_getpeername, 0, sock); 2030 } 2031 2032 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2033 { 2034 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2035 } 2036 2037 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2038 { 2039 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2040 } 2041 2042 int security_socket_shutdown(struct socket *sock, int how) 2043 { 2044 return call_int_hook(socket_shutdown, 0, sock, how); 2045 } 2046 2047 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2048 { 2049 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2050 } 2051 EXPORT_SYMBOL(security_sock_rcv_skb); 2052 2053 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2054 int __user *optlen, unsigned len) 2055 { 2056 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2057 optval, optlen, len); 2058 } 2059 2060 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2061 { 2062 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2063 skb, secid); 2064 } 2065 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2066 2067 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2068 { 2069 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2070 } 2071 2072 void security_sk_free(struct sock *sk) 2073 { 2074 call_void_hook(sk_free_security, sk); 2075 } 2076 2077 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2078 { 2079 call_void_hook(sk_clone_security, sk, newsk); 2080 } 2081 EXPORT_SYMBOL(security_sk_clone); 2082 2083 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2084 { 2085 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2086 } 2087 EXPORT_SYMBOL(security_sk_classify_flow); 2088 2089 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2090 { 2091 call_void_hook(req_classify_flow, req, fl); 2092 } 2093 EXPORT_SYMBOL(security_req_classify_flow); 2094 2095 void security_sock_graft(struct sock *sk, struct socket *parent) 2096 { 2097 call_void_hook(sock_graft, sk, parent); 2098 } 2099 EXPORT_SYMBOL(security_sock_graft); 2100 2101 int security_inet_conn_request(struct sock *sk, 2102 struct sk_buff *skb, struct request_sock *req) 2103 { 2104 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2105 } 2106 EXPORT_SYMBOL(security_inet_conn_request); 2107 2108 void security_inet_csk_clone(struct sock *newsk, 2109 const struct request_sock *req) 2110 { 2111 call_void_hook(inet_csk_clone, newsk, req); 2112 } 2113 2114 void security_inet_conn_established(struct sock *sk, 2115 struct sk_buff *skb) 2116 { 2117 call_void_hook(inet_conn_established, sk, skb); 2118 } 2119 EXPORT_SYMBOL(security_inet_conn_established); 2120 2121 int security_secmark_relabel_packet(u32 secid) 2122 { 2123 return call_int_hook(secmark_relabel_packet, 0, secid); 2124 } 2125 EXPORT_SYMBOL(security_secmark_relabel_packet); 2126 2127 void security_secmark_refcount_inc(void) 2128 { 2129 call_void_hook(secmark_refcount_inc); 2130 } 2131 EXPORT_SYMBOL(security_secmark_refcount_inc); 2132 2133 void security_secmark_refcount_dec(void) 2134 { 2135 call_void_hook(secmark_refcount_dec); 2136 } 2137 EXPORT_SYMBOL(security_secmark_refcount_dec); 2138 2139 int security_tun_dev_alloc_security(void **security) 2140 { 2141 return call_int_hook(tun_dev_alloc_security, 0, security); 2142 } 2143 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2144 2145 void security_tun_dev_free_security(void *security) 2146 { 2147 call_void_hook(tun_dev_free_security, security); 2148 } 2149 EXPORT_SYMBOL(security_tun_dev_free_security); 2150 2151 int security_tun_dev_create(void) 2152 { 2153 return call_int_hook(tun_dev_create, 0); 2154 } 2155 EXPORT_SYMBOL(security_tun_dev_create); 2156 2157 int security_tun_dev_attach_queue(void *security) 2158 { 2159 return call_int_hook(tun_dev_attach_queue, 0, security); 2160 } 2161 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2162 2163 int security_tun_dev_attach(struct sock *sk, void *security) 2164 { 2165 return call_int_hook(tun_dev_attach, 0, sk, security); 2166 } 2167 EXPORT_SYMBOL(security_tun_dev_attach); 2168 2169 int security_tun_dev_open(void *security) 2170 { 2171 return call_int_hook(tun_dev_open, 0, security); 2172 } 2173 EXPORT_SYMBOL(security_tun_dev_open); 2174 2175 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2176 { 2177 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2178 } 2179 EXPORT_SYMBOL(security_sctp_assoc_request); 2180 2181 int security_sctp_bind_connect(struct sock *sk, int optname, 2182 struct sockaddr *address, int addrlen) 2183 { 2184 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2185 address, addrlen); 2186 } 2187 EXPORT_SYMBOL(security_sctp_bind_connect); 2188 2189 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2190 struct sock *newsk) 2191 { 2192 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2193 } 2194 EXPORT_SYMBOL(security_sctp_sk_clone); 2195 2196 #endif /* CONFIG_SECURITY_NETWORK */ 2197 2198 #ifdef CONFIG_SECURITY_INFINIBAND 2199 2200 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2201 { 2202 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2203 } 2204 EXPORT_SYMBOL(security_ib_pkey_access); 2205 2206 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2207 { 2208 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2209 } 2210 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2211 2212 int security_ib_alloc_security(void **sec) 2213 { 2214 return call_int_hook(ib_alloc_security, 0, sec); 2215 } 2216 EXPORT_SYMBOL(security_ib_alloc_security); 2217 2218 void security_ib_free_security(void *sec) 2219 { 2220 call_void_hook(ib_free_security, sec); 2221 } 2222 EXPORT_SYMBOL(security_ib_free_security); 2223 #endif /* CONFIG_SECURITY_INFINIBAND */ 2224 2225 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2226 2227 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2228 struct xfrm_user_sec_ctx *sec_ctx, 2229 gfp_t gfp) 2230 { 2231 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2232 } 2233 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2234 2235 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2236 struct xfrm_sec_ctx **new_ctxp) 2237 { 2238 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2239 } 2240 2241 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2242 { 2243 call_void_hook(xfrm_policy_free_security, ctx); 2244 } 2245 EXPORT_SYMBOL(security_xfrm_policy_free); 2246 2247 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2248 { 2249 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2250 } 2251 2252 int security_xfrm_state_alloc(struct xfrm_state *x, 2253 struct xfrm_user_sec_ctx *sec_ctx) 2254 { 2255 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2256 } 2257 EXPORT_SYMBOL(security_xfrm_state_alloc); 2258 2259 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2260 struct xfrm_sec_ctx *polsec, u32 secid) 2261 { 2262 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2263 } 2264 2265 int security_xfrm_state_delete(struct xfrm_state *x) 2266 { 2267 return call_int_hook(xfrm_state_delete_security, 0, x); 2268 } 2269 EXPORT_SYMBOL(security_xfrm_state_delete); 2270 2271 void security_xfrm_state_free(struct xfrm_state *x) 2272 { 2273 call_void_hook(xfrm_state_free_security, x); 2274 } 2275 2276 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2277 { 2278 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2279 } 2280 2281 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2282 struct xfrm_policy *xp, 2283 const struct flowi *fl) 2284 { 2285 struct security_hook_list *hp; 2286 int rc = 1; 2287 2288 /* 2289 * Since this function is expected to return 0 or 1, the judgment 2290 * becomes difficult if multiple LSMs supply this call. Fortunately, 2291 * we can use the first LSM's judgment because currently only SELinux 2292 * supplies this call. 2293 * 2294 * For speed optimization, we explicitly break the loop rather than 2295 * using the macro 2296 */ 2297 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2298 list) { 2299 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2300 break; 2301 } 2302 return rc; 2303 } 2304 2305 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2306 { 2307 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2308 } 2309 2310 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2311 { 2312 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2313 0); 2314 2315 BUG_ON(rc); 2316 } 2317 EXPORT_SYMBOL(security_skb_classify_flow); 2318 2319 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2320 2321 #ifdef CONFIG_KEYS 2322 2323 int security_key_alloc(struct key *key, const struct cred *cred, 2324 unsigned long flags) 2325 { 2326 return call_int_hook(key_alloc, 0, key, cred, flags); 2327 } 2328 2329 void security_key_free(struct key *key) 2330 { 2331 call_void_hook(key_free, key); 2332 } 2333 2334 int security_key_permission(key_ref_t key_ref, 2335 const struct cred *cred, unsigned perm) 2336 { 2337 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2338 } 2339 2340 int security_key_getsecurity(struct key *key, char **_buffer) 2341 { 2342 *_buffer = NULL; 2343 return call_int_hook(key_getsecurity, 0, key, _buffer); 2344 } 2345 2346 #endif /* CONFIG_KEYS */ 2347 2348 #ifdef CONFIG_AUDIT 2349 2350 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2351 { 2352 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2353 } 2354 2355 int security_audit_rule_known(struct audit_krule *krule) 2356 { 2357 return call_int_hook(audit_rule_known, 0, krule); 2358 } 2359 2360 void security_audit_rule_free(void *lsmrule) 2361 { 2362 call_void_hook(audit_rule_free, lsmrule); 2363 } 2364 2365 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2366 { 2367 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2368 } 2369 #endif /* CONFIG_AUDIT */ 2370 2371 #ifdef CONFIG_BPF_SYSCALL 2372 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2373 { 2374 return call_int_hook(bpf, 0, cmd, attr, size); 2375 } 2376 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2377 { 2378 return call_int_hook(bpf_map, 0, map, fmode); 2379 } 2380 int security_bpf_prog(struct bpf_prog *prog) 2381 { 2382 return call_int_hook(bpf_prog, 0, prog); 2383 } 2384 int security_bpf_map_alloc(struct bpf_map *map) 2385 { 2386 return call_int_hook(bpf_map_alloc_security, 0, map); 2387 } 2388 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2389 { 2390 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2391 } 2392 void security_bpf_map_free(struct bpf_map *map) 2393 { 2394 call_void_hook(bpf_map_free_security, map); 2395 } 2396 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2397 { 2398 call_void_hook(bpf_prog_free_security, aux); 2399 } 2400 #endif /* CONFIG_BPF_SYSCALL */ 2401 2402 int security_locked_down(enum lockdown_reason what) 2403 { 2404 return call_int_hook(locked_down, 0, what); 2405 } 2406 EXPORT_SYMBOL(security_locked_down); 2407 2408 #ifdef CONFIG_PERF_EVENTS 2409 int security_perf_event_open(struct perf_event_attr *attr, int type) 2410 { 2411 return call_int_hook(perf_event_open, 0, attr, type); 2412 } 2413 2414 int security_perf_event_alloc(struct perf_event *event) 2415 { 2416 return call_int_hook(perf_event_alloc, 0, event); 2417 } 2418 2419 void security_perf_event_free(struct perf_event *event) 2420 { 2421 call_void_hook(perf_event_free, event); 2422 } 2423 2424 int security_perf_event_read(struct perf_event *event) 2425 { 2426 return call_int_hook(perf_event_read, 0, event); 2427 } 2428 2429 int security_perf_event_write(struct perf_event *event) 2430 { 2431 return call_int_hook(perf_event_write, 0, event); 2432 } 2433 #endif /* CONFIG_PERF_EVENTS */ 2434